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A dendritic transfer function
in a novel fully-connected layer

Undergraduate Honor’s Thesis

1st Mark Musil
Electrical and Computer Engineering Department

Portland State University
mmusil@pdx.edu

Abstract—Dendritic branch operations in pyrami-
dal neurons are well understood in-vivo but their
potential as computational assets in deep neural
networks has not been explored. The pre-processing
which dendrites perform may be able to decrease the
error of an artificial neuron because each dendrite
serves as an independent filtering mechanism which
may prevent false positives. In order to test this
hypothesis, a fully-connected layer implementing
the dendritic transfer function is defined and used
to replace the final fully-connected layer used in
a standard CNN (convolutional neural network).
Results show that the defined algorithm is not able
to predict better than chance and possible causes
are discussed. A framework for developing future
dendritic layers is established.

Index Terms—Dendrite, transfer function, den-
dritic, neural network

I. INTRODUCTION

Modern artificial neural networks are only
loosely based on the structure of the human brain
but have shown great success in image recogni-
tion, functional estimation, and other tasks. The
model that is widely used - although greatly
customized - is the feed-forward network with the
familiar equation y = σ(~xW+~b). This model uses
a very simple model of the neuron as can be seen
in Figure 1.

Despite this success, machine learning re-
searchers are hesitant to return to the human
brain for more insights. This hesitation from the
scientific community leaves room for investigation
into which, if any, processes performed by the
human brain may be useful for machine learning
goals.

In particular, the neuron contains many signal
processing abilities that have not been fully ex-
plored. This thesis will ask the following question:

Figure 1. The classic artificial neuron, which assumes that all
synapses are connected to the same lossless dendritic branch
and are only acted upon after reaching the soma (cell body).
Source: scielo.br

can a non-linear dendritic branch function be
combined with a two-layer neuron model to create
a computational unit that, when used to create
a fully connected layer, shows improved perfor-
mance of a CNN (Convolutional Neural Network)
on the MNIST data-set versus an unaltered CNN?

II. BACKGROUND

Figure 2. A simple model of the neuron. Source: biol-
ogy.stackexchange.com



It has long been known that stimuli input to the
spine-like synapses along the dendritic branch are
not conducted directly to the soma (cell body) in
all cases [1] (see Figure 2) . There are several
factors that impact how much – if any – of a
certain stimulus reaches the soma [2]. First, the
distance from the synapse to the soma can affect
the net voltage change of the soma because of
leakage current that exists along the dendrite.
Second, if many stimuli occur at distant locations
along a branch but at roughly the same time, the
soma’s net voltage difference will not be the sum
of the voltage changes at the synapse due to each
stimulus because of saturation. The same ‘muting’
effect takes place when many stimuli arrive at
relatively close locations but not necessarily at the
same time. The aforementioned effects, modeled
in this thesis, do not take into account inter-branch
interactions or how different charge carriers im-
pact signal transfer.

While the above detail is interesting, the impact
on an artificial network’s performance as a result
of a dendritic function must be discussed. The
dendrite’s function as an independent threshold
unit [1] is most appealing because it could prevent
strong false positive neuron activations. Because
each dendrite sees only a portion of the input
space, each dendritic branch can confirm or deny
the presence of a certain input pattern across its
connections and convey this information to the
soma. The soma is less likely to exhibit a (strong)
false positive because the dendrites of the neuron
will never have been activated.

One risk of this experiment is that dendritic
thresholding could lead to false negatives. As an
example, consider a neuron with 10 dendrites, one
dendrite failing to recognize an input pattern could
mislead the entire neuron by effectively adding
noise equal to 10% of the input signal strength.
In addition, using the architecture displayed in 4
may not handle spatial variance well because the
dendritic receptive fields are narrow and highly
local. One improvement is to implement the trans-
fer function (or some simpler form) as part of
a convolutional layer. Such complexities will be
addressed more closely in future works.

The next section will place this experiment in
the context of similar experiments.

