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ABSTRACT Power system balancing authorities are routinely affected by sudden frequency fluctuations.
These frequency events can take the form of negligible frequency deviations or more severe emergencies
that can precipitate cascading outages, depending on the severity of the disturbance and efficacy of
remedial action schema. It is imperative to arrest such disturbances quickly by activating primary frequency
control measures. This manuscript proposes a configurable event detection framework using optimization
methods to tune a detection algorithm to detect events as specified by experts from a Balancing Authority.
The utility of the detection framework is demonstrated using a regression-based frequency event detection
algorithm with tunable parameters. Two swarm intelligence-based optimization algorithms, Grey Wolf
Optimization and Particle Swarm Optimization, are applied to tune the parameters of the detection
algorithm according to the definition of frequency events specified by experts.The performances of the
GWO and PSO algorithms are analyzed, and the efficacy of the proposed system is demonstrated using
an algorithm evaluation environment and a suite of evaluation metrics. The proposed event detection
framework is capable of detecting events in real-time with high accuracy and speed using real-world,
real-time phasor measurement unit data.

INDEX TERMS Frequency Event, Event Detection, Grey Wolf Optimization, Particle Swarm Optimiza-
tion, Phasor Measurement Unit, Primary Frequency Response

Acronyms
AEE Algorithm Evaluation Environment
BA Balancing Authority
CNN Convolution Neural Networks
DWT Discrete Wavelet Transform
GWO Grey Wolf Optimization
LSTM Long Short-term Memory
NERC North American Electric Reliability

Corporation
PCA Principal Component Analysis
PFR Primary Frequency Response
PMU Phasor Measurement Unit
PSO Particle Swarm Optimization
ROCOF Rate of Change of Frequency
RTAC Real-time Automation Controller

SAE Stack Auto-Encoders

I. INTRODUCTION

Two primary goals of system operators are to maintain
stability of the power system and ensure continuity of supply
to consumers in the event of disturbances. Modern power
systems are more vulnerable to experiencing critical situa-
tions since they are operated close to steady-state stability
limits to maximize use of capital [1]. Therefore, modern
power systems require sophisticated monitoring and control
schemes to identify and mitigate such disturbances at an
early stage.

Cascading events in power systems have two stages. In the
first stage, there is a slowly evolving process of consecutive
events, which deteriorates system operating conditions. A
transient action in the second stage results in cascading
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events and ultimately system collapse. A possible cascading
event can be averted by taking proper control actions at an
early stage [2]. The ubiquitous unpredictability prevailing
in power systems, such as loss of generation and/or trans-
mission line outage, creates hurdles for reliable operation.
Stable operation of power systems is dictated by maintaining
frequency within permissible limits as close as possible
to nominal value of 50/60 Hz, around ±0.2%. Frequency,
therefore, is a key reliability aspect of power systems and
failure to maintain it within predetermined limits may lead
to disruption in consumer supply, outage of generators, and
possibly cascading failures [3].

Disturbances in power systems can be initiated by nu-
merous factors such as generator outages, transmission line
tripping, lightning strikes, equipment failure, human error,
and substandard maintenance [4]. The complexities and
uncertainties associated with maintaining frequency stability
and grid resilience of power systems have increased to an
unprecedented level with the growing adoption of distributed
and renewable power sources. The rapid decline in system
rotational inertia due to replacement of synchronous gener-
ators with inverter-based generators has further aggravated
the situation [5]. The inability to implement state-of-the-
art techniques for modern problems will result in imposing
conservative caps on allowable renewable energy capacity to
preserve system security, hindering the transition to a more
modern infrastructure [6].

The recent large-scale deployment of Phasor Measure-
ment Units (PMUs) have enabled operators to have im-
proved real-time situational awareness of the operational
state of power systems. PMUs provide precise, time-
synchronized local measurements of system frequency along
with voltage and current phasors. With the advancement
of synchrophasor technology, PMUs can now record data
at a high rate, in the range 30-120 samples per second
[3]. High resolution PMU data allow monitoring of sharp
dynamic information throughout the network. For managing
the health of critical infrastructure and maintaining stability
of the power system, accurate detection of events plays
a vital role in timely triggering remedial action schema
and successful restoration of service. Requirements for
triggering of frequency control assets after an event vary by
jurisdiction. In Great Britain, Primary Frequency Response
(PFR) needs to activated within two seconds of the trigger-
ing event, with full provision of the requisite power within
ten seconds [7]. The Australian Energy Market Operator
mandates a 5% increase in active power achieved within
ten seconds of the frequency deviation from PFR deadband,
which is ±1.5 Hz around the nominal value [7].

