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A concept of controlling Grover 
diffusion operator: a new approach 
to solve arbitrary Boolean-based 
problems
Ali Al-Bayaty  & Marek Perkowski

A controlled-diffusion operator for Boolean oracles is designed as a new approach for Grover’s 
algorithm to search for solutions for arbitrary logical structures of such oracles, since the Grover 
diffusion operator is not able to find correct solutions for some logical structures of Boolean oracles. We 
also show that the Phase oracles do not work sometimes correctly using the Grover diffusion operator. 
Our proposed controlled-diffusion operator relies on the states of output qubit, as the reflection of 
Boolean decisions from a Boolean oracle without relying on the phase kickback. We prove that on 
many examples of Boolean and Phase oracles the Grover diffusion operator is not working correctly. 
The oracles in these examples are constructed using different structures of POS, SOP, ESOP, CSP-SAT, 
and XOR-SAT. Our mathematical models and experiments prove that the proposed controlled-diffusion 
operator successfully searches for all solutions for all Boolean oracles regardless of their different 
logical structures.

Keywords Grover’s algorithm, Grover diffusion operator, Controlled-diffusion operator, Boolean oracle, 
Phase oracle, Logical structures

Grover’s algorithm1–5 is the most well-known quantum search algorithm to find solutions for both Boolean 
and Phase oracles with quadratic speedup, and to construct other quantum algorithms, such as the quantum 
counting algorithm4,6–8. The papers of L. K. Grover1,2 introduced Grover’s algorithm for the Phase oracles, and 
his paper3 presented Grover’s algorithm for the Boolean oracles. Although the quantum circuit of a Phase oracle 
usually utilizes fewer qubits and requires less quantum gates than the quantum circuit of a Boolean oracle9, 
the Boolean oracles are very useful because they are reversible binary circuits that can be easily converted 
from classical Boolean circuits. In the classical domain, an NP-complete problem4,5,10 can be expressed as a 
sequential exercise of a classical Boolean oracle. The designer can construct a classical Boolean oracle using 
different Boolean structures, such as Product-Of-Sums (POS)11, Sum-Of-Products (SOP)12, Exclusive-or Sum-
Of-Products (ESOP)13–16, XOR-Satisfiability (XOR-SAT)17–19, just to name a few. These Boolean structures 
utilize classical Boolean gates, e.g., NOT, AND, OR, etc. Classical Boolean oracles are then transformed into 
their equivalent quantum Boolean oracle using reversible quantum gates. There are many known methods to 
synthesize and optimize quantum reversible circuits. For instance, the reversible quantum gates for a quantum 
Boolean oracle can be designed based on their classical truth tables, De Morgan’s Laws20, Algebraic Normal 
Form (ANF) (or Reed-Muller expansion)21–23, and ESOP synthesis13–16, depending on the functionality of a 
problem. The designer familiar with classical digital systems uses hierarchical blocks, such as arithmetic circuits, 
comparators, counters, etc., to design the Boolean reversible circuit of a quantum Boolean oracle.

When the reversible quantum gates are designed for flipping the states of input qubits, i.e., from |0〉 to |1〉 or 
vice versa, then the final quantum oracle is termed the “Boolean oracle”. However, when the reversible quantum 
gates are designed for inverting the phases of input qubits (q), i.e., from +|q〉 to –|q〉 or vice versa, then the final 
quantum oracle is termed the “Phase oracle”. Hence, a Boolean oracle is built from “quantum Boolean-based 
gates”, while a Phase oracle is built from “quantum phase-based gates”. The Boolean or Phase oracle is then 
evaluated using Grover’s algorithm, in the evaluation complexity of O

(√
N
)

 for one solution (one marked 

element) or in O
(
π
4

√
N
k

)
  for k solutions (k marked elements). The evaluation complexity is the so-called 
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“Grover iterations” or “Grover loops”. In binary quantum computing, N = 2n, where n is the total number of 
input qubits for an oracle that Grover’s algorithm utilizes them to solve a problem.

In general, Grover’s algorithm consists of three components, which we termed them the “Blocks” in this 
article:

 1.  “Block1” initializes n input qubits to a uniform distribution using Hadamard (H) gates. The H gates im-
pose all n input qubits into uniform superposition states, to generate a complete quantum search space of 
{|0⟩ , |1⟩ }⊗n for Grover’s algorithm to search for marked elements (solutions). The H gates are considered as 
an implicit generator for Grover’s algorithm.

 2.  “Block2” consists of a Boolean or Phase oracle that adds negative phases to marked elements, i.e., inverts the 
phases of vectors of input qubits as the “first rotation of solutions” over the complete quantum search space. 
Such phase inversion occurs due to the phase kickback for a Boolean oracle, or due to the effect of quantum 
phase-based gates on the input qubits for a Phase oracle.

 3.  “Block3” consists of the Grover diffusion operator that performs the “second rotation of solutions”, through 
the conditional phase shift and phase inversion, by rotating and amplifying the amplitudes of the marked 
elements from Block2. Note that both Block2 and Block3 are treated as one Grover iteration.

For a Boolean oracle, the output qubit ensures the phase kickback on the marked elements, when the output 
qubit is initially set to the state of |–⟩. In our article, the output qubit is termed the “functional qubit (fqubit)”. 
However, neither the fqubit nor the phase kickback is utilized for a Phase oracle, since the inversion of phases 
is implicitly performed using quantum phase-based gates, e.g., Pauli-Z gate (Z), controlled-Z gate (CZ), and 
similar gates. For instance, to solve a problem using Grover’s algorithm1–5 with Block1 in one Grover iteration, 
we need the following:

• The Boolean oracle (UB) of input qubits (q) represents a problem by utilizing the fqubit as an output qubit; 
such that f (q, fqubit) : UB |q , fqubit⟩ → |q , fqubit⊕ f (q)⟩, i.e., the f(q) is encoded in the fqubit as com-
putational basis states of |0〉 (a non-solution) and |1〉 (a solution).

