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The reactions of aromatic hydrocarbons represent a major 

area of uncertainty in urban atlnospheric photochanistry. Much 

effort has been sp:nt studying the simulated atlnoSFheric oxidation 

chem~.stry of model aranatics, such as toluene, in order to 

delineate their reaction mechanisms. These studies are motivated 

both by interest in fundamental processes and a desire to discover 

an aromatic's contribution to the formation of ozone in polluted 
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ambient atmospheres. 

Previous work on toluene includes both product studies and 

proposed mechanisms. In all previous studies, the oombined product 

yields are half or less of the initially reacted toluene. A major 

reason for the poor carbon balances found in these studies is the 

precipitation of interrrediate reaction products fran the gas phase 

to the reaction walls. 

We have studied the oxidation process by blacklight 

irradiation of 1-10 ppm each of toluene and oxides of nitrogen in 

22-liter pyrex flasks, in zero-air at 50% relative hmnidity. The 

flasks were pre-cleaned by baking at 350 C and the products were 

recovered from the walls by extraction with methanol or 

dichloromethane. Some gas-phase products were recovered in the 

solvent as well. The extracts were analyzed on a Finnigan MAT 

triple stage quadrllp)le mass spectraneter/ data systen by direct 

probe injection. Methane chemical ionization converted the 

products to Mf-l parent ions. The molecular weights of the products 

were determined fram the cr nass spectrmn, and also by the general 

survey methods of neutral loss and puent ion spectra. Once their 

molecular weights were determined, the products were fragmented by 

collision-induced-dissociation (CID) in the middle quadrupole to 

produce characteristic daughter ions. To assist in the spectral 

interpretation, toluene in three isomeric forms was subjected to 

simulated atmospheric reaction. In addition to normal (HS) 

toluene, methyl-deuterated (03) and per-deuterated (08) toluene 

were used. 
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This study confiDIled the existence of a number of products 

identified in past studies, confirmed the formation of same 

products which have been hyp:>thesized in several proposed 

mechaniSl"s for toluene oxidation, identified a nwnber of 

previously unidentified and unproposed products. In sane cases the 

fragmentation patterns didn' tallow cooice among several methyl

or hydroxyl-positional isaners, and undoubtedly rore than one 

isomer was often present, as would be expected. 

Detailed mechanistic steps have been outlined for all 

reaction products' fornation and destruction. other analytical 

techniques including GC, GC/MS, and HPLC, have supplanented the 

MS/MS analysis. 

These results and the further study of the types of 

compounds identified should nake a significant contribution to the 

understanding of atmostileric aranatic systens. 
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aIAPl'ER I 

INIRODUcrrON 

The reactions of aranatic hydrocarbons represent a major 

area of uncertainty in urban atmospheric photochemistry. 

Alky1aromatic hydrocarbons currently comprise about 35% of 

gasoline in the United States and they are widely used as 

solvents. Toluene, the most commonly used member of the family, is 

perhats the most abmdant constituent of gasoline and is a major 

industrial solvent (1). The ambient concentrations and 

reactivities of aromatic hydrocarbons are corrq;:arab1e to those for 

alkanes and a1kenes (2). In sane areas, tolL.'Ene· s ambient 

concentration can become quite high. Table I shows &~bient 

concentrations measured at Janesville, Michigan, downwind of an 

automotive painting plant (3). Toluene is the most abundant 

aromatic pr~sent in the study, and its concentration is corrq;:arab1e 

to the sum of all other major s~cies. In most airsheds the 

aromatic hydrocarbons· concentrations are less than the alkanes· • 

Alkanes are much less reactive than the aromatics however (4). 



TABLE I 

HYDROCARBC.N aECEN'mATIONS IN GRClJID LE.VEL st\MPLES 
AT JANESVILIE MIClilGAN, lXl"lN WlND OF A 

GM PAINl'ING PLANT 

Coupound 
. 2-methylFentane 
3-metblypentane 
n-hexane 
methylcylopentane 
2,4-d:imethylpentane 
2,3-d:imethy lpentane 
3-methylhexane 
n-heptane 
methylcyclohexane 
toluene 
2, 3-d:imetby lhexane 
2-metbylheptane 
3-metbylheptane 
n-octane 
ethylbenzeiie 
rn- and p-xylene 
o-xylene 
n-propylbenzene 
p-ethyltoluene 
rn-ethyltoluene 
o-etbyltoluene 
1,3,5-trimethylbenzene 
1,2,4-trimethylbenzene 

ug/~~ 
1.5 
1.5 
2.5 
1.5 
1.0 
1.5 
1.0 
1.0 
1.0 

75.5 
4.5 
6.5 
5.5 
5.0 

11.5 
22.0 
7.0 
1.0 
2.5 
1..5 
2.0 
1.5 
3.5 

2 
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Alkenes are more reactive than the aromatics, but alkene 

concentrations are ustally far lower. Since both concentration and 

reactivity are important in determining a hydrocarbon's 

participation in polluted air photochanistry, aranatics have a 

major influence. 

Simulated atmospheric studies of toluene and other aranatics 

date back to experinents of the 1960's (5-8). These experinents 

were concerred largely with the ozone-forming potential of these 

compounds. Recent studies have used more sophisticated reaction 

vessels and more powerful analytical techniques in the attanpt to 

identify and quantify the reaction products (9-34). These studies 

have been motivated both by a fundamental interest in the reaction 

mechanism and a desire to discover an aromatic's contribution to 

the formation of ozone in polluted atmospheres. Further interest 

is warranted, due to the presence of toluene's oxidation products 

as possibly significant constituents of polluted air. 

Chemical processes occurring in sunlit, polluted atm0stberes 

are usually simulated in so-called smog chambers. Hydrocarbons and 

oxides of nitrogen in the farts ~r billion (ppb) to farts ~r 

million (ppm) range in air are exposed to real or simulated 

sunlight and the products of the reactiun are determined by a 

variety of analytical techrliques, ustally gas chromatography (<X:) 

for the hydrocarbons and their oxidation produc'es. This procedure 

has been successfully applied to the alkenes and alkanes (e.g. 

35). For the aromatic hydrocarbons, toluene has received the most 

study rut very few products have been found by GC analysis. 
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Several studies have been published in which a partial 

characterization of toluene's oxidation products has been carried 

out (7-19). These studies have normally useu gas phase sampling, 

with concentration of the sample using a cold trap or adsorptive 

cartridge such as Tenax. In one case (12) suspmded aerosols were 

collected by filtration and extracted fran the filter with 

solvents. Separation and identification of the products have been 

carried out using GC or GC combined with ness sp:ctrometry 

(GCIMS). 'i'he chief gas phase products identified were 

per oxyacetylnitr ate (~), benzaldehyde, cresol and nitrotoluene 

isomers, CO, and CO2, but their combined yields are half or less 

of the reacted toluene. 

Many of the prior studies (11,13-15,19,21) have employed 

high concentrations of reactants (toluene and oxides of nitrogen) 

in order to increase the amount of products fomed. This is 

somewhat counterproductive since high concentration of nitrogen 

oxides favors radical termination processes to produce various 

nitro-aromatics and aryl-nitrates. These products are relatively 

easy to characterize by gas chromatography but their yield at 

ambient levels of nitrogen oxides is m:inimal. The products of 

najor interest are the ring- fragmentation ~cies, produced by 

attac.1( of atmoSIileric hydroxyl radical on toluene, followed by 

addition of atmoSIileric oxygen, and subsequent extensive 

rearrangement and fragmentation. The identification of ring 

fragmentation products is esp:cially interesting because the 

aromatic products also must react and fragment, ultinately leading 
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to the final products carbon monoxide and carbon dioxide. (Carbon 

monoxide is also slowly converted to carbon dioxide.) Currently, 

quantitative gas-phase product data are available for PAN, CO, 

benzaldehyde, cresols, some nitroaranatics, and for photooxidation 

of 00 to 002 with acooJnI:anying 03 formation (9). In addition, 

several ring-fragmentation products have been identified in 

various studies but never quantified (11). This information, along 

with several lmnthesized products, has been used to develop 

explicit mechanisms (9,26,34) for the atmospheriC oxidation of 

toluene as carried out in smog chambers. 

Mechanistc efforts are hampered by the poor carbon balances 

in the product studies. By necessity, a large portion of the 

proposed mechanistic p;l'tl'liays for toluene must be considered 

tentative because of the limited data on the identities and 

reactivities of the internediate reaction products. Thus, the 

mechanisms are based largely upon upon fitting the experimentally 

observed time profiles for nitric oxide photooxidation and ozone 

formation, a necessary but by no means sufficient condition for 

validity. A thorough tmderstanding of the intermediate products is 

required if accurate models of the systan are to be constructed. 

The intent of the work described in this thesis has been to 

more fully characterize the products of toluene'S atmospheric 

degradation. The work has centered on disoovering the nmissingn 

ring-fragmentation products, which were previously poorly 

understood. Total gas-phase carbon measurements were made to 

determine if the reaction products were in the gas-phase or in the 



aerosol-phase. The relatively 

spectrometry/mass spectramectry 
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new teclmique of mass 

(MS/MS) has been the most u~£ ul 

technique in characterizing the products found in the study. The 

techniques of gas chranatography (OC), gas chranatography/mass 

spectrometry (GCIMS), and high performance liquid chromatography 

(HPLC), have been used to supplanent the MS/MS studies. In the 

final pages of this t~esis, a mechanism for toluene's atmospheric 

degradation is outlined. This mechanism puts the identified 

products into their proper reacton system framework. It is hoped 

that the results presented here will be a substantial aid in the 

understanding of atmospheric aranatic systems. This information in 

turn, will increase the accuracy of comprehensive tropospheric 

chemical models used by air pollution control authorities, and 

ultimately lead to more effective control strategies. 



OIAPrER II 

INmOOOcrION 

Considerable mention has been made of the carbon balance in 

smog chamber experiIrents. The goal of course, is to account for 

all the reacted hydrocarbon in terms of intermediate product 

molecules, with the ultircate gas phase products being carbon 

monoxide and carbon dioxide (00 is slowly oxidized to CO2 as 

well). In the past, this carbon balance could only be attE!Ilpted by 

adding up the sum of all the concentrations of the detected 

products. Carbon balances of this ty-pe for the lOWer molecular 

weight alkanes and alkenes are fairly good, with the identified 

products accounting for most of the reacted hydrocarbon over the 

course of the reaction. The case of carbon balances for the higher 

molecular weight alkanes and alkenes has been studied to a very 

limited extent. Carbon balances for the aromatic hydrocarbons, 

although the subject of considerable study, have always been 
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extremely poor (36). Lack of adequate product data in a sense 

makes the job of chemical rrechanicians easier, since it reduces 

the constraints put upon their mechanisms. bever, the 

reliability of these models must renain in <bubt until better 

product data is obtained. 

The experience in our laboratory in studying the products of 

the reactions of aranatic hydrocarbons under simulated atlnOstXteric 

conditions (10) has convinced us of the importance of determining 

carbon balances before undertaking explicit model development. 

Consequently, our laboratory has carried out a direct study of the 

yield of gas phase hydrocarbon products forrred under simulated 

atmospheric conditions. This type of 3tudy has never previously 

been attempted--in part because it is difficult or even impossible 

in many smog chambers, dUe to high background levels of organic 

corrq::ounds, and/or carbon dioxide. Results indimte that ignoring 

heterogeneous processes in reactions of all aranatic hydrocarbons, 

at least in smog chambers, nay be a serious error. For instance, 

recent, detailed mechanisms for the reactions of toluene in a smog 

chamber make no mention of wall loss of reaction products (9). 

However, these studies required invokil'19 a nwal1 n source for free 

radicals, thus indicating the like1ioood of .condensed products. 

EXPERIMENrAL 

The reactions were carried out in evacuab1e glass vessels of 

22 and 239 liter volumes. The flasks were spherical and were 

fitted with Teflon-plug glass stopcocks. The smaller vessels could 
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be cleaned by heating to 723 K in an annealing oven. The large 

vessel was cleaned by radio frequency glow discharge at a pressure 

of about one tor r of oxygen, a teclmique similar to that used in 

the semiconductor industry for cleaning substrates (37). Both 

these processes served to remove coooensed hydrocarbon products of 

previous experiments fran the walls. The cleanliness of the 

vessels was monitored by irradiating air-zero gas (50% relative 

humidity) with about a part-per-million (ppm) of nitrogen dioxide. 

Oxides of nitrogen were me~ured by a chaniluminescent IDx 

analyzer. During this pre-irradiation, which lasted several days 

or weeks if necessary, <D, <D2, and total gas-phase carbon (TGC) 

were measured (TGC in the 239 liter flask only). When the 

background rate had been characterized sufficiently, the 

hydrocarbon was added to initiate the reaction. Background TGC 

were generally less than 2PJ:!nC, 002 generally less than lppm, and 

CO less than O.05ppm. 

The flasks were irradiated with fluorescent lights to 

simulate the ultraviolet portion of the solar spectrum. The large 

flask had an equal combination of fluorescent black lights and 

fluoresce.lit sun leuups. The overall light intensity gave cUi N)2 

photolysis rate (kl> of about 0.2 min (38). The atsolute sJ,Ectral 

intensity distribltion was not measured but was probably deficient 

at the short wavelength end compared to actual sunlight. The 22 

liter flasks were irradiated with blacklights only. 