The definition of an event is not absolute; it varies for
different balancing areas depending upon critical stability
limits. The North American Electric Reliability Corpora-
tion (NERC) published the Frequency Response Standard
Background Document BAL-003 [8] wherein frequency
events are extensively discussed, but NERC provides no
standard definition as to what qualifies as a frequency event.

This is not an oversight; large stable interconnects with
enormous synchronous inertia are less sensitive to frequency
deviations while smaller isolated powers systems, or in ones
where system stability is already compromised, a Balancing
Authority (BA) may be interested in arresting even minor
frequency deviations to prevent potential system collapse.
Therefore, detection algorithms must be configured to meet
specific system requirements for each BA.

The contributions of this work address the customization
of frequency event detection algorithms using optimization
techniques. These contributions are discussed in two parts.
In the first part, an Algorithm Evaluation Environment
(AEE) is described that can be used to tune a frequency
event detection algorithm to enable detection that matches
the definition of frequency events as specified by power sys-
tems experts. The performance of the AEE is demonstrated
using a linear regression-based event detection algorithm
with five tunable parameters that can be adjusted to enable
desired performance. In the second part, swarm intelligence
optimization is used to optimally tune the parameters of
the detection algorithm to meet the particular needs of
balancing authorities. The tuning process is independent
of the detection algorithm and works for any detection
algorithm that has adjustable parameters. Once tuned, the
algorithm is uploaded into an automation controller for
real-time decision support using streaming PMU data to
identity events. Two optimization algorithms were applied to
this problem: Grey Wolf Optimization (GWO) and Particle
Swarm Optimization (PSO). Both algorithms were tested
and evaluated using the AEE, which uses a set of perfor-
mance evaluation metrics to quantify results.

II. BACKGROUND
Automatic event detection in power systems has engaged

researchers lately and extensive work has been reported
in literature on the topic. Contemporary work on power
system event detection reported in literature is divided into
three main categories: signal processing methods, statistical
analysis methods, and machine learning methods.

A. SIGNAL PROCESSING BASED METHODS

Event detection techniques based on signal processing
often use Discrete Wavelet Transform (DWT) [9]–[11] or
discrete time filtering [12] to decompose frequency and
voltage signals for detection of disturbances in a network.
However, these schemes need measurement data from every
bus in the network for reliable operation. Moreover, since
the range of coefficient energy depends on window size,
the results are highly susceptible to variations in window
size. The performance of many signal processing based
methods [9]–[12] is also affected by the requirement of
a user-defined threshold for proper event detection. The
threshold values depend on the quality and nature of PMU
data and need to be configured for each PMU in the network,
which is a challenge.
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B. STATISTICS BASED METHODS

Principal Component Analysis (PCA)-based approaches
have been widely used for event detection recently [13],
[14]. Xu and Overbye proposed a scheme using PCA to
analyze dynamic behavior of the system and highlight
dominating buses after a disturbance [14]. An ensemble
technique was proposed by Pandey et al. using several
statistics and clustering techniques [15]. Recently, Zhu and
Hill used a spatial-temporal data analysis based method for
event detection [16].

Detection methods based on PCA are heavily dependent
on training data. Performance of PCA-based supervised
learning techniques is negatively affected with the selection
of an improper and insufficient sample space. Moreover,
statistical indices such as mean, variance, minimum, max-
imum, and correlation are used over a window to reduce
computational complexity, but these values may vary even
during the same event. Hence, it is very challenging to define
a threshold.