• The phase kickback reflects the solution of UB in the encoded states of fqubit to the input qubits as phase 
inversion; such that f (q,−) : UB |q , −⟩ → (−1)f(q) |q , −⟩, i.e., the phase kickback occurs when the fqubit 
initially sets to the state of |–〉, and the solution is now represented by the inverted phase (–) on the vectors of 
input qubits (as one marked element).

• The Phase oracle (UP) of input qubits (q) represents a problem without utilizing the fqubit and the phase kick-
back; such that f (q) : UP |q ⟩ → (−1)f(q) |q ⟩, i.e., the solution is directly represented by the inverted phase 
(–) on the vectors of input qubits (as one marked element).

• The Grover diffusion operator rotates and amplifies the amplitude of the marked element, in which it is then 
measured as the highest probability as the solution for a problem, in the classical domain.

For a complete Gover’s algorithm, Block1 and all O
(√

N
)

 Grover iterations (repetitions of Block2 and Block3) 
are applied at once to search for one marked element, and then all n input qubits are classically measured to 
observe the highest probability as one solution1–3. However, in our modified method of Grover’s algorithm, we 
apply Block1 and one Grover iteration, if a solution is not observed after measurement, then Block1 and two 
Grover iterations are re-applied, and so on until all k solutions are observed in O

(
π
4

√
N
k

)
 for k ≥ 1, as illustrated 

in Fig. 1a. Moreover, the components of the Us operator are operationally demonstrated in Fig. 1b.
In the terminology of Grover’s algorithm, (i) a Boolean or Phase oracle is denoted as Uω, where U states 

for “unitary” and ω states for “winner” (as a marked element), and (ii) Grover diffusion operator is denoted 
as Us, where s states for “search”. Such that, a Uω evaluates a problem for one marked element and a number of 
unmarked elements. All marked and unmarked elements have equally normalized amplitudes 

(
1√
N

)
. Thereafter, 

the Us operator searches only for the marked element by rotating and amplifying its amplitude 
(
> 1√

N

)
 as well 

as decreasing the amplitudes of unmarked elements 
(
< 1√

N

)
, in one Grover iteration1–5.

Before the Us operator rotates and amplifies the amplitude of a marked element, a Boolean or Phase oracle 
(Uω) needs to be uncomputed to ensure that all its ancillae are reset to their initial states of |0〉. Resetting the 
ancillae ensures to re-utilize them for further Grover iterations, and such a resetting is achieved by reversing 
(mirroring) the Uω, except for its “collector gate”. Note that (i) if a Uω (Boolean or Phase oracle) does not utilize 
any ancillae in its design, then the mirroring is not needed, and (ii) the collector gate of a Uω (Phase oracle only) 
is implicitly fused with the other quantum phase-based gates depending on the design implementation9,24. For 
that, the total number of utilized qubits decreases for Phase oracles and increases for Boolean oracles. Depending 
on the design implementation, Phase oracles are mainly utilizing n input qubits with almost no ancillae, while 
Boolean oracles are mostly utilizing n input qubits, m ancilla qubits (ancillae), and one fqubit, where n ≥ 2 and 
m ≥ 0.

Definition 1: The collector gate is the junction gate(s) associated with the clause(s) of literal(s) for a Boolean 
structure that defines a Boolean oracle. Such that, (i) the collector gate for a Boolean structure in conjunctive 
normal form (CNF)25, also called POS, is the conjunction AND gate(s) for the disjunction OR clause(s) of 
literal(s), (ii) the collector gate for a Boolean structure in disjunctive normal form (DNF)26, also called SOP, is 
the disjunction OR gate(s) for the conjunction AND clause(s) of literal(s), (iii) the collector gate for a Boolean 
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structure in ESOP is the XOR gate(s) for the conjunction AND clause(s) of literal(s), just to name a few. The 
literals are the inputs of the Boolean structure for a Boolean oracle.

For instance, the Boolean oracle (Uω) for a problem in the Boolean structure of (a⊕ b) ∧ (¬a⊕ ¬b) consists of 
(i) the conjunctive AND gate, i.e., the collector gate as Toffoli gate, and (ii) two XOR clauses for the literals (a 
and b), as illustrated in Fig. 1c, where the Uω is surrounded by the blue rectangle, the collector gate is located in 
the green area, and the mirror (uncompute) is surrounded by the orange rectangle.

In this article, our work shows that Grover diffusion operator (Us) successfully searches for solutions when 
the collector gate for a Boolean oracle (Uω) is expressed in the form of Boolean AND gate, for the Boolean 

Fig. 1. Schematics of Grover’s algorithms, Boolean oracles, a collector gate, and quantum operators: (a) 
Grover’s algorithm for n input qubits, m ancilla qubits, one functional qubit (fqubit), n classical bits (for final 
measurement), Block1 consists of H gates for n input qubits, Block2 is a Boolean oracle (Uω), Block3 is Grover 
diffusion operator (Us), and the number of Grover iterations, (b) the components and functionalities of 
Grover diffusion operator (Us) for the second rotation operation (H), conditional phase shift (X), and phase 
inversion (Z0), (c) the quantum Boolean-based problem in the Boolean structure of (a⊕ b) ∧ (¬a⊕ ¬b)
, as a Boolean oracle (Uω), the collector gate is in the form of Boolean AND gate (Toffoli in green), and the 
mirror (uncomputing part) of Uω, (d) Grover’s algorithm for n input qubits, m ancilla qubits, one fqubit, n 
classical bits (for final measurement), Block1 consists of H gates for n input qubits, Block2 is a Boolean oracle 
(Uω), Block3 is our proposed controlled-diffusion operator (CUs), and the number of Grover iterations, and 
(e) the components and functionalities of our controlled-diffusion operator (CUs) for the second rotation 
operation (H), conditional phase shift (X), and controlled phase inversion (CZ0) by the states of fqubit. Where 
n ≥ 2, m ≥ 0, N = 2n, and k ≥ 1 solution (marked element). Note: Grover’s algorithm for a Phase oracle can be 
constructed similarly as in (a), without the fqubit and the number of ancillae varies depending on the circuit 
design of a Phase oracle.
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structures of AND-XOR, ESOP, and a few of POS! However, the Us operator fails to search for solutions when the 
collector gate for a Boolean oracle (Uω) is expressed in different Boolean gates, such as NAND, OR, or XNOR, 
for different Boolean structures, e.g., OR-XOR and SOP. That means the phase kickback does not effectively 
invert the phase of a marked element, as a solution, for a Boolean oracle built from quantum Boolean-based 
gates. Similarly, the Us operator either succeeds or fails for a Phase oracle equivalent to a Boolean oracle for the 
same problem!

