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Title: COmplex Systems and the Price-Resource Directive Coordination 

Procedure. 

In this thesis, the problem considered is that of linear static 

optimization of a large system which is composed of a finite number of 

subsystems, each characterized by its own constraint matrix and objec­

tive function. The total system is itself constrained by resource 

availabilities and other factors, and its objective function is the 

mathematical linear sum of the objective function of the subsystems. 

The total system constraints couple together all the subsystems. 

The total system is first reformulated as a two-level problem by 

decoup1ing the total system constraints utilizing an arbitrary parti­

tion of the total system resources and other factors according to the 

number of subsystems. At the upper level we have a so-called central 

problem having as an objective function the sum of the optima of the 

subsystems achieved for any given partition and constrained by the 

total available resources and other factors which can be partitioned. 

At the lower level we have the subproblems which are small-dimension 

linear programming problems parameterized on the right-hand side of the 

part of the constraints which resulted from the decoup1ing of the total 

system constraints. 

The resources vector of each subproblem's set of constraints 

contains the system common resources allocated to it by the central 



problem. Different allocations of these resources to each subsystem 

create multiparametric optimization problems for which we have solution 

methods. The subsystem solutions become functions of the central 

system allocation policies. Therefore, the major concern for 

optimization of the whole system is the discovery of the optimum 

allocation policy. 

The method that we introduce finds the optimum allocation policy 

in a finite number of different allocation iterations. 

The major steps in the development are the discovery that the 

minimal (in case of multiple solutions) shadow prices of the subsystems 

are equal at optimality to the central system shadow prices, and that a 

coordination of the subsystems for the purpose of achieving optimality 

of the total system can be organized by utilizing the concave relation­

ships governing the subsystem shadow prices versus the resources 

allocated to these subsystems. 

The method offers significant computational and conceptual 

advantages over present decomposition techniques, since it disposes 

with the solution of a central problem and the subproblems at each 

iteration and substitutes instead a simple coordination operation and 

subsystem parametric optimization at each iteration after the first, 

where a full solution of the subsystems takes place. 
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CHAPIER I 

INTRODUCTION 

The rational study, analysis, design, construction and control of 

complex systems is characteristic of modern science and technology in 

general and of systems science and operations research in particular. 

Significant progress towards the design of analysis and optimization 

methods for complex systems has been achieved in the last two decades, 

but the emergence of an axiomatic theory for complex systems and the 

subsequent standardization of solution approaches has not been accom­

plished as of yet (1). Serious efforts towards this direction were 

multicentered in the last ten years, but the results are still frag­

mentary (13, 14, 15). Despite the progress in the analysis of complex 

systems, in the last few years only a very small part of the required 

solutions has been obtained and that centers around the notion of 

decomposition, which in its general sense will also be used here. 

In this thesis, the problem considered is that of linear static 

optimization of a large system which is composed of a finite number of 

subsystems, each characterized by its own constraint matrix and objec­

tive function. TIle total system is itself constrained by resource 

availabilities and other factors, and its objective function is the 

mathematical linear sum of the objective function of the subsystems. 

The total system constraints couple together all the subsystems. 
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The total system is first reformulated as a two-level problem by 

decoupling the total system constraints utilizing an arbitrary parti­

tion of the total system resources and other factors according to the 

number of subsystems. At the upper level we have a so-called central 

problem having as an objective function the sum of the optima of the 

subsystems achieved for any given partition and constrained by the 

total available resources and other factors which can be partitioned. 

At the lower level we have the subproblems which are small-dimension 

linear programming problems parameterized on the right-hand side of the 

part of the constraints which resulted from the decoupling of the total 

system constraints. 

The resources vector of each subproblem's set of constraints 

contains the system common resources allocated to it by the central 

problem. Different allocations of these resources to each subsystem 

create multiparametric optimization problems for which we have solution 

methods. The subsystem solutions become functions of the central 

system allocation policies. Therefore, the major concern for optimi­

zation of the whole system is the discovery of the optimum allocation 

policy. 

The method that we introduce finds the optimum allocation policy 

in a finite number of different allocation iterations. 

The major steps in the development are the discovery that the 

minimal (in case of multiple solutions) shadow prices of the subsystems 

are equal at optimality to the central system shadow prices, and that a 

coordination of the subsystems for the purpose of achieving optimality 
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of the total system can be organized by utilizing the concave relation­

ships governing the subsystem shadow prices versus the resources 

allocated to these subsystems. 

The method offers significant computational and conceptual 

advantages over present decomposition techniques, since it disposes 

with the solution of a central problem and the subproblems at each 

iteration and substitutes instead a simple coordination operation and 

subsystem parametric optimization at each iteration after the first, 

where a full solution of the subsystems takes place. 

Before the new method is presented, an effort will be made to 

classify some of the definitional ambiguities and characteristics 

surrounding complex systems in a manner that will make it possible for 

future extensions of the procedure to be more complex system oriented. 



CHAPTER II 

COMPLEX AND LARGE-SCALE SYSTEMS 

Approximately, a system is defined to be a set of interrelated 

elements which must be thought of as forming a certain whole. In 

practical terms, systems are frequently encountered whose unity of 

elements manifests itself by certain interactions demonstrating 

purposeful behavior towards the attainment of specific goals. On the 

technological level an example of a system could be given all the way 

from the micro-level of a minox camera system to the macro-level of a 

petrochemical plant or a space shuttle system. On the social level an 

organization is a system and exhibits a rather more complex behavior 

due to the fact that this system contains human groups, which enlarges 

the possibility of contradiction between the system cammon goals and 

the local aims of the subsystems and the individual elements (2). 

~~e complexity of an organization becomes more intense when, in 

order to implement complex endeavors and mammoth programs, it becomes 

a polyorganization (l4)--in other words, a loosely-connected 

conglomerate of organizations. 

The subject of system complexity is an uncharted territory and 

only lately efforts are being made to characterize complexity accord­

ing to certain vague criteria (3, 7, 11, 14, 16, 17, 18). Nothing 

approaching standardization for the classification of complex systems 
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exists. This complexity in the systems arises from the multiplicity of 

subsystems and elements, the diverse operations performed by them, the 

high order of interaction and interconnection of the elements, the 

large amount of information to be processed and among other attributes 

the great variety of possible forms of system controls (17, 18). 

A system can also be defined by its structure and behavior (6). 

Usaa1ly, complexity of structure is accompanied by complexity of system 

behavior, and the structure complexity can be characterized by the 

complexity of the system behavior, which is characterized by the types 

of system reaction to external disturbances. 

In terms of increasing complexity of behavior, the different 

types of actual systems as given by F1eyshman (3) are summarized in 

Table I. According to F1eyshman's classification of systems, we have 

the following main definitions. 

Definition 1.1. A ~i~ple_S~s!e~ is a system that does not 

exceed automatic systems in complexity. 

Definition 102. A f~ple~ §y~t~m is a system more complex than 

automatic systems. 

Definition 1.3. A 1a~g~ §y~t~m is a large aggregation of 

complex systems with comparatively weak connections among them. 

A formal and strict definition of a large system does not 

exist as yet, although the difference between simple systems and 

complex ones is revealed by their qualitative characteristics as will 

be shown in the next section. 



TABLE I 

CLASSIFICATION OF SYSTEMS IN ORDER OF COMPLEXITY 

Simple Systems Automatic Systems 
-------1- - - - ---

Complex 

Systems 

I Decision Systems 
I 
I Self-organizing Systems 

I 
,Predictive Systems , 
I Self-converting Systems 
I , 

C 
o 
M 
P 
L 
E 
X 
I 
T 
Y 

I. CHARACTERISTICS OF LARGE-SCALE SYSTEMS 

In practical terms, a large-scale system is characterized by the 

6 

presence of high dimensionality (4) determined by the number of variables 

or the number and complexity of structural equations describing the 

system or the eomplexity of the system performance criterion functional 

or a combination of part or all of the above. Usually, the factors 

that must be taken into account may number in the millions and classical 

operations research methods that may be quite tractable for thousands 

of variables run on their boundary of limitations when confronted with 

millions. System size has an exponential effect on the time needed for 

computation, so that entirely new approaches must be found for the 

solution of large-scale system problems. Some of the new approaches 

that have been developed, as are presented in the subsequent chapters 

of this stud~ utilize another major characteristic of large-scale 

systems, their hierarchical structure. 

A number of authors agree that a hierarchical structure is the 

most characteristic feature of large-scale systems (7, p. 59), and in 
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large organizations a hierarchical chain of command is nearly always 

present (5). Hierarchy exists in large-scale systems because they are 

composed of higher forms of complex systems which are capable of 

autonomous action and, in practice, delegation of authority and control 

by the highest force in the system ensures system harmony. If there is 

no central force in the large-scale system, dissolution will result 

and the subsequent creation of independent systems might set the stage 

for cross-purpose behavior of these systems in which case the overall 

objective of the large-scale system cannot be accomplished. 

The presence of hierarchy does not imply the absence of some 

conflict of interest between the higher and lower levels of the large-

scale system (9). On the contrary, the mere presence of hierarchy 

creates interlevel conflict which suboptimizes the performance behavior 

of the whole system. Subsequently, the minimization of this interlevel 

conflict by some method of coordination of the different levels could 

bring about an optimization of the performance criterion for the total 

large-scale system. This is the crux of the methods of large-scale 

mathematical optimization. 

Essentially, in cybernetic terminology (10), a method of coordi-

nation can be found by the establishment of a central governor and sub-

system subgovernors which continuously can compare some behavioral as-

peets of the large-s~ale system against a standard and then engage in 

automatic feedback of corrective action to bring about a continuous 

optimization of the large-scale system performance criterion. If such 

a coordination method can be found, the large-scale system will become 



self-regulating within its physiol~gical limits. In other words, it 

will become a homeostatic system. The word ecosystem used to be 

homeostatic before the advent of strong interference by man. 

At the present time, the goal of homeostatic man-made systems is 

far from being achieved, some of the reasons being the presence in 

large-scale systems of a number of other complex characteristics. 
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Openness, which is the high degree of interaction of the large­

scale system with the dynamic external environment, is a characteristic 

which might make the design and construction of a large-scale system 

obsolete, by the time of completion. This can occur because the 

environment itself undergoes changes during that time. Furthermore, the 

introduction of the system itself may change the environment. 

Another important characteristic of large-scale systems is the 

non-deterministic behavior (11). This mainly occurs because of the 

incompleteness and imprecision of the original information about the 

structure, state, and behavior of the system, and the uncertainty of 

future events. 

Present methods for the analysis of even very small-scale 

stochastic systems result in problems of very high dimensionality in 

order to account for alternative possible realizations of the imperfectly 

known parameters (20). Methods for the analysis of large-scale 

stochastic problems do not even exist. 

Problems of dimensionality arise also out of the characteristic 

change in the course of time of large-scale systems. This occurs 

because of the need to replicate variables and constraints to account 

for the great number of time periods (21). 



I' ,: 
i 
I 
! 

I 
i 
f 
{ 

! 
I 
I 
! 

[ 
i 

I 
I 

I 

9 

From the practical standpoint, another important characteristic 

of large-scale systems is the lack of hard data. Especially in the 

socio-economic areas only the crudest data e~ist. Efforts to collect 

data for the analysis and design of socio-economic systems run the risk 

of influencing adversely the system environment. The classical example 

of "Project Camelot" in Chile stands out as a sad commentary of these 

efforts (22). 

From the mathematical standpoint, large-scale systems are 

characterized by nonlinearity and discontinuity in their interactions 

(12). Most modern methods for the analysis of complex systems assume 

monotonicity, continuity, convexity or other well-behaved character-

istics for the performance functional and the system structure, and 

actually the most workable algorithms are to be found for linear 

systems. 

Another disturbing characteristic of large-scale systems is the 

high degree of interdependence between subsystems in the same level. 

In a rudimentary form, all these large-scale system character-

is tics are present even for simple systems. Examples are the hierar-

chical structure of atoms, the stochastic existence of an electron, 

and the changeability of bodies, associated with their formation and 

aging. However, all these properties appear in complex systems in a 

qualitatively new and more intensive form. For example, from the 

comparison of a simple system--a stone--and a complex one--a man--we 

can see in the latter case the openness being associated with the 

exchange of materials and ideas and the stochasticity being 

associated with complex psychic behavior. 
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II. TAXONOMY OF IARGE-SCALE SYSTEMS 

Diverse disciplines employ diverse classifications for the taxonomy 

of large-scale systems, but the classification which is general enough 

for all disciplines and should be enfranchised by them is the one due 

to cybernetic theory. 

Cybernetic theory derived most of its postulates by diligent 

study of the behavior patterns of living organisms. Every system was 

found capable of being characterized by its behavior pattern which 

regulates the system by imposing rules, giving learning mechanisms, etc. 

For practical purposes of modeling this behavior pattern divides the 

systems into two categories (24): 

a) Isomorphic Systems 

b) Homomorphio Systems 

In brief, isomorphic systems are those that can be modeled element 

by element, in one-to-one mapping. Modeling that involves many-to-one 

transformations is called homomorphic. More precise definitions, in a 

mathematical form, are given by Klir and Valach (24). 

A good model of a system is a homomorph, because a homomorphic 

mapping preserves the structural relationships that are chosen to be 

preserved by the analyst, and this is enough for purposes of analysis 

and design. 

A further classification implicit in cybernetic theory is given 

in Table II. 
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!ABLE II 

GENERAL CLASSIFICATION OF ALL SYSTEMS 

• Simple nonliving systems 

• Simple living systems 

• Complex nonliving systems 

• Complex living systems 

The great concentration of effort has been all along in the 

analysis, design and optimization of complex nonliving systems. 

It seems that extensive studies must be undertaken to correlate 

the characteristics of the complex living systems with those of the 

complex nonliving systems. This type of studies might be able to 

produce a body of basic theory that will give a better understanding for 

the solution of complex nonliving systems problems. 

Another taxonomy of systems according to activity levels is given 

in Table IV. This table is based on (12). 

The only classifications which have been standardized for large-

scale systems almost in the whole of technical literature pertain to 

I 
r 

the optimization of large-scale systems. 

The main definitional link between systems and their optimization 

is regime, and there are two regimes: 

A. Static Regime system characterized by linear or nonlinear 

algebraic or transcendental equations describing it's structure and 

linear or nonlinear algebraic or transcendental functions describing 

its performance functional. Optimization of this static regime system 

is called Mathematical Programming. 
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B. Dynamic Regime system characterized by linear or nonlinear 

ordinary or partial differential equations describing its structure and 

an integral describing its performance functional. Optimization of this 

dynamic regime system is called optimal control. 