C. SUPERVISED LEARNING METHODS

With recent developments in advanced data processing
resources and machine learning techniques, deep learning
algorithms such as Convolution Neural Networks (CNN),
Stack Auto-Encoders (SAE), and Long Short-term Memory
(LSTM) have been widely employed for solving various
power system problems [17]–[20]. These supervised learn-
ing methods can suffer from an inadequate amount of
labeled training data. Frequency events occur rarely, just a
few per month in well-operated interconnections. Secondly,
utility event logs often miss many events. Irregular labelling
of learning data may result in a biased model. Inappropriate
or inadequate selection of training data adversely affects the
efficiency and accuracy of these models.

Apart from the limitations discussed above, the detection
methods reported in literature do not allow customization
of the algorithm to enable event detection as required by
system operators in the context of their system conditions.
The features that distinguish the approach presented in this
paper from other methods are customization, robustness,
simplicity, and not requiring multiphasor, multibus measure-
ments.

III. EVENT DETECTION METHOD
The presented event detection algorithm uses a least-

squares linear regression method. The regression detection
algorithm is a threshold-based detection algorithm that uses
Rate of Change of Frequency (ROCOF) derived from linear
regression. A regression line is placed by minimizing the
square of vertical distance from the data points, also known
as variance.

Y = a+ bX + u (1)

Y is the dependent variable, X is the independent variable,
a is the intercept, b is slope, and u is the regression residual.

The dependent variable is frequency and the independent
variable is time. Since we are interested in determining a
smoothed ROCOF, referred to as the slew rate, we use the
slope of the regression line for our calculation, give by:

Slope (Slewrate) =
N

∑
(time.freq)−

∑
(time)

∑
(freq)

N
∑

((time)2)− (
∑

(time))2
(2)

time is the independent variable, frequency is the depen-
dent variable, and N is the window size.

The purpose of using a linear regression rather than the
derivative of frequency and ROCOF is to compensate for
noise in the PMU data. The small deviations in frequency
that exist at high sampling rates cause the derivative of
frequency to fluctuate, making threshold detection challeng-
ing. Similarly, ROCOF data calculated by PMUs undergo
continuous variation and are prone to noise. Fluctuations
in frequency increase with the increase in sampling rate of
PMUs, which amplifies the noise level. ROCOF does not
provide a smooth estimation of frequency trend and suffers
from fluctuations and uncertain values. Linear regression
produces a smooth derivative of frequency data, eliminat-
ing the need to filter the raw PMU data before using it.
Deviation in slew is an indication of frequency instability,
as shown in Figure 1, lower plot.

FIGURE 1: Frequency instability (blue) and the correspond-
ing drop in slew rate (red)

A. DETECTION ALGORITHM PARAMETERS

The detection algorithm calculates slew rate of frequency
data obtained from PMUs using Eq. 2. Under normal system
conditions slew rate is almost constant. In case of an event,
frequency changes abruptly and thus slew rate experiences a
sudden rise or fall (Figure 1). Based on this sudden change
in slew rate, an event is identified. The algorithm has five
tunable parameters, which dictate its performance.
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PARAMETER 1: WINDOW SIZE

Slew rate of the frequency is calculated over a sliding
window using Eq. 2. The window moves forward in steps
of one sample. Choosing an appropriate window size is
important as it affects the detection speed and immunity
to noise.

Let t1, t2, t3...tN represent the timestamps of PMU
frequency measurements and f1, f2, f3...fN represent fre-
quency measurements, then the slew rate λ calculated over
a window of length N is given by:

λk =

N∑
i=1

tifi −
N∑
i=1

ti
N∑
i=1

fi

N∑
i=1

t2i − (
N∑
i=1

ti)2
(3)

PARAMETER 2: POINT SEPARATION

With every new frequency measurement from PMU, the
window moves forward in one sample step and calculates
slew rate (λk) for the new window. To detect a rise or
fall, two slew points are compared with each other. These
compared values are separated at a distance defined by this
parameter. A gap of more than one improves the detection
speed.
Let λ1, λ2, λ3...λn represent slew calculated over each
sliding window, then slew vector is given by:

λ⃗ = [λ1, λ2, λ3...λn] (4)

The difference of slew is calculated between two values that
are separated by a number of points defined by nps.

Dslew,i = |λi+nps − λi| (5)

Calculation of λ and Dslew are performed in run time.