For such a reason, our work redesigns Grover diffusion operator (Us) to the controlled-diffusion operator 
that searches for solutions based on the computational basis states of fqubit, i.e., |0〉 and |1〉, instead of relying on 
the phase kickback, for Boolean oracles only. Our controlled-diffusion operator is substantially the Us operator 
that is controlled by the states of fqubit. The states of fqubit act as the controlling signals that inform the Us 
operator to distinguish between the unmarked element (a non-solution) and the marked element (a solution). 
For the controlled-diffusion operator, the fqubit is initially set to the state of |0〉 instead of |–〉, so the collector 
gate of a Boolean oracle (Uω) just flips a state of fqubit from |0〉 to |1〉 to indicate a marked element, or the 
state of fqubit remains at |0〉 to indicate an unmarked element. Both indications are then utilized to signal the 
controlled-diffusion operator.

Consequently, our proposed controlled-diffusion operator is denoted as the “Controlled-Us (CUs)” operator. 
As mathematically and experimentally proved in this article (and in the “Supplementary Information”), the CUs 
operator successfully searches for all k solutions for arbitrary Boolean oracles regardless of their (i) different 
Boolean structures and (ii) different Boolean forms of collector gates, in O

(
π
4

√
N
k

)
 Grover iterations for k ≥ 1.

For Grover’s algorithm, the CUs operator is designed to search for all k solutions for Boolean oracles based on 
the states of fqubit. However, the CUs operator is not designed for Phase oracles since the fqubit is not utilized 
in their quantum circuits design. Note that, for a Boolean oracle (Uω), (i) the Us operator searches for solutions 
by rotating and amplifying the amplitudes of marked elements throughout the reflection of phase kickback from 
the fqubit to Uω, in O

(
π
4

√
N
k

)
 Grover iterations, while (ii) our CUs operator searches for solutions by rotating 

and amplifying the amplitudes of marked elements throughout the reflection of Boolean decisions from the 
collector gate of Uω to the states of fqubit, in O

(
π
4

√
N
k

)
 Grover iterations.

The CUs operator follows the same structural design of Grover’s algorithm using the aforementioned three 
blocks, except for the fqubit that initially sets to the |0〉 state, since the phase kickback is not utilized in our design 
methodology. Figure 1d illustrates the workflow of Grover’s algorithm of CUs operator, and the components 
and functionalities of the CUs operator are demonstrated in Fig. 1e. Note that, in Fig. 1e, Pauli-X gates of the 
conditional phase shift are added to fqubit to match the working philosophy of Us operator as well, i.e., CZ0 ≡ Z0, 
(as it is discussed further in the “Supplementary Information”).

Our work is concentrated on implementing Grover’s algorithm of CUs operator to search for all solutions for 
Boolean oracles, due to the reasons of (i) Boolean oracles are easier and more straightforward in design using 
quantum Boolean-based gates (X, CX, CCX) rather than quantum phase-based gates (Z, CZ, CCZ), (ii) the 
quantum Boolean-based gates can be directly realized using the truth tables or De Morgan’s Laws for classical 
Boolean gates, (iii) the quantum Boolean-based gates and their qubits can be easily analyzed using classical 
Boolean Logic, i.e., a Boolean Logic of ‘0’ represents a quantum state of |0〉 and a Boolean Logic of ‘1’ represents 
a quantum state of |1〉, and (iv) Boolean oracles consists of collector gates that easily flip the states of fqubit to 
indicate the marked elements (solutions), while collector gates are not utilized in Phase oracles.

In this article, arbitrary problems are designed as Boolean and Phase oracles, and then these oracles are 
evaluated using Grover’s algorithm of Us operator (for both Boolean and Phase oracles) and using Grover’s 
algorithm of CUs operator (for Boolean oracles only). Subsequently, the two Grover’s algorithms for Us and 
CUs operators, respectively, are compared in the manner of (i) their ability to search for all solutions and (ii) 
how many Grover iterations are required. These Boolean and Phase oracles are chosen to represent different 
applications in the Boolean structures of primitive Boolean gates (NOT, AND, NAND, OR, NOR, XOR, and 
XNOR), POS, SOP, ESOP, 1-bit ORed half-adder27, 2-bit inequality comparator27, 3-node graph coloring28,29, 
and 2 × 2 Sudoku game30,31. Concluding that Grover’s algorithm of Us operator only solves Boolean oracles (and 
their equivalent Phase oracles), when their collector gates are in the form of Boolean AND gates for the Boolean 
structures of ESOP, AND-XOR, and a few of POS. While Grover’s algorithm of CUs operator successfully solves 
all Boolean oracles regardless of their Boolean structures and the Boolean forms of their collector gates. For 
solved applications, both Grover’s algorithms of Us and CUs operators find similar solutions for the same Grover 
iterations.

Different research papers, for instance in9,32–35, evaluated Boolean and Phase oracles using Grover’s algorithm 

of Us operator, in the manner of (i) reducing Grover iterations for ≤ O
(
π
4

√
N
k

)
, and (ii) converting Boolean 

oracles to Phase oracles for a fewer number of quantum gates and qubits. To the best of our knowledge, all 
these propositions and implementations were performed using Grover’s algorithm of Us operator, which totally 
depends on the phase kickback for a Boolean oracle and the phase inversion for a Phase oracle. In9,32–35, we 
noticed that all collector gates for Boolean oracles are constructed in the form of Boolean AND gate (as the 
Toffoli gate), and in the form of multiple-controlled Z gate (as the Toffoli-based) for Phase oracles. However, 
none of these papers realized the collector gates in other forms of Boolean gates, such as NAND and OR. 
Consequently, the following questions may arise when solving problems using Grover’s algorithm of Us operator:
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1. How does Grover’s algorithm solve an oracle problem formulated in the Boolean structure of SOP? Grover’s 
algorithm of Us operator is not able to solve the corresponding oracle in the structure of SOP!
2. How does Grover’s algorithm solve any oracle problem formulated in any Boolean structure with NAND or 
NOR as a collector gate? Grover’s algorithm of Us operator is not able to solve any oracle in such structures!