In this study the effort will be placed in the mathematical 

programming methods for large-scale systems. Methods for the optimal 

control of large-scale systems are to a great extent extensions of the 

mathematical programming methods as are implemented today, although 

methods particular to optimal control are continuously being developed 

(25) • 

TABLE III 

TAXONOMY OF SYSTEMS BY ACTIVITY LEVEL 

Level System Description 

perational Systems Sub-subsystems Single Goal 

] actical Systems Subsystems Single Goal 
Microsystems 

Macrosystems 
trategic Systems Interdisiplinary Mu1tigoal ] 
olicy Systems Transdisciplinary Multigoal 

III. THE STATIC REGIME lARGE-SCALE SYSTEM PROBLEM 

"From its very inception, it was envisioned that linear programming 

would be applied to very large, detailed models of economic and military 

systems" (26). This statement by Dantzig in 1967 shows that after the 

War the analysts became aware that the piecemeal approach to the solution 

of operations research problems was basically an exercise in sub-
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optimization. They realized that the optimization of each subsystem 

did not produce an optimal system. Of course, the fundamental assumption 

underlying their approach was linearity, which can only be approximated 

for large-scale systems. The fact remains though that up to the present 

time most of the socio-economic and technical systems have been studied 

under the linearity assumption. Therefore, it is much easier to study 

the optimization of large-scale linear systems, where a wealth of 

information exists, than plunge into the unknown world of non-linearity, 

discontinuity and stockasticity. 

The decision to work first on linear systems was a mixed blessing. 

On one hand great progress was achieved in the optimization of large­

scale deterministic linear systems. On the other hand, the analysts 

lost themselves working in well-ordered systems to be applied in a not 

too well-ordered world. In view of the present accumulating society 

problems with all their implications as complex systems, Alice of 

Wonderland fame found a home in the modern analysts laboratories. But 

then, Alice also visited George Boole's home in his time. 

The above remarks were made to emphasize that all the methods for 

large-scale optimization developed so far are nothing but a drop in the 

ocean of the required methods yet to come to enable real solution to 

complex systems problems. This will become more clear in the course of 

studying the various assumptions made for the development of the presett 

large-scale system optimization methods. 

In later chapters, a new method is presented for the solution of 

the large-scale problem. This too is pervaded with assumptions as all 

the other methods are. The main point is that as long as there is deep 
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understanding of the processes dominating complex systems gradually 

a way will be found to lift one by one all these assumptions. 

The static regime large-scale system optimization problem can be 

given as: 

where 

maximize 
x 

f(x) 

subject to 

n 
8 C. R 
0-

X e:. 8 

x=n-vector of real variables 

f(x)=real-valued function defined on 8
0 

gi(x)=real-valued function defined on So 

(1.1) 

(1.2) 
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The functiorl f(x) is the system performance criterion function, 

usually called the objective function. In engineering design problems 

the function f(x) is the one which indicates the "best" design to be 

chosen (27), in economic planning it might be among a number of things, 

a welfare function or a preference function (28), in business it might 

be a profit or cost function (29). In general, the objective function 

can be given many interpretations and the design of a "good" objective 

function is a problem by itself (30). 

The sets Si for i=o,i, ••• ,m are the feasibility regions from which 

the objective function receives its vector x. These feasibility regions 

are constructed by the function inequalities and equalities gi(x)~ 0 

for i=l, ••• ,r and gi(x)=o for i=r+1, ••• ,m. These functions represent 

the structure of the system with its inputs and limitations. The vector 

X is the vector of the sought intensities of activity which will maximize 

the objective function. Of course, instead of maximization, minimization 

can be sought since: 

maximize 
x 

f(x)=minimize-f(x) 
X 

The basic assumption underlying the solution approaches for the 

large-scale static system (1.1)-(1.2) is that the functions f(x) , 

gi(X) ,i=l, ••• ,m are additive1y separable. In other words, problem 

(1.1)-(1.2) ca~. be written as: 

maximize 

(13) 
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subject to 

e.=1, ••• ,k (1.4) 

where: 

n 
So C; R 

If in reality the problem (1.1)-(1.2) can be written as problem 

(1.3)-(1.4) then the large-scale system can be considered completely 

separable in which case its solution can be simply achieved by solving 

k different mathematical programming problems and summing their optimal 

solutions. But if the large-scale system is completely separable, 

meaning that there are no interlinking variables or constraints, it is 

not a system but a collection of independent systems. 

As it was mentioned previously, a large-scale system has inter-

dependent subsystems, in other words there are interlinking variables 

or coupling constraints which unite the large-scale system for a 

purposeful behavior. Therefore, the large-scale system is completely 

separable only in some of the constraints. The other "uniting" constraints 

are not additive1y separable because they unite and dominate the whole 
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system. Therefore, problem (1.1)-(1.2) can be actually written in 

non-set notation and incorporating the two types of constraints into 

one as: 

maximize 
x X 

1, ••• ,K 
(1.5) 

subject to 

(:::/r. 

\ g ... (xt') ~ b . L I.~ o~ 
e:.! 

i=l, ••• ,m 

i=l, ••• ,m , 
e=l, ••• ,k 

X t ~ '0 , e =1, ••• , k 

(1.6) 

(1.7) 

(1.8) 

The assumption of additive separability is fundamental in the 

approaches for the solution of complex systems. The question that arises 

is that if really a complex system can be additively separated into 

subsystems. If it can, the imp1ic.'lt:i..:;;:;,s Ci.l:'t! th.c1.,~ (he sulJ&yst<::ul ~nv<::lopes 

have been completely indentified and the large-scale system streams are 

all charted. That this cannot be true in real life systems in most 

cases could be proven by numerable examples. But, only through this 

assumpion progress has been made. To eliminate the separability .. 
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assumption, completely novel optimization methods have to be developed 

and as of the present time there is not even a beginning in sight. 

Based on the additive separability principle two basic trends of 

development can be distinguished in the theory of large-scale systems 

optimization (5, 7, 31). The first one is the analytic trend which 

attempts to decompose or break down the original large-scale problem 

into a number of independent simpler and smaller sub-problems, and 

simultaneously attempts to provide some means for coordinating the~. 

Since a hierarchical structure is a basic characteristic of most 

large-scale systems the analytic trend is the one that provided most of 

the algorithons for optimization. Decomposition generates immediately 

a multi-level hierarchical structure and the exploitation of the 

properties of hierarchical structures provided the opening for the 

solution of the large-scale system problem. 

The second trend is the synthetic trend which aims at aggregating 

a multiplicity of interconnected subsystems with known performance 

properties into a large system with the desired characteristics. 

The methods of aggregation are not sufficiently developed and 

tested or formalized to permit serious comparative analysis and 

evaluations. Some procedures are given in Wismer (32), and some 

interesting work is presented by Ven and Erlike (33). 
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CHAPTER III 

PRICE-RESOURCE DIRECTIVE COORDINATION: BASIC THEORY 

This chapter develops the theory upon which the Price-Resource 

Directive Coordination Procedure is based. The name of this procedure 

stems from the fact that the optimal dual variables or shadow prices 

and the right-hand side of the constraints vector, usually called 

resources vector, of the subsystems are both used to iteratively 

improve the allocation of the central resources to the subsystems. The 

procedure is not called a decomposition procedure because, after the 

actual reformulation of the total system into a two-level system, 

unlike the other methods described in (7, 62, 66), there is no Master 

problem or Central system to be solved. Instead, a simple coordination 

mechanism is used to improve the partition of the central resources 

vector in such a manner, that after a finite number of "coordination 

meetings," the optimum resource allocation to the subsystems is 

determined. 

The reformation of the linear program characterizing the total 

system is done following procedures developed for stochastic program-

ming (61), and later rationalized for decomposition under the name of 

Er~~c!i£n by Geoffrion (62). This type of problem manipulation, as 

was indicated in Chapter II, was also used by Zschau (58), and 
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this reformulation will be explained in the next section. 

Some of the results presented in this chapter are not new but the 

proofs are. In particular, some of the results on the properties of 

the objective function of the Central Problem were proposed by Wets 

(49), but new detailed proofs consistent with the later developments 

are worked out here. 

A very important contribution is the development of the important 

connection between the dual variables of a linear program and the 

directional derivatives of the objective function of this program, 

without utilizing the concept of subgradients as developed by 

Rockafellar (59), and Bazaraa (53). This contribution plus some of the 

results on the properties of the objective function of the Central 

System problem led to the development of a set of optimality conditions 

for nondifferentiable functions. 

These optimality conditions constitute the basis of the Price-

Resource Directive Coordination procedure which will be developed in 

detail in the next chapter. 

I. THE BLOCK-ANGULAR STRUCTURED LINEAR SYSTEM 

The canonical form of the linear programming problem is 

maximize z 
-I _ 

= C x 

P.l subject to A x 6 b 

x = 0 

(3.1) 

(3.2) 

(3.3 ) 

where c and x are n-element vectors, b is an m-element vector and A is 

an m x n matrix. This matrix tends to be structured in a block-angular 
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form for large-scale systems (34), and if it does not, it can be trans-

formed to the block-angular form according to procedures deve10peci by 

Wei1 and Kettler (35). Therefore the relations (3.1), (3.2) and (3.3) 

can be written as: 

max z = [c~, c~, . . . . ., c~J (3.4) 

Xk 

P.2 xl b o 

x2 h1 
subject to ~ (3.5) 

Xe ~ 0, e= 1, ••• , k (3.6) 

where: 

At = mo xnt matrix 

Dt; = me xne matrix 

-' element vector .£= 1, k c( = n( - row ... , 
x, = n, - element column vector 

be = m! - element column vector 

bo = mo - element column vector 



r 
~ . 
! 

I 

l 
r 
I 

I 
I 

f 

I 

Therefore, for the problem P.2 the dimensions are: 

number of constraints = roD + ~ me 
l=i 

number of variables = ~ ne 

l-={ 

The problem P.2 can be also written as: 

~_I 
maximize z = ~ ce XC' 

lei 

P.3 
t:l:. 

l}! subject to xe ~ ba 

eel 

De Xt: ~ be' e= 1, ... , 
x( ~ 0, e= 1, ... , 

k 

k 
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(3.8) 

(3.10) 

(3.11) 

(3.12) 

(3.13 ) 

The objective function (3.10) and the system constraints (3.11) 

and (3.12) are linearly separable in the variables. This property of 

problem P.3 makes possible the attempt to achieve a global (overall) 

optimum for problem P.3 in a multilevel fashion by coordinating the 

individual optimization of the sybsystems which result from the separa-

bi1ity of problem P.3 after the partitioning of the vector boo The 

development of the subsystems starts with this partitioning. 
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:he vector bo is partitioned into k arbitrary partitions 

such that 

(3.14) 

where ve is an mo -e1ement column vector. 

Then the problem P.3 can be written as: 

maximize 

P.4 subj ect to Ae xe ~- for e= 1, k - Vt ... , (3.15) 

De ~ ~ bt 

x, ~ 0 

The problem P.4 is completely separable and it can be considered 

as the decomposed equivalent of P.3 since for each e an independent 

linear programming problem can be solved giving rise to k optimization 

subproblems. 

The main consideration here is to find the optimum partition of 

the vector bo such that the optimal solutions of the k subproblems of 

P.4 sum up to the optimal solution of the problem P.3. 

The Price-Resource Directive Coordination, to be developed, 

involves the iterative determination of the mo -e1ement vectors 

v1' ••• , vk such that the optimum partition can be achieved and hence-

forth the optimum for the overall system can be arrived at through the 

solutions of the subproblems. 
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The optimum of problem P.4 depends on the partition of the vector 

b". Each subproblem l, for e = 1, ••• , k receives a vector ~ and 

according to that it optimizes itself. Therefore, the optimum of each 

subproblem is a function of the assigned vector ve ' denoted by 

~(Vt), and thus the optimum partition of the vector bo will be 

achieved when the sum of these functions is at a maximum subject to 

the feasibility constraint (3.14). This permits a reformation of P.4 

which is as follows: 

maximize q?(v) 

"Central" 

System (3.16 ) 

(C.S.) 
subject to 

ve ~ 0, e = 1, ••• , k 

where in p~'imal form 

Subsystem ck(vr ) _I 
= max ce Xe e 

(3.17) 

(e = 1, ... , k) Xt 

in Primal Form subj ect to Ae x{ ~ -- ve 

(S.S.P.) De Xe ~ b 
~ 

(3.18 ) 

xe ~ 0 
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or in dual form 

r ce(ve) = min -I weI + be Wt'Z. Ve 
e 

Subsys Ltml W'ti. , W(:l. 

(3.19) 

(e= 1, ... , k) subject to 

in Dual Form 

[~ [ 
, 

D~J ~ (S.S.D.) Ae , c! 
(3.20) 

wei' we" ~o 
) 

This recasting of the initial problem follows a procedure which 

Geoffrion (36, p. 30) calls problem manipulation and defines it as "the 

restatement of a given problem in an alternative form that is 

essentially equivalent but more amenable to solution." 

Among the many benefits of this type of system decomposition into 

a Central System (C.S.) and Subsystems (S.S.) is the obvious one of 

the substantial reduction of the dimensionality of the problems 

requiring solution. The dimensions of the C.S. problem are: 

number of constraints = mo (3.21) 

number of variables = kmo 

The dimensions of the S.S. problem e are: 

number of constraints = mo + me (3.2Ia) 

number of variables = ne 



r , 
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Comparing (3.21) and (3.2la) with (3.8) we can see that depending on 

the number of subsystems there is a great reduction in the number of 

constraints which results in less computer storage requirements and 

greater speed of problem solution execution. 

The equivalence of the C.S. problem and problem P.2 is formalized 

by the following theorem. 

Theorem 3.1. The C.S. problem and the P.2 problem are equivalent 

in the sense that (i) the optimal objective values for C.S. and P.2 are 

equal, (ii) P.2 is unbounded if and only if the C.S. is unbounded, and 

(iii) if the C.S. has an optimal solution VO 
= (vi, ... , vk) with xe 

for e = 1, ••• k , optimal in the S.S. IS, then XO = (xl' ... , Xk) is 

optimal in P.2. 

~: The proof by contradiction is immediate. 

