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Identifying models of obsidian distribution in Preclassic Maya Lowlands contexts 

 

Alex Tischler 

 

Abstract 

Obsidian was an important resource throughout Mesoamerica, and found at nearly all sites. Sources of 

obsidian were located in the Mexican Highlands and Guatemalan Highlands, often being transported 

over hundreds of kilometers for distribution. In this paper I chose four Maya sites—El Ceibal, Tikal, Xtobo, 

and Actun Uayazba Kab—and used three obsidian distribution models previously published by De León et 

al. in 2009, to infer possible distribution methods used in the Maya Lowlands. Though limitations existed 

the results from this proof-of-concept analysis indicate that distribution models derived for central 

Mexican contexts are suitable for Maya regions, and that the Maya were engaged in multiple forms of 

blade trade.  

Introduction 

Obsidian has long been an important material for lithic using populations where 

available. The dark volcanic glass is naturally sharp when fractured, and its predictable flaking 

patterns made it a highly prioritized material for flintknapping efficient lithic blades. Situated 

within the tectonic active Pacific Rim of Fire, Mesoamerica had over a dozen obsidian quarries 

frequented for centuries by the numerous Mesoamerican populations. The majority of these 

quarries were in the Mexican Highlands—Zaragoza, Orizaba, Paredon, Otumba, Tulancingo, 

Pachuca, Zacualtipan, and Ucareo quarries—west of the Isthmus of Tehuantepec, while to the 

east, those in the Mexican lowlands, Guatemala, Belize, El Salvador, and Honduras 

predominately exploited obsidian from the Guatemalan Highlands—El Chayal, Ixtepeque, San 

Martín Jilotepeque, and Tajumulco. 

Mesoamerican obsidian sources were exploited by preceramic Paleo-Indigenous peoples 

before the beginning of the Archaic era around 7,000 B.C.E. (Coe and Flannery 1964:46,48; 

Brown 1980: 314-316,322). The Archaic Era (~7,000 B.C.E. – 1,500 B.C.E.) is most pronounced 
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by the adoption of sedentary settlements and swidden agricultural methods including 

domestication of staple crops (maize and squash) by 3,400 B.C.E and extending even into the 

Preclassic (Lohse 2010:320; Adams 2005:33). Additionally, pottery begins appearing near the 

end of the Archaic, such as the early Tehuacan sequence from Puerto Márquez (Adams 2005:45). 

Sedentary settlements of the Archaic gave way to growing social complexity and the first 

Mesoamerican states during the Preclassic Era (1,500 B.C.E. – 250 C.E.). Urban civil centers 

started becoming cores of Mesoamerican villages, and were marked by the construction of stone 

monuments and ballcourts (Adams 2005:59-60). Pan-Mesoamerican iconography began 

spreading along a growing number of long-distance interregional trade networks. The long-

distance trade of obsidian prismatic blades too became more sophisticated. Obsidian prismatic 

flake blades were commonly traded during the Early and Middle Preclassic, giving way to the 

trade of obsidian prismatic cores by the Late Preclassic (De León et al. 2009). 

For archaeologists, obsidian artifacts provide valuable resources in the reconstruction of 

the ancient trade networks. All obsidian sources, have unique chemical composition which 

makes possible the accurate sourcing of obsidian artifacts. Connecting samples recovered at sites 

to the original quarry has allowed for intricate analyses of obsidian trade routes, distribution 

methods, and trade partners. Additionally, the evolution of sophisticated obsidian flintknapping 

technology cultures has been used to infer spread of technologies and ideas, or changes in trade 

partners. While obsidian artifacts can reveal much, “most research still emphasizes the gathering 

of source-attribution data rather than the analysis of exchange mechanisms” (Braswell et al. 

2000). And of these Preclassic trade network models, the majority are largely reconstructed from 

sites in the Mexican Highlands (De León et al. 2009).  
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Three of the experienced researchers of Preclassic Mesoamerican obsidian assemblages 

and sourcing, Jason De León, Kenneth Hirth, and David Carballo, proposed a series of obsidian 

prismatic blade distribution models: whole-blade trade, processed-blade trade, and local-blade 

production. In supporting their models De León et al. only used sites from Highland Mexico. In 

this paper I will be using De León et al.’s proposed models for obsidian distributions and apply 

them to obsidian assemblages recovered from Preclassic Maya contexts. The goal is to determine 

if Preclassic Maya obsidian usage is preserved in the archaeological record in a manner 

comparable to Highland Mexican contexts, such that models of obsidian distribution 

conceptualized for Highland Mexican obsidian sources are applicable to Maya sites.  

Methodology 

Obsidian 

Obsidian is a glassy rhyolitic igneous rock, a product of volcanic processes. Formed from 

rapidly cooling felsic magma, obsidian flows are chemically homogenous and have a disorderly 

atomic structure, resulting in the lack of a mineral crystalline structure in its matrix customary of 

felsic rocks such granite (Andrefsky 2005; Ferguson 2012). The lacking crystalline matrix allows 

for predictable fracturing and worked edges to be sharper than steel due to a thinner atomic 

structure.  

Pure obsidians are naturally dark in color, purples and blacks, but can range in a variety 

of colors due to impurities: brown, grey, blue, green, white, and red. Samples may be 

monochromatic, or be imbued with white bursts (“snowflake” obsidian), stripes of one or more 

color, or even a multitude of colors (“rainbow” obsidian) (Nadin 2007). These impurities are 

caused by presence of trace elements of zinc (Zn), iron (Fe) and iron oxide (Fe2O3), gallium  

(Ga), rubidium (Rb), strontium (Sr), Yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), 
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titanium (Ti), manganese (Mn) and/or magnesium oxide (MgO) (Ebert et al. 2015; Hughes and 

Fortier 2007;150-151).  

The trace element impurities make each obsidian flow chemically unique, and 

homogenous unto itself, though a degree of intrasource chemical variation exists (Andrefsky 

2005; Braswell et al. 2000). Sourcing obsidian samples thus can be carried out with high 

accuracy, as long as the sample size is large enough, and the source has been identified. 

Unfortunately, due to limited known obsidian sources in the 1970s, it was common for obsidian 

samples recovered during that time from Preclassic Era contexts to be listed as having unknown 

sources through compositional 

analysis (Blomster and 

Glascock 2011), thus requiring 

sources to be evidenced 

through other means, chiefly 

macroscopic and microscopic 

visual analysis. 