In this article, our research focuses on solving arbitrary problems that are transformed into Boolean oracles of 
various Boolean forms of collector gates and in different Boolean structures. For that, we design and propose the 
controlled-diffusion operator (CUs) for Grover’s algorithm to successfully search for all k solutions for Boolean 
oracles only, in O

(
π
4

√
N
k

)
Grover iterations for k ≥ 1 solution, as compared to such non-solvable problems when 

using Grover’s algorithm of Grover diffusion operator (Us) for Boolean and Phase oracles.

Results
In the classical domain, arbitrary problems are designed in the Boolean structures of classical Boolean gates, 
POS, SOP, ESOP, digital logic circuits, constraint satisfaction problems–satisfiability (CSP-SAT)29,36, and XOR-
SAT. Thereafter, these designed problems are transformed into their equivalent Boolean and Phase oracles (Uω) 
using quantum Boolean-based gates and quantum Phase-based gates, respectively. To solve these designed 
problems and search for all their solutions in the quantum domain, their oracles of different collector gates, 
which are chosen based on the purpose of classical applications, are evaluated using Grover’s algorithm of Us 
operator for Boolean and Phase oracles and Grover’s algorithm of CUs operator for Boolean oracles only, in 
O
(
π
4

√
N
k

)
 Grover iterations, where N = 2 (total no. of input qubits) and k ≥ 1 solution.

In our work, the CUs operator successfully searches for all solutions for Boolean oracles regardless of their 
various Boolean forms of collector gates. While the Us operator only searches for solutions for Boolean and 
Phase oracles when their collector gates are in the form of Boolean AND gate, and it fails on other Boolean 
forms of collector gates. For ease of illustrating the purpose of our proposed CUs operator as compared to the 
Us operator, the Boolean and Phase oracles (Block2) are only sketched without the other components (Block1 
and Block3) of Grover’s algorithm as well as the measurements. Note that the complete Grover’s algorithms for 
both operators (Us and CUs) follow the previously illustrated constructions in Fig. 1a and Fig. 1d, respectively.

The IBM Quantum Platform was utilized to design Boolean and Phase oracles, implement both operators (Us 
and CUs), and perform Grover’s algorithm to solve the problems. Grover’s algorithm was simulated using the 
quantum simulator (ibmq_qasm_simulator) with 1024 resampling simulation times (as shots)37. However, the 
time of simulations (as a speed comparison factor) is not considered in this article, since such a factor varies and 
depends on (i) the current usage of this on-the-cloud simulator and (ii) the internet speed. The Boolean oracles 
are constructed using the truth tables and De Morgan’s Laws of their transformed classical Boolean gates, while 
the Phase oracles are directly generated using the Qiskit instruction (PhaseOracle)24.

Oracles of primitive boolean gates
The following Boolean and Phase oracles are designed as single collector gates using a primitive form of Boolean 
gates (NOT, AND, NAND, OR, NOR, XOR, and XNOR). The Boolean oracles of all primitive Boolean gates have 
two input qubits and one output qubit (fqubit), except for the Boolean NOT oracle that has one input qubit and 
one fqubit. Thus, these Boolean oracles imitate the same architecture of classical Boolean gates in the quantum 
domain.