The constraint sets (3.18) and (3.20) are the feasibility sets 

for the primal and dual variables xt ' w~. Formally these can be given 

as follows: 

Xl = [ xt I A~Xt ~ ve ' De xe ~ b~ , xt - 0 ~ - ] (3.22 ) 

[ wt I / / 
~- ] W = (Ae, De) we we ~ - we = (we.i.' wt.t.) (3.23 ) f - c" - 0, 

, lr.tained within the set We is the set of the optimal dual variables 

w;, which result by allocating a vector v~ to the dual subsystem. This 

set is denoted by 

Wt (Ve)C H! (3.24 ) 

Since the optimal dual variables define the function 

each given ve ' as it can be seen from (3.17) we have 
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We (V e) = [ w; (ve ) we (v () E We' 

~(Vf) = w~i (ve) v( + w;~ (vr) br , given ve E Ve ] (3.25) 

where 

_0 

(vt' ) (w;i (ve ), 
_0 (v(» w~ = we 2. 

Ve = [ vt vt ~ 1,0' v( .:.. -- 0, 

solution exists for f~ = subsystem given veJ (3.26) 

The set Xe and W( are expressed as the intersection of finitely 

many closed half spaces of the spaces Rnr and R~o+~e. Therefore by 

definition they are polyhedral convex sets. The set We (v
t

) for each 

given vector v~ is also convex since it is the set of the optimal 

solution of some finite system of inequalities and equalities 

expressing the set We. 

The set Ve is convex according to the following theorem. 

Theorem 3.2. The set VC ' as given by (3.26), for which the S.S. 

problem has a solution is a convex set. 

Proof: To prove that Ve is convex it must be shown that for 

given ve1' vt 2. E Vt and 0 ~ p ~ 1 the relation 

(3.27) 

is also true, which means that at least one feasible solution should 

exis t for vtr Since by assumption on the set V, a solution exists 

for the e~ S.S. problem, then the following relations taken from 

(3.18) are valid. 
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At. xei, ~ -
De ~ b ~ - (3.28) Vet xCi. , x ei - 0 

A, 
t::!-

D, Xt~ 
L- - ~ (3.29) x,l. - Vt~ , - be xeJ.. 0 

Now, if (3.28) is multiplied by (1 - p) and (3.29) by p and the results 

are added, we have 

A e «1 - p) xei + p xez ) ~ (1 - P)vH + p vt 2, (3.30) 

De «1 - p) x l { + p xez ) ~b e (3.31) 

(1 - p) x
ti + p xe2.. 

~ -- 0 (3.32) 

Since (1 - p) xn + p x(12, ~ 0 we have a feasible solution for 

(1 - p) vet. + p Vt~ and therefore (1 - p) Vtt + p ve~ E 

proves the theorem. 

Definition 3.1. A set is £l£s~d if given a sequence v~E S 

such that 

limit 
_K _ 00 

V = V 

then 

-V
OO 

E S 

1\ 
Definition 3.2. The £l£s~r~ S of a set S consists of all the 

fI 
limits of the converging sequences of S. The closure set S is a 

closed set. If a set S is closed, then 

n 
S = S 
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Examples: The S1 [ -' ~ bi ] C R" set = x a. x 
(. 

1\ 

is closed, and S 1. = S1. • 

[ x I - , 
bi J .. 

The set S = a· x < ( R is not 
~ c. 

" closed. Then its closure is the set St and therefore S.1 = S~ 
1'1 " or Si = Si = S 2, • 

According to the definitions above the sets Xe, W(, W( (v() for 

" 1\ 

a given v, ' and Ve are all closed and X ( = X~, We = We" We (v( ) = 
n 1\ 

W ! (vt: ), v(.. = Ve. 

Also, the sets Xt and Weare bounded from below since x e ~ (5, 

W eo ~ 0 and the sets W ~ (ve ) and VC'. are bounded from above and below 

Now, we can study the set of all the optimal dual variables for 

the whole range of the vector ve' which is 0 ~ ve ~ boo This set we 

denote by 

,,:r 
p = (\ We (v;), v~ = b" and v/ = null vector 

1.=1 

It is well known that the intersection of convex sets is a 

convex set (69) and henceforth P is a convex set, and since each set 

W (. (v(.) is closed the set P is closed. The following theorem will also 

prove that each set Wt (ve ) could be the closure set for a convergence 

sequence of the vector vee 

Theorem 3.3. By the closure of P 

lim W ~ (v:) = w; (vet) 

-i -t 
v( -.-.. vt 

(3.33) 
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then 

(3.34) 

where 

Proof: 

~(v/) -0 (vi)' - i _0 (v(L)' b( = Wei v( + we2. 

-0 (v; { -1. _0 (v/{ be 
-0 Cii;/ _t 

= Wei vt + W (1. + wti vt -
_0 C t { _t 
Wet v( v, 
_0 _.( ,,_t _0 ev;{ T," 

_0 ev;)' C! -t) = Wei ev,) v( + we1 e + Wei vt - vt 

then 

limit 

= (3.35) 

which proves that the limit points of a set w~ eVe) are elements of 

another set contained in P and thus 

For the solution of the Central System problem it is paramount 

to study the behaviour and the properties of its objective function 

q? This is the case because the explicit determination of this 

function is impossible in any real sense, since it entails the solution 

of each subsystem for each conceivable combination of the elements of 
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the vector v( ranging from 0 to boo The properties of this function 

depend on the identification of the properties of the function 

<?e(V() for each subsystem 

the next section. 

This problem will be deal t with in 

II. PROPERTIES OF THE FUNCTION 9P 

The properties of the function ct;(v{ ), upon which those of 
e 9? depend, can be identified by a postoptirnization analysis (37) of 

the solution of anyone of the k subsystems, as given in relations 

(3.17) - (3.20) and subsequently by a study of the results of this 

analysis. 

Assume that for a given arbitrary partition of bo ' the vector 

v( was allocated to the !th subsystem which was then solved by the 

simplex method of linear programming. Thus the basic optimum vector 

_0 
x s, was found to be 

_co 
B- i [:: ] xse = 

[ _t -1 ] [:: ] (3.36 ) = Be! B~z 

-1 -i -1-where B is the optimal basis inverse and B~ , Bz are its partition 

for v( and bt respectively. 



to be 

where 

The optim~l value of the objective function was found 

-' ~-1 
cSt'LBi 

-0 _0 

w({ , Wet are the vectors of the partitioned vector of the 

optimal dual variables (38), in other words 

Now, if the vector ~ allocated to the tth subsystem is 

increased (decreased) by a vector ~ such that v~ + de , 1)0' 

the following basic optimum vector will result: 

32 
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B-i (v
t de> -4-= tl + + Be2 be 

= (B-i -
Ii Vt + B;!be > -1 -

+ BtL d~ 

_0 B- i dt' = xBt" + et 

Then the optimal value of the objective function becomes 

The optimality of the solution is not affected by the change in 
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the vector ve since the objective function coefficient vector cee is 

not altered, but the feasibility can be affected unless 

(x~ )new ~-- 0 

or by (3.29) 

_0 -1 d l 
~ (3.39) x8! + B'i 0 

or 

If any of the elements of the new basic optimum solution vector 

becomes negative, then a change in basis is required to ensure further 

feasibility. This necessity is carried out by some of the steps of 

the Dual Simplex Method (40). 

We note from expression (3.38) that the function 

linear over the convex set (3.39). We will prove that actually the 

function 9?(ve ) is finitely concave, piecewise-- linear, and 
.~ 

continuous over the set Ve which by Theorem 3.2 was proved to be 

convex. 

Theorem 3.4. The function q?(vc) is a finite concave 
e 

continuous function on the convex set Vee 

Proof: To prove the function 9?(vr) concave we have to 
e 

prove that 

(1 - p) ~(VH) + p <Pe<vt 2.) ~ 

1>«1 - p) vtf. + P vc.z.) (3.40) 
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holds. Let X;L' x;~ be optimal solution vectors for the S.S. problem 

corresponding to vt! ' ve.t E 

(3.41) 

(3.42) 

and by assumption 

(3.43) 

and by (3.41), (3.42) 

(1 - p) 4{V(i) + P 

C I «1 - p) x:i + p x;.?) (3.44) 

By Theorem 3.2, vet' = (1 - p) Vet + p ve~ E Ve: and 

xer = (1 - p) x;i + p x;1 is feasible but not necessarily optimal 

solution to the problem. 

CP<Vtf ) =[ _I- I A! 
~ max ct x( xe 

Vq , De xe <::.'b - ~ -J - f' xe - 0 (3.45) 

whose optimal vector will be denoted by xef • Therefore 

-' - It: _I = max c xu' - max c x~r (3.46 ) 

and by (3.43) 

(1 - p) 

or 
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(1 - p) 1;(V({) + p ~(vrl) ~ 

*«1 -p) Vet + p ve.t. ) (3.46a) 

which proves concavity. 

To prove that 

upper bound on the 

~(Ve) is finite it has to be proven that an 

~(Vr) exists for any given ve ~ boo In other 

words it has to be proven that 

is valid. Let 

(3.47) 

then if the vector v~ is increased by de from postoptima1ity analysis 

(37) we know that the dual solution 

-0 -
w e (v~ + de) 

is not necessarily optimal, therefore from duality theory (39, p. 479). 

Now, subtracting (3.47) and the above we have 

or 
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or 

Continuity is proven by the fact that the function 

concave over the set V(' which is convex, which implies that 

~(v~) is continuous at all interior points of that set. Then 

there exists a sequence of interior points v; such that 

k-DO 

Now, by concavity we have nonincreasing slopes and therefore since 

(3.48) 

or 

(3.49) 

we have 

(3050) 

which if it is multiplied by (v; - v;), which is negative, will result 

in 

~ -0 . ~ e" - v;) ~ _0 (v;)' (VIC 
. 

o - w( (v~ ) vf! - we - v ) 
f!. e 

and sinr::e r.E<v; ) <kev;) ~ OJ we have 
~ ~ 

ck(v;) <k(v;) ~ -0 -II: ' C/( - v;) - - we (v~ ) V(. 
t. (' 

or 



Then if we multiply (3.50) by v;, we have 

Now, if we add to both 

result is 

_0 • I -I< _0 
(ve ) w! v~ - we 

or 

sides 

(vt{ 

of (3.52 ) the value -

• (v;>' _K _0 <!!-
v( - w( v( - we 

rf..(v/C) _ 
't; e 

Combining the above result with (3.51) we have 

_0 I k _e) .t: cP,(v;) eR(v;) we (v~) (v! - Vc. - - ~ , 
C r -6 (;;(.6:) C" -1\ ) w{ V - v~ ( 

_0 • r 
we (ve) v~ 

• I -" (ve ) v( 

The above result proves the continuity of the function since if 

k_oo 

the relation (3.53) implies 

lim 

k_c::oQ 

which is the definition of function continuity. 
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(3.51 ) 

(3.52) 

the 

(3.53 ) 



Theorem 3.5. The function 4?(v~) is piecewise linear. 
t! 
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Proof: Assume an initial allocation of a vector veo to the S.S. 

problem with ~(V!o) as optimum and then assume that an increase 

de is given to vt!o' such that 

Then the relations (3.36) - (3.39) can be generalized to the following 

expressions: 

is valid over the set 

b~ + (B -1 ) 
~t. 0 

(3.54 ) 

- ) ~-- vto - 0 (3.55) 

Now, if vef increases up to bo and the linear program is still 

feasible, in other words (3.55) remains valid, then the function 

~v(), as it can be seen from (3.54), it is a linear function, with 

(wt:~)o constant, over the set V(. But if at any time (3.55) becomes 

invalid then the 8.S. problem needs reoptimization which generates a 

new basis inverse and new dual variables since 

-0 _ I -i 
wt:i = c 8t: Be{ 

Therefore, given a vector vt:.t which forces infeasibility and 

consequently reoptimization the relation (3.54) becomes 

(3.56 ) 

(3.57) 
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and it is valid over the new convex set 

- ) ~­v - 0 
~~ 

(3.58) 

If there are r - 1 such points of infeasibility and reoptimization, the 

relation (3.54) becomes 

. - ve'1) (3.59 ) 

which by definition is a piecewise-linear function. 

The above theorems established that the function <Pe(v<:) for 

e= 1, ••• , k is a !i,!!i~e.L .E.i~c~wis~-li!!.~r_c2.n~i!!.u£u2..,_c£n.£a~e 

The slopes of the linear pieces are the dual variables or the 

shadow prices and they are discontinuously decreasing as the value of 

v( is increasing. Figures 1 and 2 give pictorial representations of 

the function 

resource. 

q?(v!) and the dual variable we for a system with one 
e 

Now, we are ready to prove that the function q?<v) is finite, 

piecewise-linear continuous and concave over the set V which is convex 

being the intersection of the sets Ve for e= 1, ••• , k. 



o 

~ 
Figure 1. Subsystem objective function variation 
with change in the resources. 

Figure 2. Subsystem shadow price variation 
with change in the resources. 

41 
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Theorem 3.6. The function tv) = ~ L 4{5it) is 

piecewise-linear. 

Proof: From (3.59) of Theorem 3.5 we have 

('-i 

<pCVer ) 1;(Vto) +L o ~ 

(VtJ1ti ) = (wei ), v~J1 ( 

If=o 

and summing over t = 1, .0., k 

t .. " 1.-.. " t=" r L 'Pe(ii<r) L 1~yj!o ) + L o I = (wei )1 , 
e~i 

(~! t=i 'I =0 

(ve , ~-H. - ve}1 ) 

or 

~., 

<fxVr ) P(vo ) +L -' 
(V,,\H - V ) (3.60) = w~ 1 

q=o 

where 

vi 
V,t. 

~ 

v = w = sum of whole or part pieces of the dual 

-0 for e= 1, k vectors we ... , 
v" 
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The relation (3.60) proves that the function P<V) is 

piecewise-linear. 

Theorem 3.7. The function ~V) is concave on the set V. 

Proof: From the concavity of the function 

(1 - p) 

(1 - p) 

hence 

(1 - p) 

and therefore 

(1 - p) 

where 

-v 
1'2.. 

<e«1 - p) ve.t + p v~2 ) 
( 

and v, = 

(1 

(1 p) v.a.. + P v2.'l. 

(1 - p) V"t + P v/c.t 



Since the function ~) is piecewise-linear, it becomes 

apparent that the gradient of ~v) does not exist at the points 

where the slopes change; in other words, the function P(v) is not 
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differentiable at all points. This invalidates the so-called Gradient 

Method for the solution of the Central System problem. Fortunately, 

the directional derivatives of ¥v) and ~(Ve) exist as is shown 

in the theorem following the definitions of a directional derivative 

and a direction vector. 