PARAMETER 3: SLEW DIFFERENCE THRESHOLD

The magnitude difference between any two slew points
is compared with a threshold (Thsd) to detect sudden rise
or fall in a frequency trend. This threshold will only be
exceeded in case of a frequency disturbance.

if Dslew,i > Thsd

frequency deviation has started

PARAMETER 4: SERIES OVER THRESHOLD

Since every frequency instability does not necessarily
lead to an event, series over value is incremented with
every consecutive slew difference that exceeds Thsd. The
algorithm declares an event when series over value exceeds
series over threshold (Thso), which implies that there is a
constant rise or fall in frequency.

if Dslew,i > Thsd

Series Over = Series Over + 1

FIGURE 2: Event detection using a linear regression algo-
rithm, detailing the five parameters of the algorithm.

PARAMETER 5: EVENT THRESHOLD

The slew deviation from the normal value achieved in
a given time in case of an event is greater than in case
of a non-event frequency deviation, owing to the rapid
rate of change during an event. Event threshold (Thev) is
another parameter that checks if, after series over threshold
is exceeded, slew deviation has reached a certain level
indicative of an event.

if Series Over > Thso

check for Thev

Figure 2 presents a flowchart explaining the event detection
process with five parameters of the regression algorithm.

B. ALGORITHM EVALUATION ENVIRONMENT

1) Frequency Archive and Test Station

Our research group maintains a data archive that contains
around three years of PMU data. Frequency event dates and
times were provided by Portland General Electric, which
were used as reference to extract frequency data from
the archive. These events were identified by both Portland
General Electric and NERC. Using these test files, frequency
events were replicated within an NHR 9410 Grid Simulator.
The simulator is monitored by an SEL 351 PMU that is
connected to an SEL 3555 Real-time Automation Controller
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(RTAC) where the detection algorithm resides. This system,
as shown in Figure 3, allows for reproducible, real-time
event detection.

FIGURE 3: PSU real-time Frequency Response Test Station

2) Expert Evaluation

The set of test files extracted from the archive was
presented to a group of experts for evaluation. For improved
performance of the algorithm, the group of experts can
be chosen as industry or academic professionals with a
relevant background. Moreover, a set of decision rules can
be defined for declaring the file as either an event or not.
This ensures consistency in evaluation pattern and avoids
ambiguous cases. The evaluation was carried out using an
online survey where each test frequency plot was presented
to the experts and their evaluation was recorded. The survey
considers the expertise level of every participant to weigh
their assessments. The survey produces a human validation
file containing event file names, experts names, and their
assessments. A final evaluation of each frequency file was
then provided using weighted assessment of the experts
based on their expertise level. A sample human validation
file is tabulated in Table 1. Such a human validation file can
be created for any BA to specify the type of events to be
arrested.

TABLE 1: A sample human validation file containing file
names, experts’ assessments, and final declarations

Name Expert 1 Expert 2 Expert 3 Is_event
2019-08-02-15-34_11.csv OF event OF event OF event True

2019-10-03-18-20_5183.csv UF event UF event UF event True
2019-09-05-08-51_7722.csv No event No event No event False

...
...

...
...

...

3) Detection Algorithm Performance Evaluation

Performance of the detection algorithm is evaluated
against human assessment using a suite of performance

FIGURE 4: Performance evaluation of detection algorithm
based on binary classification metrics

evaluation metrics, Table 2 [21]. Results from binary classi-
fication are used to calculate these evaluation metrics. One
of four binary classifications are identified for each event.
Figure 4 shows a flowchart of the process.

True Positive (TP): the algorithm correctly identifies an
event, as declared by the expert.
True Negative (TN): the algorithm correctly identifies a
non-event frequency deviation, as declared by the expert.
False Positive (FP): the algorithm incorrectly identifies
an event that is declared as non-event by the expert.
False Negative (FN): the algorithm does not identify an
event that is declared an event by the expert.