Sourcing 

Obsidian sourcing is 

conducted primarily in two 

ways: visual analysis and compositional analysis. Visual analysis relies on sourcing samples 

through arbitrarily defined traits. Braswell et al. thoroughly summarized methods for visual 

sourcing obsidians in a 2000 paper. They outline seven optical categories for visually sourcing 

obsidians: “(1) the refracted color; (2) the reflected color; (3) the degree of translucence and 

opacity; (4) the degree to which refracted light is diffused; (5) the presence, size, color, 

Image 1 Obsidian core fragment with cortex.  

(Original photo by Alex Tischler) 
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frequency, and nature of inclusions; (6) the texture and luster of flaked surfaces; and (7) the 

color, texture, and thickness of cortex” (Braswell et al. 2000:270-271). Due to the reliance on a 

subjective reality and arbitrary categories, visual sourcing remains controversial. Braswell et al. 

point out their preferences of lighting, “Braswell favors the use of a variety of light sources, 

ranging from natural sunlight to fluorescent. In contrast, Clark prefers to use the same light 

source for consistence” (2000:271), which is echoed by Pierce who used sunlight for visual 

analysis (Pierce 2013). Moholy-Nagy and Nelson further argue “considerable within-source 

optical variability” demonstrates that visual queues are inadequate to accurately source obsidians 

(1990:70). Braswell et al. provide the “corpus of descriptions of the optical characteristics” 

which Moholy-Nagy and Nelson require (1990:70), and demonstrate that visual sourcing is 

necessary and reliable within a region, especially when paired with compositional analysis. Table 

1 provides a break down of the visual characteristics of the three commonly used Guatemala 

obsidian sources by the Maya: Ixtepeque, E1 Chayal, and San Martín Jilotepeque. 

Two methods of compositional analysis commonly employed are X-ray fluorescence 

spectrometry (XRF) and instrumental neutron activation analysis (INAA). First, XRF is a 

quantitative analysis of the elemental composition of a sample. By ionizing a sample with a high-

energy X-ray beam, the fluorescence resulting from the dislodgement of an element’s inner 

electron and subsequent replacement with an outer electron, can be analyzed. Each element gives 

off a unique wavelength which when recorded results in an overall chemical composition of the 

sample (Guthrie and Ferguson 2012; Wirth and Barth 2007). Energy-dispersive XRF, the most 

common method of XRF spectrometry used in obsidian chemical analysis, simultaneously 

excites all elements in a sample. Commonly used EDXRF and related onsite portable XRF 

(pXRF) are non-destructive methods, and requires samples to be >10 mm in smallest dimension, 
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and >2 mm thick (Andrefsky 2005:44); high precision XRF methods require >100mg of ground 

material for analysis (Shackley 2011).   

The second method commonly used for compositional analysis is neutron activation 

analysis (NAA). The method provides a quantitative and qualitative analysis of major, minor, 

and trace elements. A sample is bombarded from neutron sources to destabilize the element, 

creating artificial radioisotopes. To test the trace elements commonly found in obsidian, delayed 

gamma NAA (dgNAA) is utilized. Once the sample is irradiated the excess energy of the 

radioisotopes is given off as gamma radiation. The gamma radiation spectrum is analyzed first a 

few hours after irradiation, then again 3-4 days, and once more at 4-8 weeks, which results in a 

multi-elemental analysis of the sample (Glascock 2017a). “Automated sample handling, gamma-

ray measurement with solid-state detectors, and computerized data processing” makes 

instrumental neutron activation analysis (INAA) a viable choice for concurrently sourcing 

multiple elements within an obsidian sample (Glascock 2017a). INAA is a highly precise, 

however it can’t be used to analyze as wide a range of elements as XRF, often times 

necessitating an overlap of analyses. A sample size of ~500 mg is recommended, however 

sample sizes as small as 5-10 mg can be analyzed (Glascock 2017b). INAA is a destructive 

process, requiring samples to be cut and ground, and once the sample becomes irradiated 

requires special storage (Braswell et al. 2000). 
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Table 1. Table recreated from Braswell 2000 Table 1 describing characteristics for visually sourcing El Chayal, Ixtepeque, and San Martín Jilotepeque. 

Source Refracted Color 
Reflected 

Color 
Translucency/Opacity  Sharp/Diffused Inclusions 

Luster and Texture of 

Surface 
Cortex 

El Chayal Frequently 

medium gray 

with milky or 

waxy appearance, 

thickest portion 

often has roseate 

hue. Less 

commonly, clear, 

dark gray, or 

black. 

Medium gray to 

black. 

Medium translucency 

but banded portions are 

opaque. 

Diffused light, 

appearance 

similar to 

frosted glass. 

Frequent but small, 

dark grey or black 

banding and dusty 

inclusions are 

common in clearer 

examples. When 

present, banding is 

wide and somewhat 

irregular. 

Medium luster, soapstone 

texture, fine unmarred 

surface. 

Generally thin and 

relatively smooth. 

Ixtepeque Usually brown, 

similar in color to 

dark sherry or 

cola. Rare pieces 

are completely 

opaque. 

Black but 

opaque pieces 

are medium 

gray. 

Mahogany 

spots are 

frequent on 

opaque nodules, 

but rare on 

artifacts.  

Most commonly 

medium translucency, 

but banded portions are 

opaque. Completely 

opaque pieces are 

found. 

Sharp refracted 

light, like 

artificial glass. 

Usually none, 

though banding 

(typically milky gray 

to black) is common. 

Bands are narrow, 

straight, and parallel. 

Infrequently, cola-

colored material has 

sand-grain-sized 

inclusions, but dusty 

inclusions are 

absent. 

High luster unless opaque 

gray which has medium 

luster. Surface typically is 

very smooth and glassy, 

though pieces with sand 

inclusions me be somewhat 

pitted. 

Generally quite thin 

and regular, often 

with perlitic 

surface. 

San 

Martín 

Jilotepeque 

Usually dark gray 

with some brown 

hue. Highly 

variable and 

dependent on 

density of 

particulate 

inclusions. 

Black Low to medium, 

irregular depending on 

density of inclusions. 

Highly variable, 

though 

generally falling 

between El 

Chayal and 

Ixtepeque in the 

degree of 

diffusion. 

Ubiquitous and of 

all sizes from dusty 

to sand-gran-sized 

particles. Inclusions 

are disturbed 

throughout in 

clouds, very uneven 

black bands, and 

other irregular 

formations. 

Inclusions are much 

more dense than in 

other two sources. 

Some pieces have 

irregular mahogany 

or black spots. 

Low luster, though the surface 

can have an oily sheen. 

Surface is pitted due to 

inclusions, and has an "orange 

skin" appearance. Least 

glassy of the three major 

sources. 