Definition 3.3. Let the function ~(v) be defined on the 

set V and assume d E such that \I d II = 1. The directional ------

derivative of - - - -- ~(v) at v in the direction d is defined to be the 

limit 

D ( CP<V); d) = lim P(v + sd) - c}(v) 
s 

whenever it exists. 

Definition 3.4. Assume v E RIC. "'0 , d E 
M;"'o 

R ,S E Rand 

o ~ 5 ~ + (}O , d 'f;. 0, then a new vector can be found v'" E RK"'o 

where 

_Itt 
v =v+sd 

which describes a ray emanating from the point v in the direction d. 

Any vector d E RK~o can serve as a ~i£e£t!o~ ~e£t£r in this sense. 

A direction vector becomes a £e~s!b!e_d!r~c!i£n vector if for a given 

vector v E RKrII
• n S the new vector v· is also an element of the 

set S, i.e. 
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1<"'0 

R " 
S 

The set of all feasible direction vectors at a given v is denoted by 

F (v) = [ d I 
O"~S~OJ 

-v + sd E. S, a a- exists so 

(3.61) 

Verbally, d € F (v) if a small movement from v E S in the 

d 
_ot 

direction d pro uces v = (v + sd) Eo S. 

For the Central System problem, a feasible direction d for 

V e V will be called a usable feasible direction if -------------

D ( cpev); d) > 0 e3. 62) 

holds. It can be easily seen from the definition of the directional 

derivative that a usable feasible direction increases the value of the 

objective function, i.e. 

P(v + sd) > 
The following theorem proves the existence of a directional derivative 

for 1t,e~) and q?ev ), since both of them are concave. 

Theorem 3.8. The directional derivative of the finite concave 

function ~(Ve) exists for each direction vector d!, and it is 

-positively homogeneous convex function of dt , with 

and 
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The proof is given by Rockafellar (59). 

Now, to summarize the results about the properties of the 
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functions P(v) and cP.,(v() it should be said that these functions 
e 

are: 

(i) concave 

(ii) finite 

(iii) piecewise-linear 

(iv) continuous 

(v) nondifferentiable in general 

(vi) directionally differentiable everywhere 

The importance attached in finding these properties of the 

function 9?(V) lies in the fact that it is almost impossible to 

derive an explicit expression for this function. The task requires 

the solution of the subsystems an innumerable number of times which 

for all practical purposes is not attainable. 

The properties listed above plus the properties of the sets of 

the primal and dual variables developed in this section will be used, 

in conjunction with some other theorems, in the development of the 

optimality conditions, on which the price-resource directive 

decomposition is based. 
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III. OPrIMALITY CONDITIONS FOR THE CENTRAL SYSTEM PROBLEM 

The problem of optimality conditions for the general nonlinear 

programming system with differentiable real-valued functions defined on 

the nonnegative orthant of Euclidean n-space was first approached and 

partially solved by F. John (42). The definitive treatment of this 

subject was done in 1951 by Kuhn and Tucker (43) and since then the 

optimality conditions for nonlinear programming are known as the Kuhn-

Tucker conditions. Other authors refined certain aspects of the 

derivation of the optimality conditions (44, 45), but the first real 

improvement in the theory occurred with the withdrawal of the differ-

entiability assumption by Danskin (47) and Bram (48). They developed 

optimality conditions for the nonlinear programming problem utilizing 

directional derivatives. Their method was used by Zschau (56, 58) and 

Silverman (50, 51) to develop new resource-directive decomposition 

procedures. A more abstract formulation of the optimality conditions 

for the nonlinear programming problem assuming convexity only was given 

by Rockafellar (59) and an extension of this formulation replacing 

convexity with a weaker assumption of supportability was developed by 

Bazaraa et. al. (53). 

In this section the necessary and sufficient conditions for an 

optimal solution to the Central System problem will be derived o 

The Saddle Point Problem and Optimality 

Consider the Central System problem written as 
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maximize CP(v) = (3.63 ) 

subject to 

g (v) ~ [bO HiT] ~ 0 (3.64 ) 

where: G == mo x k mo matrix of the form 

100 • .01 00. • 0 • 1 0 0 • • 0 

010 • .00 1 0 • • 0 .010 •• 0 

001 •• 0001 •. 0 .001 •• 0 

H = (3.65 ) 

0 ..•• 10 ••.• 1- ••. 0 1 

-and v = k mo - element vector of the form 

v = (3.66 ) 

Associated with this problem is the-rea1-va1ued function L (v~, ... , 

vK ' u) of the m -vectors vt" for e= 1, "" k, and the mo-vector U. 
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This function is called the Lagrangean Function and is defined by the 

following equation: 

L(v
i

, ii) r ~(Vt) -' ("iT) (3.67) ... , vtl; , = +u g 
(. 

e= ! 

Definition 3.5. A ~a~dle_P£i~t of the Lagrangean Function is 

b ( - 0 - 0 - 0) - 0 ~ - f d _ defined to e a point v 1 ' ..• , V It ,u ,v ~ - 0, or t: - 1, ••• , k, 

- 0 ~ -0 u -

or 

such that 

" _0_ L (V'1. ' ••• , v I( , u) 

P(v) + (ii°>' g (v) ~ 

P(V O
) + (ii/ g (vo) 

L (- 0 _0 _0) ~ 
v! , ••• , V It ' U 

The above expressions give the constrained saddle point of the 

Lagrangean Function. It will be proved that (vi 0 , ... , _0 -0) v ~ , u 

satisfies the constrained saddle point for nO ~ 0, v 0 e. V = 

[v I g (v) ~ 0, iT ~ 0 ] if the following optimality conditions 

are met: 
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(i) _0 '. v max~m~zes <P(v) + u / g (ii) over V 

Col 
(iii) 

The vector u is called an optimal Lagrange multiplier vector, a dual 

vector or a "shadow price" vector. 

The proof of the equivalency of the saddle pOint problem and the 

original optimization problem is given in the following theorem. 

Theorem 3 090 If (V~D , •• 0, v~o , tiD) is a sadd Ie point of the 

Lagrangean Function in the domain v e V, TIo ~ 0, then 

(v~, ... , v"o ) = VO 
is an optimmn solution of the Central System 

problem and meets the optimality conditions (i) - (iv). 

Proof: According to the definition of a saddle point we have 

P(v) ~ 

P(v 0) + (uD
) 

I 
+ (u D

) g (v) ~ g (VO) ~ 

P(V O
) 

I 

+ (li) g (v 0) 

The right-hand inequality holds for any u ~ 0, therefore 

(3.68 ) 

and 

(3.69) 

Then the left-hand inequality becomes 



r 
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Since V = [ v I g (v) ~ 0, v ~ (5 ] and any u ~ 0, then for v to 

be an element of V ~ve should have 

/ 
(ii ") g (v) ~ 0 

then 

<P(v) ~ V (3.70) 

_0 
a result which proves that v is optimal for the central problem. The 

optimality conditions are met of course by the relations (3.68) -

(3.70). 

The converse of the above theorem holds only if the Central 

System problem meets certain regularity assumptions. These are: 

(i) The objective function 9P(v) is concave and the 

constraint set g (v) ~ 0 is convex 

(ii) The constraints satisfy Slater's condition (64) which is: 

h -- f h h t ere must exist a vector v or w ic 
. 
'=1, ... ,mel 

According to Theorem 3.7, q?CV) is concave and since the 

constraint set g (v) ~ 0 consists of linear equations it is convex. 

Also it can be easily shown that Slat~r's condition can be met by the 

Central System problem since the constraints are linear. Therefore 

the Central System problem meets all the regularity assumptions and 

therefore the converse theorem which follows holds. 

Theorem 3.10. (Kuhn-Tucker) The vector VO is optimal if and 



52 

only if there exists a vector UO ~O such that (vo, ijo) is the saddle 

point of the function L (ii, u). The proof can be found in (63). 

The optimality conditions C.l apart from clarifying same of the 

properties of a saddle point do not contribute to an actual method for 

solving the general nonlinear prograrrnning problem. 

Kuhn and Tucker improved the optimality conditions by assuming 

first differentiability of all the functions in the system and second 

accepting the regularity assumptions. Their result is the following 

theorem. 

Theorem 3.11. Assume the Central System problem is differ-

entiable and meets the regularity assumptions, then the following 

conditions hold. 

i. -="'0 

(i) V'P(v ) + L u', 'V~i(VO) = 0 

(,-=1 

C.2 (ii) 
/ 

(UO) g (vo) = 0 

(iii) 
-0 ~ _ 

u - 0 

(iv) g (v 0) ~ 0 

If the constraint set contains equalities then condition (iii) is 

valid only for the inequalities since the dual variables of the 

equalities are unrestricted. Also condition (ii) applies only for the 

inequality constraints and condition (iv) in the case of equalities 

becomes g (V0) = o. The proof by Kuhn and Tucker can be found in 

(93) • 
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For equality constraints the conditions C.2 reduce the general 

differentiable nonlinear programming problem to that of finding the 

solution of a system of equations thus rendering its solution easy to 

achieve. But the picture is not so clear for inequality or mixed 

constraints, apart from the fact that they have been used as a base of 

development of certain algorithms and as stopping criteria. 

Unfortunately, the Kuhn-Tucker conditions C.2 cannot be applied 

to the Central System problem since the objective function 

not differentiable. Therefore, new optimality conditions have to be 

developed for the Central System problem, based on the properties of 

the function 1?(v). 

Development of the Central Problem Optimality Conditions 

The optimality conditions for the Central System problem will be 

developed by utilizing some of the previously-proven results for the 

subsystems and the Central System in combination with new theorems 

developed in this section. In general the approach will utilize 

throughout direction vectors in the real space. 

Theorem 3.12. The directional derivative 

ck(v( ) 
~ 

minimiz:i.ng 

words 

I 
is equal to 

1\0 _ 

w(v~ ) 
_0 I 
we (ve) d~ over 

<Pe (vC ); de) = min [ 

(iie) EO 1/ (. (v<) ] 

the 

de where 

set We ('Ie) 

of the function 

"oC ) ~ ve is the vector 

for any du in other 

(3.71) 

Proof: From Theorem 3.4 and relation (3.53) we have 
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- 0 r.-;.)' (_II: -') «: 
w( \Ve Vt, - v t -

W-
o (v- ~ )' • -,.. ) ... (v t. - Ve (3.72) 

for (3.73 ) 

_K 
then increase the vector v( as follows 

(3.74) 

Now, if we substitute (3.74) into (3.72) we have 

s W 0 (v;)' de !f 

.S WO (;;;;)' (- de) (3.75 ) 

Now dividing (3.75) by we find 

(3.76 ) 

We 
-0 • 

can select w (v() E. W(: (v;) such that 

min { w~ (ve )' de \ 
-0 (v e) E. W t (ve ) 1 We = 

[WO(v;>' de' \ 
-0 w (v;) e W ( (v,n (3.77) 

and thus 

5 

- w 0 (v ~ ) / dt I w; (v~) € W (v~) (3.78) 



and 

-o( Ie)' - we vc - L { de - max 
- 0 Ie . 
W ( (v c) E We (\1:) ~ 

and since 

max [ - - CIeY'" d - w{. v( r \ - 0 ell:) we Vc E We (v;) ~ = 

min £ _0 (Vit I 
w( v t ) de w; (v;) 6 W t (v;) 

we have 

- 0 ( ")' - L £ - w t v <: d( - mini.. 

W, 0 (v~) € We (v~) 

Now, let us find the effect of reducing v; to v; 

from Theorem 3.3, for 

Wil.JS~ limit W! (v-) exists, since W C (v~) is bounded. 

Now since ~(Vc) is concave and vk ~ v· we have 
(. 

and when multiplied by + de we have 
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(3.79 ) 

(3.80) 

(3.81 ) 

(3.83) 

(3.84 ) 

(3.85 ) 



Now, by the same arguments as in (3.79) - (3.80) we have 

min £ 
_0 (v; { de \ w( (v;) W~ (v;) S ~ 
w~ E 

min £ w~ (v~)' de \ w~ (v;) E- we (v:) ~ 

Therefore, from (3.86) , (3.77) and (3.78) we have 

[minimum (w; (Ve~' deJ ~ ~(v; + sde ) - <Pr (v;) 

we (ve) E. Wt" (v(' ) s 

[minimum 
_ .. -
w ~ (ve ) 

(w; (v,)' d'J 
E: We (vt ) 

which implies 

41 (v~ + s~) c/i (v; ) = min { _0 (ve ) I de \ wt, 

~ 

we (ve) E. W~(v~ ) ! 
and after taking the limit S ~ 0 we have 

D ( e 

which proves the theorem. 
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(3.86 ) 

~ 

(3.87) 

(3.88 ) 

Now, since Centra; System objective function (3.63) is concave 

its directional derivative exists everywhere by Theorem 3.8. 

Therefore we have 
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lim p (v + sa) 

(::1( 

t L ~(V<+ odel - 1?(ve ) 

cp (v) 
( 

= lim eo i e-:.L 
S~O s S-.O 9 

t:f( 

L< ~(v~ + s~) - ~ (Ve» 
( 

= lim t:! 

S-O S 

(3.89 ) 

(3.90) 

= (wrtt)' d (3.91) 

where we went from (3.89) to (3.90) by formula (3.88) assuming that we 

found the minima in (3.88) and 

-,., -
w i (Vi) 

d = Wlc 
R - III (_ ) 

W 2. V2. 
-"'-= 1, w = 1\ d II 

d~ 

(3.93 ) 



The set of all the feasible direction vectors at a given 

V E V = {v I g (v) ~ 0, v ~ 0 ~ will be denoted by 

F (v) = { d 

(j'~S~O! 

v + sd E V, a tr exists such that 

and a feasible direction will be usable if 

lim p (v + sd) - <p (v) = (;;/1)' d > 0 

S-.o 5 

holds. 

Since by assumption S > 0 we have for a usable direction 
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(3.94 ) 

(3.95 ) 

(3.96 ) 

Theorem 3.13. If there is no usable feasible direction at the 

point VIC E: V then vI. is an optimum vector vD c V of the function 

CP(v) • 

Proof: Assume that there exists a v" €. V such that v· > vII> 

and by concavity S?(v-) ;> 
(3.72) we have 

and since - . > -\< v v 

/ 

ij" ) (Will) c· > 0 v -

is true, and thus (vIP -Ii:) - v is 

gs(v~) then by the right inequality of 

(3.97 ) 

(3.98 ) 

a usable feasible direction. 