We obtaired the gas phase carbon measurements by passing the 

air sample for analysis over an oxidative catalyst heated to 923 K 



10 

(39). This oxidized all nydrocarbons, and carbon monoxide" to 002, 

which was then measured quantitatively by gas chrcmatography. We 

call this measured quantity total gas-phase carbon. Since no 

filtering of the air sample was used, TGC includes susp:nded 

aerosol when present. The total carbon analysis was calibrated 

quantitatively by pressure/volume expansion into the large 

reaction vessel. Known amounts of various hydrocarbons, and carbon 

monoxide, were compared in their GC response to carbon dioxide to 

verify their quantitative conversion to 0)2. Then, in each 

experiment, the hydrocarbon added initially was calibrated as 0)2 

after combusion in the flow system. The sample lines leading from 

the flask to the comrustion chamber were heated to 325 K. In 

addition to TGC, 0), 0)2, and hydrocarbon were measured by gas 

chromatography as a ftmction of tine. Carbon monoxide has often 

been measured as a reaction product, but measurenent of carbon 

dioxide is not frequently carried out by other reseachers. 

Hydrocarbons were measured with a Perkin-Elmer FE 990 gas 

chromatograph with a flame ionization detector (FID), and equipped 

with a laboratory built automatic sampler. A one neter glass 

colllIml p;tcked with Poq:ack QS (Supelco) was used for the butane 

reaction. Toluene was sep;trated on a one neter glass column p;tcked 

with 20% SP-2100/0.1% Carbowax 1500 on 1001120 Supelcoport 

(Supelco). Temperatures for the sep;trations were llOOC for butane 

and 90°C for toluene. 0) and 0)2 chromatography was p:rforrred on a 

modified Perkin-Elmer PE 3920 using a FID. 0) ser:aration was on a 

one meter glass column tacked with Caroosieve S" cn2 seta ration 
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was on a two meter glass column packed with Porpack QS. Both these 

separations were conducted at roan temp;!rature (23°C). 

RESUL'lS 

Gas phase carbon balances were measured for several 

hydrocarbons in addition to the aranatics. Hydrocarbons such as 

cyclohexene, which are known to be prolific aerosol fomers, were 

not studied. In the case of the low IOOlecular weight hydrocarbons, 

current mechanisms predict very good gas phase carbon balances. 

'l'his was observed to be the case for prop;!ne, acrolein, 

formaldehyde, acetaldehyde, butane, and hexane, which all gave 

essentially 100% TGC yields. Figure 1 shows an example of the 

butane results. The 'roc rneasurenent remains constant at the 

initial value, indicating the gas phase carbon balance remains 

constant, even though the ootane decreases fran reaction with 

hydroxyl-radical. 

Experiments were carried out with two aromatic hydrocarbons, 

toluene and o-xylene, and with two known toluene reaction 

products, benzaldehyde and o-cresol. All these compounds gave 

large TGC deficits. The aromatics did this without formation of 

any condensation nuclei while both benzaldehYde and o-cresol 

generated large amounts of condensation nuclei at the tine the 

lights were turned on. Toluene was studied in considerable detail. 

Figure 2 shows typical carbon data which indicate that during the 

first 30 hours of continuous irradiation, toluene reaction gave a 

gas phase carbon (TGC) yield of only 37%. Other reactions of 
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toluene in the 239 liter reaction vessel gave similar results. The 

initial concentrations ranged fram 0.2 to 4.3 ppm and the TGC 

yields were not significantly higher at lower concentrations. In 

the case of o-xylene, the 'roc yield was 53%. The 'roC yield from 

o-cresol was 50%, and benzaldehye was also 50%. All these yiel~ 

are lmcorrected for the background CD and CD2 generation rate, and 

for the suspended aerosol formed fran the oxygenated aranatics. 

Thus they represent uP};:er limits. At longer reaction tines, the 

TGC deficit decreased as the material on the walls and/or its gas 

phase vap:>r component continued to react and form Q) and CD2. 

Figure 2 indicates this at tines after 1800 min. Several reactions 

were carried out in the 22 liter flasks for extended periods, up 

to a maximum of 40 days pre-irradiation and 40 days after toluene 

was added. In this case a complete recovery of the added toluene 

as CD2 and CO was obtained. However, in these experiIrents it was 

not p:>ssible to measure TGC. 

DISCUSSION 

Since experiments of this type have app1rently not been 

carried out pr~iously, it is not possible to compare the TC~ 

results to data fram other reaction vessels. It is p:>ssible to 

compare the carbon monoxide data fram both the large and small 

reaction vessels with the extensive data available fram the large, 

evacuable smog chamber at the Statewide Air Pollution Research 

Center at the University of California, Riverside, and with data 

from the outdoor Teflon chamber at the University of North 
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Carolina 0 These data are shown in Fig. 3. Dr. Robert 0 I Brien has 

derived a time independant nethod for the comp;lrison of product 

data from different experinental chambers. This is described 

briefly below. 

The data presented in Figure 3 can be simulated with a 

simple kinetic schane representing <X) in terms of pranpt and 

delayed yields as follows (40): 

kl 
'IOLUENE + HO -> al <X) + other products (1) 

kl 
'IOLUENE + II) -> a2 INl'ERMEDIATE (2) 

k2 
INl'ERMEDIATE + 00 -> b <X) (3) 

Here, kl and k2 are rate constants fv! the overall reaction with 

HO; reaction 1 gives a direct <X) yield and reaction 2 produces an 

internediate which ultimately produces sane (X) as well; aI, a2, 

and b are the fractional yields for the various steps. For 

simplicity, photolysis of the internediate and overall dilution 

have been ignored here. The effect of dilution was mininal since 

the chemical lifetine of toluene was much shorter than the 

dilution lifetime (about 500 and 5000 minutes, respectively) in 

our large reaction vessel. Photolysis of the intennediate can be 

incorp:>rated into an effective value of k2. Analytical solution of 

these kinetic differential equations on a tine-independent basis 

yields the following equation for the reaction product, carbon 

monoxide, expressed as a ftmction of the concentration of its 
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parent hydrocarbon, toluene. 

[COl = -albfrl- ~~ rIA(Tl+(~oJ ~ -~S (4) 

Here, [T] is the toluene concentratiom the subscript, 0, 

indicates initial concentration--all other concentrations are at 

time, t. R is the rate constant ratio, k2lkl. The first term is 

the direct CO yield in reaction 1. The second term is the indirect 

CO yield from the intenrediate. The actual mechanism is 

undoubtedly more complex than reactions 1-3, with several 

intermediates being important, and probably multistep CO formation 

as well. Nevertheless, this simple model is seen in Fig. 3 to be 

adequate for comparison of data from different reaction vessels. 

Note that the equation is independent of the hydroxyl radical 

concentration as well as time, and that it can be made 

dimensionless by dividing by the initial toluene concentration. 

This dimensionless data analysis procedure shows promise in 

normalizing results fran any type of smog chamber reaction carried 

out at any light intensity and at any initial concentration, 

provided only that OZOtE reactions are of minimal importance. If 

dilution or product photolysis are important, more complete 

equations are available (40). Figure 3a presents data from the 239 

liter flask, and Figure 3b is fran the small 22 liter flasks. A 

litE is shown with arbitrary values of 7.5 percent of the carbon 

appearing as CO shortly after hydroxyl attack on toluene, and 10 

percent appearing sanewhat later fran the reaction of intermediate 



18 

comp:>tmds. There is an apparent difference in the overall yields 

of carbon monoxide in these two reaction vessels with about 20% 

overall yield in the small reaction vessel and about 14% overall 

yield in the larger reaction vessel. Data from the SMRC chamber, 

Fig. 3c, is virtually identical to data fran the 239 liter vessel, 

although the reactions did not run long enough to unambiguously 

obtain the overall yield. Data fran the UNC chamber, Fig. 3d, is 

similar as well. More discussion of the significence of the 002 

and 00 yields will be given in Chapter VI. 

The nominal surface-to-volume ratio is most favorable in the 

ONe chamber, and is worst in the 22 liter flasks. However, the UNC 

Teflon walls and the Teflon coating on the SAPRC chamber probably 

have a high surface roughness factor (p:>rosity), so it is 

difficult to compare these directly. When the 239 liter flask is 

first filled with air-zero, the me reading is quite low, but then 

it rises in several rours to 1 to 2 ppnC, app1rently due to 

desorption. Thus the corrnronly observed chamber "Wall effectsn may 

in fact be due to photolysis of gas phase rna ter ial wtich is 

desorbed from the walls. Geometrical consioorations indicate that 

in all but the UNe reaction vessel, lef3s thai1 a monolayer can be 

formed by de!X)sition of reaction products fran a single reaction 

at normal concentrations of reactant hydrocarbon. Thus the overall 

wall dep:>sition process is probably controlled by adsorption 

and/or absorption rather than by condensation to the J::ulk phase. 

This is confirrred by the insensitivity of the me yields to the 

starting toluene concentration. The similarities between the 00 
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data from the other chambers and the 239 liter flask are so great 

that we believe the overall chemistry of the toluene intermediates 

which yield CO cannot be greatly different in the two reaction 

vessels. Comparison of <D2 data would be even more informative but 

unfortunately no <D2 data is available fran the other chambers. It 

is also significant that a rece;}t toluene mechanism (9), based 

upon totally gas phase processes, aRBrently overpredicts the OJ 

yields by a factor of three. It is probable that the low OJ yields 

observed experimentally are due to \'lall deposition of JOOst of the 

intermediates, rather than to extensive fragmentation as proposed. 

The overall goal of the study of pollution chemistry is to 

develop a greater understanding of both the homogeneous and 

heterogeneous processes occurring in real atmoSFheres, and not in 

smog chambers. The bearing of the results presented here on the 

situation in real atmoSFheres is not entirely clear. Certainly, 

the atmospheric surface to volume ratio is not greatly different 

from that in large smog chambers, due to the presence of suspended 

aerosols. On the other hand, smog chamber experiments carried out 

even in large reaction vessels Cb not show aranatic hydrocarbons 

to give suspended aerosol yields as large as the TGC deficits 

reported here. Thus the actual atmoSIileric case ranains scroewhat 

enigmatic. 



OIAPrER III 

MS/MS DETERMINATION OF TOLUENE'S RFJ:CI'ION PROOUCl'S 

Chapter II described discovering that the intermediate 

reaction products of toluene adsorb on the flask walls during the 

reaction. The next step is the analysis of this adsorbed-phase. 

This chapter describes the major method used for the 

characterization of the reaction products. 

Mass spectrometry/mass sp:ctranetry (MSlMS) was selected as 

the method of cooi~ for the determination of toulene's reaction 

products. The method was reported to be sensitive, selective or 

general (as desired), and able to give structural information 

about each speCies in a complex mixture (41,42) • These 

expectations were found to be true. The experinental methods and 

instrumental techniques described below proved to be very 

effective. 

The general field of tandem mass sp:ctrametry has been 

reviewed (41,42). This chapter describes a methodology for the 

identification of environmental degradation products using MS/MS 
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in conjunction with isotopic labeling. Although analysis of 

unknowns in complex mixtures is considered to be a major 

cap3bility of MS/MS, a limited number of applications have been 

published to date. The srumples analyzed here constitute complex 

mixtures of unknowns, although considerable information about 

corn];X>tmd classes and sane specific compounds was available. 

EXPERIMENTAL 

Reagents 

All chemicals were reagent grade. Methanol and 

dichlorornethane solvents were further purified by fractional 

distillation. Methyl-deuterated (03) toluene (99.5% D) was 

obtaired from Stohlet Isot~ Chemicals, Rutherford, N.J. 

Perdeuterated (DB) toluene (99.5% D) was obtained fran KOR 

Isotopes, Cambridge, MA. Nitric oxide (99%) was fran Matheson. 

Zero-air «0.1 wnc, Airco), and zero-nitrogen «0.2 };PIlC, Airco 

and Matheson) were used in the experirrents. 

Instrumentation 

Two instruments were used in this study. The rrajority of the 

analyses were performed on a Finnigan ~T triple stage quadrupole 

mass spectrometer/data system (43). The nass sIEctraneter was 

operated in the positive chemical ionization (CI) mode using 99.9% 

pure methane (Matheson) at a pressure of 0.23 torr as reagent gas. 

samples were placed in glass sample vials and inserted into the 

ion source region with the direct probe. The probe was cooled to 
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-20 aC by Freon expansion before insertion and was war.med by the 

ion source over a :feriod of one minute to 120°C. All compounds 

evaporated from the probe at relatively low tem:ferature, however. 

A typical example is illustrated in Fig. 4 which gives the 

ten1p)ral evolution of the daughter-ion s:fectrurn for rn/z=99 showing 

compound evaporation between 9 and 28 seconds after probe 

insertion (T<50 °C). Zero- nitrogen (Matheson) was used as the 

collision gas at a pressure of 1.8 mTbrr in the center quadrupole. 

The ion energy was 18 eVe Susan Hurnel of the University of Florida 

operated the instrument. 

A preliminary analysis was performed using a SCIEX TAGA 6000 

atmospheric pressure chemical ionization (APeI) triple quadrupole 

mass spectrometer (44). sample (air) flow rate was ap~oximately 5 

liters/min. Water present in the sample at about 50% relative 

hurnidity acted as the CI reagent. Collision gas (argon) at a 

pressure of 0.45 rnTorr was used in the center quadrupole. 

Procedure 

The toluene oxidation products were generated by irradiating 

toluene and nitrogen oxides with zero-air in a 22-liter Pyrex 

vessels. The radiation was provided by fluorescent black-lights 

which adequately simulate the ultra violet portion of the solar 

spectrurn, although they are deficient at the short-wavelength end. 

Toluene and nitrogen oxides were initially present at 

concentrations of 1-10 ppnV and the relative hurnidity was about 

50%. Reactions were carried out for 24-30 hours and resulted in 
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reaction of 60-80% of the added toluene. The glass vessels were 

pre-cleaned of organic contaminants by baking for several hours in 

an annealing oven at 550"Co The products were recovered fran the 

reaction vessel walls by washing with either methanol or 

dichloromethane. Typically, 40-50 ml sol vent was used, of which 

about 20 ml remained in the gas phase in the reaction vessel. sane 

products present in the gas phase may also have Ilirtitioned into 

the solvent while the walls were being washed. The recovered 

solvent was evaFOrated under zero-nitrogen to about 20pl. 