Medium to thick, 

often rough. 



8 
 

Distribution Models 

 In their 2009 paper, De León et al. examine two important questions: “(1) what does 

blade trade look like in the archaeological record, and (2) how can blade trade be distinguished 

from other potential distribution systems?” To answer these questions, they used co-author 

Kenneth Hirth’s distribution approach (1998) to reconstruct complex forms of obsidian 

exchange. They proposed three distributional models for obsidian exchange: whole-blade trade, 

processed-blade trade, and local-blade production. Each model of trade is defined by 

characteristics of obsidian blades in the archaeological record. The characteristics they search for 

are: proximal-distal and medial-distal ratios, primary and secondary production evidence, whole 

prismatic-blades, and obsidian cores (Table 2). Data from previously excavated obsidian 

assemblages from sites spanning three regions: Basin of Mexico, Tlaxcala, and Valley of 

Oaxaca, were used to evaluate their models.  

Table 2. Characteristics used by De León et al. (2006: Table 1) to identify obsidian distribution model. 

Proximal-Distal 

Ratio 
Medial-Distal Ratio 

Primary 

Production 

Evidence 

Secondary 

Production 

Evidence 

Whole Prismatic 

Blades 

The ratio of proximal 

to distal sections of a 

segmented obsidian 

prismatic blade. 

The ratio of medial 

to distal sections of a 

segmented obsidian 

prismatic blade. 

• Blade cores 

• Exhausted cores 

• Recycled cores 

• Rejuvenation 

flakes 

• Core fragments 

• Core-shaping 

flakes 

• Macroblades 

• Percussion blades 

• Early series 

pressure blades 

• Plunging blades 

• Blades with hinge 

fractures 

• Crested blades 

Distal orientation 

blades 

• Overhang removal 

flakes 

Unsegmented 

obsidian prismatic 

blades 

Blade Trade 

 The lithic manufacturing technique, stages of production, qualities of source obsidian 

core, the means of transportation, and other factors provide important information into 
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reconstructing ancient political economies. These factors can be revealed by looking at the 

characteristics defined in Table 2 which contributes to the reconstruction of distribution models. 

De León et al. define blade trade as, “the exchange of prismatic blades without cores needed to 

produce them” (2009:113). Prismatic cores, exhausted cores, recycled cores, rejuvenation flakes, 

and core fragments all make up primary 

production evidence, while “the by-products 

associated with core shaping and 

maintenance (core-shaping flakes, 

decortication blades, macroblades, 

percussion blades, early series pressure 

blades), production errors (plunging blades, 

blades with hinge fractures), and the 

correction of production errors (crested 

blades, distal orientation blades, overhang 

removal flakes)” make up secondary 

production evidence (De León et al. 

2009:114). Because obsidian was a rare 

material De León et al. suggested crafters 

would have kept cores in their possession, 

meaning the presence of primary and/or 

secondary production evidence would indicate local production (2009:119) 

Similarly, based on the physical properties of obsidian, the presence of whole and 

segmented prismatic blades reveals important distribution information. As mentioned, obsidian 

Image 2. A whole obsidian prismatic blade and a blade 

segmented into proximal, medial, and distal ends. 

(Originally found in DeLeon et al. 2009:Figure 6) 
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breaks in a relatively predictable manner. A prismatic blade typically produces one proximal—

platform edge—segment, at least one medial—middle—segment, and one distal—tip opposite 

the proximal—segment which often curves. Based on these characteristics, a prismatic blade is 

expected to optimally produce a proximal-medial-distal segment ratio of 1:1:1, however this is 

not expected at sites. Besides being the smallest segment, the curve in the distal segment is less 

likely to appear in the record for two reasons. First, severe curves require a high degree of 

flintknapping skill to properly implement. Second, the curve increases risks of blades breaking in 

transportation. By segmenting the distal tip, the blades are more likely to survive long journeys. 

A third factor to consider is the possibility that one large prismatic blade “can produce many 

usable medial segments, such segments often dominate blade assemblages” (De León et al. 

2009). A complete breakdown of the models to follow can be found in Table 3.  

Whole-Blade Trade Model 

The whole-blade trade model “assumes that complete blades were exchanged without a 

corresponding trade in obsidian cores” (De León et al. 2009). Under this model, blades would 

have been produced in one location, and distributed whole in a separate location. Because 

prismatic blades would have been broken down on site, with the medial being processed into 

multiple usable segments, they’d produce a proximal-distal ratio of 1:1 and a medial-distal of 2-

3:1, and no primary or secondary evidence.  

Processed-Blade Trade Model 

 Under this model prismatic blades were processed—severely curved distal (and 

sometimes proximal) end removed—before being transported from production site to receiver. 

Removal of the distal end flattened the blade, decreasing the likelihood of blades breaking during 

transportation. The loss of the distal segment “does not generally reduce a blade’s overall utility 
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or desirability because curved segments are both difficult to haft and a poor choice for straight 

edge cutting” (De León et al. 2009:118). Due to the removal of the distal end, at sites receiving 

processed blades the expected proximal-distal ratio is 6:1, and medial-distal would be similarly 

high at 6:1. As with whole-blade trade, processed-blade trade is not associated with primary or 

secondary production evidence. 

Local-Blade Production Model 

 Under local-blade production, blade cores were brought in locally, with blade production 

carried out onsite by itinerant crafters—travelers bringing their skills and supplies where 

needed—or by local crafters living permanently in the region. The authors acknowledge 

distinguishing between local and itinerant production could be challenging, they do provide a 

key difference. Itinerant crafting is expected to produce segment ratios similar to whole-blade 

trade, found in association with secondary production evidence, but limited primary evidence 

due to cores remaining in the crafter’s possession (De León et al. 2009). Local crafting 

production is expected to have similar characteristics as itinerant crafting, but also include 

primary production evidence and more varied forms of secondary production evidence due to all 

stages of production happening onsite. 
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Table 3. Models of distribution with expected associated evidence. 

Model Primary 

Production 

Evidence 

Secondary 

Production 

Evidence 

Whole 

Blades 

Present 

Proximal-

Distal 

Ratio 

Medial-

Distal 

Ratio 

Whole-blade trade No No Yes 1:1 2-3:1 

Processed-blade trade No No No 6:1 6:1 

Local-blade production 

- Local Crafter 

No Yes Yes 1:1 2-3:1 

Local-blade production 

- Itinerant Crafter 

Yes Yes Yes 1:1 2-3:1 

 

Sites 

 Sites were selected by a simple yet specific criteria: 1) falls within the Maya regions; 2) 

Maya occupations during the Preclassic; 3) prismatic obsidian blades from Preclassic contexts 

were recovered; and 4) obsidian assemblages have a sample size of over 20 blade segments. 