(i) The Boolean oracle for the classical Boolean NOT gate is designed, as shown in Fig. 2a. The CUs operator 
successfully searches for the solution, as shown in Fig. 2b. While the Us operator cannot be constructed for 
such an architecture of classical Boolean NOT gate for Boolean and Phase oracles! Hence, the CUs operator 
shows its advantage over the Us operator in searching for solutions for further arbitrary Boolean oracles, when 
their collector gates are associated with the form of Boolean NOT gate, such as NAND, NOR, and XNOR. 
For this primitive Boolean gate, its Boolean oracle is generated using the Boolean structure of (¬a) based on 
NOT’s truth table.
(ii) The Phase oracle for the classical Boolean AND gate is simply the controlled-Z gate (CZ), as illustrated 
in Fig. 2c, and its Boolean oracle is simply the Toffoli gate, as shown in Fig. 2d. The Us operator successfully 
searches for the solution for the Phase and Boolean oracles, as demonstrated in Fig. 2e and Fig. 2f, respective-
ly. Also, the CUs operator successfully searches for the solution for the Boolean oracle, as presented in Fig. 2g. 
Boolean and Phase oracles are generated using the Boolean structure of (a ∧ b) based on AND’s truth table.
(iii) The Phase and Boolean oracles for the classical Boolean NAND gate are designed, as shown in Fig. 2h and 
Fig. 2i, respectively. The CUs operator successfully searches for all solutions for the Boolean oracle, as illus-
trated in Fig. 2l, while the Us operator fails to search for solutions for Phase and Boolean oracles, as shown in 
Fig. 2j and Fig. 2k, respectively. We noticed that the Us operator treats these Phase and Boolean NAND oracles 
as Phase and Boolean AND oracles! Therefore, the CUs operator shows its advantage over the Us operator in 
searching for all solutions for further arbitrary Boolean oracles, when their collector gates are in the form 
of Boolean NAND gate. For this primitive Boolean gate, Boolean and Phase oracles are generated using the 
Boolean structure of ¬ (a ∧ b) based on NAND’s truth table.
(iv) The Boolean and Phase oracles for the classical Boolean OR gate are designed using either the OR’s truth 
table or De Morgan’s Law. Note that both designs have the same ORing functionality. Phase and Boolean or-
acles are generated using the Boolean structure of (a ∨ b) based on OR’s truth table, as shown in Fig. 3a and 
Fig. 3b, respectively. Moreover, the Boolean oracle can be designed using the Boolean structure of ¬ (¬a ∧ ¬b) 
based on De Morgan’s Laws, as presented in Fig. 3c. The CUs operator successfully searches for all solutions 
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Fig. 2. Boolean and Phase oracles for classical primitive Boolean gates (NOT, AND, NAND) with the final 
measured solutions using the Us and CUs operators: (a) Boolean oracle of classical Boolean NOT gate, this 
Boolean gate cannot be implemented as Phase oracle, (b) the solution for Boolean NOT oracle using the CUs 
operator, (c) Phase oracle of classical Boolean AND gate, (d) Boolean oracle of classical Boolean AND gate, 
(e) the solution for Phase AND oracle using the Us operator, (f) the solution for Boolean AND oracle using 
the Us operator, (g) the solution for Boolean AND oracle using the CUs operator, (h) Phase oracle of classical 
Boolean NAND gate, (i) Boolean oracle of classical Boolean NAND gate, (j) the non-solution for Phase NAND 
oracle using the Us operator, (k) the non-solution for Boolean NAND oracle using the Us operator, and (l) the 
solutions for Boolean NAND oracle using the CUs operator. Note: the CUs operator successfully searches for all 
solutions for all Boolean oracles of classical primitive Boolean gates (NOT, AND, and NAND).
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for the Boolean oracle, as shown in Fig. 3f, while the Us operator fails to search for solutions for Phase and 
Boolean oracles, as demonstrated in Fig. 3d and Fig. 3e, respectively. We noticed that the Us operator treats 
these Boolean and Phase OR oracles as Boolean and Phase NOR oracles! Concluding that the CUs operator 
shows its advantage over the Us operator in searching for solutions for collector gates in the form of Boolean 
OR gate.
(v) The Boolean oracle for the classical Boolean NOR gate is designed using either the NOR’s truth table or 
De Morgan’s Law, or simply by negating the Boolean OR oracles, as shown in Fig. 3h and Fig. 3i, respectively. 
Note that both designs have the same NORing functionality. While the Phase oracle is generated using any 
design, as demonstrated in Fig. 3g. Both operators (Us and CUs) successfully search for solutions for Boolean 
and Phase oracles, as shown in Fig. 3j–l. Boolean and Phase oracles are generated using the Boolean structure 

Fig. 3. Boolean and Phase oracles for classical primitive Boolean gates (OR and NOR) with the final measured 
solutions using the Us and CUs operators: (a) Phase oracle of classical Boolean OR gate, (b) Boolean oracle 
of classical Boolean OR gate from the OR’s truth table, (c) Boolean oracle of classical Boolean OR gate from 
De Morgan’s Law of ¬ (¬a ∧ ¬b), (d) the non-solution for Phase OR oracle using the Us operator, (e) the 
non-solution for Boolean OR oracle using the Us operator, (f) the solutions for Boolean OR oracle using the 
CUs operator, (g) Phase oracle of classical Boolean NOR gate, (h) Boolean oracle of classical Boolean NOR 
gate from the NOR’s truth table, (i) Boolean oracle of classical Boolean NOR gate from De Morgan’s Law of 
(¬a ∧ ¬b), (j) the solution for Phase NOR oracle using the Us operator, (k) the solution for Boolean NOR 
oracle using the Us operator, and (l) the solution for Boolean NOR oracle using the CUs operator. Note: the CUs 
operator successfully searches for all solutions for all Boolean oracles of classical primitive Boolean gates (OR 
and NOR).
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of ¬ (a ∨ b) based on NOR’s truth table or from the Boolean structure of (¬a ∧ ¬b) based on De Morgan’s 
Laws.
(vi) The Boolean oracle for the classical Boolean XOR gate is designed using either the XOR’s truth table or 
the composite (in-cascade) design, as shown in Fig. 4b and Fig. 4c, respectively. Note that both designs have 
the same XORing functionality. While the Phase oracle is generated using any design, as demonstrated in 
Fig. 4a. The CUs operator successfully searches for all solutions for the Boolean oracle, as illustrated in Fig. 4f, 
while the Us operator fails for Phase and Boolean oracles, as demonstrated in Fig. 4d and Fig. 4e, respective-
ly. Hence, the CUs operator shows its advantage over the Us operator in searching for solutions for further 
arbitrary Boolean oracles when their collector gates are in the form of Boolean XOR gates. Note that when 
searching for solutions for Boolean oracles in the Boolean structure of ESOP using the Us operator, the im-
plicit XORing functionality of fqubit is utilized, i.e., without using a collector gate in the form of Boolean XOR 

Fig. 4. Boolean and Phase oracles for classical primitive Boolean gates (XOR and XNOR) with the final 
measured solutions using the Us and CUs operators: (a) Phase oracle of classical Boolean XOR gate, (b) 
Boolean oracle of classical Boolean XOR gate from the XOR’s truth table, (c) Boolean oracle of classical 
Boolean XOR gate from the composite (in-cascade) design (a⊕ b⊕ fqubit), (d) the non-solutions for Phase 
XOR oracle using the Us operator, (e) the non-solutions for Boolean XOR oracle using the Us operator, (f) 
the solutions for Boolean XOR oracle using the CUs operator, (g) Phase oracle of classical Boolean XNOR 
gate, (h) Boolean oracle of classical Boolean XNOR gate from the XNOR’s truth table, (i) Boolean oracle of 
classical Boolean XNOR gate from the composite (in-cascade) design ¬ (a⊕ b⊕ fqubit), (j) the non-solutions 
for Phase XNOR oracle using the Us operator, (k) the non-solutions for Boolean XNOR oracle using the 
Us operator, and (l) the solutions for Boolean XNOR oracle using the CUs operator. Note: the CUs operator 
successfully searches for all solutions for all Boolean oracles of classical primitive Boolean gates (XOR and 
XNOR).
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gate, as discussed in the following subsection “Oracles for POS, SOP, and ESOP”. Boolean and Phase oracles 
are generated using the Boolean structure of (a⊕ b) based on XOR’s truth table or from the Boolean structure 
of(a⊕ b⊕ fqubit) based on the composite (in-cascade) design.
(vii) The Boolean oracle for the classical Boolean XNOR is designed using either the XNOR’s truth table 
or the composite (in-cascade) design, as shown in Fig. 4h and Fig. 4i, respectively. Note that both designs 
have the same XNORing functionality. While the Phase oracle is generated using any design, as demonstrat-
ed in Fig. 4g. The CUs operator successfully searches for all solutions for the Boolean oracle, as shown in 
Fig. 4l, while the Us operator fails for Phase and Boolean oracles, as shown in Fig. 4j and Fig. 4k, respectively. 
Therefore, the CUs operator shows its advantage over the Us operator in searching for solutions for arbitrary 
Boolean oracles of collector gates in the form of Boolean XNOR gate. Boolean and Phase oracles are gener-
ated using the Boolean structure of ¬ (a⊕ b) based on XNOR’s truth table or from the Boolean structure of 
¬ (a⊕ b⊕ fqubit) based on the composite (in-cascade) design.