A major difficulty of this study is that the molecular 

weights of the toluene ring-fragmentation products are under 150, 

where background from the direct probe inlet and vacuwn system may 

interfere with their detection at trace levels. This background 

problan required us to concentrate our samples sufficiently ;,Q 

that a single reaction in a 22 liter flask (resulting in about 50 

~ of products) was dissolved in the 20ftl of solvent. Each direct 

probe sample consisted of about 2fl, or 10% of the sample from a 

single reaction. The total quantity of products on the probe was 

thus about 5p.g. Following each probe insertion, aPPIoxinate1y ten 

different masses were monitored in the various MS/MS operating 

modes. Ultimate sensitivity was limited by chemical noise in the 

mass spectrometer. This noise problem was mitigated by i~~topic 

substitution in the reactant, toluene, thereby shifting most of 

the (M+l) product ions of the methyl-deuterated toluene to even 

masses where the background was lower. As an added pr ecaution all 

spectra taken in this study were compued with data fran a blank 
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run. 

Isotopic substitution in the reactant (roethyl-deuterated 

toluene (D3», assisted in cxmfirrning our simulated atmospheric 

reaction as the source of the compounds detected, and 

corroborating and clarifying the collision-induced fragmentation 

patterns. Reactions with completely deuterated (DB) toluene were 

also carried out to further clarify the product analysis. A 

potential difficulty with deuterium labeling of the reactant 

toluene molecule is isotopic exchange with hydrogen during the 

course of the simulated abnoSIberic reaction or at sane stage of 

the analysis, particularly in the ion source region of the mass 

spectrometer. However, Hunt and Sethi (45) have studied and 

discussed isotopic exchange in the chemical ionization process, 

and it may be concluded that exchange is unlikely with nethane as 

the reagent because nethane is not basic enough to accept a 

deuterium ion fran the protonated, deuterated sample molecule. In 

the simplest sense, these exchange processes will not affect the 

identification of deuterated molecules unless they lower the 

concentr ation of the non-exchanged molecules below the detection 

limit, or unless they shift other compounds to the same molecular 

weight as the non-exchanged molecules. We found no evidence for 

isotopic exchange at any stage of this study. 

The reader is referred to several excellent summaries of the 

basic instrumental techniques possible with MB/MB (41,42). The 

following is a brief description to help define terminology to be 

used throughout this chapter. 
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The triple quadrupole mass spectrometers used in this study 

consist of three qudrupole rods alined in series. The quadrupole 

rod<:; can be thought of as "mass filters" through which ions, 

generated in the source region, must p3.ss. The "mass filters" can 

be operated to transnit all ions (RF only IOOde) or O};erated to 

pass a single mass to charge ratio at unit mass resolution. 

Addi tionally the rods can be set at a single mass to charge ratio 

on a continuous basis, or scanned through a range of ness to 

charge ratios over tine. Four types of experiments result from 

different combinations of these modes. (Each of the experimental 

types will be shown in the results section) •. 

IQ.tal ~ qpectrwn eXP2riment. In this experiment the first 

and second quadrupoles transnit all ions; the third quadrupole 

scans through the complete ness to charge ratio range. This 

produces a mass spectrum of all ions formed in the ion source; in 

this case the methane CI spectrum. 

Daughter .iQn e~rjment. This is the nornal MS/MS 

experiment. The first quadrupole selects a single ness to charge 

ratio to transnit to the second quadrupole. In the second 

quadrupole's RF only containing field the selected ions (parent 

ions) are fragmented in a collision induced discciation (CID) 

process. This CID process is a collision or near collision with a 

target gas such as nitrogen, fed in at a right angle to the ions' 

path through the secooo quadrupole. The fragmented ions (daughter 

ions) are then scanned by the third quadrupole, producing a CID 

daughter spectrum of the selected p3.rent ions. 
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Parent :iQn experiment. In this experi.rrent the first 

quadrupole is sc~d through possible pirent ions, and the third 

quadrupole is fixed at a given daughter ion mass to charge ratio. 

This produces a s{:ectrum of all IBrent ions which fragment to 

produce the selected daughter ion. 

Neutral .lQsa eXPEidment. In this experiment the first and 

third quadrupoles are scanned together at a given mass to charge 

ratio difference. This produces a s{:ectrum which gives all 

daughter ions which resulted fran the selected neutral loss fran 

their IBrent ions. In all the fragmentation experi.rrents the 

intensities of the resulting ions detected are a function of both 

the intensity of the IBrent ion produced by the ion source and the 

relative amount of fragmentation producing those daughter ions. 

RESUL'lS AND DISaJSSION 

Figure 5 shows typical nethane/CI mass sp:ctra for (a) the 

toluene degradation products, and (b) a blank run; each was 

extracted and introduced in dichloranethane on the direct probe. 

Blanks were obtained by irradiating the flasks with nitrogen 

oxides, water vapor, and zero-air, but with no toluene. These runs 

produced no disce rnible products, and the slight level of 

contamination was due to impurities in the extracting solvent. The 

mass sp:ctrum of a reaction blank was only slightly different fran 

the mass spectrum produced by insertion of an empty probe, 

indicating that most interference {:eaks were not from our sample 

work-up. The background mass sp:ctrum in Fig. 5b is noticeably 
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cleaner at even masses as described above. In Fig. 5 the solvent 

peaks are indicated by an n*n, the major contamination ~aks by a 

"#", and the CI cluster ions by a ".". Figure 5c shows the sample 

with the blank s~ctrtml subtracted. Figure 6a shows the methane/CI 

mass spectrtml for a D3 toluene sample, and Figure 6b shows the D8 

toluene sample. Discussion of row the products of the reaction are 

shifted in the deuteritml labeled toluene reactions is described in 

the CI/CID section below. 

Conpoypd ~ survey ~ neutral ~ .and parent ~ 

Atmospheric reaction of other classes of hydrocarbons gives 

predominantly aldehydes and ketones as products, with less 

frequent production of acids, alrohols, ~roxides, etc. Since we 

were interested in searching for members of each class of 

COJnIX>tmd, we initially employed the two survey methOds of neutral 

loss and parent ion scans. 

The major IEutral loss scans which were found useful were 

loss of 17 (OB), 18 (H2O), 28 (00, C2B4), 30 (NO, C2B6, CH20), 42 

(ketene), 44 (CO2, acetaldehyde) and 46 (N02, B<XXll). The most 

useful parent scans \'lere for parents producing daughter iO!l..E with 

rnlz of 43 (C3H7, C2H30), 45 (C2H50) and 55 (C4H7, C3H30). These 

masses are for the normal toluene as starting material; the 

nominal mass coincidences were eliminated by the use of deuterated 

toluene. 

Figure 7 gives the s~ctra for the neutral loss of water 

from (M+l) parents in (a) Ha, (b) D3, and (c) D8 samples. Loss of 
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18 (water) is IDssible even in the 08 experiment because a 

hydroxyl gro~1' can originate fram OH radical addition to ~he 08 

toluene. This OH-containing sp:cies then can be protona ted in the 

ion source. Several nass shifts are appuent in the sp:ctra. A 

prominent example is mlz=97 (parent ion mlz=ll5, M+l of 

hydroxy-4-0xopentenal in the H8, mlz=lOO in the 03, and mlz=102 in 

the 08). Comp:>und identification is described below. Another 

example is mlz=136 in the HB (parent ion MH of nitrocresol, 

mlz=139 in 03, and mlz=142 in 08). The nitrocresol isaners, 

previously identified as toluene products (9,13-15), have the same 

molecular weight as benzylnitrate, (another oxidation product 

(10» in H8, but not in 03 or 08. 
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l\iotice the aforementioned shift of prodIcts to even masses in the 

D3 experiment, where the intensities in the background are quite 

low. These sp:ctra illustrate the substantial improvement in 

sensitivity obtained by deuterium labeling. Since the 

oxidation products were expected to be highly oxidized and quite 

p:>lar, methanol seared a preferable solvent to dichloranethane. 

However, we observed derivatization of sane reaction products 

(addi tion of methanol) when samples in methanol were introduced 

via the direct probe. The chanical ionization process was also 

significatly perturbed by large amounts of methanol in the source 

region. This is due to the relatively large proton affinity of 

methanol compared to the methane CI reagent (46). Reproducibility 

was difficult since slight variations in the methanol 

concentration (due to methanol quickly" evaporating off the probe) , 

caused varying arnotmts of CI reagent scavenging. Dichloranethane' s 

proton affinity is much lower than that of methanol (46), and is 

lower than most expected products. Using dichloranethane did not 

cause the same difficulties as the methanol. Later gas 

chromatography and high performance liquid chromatography analysis 

of the reaction products sample (to be described in Chapter IV) 

showed no differences in methanol vs dichloranetbane vessel wall 

extractions. When a methanol extract was evaporated to dryness and 

redissolved in dichloranethane, the derivitization products were 

still observed. These peaks were not present in the spectrum of 

the dichlorornethane extract. wren the two extracts were analyzed 

for neutral loss of 32 (Figure 8) significant losses were observed 
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only in the sample extracted initially in methanol. This 

derivitization involves the formation of hemiacetals and 

hemiketals from aldehydes and ketones. As confirmation, a small 

amotmt of heptaldehyde was dissolved in nethanol and inserted on 

the direct probe. The mass spectrlUll showed a protonated molecular 

ion at mlz=147 (M+CH3CH+H) rather than mlz=llS (M+H). This 

derivitization process is an interesting feature of the extraction 

procedure and indicates the potential which Ins/rns possesses for 

the selective analysis of derivitized compounds in general, by 

neutral loss of a labile derivitizing agent. Conversely, rns/rns 

allowed the straightforward discovery of a chanical transformation 

process incurred during extraction with a solvent (methanol) 

conmonly employed with air samples; a transformation process which 

could lead to severe complications if not recognized or 

anticipated. 

A further neutral loss sIEctrum example is given in Figure 

9. This is neutral loss of 17 mass units. It is characteristic of 

nitro compotmds, (in this case nitroaromatics and nitrates) (47). 

Figure 9a, b, c, gives the neutral loss of 17 spectra for H8, D3, 

and DB toluene respecti vel y • 

Parent scans are alternatives to neutral loss scans in 

surveying for chanica1 classes which fragment to produce a 

characteristic daughter ion. Figure 10 gives the puent sIEctrum 

of (a) mlz=43 (000) from toluene H8; and mlz=46 (CD30) fran (b) 

toluene D3 and (c) toluene DB. The loss of the acetyl fragment is 

characteristic of nethy1ketones. Here again, several rrass shifted 
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peaks are apparent in these three experiments. Examples include: 

mlz=99 (parent ion M+I of 4-oxo-2-pentenal) in Ha, m/z=I02 in D3, 

and mlz=IOS in DB; mlz=1l3 (parent ion M+I of 

hydroxy-4-oxo-l,3-hexadiene) in HB, m/z=1l6 in D3, and mlz=120 in 

08. The actual identification of these compounds is described in 

the next section. 

The efficiency of the survey nethods for finding the 

molecular weight of each member of variOUS classes of compounds is 

apparent. These surveys, coupled with the original rrass s{:ectrum 

of the reaction products, indicate the choice of the molecular 

ions to be identified by daughter ion scans. 

Identifjcation Qf Pbotooxidation Products 

Table II presents a listing of all compounds identified in 

this study. The table gives compound name, structure, molecular 

weight, and a listing of previous studies which either 

experimentally identified the product or proposed its forrration. 

Of the 27 compounds listed only ten have been previously 

identified. Four others have been proposed in mechanisms but not 

identified. The previously identified products are those amenable 

to gas phase sampling and analysiS by packed col~' gas 

chromatography (0::::) or gas chranatography mass s{:ectranetry 

(o::::/MS). The use of GC or GCIMS is applicable and even preferred 

for most gas phase products such as benzaldehyde and the cresols. 

Thermally labile coYnp)unds or those of high polarity, such as 

acids, do not generally chranatograph well, eS{:ecially when using 

packed columns. Strictly gas phase sampling also limited previous 



TABLE II 

PRODUCTS OF TOLUENE DEGRADATION 
DETERMINED BY MS/MS 

COMpql/NQ 0 0 I ~:. !1L:'--.. ill:!:l2. 
GLYOXAL H-~-C-H 

ACETIC ACID CH3-~-OH 
3-0XO-BUTENE: CH3-~-CH=CH2 

o 0 
METHYLGLYOXAL CH3-C-~-H 

o 0 
II It 

BUTEN~DIAL HC-CH=CH-CH 

HYDROXy-3-0XOBUTENE: 

PHENOL o 
5-oxo-1. 3-HEXAD I ENE: CH3-C-CH=CH-GI={H2 

4-oxo-2-PENTENAL: CH3~-CH=CH-~H 
o OH a 

HYDROXYBUTENEDIAL H~-C=CH-CH 
o OH a 

HYDROXy-3-0XOBUTANAL: CH3-e-CH-~H 
BENZALDEHYDE 
CRESOL 0 9H 
HYDROxy-5-0XO-L 3-HEXAD I ENE: CH3-e-t=CH-CH=CII2 

HYDROXY-4-0xo-2-PENTENAL: CH3J-~~CH-~H 
BENZOIC ACID 
HYDROXYBENZALDEHYDE 
DIHYDROXYTOLUENE 0 (l 
6-oxo-2.4-HEPTADIENAL: CH3-e-CH=CH-CH=CH-CH 

a 0 Q 
4.5-DIOXO-'-HEXENAL: CH3-c-t-CHaCH-CH 
NITROTOLUENE 

S7 

61 

71 

73 

85 

87 

95 
97 

99 

lUI 

103 
107 
109 
113 

115 
123 
123 
125 
125 

127 
138 

NITROPHENOL 
HYDROXY-6-oxo-2.4-HEPTADIENAL! 
NITROBENZALDEHYDE 

Q OH 0 140 
CH3-t-t=CH-CH=CH-~H 141 

152 
NITROCRESOL 
BENZYLN ITRATE 
DIN ITROTOLUENE 

154 
154 
183 

J9 

11+ 

11+ 

(9-10.1;-15i 
(9-10.1;-1~) 

(9-10.1)-15) 
• 10 

~9-10.1Z .. 15)" 
(10.14-15)* 

• IDENTIFIEDj #PROPOSED ONLYj SEVERAL ISOMERS POSSIBLE 
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attempts since only 40% of the reacted carbon remains in the gas 

phase in our reation vessels (see Chapter II). The identification 

procedure for the new products will be discussed in detail below. 