59 

Therefore, if a usable feasible direction does not exist 

(3.99) 

and v 0 = v· = ijK and therefore ij II:. maximizes p<v) on V. 

Now let v· = VO + d, d 

by (3.99) 

«it)' d P 0 

or 

(W14)' d , 0 for all d € (3.100) 

which means that if VO is optimal for the concave Central System 

problem, then (3.100) holds. Also 

(T;/tt4)/ - L 
(I 

d - 0 for all d €: F (vo) (3.101) 

-I<. 
F (,,0 ) (3.100) because if d €. by 

_M ,. 

(w ) 
-1\ L 
d - 0 for all k 

and if the limit is taken 

I -K 1M 
lim (w~) d = (w ) o 

1<'" -

-010 
and since d is any pOint in 

1\ 

F (,,0), (3.101) holds. 

Theorem 3.14 (Farka's Lemma). The statement 



for all x such that 

A - ~ -x - 0 

is equivalent to the statement that there exists a u ~ 0 such that 

-= o 

The proof is given in Simonnard (37). 

The constraint set (3.64) may be divided into two sets, the 

active set and the inactive set for any feasible vector v = V. 

These are defined as follows: 
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Active set A ({1) = { L. I g. ({1) = 0 ~ (3.102) 
t. 

Inactive set I (v) = { (, \ g c: (v) > 0 ~ (3.103) 

We need this disection because only the active set needs to be 

considered for formulating the optimality conditions because any small 

movement in any direction in an inactive constraint does not violate 

the constraint, and therefore the inactive constraints are not needed 

in our analysis. 

In order to formulate the optimality conditions we need to 
n 

formulate the set F ("iT) in terms of the active Central System 

constraints. For that purpose we define the set 

o (v) = { d i € A ({1) ~ (3.104) 

The theorem that follows proves that 
1\ 
F ({1) c. Q(v). 
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Theorem 3.15. The closure set F (v) of the set F (v) of 

all feasible djr.ections is contained in the set <2 (v) of all the 

feasible directions expressed in terms of the active constraints, i.e. 

n 
F(v) = 

Proof: 

o -_ (v). 

Let d E F (v) for g. (v) = O. 
(, 

v g . (ii)' d < 0, for small s we have 
(. 

g . (v + sd) ..( g. (v) = ° , ~ 

Then if 

which shows that such d is not feasible and therefore for feasibility 

and thus F (v) C o (v) and since F (v) = (v) 

1\ 

F (v) c 0 (v) 

N '. 1 t d£.O (v-) for ow, e 0;;;; 
\lg. (v{ d ~ 0, i € A (v) 

~ 

and assume that v + sd ¢ V then 

g. (v + sd) < ° ... 

and 

\l g .(v + sd) d < ° , 
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which clearly contradicts the assumption and therefore v + sd c V 

" or o (v) c.. F (v) and thus 

" ( ) 0 (v-) F v = (3.105 ) 
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The existence of feasible directions in o (v) is assured by 

Slater's condition that there exist a vector 
_1t' 
v such that 

-'" -g (v ) "> 0 

Now we can reformulate one of the results of Theorem 3.13 as 

Theorem 3.16. 

Theorem 3.16. I~ 
_0 

v is optimal for the concave Central System 

problem, then 

(3.106) 

for all 

d 

The statement of the theorem above is by Theorem 3.14 equivalent 

to the statement that there exist multipliers 

w,., + -. 0 
(..t. 

t. 

<.t". ~ 0 such that 
t. 

(3.107) 

Then the optimality conditions for the Central System problem are 

given by the following theorem. 

Theorem 3.17. Consider the Central System problem as given by 

(3.63) - (3.66). The fo~lowing conditions define its optimality: 
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t"=IIf. 

(i) w'" + L u. 0 'iJ g . ('1°) = 0 c.. 
(, 

i-= ! 
C.3 

(ii) (uo) I if (v 0) = 0 

(iii) 11 0 o 
_ _0 

(iv) g (v) ~ "0 

Proof: Condition (iv) is the feasibility condition; (iii) is 

from the Farka's Lemma. Condition (ii) is the complementarity 

condition (3.69) of Theorem 3.9 and (i) is the result (3.107). 

The optimality conditions C.3 are very important because the 

-~ vector w of the optimal dual variables of the subsystems is shown 

to be directly connected with the optimal dual variables of the 

Central System. 

This property will be utilized in the next chapter for the 

development of the price-resource directive decomposition procedure 

or coordination method. 



CHAPTER IV 

PRICE-RESOURCE DIRECTIVE COORDINATION: THE ALGORITHM 

In this chapter, the basic results developed so far, and espe-

cially the optimality conditions C.3, will be expanded towards the 

creation of a very practical algorithm for the solution of large-scale 

optimization problems. 

The optimality condition C.3(i) can be reformulated as follows: 

-If! 
W 

-0 V'g (v ) 

= 

= 

w· + r ui <l[ hoi - iiiiJ 
c = ~ 

w· + )=~:. u; (-hi) 

,,"'1 

;;~ (~:) l 
w: (v:) 

H
/-O 

- U 

(4.1) 

(4.2) 

(4.3) 



which means that at the point of optimality 

-0. 

vi 

_0 

v e= 1, ••• , k 
_0 

, where ve = 

• 

the set of the Central System optimal shadow prices 

_0 
u 

o 
u~ 

() 

u",. 
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(4.5) 

has to be equal to each set of the minimum optimal shadow prices of the 

subsystems. For example for subsystem t we have 

.n o . 
wei u L 

iii UO 
""u 2-

e= 1, ... , k (4.6) 
• 

• 
'" 0 wlm u'" 0 .. 



.-,,~.,~-... '-',-. ,~. 
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and for all the subsystems 

'" (;i) '" (;1 ) 
() 

w i.t W
11 

U i 

'" ('/i) 
If! (;'2 ) () 

W 12, W 2.1 U2. ... = (4.7) 

• 

'" - W'" (;.t ) U O 
W 11ft (Vi) 

• 1111. "'0 

The result (4.7) is the basis of the Price-Resource Directive 

Coordination Procedure. 

If we assume that the dual variables of the Central System are 

known, and for an arbitrary partition of the central resources we acquire, 

after the optimization of the subsystems, sets of subsystem optimal 

shadow prices, then our objective would be to minimize the mean square 

deviation of the subsystem shadow prices from the optimal dual variable 

of the Central System for each resource. In other words we have the 

problem 

~ ~-
~ (w ~ (V~) 

minimize _________ _ 

k 

The minimization of the mean square deviation of the dual variables 

of the sUbsystems from the dual variable vector of the Central System 

presents no problem, since according to the following Theorem the mean of 

the subsystem shadow prices equals the vector of dual variables for the 

Central System. 
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Theorem 4.1. The mean 5quare deviation of a set of vectors from 

any vector u is a minimum if and only if 

-., 
u (4.8) 

Proof: 

~ ~-L (we(~t') 

41: i 

k 

_0 )2-
- U 

= 

k 

-0 u 

The above, as it can be seen, reaches its minimum value with respect to 

_0 
u when 

t -'" (- ) w( v"e 
_0 

~"'i u = 

rc. 

When the mean of the subsystem shadow prices for each resource is 

found then the deviation from the mean of each SUbsystem shadow price 

gives the necessary increase or decrease of the shadow price necessary 

to bring that price to equality with the dual variable of the Central 

System. 
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As it was shown in Chapter III, the shadow price vector of each 

subsystem is a step function of the allocated vector of central 

resources to each subsystem. Therefore, in general, w~(Ve} depends 

nonlinearly on v(. In the case of relatively small changes in the 

amounts of resources the rate of change of the shadow price is zero, but 

we can say that for large changes in the amount of resources the rate of 

change of the shadow price is approximately negatively proportional to 

the rate of change of the resources. 

From the statements above it becomes clear that the direction of 

increase or decrease of the amount of resources allocated to a subsystem 

can be determined from the direction of increase or decrease of the 

subsystem shadow prices in the process of bringing themselves to 

equality with the Central System dual variables which were assumed to 

be knowtt. 

I. THE DIRECTION FINDING PROBLEM 

Asswue an initial partition 

-i -
+ ••• + vI(. '" b o 

of the central resources allocated to the k subsystems then we have 

the )( optimization problems 
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<e(~:) I 

= max ce xe 
{ 

P.4-

subject to AeXt 
~ -.! 
" "Vt tor t= 1, ••• , k 

Dt; xG ~ be 

xe ~o 

Assume that 

max (4-.10) 

then a reallocation is needed which will bring the sum of the optima of 

the subsystems closer to the required max (v). This reallocation 

implies an increase of allocations for some subsystems and a decrease 

for others. In general we will have by the Definition 3.4- for a 

direction vector 

1-' -! -2- l vi dJ. vi 

7{. -1 -.~ v
2 d2, V 1.. 

I • + S • = (4-.11) 

l~' _i -~ 
vIC. d". vI( 

or 
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where 

(4:.1) 

and 

-1 
d = direction vector changing first partition. 

Then our problem is to find the direction vector which will improve the 

allocation of the central resources, such that 

---.. ~ max P(~} 

This direction vector has to obey the feasibility constraint (4:.1)} and 

in order to improve the allocation it has to be a usable feasible 

direction vector in other words by formula (3.62) it has to be such that 

D ( ~v); "Ci} > 0 

or by (3.91) 

(w"'{ d > 0 (4:.16) 

The direction problem of finding the appropriate d which will 

satisfy (4:.16) is solved by considering the optimal dual variables 



71 

which resulted from the solution of problem P.~ for e = 1 , ••• , k. 

Let the optimal dual variables of the subsystems for the initial 

partition of the vector b o be 

_ (- i) 
w~ vI. ' ..... , 

Since the m~thod employs successive approximations we assume that 

the set of optimal dual variables for each sUbsystem is a singleton 

and therefore 

l= 1, ••• , k (~.18) 

Now, we can use the result of Theorem ~.l by finding the mean sUbsystem 

dual variable for each resource and then substracting each one of these 

dual variables from the mean to find the required change. Therefore we 

have 

k 

mean vector .--lo...:::.i"-____ = 
(~.19) 

k 

k 

k 
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and the change vector 

r 

k 
(4.20) 

k 

for e = 1, ••• , k • 

If the means of the subsystems shadow prices are all equal to zero 

and w!(~:) ~ 0 for e = 1, ••• , k (i.e. all the subsystem constraints 

which are bounded by the Central System resource vector are weak 

inequalities), then optimality has been reached for the Central System 

_ -i) 
problem by (4.7), but if we(v r ' is unrestricted for e:= 1, ••• , k 

(i.e. all the subsystem constraints which are bounded by the Central 

System resource vector are equalities), then optimality has been 
_ -i 

reached only if we (ve ) o ,for e = 1, .e., k. Now, if the 

above conditions are not met then we find the change vector for the dual 

variables of the SUbsystems using relation (4.20). Then, we are ready to 

find the proportional change required in the allocation of the central-

ized resources to conform with the change in the dual variables. Of 

course we stop if 
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for all l (~.21) 

since that means that condition (~.7) has been met. 

Now to find the proportional change in the allocations we have to 

consider the percentage change of a subsystem dual variable with respect 

to the mean subsystem dual variable for one resource and then multiply 

this ratio by the mean of the partitions for that resource. Therefore 

we have 

r -t 
w t!i. (V' ( ) c:) 

i.e.! 

-6. wtz. (v~) 

~b:] J::,. ~ i tw,. (v~) (~42Ia) ve 
l=1 

for e = I, ••• , k 

and since the proportional change found could make the allocation 

infeasible by assigning negative amounts of resources to a sub-
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system if 

(4.22) 

we have to normalize the changes for the same resource, in other words 

for e = 

or in matrix form 

r = 

i 6. Vet 

( A i) I. (Avi)2. (A-L)~ 
~v + ~ + ••• + LlV i2. ~~ 1C2, 

• 

1, ••• , k , i == 1, ••• , m • 
o 

IIllv£ill Illlv;' II •.•• 11.6v:1.11 

116. v ~\II II II V': 2. II • • . • 11.6 V ~ 2 \I 

• 

(4.2) 

(4.24 ) 
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where every row is normalized. 

Now in order to find for each resource the maximum change in the 

indicated direction by the normalized row of the above matrix we have 

to consider only the negative changes. The new resource allocation 

which becomes first zero in the relation 

.~ v. 
(c, 

with an increase in t( I gives the maximum t that can be used for 

changing uniformly the allocations. We denote the maximum t . 
~ 

for 

2 
V • e, 

each row by Therefore, the new allocation matrix will be arrived 

at as shown in Figure 3. 

Now, to check for optimality we form the vector 

t
ll

lrl 
116v; 1/ 

o III. -------
t

A 116vA II L .ti 

d (4.26) 

t· ~16V' { II 
'" 0 2,"'0 

.. - - - - -- .. 



~ 

\ 
a· 

r 

\0 
r--

2-
vi! 

~ v 
11 

2-
V 1.1t'I. 

'- 2-
v~i . . • v"! 

2- 2-v . . . VJ(1 
U. 

• 
• 

2 f. 

VLIt'lIl • VIC ,"_ 

i 1 v.i -It l:J. L t [). !. ., ~ L 
vii. v~i • • • Ki ti.' vi.! t i.' v:z., • • • ti' v,,! 

vt. ! ! II ~ ! ~ 6 1 it ~ J 
V • . • V"2. 

t
l

• V 11 t,.. V 21 • • • t;i VJ(.I 
lit ,2z. 

+ 
• • • 
• • • 
• • 

V
L t- V! J - ~ 1. 

.., ~ ! I 6. i 
V 1M. • • • till; V i " o t JfI V1..,. · · t",.. V ""'0 

'lito """ . .. 

Figure 3 

Calculation of resource reallocation 
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and then we normalize it by 

II d II = 1 

Then by relation (3.100) if 

,_I -
w d ~O 

we have reached optimality. 

I I • SUMMARY OF THE PROCEDURE 

Step 1. Allocate to each sUbsystem initial amounts of 

resources resulting from the arbitrary partition of the vector of central 

resources such that 

Step 2. Obtain the optimal dual variables for 1, ••• k 

by solving the sUbsystems. 

Step 3. Obtuin the mean optimal dual variable for each single 

re~,ource by the formula 

mean i 1, ••• , mo i f'or 
k 
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Step 4. Obtain the changes for each optimal dual variable for 

each single resource by the formula 

= 

for i 1, ••• , m!', and I!= l, ••• ,k 

Step 5. If we(~;) * 0 go to Step 6, otherwise check mean i :- 0, 

for all i. If this holds/optimality has been reached and thus go to 

Step 13. Otherwise go to Step 7. 