III. LITERATURE REVIEW

The behavior of dendrites has long been studied
and recognized as computationally significant. In
[3] the role of the dendrite in memory is dis-
cussed and in [1] it is acknowledged that dendrites
work as separate thresholding units pre-filtering
the input to the soma. [2] further establishes the
importance and nature of dendritic computation.
[2] even discusses certain organisms who possess
certain single-neuron systems capable of solving
high order problems using dendritic processing.
For example, the locust has a single neuron in its
visual system that, using only dendritic computa-
tions, searches for objects on a collision course
with the locust’s head [2]. Such single-neuron
tasks show that important processing takes place
within dendrites.

It is no small task to translate an observed
natural phenomenon into something that can be
implemented in code. The first attempt at for-
malizing the dendrite for computation models
was the sigma-pi neuron [4][5] so called because
the neuron sums over input which have been
multiplied together. Many of these models only
include one layer of processing and could not
compete with deep networks. Work was done
by [6] using dendritically similar neurons using
binary activations between layers. In that work,
dendrites are leveraged to process binary-valued
sparse distributed representations. Although [6]
motivated this thesis, it was decided that a real-
valued model was more appropriate.

[7] establish a ’sigma-sigma’ dendritic model
(used in this work) which is simpler and more
similar to the artificial neurons used in deep neural
networks (see Figure 1). Building on [7], the
authors of [8] propose a two-layer neuron model
which uses the dendritic transfer function in the
first layer in lieu of the sigmoid used by [7]. Using
this model is preferable because it will integrate
more easily into larger networks.

There is no apparent evidence of an experiment
which attempts to place this two-layer neuron
model into a deep neural network and evaluate
the resultant performance. It is crucial that this
space is explored in order to test the hypothesis
that dendrites have significance for computational
problems beyond those observed in the human
brain.



Figure 3. The schematic for the neuron model that includes
the dendritic activation mechanism. T ( ~X) is the novel function
that is being implemented. Two sets of summation and a final
sigmoid output are also parts of the model. This figure is the
author’s work.

IV. METHODS

A. Layer Architecture

The graphical representation for the dendriti-
cally modeled neuron may be seen in Figure 3.
T (Y ) mimics the electrical qualities of a dendritic
branch by normalizing groups of inputs before
they reach the final summation and activation.

This dendritically inspired model will be used
to create a fully connected layer that can be
incorporated into existing neural networks. For
these experiments the neural network into which
the new layer will be placed is a CNN. CNN’s
are well-suited for computer vision tasks[9] and
provide a good platform for testing the dendritic
neuron’s performance. The layer is designed to
work in any feed-forward network trained using
backpropagation.

Figure 4 shows the proposed structure for the
novel layer while Figure 3 shows a graphic of a
single dendritic neuron. It is important to notice
that each dendritic branch (what the arrows are
pointing to) does not see all of the input space but
only the Dth fraction of the input space where D
is the number of dendrites per neuron. The reader
should note that in this novel artificial model each
dendrite has mutually exclusive inputs that do not
interact. This is an acceptable simplification at this
stage but biological dendrites have much overlap
and this will be considered in future experiments.

Once each dendrite has seen its window of
the input space the soma of the neuron ’decides’
whether the information that was presented to

Figure 4. A limited display of the proposed fully connected
layer. Note that the same group of M/D inputs connect to the
same dth dendrite of each neuron. This figure is the author’s
work.

the soma (by the dendrites) matches the patterns
which that neuron has been trained to recognize.
The dendritic neurons will be assembled in layers
of N neurons where each neuron will be fully
connected to the input space but no single dendrite
will see the entire input space.

B. The Transfer Function

The transfer function is split into two functions:
the activation function T (~Y ) and the boundary
function g(y) [8]. Although when the dendritic
transfer function is discussed T (~Y ) is the intended
meaning. In addition, the multivariate logistic-
sigmoid σmulti is also defined in equation 1 and
is used in T (~Y ).

σmulti( ~X) : Rn → R = [1 + exp(−ΣXi)]
−1

(1)

g(y) = ln( (1+exp(αL(y−bL)))α
−1
L

(1+exp(αU (y−bU )))α
−1
U

) + bL (2)



αL αU bU bL
Value 0.5 0.5 0 1

ad cd bd
Value 1 Trained ”

Table I
TABLE OF VALUES FOR T (~Y ) AND g(y).

T ( ~Ydn) = g(cdσmulti(ad[ ~Ydn − bd]) + ΣYdn,i)
(3)

Note that bd is a single real number and not a
vector. Table I lists the miscellaneous variables in
these equations.