Missing from Table II are 10\'1 molecular weight gaseous 

coJOIX)unds such as carbon dioxide, carl:x>n monoxide, acetylene, 

methylnitrate, pe roxyacetylnit rate , and formaldehyde which have 

been previously identified as toluene products (9-10). These 

compounds are either unlikely to partition into the solvent, or 

are expected to be easily lost during the concentration of the 

solvent. Six tenatively identified ring fra~ntation products 

found by Swartz (12) were not found in this study. Swartz analyzed 

less than six percent of the collected sus~nded toluene aerosol. 

His procedure also included extensive work-up and fractionation, 

dudng which modification of the sample was p:>ssible. With 

the exception of the well-known product benzylnitrate, no nitrate 

products hyp::>thesized by Atkinson et.al. (9) were found by this 

analysis to date. These comp:>unds should have been detected if 

they were formed in yields as prop:>sed (approxinate1y 25%). 

Daughter spectra were taken at mlz that corresp:>ooed to the major 

predicted nitrates. Neutral loss spectra were taken at the 

expected major fragmentations of neutral loss of 17 (00), 30(N», 

46 (N)2) , and 62 (N)3) • For example, Figure 9 shows the neutral loss 

of 17 spectrum for toluene products. The only products found in 

these experiments were nitrocresol, benzyl nitrate, nitrophenol, 

and nitrotoluene. 

The ~utral loss of 44 ~ctrum corresp:>nding to loss of OJ2 
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from acids is shown in Figure 11. We were p:lrticularly interested 

in the acids because of their low vapor pressures and potential 

for adsorption on the reaction vessel walls. Benzoic acid and 

acetic acid were the only acids identified by MS/MS. Several other 

acids have been proposed in toluene nechanisms (9,26,34) but in 

much lower yields than the nitrates. Acids as a group should be 

easily detected by MS/MS using the acids I pred:>minate 

fragmentation of loss of 44 mass units (CO2) (48). It is unlikely 

therefore that any acids other than those identified were present 

in significant arnOtmts in the samples analyzed. Examination of the 

deuterated samples indicated that the benzoic acid was mainly a 

contaminant, rather than an oxidation product of toluene. Thus 

¥.E/y.s, when coupled with isotopic labelling, can efficiently 

eliminate artifacts. 

Although the present work is basically a qualitative study, 

the relative product yields can be approximated by examination of 

Figure Sc, the mass sp:ctrtml of the toluene oxidation products. 

rI'he relative ion abundances will depend on not only the amount of 

each COII1p)und present but also on ionization efficiency. Table III 

lists aromatic and diketone model compounds with their 

experimentally determined relative molar response factors for 

CIIMS analysis. The standards mixture was run under the same 

conditions as the toluene aerosol, using dichloranethane as the 

solvent. Although response factors vary over a factor of twenty, 

most are within a factor of two. The relative ordering of these 

response factors is in accord with proton affinities and effects 
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TABLE III 

REIATIVE RESKlNSE FACroRS FOR MS/MS 

Ccmp>und Relative Eegponse 

2-nitrobenzaldehyde 0.2 

benzaldehyde 0.4 

3-nitro-4-hydroxytoluene 1.0 

2,3-dihydroxytoluene 1.1 

2,S-hexadione 1.2 

2-hydroxytoluene 1.2 

3,S-heptadione 1.4 

4-ni trobenzaldehyde 1.8 

2-hydroxy-4-nitrotoluene 1.9 

4-nitrotoluene 2.3 

3,4-dinitrotoluene 4.1 
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of intrarnole<..ular hydrogen bonding on protonation (46). The 

toluene reaction systen is a dynamic one in which the products are 

destroyed as well as fomed. Therefore relative yields at single 

points in tine cD not give an accurate picture of the branching 

ratios between various pitl!olays. Products which thenselves react 

quickly (eg. aldehydes) never build up to a high concentration 

while slowly reacting products (eg. nitrotoluenes) steadily build 

up even if they are fomed in low yields. If concentration/time 

data are available the true product yields may be determined. 

Losses due to evaporation during concentration are also unknown at 

this time. These losses are expected to be low except for the low 

molecular weight compounds already discussed above. In light of 

these considerations, najor products found in this study are: 

6-oxo-2 ,4-heptadienal, 4-oxo-2-pentenal, bUtenedial, 4,5-dioxo-

2-hexenal, 3-hydroxy-4-0xo-2-pentenal, 5-oxo-l ,3-hexadiene, 

4-hydroxy- 5-oxo-l ,3-hexadiene, and hydroxybutenedial. These 

conq:ounds' molecular protonated (Mi-l) ion intensity vary by less 

than an order of nagnitude. This implies that none of the 

identified products cDminates toluene's atmospheric degradation. 

This result contrasts with sorr.e of the current mechanisms in which 

only two of these new products have been included (9,26,34). 

WOO sp£:ctra ~ Tragmentation schemes 

Identifications listed in Table II are based mainly on the 

chemical-ionization/collision-induced-dissociation (CI/CID) 

spectra. These spectra provide both molecular weight and 
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structural information. Each compound is found as a toluene 

reaction product and as a reaction product in each of the two 

deuterated toluene experinents. A compound's molecular weight and 

therefore its MH ion is shifted in the {:erdeuterated toluene 

experiment to a higher rcass depending on the number of hydrogens 

in its structure. Products derived fran nethyldeuterated toluene 

mayor may not have their M:H ion shifted depending on whether 

they have one or more of their hydrogens derived fran the nethyl 

group of toluene. Each identified compound's CI/CID daughter 

spectrum will be presented for each of the three experinents: 

normal (BB) toluene, methyldeuterated (D3) toluene, and 

perdeuterated (08) toluene. These three s~ctra when interpretated 

together give strong evidence for the compound's identification. 

The spectra of the major (as defined above) products which have 

not been previously identified are presented below with discussion 

of the fragmentation schane for each. The renaining product IS 

daughter ion spectra are presented in A~ndix A. 

It is p>ssible that other compounds with the same naninal 

m/z as the comtX>und assigned are present in the s~ctra since the 

first quadru-pole has only unit nass resolution. Howe-ver, only 

COIllp)unds with the same molecular formula as the assigned compound 

will appear in all three s{:ectra. Contril:::utions fran other 

reaction products are checked at the appropriate mlz in the 

deuterated experiments. Contributions fran the solvent and solvent 

artifacts can likewise be cross-checked since they do not shift in 

the deuterated experinents. This appcoach is illustrated and 
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systematized by the information in Table N, in which the various 

isotopic forms of several tm:othesized products are listed. Sane 

of these cOInIX>lmds were susIEcted based upon prE!llious studies, 

while others were discovered either in the mass spectra or in the 

various MS/MS survey SFectra. It was usually possible to propose 

an empirical formula and likely structure for a particular ion on 

the basis of its molecular weight, the reactant (toluene) and 

probable reaction mechanisms. Once probable structures were 

proposed, confionation was attenpted using the MS/MS spect ra fran 

the various labeled compounds. The products can occur as various 

methyl-~sitional isomers whose structure depends upon the initial 

~sition of OH radical addition to toluene, as well as the 

mechanism of internal addition and rearranganent. This is also 

true of the cis and trans isomers possible for the compounds .with 

a carbon-carbon double bond. Differentiation of the various 

isomers is p:>ssible when a unique daughter ion is produced. For 

instance, the acetyl fragment ion is indicative of methyl ketones, 

but not the isaneric aldehydes. Identification and quantition of 

all isomers by MS/MS, however, nay in nany cases be difficult or 

imp:>ssible. 

Table N illustrates the ability to cross-check spectra fran 

different experiments to confirm that parent ions are in fact fran 

the proposed reaction product and not fran another compound or 

background contamination. These cross checks are in addition to 

c0mp3.rison of each spectrum to the corresponding blank spectrum. 

For example (referring to Table IV) the daughter spectrum of 



TABLE IV 

MASSES OF (M+l) IONS OF TOLUENE AND 
SEVERAL REACTION PRODUCTS BASED ON 

TOLUENE'S ISOTOPIC FORM 

He 

56 

03 

56 

08 

56 

00 g g g 
If C-C.-H. 5~ 58 58 

o ........ 59 59 59 
U, c- ~-Oll 60 60 --------60 

'61~61 61 

0" ,. I 

II, C·G-~II .. 
00 

1I,c:-~-~-t# 

62 62 62 
63 63 63 
64 611 64 
65 

70 

65 

70 

65 

70 
71 

72 72 72 7l~71 
73~73 73 
711 711 711 
75 75~ 75 
76 76~ 76 

, -77 

~ 0 34 
all .84 

" .,- c.. to II -as 85 85 
" " 86 86 86 

87 87 87 
o ~ 0 88 
II I "., ,,·a-fc - 89 

90 

91 
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TABLE IV (con.) 

H8 D3 
G)-o\f 95 -----95 

D8 
95 

o ,,~ H 96 96 
cu,-~·c.(!-~=C.H~ 97 97 

96 

o\"Jlo 98~ 98 
C:fI,·C.c .. ~-~14 99~ ~ 99 

97 

98 

o D.t 14 0 100 ~100 
.. I , II <:.w., c:-c:e-cM 101 101 

o 611 ~ 102 102 

99 

100 

101 

102 '" . cJf;,c:-~ -c:14 103 103 

104~104 104 
105 105 105 
106 106 106 

@c,.co 107 _______ 107 ~107 
~ 108 108 108 
~ "'.. 109 109 109 

110 ~ 110 110 

III ~111 III 

o Ollll It 112 112 ~112 
c~~ c.c-l.c~ 113 ~113 113 

o eel " 0 114 114 114 

c .. ~ ~.~.t. ~~!~ ~! ~~~: 
117 ~117 117 
118 118 118 
119 119 119 
12(1 , 120 120 
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TABLE IV (con.) 

o 0 
~aa rd. 122 122 

H8 DJ 

G 0-~123 occ:::::::::::: 123 
124 12 <RcuJ 125 125 ~ 126~ 126 

... I!. r 127~127 ~o 0 '1128 12 
",,~~C.II 129 129 

130 130 
131 131 
132 132 

D8 

122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
,aa 

138 138 138 
139 139 139 

142 142 142 
143 143 143 

144 144~144 
145 145 45 
146 146 146 
147 147 147 
148 148 148 

~ . fac;oHD.. 

€i:: ~~153 153 153 
1514 IS4 
155 155 

IS6- 156 
157 157 
158 153 
159 159 159 
11\11 160 HiO 

1~1 
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rn/z=lOl in the H8 mixture should agree with that from the 03 

mixture but not with that fran the DB mixture. These cross checks 

are very jmportant when the parent mass lies on a praninent 

background mass, such as the series rn/z=71, 85, 99, 113, etc. for 

alkanes and ketones. Cross checks as descr ibed above were 

performed on all exmlpounrls whose identities are proposed. 

MethY1gl$>xal. A ccnnp:lund of prine interest, based upon 

previous identifications (11) and proposed toluene-oxidation 

mechanisms (9,26,34), is methylglyoxal. Figure 12a-c gives the 

daughter spectra of the iO:1S in the mass S};:ectra of the toluene 

products which correspond to (M+ 1) of rrethyl glyoxal fomed fran 

the various isotopic forms of toluene. The spectra show loss of 

carbon monoxide, formaldehyde, and ketene, as sumnarized in Figure 

12d. 

2.-QxQ-2.,.4.-heptadienal. Figure l3a-c shows the CI/CIO 

daughter spectra for the compound identified as 

6-oxo-2,4-heptadienal. The MH ions are at rnlz=125 (13a), 128 

(l3b), and 133 (13c) for the H8, 03, and DB toluene experinents 

respectively. Figure l3d summarizes the major fragmentation 

pa'b.~ways. Figure 13d, and the following fragmentation schemes, 

show the mass loss and rnlz of each ion for each of the three 

spectra. The base peak in each of the spectra in Figure l3a-c is 

the expected alpha cleavage at the carbonyl to produce the acetyl 

ion (48), mlz=43 (BB), and rnlz=46 (03 and 08). The large peak due 

to loss of 28 mass units (-co) at rnlz=97,100,105 in l3a, 13b, and 

l3c respectively is characteristic of O'",(1-tmsaturated aldehydes 
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(49,50). From consideration of toluene's probable reaction 

mechanism (see dicussion Chapter VI), the only likely iscmers for 

6-oxo-2,4-heptadienal are the dialdehyde isanerse The oominance of 

the acetyl ion in the sIEctra suggests t.hat the most praninant 

isomer is the rnethylketone as assigned. However, the ions at 

rn/z=69 (BB), 72 (03), 77 (08) from successive loss of two CO would 

be the expected fragmentation of the dialdehyde isaners, as would 

be the ions at rnlz= 41 (H8), 43 (03), 45 (08) ~ see Figure l3d. 