Concluding that the Us operator only searches for solutions for Boolean and Phase oracles, when their collector 
gates are in the forms of Boolean AND gate and Boolean NOR gate! While the CUs operator successfully searches 
for all solutions for all Boolean oracles regardless of the Boolean forms of their collector gates.

Oracles for POS, SOP, and ESOP
Three classical Boolean structures of POS, SOP, and ESOP are implemented for arbitrary problems consisting of 
three classical literals (a, b, and c), and their Boolean and Phase oracles are constructed in various Boolean forms 
of collector gates. Such that, the POS represents the Boolean structure in (1), the SOP represents the Boolean 
structure in (2), and the ESOP represents the Boolean structure in (3) below.

 (a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c) (1)

 (a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c) (2)

 (a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c) (3)

(i) From (1) above, the Boolean POS oracle utilizes the Boolean AND gate as its collector gate, as shown in 
Fig. 5b, and the Phase POS oracle is generated as shown in Fig. 5a. The CUs operator successfully searches for 
all solutions for the Boolean POS oracle, as shown in Fig. 5e. While the Us operator fails to search for solutions 
for Phase and Boolean POS oracles, even though the collector gates of these oracles are in the form of Boolean 
AND gate, as illustrated in Fig. 5c and Fig. 5d, respectively! To the best of our knowledge, so far no one has 
found that some logical structures of oracles do not work correctly for both Boolean and Phase oracles. This 
is perhaps for two reasons: (A) most authors formulate constraints satisfaction problems as product of con-
straints (products of predicates), so that they do not formulate those problems with other collector gates, and 
(B) the numerical errors in their measurements they attribute perhaps to the errors of computer hardware or 
models in simulator rather than to the fundamental mistakes in the algebraic design of diffusers!
(ii) From (2) above, the Boolean SOP oracle has its collector gate in the form of Boolean OR gate, as shown 
in Fig. 5g, and the Phase SOP oracle is generated as shown in Fig. 5f. The CUs operator successfully searches 
for all solutions for the Boolean SOP oracle, as presented in Fig. 5(j). While the Us operator fails for Phase 
and Boolean SOP oracles, as demonstrated in Fig. 5h and Fig. 5i, respectively. This gives an intuitive thought 
that the Us operator always fails in searching for solutions for Boolean and Phase oracles when their collector 
gates are in the form of Boolean OR gate, as discussed above in the subsection “Oracles of Primitive Boolean 
Gates (iv)”.
(iii) From (3) above, in this article, the Boolean ESOP oracle is implemented to not have any collector gate, 
since this design relies on the implicit XORing functionality of fqubit, as shown in Fig. 5l. While the Phase 
ESOP oracle is generated as shown in Fig. 5k. Both operators (Us and CUs) successfully search for all solutions 
for Phase and Boolean oracles, as illustrated in Fig. 5m–o.

For POS and SOP oracles (Boolean and Phase), the Us operator fails and is not capable of searching for solutions, 
except for the ESOP oracles (Boolean and Phase). While the CUs operator successfully searches for all solutions 
for Boolean oracles in the structures of POS, SOP, and ESOP. We also noticed that the Us operator fails to search 
for solutions for (i) POS oracles (Boolean and Phase) even when their collector gates are expressed in the form 
of Boolean AND gate and (ii) any Boolean oracle that has too many quantum Boolean-based OR gates in its 
circuit design, based on our experimental observations! Hence, the CUs operator has the advantage over the 
Us operator for searching for all solutions for Boolean oracles regardless of (i) their Boolean structures, (ii) the 
Boolean forms of their collector gates, and (iii) the number of utilized quantum Boolean-based gates in their 
circuit design.