Ste~ 6. Since W~(V;) is unrestricted for l= 1, ... , k check 

if 
-r we (v t) = "0 for t= 1, ... k. If this holds optimality has been 

reached and thus go to Step 13. Otherwise go to Step 7. 

Step 7. If = for all t then optimality has 

been reached and thus go to Step 13. Otherwise go to Step 8. 

Step 8. Calculate the changes for each resource partition by the 

formula 

6v!t 6. we,' (v[) ( b:) r>, -I" 
(v () 

for / = 1, ••• , k , 
c! .. t 
and i = 1, ••• , mo 

Step 9. Normalize the changes for the same resource 

6 v;;' 
II 6v~ \1 =--------­

t, -V ( /\ ,. a. 
+ ••• + ( UV"t) 
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Step 10. Calculate the maximum step • t, by considering only the 

negative changes 

t-' = max·t· = min __ t_c._~_ , 

( 

v~ ) 

, "16~~' 
t= 1, ••• , k 

for all i for which 6 ve~ is negative. 

Step 11. Find the new allocations 

for all i and ~, and go to Step 12. 

Step 12. Form the vector d as shown in (4.26) and normalize it 

I\dlf = 1 

If WI d ~ 0 

then optimality has been reached and therefore go to Step 13. 

Otherwise set r = r + 1 and go to Step 2. 

Step 13. The optimum partition of bo has been found and 

therefore the optimum for the whole system 

max = 

has been achieved, and therefore stop. 

The procedure has been programmed and the experimental program 

and a numerical example are given in the Appendices. 



CHAPIER V 

PRICE-RESOURCE DIRECTIVE COORDINATION: APPLICATIONS 

The Price-Resource Directive Coordination procedure will be used 

here for the optimization of large-scale systems of the economic and 

technological type. The examples selected are from the economic plan­

nin~ and industrial engineering fields and are such as to give good 

illustrations of the broad applicability of the procedure for decen­

tralized optimal planning or control in complex systems. Also, the 

examples will give economic and technological content to the various 

steps of the procedure. 

I. DECENTRALIZED OPrIMAL ECONOMIC PLANNING 

Consider the general system S, given in Figure 4, consisting of 

an arbitrary but finite number of interacting subsystems Se (e= 1, 

••• , k). For each subsystem twe can define a set of inputs I (i) 

arriving from the other subsystems and a set of outputs 0 (t) going to 

the other subsystems. 

With each branch leading from subsystem t to subsystem j we can 

associate in general a vector a~j which can be called the production 

of subsystem se delivered to the subsystem Sj. Then the vector 
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Figure 4. General system with interacting elements. 
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is the total production of subsystem l . 

If we assume that the production of the subsystems is delivered 

from subsystem to subsystem by stages and the process is finalized at a 

subsystem k + 1 , then the final production of the system will be 

total set of outputs = 

Also, we assume that the value ae is dependent linearly on the 

intensity of utilization of the means of production vector xe ' in 

other words 

= ( e 1, ••• , k) 

where B~ is the output matrix. 

The intensity of utilization of the means of production xe of 

each sUbsystem e depends on the delivery of production by the other 

subsystems of the system with which subsystem e is interacting. 

Also, xe depends on the resources to be found within the subsystem e 
The dependence of x( on external deliveries can be formulated 

mathematically as a constraint of mutual deliveries 

= (e = l, ••• , k) (5.4) 



where Ce is the cost matrix and GiJ' is the matrix of utilization of 

the deliveries. 

The dependence of x( on the eth subsystem resources can be 

given as 

= b~ ( t= 1, ••• , k) 

We also assume that the set of inputs to the whole system is 

given by 
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= (5.6) 

where the index 0 indicates external deliveries. 

Now, if the objective of the system s is to maximize the value 

of the final production for constant prices Pe ' and the subsystems are 

relatively independent, in the sense that for coordination to achieve 

the objective, no direct information is needed about the local resources 

and structure of each subsystem by the system s , the optimization 

problem for the whole system s can be divided into a number of extremal 

problems for each of the subsystems. 

Let the objective function of s be 

max z = 
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then by relation (5.3) and (5.1) - (5.6) we have 

max (5.8) 

subject to 

= 

C e Xl =6,' ae,i 
J E'L(~) 

(5.10) 

Dc. x Co = ~e (5.11) 

Now, if the deliveries aO,! are fixed at some level 

the problem (5.8) - (5-11) decomposes into k independent subproblems, 

whose solutions require only information available at the locel 

subsystem level. Therefore the subsystems have to solve their own 

problems according to the level of the deliveries according to 

From the preceding chapters we know that the achievement of the 

overall optimum for s can be accomplished by the Price-Resource 

Directive Coordination procedure. In this economic syst.em the "authorities" 

of the subsystems have several choices for establishing this type of 

coordination. One of them could be that they can select representatives 
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from each subsystem and create a "coordination committee." This 

coordination committee will be responsible for the optimum allocation of 

the common resources of the whole system s. The only information that 

the committee will need in every stage of the planning process from the 

subsystems reduces to messages on the values of production 

corresponding to the different amounts of resources ve ' and messages 

about the prices that each subsystem is willing to pay to acquire more 

of the common resources (the shadow prices). 

The job of the committee is very easy, since according to the Price-

Resource Directive Coordination procedure, the only thing they have to 

do is agree on what consitutes a fair average price and then find out the 

deviation of the prices offered by the SUbsystems. If a price is higher 

than the average they shift proportionally more common resources to 

that subsystem and reduce in the same proportion the common resources 

allocated to subsystems which gave prices less than the average. 

The information on the new allocations is transmitted to the 

subsystems which forces them to come up with new prices for the common 

resources more to the liking of the "coordination committee." 

In this manner, in a finite number of coordination committee 

decisions, the optimal allocation of common resources is achieved. 

And, of course, this happens when the SUbsystems transmit to the 

committee identical prices. Then, there is no preference and the 

committee disolves itself. 
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II. MULTIFURNACE ALUMINUM ALLOY BLENDING 

This example explores in brief the use that can be made of the 

Price-Resource Coordination procedure in the aluminum alloying indus­

try. It considers the problem of satisfying the requirements of an 

alloy or different alloys' specification most economically for consecu­

tive charges of one furnace, or charges for several furnaces to be 

charged simultaneously. 

The economical blending of an alloy is a complex process, but 

linear programming provides a means of examining all existing possible 

combinations and qUickly arriving at the most economical furnace 

charge.-

A single-furnace process encompasses one alloy and one furnace. 

Multifurnace processes m~y represent an entire alloying shop and 

several different alloy types. 

The sources of the various alloy elements are the available raw 

materials and constitute the problem activities. The required mini­

mization of the cost of blending will provide values for the intensity 

of utilization of the available raw materials. In our example, the 

activity intensities will be denoted by the vector 

Xe , t= 1, ••• , k 

where l stands for the appropriate furnace. 

Each single-furnace operates under certain constraints. These 

are: (a) element specifications (E.S.) which constraint the amount of 
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each ingredient metal that may be charged. The coefficients in each 

row of these constraints are the amounts of the element (represented by 

the row) in one pound of each activity (raw material), and (b) raw 

Thaterials availability constraints (R.M.A.) which are constraints on 

the maximum or minimum permissible l"=:v~l of utilization of the raw 

materials. 

The whole shop or factory which has k furnaces is constrained by 

the raw materials' availability and constraints which specify the 

amounts of different alloys to be blended. 

The objective of the whole operation being the minimization of 

the cost of blending, the total system objective function consists of 

the per-pound costs of each raw material multiplied by the intensity of 

utilization of that raw material. 

In mathematical programming modeling terms the example can be 

given as follows: 

Minimize total system cost -'-cx 

subject to 

Furnace Loads 
CENTRAL CONSTRAINTS 

Inventory 
Availability 

Alloy x Alloy x 
(E.S.) 

Furnace 1 (R.M.A.) 

Alloy y Alloy y 
(E.S.) 

Furnace 2 (R.M.A. ) 

• • • 
• · . · . . · . · . 
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As it can be seen, the multifurnace aluminum blending problem has 

a block-angular structure and therefore it can be solved by the Price­

Resource Directive Coordination procedure. As described in the 

previous chapters, this system can be decomposed by an initial allo­

cation, by the management of the enterprise, of the available raw 

materials to the different furnaces. Once this is done, each furnace 

forerean in his own computer time-sharing terminal calculates the cost 

of producing his assigned alloy for the initial raw materials allocated 

to him, and the variation in cost for a small change in this alloca­

tion. These two figures are sent to the management of the enterprise 

by each furnace foreman. The management calculates the average cost 

variation for the whole enterprise and the difference from this average 

for each furnace, then, according to this difference, proportionally 

allocates more raw materials to the furnaces that are below the average 

and less to those that are above the average. These new allocations 

are sent back to the furnace foremen for evaluation. This iterative 

process terminates when the management is satisfied that each furnace 

will change the cost in the same proportion given any change in 

allocation. 

The Price-Resource Directive Coordination procedure here, apart 

from solving the total enterprise optimization problem, also provides 

the management with a detailed picture of costing for each subsystem 

furnace which can reveal hidden equipment obsolescence or personnel 

overstaffing. 
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APPENDIX A 

NUMERICAL EXAMPLES 

Consider the following block-angular structured linear 

programming problem. 

Xl 

x2 

x 
3 

max z = G40, .72, .28, .64, .32, .60, .5~ x4 

Xs 

x6 

x7 
A.I subject to 

.05 .08 .80 .48 .05 .25 .3~ 
xl 

f205 

.10 .36 .85 .08 .48 .25 
x2 

140 .10 

.85 .99 
x3 

47 L. 

.38 .76 
x

4 
~l 

.44 .24 
Xs 

62 

.41 .69 .35 
x6 

100 
x7 

and all xi. 1!!: 0 I i. = i, ... ,7 



The solution of A.l utilizing a standard linear programming code 

without decomposition is as follows: 

THE VALUE OF THE OBJECTIVE FUNCTIONAL Z= 2.4810663E+02 
THE OPTL'-:!;L VALUES OF THE W\2IABLES X ARE [\S FOLLO\'IS 
X( 1)= o. 
XC 2)= 4.747~747E+Ol 
:.\( 3)= O. 
XC ~)= 1.0657895E+02 
:-('5)= O. 
Z( 6)= O. 

ZC 7)= 2.8571428E+02 
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TEE O?TE!AL VALUES OF TEE DUilL VAEIl\DLES ~,j ARE AS FOLLO~:S 
r,.}( 1)= O. 
~;' ( 2) = O. 
~(3)= 7.2727272E-Ol 
':J ( Ll) = S.4210526S-01 
\.' ( 5)= O. 
~} C 6)= 1.4571 L12GE+OO 

~ USED __ .. 2 .• 33 UNITS 

Now, we can refo~~ulate A.I into a Central System and three 

Subsystems. 

Maximize o/v) = 

- - -vi.' v2.' v,3 

subject to 
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where 

. §.u£.s1.s!e~ 1:. 

41<v1 ) ['40 .72J ~ll] ::: max 
;(1 x12 

subject to 

.05 .08 vII 

.10 .36 lXllJ !!if v12 

.85 .99 
x12 

47 

§.u~s1.s!e~ ~ 

cR<V2,) [28 .64J ~21l = max 
2- i, x22 

subject to 

.80 .48 v21 

.85 .08 

[~21J 
v22 ~ 

.38 .76 x22 81 

.44 .24 62 

§.u£.s1.s!e~ 1 

x31 

<k<vJ ) = max [32 .60 .5] x32 3 ~, 

x33 

subject to 

.05 .25 .31 IX31 v31 

.48 .25 .10 x32 
~ v32 

.41 .69 .35 
L....

x33 100 
--' I-. 
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We solve the decomposed system by the Price-Resource Directive Coordi-

nation procedure utilizing different initial feasible partitions of 

the Central System resource vector 

Solutions 

First Trial ------
Let the initial partition be 

v = [40J v2 = [noJ v3 = [55J 1 25 40 75' 
... - .. ------~------------------.---------~-- .. ---~------~- ....... ------.------------
: *oooOPTIMIZATION OF SUBSYSTEMS···· 
'.*.SUBSYSTEM 1*00 

Z= 3.4181818E+Ol 
PRIMAL VALUES 

'X( 1).:: 

XC 2)= 
SHADOW 
ts1< 1 i = 

O. 
4. 7474747E+Ol 

PRICES 
O. 

Wt 2)= O. 
~(3)~ 7.2727272E-Ol 
o*~SUBSYSTEM 2 •• 0 

!Z= 6.8210526E+Ol 
PRI~AL VALUES 
XC 1):= O. 
XC 2)~ 1.0657895E+02 
SHA.DOTo,l PRI CES 
\1{ 1)= O. 
V( 2)= O. 
W( 3)= 8.4210526E-Ol 
\tJ( 4) ~ O. 
~~~SUESYSTEM 3°*0 
Z= 1~1597171E+02 

?IUMAL VALUES 
X( 1)= 1.0720803E+02 
X( 2)= O. 
XC 3~~ 1.601277~E+02 

SHADOW P?ICES 
we 1)= Bo8594890E-Ol 
~!( 2)t; o. 

6.7244526E-Ol 



1 ••••• &~ •••• O •• * ••••••• 4 ••••••••••• * ••• * •••••••••• * 
I 

·CYCLE~ 1 -TOTAL SYSTEM OPTIMUM= 

·ALLOCATION CHANGES. 
···SUBSYSTEM i· •• 
TD( 1~ 1)= -2.2177777E+Ol 
TD( 2~ 1)= O. 

, H( 1~ 1)= 1.7222222E+Ol 
: RC 2~ 1)= 2.5000000E+Ol 
.···SUBSYSTEM 2*·· 
TD( 1, 2)= -2.2777777E+Ol 

·TD( 2~ 2)= O. 
R( 1~ 2)= S.1222222E+Ol 
R( 2, 2)= 4.0000000E+Ol 

···SUBSYSTEM 3· •• 
TD( 1~ 3)= 4.5555555E+Ol 
TD< 2~ 3)= O. 

I H< 1~ 3)~ 1.0055556E+02 
R< 2~ 3)~ 7.5000000E+Ol 

:····OPTIMIZATION OF SUBSYSTEMS •••• 
~~~SUBS'fSrE!1 1 *~ .. 
Z= 3.4181618£+01 
PRIMAL VALUES 
X( 1) = O. 
X< 2)= 4.7474741E+Ol 
SHADOW PRI CES 
W( 1) = O. 
\i( 2)= O. 
W( 3)= 7.2727272E-0. 
···SUBSYSTEM 2~·· 
Z= 6.8210526E+Ol 
PR1MAL VALUE'!; 
X( 1) = O. 
XC 2)= 1.0657895E+02 
SHf-\DOH PRI CES 
W< 1) = O. 
l,{, 2':: C~· 

W< 3)~ 8.4210526E-01 
; W( 4)12 O. 