Therefore a small contribution fran the dialdehyde isomers cannot 

be ruled out at this time. Authentic sIEctra of each of the 

isomers should be corn};Bred with the sample to determine the exact 

contributions. This would require syntheSis of nany of the 

conq:;ounds identified because they are not readily availible. The 

dialdehye 2-rnethyl-2,4-hexadienedial was tentatively identified by 

Hoshino et.al. (14) using ~/rns, but their sIEctrurn is also 

consistent with the rnethylketone isaner. They did not run an 

authenic sample for coID};Brison. 

~5.-DiQxQ-2.-hexenal. The ~ctral interpretation of 

6-oxo-2,4-heptadienal and 4,S-dioxo-2-hexenal must be done 

together since the Mtl ion of both compounds in the DB experiment 

have the same naninal nass (rnlz=l33). Figure l4a and l4b shows the 

~ctra for 4,S-dioxo-2-hexenal in the H8 and the D3 toluene 

experiments resIEctively. Figure l4c presents the fragmentation 

Iathways of this compound. The acetyl ion again oorninates. Loss of 

00 is also large as would be eXIEcted fran the oC.. ,~-unsaturated 

aldehyde. Several rn=thyl- p::>sitional isaners are also consistent 
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with many of the fragment ions but the dominance of the acetyl ion 

suggests that the methylketone isaner is most abundant in the 

sample. The similar fragmentation of this compound to that of 

6-oxo-2,4-heptadienal explains the coincidence of nany of the 

peaks in the DB ~ctra. Fach compound is independently confirmed 

by the H8 and 03 spectra • 

.i-QxQ.-2.-pent eoa1• Figure lSa-c shows the s~ctra for the 

proposed product 4-oxo-2-pentenal in the three isotopic 

experiments. This compound has been included as an important 

intermediate in one of the proposed toluene photooxidation schanes 

(9), but has not been previously detected as a product. The 

corresponding product of p-xylene photooxidation 

(2,4-dioxo-3-hexene) has been detected by Tenax-adsorption and 

gc/ms {2l}. The CIO fragmentation shows loss of CD, ketene, and 

acrolein (Figure lSd). The DB parent ion of this compound occurs 

at the same nominal rrass as the compound to be discussed next (see 

Table IV'), resulting in additional peaks in the OS ~ctrum. 

However, the H8 and 03 experiments, in conjunction with the cross 

checking method mentioned above, provide considerable structural 

information. 

5..-QxQ.-l,.3.-hexadiene. Figure 16a-b gives the daughter ion 

spectra of S-oxo-l,3- hexadiene, a compound which has not 

previously been identif ied or hypothesized as a toluene oxidation 

product. Figure 16 gives the spectra of the (a) H8 and (b) 03 

products. The DB ion is at the same naninal rrass (lOS) as the DB 

product 4-oxo-2-pentenal discussed above (Figure lSc). The 
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daughter spectra show loss of ketene, butadiene, and 00, followed 

by loss of ethene. The acetyl fragments indicate the presence of 

the methyl ketone isatJer. other ~aks in the spectra are better 

explained by the presence of an aldehyde isaner with the methyl 

group on the 4 or 5 carbon. In addition to many of the fragments 

of the ketone isaner, this isaner is expected to acoount for other 

fragments in the D3 and D8 spectra by neutral loss of propene 

(-42(HB), -45(03), -47(08» to produce peaks at mlz=55(HB), 

55(D3),58 (DB). 

The COJnI;Ound 5-oxo-l,3-hexadiene is of special interest as a 

toluene reaction product since it contains a terminal methylene 

group which oould only have formed by a hydrogen shift in the 

original atJnoSIberic reaction. However, this oornpound, while not 

previously replrted, can be rationalized as formed by photolytic 

loss of CD from 6-oxo-2,4-~ptadienal (mlz=125) which was also 

found and identified by its MS/MS spectra. These two compounds 

fX)int out a pltential difficulty with the CI procedure. In 

addition to its production in the original toluene reaction, 

5-oxo-l,3-hexadiene could haVi"! IX>ssibly been produced in the ion 

source by loss of OJ fran the same puent, 6-oxo-2,4-heptadienal. 

However, the r1~11IJhte!:- ion sIEctrum of mlz=125 indicated that 

while loss of CD was an important collision-induced dissociation 

(CID) fragmentation process, there were other fragments which did 

not aIJI:ear in the ness spectrum of the sample. Assuming that the 

CI and CID fragmentation processes are sanewhat similar, it is 

concluded that 5-oxo-l,3-~xadiene is a product of toluene in the 
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atmospb=ric reaction, and not simply an artifact of the CI 

process. This question could be answered definitively if the 

reference material were available. The mass spectrum of 

heptaldehyde did not show extensive (J) loss to be occur ing in the 

ion-source region. 

ButenediaJ. Figure l7a-c presents the CI/CIO daughter 

spectra for the Mtl ions with mlz=85 (BS), 85 (03) r and 89 (08). 

The spectrum for the m1z=85 parent-ions is dominated by the 

solvent, dichloromethane. The large Feaks at m1z=49 and 50 are due 

to loss of HCl and Cl resFectively. Peaks at m1z=57 and 43 however 

cannot be from the solvent. Figure l7d describes the fragmentation 

process for tutenedial. Loss of (J) and ketene are the only najor 

pathways. These are more clearly shown in the 08 eXFeriIrent where 

there is no large solvent interference. 

H2dto~utenedjal. Figure lBa-c presents the CI/CIO daughter 

spectra for the compound identified as hydroxybutenedial. The MH 

ions are at m1z=101 (00), 101 (03), and 104 (08) • The 

fragmentation pattMays are sumnarized in Figure lBd. For this 

COJntX)und water elimination is the major fragmentation p:1tmlay as 

would be expected (48) .. The loss of H2O is possible ~,en 1...11 the DB 

eXFeriment if the hydroxy group originated fram hydroxyl radical 

(see discussion below). The acid isaner of hydroxybltenedial is 

not present since acids give large Feaks due to loss of 44 mass 

lmits (CO2) and these Feaks are al:sent fran the spectra • 

.l-H2droxY-.i-mw:-2.-pentenal. The CI/CID daulJhter ~ctra . for 

the cornp:>lmd identified as 3-hydroxy-4-0xo-2-pentenal are shown in 
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Figure 19a-c~ The M+1 ions are at m/z=115 (00), 118 (03), and 120 

(08). Figure 19d out1iIl:!s the fragmentation p:lt.l:Mays consistent 

with these spectra. The base peak in each spectrtml results from 

the loss of water. The large acetyl ion peak again suggests that 

the methy1ketone isaner is the predominate one in the sample. The 

t:Qsition of the hydroxyl group is more ambiguous, with the 

2-h¥droxy isomer being as likely. The acid isaner, however, is not 

present since there is no 002 loss as would be expected fran an 

acid. 

J.-~droxy-5.~l.,l-hexadiene. The naninal mass of 

4-hydroxy-5-oxo-1,3-hexadiene in the DB experi.nent is the same as 

the previous compound. Figure 20a-b gives the CI/CIO daughter 

spectra for the M+1 ions with m/z=ll3 (00), and 116 (D3). The 08 

spectnnn clearly resembles that of the previous compound. The 00 

and 03 spectra suPfX)rt the identification of the present compound 

as shown in Figure 20c. The acetyl ion's presence suggests that 

the methyl ketone isaner is present. other methyl and hydroxy 

t:Qsitiona1 isomers are consistent with the fragmentation p:ltlMays. 

Since the large peak due to 00 loss is more consistent with these 

isomers, one or more of the aldehyde iscmers is likely to be 

present. 

Direct Ai.1.: Anal!lSis ~. Extraction 

Several experiments were perforrred to insure that the 

extracted products were characteristic of the gas phase chemistry 

taking place, not simply of the methods employed. 
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Nitric acid is an oxidation product of the nitrogen oxides 

present in the reaction vessel, nitration of aranatic reaction 

products occurs to a limited extent in heterogeneous reactions on 

the walls or during solvent extraction and concentration 

procedures. In addressing this problem, dark reactions were run 

with toluene, phenol, m-cresol, and m-nitrotoluene (1-10 PIlDV) at 

50% relative humidity. Nitration was found to be significant only 

for phenol and cresol wrose substituents activate the aranatic 

ring to nitration. For these compounds less than one percent of 

the corresponding nitro-compounds were formed. Nitrotoluenes are 

well known as bona-fide gas-phase oxidation products of toluene 

(9-11). Nitrotoluenes were not formed in the dark reactions of 

nitric acid and toluene. As expected, ring fragmentation products 

were not produced by nitration reactions under the conditions 

used. Samples stored in sealed vials at -lO"C have remained stable 

in composition for as long as one year, indicating no significant 

degradation of products after work-up. 

A potentially greater problem is associated with carrying 

out the reaction in a small vessel, in which there could be 

significant contril::ution of wall reactions to the desired 

gas-phase process. ComFarison of product data for carbOn mono~:i.de 

from the chamber used in the present study with data frem three 

other "smog chambers", ranging in size fran the 22 liter flasks to 

the room-sized Teflon-wall outdoor chamber at the University of 

North Carolina (see dicussion Chapter II). Carbon monoxide is 

formed directly fran toluene, as well as from intenrediate toluene 
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products. There is guite good agreement of the 00 data from four 

different chambers. Thus we believe that the walls are not causing 

any najor distortion of th~ chemical nature of the products 

fonred, but serve chiefly as a precipitation site for these 

products. 

Further confirmation of the validity of the extraction 

procedure for obtaining unmodified products was produced by 

atmospheric pressure chemical ionization (APel) MS/MS analysis of 

the gas-phase reaction products perforned by SClEX. The sample for 

APel analysis was prepared by irradiating the toluene/nitrogen 

oxides mixture in a IOo-liter Teflon film bag. The inflated bag 

was shipped to SCIEX for analysis. Figure 21a and 2lb shows the 

daughter ion spectra of the m/z=99 and m/z=97 respectively. These 

srunples were introduced into the SClEX instrument fram the 

gas-phase. Comparison of Figure 2la with Figure 17a, and Figure 

2lb with Figure 16a, shows that the fragmentation p3.tterns natch 

very well, f(lr both of these compounds. This confirms the products 

in the extraction sample are the same as those in the gas-p3.hse. 

It also suggests the potential of APCI MS/MS for direct analysis 

of gas=phase oxidation products, even those p3.rtially or largely 

adsorbed on the reaction vessel surfaces. In the SClEX sample, 

when the gas-phase sample was depleted, the bag was reinflated 

with zero-air, equilibrated, and the analysis continued. 

CCNCLUSION 

This study demonstrates the efficacy of MS/MS for the 
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separation and identification of the components of a mixture of 

low molecular weight oxygenates. The survey methods (neutral loss 

and . parent ~ctra) allow recognition of the members of a variety 

of different comp:>und families. The MS/MS daughter ion analysis, 

especially when ~rfomed on products fomed fran isotopically 

labeled parent molecules, allows structure determination. The 

structures in many cases, oowever, cannot be selected fran several 

isomeric IX>ssibilities, especially since more than one iscmer is 

probably produced as a reaction product. After initial assignments 

are made, specific experiments (e.g. selective ionization or 

derivatization> can aid in confirmation of the structure, as could 

reference COInIX>unds. If the proposed compounds were available, 

reference spectra would allow quantification of the various 

isomers. This would require the fragmentation IBtterns of the 

various isomers to be significantly different. Alternatively, 

chromatography could be used to sep:lrate the iscmers before mass 

spectral analysis. (This has been done with sane success in 

experiments descirbed in Chapter IT.) 

Isotopic substitution in the reactant molecule has clarified 

and sL-nplified the product w"1alysis in this study. This procedure 

should be generally advantageous in any type of reaction product 

study, including other degradation processes of enviroI1Ilental 

consequence, as well as metabolic processes. 

The data required for this study were obtained in a short 

period, once the sampling and sample introduction procedures were 

developed. On the other hand, the data analysis itself was a time 
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consuming procedure. Computer assisted procedures for analysis of 

MS/MS data, including searching a library of CID spectra, would be 

valuable. 



OIAPl'ER IV 

ANALYSIS BY GC, GS/MS, AND HPLC 

The major purp:>ses of the gas chranatography and liquid 

chromatography work were to: 1) confirm identifications made by 

the ~1S/MS analysis: 2) help quantitate the reaction product 

yields: 3) investigate reaction product yield sensitivity to 

reaction conditions, (to be discussed in Chapter V), and 4) 

determine wlEther this technique would be applicable. 

EXPERIMENTAL 

Gas chromatography was performed on a Hewlett Packard 5880A 

gas chromatograph equipped with a Hewlett Packard crosslinked 

methyl silicone high perfornance capillary column. The column was 

12 meters long. A flame ionization detector was used, with 

hydrogen gas provide l:oth as the carrier flow and make-up gas. The 

chromatograph was temperature programmed fram an initial value of 

30 cC, with a 2 minute hold, to 140°C, at 5.0 °C/minute. Toluene 

reactions were run as described in Chapters II and III. Generally 
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lrJ of extract was injected with a injection port split ratio of 

10:1, thus allowing 0.1,Pl to be injected onto the column. 

The GCIMS analysis was performed at the Oregon Gradute 

Center. A Finnigan 4000 gas chromatograph/mass spectrometer/data 

system was used. '!'be column used was a 30 meter DB-5 fused silica 

capillary column obtained fram J W Scientific. The chromatograph 

was temperature programmed fram 10°C to 175 C at 5°C/minute. The 

mass spectrometer \'la5 operated in electron i.mp3.ct ionization mode, 

with ionization energy at 70ev. Mary Stevens of the Oregon 

Graduate Center, operated the instrument. 