Furthermore, in sifting through data from excavation projects, I searched for sites where the 

investigators provided breakdown of prismatic blade sections—proximal, medial, and distal. 

This does reveal a few complications. A common architectural trend among the Maya was 

building over existing sites, thus burying the oldest settlements. Preclassic contexts at Maya sites 

which were occupied from Preclassic to Classic or later are often locked under larger and recent 

Classic architecture. A second complication arises not with Maya architecture, but with 

archaeological reporting. As De León et al. noted, “Unfortunately researchers often fail to 

distinguish between proximal, medial, and distal blade segments or do not clarify the criteria 

used to identify segments in published reports (e.g., whether a distal section needs the tip or a 

proximal section needs the platform to be classified as such)” (2009:115). Though obsidian is 

found at dozens of Maya sites, it is not always the focus of research papers and analysis is 

sometimes limited to solely sourcing.  
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Four sites met the above criteria and were chosen to evaluate De León et al.’s models: a 

workshop in the large city of El Ceibal, the prominent planned city Tikal, and the ritual cave 

Actun Uayazba Kab, all in the Southern Lowlands; and in the Northern Lowlands, the small and 

underdeveloped settlement, Xtobo (see Map 1 for site locations). The Southern Lowlands were 

overrepresented in this analysis, while the Maya Highlands weren’t represented at all, this was an 

unfortunate byproduct of limited sites matching the required criteria.  

El Ceibal 

 El Ceibal has been extensively excavated, first by Harvard University’s 1960s Seibal 

Archaeological Project, and then by the Ceibal-Petexbatun Archaeological Project in 2005 and 

2014. “The lowland Maya city of Ceibal was the largest of all the Pasión River drainage sites, 

both in terms of extent and in terms of total construction volume of its major public structures” 

(Aoyama et al. 2017:408). Pyramid-platforms were constructed across a series of hills, with 

Ceibal’s main development located at Group A, the Central Plaza; Group C; and Group D, a 

fortress and ceremonial center (Aoyama et al. 2017; Aoyama 2017a; Aoyama 2017b). Ceibal’s 

first pyramid-platform and public plaza was constructed during the early Middle Preclassic’s 

Early-Xe phase (1000-700 B.C.E) (Table 4). During the late Middle Preclassic Escoba-Mamom 

phase (700-350 B.C.E), numerous stelae were constructed (Aoyama et al. 2017). A steadily 

increasing population and growing access to distribution networks which granted access to rare 

materials and access to intercultural networks of shared ideas and iconography is seen as 

evidence of El Ceibal’s growing social hierarchy during its Middle Preclassic (Aoyama et al. 

2017; Aoyama 2017a).  “Ceibal reached its first peak during the Late Preclassic Contutse-

Chicanel phase (250-100 B.C.)” (Aoyama 2017a). 
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Map 1. Lowland and Highland Maya sites evaluated in this paper. 
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Across the excavations of Ceibal and neighboring Caobal in 2005 and 2014, The Ceibal-

Petexbatun Archaeological Project recovered 72, 490 lithic artifacts, of which 32,473 chipped 

stone—predominately chert and obsidian—artifacts come from unmixed Preclassic contexts 

(Aoyama 2017a). While chert was available locally near the Pasión River, obsidian needed to be 

imported. The archaeological record for Ceibal and other excavated sites show obsidian 

utilization during the Preclassic underwent a diachronic change in source access and state 

obsidian arrived in between three Guatemalan sources. During the early Middle Preclassic, El 

Chayal was the dominant source, while San Martín Jilotepeque became the main source during 

the late Middle Preclassic to Terminal Preclassic. Ixtepeque was used in low quantities during 

the Preclassic (Aoyama 2017a). Ceibal had greater access to a variety of obsidian than did 

neighboring centers within Ceibal’s influence. 

Tikal 

The Southern Lowland city of Tikal is considered “one of the most important Late 

Preclassic and Classic period settlements” (Moholy-Nagy 1999:300). In 1994, Moholy-Nagy 

recorded 9,900 obsidian artifacts recovered from Tikal, along with 57,000 fragments of debitage 

(1994:67), and “over 1,200 mostly fragmentary artifacts were recorded from Late Preclassic 

through Early Postclassic contexts by the University of Pennsylvania Museum's Tikal Project 

(195S1970) and the government of Guatemala's Proyecto Nacional de Tikal (PNT) (1979-1984)” 

(Moholy-Nagy 1999:300).  

Located in the Southern Maya Lowlands, Tikal was founded between limestone ridges, 

and built up on hills in a fertile swamp. Though Tikal was the “heart of the Southern Maya 

Lowlands” it was also “the last area to be settled by pottery-using agriculturalists” (Moholy-
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Nagy 1994:30).  There is evidence of early occupation as late as 1000 B.C.E., but Tikal wasn’t 

permanently settled until the early Middle Preclassic (800 B.C.E.). Teotihuacan   The immediate 

access to long-distance distribution networks evidenced by imported domestic and eccentrics, 

connecting Tikal with central Mexico and the Guatemalan Highlands, may indicate that Tikal 

was founded by an established chiefdom (Moholy-Nagy 1994:31). Even though Tikal had access 

to these networks, the settlement was surpassed in size and influence by nearby cities such as El 

Mirador during the Preclassic. 

Tikal’s ceramic culture defines five phases (Table 4). Two Middle Preclassic phases: the 

early, Eb (800 B.C.E – 600 B.C.E), and a late Tzec (600 B.C.E – 350 B.C.E.). Likewise, the Late 

Preclassic is represented by two phases: the Chuen phase between 350 B.C.E to 1 C.E. and the 

Cauac phase spanning 1 C.E. to 150 C.E. The final phase is a transitional, Terminal Preclassic 

(overlaps with Moholy-Nagy’s Protoclassic) phase, Cimi from 150 C.E. to 250 C.E. (Moholy-

Nagy 1999:301).  

Xtobo 

Nestled in the far northwest Yucatan, Xtobo was a recent discovery. Started in 1999 and 

spanning four field seasons, the Proyecto Costa Maya (PCM) performed a regional survey 

revealing 140 Preclassic sites in the Northern Lowlands, including Xtobo (Anderson 2011:302). 