Oracles for digital logic circuits
Two digital logic circuits, as arbitrary classical problems, are designed and then transformed into Boolean and 
Phase oracles, to illustrate how the CUs operator is a more effective approach than the Us operator in searching 
for all solutions for Boolean oracles, when their collector gates are in the form of Boolean OR gate. The first 
problem is the classical 2-bit inequality comparator, which outputs ‘1’ when both input numbers are unequal, 
as shown in Fig. 6a. Its equivalent Phase and Boolean oracles are designed as shown in Fig. 6b and Fig. 6c, 
respectively. The CUs operator successfully searches for all solutions for the Boolean oracle, as illustrated in 
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Fig. 5. Boolean and Phase oracles in different Boolean structures (POS, SOP, and ESOP) for arbitrary 
problems of the literals (a, b, and c): (a) Phase POS oracle of (a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c), (b) Boolean 
POS oracle of (a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c), (c) the non-solutions for the Phase POS oracle using the 
Us operator, (d) the non-solutions for the Boolean POS oracle using the Us operator, (e) the solutions for 
the Boolean POS oracle using the CUs operator, (f) Phase SOP oracle of (a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c)
, (g) Boolean SOP oracle of (a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c), (h) the non-solutions for the Phase 
SOP oracle using the Us operator, (i) the non-solutions for the Boolean SOP oracle using the Us 
operator, (j) the solutions for the Boolean SOP oracle using the CUs operator, (k) Phase ESOP oracle of 
(a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c), (l) Boolean ESOP oracle of (a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c), (m) 
the solutions for the Phase ESOP oracle using the Us operator, (n) the solutions for the Boolean ESOP oracle 
using the Us operator, and (o) the solutions for the Boolean ESOP oracle using the CUs operator. Note: the CUs 
operator successfully searches for all solutions for all Boolean oracles in different Boolean structures (POS, 
SOP, and ESOP) for arbitrary problems.
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Fig. 6. Phase and Boolean oracles for arbitrary digital logic circuits with the final measured solutions using 
the Us and CUs operators: (a) the 2-bit inequality comparator circuit in the classical domain, (b) Phase oracle 
of 2-bit inequality comparator, (c) Boolean oracle of 2-bit inequality comparator, (d) the partial solutions for 
(b) using the Us operator, (e) the inverted solutions for (c) using the Us operator, (f) the solutions for (c) using 
the CUs operator, (g) our designed 1-bit ORed half-adder circuit in the classical domain, (h) Phase oracle of 
1-bit ORed half-adder, (i) Boolean oracle of 1-bit ORed half-adder, (j) the non-solution for (h) using the Us 
operator, (k) the non-solution for (i) using the Us operator, and (l) the solutions for (i) using the CUs operator. 
Note: the CUs operator successfully searches for all solutions for all Boolean oracles of arbitrary digital logic 
circuits (2-bit inequality comparator and 1-bit ORed half-adder).
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Fig. 6f. While the Us operator fails to search for solutions for the Phase and Boolean oracles, as illustrated in 
Fig. 6d and Fig. 6e, respectively. Note that the input qubits are denoted in Dirac notation4,5 of |MSQ LSQ〉, where 
LSQ is the least significant qubit (most-right) and MSQ is the most significant qubit (most-left). Such that, 
number0 =|a1a0〉 and number1 =|b1b0〉. For this first problem, the Boolean and Phase oracles are generated using 
the Boolean structure in (4) below.

 (a0 ⊕ b0) ∨ (a1 ⊕ b1) (4)

The second problem is our designed “1-bit ORed half-adder” that outputs ‘1’ when the sum and/or the carry-out 
signals have ‘1’, as shown in Fig. 6g, and its equivalent Phase and Boolean oracles are implemented as shown in 
Fig. 6h and Fig. 6i, respectively. The CUs operator successfully searches for all solutions for the Boolean oracle, as 
shown in Fig. 6l, while the Us operator fails to search for solutions for Phase and Boolean oracles, as illustrated 
in Fig. 6j and Fig. 6k, respectively. For this second problem, the Boolean and Phase oracles are constructed using 
the Boolean structure in (5) below.

 (a ∧ b) ∨ (a ⊕ b) (5)

Note that, for the second problem, the Phase oracle is generated as similar to the Phase OR oracle, as discussed 
above in the subsection “Oracles of Primitive Boolean Gates (iv)” and shown in Fig. 3a! The Us operator fails to 
search for solutions for the two Boolean oracles for the first and second problems, since the Us operator treats 
their collector gates in the form of Boolean OR gate as the collector gates in the form of Boolean NOR gate, 
as also previously stated in the subsection “Oracles of Primitive Boolean Gates (iv)”. While the CUs operator 
successfully searches for all solutions for these two Boolean oracles, when their collector gates are expressed in 
the form of Boolean OR gate.

Oracles for CSP-SAT
Two arbitrary classical CSP-SAT problems are designed as Boolean and Phase oracles to search for solutions 
using Grover’s algorithm of both operators (Us and CUs). The first problem is the 3-node graph coloring that 
satisfies, i.e., its output equals to ‘1’, when every two adjacent nodes have different colors, i.e., when every two 
connected nodes have different values, and these inequality conditions are the so-called “constraints”. These 
constraints for the conditional coloring of these three nodes are mathematically expressed in (6–7) below. 
Figure 7a presents the classical representation of this problem, and its Phase and Boolean oracles are designed as 
illustrated in Fig. 7b and Fig. 7c, respectively. Both operators (Us and CUs) are employed to search for solutions, 
and both operators successfully search for all solutions for Boolean and Phase oracles in one Grover iteration, as 
demonstrated in Fig. 7d–f. Note that (i) each node is represented by one input qubit and (ii) the color of a node is 
represented by the quantum state of |0〉 or |1〉 that met the constraints. For this first CSP-SAT problem, Boolean 
and Phase oracles are generated using the Boolean structure in (8) below.

 inequal0 : node0 ̸= node1 (6)

 inequal1 : node1 ̸= node2 (7)

 (node0 ⊕ node1) ∧ (node1 ⊕ node2) (8)

The second CSP-SAT problem is the 2 × 2 Sudoku game that satisfies when all Sudoku’s constraints are met. 
These constraints are: (i) all cells in a row should not have similar values and (ii) all cells in a column should not 
have similar values, as stated in (9–12) below. Figure 7g demonstrates the classical representation of this problem 
as the four-cell board layout of Sudoku, and its Phase and Boolean oracles are constructed as shown in Fig. 7h 
and Fig. 7i, respectively. Both operators (Us and CUs) are employed to search for solutions, and both operators 
successfully search for all solutions for Boolean and Phase oracles, as illustrated in Fig. 7(j–l), in two Grover 
iterations. Note that (i) each cell is represented by one input qubit and (ii) the value of a cell is represented by 
the quantum state of |0〉 or |1〉 that met the constraints. For this second CSP-SAT problem, Boolean and Phase 
oracles are generated using the Boolean structure in (13) below.

 inequal0 : cell0 ̸= cell1 (9)

 inequal1 : cell0 ̸= cell2 (10)

 inequal2 : cell1 ̸= cell3 (11)

 inequal3 : cell2 ̸= cell3 (12)

 (cell0 ⊕ cell1) ∧ (cell0 ⊕ cell2) ∧ (cell1 ⊕ cell3) ∧ (cell2 ⊕ cell3) (13)

Consequently, the Us operator successfully searches for all solutions for Boolean and Phase oracles of the two 
CSP-SAT problems, since (i) the collector gates for these oracles are in the form of Boolean AND gate and (ii) 
the quantum Boolean-based OR gates are never used in the circuit design of these oracles. In our experiments, 
the CUs operator successfully searches for all solutions for the two CSP-SAT Boolean oracles regardless of their 
Boolean forms of collector gates as well as the number of utilized quantum Boolean-based gates in their circuit 
design.