The HPLC analYSis was perforned on a Sp:!ctra Physics SP8700 

solvent delivery system eqipp:!d with a SP8440 varible wavelength 

detector, and a SP4100 computing integrator. A Beckman Ultrastilere 

ODS 5um 4.6mn x 250mn column was used. Burdick and Jackson HPLC 

grade methanol and water were used for all analyses. Gradient 

elution from 100% water to 25:75 water/methanol over 25 minutes, 

at 0.8 ml/min. was used for the best setaration. 

RESULTS AND DISaJSSION 

Previous attanpts have been made to analyze toluene's 

atmospheric reaction products by gas chromatography (9-19). These 

attempts were successful in detecting the major aranatic products, 

and the final products <D and CO2, (see discussion Chapters I and 

III). In the present work the wall extracted reaction products 
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were analyzed by capillary gas chromatography. The advantage this 

study had over previous studies is that the extracted material 

fran an entire reaction vessel could be concentrated, enabling the 

concentrations of the products to reach high enough values to be 

detected. 

A typical resulting gas chranatogram is shown in Figure 22. 

Initial reaction corDitions for the reaction were: l~ toluene, 

lOpJ;m N), 50% relati v-e humidity, and blacklight irradiation. The 

reaction was sto~d after 48 hours, corresponding to 65% of the 

toluene consumed. Peak identifications were made by retention 

times and mass sp:ctranetry (to be described below). On casual 

inspection of Figure 22, it is aptBrent that capillary GC can 

separate many of the components of the reaction mixture. This 

separation is much better than previous Gc work on toluene's 

products, both for the gas phase (10) and the aerosol phase (12). 

For comparison, Figure 23 shows a gas phase injection of 500p in 

which the products are trapp:d at the head of the column at liquid 

nitrogen temperature, and then allowed to elude, at the normal 

programed rate. Only the well known gas phase products, 

benzaldehyde, cresols, and nitrotoluenes are seen. As noted in 

Chapter III, bot..h products adsorbed onto the flask walls, and gas 

phase products are tartitioned into the extraction solvent using 

the methods described in Chapther III. GC analyses were also 

performed on samples in which the gas phase was first purged frem 

the flask by zero-air. Figure 24 shows an example of the resulting 

chromatogram. The known gas phase products are greatly reduced or 
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absent, while the assumed fragmentation products are only reduced 

slightly. It wa~ possible with eAtensive flushing of the flask to 

completely eliminate all ~aks fran the resulting chromatogram. 

This indicates the products are in equilibrium to a significant 

extent with the gas phase even though adsorbed on the flask walls. 

The flasks were not purged under normal o~ration because product 

loss could decrease the chance of detection for some of the minor 

products. 

GC runs were made in which a mixture of normal and deuterium 

labled toluene reaction products were used. This was done as a 

check that the same deuterium reaction products \vere produced. The 

resulting chromatograms are shown in Figure 25a, and 25b, for 

normal H8 toluene with D3 and D8 toluene res~ctively. The 

resolving power of the capillary co~umn is great enough to 

partially resolve the deuterated compounds from their 

nondeuterated counterparts. This confirms that the same products 

are formed in all three toluene reactions. This anal ysis lends 

confidence to the cross-cbecking schane assumed in the MS/MS work. 

Standards were prepared and analyzed to determine retention 

times for the identification of the reaction products. The 

standards were also used to help quantify the product yields. 

Standards were prepared using the same solvent (dichloramethane), 

as was used for the extraction of the reaction products of 

toluene. Independent standards were run to determine retention 

times. Standards mixtures were used to determine response factors 

for several standards simultaneously. A typical standards 
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chromatograph is shown in Figure 26. Retention times and reIXlnse 

factors are shown in Table V. Figure 27 shows the HP5880A output 

identifying many of the GC ~aks fran a toluene reaction extract. 

The numbers under ncompound name n correspooo to Table V • 

.Gaa Chromatograptw'Mami SpectroIlle1:J:y AnaJ,ysis 

Two GC/M.S analyses were comucted to conf irm GC 

identifications and to attenpt to icentify the unknown ~aks in 

the chromatogram. Library natching of s~ctra was expected to be 

useful only for the aranatic products, since prior investigation 

confirmed that many of the ring fragmentation products determined 

in the MS/MS analysis are not in the EPA/NIH library of s~ctra 

(51) • 

The total ion chranatograph is shown in Figure 28. Notice 

the close resemblence to Figure 22. Total ion MS chranatograms 

often p:1rallel the FID response, since they are actually similar 

processes. The two columns used are very similar, (both methyl 

coated fused silica) • It is therefore possible to make sane 

corresponding peak icentifications based on the GCIMS analysiS. 

Table VI lists all compounds coni irrred by ~IMS analysis" 

Included in Table VI are compounds such as chlorocyclohexane which 

derive from the solvent (52). All of the aranatic products found 

by the MS/MS analysis were confirmed by GCIMS. As mentioned above, 

many of the fragmentation products were not expected to be found 

through library natching. However, some of the fragmentation 

products could be confirmed through analyzing their EI spectra. 
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TABLE V 

GC/FID RES~SE FACIDRS FOR ARCl-lATIC PROOucrs 

Conpound Retention lime. 

1. Benzaldehyde 
2. Phenol 
3. Benzy1alcoho1 
4. o-Creso1 
5. m-Creso1 
6. p-Creso1 
7. o-Nitroto1uene 
8. m-Nitroto1uene 
9. p-Nitroto1uene 
10. 4-Hydroxy-3-nitroto1uene 
11. o-Nitrobenzaldehyde 
12. p-Nitrobenzaldehyde 
13 0 m-Nitrobenzalde~de 
14. 2,6-Dihydroxyto1uene 
15. 3,4-Dinitroto1uene 
16. 4-Hydroxy-2-nitrotoluene 
17. 2""Hydroxy-4-nitroto1uene 
18. 2-Hydroxy-

(minutes) 
4.43 
5.83 
6.78 
7.89 
8.52 
8.61 
9.98 

10.95 
11.60 
12.46 
13.34 
14.12 
14.49 
20.01 
20.34 
20.38 
21.13 

4,6-dinitroto1uene 21.14 
19. 5-Hydroxy-2-nitroto1une 21.50 
20. Toluene 1.21 

(N.D. not determined) 

Re§pODse Factor 
(ng/~ min.) 

0.17 
0.035 
0.19 
0.11 
0.08 
0.08 
0.18 
0.20 
0.24 
0.34 
0.37 
0.51 
0.54 
N.D. 
N.D. 
0.35 
N.D. 

N.D. 
0.39 
0.20 

80 
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TABLE VI 

PRODUCl'S DETERMINED BY GCIMS 

FEAKi ~ mMMENl'S 

1 Dichloromethane solvent 
2 Trichloromethane from solvent 
3 Cyclohexane from solvent 
4 Cyclohexene from solvent 
5 Toluene reactant 
6 3-Methyl-2,4-pentadienal confirms MS/MS 
7 2-Methyl-butendial confirms MS/MS 
8 4-0xo-2-pentenal confirms MS/MS 
9 2,5-Furandione 
10 2,5-Cyclohexadiene-l,4-dione 
11 Hydroxymethylbutendial confirms MS/MS 
12 Benzaldehyde confirms MS/MS, G:: 
13 4,5-Dioxo-2-hexenal confirms MS/MS 
14 6-0xo-2,4-heptadienal confirms MS/MS 
15 Chlorocyclohexanol from sol vent 
16 2-Hydroxybenzaldehyde confirms MS/MS 
17 Nitrobenzene 
18 Hydroxy-4-0xo-2-pentenal conf irms MS/MS 
19 p-Nitrophenol confirms MS/MS 
20 Hydroxy-4-0xo-2-pentenal conf irms MS/MS 
21 Benzalnitrate confirms MS/MS, G:: 
22 m-Nitotoluene confirms MS/MS, G:: 
23 Benzoic acid confirms MS/MS 
24 p-Nitrotoluene confirms MS/MS, GC 
25 Nitrocresol confir:ms MS/MS, G:: 
26 Nitrocresol confir:ms MS/MS 
27 Nitrocresol confiDIIs MS/MS, G:: 
28 Nitrobenzaldehyde confirms MS/MS, G:: 
29 Hydroxy-nitrobenzaldehyde 
30 Dinitrophenol 
31 Nitrophenol confiDIIs MS/MS 
32 Nitrocresol confir:ms MS/MS, G:: 
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The closest match made from the library was often useful even 

though not correct. Individual cases are now described. 

~ #.6.. Figure 29 shows the EI spectra of ~ak #6, and the 

best library match of 2-vinyl crotonaldehyde. The ~ak, however, 

is more likely 3-vinyl crotonaldehyde, (which is 

3-methyl-2,4-pentadienal> and the isaner of 5-oxo-l,3-hexadiene 

identified by MS/MS. As stated in Chapter III the methyl 

I;X>sitional isomers were suggested by the CID spectra. The EI 

spectra of 2-vinyl crotonaldehyde and 3-vinyl crotonaldehyde 

should be very similar. 

~ #1.and #a. The s~ctra of ~aks #7 and #8 are shown in 

Figures 30a and 30b resp:!ctively. They are identified as 

2-methyl-2-butendial and 4-oxo-2-pentenal. There was no good 

library match found for these compounds. The molecular weights and 

fragmentation patterns are consistant with the identifications 

proposed. These com};X)unds were ioontified in the MS/MS study as 

well. They are the two possible methyl-I;X>sitional isomers 

described in Olapter Ill. The difference in the relative 

intensities of the -15 mass units peak and the -29 mass units peak 

allow distinguishing which chranatographic peak is which (48). 

Loss of the methyl radical is expected to be much greater for the 

4-oxo-2-pentenal since it leaves a stable carbonyl cation, whereas 

loss of the methyl group fram 2-methyl-2-butendial leaves a 

vinylic cation. The MS/MS eID spectra suggested 4-oxo-2-pentenal 

was the major isomer. This is in agreement with the relative 

intensities of the two chranatographic ~aks. 
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~ #.2. ~ #.lQ.. The EI spectrum of reaks #9 and #10 

matches very well with the library srectra of 2,5- furandione, and 

2 ,5-cyclohexadiene-l , 4-dione , res};X!eti vel y • These are shown in 

Figures 31 and 32. These com};X>UIlds are not conf irned by MS/MS 

analysis. They are conceivable rut improbable toluene reaction 

products. More analyses would need to be Cbne in order to over 

corne the negative evidence in the MS/MS studies. 

~ ill, iJ.a., ~ #2.0... Figure 33a and 33b, show the EI mass 

spectra for reak #18 and reak #20 resrectively. There were no 

library matches for these compounds, but the SFectra are 

consist ant with the two different hydroxy-4-0xo-rentenal isomers. 

Figure 33c shows the EI mass srectrum for reak #11. Again there 

was no library match for this compound. The srectra are consistent 

with 2-methyl-4-0xo-butenoic acid. All three compounds are isomers 

of the MSlMS identified product hydroxy-4-0xo-rentenal. The three 

isomers can be distinguished fran one another on the basis of the 

intensities of different reaks in the spectra. 

2-HyeJroxy-4-0xo-rentenal would be exp:cted to show the largest -oH 

and -an peaks since both leave a stable cation. This compound 

should also have a large mlz=43 peaks fran the acetyl ion. The 

acid isomer is the only compound which should show a -<XX>H reak at 

mlz=68. 

~ #ll. Figure 34 shows the weak srectrum for reak #13. 

There doesn r t a~ar to be an intact molecular ion (M+), since all 

high mlz peaks are odd. The large mlz=43 peak and mlz=97 peak 

suggest the compound could be the MS/MS identified compound 
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4,5-dioxo-hexenal, which has lost formyl radical (126-29=97) • 

.feat #li. Figure 35 shows the EI mass s};:ectrum for p:ak #14. 

The spectral library nade a match with methly-quinone. Notice 

however, the molecular ion in 35 is at rnlz=124 not mlz=122 as in 

the known. The MS/MS identified compound 6-oxo-2,4-heptadienal 

would be expected to give a very similar sp:ctrum to 

methyl-quinone (48-49) except with a small molecular ion at 

rnlz=124 instead of rnlz=122! It is quite likely therefore that p:ak 

#14 is 6-oxo-2,4-heptadienal • 

.Eea.k. #.l1.. Peak #17 is a poorly resolved p:ak containing many 

COIII};X>nents. The p:ak contains the compound nitrobenzene (at scan 

728). other !X)rtions of the lEak prop:lbly consist of ring 

fragmentation products, but the sp:ctra are not interpretable 

because they contain several compounds. This is a more severe 

problem in EI spectra than CI or CID spectra because of the very 

large number of peaks in the mass sp:ctrtnn. 

As noted above, the GCIMS analysis did not Cb very well in 

identifying the hydroxy compounds which were found in the MS/MS 

portion of this work. Hydroxy compounds are very often difficult 

to determine by EI mass slEctrametry because they lose the hydroxy 

group so easily (48). The GCIMS identifications probably could 

have been futher clairified if a GCIMS instrument had been 

availible for full tine use on this project. The GCIMS analysis 

did however verify the presence of several isomers of the products 

suggested by the MS/MS work, which was not possible with out 

chromatographic separation. 
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OJantification .Wmi ~ ana]~is 

Gas chromatography is more suitable for quantification of 

the products than MS/MS. THe FID molar response does not vary IOOre 

than a factor of five for the compounds of interest, and is 

roughly correlated with molecular weight. As stated in Chapter II, 

it is imp:>rtant to keep a carbon balance for the reaction under 

study. Experiments were run under the same ooooitions described 

above for this purpose. The extraction sol vent was carefully 

concentrated to known volumes, rreasured by calibrated glassware. 