2.1836406E+02· 
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; •• o·St'-BSY-STEi~i·j···--·-···-----·--···---·-·-····· 
'z= 1.4571428E+02 
: PRIMAL VALUES 
X( 1)= o. 

'X( 2)= O. 
X( 3)= 2.8511428E+02 
SHADOW PRICES 
W( 1)= o. 
W( 2)= O. 
W( 3): 1.4571428E+OO 

.CYCLE= 2 ~TOTAL SYSTEM OPTIMUM= 

-ALLOCATION CHANGES· 
**·SUBSYSTEM.1*·· 
TD( 1 ~ 1) = O. 

·TD( 2, 1)= O. 
R( 1~ 1)= 1.7222222£+01 
R( 2~ 1)= 2.5000000E+Ol 

*··SUBSYSTEM 2*** 
. TD ( 1, 2 ) = 0 • 

TDC 2, 2)= O. 
R( 1~ 2)= 8.7222222E+Ol 
H( 2, 2)= 4.0000000E+01 
~*~SUBSYSTEM 3-·· 

. TD (, 1, 3) = 0 • 
'TD( 2, 3)= O. 

I 

H( t~ 3)= t.0055556E+02 
R( 2, 3)= 7.5000000E+Ol 

2.4810663£+02* 

jPROGRAM STOP AT li40 o~~oo~~~oOPTI~ruM ACHIEVED 
I 
I 

\ USED 3.59 UNITS 

100 



Second Trial ------
Let the initial partition be 

[ 
5.0] 

v l = 25.0 
V2 = [59.0J 

40.0 

*O~*O?TIMIZATION OF SUBsYSTEMS··~* 
.o.SUBSYSTEM 1··· 
Z= 3.41818iBE+Ol 
PRIMAL VALUES 
X( 1 >= 0 .. 
X( 2)= 4. 7474747E+Ol 

. SHADOW PRICES 
·W( 1)= O. 
;W( 2)= O. 
;W( 3)= 7.2727272E-Ol 
.o.SUBSYSTEM 2··· 
Z= 6.S210526E+Ol 

.PRIMAL VALUES 
X< 1) a 0 to 

·X( 2)= 1.0657895E+02 
SHADOW PRICES 
W( 1) = O. 
W( 2)= O. 
W( 3>= 8.4210526E-Ol 
W( 4)= O • 
••• SUBSYSTEM 3*·· 
Z= 1.4571428E+02 
PRIMAL VALUES 
x< 1):: 0.-
XC 2)= O. 
X( ~)o 2=8571428g+02 
SHf-l.DOW PRI CES 
W< 1) = o. 
W( 2)= O. 
we 3)= 1.4571428E+OO 

*CYCLE= 1 *TOTAL SYSTEM OPTIMUM= 

101 

V3 = [141.0J 
75.0 

2.4810663E+02* 
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IOALLOCATION CHANGES. 

"

to •• SUBSYSTEM 1 ••• 
TD ( 1" 1) I: 0 •. 

;TD( 2" 1). O. 
i R( 1" 1)= 5.0000000E+00 
; RC 2. l)w 2.5000000E+Ol 
;···SUBSYSTEM 2 ••• 
i TD ( 1" 2 ) = 0 • 
:TD( 2" 2)= O. , 
i R( 1. 2). 5.9000000E+Ol 
I R< 2" 2)= 4.0000000E+Ol , 
!···SUBSYSTEM 3··. l 
iTD( 1" 3)21 O. 
r TD ( 2" 3 ) = 0 • 
, R( 1" 3)= 1.4100000E+02 

R( 2" 3)= 7.5000000E+Ol 

'PROGRAM STOP hT :140 •• ~~o ••• o··OPTlMUM ACHIEVED 

lUSED 3.36 UNITS 

Let the initial partition be 

v = rooool 
1 L 42 0 0J 

V2 = [33ool 
l!loOJ V3 = r2oO

] 
~700 
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I •• ··OPTIMIZATION OF SUBSYSTEMS.·.· 
: ·.·SUBSYSTEM 1°·· 

Z= 3.4181818E+Ol 
, PRIMAL VALUES 
:.X( 1)= O. 
'XC 2)= 4.747~747E+Ol 

SHADOW PRICES 
: W( 1)= O. 
,W( 2)= O. 
:W( 3)= 7.2727272E-Ol 
c ••• SUBSYSTEM 2 ••• 
·Z. 4.4000000E+Ol 
. PRIMAL VALUES 

X( 1)= O. 
X( 2)= 6. 8750000E+Ol 
SHADOW PRICES 
W( 1)= 1. 3333333E+00 
W( 2)= O. 
W( 3)= O. 
W( 1&)= O. 
···SUBSYSTEM 3··· 
Z= 8.6700000E+Ol 
PRIMAL VALUES 

: X( 1). o • 
. X( 2)a O. 
IX( 3)a 1.7000000E+02 

SHADOW PRICES 
I we 1) = 
: we 2)= 

we 3)111 

O. 
5.1000000E+00 
O. 

! •••••••••••••••••••••• ~ ••••••••••••••••••••••••••• 
:·CYCLE- 1 ·TOTAL SYSTEM OPTIMUM= 1.6488182E+02* 
' ................................................. . 
I·ALLOCATION CHANGES· 
i···SUBSYSTEM 1·.· 
:TD( 1, l)a -2.2777777E+Ol 
iTD( 2, 1)= -1.5555555E+Ol 
i B( 1, 1)= 7. 7222222E+Ol I R( 2, 1)= 2.6444445E+01 
,···SUBSYSTEM 2··· 
,TD( 1, 2)= 4.5555555E+Ol 

I'TD( 2, 2)= -1.5555555E+Ol 
H( 1, 2)8 7.8555555E+Ol I R( 2, 2)= 6. 5444445E+Ol 

t···SUBSYSTEM 3··· 
ITDi 1, 3)= -2.2777777E+Ol 
:TDe 2, 3i~ 3.1111111E+Ol 
; Re 1, 3)= 4.9222222E+Ol 
t R! 2; 3)= b.e8!!!!!lE+Ol 
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I 

; ··*·OPTIMIZATION OF SUBSYSTEMS**·· 
'···SUBSYSTEM I··· 
'Z= 3~4181818E+Ol 
PRIMAL VALUES 
X( 1)= O. 

:X( 2)= 4.7474747E+Ol 
, SHADOW PRICES 
. W( 1)12 O • 
. W( 2):11 O. 
l~( 3)= 7. 2727272E-Ol 
···SUBSYSTEM 2··· 
Z= 6.8210526E+Ol 

'PRIMAL VALUES 
.X( 1)= O. 
X( 2). 1.0657895E+02 
SHADOW PRICES 
W( 1)= O. 
W( 2). O. 
W( 3). 8.4210526E-Ol 
W( 4). O. 
···SUBSYSTEM 3··· 
z= 1.0476142E+02 
PRIMAL VALUES 
X( 1):11 4.3468147E+Ol 
X( 2). 7.1266718E+Ol 
X( 3)= 9.4297212E+Ol 
SHADOW PRI CES 
W( 1)= 1.!568427E+00 
W( 2). 2.3377919E-Ol 
W( 3). 3.6571673E-Ol 

•••••••••••••••••••••••••••••••••••••••••••••••••• 
·CYCLED 2 -TOTAL SYSTEM OPTIMUM= 2.0715376E.;.02· 
••••••••••••••••••••••••••••••••••• w •••••••••••• o. 

~ALLOCAT!ON CHANGES· 
··~SUBSYSTEM 1··· 
TD( 1, 1)= -2.2777777E+Ot 

.TDC 2. 1)= -1.5555555E+Ol 
RC 1~ 1)= 504444445E+Ol 
H( 2, 1)= 1.0888889E+Ol 

·.·SUBSYSTEM 2··· 
TD( 1# 2)= -2.2177717£+01 
TDC 2, 2)~ -1.5555555E+Ol 

B( 1# 2)= 5.S777778E+Ol 
B( 2# 2)= 4.9888889E+Ol 

···SUBSY3TEM 3.·· 
TD( 1. 3)e 4.5~5S556E+Ol 
TD(·2, 3): 3.1111111E+Ol 

104 
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R( 1, 3):11 9.4777779£+01 
R( 2. 3). 7. 9222222E+Ol . . 
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OO··OPTIMIZATION OF UBSYSTEMS···· 
oooSUBSYSTEM 100 • 

Z= 2.7710145E+Ol 
PRIMAL VALUES 
XC 1)= 2.9661834E+Ol 
XC 2)= 2.2007516E+Ol 
SHADOW PRICES 

_ WC 1)= O. 
W( 2)= 1.0434783E+00 
W( 3)= 3.4782609E-Ol 
··.SUBSYSTEM 2··· 
Z. 6.8210526E+Ol 

. PRIMAL VALUES 
X( 1)= O. 
XC 2)= 1.0657895E+02 
SHADOW PRI CES 

. W( 1) = o. 
we 2)= O. 
WC 3)= 8.4210526E-Ol 
WC 4)= O. 
···SUBSYSTEM 3··· 
z. 1.4571428E+02 

PRIMAL VALUES 
XC 1)= O. 
X( 2)= O. 
X( 3)= 2.8571428£+02 
SHADOW PRICES 
W( 1)= O. 
W( 2). O. 
W(3)= 1.4571428E+00 • 

·CYCLE= 3 ·TOTAL SYSTEM OPTIMUM= 

·ALLOCATION CHANGES· 
···SUBSYSTEM 1*«'· 
TD( 1 .. 1)= o. 
TD( 2 .. 1)= 3.1111111 E-<-O 1 

R( 1 .. 1 l= 5.4444445E+Ol 
RC 2 .. 1)= 4 .. 2000000E+Ol 

···SuBSYSTEM 2··· 
TDC 1 .. 2):: O. 
TD( 2 .. 2)= -1.5555555E+Ol 

RC 1 .. 2)= 5.5111778E+Ol 
RC 2 .. 2)= . 3.4333334E+Ol 

+O·SUBSYSTEM 3··· 
TD( 1 .. 3)1lI O. 
TDC 2 .. 3)= -1.5555555E+Ol 

R( 1 .. 3)= 9.4777779E+Ol 
fiC 2; ':('\= 6e3666667E+O! _. 

- . ._ ·r_ .. _ . __ ." .. "- -
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--'.'- ----_._._--------------------------
·""··OPTIMIZAT·ION OF SUBSySTEMS···· 
··.SUBSYSTEM 1*·· 
Zn 3.4181818E+Ol 
PRIMAL VAL.UES 
XC 1)11 O. 
X( 2)= 4.7474747£+01 
SHADOW PR! CES 
W( l)a o. 

-we 2): O. 
we 3)= 7.2727272E-Ol 
·.·SUBSYSTEM 2··· 
Z. 6.8210526£+01 
PRIMAL VAL.UES 
XC 1). O. 
X( 2)= 1.0657895£+02 
SHADOW PRICES 

,W( 1). O • 
. we 2). O •. 

we 3). 8.4210526£-01 
W( 4). O. 
···SUBSYSTEM 3··· 
ZII 1.4571428E+02 
PRU~L VALUES 
XC 1) = 0 @I 

X( 2)= O. 
xc 3)a 2.8511428E+02 
SHADOW PRICES 
W( 1)11 o. 
W( 2). O. 
we 3). 1.4511426£+00 

·CYCLE- 4 ·TOTAL SYSTEM OPTIMUM= 2.4810663E+02· 
•••••••••••••••••••••••••••••••••••••••••••••••••• 
-ALLOCATION CHANGES· 
···SUBSYSTEM i··· 
TDC I" 1)= O. 
TDC 2" 1)= O. 

R( I" 1)= S.4444445E+Oi 
RC 2" 1)= 4.2000000E+Ol 
.~·SUBSYSTEM 2··· 
TDC I" 2)= O. 

'TDC 2" 2)= O. 
ftC I" 2)= 5~5117778E+Ol 
HC 2" 2)~ 3~~333334E+Ol 

oooSUBSYSTEM 3· •• 
1'D C 1.. 3 ) ::a 0 • 
TDC 2" 3)= O. 