C. PARAMETER ADJUSTMENT

Selection of an adequate set of parameters for the pro-
posed event detection algorithm is required to correctly
identify events. Since the algorithm has five tunable param-
eters, a hypervolume of suitable solution sets likely exists.
However, finding an optimal set of parameters in the vast
five-dimensional search space is a challenging task. Manual
adjustment of these parameters with a simple grid search
would be a laborious and likely fruitless process. Therefore,
an automated optimization process is preferred. Two meta-
heuristics based on swarm theory, GWO and PSO, are con-
sidered in this work to adjust the parameters aiming to detect
events as per the human validation. The motivation behind
the use of meta-heuristics is their simplicity, flexibility,
derivation-free mechanisms, and the ability to avoid local
optima [22]. They have been gaining in popularity within
the power community lately, and have produced superior
results for various problems [23]–[25].
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TABLE 2: Performance Evaluation Metrics

Accuracy = TP+TN
Sample Size

× 100% Algorithm performance in terms of classifying events and non-events correctly.
Sensitivity = TP

TP+FN
× 100% Algorithm ability to correctly detect events.

Precision = TP
TP+FP

× 100% Measures how many of the positively identified events are actual events.
Specificity = TN

TN+FP
× 100% Measures the ability to correctly identify non-events.

FDR = FP
TP+FP

× 100% Measures the tendency to falsely identify an event.

1) Particle Swarm Optimization

PSO is a meta-heuristic based on swarm theory, proposed
with the idea to produce computational intelligence by simu-
lating collective and social intelligence of bird flocks or fish
schools [26]. A set of particles, characterized by position
and velocity vectors, moves through the search space and
cooperatively searches for a solution. The movement of each
particle in the search space is determined by using its current
and previous best position with the best position obtained
in the swarm so far, along with a random deviation. The
swarm moves as a flock in search of an optimum. After a
random initialization of the particle positions, velocity and
position are updated in each iteration using the following
expressions.

v⃗i
t+1 = wv⃗i

t+c1r
t
1⊗( ⃗pBi

t
−x⃗i

t)+c2r
t
2⊗(g⃗B

t
−x⃗i

t) (6)

x⃗i
t+1 = x⃗i

t + v⃗i
t+1 (7)

Variable w is the inertia weight. c1 and c2 are acceleration
coefficients. r1 and r2 are random numbers between 0 and 1.
The operator ⊗ is element-wise multiplication. The vectors
v⃗i

t+1 and x⃗i
t+1 are particle velocity and position at the next

iteration, respectively. The vectors ⃗pBi
t

and g⃗B
t

represent
the best position found by a given particle and the best
position found by the swarm at iteration t, respectively. The
setting of these simulation parameters i.e. w, c1, and c2, is
well-discussed in the literature [27], [28]. High values of c1
and c2, and a low value of w will discourage exploration
and cause premature convergence of the particles. To realize
a balance between exploration and exploitation, both c1 and
c2 are set to 2, and w is linearly decreased from a maximum
set value (0.9) to a minimum set value (0.2) over the course
of iterations [29].

pBi and gB at iteration t + 1 are given by Equations 8
and 9. N is the swarm size.

⃗pBi
t+1

=

{
x⃗i

t+1, if F itness > ⃗pBi
t

⃗pBi
t
, if F itness ≤ ⃗pBi

t (8)

g⃗B
t+1

= ⃗pBi(Max Fitness), for 1 ≤ i ≤ N (9)

The parameters considered for the 5-dimensional opti-
mization problem are arranged in search agent positions as
follows.

x = [N, nps, Thsd, Thso, Thev]
T (10)

FIGURE 5: Movement of a particle in the search space [30]

Since some parameters in the problem are integer vari-
ables, the particle positions associated with these vari-
ables are rounded to the nearest integer, following a well-
established process described in literature [31], [32].

The objective function is formulated using a sum of
evaluation metrics, which makes the optimization process
a maximization problem. The objective function is given by
Eq. 11.

Max(Accuracy+Sensitivity+Precision+Specificity)
(11)

By maximizing the objective function, one can search for a
set of parameters to enable a detection algorithm to detect
only the events identified by the experts.

The event selection used in parameters adjustment is a
crucial deciding aspect, given that event identification is
dictated by the analysts, thereby defining the objectives
behind implementation of the proposed method.

2) Grey Wolf Optimization

GWO is inspired by the hunting approach and social
hierarchy of grey wolves [22]. The social hierarchy has
four types of wolves: alpha, beta, delta, and omega. The
group hunting behavior of grey wolves, which involves the
following phases, is simulated for search space modeling of
GWO.