PCM surveyed and excavated three test pits in 2002, and David Anderson inaugurated the 

Proyecto Arqueológico de Xtobo (PAX) in 2004. Also spanning four field seasons PAX 

excavated 67 ha, including the site center, and “recording 387 structures, 116 metates, 12 pozos 

(ground-water wells), and two caves” and a ballcourt (Anderson 2011:302).  
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Table 4. Preclassic cultural phases for sites. 
  

Phase El Ceibal Tikal Xtobo Actun Uayazba Kab 

Middle Preclassic Xe  

(1000 - 700 B.C.E.) 

Eb  

(800 - 600 B.C.E.) 

Nabanche 1 & 2 

(800 - 400 B.C.E.) 

 

Middle Preclassic Escoba-Mamom  

(700 - 350 B.C.E.) 

Tzec  

(600 - 350 B.C.E.) 

Am 

 

 

Late Preclassic  Chuen  

(350 B.C.E - 1 C.E. 

Beech 

 

 

Late Preclassic Contutse-Chicanel  

(250 - 100 B.C.E.) 

Cauc  

(1 C.E. - 150 C.E.) 

 Sierra Red 

Terminal Preclassic  Cimi  

(150 C.E. - 250 C.E.) 

 Aquacate Orange 
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Xtobo was located “far from known centers of major Middle Preclassic cultural 

development,” resulting in a “small, but sophisticated, site” (Anderson 2005:2). Common among 

Maya settlements, Xtobo was laid out around an “elite-ceremonial core” (Anderson 2011:307). 

To the north and east are two 8 m tall pyramids, and to the south and west smaller platforms 

defining the inner plaza (Anderson 2011:304). Radiating from the core plaza were five sacbes, 

three—Chikin, Xaman, and Chaltun--led to large elite residential complexes, Sacbe Jo’ to a 

partially deconstructed third pyramid, and the most prominent sacbe, Nohol, led to a double 

Triadic Group structure (Anderson 2011:304, 307). Three other Triadic Group structures were 

discovered. Sacbe Nohol connected to the southern closing mound of the ballcourt, with stairs 

cut into both the ballcourt’s playing alley and plaza sides, which created a long pathway into the 

central plaza. The majority of structures excavated were part of a “dense residential settlement” 

outside the elite-ceremonial core (Anderson 2011:307). To the northwest of the core was a series 

of sacbe-esque structures aligned in a roughly circular pattern covering 5 ha. This structure 

pattern is unique to Xtobo and dubbed the Xtaabay Group, though purpose is still unknown 

(Anderson 2011:308). 

Xtobo’s assemblage consists of 10,012 pottery sherds, 30 lithics—17 obsidian segmented 

prismatic blades, two quartz manuport, and 11 chert artifacts—and 68 marine shell manuports. 

Though no material was dated, Anderson suggests a relatively brief occupation during the 

Preclassic “lasting no more than a few hundred years” (Anderson 2011:313). Site occupation 

roughly dates from Middle Preclassic to Late or Terminal Preclassic, with brief reoccupations 

during Classic and Postclassic eras based two Classic structures and assemblages (Anderson 

2011:313). Ceramic sherds from the Mamom and Chicanel spheres of the overlapping Am 

Ceramic and Beech Ceramic Complexes (Middle and Late Classic periods) make up 60% of the 
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identified pottery (Anderson 2010:268,503; Anderson 2011:312). Additionally, the obsidian 

prismatic blades lend support for Middle and Late Preclassic occupation. The majority of the 

blades were sourced to El Chayal favored across Maya regions during the Late Preclassic, two 

were sourced to San Martín Jilotepeque utilized predominately during the Middle Preclassic, one 

broadly of Guatemalan origin, and one from either Ucareo or Saragosa in central Mexico 

(Anderson 2011:313). The Triadic Group architecture was favored during the Middle and Late 

Preclassic, being replaced by the Classic periods. 

Considering its short occupation, Xtobo appears to have been carefully planned with its 

“well-organized plaza” and efficient pathing (Anderson 2011:303). Despite being considered 

underdeveloped in comparison to other Middle Preclassic sites (Anderson 2005), its 

sophistication could be indication of its settlement by an already established chiefdom in the 

area. This is further reflected by immediate access to far-reaching trade networks for material 

and cultural goods, such as marine shells and central Mexican obsidian. Anderson proposed 

Xtobo had a population of 1,550 residents during its Preclassic based on number of residential 

structures excavated, and a structure density of 5.8 structures per hectare; this is identical to 

neighboring Komchen which had a similar occupation timeframe (Anderson 2011:308).  

The PAX excavation encountered material culture and structures up to the site 

boundaries, so the extent of Xtobo’s geographical footprint is still unknown. To date, PAX has 

been the only excavation of Xtobo. 

Actun Uayazba Kab 

Actun Uayazba Kab (“Cave of the Handprints”) is a cave in the Roaring Creek Valley of 

the Cayo District of Belize utilized by the Maya for ritual bloodletting (Griffith 1999a:85; Stemp 

et al. 2018). The site was first reconnoitered in 1996 by Cameron Griffith, and later investigated 
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during the 1997-1998 seasons of the Western Belize Region Cave Project (Griffith 1999a: 85-

86). The nearest known surface site to Actun Uayazba Kab is Cahal Uitz Na 605 m to the east; 

another two caves, Actun Tunichil Muknal and Actun Nak Beh, are located nearby (Conlon and 

Ehret 1999a:37).   

The 18m tall east-facing entrance, separated by a seven-meter wide column, leads into 

Uayazba Kab reveal (Griffith 1999a:86). There are five chambers branching off from the 

interconnected entrance, and a ledge above entrance 1 with seven travertine pools. Material 

culture recovered in the cave and pools indicate light usage began in the Late or Terminal 

Preclassic, peaked during the Classic before collapsing during the Terminal Classic; sparse usage 

occurred during the Postclassic (Stemp et al. 2018:10). Though the cave had previously been 

looted (Griffith 1999a:99; Ferguson and Gibbs 1999:114), material evidence still indicated 

possible ritually specific “dark” and “light” zones within the cave. The light zones of the 

entrance features rock formations “carved intro petroglyphs, depicting crudes faces, footrprints, 

elaborate designs, and anthropomorphic figures” (Stemp et al. 2018:9); all ceramic sherds were 

recovered from light zones. Dark zones feature pictographs of handprints, triangles, and simple 

charcoal left from torch tamping (Stemp et al. 2018:10; Griffith 1999a:95).  Other material 

culture recovered included imported slate stones, conch shell fragments, chert tools and debitage, 

113 obsidian artifacts from Late Preclassic to Late Classic contexts, and one green obsidian 

eccentric. (Stemp et al. 2019:9; Griffith 1999a; Ferguson and Gibbs 1999; Wrobel et al. 2017). 