R( I" 3)a 9.4777719E+Ol 
R( 2" 3)a 6.3666667E+Ol 

PROGRAM STOP AT 111.10 •••• ,.._!'!.~ ••• OPTIMUM ACHIEVED 

USED . ~-C3 UNITS 
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DIMENSION TD(2015)ICHEC5) 
DIMENSION SA(20120),SCC20)ISRC20)IXOC20)IWO(20) 
DIMENSION A(20,20,5)ICC2015)IR(2015),XC20,S)IWC20,5).ZCS) 
DIMENSION CRe 20) 
INTEGER NRCS),NCC5),NECS)ICYCLE 
PRiNTI-INPUT NO. OF SUBPROELEMS & NO. OF CENTRAL CONSTR.­
INPUT lioJSINCC 
PRINT,-INPUT CENTRAL RESOURCES VECTOR­
INPUTI(CRCt)II=IINCC} 
PRINTI-INPUl DIMENSIONS,OBJ.COEF.ICOEF.HATRIXIRESOURCES­
DO 1 1..=l,NS 
INPUT~NRCL)INC(L)INECL) 

Kl =NRCL) 
K2cNCCL) 
INPUT,(CCJ,L),J=IIK2) 
INPUT,(CACI,J,L).J=1,K2)II=IIKl' 
INPUTICR(IIL).I-IIKI) 

1 CONTINUE 
CYCLE=O 

50 CYCLEcCYCLE+l 
C PREPARE DATA FOR SOLUTION BY MIN IT SUBROUTINE 

PRINT 13 . 
13 FORMATC//,lX,4(-·-),·OPTIMIZATION OF SUBSYSTEMS·,4(M~~» 

DO 11 L=I,NS 
Kl=NRCL) 
K2=NCCL) 
K3=NECL) 
DO 2 I=l,Kl 
SRCI)=R(I,L) 
DO 2 J a llK2 

2 SA(I,J)=ACIIJ,L> 
DO 3 J=lIK2 

3 SC(J)-=CCJIL) 
DD Tt.1T 9., _ T . ...... ..,., .. 

27 FORMAT(lX,··*·SUBSYSTEM-II2,-·**-,/) 

i iI 
I 
I 5 

I 6 
1 11 
!e 
! , 
i 
t 1 

CALL MINIT(Kl;K2;K3;SC;SA;SR;ZO~XO~WO~INSOL) 
GO TOC4,98),INSOL 
ZCL)=ZO 
DO 5 ,}.=-!.11 KP. 
X(J,L>=XOCJ) 
DO 6 I=l .. Kl 
WCI,L)=\r10Cl) 
CONTINUE 
SUM OBJ.FUNCTIO~ VALUES OF SUBPROBLEMS 
SUMZ=O~O 
DO 1 L=1,NS 
SUMZ u SUMZ,,· Z C L , 
PRINT 25 
PRINT 8~CYCLE,SUMZ 

25 FORMATCI/,IX.SOC-·-» 
i 

L .. __ _ -----_. ---------.~---,-.-.----. 
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26 FORMAT(IX,50C···)",) 
I 8 FORMATCIX,··CYCLEc·.12.2X.·.TOTAL SYSTEM OPTIMUMc·,lPEI6.7.-.·) 
I PRINT 26 I 
IC THROUGH SUBPROBLEM SHADOW PRICES CALCULATE CHANGES IN 
I 

iC ALLOCATION OF CENTRAL RESOURCES 
I DO 22 l=I,NCC 
:C SUM SUBPROBLEM SHADOW PRICES OF SAME COMMODITY 
! SUMWaO.O 

I
I DO 9 L=I.NS 
I 9 SUMWaSUMW+WCI.L) 
:C IF SHADOW PRICES SUM IS ZERO NO REALLOCATION IS WARRANTED 
I IFCSUMW)53,55.53 

I 5S CONTINUE 
DO 57 Lal.NS 

57 TDC I,L)=(l~O 
GO TO 22 

53 CONTINUE 
TNS=NS 
DO S9 L=I.NS 
TD(I,L)=(CRCI)'SUMW)·WCI.L)-CCRCI)'TNS) 
TD(I,L)=TD(I.L)/TNS 

S9 R(I.L)=RCI,L)+TDCI,L) 
~2 CONTINUE 

PRINT 715 

I"" DO 15 L=I,NS 
PRINT 27.L 

t DO 19 I-l,NCC 
I PRINT 66. I.L,TDC I.L) 

I 66 FORMATCIX,·TDC·,12,·,·,12,·)c·,IPE16.1) 
79 CONTlNUE 

I 18 FCRMATC1X,··ALLOCATION CHANGES··) 
19 FORMATC2X,·RC·,I2,·,·,12,·)=·,IPE16.1) 

DO 17 I a l.NCC 
PRINT 19,I,L,RCI,L) 

17 CONTINUE 
15 CONTINUE 

C CHECK OPTIMALITY 
NCC1=NCC+l 
TSUM=O.O 
DO 31 L=l.NS 
K2=NCCL) 
00 31 I cNCC1 .. K2 

31 TSUM=TSUM+RCI .. L)·WCI,L) 
DO 33 L=I,NS 
CSUM=O.O 
DO 35 I =I,NCC 

35 C5UM=C5UM+CRCI)*W(1,L) 
SSS=SUMZ-TSUM-C5UM 
IFCSSS)33.61 .. 33 

33 CONTINUE 



110 

---. -.. -- . '--'"7~--:-- -----.---------.-.. _ ........ '.':'"' ,-, ---:---:-----,.-,..,..-

GO TO 50 
67 PRINT 23 
23 FORMAT(//#IX,50C-··),-OPTIMUM ACHIEVED-) 

GO TO 99 
98 PRINT 24 
24 FORMAT(lX,·OPTlMUM NONEXISTENT-) 
99 STOPJEND 

SUBROUTINE MINITCM,N,E,SC,SA,SR,ZO,XO,WO,INSOL) 
DIMENSION SAC20,20),SC(20)#SRC20),XO(20),WO(20) 

DIMENSION AAC30,60),THMINC60),X(30),W<30),EKMAXC30) 
INTEGER ION(30),E#INDEX<60),INDEX1(30),IMINC60),JMAX(60) 
INTEGER TA,TB,R 
ME=M-EJM1=M+IJLCOL=M+N-E+l;ME1=ME+l 
DO 1 J=l,N 

l 1 AA(l,J)=-SCCJ) 
I DO 10 1=I,MEl 
i 10 AA(1,N+I)=O.O 

DO 5 1=1,1'1 
K=I+l 

I DO 5 J=l,N 
t, 5 AA(K, J)=SAC 1, J) 
! DO IS 1=2,MEl 
I DO I 5 J= 1 , ME 
! IF(J-I+I )20,25,20 
I 
I 25 AA<I,N+J)-1.0 

GO TO 15 
20 AACI,N+J)=O.O 
15 CONTINUE 
IFCE)30,35,30 
30 ME2=ME+2 

DO laO I-ME2,Ml 
DO 110 J=l,ME 

110 ~~(I,N+J)=OeO 
35 CONTINUE' 

DO 2 1=I,M 
K-l+l 

I 2 AA(K .. LCOL)=SRCI) 

\

' AA(l,LCOL)=O.O 
TAS=O.OOOOOOOOI 

i DO 45 1=2.Ml 
\. 45 ION( 1 )=0 

~ ~~C~~5~~9~~~;5a 
9999 Lr.llK=lJLCOLl-LCOL-l 

DO 55 Jal,LCOLl 
IF(AACl,J)+TAS)60,55,55 
60 INDEXCL)=JJL=L+l 

I 55 CO NT INUE 
! DO 65 1 =2,Ml 
I :IF(AA(I,LCOL)+TAS)70#65,65 

. -.. _. :. - ... : .. --.- .. _- _ ... - .... -_.": . ,~. ... ..•• ,-'~ .• _. __ ~ _____ "":"'_ .... ___ ... ~, ..... i_ .• 



- 10 INDEXl (K)=UK=K+l 
65 CONTINUE 
IF(L-l)7S.-60#75 
SO CONTINUE 
IF(K-l)S5,,99.65 
85 CONTINUE 
IFCK-2)9991,,90.9991 

. 90 CONTINUE 
DO' 95 J=l "LCOLl 

JJJ=INDEXl(l) 
IF(AA(JJJ.J»9991.95.95 
95 CONTINUE 
GO TO 96 
15 CONTINUE 
IF(L-2)3 .. 6#3 
6 CONTINUE 
IF(K-l >12 .. 9.12 
9 CC~,y!, ! ~J E 

DO 16 Ia2 .. Ml 
I I I =INDEX<1 ) 
IF(AACI.lII»l6 .. 16.9992 
16 CONTINUE 
GO TO 91 
12 GO TO 9993 
3 CONTINUE 
IF(K-l)9993 .. 9992,,9993 
9991 JUN=11GO TO 8888 
351 TA=IMAX;TB=JMJGO TO 6666 
9992 JAUGalJGO TO 5555 
'352 TA=IM1TB=JMIN1GO TO 6666 
9993 JAUG=2;GO TO 5555 
353 JUN=21GO TO 8888 
354 CONTINUE 
IF(RMIN-(10*o6»17.18 .. 11 
18 TA=IMAX1TB=JMJGO TO 6666 
11 CONTINUE 
IF(PMAX+(lO**6»19.2l,,19 _ 
21 TA=IM1TB=JMIN1GO TO 6666 
19 CONTINUE 
IF(ABS(PMAX)-ABSCRMIN»22,,22,,23 
22 TA=IM1TB=JMIN;GO TO 6666 
23 TA=IMAXJTB=JM;GO TO 6666 
91 PRINT .. -NO SOLUTION-
GO TO 1111 
97 PRINT.-PRIMAL OBJECTIVE FUNCTION 15 UNBOUNDED­
PRINT.-DUAL PROBLEM HAS NO FEASIBLE SOLUTIONS-
GO TO 1111 
98 PRINT,,-PRlMAL PROBLEM HAS NO FEASIBLE SOLUTION­
PRINT,,-DUAL OBJECTIVE FUNCTION IS UNBOUNDED-
GO TO 1111 

111 
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99 PRINT 555#AAC1~LCOL) 
ZO=AA( l .. LCOL) 

. DO 601 I=l~N 

I
I. 601 X C I ) =0.0 

DO 602 J=l~M' . 
. 602 W(J)=O 
! DO 603 I =2 .. Hl 
I IZON=IONCI) 

I'· IFCIONCI).GT.N)GO TO 6011 
IFCIONCI).Gl.O)60 TO 605 
GO TO 603 
.60~ IONCI)=OJGO TO 603 
~05 IX-IONCI)JX(IX)=AACI .. LCOL) 
603 CONTINUE 
PRINT 666 

:DO 61&0 I=I.pN 
XO(I)aXCl) 
640 PRINT 777 .. I .. XCI) 
LCOL1=LCOL-1JNI=N+l 

DO 650 J=Nl .. LCOLl 
650 WCJ-N)=AAC1,J) 
PRINT 888 
555 FORMATC1X,·Za-,lPEI6.7) 
666 FORMATCIX,-PRlMAL VALUES·) 

--~-.-...... .. 

777 FORMAT(IX,·XC-,I2,-)=-,lX,lPE16.7) 
888 FORMAT(IX,·SHADOW PRICES-) 

DO 660 J=Nl,LCOLI 
K=J-N 
WOCK>=WCK) 
660 PRINT 999,K .. WCK) 
999 FORMATCIX .. ·WC- .. 12 .. -)a-,IX,IPEI6.7) 

2222 LORA:::1 
GO TO 3333 
6666 LORA-=O 
3333 CONTINUE 
IFCTA)110,120,110 
110 CONTINUE 
IFCTB)115,120,115 
120 GOTO 91 

I 115 D=AACTA .. TB) 
DO 125 J=I",l,.COL 

125 AACTA".J)=AACTALcJ;/D 
Ml=M+l 

DO 1 30 1=1, M 1 
IFCI-TA)135,130,135 
135 CONTINUE 

, IFCAACI .. TB»140,130,140 
I 140 D=AAC I,TB) 
iDO 145 J=I.LCOL 
! 145 AACI,J)=AACI,J)-AACTA,J)OD 
I 

I 
I .•. 

112 
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139 CONTINUE 
ION(TA)aTB 
IF(LORA)225~9999~225 

5555 CONTINUE 
I RMINa lO.0··6JJMIN=0 
! LLL=L-lJM1=M+l 
1 DO 300 Ll =1 ~LLL 

I 
LOP=INDEXCL1) , 

. IHIN~LOP)=OJTHMINCLOP)=10o*6 
'DO 305 1=2"Ml 
IFC(AA(l"LOP).GT.TAS).AND.(AA(l~LCOL).GE.C-TAS»)GO 

GO TO 305 
306 THETA=AA(I.LCOL)/AACI.LOP) 
IFCtHETA.LT.THMINCLOP»GO TO 307 
GO TO 305 

. 307 THM!NCl,OP)=THETAJ IMINCl..OP)aI 
305 CONTINUE 
IF(T~lINCLOP)-10··6)3081309,,308 

309 G~;MA= 1 0··8 
GO TO 310 
308 GAMMA=THMIN(LOP)·AA(l"LOP) 
310 CONTINUE 
IF(GAMMA-RMIN)311.300,,300 

. 311 RMIN=GAMMAJJMIN-lNDEXCL1) 
.300 CONT INUE 
IF(JMIN)312.312.313 
313 IMaIMIN(JMIN) 
312 GOTO(3S2.353)"JAUG 
8888 CONTINUE 
PMAX=-10··6JlMAX=0 
KK=K-1JLOK=LCOL-l 

DO 400 Klal.KK 
INT=INDEXl (Kl ) 
JMAX(INT)=OJEKMAX(INT)=-10.O**6 

DO 405 J-l .. LOK 
IF«AA(INT .. J).LT.C-TAS».OR.(AAC1 .. J).GE.(-TAS»)GO 
GO TO 405 
406 DELTA=AA(l.J)/AA(INf.J) 
IFCDELTA-EKMAX(INT»405 .. 40S .. 407 
407 EKMAXCINT)=DELTAJJMAX(INT)aJ 
405 CONTINUE 
IF(EKMAXCINT)+10o*6)409 .. 408~409 
409 FlaF~MAX(INT)·AA(INT;LCOL) 
GO TO 410 
408 FI a"l 0·.8 
410 CONTINUE 
IFCFI-PMAX)400 .. 400 .. 411 
411 PMAX=FIJlMAXnINDEXICK1) 
400 CONTINUE 
IF(IMAX)413 .. 413~412 
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412 JM=JMAX(IMAX) 
413 GOTOC3S1~3S4)~JUN 
7777 CONTINUE 
MM=M-E+2,1Ml=M+l 

DO 210 I;:MM"MI 
IFCAACI"LCOL»2IS,,210,,210 
21S CONTINUE 

DO 220.J=1"LCOL 
,·220 AACI"J)=-AACI"J) 
I 210 CONTINUE 
IDO 225 Rel,E 

I RMIN=lO**6,1L=1 
DO 230 J=l"N 
I THMINCJ)=10*06 
1 IFCAACl"J»23S,,230,,230 
! 23S INDEXCL)=JJL=L+l 

230 CONTINUE 
IFCL-l)240,,24S,,240 
24S CONTINUE 

; DO 250 J=1"N 
, 2S0 INDEXCJ)=JIL=N+l 

240 Ll=L-l 
DO 2SS K=~,L1 

;DO 260 I=MM .. Ml 
i IFCION(I»260,,266,,260 

266 CONTINUE 
NOR=INDEX(K) 
IFCAACI .. NOR»260,260,267 
267 THETA=AA(I .. LCOL)/AACI,NOR) 
~FeTHETA-THMIN(NOR»266,,260 .. 260 
266 THMINCNOR)=THETA;lMIN(NOR)al 
260 JGG=INDEX(K)*AAC1 .. NOR) 
GAMMA=THMINeJGG) 
IFCCGAMMA.LT.~1IN).OR.(THMINeNOR).LT.IO*·6»GO 
GO TO 255 ~. 

210 RMIN=GAMMAJJMIN-INDEX(K) 
255 CONT I t-JUE 
IM=lMIN(JMIN) 
Gt) TO 2222 
225 CONTINUE 
INSOLe l 
GO TO 79 
1111 INSOL=2 
79 RETURN 
END 
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