• Searching and approaching the prey
• Encircling and harassing
• Attacking

Exploration of the search space is inspired by the first
two phases. The last phase simulates exploitation. In the
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PSO Algorithm

1: Initialize a population of particles with random positions and
velocities.
2: main loop
4: for every particle
5: Define limits of the search space in each dimension.
6: Evaluate position using the objective function.
7: Compare fitness score with pBestScorei. Update ⃗pBi and

pBestScorei if current fitness is better than the previous best.

8: Update g⃗B with the global best position.
9: Update w, calculate velocities, and move particles using Eq. 6

and 7.
10: end for
11: Terminate loop if end criteria is met (acceptable fitness score or

maximum iterations).
12: end main loop
13: return g⃗B

mathematical representation of social hierarchy of grey
wolves, the best solution in the solution space is considered
as alpha (α). The second and third best solutions are called
beta (β) and delta (δ) respectively. α, β, and δ explore the
search space during the optimization process. The remaining
candidate solutions, represented as omega (ω), follow these
search agents, as depicted in Figure 6.

FIGURE 6: Omega or any other wolf updating position with
respect to alpha, beta, and delta [22]

After a random initialization of wolves (the search
agents), the position of each search agent is updated in every
iteration using the following expressions. These illustrate
that a wolf moves randomly within a circle around the prey,
whose position is estimated by alpha, beta, and delta.

D⃗α = |C⃗1X⃗α − X⃗|, D⃗β = |C⃗2X⃗β − X⃗|, D⃗δ = |C⃗3X⃗δ − X⃗|
(12)

X⃗1 = X⃗α − A⃗1D⃗α, X⃗2 = X⃗β − A⃗2D⃗β , X⃗3 = X⃗δ − A⃗3D⃗δ

(13)

X⃗t+1 =
X⃗1 + X⃗2 + X⃗3

3
(14)

GWO Algorithm

1: Initialize a random population of search agents.
2: Initialize a, A and C.
3: main loop
4: for every search agent.
5: Define limits of the search space in each dimension.
6: Evaluate position using the objective function.
7: Compare fitness score with α, β, and δ score. Update

Xα, Xβ , and Xδ based on the current fitness value.
8: Update a, A, and C.
9: Update position using Eq. 14.
10: end for
11: Terminate loop if end criteria is met (acceptable fitness score or

maximum iterations).
12: end main loop
13: return Xα

A⃗ = 2a⃗r⃗1 − a⃗ (15)

C⃗ = 2r⃗2 (16)

X⃗α, X⃗β , and X⃗δ are the position vectors of α, β, and
δ, which represent three best solutions during the search.
X⃗ is the position vector of all other wolves. D⃗α, D⃗β , and
D⃗δ calculates the distance of α, β, and δ from the rest of
the wolves, respectively. X⃗1, X⃗2, and X⃗3 are the position
vectors calculated with respect to the positions of α, β, and
δ, respectively. A⃗ and C⃗ are coefficient vectors, t indicates
current iteration, r⃗1 and r⃗2 are random vectors between 0
and 1, and a⃗ is an important parameter whose values is
linearly decreased from 2 to 0 over the optimization process.

IV. RESULTS AND ANALYSIS
A Python development environment was used to develop

and test the event detection and optimization algorithms.
The detection algorithm was then implemented in the RTAC
to validate its performance in real-time. A data set of 50
frequency files from the PMU data archive, with each file
containing 10 minutes of frequency data, was used to run
simulations. The data set contains obvious events, non-
events, and quasi-events, all recorded at 30 frames per
second.

A. PERFORMANCE EVALUATION

The data set of 50 files consists of 21 events and 29
non-events, as declared by the experts. The boundary of the
solution space for each of the five parameters is given in
Table 3. The corresponding human validation file for the
data set was created from the evaluation of three experts.
Table 4 shows the adjusted parameters using GWO and PSO.
Comparison of the best solutions obtained using GWO and
PSO along with the simulation parameters is presented in
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Table 5. The maximum possible fitness value is 400, as
given by Eq 11.