11 human remains were also recovered from alcoves in the cave. The high number of obsidian 

blades have been used to argue that the trio of caves were used for self-sacrificial bloodletting 

rituals (Stemp et al. 2018; Griffith 1999b). 
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The central core of nearby surface site, Cahal Uitz Na, is spread across six plazas, 

covering an area of 22,482 square meters (Conlon and Ehret 1999:38). Earliest known 

construction at the core, including as ballcourt, is dated to the Late Preclassic (Hodgman 2001:3; 

Ferguson 1999: 48,51). Occupation occurred through to the Terminal Classic. Uitz Na’s layout 

alludes to an affinity for ritual cave usage, seen both in the settlement of a site close to three cave 

systems (Conlon and Ehret 1999:37), a 230-meter sacbe extending from Uitz Na’s southside 

south towards Actun Nak Beh (Hodgman 2001 3, 22; Conlon and Ehret 1999:38), and material 

culture found in Actun Tunichil Muknal, Actun Nak Beh, and Actun Uayazba Kab.  

Results 

El Ceibal 

 Two exhausted polyhedral cores dated to Ceibal’s early Middle Preclassic were 

recovered, with samples analyzed through XRF showing El Chayal as the predominant source 

for obsidian. There was a substantial increase in obsidian production during the Late Middle 

Preclassic along with a shift to reliance on San Martín Jilotepeque obsidian. Late Middle 

Preclassic contexts produced, 11 complete and two near complete initial pressure blades, and 

five complete and four nearly complete prismatic blades, and 33 exhausted polyhedral cores 

made up the primary production evidence. There was a decline in obsidian consumption during 

the Late Preclassic. Only one whole initial pressure blade, one exhausted polyhedral core, and 

one recycled exhausted polyhedral core were recovered. This decline continued into the 

Terminal Preclassic; one exhausted and one recycled exhausted polyhedral core were recovered 

(see Table 5). The presence of an obsidian crafters’ workshop and associated debitage from the 

early Middle Preclassic found within Ceibal confirms that local production was occurring.  
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Tikal 

 While just under a thousand obsidian artifacts, the majority prismatic blades, are from 

Preclassic contexts, a lack of nuanced reporting of Tikal obsidian prismatic blade segments has 

prevented an analysis of the proximal-medial and medial-distal ratios. Furthermore, previous in-

depth analyses have looked at obsidian trends broadly across phases, rarely taking into account 

of diachronic changes in distribution, and focus on trying to accurately source Tikal’s extensive 

access to obsidians (Moholy-Nagy and Nelson 1990; Moholy-Nagy 1994, 1999). Tikal still 

stands as an important site with a rich material culture history of long-distance distribution 

networks, importing distinct golden-green obsidians from the central Mexican Pachuca sources, 

chiefly Cerro Las Navajas, along with all Guatemalean Highland obsidians, San Martín 

Jilotepeque, El Chayal, and Ixtepeque, during late Middle Preclassic (Moholy-Nagy and Nelson 

1990:76, 1999:305).  

 In a compositional analysis of 64 obsidian artifacts, 12 came from Late Classic contexts. 

This analysis included obsidian from the all Highland Guatemalan sources. One prismatic blade, 

two exterior blade flakes, one cortical flake, and one unidentifiable piece of obsidian were 

sourced to El Chayal. San Martín Jilotepeque is represented by five prismatic blades and one 

cortical flake. Finally, a single blade core was sourced to Ixtepeque (see Table 6) (Moholy-Nagy 

and Nelson 1990:76).  

Notably, 580 “thin bifaced” stemmed projectile points stemless knives were recovered 

from Tikal ranging from Late Preclassic to Classic contexts (Moholy-Nagy 1999:304). Moloy-

Nagy assigns these thin bifaces to Spence’s Stemmed Biface A types found at Teotuhuacan. Of 

the cross-phase contexts, 128 (31%) were of central Mexican sources, Pachuca making up 171 of 

those; two were chemically sourced to Ixtepeque. Unfortunately, Moholy-Nagy did not breakup 
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up the quantities by phase, they are reportedly found in Late Preclassic, and mixed Late 

Preclassic and Early Classic contexts. 

Xtobo 

The PAX excavation recovered 17 obsidian prismatic blade segments sourced to Middle and 

Late Preclassic contexts, though one was discovered in a test pit of mixed Late Preclassic and 

Classic contexts (see Table 7). All blades were visually sourced. 13 of the blades were sourced to 

El Chayal in the Guatemalan Highlands, two blades were sourced to be from San Martín 

Jilotepeque, one blade sourced broadly to Guatemala, and one blade to either the Ucareo or 

Saragosa source in central Mexico. Seventeen blade segments is a small sample size for the 

purpose of analysis, and the collection has been grouped into a single “Preclassic” context. No 

primary or secondary production evidence was discovered with the blades. It should be noted 

that no primary or secondary production evidence was discovered for chert or quartz lithics 

either despite chert being an abundant local resource.  

Actun Uayazba Kab 

While Classic contexts extend beyond the scope of this paper, the entire Late Preclassic 

to Late Classic obsidian assemblage was chosen to enhance sample size. Save for an increase in 

importation there exists no reported diachronic change in obsidian assemblages at Uayazba Kab 

between the Late Preclassic and Late Classic (Stemp et al. 2018). From the caves and exterior 

pools of Actun Uayazba Kab, 109 third-series segmented obsidian prismatic blades and two 

whole third-series prismatic blades were recovered from Late or Terminal Preclassic to Late 

Classic contexts, along with two whole percussion blades (see Table 8). Based on visual 

sourcing, El Chayal was the most represented source site at 97 of the obsidian artifacts, followed 

by Ixtepeque at 12 blades, and only one blade segment sourced to San Martín Jilotepeque; three 
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were undetermined (Stemp et al. 2018:11). Stemp and coauthors identify 100 of the blades or 

segments as being third-series prismatic blades based on the presence of two or more dorsal 

ridges. Additionally, none of the lithics had cortex. (Stemp et al. 2018:11)
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  Table 5. Breakdown of obsidian artifacts recovered form Ceibal between early Middle Preclassic to Terminal Preclassic. 