Known fractions of this solution were then analyzed by GC. Since 

many of the aranatic products are in fact in the gas phase, the 

partitioning nefficiencyn was measured for these oompounds. Known 

arnOlmts (ppm level) of toluene and the other major aranatic 

products were extracted fran the same 22 liter flasks as were used 

for the toluene reactions. The amount of each compound recovered 

was calculated. Much of this work was ~rformed by Thuy-Trang 

Dang, as part of a senior research project. These extraction 

efficiences were applied to an actual toluene reaction. At the 

time the reaction was sto~d, the toluene was 52% reacted. This 

agrees with the calculated recovery fran the extract, of 46%. 

Total carbon. can be calculated in two ways. If the ring 

fra~tation product's ~aks are calculated with the same 

extraction effiency as the aranatic products the total carbOn 

yield is 96%. If the fragmentation products are assumed to be 100% 

extracted then the over all yield is reduced to 90%. This is still 

much better than prel1ious gas sampling results (9-11>, as 
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described in Chapter II. In both cases the fragmentation products 

are assumed to have FID responoes the same as the average of the 

other products. 

~ anal~js Qf extracted prodycts 

High performance liquid chromatography studies were 

performed on the toluene reaction products as extracted by 

dichloromethane. These studies were perforrred mainly as a 

preliminary check of the samples before they were sent for ~.s/MS 

analysis. In the early stages of research they were also used to 

prove reproducibility of the extraction procedure, and the toluene 

reactions thanselves. HPLC proved to be useful for the separation 

of the toluene products, but far less useful than MS/MS for their 

identification. Retention tines were determined for the known 

aromatic products fram standards. Gradient elution using the 

SPSIOO, under the coooitions given in the experimental section was 

optimal for the separation of the detected products. An example of 

a resulting chromatogram is shown in Figure 36. Standard toluene 

reaction conditions were used in all HPLC work. Table VI lists 

the identified products. It is clear the modern high resolution 

reverse phase colunms are a powerful tool for the separation of 

these relatively IX>lar compounds. The nethod is limited however 

since general product identification was not possible. The new 

technique of liquid chromatography/mass spectrometry could prove 

to be very effective in the analysis of these reaction products as 

well as other model or real aerosols. 
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OIAPrER V 

MEClIANISM FOR 'lOLUENE' S A':M)SPHERIC DEX;RA.DATION 

Current models of tropospheric chanistry either do not 

include reactions of arcmatics (53), or treat than very simply 

(54). These ccmprehensive oomputer models are used by air quality 

planners to develop oontrol strategies for an airshed. Billions of 

dollars are spent annually, based on what these models predict. 

Even small improvements in the accuracy of these models is 

therefore useful. Aranatics make up a large portion of the ambient 

hydrocarbon oontent of air, as described in Ch:l.pter I. Inclusion 

of reliable aromatic hydrocarbon chanistry in the tropoSIileric 

models would be a great aid in their improvement. 

Although several mechanisms specific to toluene's 

atmospheric oxidation have been proposed, these oontain a great 

degree of tnlcertainty because of the lack of information on the 

relative yields and even the identities of many of the products. 

These mechanisms depend mainly on curve fitting the experimentally 

observed profiles for toluene, nitric oxides, and ozone. Since 
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many factors influence the time dependent behavior of these 

species it is relatively easy to compensate an inaccuracy in one 

p:>rtion of the mechanism through an asstnnption made in another 

p:>rtion of the mechanism. Indeed, the disagreanents between the 

three most developed toluene mechanisms (9,26,34) are largely due 

to differences in assumptions made about unmeasured processes. 

The major unknown in all previous toluene mechanisms 

concerns the formation and reaction of the internediate products. 

These reaction products have been incluc};d or excluded as 

necessary to make the proposed mechanisms fit the experimental 

data. For example Atkinson (9) considers several ring 

fragmentation pathways to produce methyl glyoxal, while Whitten 

and Killus (26) limit their mechanism to just one. Both groups 

however simulate the same experimental data, and both obtain 

comparible fits to the data for their models. The product 

determinations presented in this thesis indicate that the 

atmospheric chemistry of toluene is more complex then proposed by 

any previous mecl'1..anism. 

'lOLUENE REACTIONS 

All of the compounds proposed by this study have reasonable 

production pathways fran toluene reacting under simulated 

atmospheric conditions. Toluene, like most hydrocarbons, is 

initially attacked by hydroxyl radica1(2). Subsequently, reactions 

with molecular oxygen and nitrogen oxides produce stable 

oxygenated products and regenerate hydroxyl radical. The general 
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mechanism involved is shown in equations 1-8. 

R-H +'OH -> R- + H2O (1) 

R- + 02 -> RD2· (2) 

R02· + 00 -> RO· + 002 (3) 

RO- + 02 -> RC(O)R' + 002- (4) 

002· + 00 -> 1'02 + OH' (5) 

002 +hv->1'O +0 (6) 

0 + 02 -> 03 (7) 

03 + 00 -> 1'02 + 02 (8) 

Reactions 6-8 comprise the photo-stationary state for ozone and 

the nitrogen oxides. The building up of ozone is produced through 

the perturbation of this null cycle, by reactions 3-5, the 

interaction of hydrocarbon chanistry with the OOx chanistry. 

The specific reactions to produce the aranatic products fran 

toluene's degradation are understood (10). These reactions are 

shown in Figure 37. Reactions a and b are initial attack on 

toluene through abstraction and addition resFSctively. Atstraction 

leads to the products benzaldehyde or benzyl nitrate. Ring 

addition of hydroxy radical leads to the aranatic products cresol 

and nitrotoluene. Reactions similar to these can be used to 

explain the other aromatic products: hydroxybenzaldehydes, 

dihydroxytoluenes, nitrobenzaldehydes, nitrocresols, and 

dinitrotoluenes. The minor product phenol probably results fran 

secondary reactions of benzaldehyde (26). 

The ring fragmentation products result fran a more complex 

sequence of reactions. The reactions presented below are largely 
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based on reactions proposed by Atkinson et ale (9). Newly 

determired products fran the present work are proposed to be 

formed following similar mechanistic patlMays. The important 

reaction sequences for the fragmentation products are shown in 

Figures 38-40. A complete mechanism wr it ten in four letter code 

suitable for oomputer modelling is presented in A{:Pendix B. As 

shown by the examples in Fiures 38-40, there are many 

interrelationships between the products. A significant feature 

relating to toluene's importance in ozone formation is the number 

of N) to ID2 conversions for each pa ttMay. The larger the number 

of N) converted to N)2 by hydrocarbon radicals, the more ozone 

formation is enhanced (2). Different products can form while 

converting the same number of N) to N)2, as in Figure 38. The same 

products can form through different pattMays with a different 

number of N) to N)2 conversions. Notice methyl glyoxal is form:d 

with two 00 to N)2 conversions in Figure 38, and six N) to N)2 in 

Figure 39. The same products can also be form:d through oompletely 

different pathways yet produce the same net ID to 002 conversions, 

Figure 39, vs. Figure 40, for methyl glyoxal. It should be clear 

that only monitoring the nitrogen oxides and ozone profiles ~, 

not discriminate between p:>ssible pattMays unless sc.mething is 

known about the intermediate products. Ozone reactions ~ the 

unsaturated products is a IX>tentially important process. These 

products would then serve roth as sources and sinks for ozone. The 

overall ozone forming potential of the products is therefore not 

easily predicted. The organic products fran the reaction with 
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Figure 38. Ring fragmentation products formation which 
convert two NO to N02. 
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methyl glyoxal and glyoxal. 
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ozone are expected to be much the same as those fran hydroxyl 

radical reactions. The only additional products expected are 

organic acids formed from the rearrangement of Criegee 

intermediates, such as (I) in Figure 41. As noted in Chapter III 

few acids were found in the present work, plssibly because the 

reactions were generally run under ozone suppressing conditions 

(high NOx concentrations). 

A major difference between the overall chemistry in the 

present mechanism and that of previous workers (9,26,34), is the 

formation ratio of carbon dioxide to carbon monoxide. Previous 

mechanisms have the seven carl::x:>n atans of toluene producing 

approximately five carbon monoxide and two carbon dioxide. The 

present work haf' aPIX'oxinately three carbon monoxide and four 

carbon dioxide overall. This prediction better agrees with the 

overall measured yields of 15% CO and 85% CO2, given in Chapter 

II. 

Figure 42 presents a summary of probable pathways for the 

production of the major ring fragmentation products. Although many 

of the cornp:mnds in Figure 42 have not been identified previously, 

several of the pati&lays presented have been proposed. These 

pathways are reactions a-e. Killus and Whitten (26) base their 

mechanism largely upon butenedial and methylglyoxal. Butenedial 

has been tentatively identified by Besemer (18). Atkinson et al. 

(9) base their mechanism upon this pathway plus glyoxal and 

4-oxo-2-pentenal, although the latter compound has not been 

previously identified. The other ring fragmentation products 
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Figure 41. Criegee intermediate formation and rearrange
ment to produce organic acids. 
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determined in Chapter III have been presumed by other workers to 

play no major role in toluene IS atmoSIileric oxidation. References 

for the proposed formation of these and other compounds can be 

fotmd in Table II in Chapter III. Reactions f-l have not been 

previously proposed. They involve reaction sequences similar to 

those in a-e. Reaction m is photolytic loss of carbOn monoxide 

from 6-oxo-2, 4-heptadienal. S:im~larly, hydroxy 

5-oxo-l,3-hexadiene, 3-oxobutene, and hydroxy-3-oxobutene are 

possible photoylsis products of hydroxy-6-oxo-2,4- heptadienal, 

4-oxo-2-pentenal, and hydroxy-4-0xo-2-pentenal resp:!ctively. The 

photochemistry of these molecules is presently unknown. Photolytic 

loss of OJ occurs for sane aldehydes, but prop:nal and 

trans-2-butenal do not show significant OJ production at normal 

(25 C) temperatures (55-56). Coanber and Pitts found that OJ 

yields in trans-2-butenal did significantly increase at higher 

temperatures. They also observed a pressure and wavelength 

dependance on CO yields (56). Extending the conjugation of the 

carbonyl beyond that fotmd in 2-butenal will have a large effect 

on the absorption s{:ectrum. Although this p:ltl'May could explain 

the formation of products containing a terminal me~,ylene group, 

the measured carbon monoxide yields are only 15%. Since carbon 

monoxide can be largely accounted for in other reaction p:ltl'Mays, 

a Significant photolysis process would require a major 

modification of these more established reactions. 

An alternative mechanism which would lead to these products 

is a 1,2-hydrogen shift after initial hydroxyl radical attack. 
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This mechanism is shown in Figure 43a. This type of 1,2-shift has 

been observed (57-58). Takamuku et al found a 1,2 shift occurs 

with a closely related reaction, 0 (3P) attack on toluene (58). In 

Figure 43a, the hydrogen shifted adduct (I) proceedes through 

reaction sequences similar to those proposed for the other ring 

fragmentation products. This reaction tattMay leads to the 

production of 5-oxo-l,3-hexadiene and carbon dioxide. Inmediate 

formation of carbon dioxide upon toluene reaction has been 

observed. The reactions in Fig.43a would help explain this initial 

carbon dioxide yield. S:imilar reaction sequences can be formulated 

for the other products containing a tenninal nethylene group. 

The hydroxy products identified in this study have two 

reasonable formation nechanisms. They nay be formed as a result of 

the reaction of the pr imary product cresol reacting along similar 

fragmentation tattMays as toluene. Since the pr imary cresol yield 

is low, only small amounts of these products would be e~cted 

from this route. An alternative reaction mechanism is shown in 

Figure 43b. The hydroxy product results fran hydrogen abstraction 

from the oxygen cyclized adduct (II), rather than oxygen addition 

leading to methyl glyoxal and glyoxal formation. It is likely that 

this mechanism dominates over cresol reactions for formation of 

products with the alcohol group. 

EFFECI' IF REACl'ION CDNDITIONS ON PRODUC!' YIELDS 

Qualitative experiIrents were ~rformed to check on product 

yield sensitivity to reaction conditions, and to ensure the 
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proposed mechanism was consistent with the observed atmospheric 

chemistry. Reactions were normally run with high initial 

concentrations of nitric oxide. As stated above, this suppresses 

ozone formation and thus reduces complications form ozone reacting 

with the intecnediate products. HOVIever, high concentrations of ID 

increase the formation of the relatively uninteresting 

nitroaromatic products. It was expected that lOVIer concentrations 

of rox would reduce the proportion of the nitroaranatics. It was 

also expected that this would reduce the overall reactivity of the 

system. These expectations were conf inned by reactions at 10VI 

initial ro concentrations. For example, reactions run at initial 

concentrations of O.Sppm ro and Sppm toluene, instead of the 

normal 10 and 10, did produce 10% of the nornal yield of 

nitroaromatics (nitrotoluenes and nitrocresols). The rate of the 

reaction decreased also. Work is currently underway by Dr. Robert 

O'Brien to elucidate the exact relationship between initial ID 

concentrations and nitroararnatic yields. Under abient conditions 

where there is a lOVI concentration of IDx, the nitroararnatics 

would be relatively unimportant. 



OIAPl'ER VI 

CCNCLOOIONS 

The product determinations made in this study indicate that 

the atmospheric chanisty of toluene is more complex than 

previously thought. Twentyseven reaction products of toluene were 

determined by MS/MS. Of these, only eight had been previously 

identified. Another five had been previously proposed but not 

identified. Several ring fragmentation products were determined. 

These products are of key importance to the understanding of 

toluene I s atmospheric degradation. The use Qf deuterium labeled 

toluene greatly aided the research. It added conf idence to the 

structural determinations made with the use of "authenic" 

standards which were not availible for many of the products. Even 

with the labeled toluene experiIrents, in sane cases the 

fragmentation patterns did not allow unique assignments to be made 

between several rretbly or hydroyl positional isaners. Undoubtedly 

more than one isaner was often present, as would be expected. 