The convergence curves for both GWO and PSO are
shown in Figure 7. The optimized parameters were used
in the detection algorithm and tested for the 50 files. GWO-
optimized parameters produced superior results. Out of 21
events, 20 were detected correctly. Since occurrence of
events in power systems is a rare phenomenon, one of
the most important features of a detection algorithm is to
identify normal frequency deviations and not issue false
detection flags. Precision and Specificity, which account for
FPs, are the best metrics for considering issuance of false
detections. The proposed algorithm was capable of differ-
entiating between events and minor frequency deviations.
Performance evaluation metrics and binary classification for
offline testing are given in Table 6. Online testing produced
similar results, except for one additional FP. As can be seen
in Figure 8, the event that triggered this FP has an unusually
high noise level, likely induced by nearby equipment, which
caused unwarranted triggering of the online testing system.

Considering Precision, a value of 95% implies that one
out of 29 non-events was falsely given as an event. This
can happen if the frequency deviation is severe like an
event. The frequency file that was falsely detected as an
event is shown in Fig 9. The frequency increases from
59.965 Hz to 60.01 Hz (0.045 Hz) in 9 seconds. The abrupt
deviation in frequency gives rise to a spike in the slew rate,
although the frequency is oscillating within a permissible
band. Some utilities might be interested in detecting such

TABLE 3: Boundary of the solution space for the five
dimensional optimization problem

Window
(samples)

Point
Separation Slew Diff Series Over Event Threshold

Upper Bound 250 30 0.0002 30 0.0001
Lower Bound 100 3 1 × 10−7 3 1 × 10−6

FIGURE 7: Convergence curve for GWO and PSO for the
data set with 50 files. GWO achieved higher fitness value.

TABLE 4: Adjusted parameters using GWO and PSO

Window
(samples)

Point
Separation Slew Diff Series Over Event Threshold

GWO 216 3 0.00000300 13 0.0000378
PSO 150 25 0.00005966 29 0.0000001

TABLE 5: Comparison of best solutions obtained with
GWO and PSO

Algorithm Iterations Search
Agents Fitness data set

Size No. of Events No. of
non-events

GWO 50 10 383 50 21 29
PSO 50 10 359 50 21 29

FIGURE 8: FP in online testing caused by noisy PMU data.

abrupt deviations, depending on the system conditions.
The superior performance of GWO over PSO for this

particular problem may be explained by the No Free Lunch
Theorem [33], which proved that no single meta-heuristic

TABLE 6: Performance evaluation metrics obtained using
optimized parameters

Algorithm Accuracy
(%)

Sensitivity
(%)

Precision
(%)

Specificity
(%)

FDR
(%) TP FP FN TN

GWO 96 95 95 97 5 20 1 1 28
PSO 88 71 100 100 0 15 0 6 29

FIGURE 9: An abrupt deviation in frequency giving rise to
a spike in the slew rate and false detection signal.
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can perform effectively for all optimization problems. This
particularly means that an algorithm may have superior
performance for some set of optimization problems but poor
performance for another set.

B. EVENT DETECTION SPEED

GWO-optimized parameters were used for determining
the speed of the detection algorithm and the frequency
samples between event inception and detection points were
measured.

For online testing of the detection algorithm, samples
are measured of streaming PMU data from an NHR 9410-
12 Grid Simulator. To determine the detection speed for a
higher sampling rate, the same frequency data files were
subject to linear interpolation to effectively increase the
sample rate to 60 samples per second. GWO was then
performed on these interpolated files to obtain updated de-
tection parameters that accommodate the temporal closeness
of the frequency samples. The updated parameters (with a
smaller window size) for the highly sampled files produced
the same fitness score but improved the detection time.
Figure 10 shows an interpolated file against the original
file. Table 7 presents detection speed in terms of mean and
standard deviation of number of samples for both online and
offline testing.

TABLE 7: Mean and Standard deviation of event detection
speed for files recorded at 30 and 60 samples per second.

Sampling rate Test mode Mean
(No. of Samples)

Standard Deviation
(No. of Samples)

30 Hz Offline 41 21
Online 42 22

60 Hz Offline 48 24
Online 50 25

FIGURE 10: An interpolated frequency file against the
original file. Red and black dots highlight the sample at
which event is detected, respectively.