Time Primary Production 

Evidence 

Secondary 

Production 

Evidence 

Whole 

Prismatic 

Blades 

Prismatic 

Blade 

Segment 

Quantity 

Prismatic 

Segment 

Proximal-

Distal 

Ratio 

Prismatic  

Segment 

Medial-

Distal 

Ratio 

Initial 

Blade 

Segment 

Quantity 

Whole 

Initial 

Blades 

Initial 

Proximal-

Distal 

Ratio 

Initial 

Medial-

Distal 

Ratio 

Early 

Middle 

Preclassic 

• Two exhausted 

cores 

• One platform 

rejuvenation flake 

• One 

crested 

blade 

0 60 5.7:1 13.3:1 15 0 5:0 10:0 

Late 

Middle 

Preclassic 

• 33 exhausted 

cores 

• 86 

crested 

blades  

5 1374 2.7:1 6.4:1 653 11 4.1:1 4.9:1 

Late 

Preclassic 

• One exhausted 

core 

• One recycled core 

• Eight 

crested 

blades  

0 210 20:0 190:0 69 1 8.5:1 7.75:1 

Terminal 

Preclassic 

• One exhausted 

core 

• One recycled core 

• Four 

crested 

blades  

0 142 4.3:1 10.5:1 39 0 2.4-1 4.4:1 
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Table 6. Breakdown of obsidian artifacts recovered form Tikal between early Middle Preclassic to Terminal Preclassic. 

Time Primary Production 

Evidence 

Secondary 

Production 

Evidence 

Whole 

Prismatic 

Blades 

Prismatic 

Proximal-

Distal 

Ratio 

Prismatic 

Medial-

Distal 

Ratio 

Whole 

Initial 

Blades 

Initial 

Proximal-

Distal 

Ratio 

Initial 

Medial-

Distal 

Ratio 

Late Preclassic • One blade core  

• Two exterior 

flakes 

• Three cortical 

flakes 

6 0 0 0 0  

 

 

 

 

  Table 7. Breakdown of obsidian artifacts recovered form Xtobo between early Middle Preclassic to Terminal Preclassic (Anderson 2018). 

Time Primary Production 

Evidence 

Secondary 

Production 

Evidence 

Whole 

Prismatic 

Blades 

Prismatic 

Blade 

Segment 

Quantity 

Prismatic 

Segment 

Proximal-

Distal 

Ratio 

Prismatic  

Segment 

Medial-

Distal 

Ratio 

Initial 

Blade 

Segment 

Quantity 

Whole 

Initial 

Blades 

Initial 

Proximal-

Distal 

Ratio 

Initial 

Medial-

Distal 

Ratio 

Middle 

Preclassic 

to Terminal 

Classic 

0 0 0 17 0.8:1 1.6:1 0 0 0 0 
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  Table 8. Breakdown of obsidian artifacts recovered form Actun Uayazba Kab between Late Preclassic to Late Classic (Stemp et al. 

2019). 

Time Primary Production 

Evidence 

Secondary 

Production 

Evidence 

Whole 

Prismatic 

Blades 

Prismatic 

Blade 

Segment 

Quantity 

Prismatic 

Segment 

Proximal-

Distal 

Ratio 

Prismatic  

Segment 

Medial-

Distal 

Ratio 

Initial 

Blade 

Segment 

Quantity 

Whole 

Initial 

Blades 

Initial 

Proximal-

Distal 

Ratio 

Initial 

Medial-

Distal 

Ratio 

Late 

Preclassic 

to Late 

Classic 

0 

• Two pressure 

blades 

 

2 109 4.1:1 10.4:1 0 0 0 0 
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Discussion 

Evidence of Local-Blade Production 

The discovery of an obsidian workshop at Ceibal is definitive evidence of local-blade 

production, providing an opportunity to validate De León et al.’s local-production model against 

a site where it was known to occur. While the ratios for prismatic blades don’t fall within the 

local-blade production model of 1:1 and 2-3:1, as expected for local production, De León et al. 

ran into a similar issue for the small village of Tetel which they claim also locally produced 

prismatic blades. They calculated Late Tlatempa phase (700-600 B.C.E) proximal-distal ratio as 

6:1 and medial-distal to 12:1, while the Texoloc phase (600-400 B.C.E) had a proximal-distal 

ratio of 1.8:1 and medial-distal ratio of 3.8:1 and recovered primary production evidence. De 

León et al. admit,  

“Although the medial-distal ratio is slightly higher than what we expected for the 

local production model, the proximal-distal ratio, the presence of a whole blade, 

some primary production evidence, and the abundance of secondary production 

evidence conform to what we might expect for local or itinerant craftsmen 

production. The increase in the number of medial segments per distal segment 

may simply be the result of local attempts to extract more usable tool segments 

per blade.” (2009:124).  

My ratios calculated from Aoyama et al.’s data reveal a similar pattern. An 

explanation for this can be found in the scarcity of obsidian in lowland Maya. Due to 

lowland peoples importing obsidian from highland Guatemalan sources, local crafters 

may have maximized the number of blades removed from cores, as evidenced by the 

small and masterfully exhausted cores also recovered. The workshop demonstrates this 
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level of skill existed within Ceibal. Furthermore, the abundance of primary production 

evidence and secondary production evidence, along with the obsidian workshop, is 

evident that local-blade production was carried out by local flintknappers.  

A second site where local-blade production possibly occurred during the Preclassic is 

Xtobo. While the obsidian prismatic blade segments recovered from Xtobo’s Preclassic are 

limited, the ratios do indicate local production could have been occurring. With a proximal-distal 

ratio of 0.8:1 and medial-distal ratio of 1.6:1, this falls close to expected ratios for local or 

itinerant production. However, the lack of primary or secondary production evidence, along with 

the small sample of recovered prismatic blade segments complicate this interpretation. PAX lead 

David Anderson made the observation, “As no obsidian waste flakes or blade cores were 

recovered, obsidian prismatic blades may have been imported already manufactured, or an on-

site manufacturing location has yet to be discovered. This latter explanation may also explain the 

general lack of chert tools” (Anderson 2011:311).  

Xtobo expands beyond PAX’s initial 67 ha mapping in all directions (Anderson 

2011:302) lending a to the possibility of a yet to be discovered production area. This could 

account for the minimal number of chert tools being recovered despite being a local resource. 

Until further investigations are carried out at Xtobo the site remains inconclusive. 

Evidence for Processed-Blade Trade 

Using the Late Preclassic-Late Classic mixed context sample of 109 prismatic blade 

segments from Actun Uayazba Kab, the site produces a proximal-distal ratio of 4.1:1, and a 

medial-distal ratio of 10.4:1. These ratios support the processed-blade trade model. While only 

seven distal segments were recovered, there were 29 proximal segments and 73 medial segments. 