An atmospheric pressure CI MS/MS instrument conf inned the 
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wall extracted products are also in the gas phase. This instrument 

would be the most powerful tool in the further study of this or 

similar systems. 

This {:articular chemical reaction systen is complicated by 

its heterogeneous nature. However, this problan is associated with 

the process itself, and not with the nethods used. Precipitation 

of the reaction products on the vessel walls is actually an 

advantage for the direct probe introduction procedure used in the 

MS/MS analysis. Carbon balance neasuranents were very useful for 

the confionation of wall precipitated products. This type of 

measurement was the first of its kind taken. Total gas-phase 

carbon measurements would be useful for all simulated atmoSIheric 

chamber experiments. 

The other analytical techniques used in the study 

supplemented the MS/MS work. The GC/MS work help oonfinn the MS/MS 

identifications, including all the aranatic products, and many of 

the major fragmentation products. It also oonfinned the presence 

of IOOre than one isaner for many of the products, as was suggested 

from the MS/MS studies. The use of the liurary search nethod for 

't1'1e idei1tification was of limited value because rrany of the 

comp::mnds of interest were not in the library. In sane cases the 

best library natch was an aid in the interpretation of the 

spectrum. 

The capillary gas chranatography work allowed approximate 

quantification of the products oollected. Calculated carbon 

balances were much better than pr~iously reported. Relative 
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yields of the products indicate that several pathways of ring 

fragmentation are of equal importance. This is in disagreanent 

with all of the current toluene mechanisms. A detailed 

mechanism has been proposed in this work. It is presented in a 

four letter code suitable for computer modeling studies. Results 

from the product determinations are incorporated into this 

mechanism. Several new patlMays were develo~d to acoount for the 

new products identified. The overall chenistry is similar to 

previous pathways except that the overall yields of carbon 

monoxide and carbon dioxide are in better agreenent with measured 

yields. Much more work is needed to varify a mechanism as complex 

as the one proposed for toluene's atmostileric degradation. Now 

that many of the other ring fragmentation products have been 

determined, their individual atmostileric chemistry's can be 

investigated. When t.~e reactions of the products are understood, 

the accuracy of toluene's mechanism will be increased. The results 

presented in this thesis should be large step in this process. 

When aromatic hydrocarbon atnloSFheric chenistry is well 

understood, it will be possible to incorporate the affects of this 

important class of hydrocarbons in general tropospheric models. As 

a result better predictions can be mde about the potential 

pollution problems in an urban area, and better control strategies 

can be developed to decrease any p:>tenial harm to man and his 

enviromnent. 
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APPENDIX A 

MSlMS DAUGm.'ER ION SPEcmA FOR REMAlNnl; PROOUCI'S 

CoImund lit, Ill, Da ~ 

glyoxal 59 59 61 121 
acetic acid 61 64 64 122 
3-oxo-butene 71 74 (77) 123 
hydroxy-3-oxo-butale 87 90 92 124 
phenol 95 95 125 
3-oxo-2-hydroxy-butana1 103 106 108 126 
benzaldehyde 107 lOS 113 127 
cresol 109 112 116 128 
benzoic acid 123 123 127 129 
hydroxybenzaldehyde (123) 124 (1Z7) 130 
dihydroxytoluene (125) (128) 131 131 
nitrotoluene 138 141 145 132 
nitrophenol 140 140 144 133 
hydroxy-6-oxo-2,4-

heptadiena1 141 144 148 134 
nitrobenzaldehyde 152 153 157 135 
nitrocreso1 154 157 160 136 
benzalnitrate (154) 156 161 137 
dinitrotoluene 183 186 189 138 

spectra in () have been presented previously 
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APPENDIX B 

FOUR LmTER OJDED 'IDLUENE MECHANISM 
FOR OJMPUTER SIMJIATION 

Reaction Eat.e. Constant <mm'min> 

1 '1OL + OH -> BNZR + H2O 7.2E2 
2 BNZR + 02 -> BZ02 
3 BZ02 + NO ---> BNZO + N02 9.0E3 
4 BNZO + 02 ---> BZAL + H02 1.0*10 
5 BZ02 + ro ---> BEZN 1.0E3 
6 '1OL + OH -> AIX>H 8. 7E3 
7 AJX)H + 02 ---> CRES + 11)2 1.0El 
8 AIX)H + N02 -> ma:.. + H2O 4.4E4 
9 ADJH + 02 ---> AIX>2 4.9El 
10 A002 + 00 -> AOOR 
11 AOOR -> OPEN 
12 OPEN + 02 -> FU5 + H02 
13 A002 -> CYCL 
14 CYCL + 02 -> Fl41 + H02 
15 CYCL + 02 --> AD20 
16 AD20 + 00 -> AD2R + 002 
17 AD2R + 02 ---> F99 + GLY + H02 1.0E4 
18 AD2R + 02 -> F85 + r-x:;r.y + 11)2 1.0E4 
19 AD20 -> CYC2 
20 CYC2 + 02 -> AD30 
21 AD30 + ro -> AD3R 
22 AD3R + 02 -) GLY + GLY + r-x:;r.y + 002 
23 ro3R + 02 --> GLY + F103 + OJ + 002 
24 AOOH -) SHFT 
25 SHFT + 02 -> SF02 
26 SF02 + N) -> SFOR 
27 SFOR + 02 -> SOPN 
28 roPN + NO -> F97 + OJ2H + 002 
29 002H + 02 -> OJ2 + 002 
30 FU5 + OH -> Rl25 + H2O 
31 Rl25 + 02 ---> 0225 
32 0225 + N) -> 0125 + 002 + OJ2 
33 0125 + 02 -> 0R25 
34 0R25 + NO -> 0X25 
35 0X25 02 -) 0325 
36 0325 + NO -> R325 
37 R325 + 02 -> FU7 + 002 
38 R325 -) GYL + MVKR 
39 MVKR + 02 -> MVKO 
40 MVKO + NO ---> Xl03 1.0E4 
41 Xl03 + 02 -> 0103 
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42 0103 + ID -> Or.x;y + 002 5. 0E3 
43 OK;Y -> MGLY + EORR 
44 FORR + 02 -> CO + ID2 
45 or-r;y -> GLY + Acr 
46 ACr + 002 -> ACN... 
47 Acr + 02 -> Acr2 
48 ACl'2 + ID -> AClN 
49 ACl'2 + ID2 -> PAN 6.9E3 
50 ACl'2 + 00 -> Aero + 002 1.lE4 
51 ACI'O - > CH3 + CO2 
52 00 + 02 -> CB)2 
53 CH02 + 00 -> CH30 + W2 1.1E4 
54 000 + 02 -> FORM + 002 2.1EO 
55 R325 -> MGYL + VALR 
56 VALR + 02 -> VW2 
57 VID2 + 00 -> VAIJ:) + 002 1.0E4 
58 VArJJ + 02 -> VL20 
59 VL20 + NO -> VL2R + 002 1.0E4 
60 VL20 -> GLY + FORR 
61 F125 + 00 -> A125 
62 Al25 + 02 -> 0225 
63 0225 + 00 -> R225 + 002 
64 R225 + 02 --> F99 + GLY + 002 
65 R225 + 02 -> F85 + r-x;LY + 002 
66 R225 -> F103 + VALR 
67 R225 -> GLY + HMVK 
68 HMVK + 02 -> HOMV 
69 OOMV + 00 -> HmV + 002 
70 HRMV + 02 -> H2MV 
71 H2MV + 00 -> R2MV + 002 
72 R2MV + 02 -> F103 + FORM + 002 
73 R2MV + 02 -> MGLY + GLY + 002 
74 F125 + HV --> F97 + CO 
75 F127 + OIl -> R127 + ID2 
76 R127 + 02 --> 0227 
77 0227 + 00 -> 0127 
78 0127 + 02 -) R227 
79 R227 + 00 -> Y127 + W2 
80 Y127 + 02 ---> Y227 
81 Y227 + 00 -> MGYR + GLY + 002 
82 ~+ 02 -) ~o 
83 MGYO + 00 -> AC'r + N)2 + CO2 
84 0227 + 00 -> R99 + N)2 + CO2 
85 R99 + 02 ---> 0299 
86 0299 + 00 -> MVKR + CO2 + ND2 1.0E4 
87 F127 + OIl ---> Al27 
88 Al27 + 02 -> 0227 
89 0227 + N) -> R227 + W2 
90 R227 -> I127 + GLY 
91 I127 + 02 -> Xl27 
92 Xl27 + ro -> MGYR + FACD + ID2 
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93 R227 ---> F103 + GLYR 
94 R227 -> MGLY + GLYR 
95 GLYR + 02 -> GLYO 
96 GLYO + NJ -> roRR + 0)2 + NJ2 
97 CH03 + 02 ---> CH04 
98 CH04 + NJ -> FACD + Ci.YR + NJ2 
99 F97 + OH ---> A497 
100 A497 + 02 -> 0497 
101 0497 + NJ ---> F103 + ETHR 
102 El'HR + 02 ---> EID2 
103 EH02 + NJ ---> E'lH0 + 002 
104 EmD + 02 -> ET20 
105 ET20 + NJ -> 0E'lH 
106 OErn + 02 -> GLY + 002 
107 F97 + OH ---> A297 
108 A297 + 02 ---> 0297 
109 0297 + NJ -> rom + 1297 + NJ2 
110 1297 + 02 --> F99 + 002 
111 0297 + NJ ---> F61 + MVKR + ID2 
112 F99 + OH -> R99 + H2O 2.2E4 
113 F99 + OH ---> A99 
114 A99 + 02 ---> 0299 
115 0299 + NJ -> R299 1.0E4 
116 R299 + 02 --> ~lGLY + GLY + 002 
117 R299 + 02 --> F103 + 0) + 002 
118 F99 + N) -> F71 + 0) 
119 F85 + OH ---> RB5 + H2O 4. 4E4 
120 RB5 + 02 ---> 085 
121 085 + N) -> 0)2 + N)2 + VALR 1.0E4 
122 F85 + OH ---> ASS 
123 ASS + 02 ---> 0285 
124 0285 + N) -> GLY + GLYH + N)2 
125 GLYH + 02 --> GLY + lD2 
126 F85 + N) ---> F57 + 0) 
127 F71 + OH -> A71 
128 A71 + OH ---> A71 
129 0271 + NJ -> R71 
130 R71 + 02 ---> MGLY + FORM + 002 
131 R71 + 02 -> FI03 + 002 
132 R71 + 02 --> Acr + F61 
133 F103 + OH -> Rl03 + H2O 
134 Rl03 + 02 -> 0203 
135 0203 + N) --- 0)2 + KiLH + ID2 
136 MGYH + 02 -> MGLY + lD2 
137 MGLY + OH ---> MGYR + H2O 2.5E4 
138 KiLY + IN -> AC1tJ.J + 0) 
139 M:;LY + IN -> Acr + FORR 
140 r-rn,y + IN -> CB3 + GLYR 
141 GLY + OH -> GLYR + H2O 1.7E4 
142 GLY + IN -> rom + 0) 
143 GLY + iN -> 0) + co + H2 
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144 FORM + OH -> FORR + H2O 1.6E4 
145 FORM + HV -> Q) + H2 
146 ACAL + OH -> Acr + H2O 
147 PAN -> ACl'2 + 002 2.2E-2 
148 ACAL + OH -> Acr + H2O 2.4E4 
149 ACAL + HV --> CH3 + FORR 8.4E-4K1 
150 CO + OH --> <D2H 4.0E2 
151 BZAL + OH -> B..~O 1.9E4 
151 BNZO + 02 --> BZ02 
152 BZ02 + 00 -> PEEN + CO2 + 002 1. 0E4 
153 PEEN + 02 ---> PH02 
154 PH02 + 00 -> PHOO + 002 9.0E3 
155 PHNO + 802 -> PHOL + 02 7.4E3 
156 BZ02 + m -> BZON 
157 BZ02 + 002 ---> PBZN 6.9E3 
158 PBZN -> BZ02 + 1\02 9.6E-3 
159 PBND + N02 ---> NPOL 2.2E4 
160 BZAL + OH ---> BADD 
161 BADD + 02 -> NBZL 
162 BADD + N02 --> NBZL 
163 DOO2 -> oom 
164 PHNJ + 02 -> 002 
165 PH02 + NO -> roPN + t-D2 
166 OOPN + 02 ---> BOP2 
167 OOP2 + NO -> roro + 002 + <D2 
168 ooro + 02 -> B2ro 
169 B2ro + ro ->. xas + 002 
170 xas + 02 -> X085 
171 X085 + NO -> GLY + VAL + 002 
172 X085 + lID -> F85 + FORR 
173 CRES + OH -> ~D 5.6E4 
174 rnFS + OH -> CABS + H2O 4.9E3 
175 rnFS + N03 --> CABS + HN03 1.5E4 
176 CABS + N02 --> NCRS 2.2E4 
177 CADD + 002 --> NrnS + H2O 4.4E4 
178 NCRS + OH --> NCBS + H2O 
179 NCRS + N03 --> NCBS + HN03 1.5E4 
180 NCBS + N02 --> CNCS 2.2E4 
181 CADD + 02 ---> CNDO 4.9El 
182 CAlX) -> A002 
183 Fl41 -> F125 
184 Fll5 -> F99 
las FID -> F97 
186 F87 -) F71 
187 CYC2 + 02 --> FU5 + 802 + GLY 
188 SF02 + 02 -> FU3 + <D2H 
189 SF02 + 02 --> SF04 
190 SF04 + 02 -> F87 + GLY + <D2H 
191 NIDL + OH -> NAnD 
192 NADD + N02 -> DNl'L 
193 NADD -> CRES + N02 
1!4 NADD ~ AOOH 
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