The number of samples it takes for the detection algo-
rithm to identify an event remained almost the same for
highly sampled files and hence absolute detection speed was
improved. With the advent of synchrophasor technology,
PMUs can now record data at up to 120 samples per
second. Thus, detection speed can be further improved with
higher PMU sampling rates, which can be used in low
inertia systems. The decline in system synchronous inertia
causes frequency events to exhibit higher ROCOF, thus
necessitating higher detection speed.

C. EFFECT OF INCONSISTENT EXPERT EVALUATION

The consistency in event assessment during expert evalua-
tion is of critical importance. If two similar frequency curves
are assessed differently by human experts, the detection
algorithm will not be able to differentiate between them
and we can expect a FP or FN signal. To demonstrate
this point, the same data set was assessed by a group of
semi-experts (somewhat-trained undergraduates). In the new
human validation file, 29 files were assessed as events and
21 as non-events. The same data set with the new human
validation file was processed by the GWO algorithm. Due to
inconsistency in the event assessment process, the maximum
fitness achieved was 345, as presented in Table 8.

TABLE 8: Fitness value obtained for the same data set with
semi-expert event assessment.

Iterations Search Agents Fitness data set size No. of Events No. of non-events
50 10 345 50 29 21

TABLE 9: Performance evaluation metrics obtained for the
same data set with semi-expert event assessment.

Accuracy
(%)

Sensitivity
(%)

Precision
(%)

Specificity
(%)

FDR
(%) TP FP FN TN

84 79 92 90 8 23 2 6 19

FIGURE 11: Examples of inconsistent event assessments.
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The new adjusted parameters were used in the detection
algorithm and tested. Table 9 presents the performance eval-
uation metrics and binary classification. False detection of
two non-events is reflected in the decline of both Precision
and Specificity. FPs need to be avoided as they lead to the
unwarranted triggering of frequency response assets.

Such an ambiguity caused by the inconsistency in the
event assessment process is shown in Figure 11. Although
the frequency deviation and the rate of change of frequency
are almost the same for both plots, the frequency instability
on the left is assessed as an over-frequency event whereas
the one on the right is assessed as a non-event by the
semi-experts. In such a situation, the optimization algorithm
cannot reach a best possible solution that can clearly differ-
entiate between the two cases. Hence, the fitness value is
low.

V. CONCLUSION
The definition of a frequency event may vary between

different balancing authorities depending upon their critical
stability limits. This work presents a configurable real-time
event detection method using least-sum-of-squares linear
regression. Algorithm parameters can be tuned to match the
definition of frequency events as specified by experts. The
linear regression algorithm is one of many detection algo-
rithms that can detect frequency events. The contribution
of this paper is the use of swarm-intelligence algorithms
to tune parameters of any detection algorithm, not just
the linear regression algorithm. Two swarm intelligence-
based optimization algorithms, GWO and PSO, were applied
to automate the parameter tuning process and determine
optimal parameters and thresholds.

The method is applied to frequency data obtained from
the PMU installed at Portland State University. Results show
that the proposed method is able to efficiently identify
events, as reported by experts, within an acceptably short
period of time following event onset. Detection speed can be
further improved with higher PMU sampling rates. Applying
optimization algorithms to define parameters through data
training not only addresses a typical concern of industry on
how to define these parameters for real time implementation
but also improves detection metrics.

Future work will improve the expert assessment survey
process to better present a data set of candidate frequency
plots to a experts using an online database. Weighting of
performance metrics within the objective function is also
an active area of research.

We have recently completed development of a real-time
frequency response test bed, Figure 3. The test bed includes
an NHR grid simulator, which replays frequency events in
real-time, and an SEL RTAC, which host the frequency
response algorithm. Preliminary results show that well-tuned
algorithms are able to detect events within 500 to 700 ms
of the onset of an event, and with both high precision and
specificity. This is well before the nadir of frequency events,
typically two to three seconds after onset of the event. We

are now in the process of coupling this real-time event
detection system to a battery energy storage system. This
will allow us to investigate event detection time, commu-
nication lags, and asset response delays that occur between
the onset of an event and the moment when restoration by
a dispatchable frequency response asset begins. We plan to
present these findings in a future publication.
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