The high medial rate could be indication of flintknappers attempting to maximize the number of 
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usable blades from a single prismatic blade (De León et al. 2009:115). This is further supported 

by Stemp et al. not finding cortex on any of the lithics and identifying a predominant number 

(n=100) of the blade segments as third-series prismatic blades. Third-series blades are produced 

“with removal from already reduced pressure blade cores” (Stemp et al. 2018:11). Additionally, 

no primary evidence was recovered. Curiously, two whole prismatic blades, and two pieces of 

secondary evidence in the form of whole pressure blades, does suggest obsidian may have 

trickled into the valley in other forms.  

Actun Uayazba Kab existed as an auxiliary site to and used by the people of Cahal Uitz 

Na, and perhaps and pilgrims (Stemp et al. 2018). The late Preclassic-Late Classic mixed sample 

size is consistent with ratios expected for processed-blade trade, with some evidence of possible 

whole-blade trade. For Uayazba Kab to receive processed-blades, a location where the obsidian 

prismatic blades were processed is required. The nearest site that processing could have occurred 

would be at Cahal Uitz Na. The sparse quantity of distal segments and the whole prismatic 

blades recovered from Uayazba Kab might be evidence that Uitz Na was receiving whole-blades 

which were processed for use in the ritual caves. It’s also possible Uitz Na may have been 

receiving processed-blades too. Further investigation at Utiz Na focusing on Preclassic and 

Classic obsidian assemblages could enrich Uayazba Kab’s analysis. 

Evidence of Mixed Distribution 

The lack of recorded segment sections for Tikal complicated evaluating the site using De 

Leon’s et al.’s method, making only a partial analysis possible. In lieu of data on prismatic blade 

segments, my analysis focused on primary and secondary production evidence, along with 

contextual information not necessarily considered by De León et al. During the Middle to 

Terminal Preclassic, Tikal participated in long-distance distribution networks, granting access to 
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all Highland Guatemalan sources, along with Pachuca in central Mexico. Being recipient of 

multiple obsidian sources could mean different forms of obsidian trade were occurring 

simultaneously. A larger amount of the Pachuca obsidian from central Mexico recovered has 

been linked to the influential center of Teotihuacan. There is evidence to suggest Tikal was 

receiving processed-blades from Teotihuacan.  

First, the large number of Teotihuacan thin bifaces found in Tikal raises the “possibility 

that all thin bifaces of central Mexican type were probably made there” (Moholy-Nagy 

1999:304). The production of bifaces, the high quantity of Pachuca prismatic blades, and the low 

quantity of Mexican obsidian debitage supports Tikal receiving completed obsidian tools and 

eccentrics. If Teotihuacan was distributing completed lithics, it is possible they were shipping 

material throughout other production stages depending on distance.  

Second is the matter of obsidian structural integrity during long-distance travel. A land 

route between the Pachuca obsidian source Cerro Las Navajas and Tikal is around 1200km, and 

between Teotihuacan to Tikal ~1100km. Even accounting for the possibility of water routes (De 

León et al. 2009:125), perhaps across or along the coast of the Gulf of Mexico, the route between 

the two cities was long. In their evaluation of San Jose Mogote in the Valley of Oaxaca, De León  

et al. concluded that the site was receiving processed-blade trades. The Valley of Oaxaca is 

roughly 250km from the nearest obsidian source, but was receiving “raw obsidian and finished 

tools” as early as its Middle Preclassic (De León et al. 2009:120).  While a whole plethora of 

cultural, political-economical, and technological factors certainly would impact the state obsidian 

was distributed in, the sheer distance between Tikal and Teotihuacan, being four times the 

distance obsidian travelled to get to the Valley of Oaxaca, makes it likely blades were processed 

to survive such a lengthy land or sea trip. Without blade segments to derive ratios, this is all 
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speculative, and the needed evidence to discern between whole-blade trade and processed-blade 

trade has yet to be recorded. 

Obsidian assemblages from Tikal connected to the Guatemalan sources don’t align with 

processed-blade trade, providing further support multiple distribution methods may have been 

occurring in the city simultaneously. The combined primary and secondary evidence for local-

blade production occurring at Tikal during the Preclassic include: a blade core from Ixtepeque, 

and exterior blade flakes and cortical flakes from both El Chayal and San Martín Jilotepeque, 

along with thousands of unsourced pieces of debitage. By the Early Classic Tikal was recipient 

of 10 sources of obsidian (Moholy-Nagy 1999:301-302), and a site of mass local production 

throughout the Classic (Moholy-Nagy 1997). The Preclassic primary and secondary evidence can 

be interpreted as the local-blade production was established before Tikal’s Classis phase.  

Conclusion 

 This analysis has served as an initial proof-of-concept that De León et al.’s models can be 

used to interpret obsidian assemblages at Maya sites. The four sites selected for this study each 

were interpreted to the extent evidence allowed. The segment ratios and production evidence 

recovered at El Ceibal support local-blade production, which is confirmed by the presence of a 

Preclassic obsidian workshop. Tikal too shows evidence that Guatemalan obsidian was locally 

processed, while they were importing processed-blades from central Mexico, likely through 

Teotihuacan. One of the main limitations I encountered in the analysis were issues in the method 

obsidians are reported on by researchers. Limited recording of the proximal, medial, and distal 

segments recovered from sites made calculating necessary ratios impossible, as was the case for 

Tikal. A second limitation was found in sample sizes. Both Xtobo and Actun Uayazba Kab had 

small sample sizes for the Preclassic. Xtobo’s sparse evidence points towards local-blade 
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production, but the lacking production evidence complicates this interpretation, and demonstrates 

that further investigation is required. Similarly, Uayazba Kab’s small Preclassic sample size 

required being combined with Classic obsidian contexts, which could skew results, though no 

diachronic change in obsidian besides quantity is seen at the cave between the Preclassic and 

Classic. Future attempts to validate and expand upon De León et al.’s distribution models may 

benefit by focusing on Maya Classic phase obsidian assemblages which are better reported, more 

accessible to investigators, and are in magnitudes higher quantity, and work chronologically 

backwards. Part of my interpretation of Tikal required looking at how Tikal was operating during 

the Classic and suggesting an origin to Classic local-production.  

Distribution models provide a simple method to make deep interpretations regarding a 

single-axis of trade, and potential clues into early economic systems. Should prismatic blade 

segments be identified as routinely as sourcing in the reporting on obsidian artifacts, distribution 

models could be more frequently inferred, adding another dimension to study. As more sites 

have distribution models attributed to them, quantitative analyses of distribution trends could be 

conducted to identify possible locations along the obsidian distribution supply chain. 
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