Note that ~Y and y are used as notation for
the inputs to g(y) and T (~Y ) as opposed to the
conventional x because the input to the dendritic
transfer function is the output of the classic layer
weight function ~Ydn = ~XWdn + Bdn. ~X is the
input activation of the previous layer and Bdn is
the bias term. Wdn is the weight matrix for dth

dendrite in the nth neuron.
The algorithm for the layer implementation is

described in algorithm 1. The algorithm assumes
that N neurons and D dendrites per neuron have
already been chosen for the layer in which the
computation is taking place. The subscripts d
and n denote individual dendrites (d) or neurons
(n). Bdn (two subscripts) is the bias for a single
dendrite while Bn (one subscript) is the bias for
the soma of the neuron. φ is the activation function
(such as a standard sigmoid, ReLU, etc.) to be put
after the soma, and On is the output of the nth

neuron in the output layer.
The algorithm will be implemented as a net-

work layer following the structure displayed in
figure 4. This will allow the robust and approach-
able Keras interface to be leveraged during the
project. The completed source code is on GitHub
[10] where it is publicly accessible under the GNU
General Public License v3.0.

V. RESULTS

The layer was tested as part of a fully connected
network trained on the Iris dataset. The network
was trained against another fully connected control
network which had the same configuration as the
test network. Both networks have input and output
dimensions of 4 and 3, respectively. The control

Algorithm 1: The algorithm that defines the
functionality of the novel layer.

Data: Set of input activations from the
previous layer ~X

Result: Set of output activations of the
current layer ~O

1 for n← 0 to N-1 do
2 for d← 0 to D-1 do
3 Compute ~Ydn = ~XWdn +Bdn ;
4 Compute T ( ~Ydn);
5 end
6 Compute

On = φ([
∑j=D−1
j=0 T ( ~Yjn)] +Bn);

7 end

network had hidden layer of 5 units. The test
network had two hidden layers, one of 6 units
and the other being the dendritic layer which was
before the output layer. The dendritic layer had 3
neurons, each with two dendrites, each dendrite
receiving input from 3 neurons of the previous
layer.

It was found that the dendritic layer network
never performed better than chance on classifi-
cation. This was consistent across different sets
of hyper-parameters (learning rate range: [0.001
0.04], epochs: [50 - 500] ). Error vs epoch graphs
for each network are shown in Figures 5 and 6.

Figure 5. Results from the control Iris network. Hidden layer
size is 5 neurons.

VI. DISCUSSION AND FUTURE WORK

After a post-experiment analysis, it was found
that the network did not converge because of the



Figure 6. Test results using the added dendritic layer.

architecture chosen in the dendritic layer. The
dendrites in each neuron were connected in an
identical manner to the dendrites in every other
neuron. The weights were also initialized in the
same way for each dendrite, meaning that each
neuron in the dendritic layer ended up yielding a
very similar output.

Although there was some variation seen during
early epochs, (one run in particular showed that
the output was [0.56, 0.51, 0.551] before any train-
ing) The output activation tended towards [0.5,
0.5, 0.5] and largely remained there throughout
training. As this is a classification problem, this
means that the network had no confidence in any
particular class being the correct answer. This
explains the flat-line in Figure 6.

It is hypothesized that the problem comes from
the network architecture and specifically the ho-
mogeneity of the connections to the dendrites,
which may results in a structure that cannot cre-
ate decision boundaries. For future experiments,
a novel set of connections should be explored.
Potentially a randomized set of connections may
be advantageous. Otherwise it may be good to
only allow each neuron to view a ’window’ of the
input space and within this window randomize the
connections.

The dendrite’s role is clearly important to the
way in which neuron’s process information. There
are many interesting facets of a dendrite’s function
and some animals even rely on single neuron
systems which leverage dendrites to make deci-
sions. In addition, the potential reduction in false
positives for neurons is an exciting promising

result. The formalism established here will allow
for future successful experiments into dendrites
and their unique behavior.

The most significant accomplishment of this
thesis then is the addition of a formality for
approaching dendritically inspired artificial neuron
models. This will pave the way for further experi-
ments in this domain and allow future missteps to
be avoided.
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