Table 1 states the summary for both operators (Us and CUs) in searching for all solutions for the aforementioned 
arbitrary problems as Boolean and Phase oracles, as well as how many Grover’s iterations are required. Note that 
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Fig. 7. Phase and Boolean oracles for arbitrary CSP-SAT problems with the final measured solutions using 
the Us and CUs operators: (a) the 3-node graph coloring problem in the classical domain, (b) Phase oracle 
of 3-node graph coloring, (c) Boolean oracle of 3-node graph coloring, (d) the solutions for (b) using the Us 
operator, (e) the solutions for (c) using the Us operator, (f) the solutions for (c) using the CUs operator, (g) the 
2 × 2 Sudoku board layout in the classical domain, (h) Phase oracle of 2 × 2 Sudoku, (i) Boolean oracle of 2 × 2 
Sudoku, (j) the solutions for (h) using the Us operator, (k) the solutions for (i) using the Us operator, and (l) the 
solutions for (i) using the CUs operator. Note: both operators (Us and CUs) successfully search for all solutions 
for all Phase and Boolean oracles of CSP-SAT problems.
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“N.A.” means that an operator is not applicable to be designed for Grover’s algorithm, “True” means that an 
operator searches for all solutions, “False” means that an operator searches for all solutions when an oracle is 
inverted in design, i.e., when inverting a problem, “Partial” means that an operator searches for a few solutions, 
and “None” means that an operator gives random outputs, i.e., the superposition states of all input qubits for an 
oracle.

Accordingly, the CUs operator successfully and effectively searches for all solutions for Boolean oracles 
regardless of (i) their Boolean structures, (ii) the Boolean forms of their collector gates, and (iii) the number of 
utilized quantum Boolean-based gates in their circuit design. Grover’s algorithm of CUs operator will provide 
broad opportunities to solve and search for all solutions for many problems (as Boolean oracles) that are neither 
designed nor solved using Grover’s algorithm of Us operator. Thus, various problems and applications constructed 
in different Boolean structures of POS, SOP, ESOP, XOR-SAT, digital logic circuits, digital synthesizers, robotics, 
and machine learning can be realized as Boolean oracles, and then solved with all k solutions using Grover’s 
algorithm of our proposed CUs operator, in O

(
π
4

√
N
k

)
Grover iterations for k ≥ 1.

Discussion
In this article, we noticed that the Grover diffusion operator (Us) of Grover’s algorithm searches for solutions 
for Boolean and Phase oracles (Uω), when their collector gates are in the form of Boolean AND gate, i.e., the 
Toffoli gate for a Boolean oracle and the multiple-controlled Z gate for a Phase oracle. The collector gate is a 
quantum gate that acts as the junction gate(s) for the Boolean structure of an oracle that represents a problem. In 
contradiction, when a Boolean or Phase oracle utilizes its collector gate in a different form of Boolean gate, such 
as NAND, OR, NOR, or XNOR, then the Us operator fails to search for all solutions! Our work redesigns the Us 
operator to a controlled-diffusion operator for Boolean oracles only, which is termed the controlled-Us (CUs). 
The CUs relies on the computational basis states of the functional, or output, qubit (fqubit), instead of relying 
on the phase kickback. The CUs operator is essentially the Us operator controlled by the states of fqubit. For the 
CUs operator, the fqubit is initialized to the state of |0〉 instead of |–〉. The collector gate of a Boolean oracle flips 
the states of fqubit to indicate the marked elements and the unmarked elements for a problem. The Us operator 
searches for solutions by rotating and amplifying the amplitudes of marked elements, throughout the effect of 
phase kickback for a Boolean oracle or the phase inversion for a Phase oracle. While our proposed CUs operator 
searches for solutions by rotating and amplifying the amplitudes of marked elements, based on the states of 
fqubit for a Boolean oracle only. Such that the state of |0〉 represents an unmarked element, while the state of 
|1〉 represents a marked element. In our research, different Boolean and Phase oracles for arbitrary problems in 
the Boolean structures of POS, SOP, ESOP, and XOR-SAT are designed with various Boolean forms of collector 
gates, and these oracles are then evaluated using Grover’s algorithm of both Us and CUs operators. We concluded 
that the Us operator searches for solutions for Boolean and Phase oracles, when their collector gates are in the 
form of Boolean AND gate, and for a few Boolean structures, specifically the ESOP and XOR-SAT! While our 
CUs operator successfully searches for all solutions for all Boolean oracles regardless of their Boolean structures 

Grover’s Us operator Our CUs operator

Phase oracle Boolean oracle Boolean oracle

Arbitrary problems
Logical 
structures Solved?

O
(
π
4

√
N
k

)
Solved?

O
(
π
4

√
N
k

)
Solved?

O
(
π
4

√
N
k

)

¬a NOT N.A True 1

a ∧ b AND True 1 True 1 True 1

¬ (a ∧ b) NAND False 1 False 1 True 1

a ∨ b OR False 1 False 1 True 1

¬ (a ∨ b) NOR True 1 True 1 True 1

a⊕ b XOR None 1 None 1 True 1

¬ (a⊕ b) XNOR None 1 None 1 True 1

(a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c) POS (AND-OR) None 1 None 1 True 1

(a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c) SOP (OR-AND) None 1 None 1 True 1

(a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c) ESOP (XOR-
AND) True 1 True 1 True 1

2-bit inequality comparator: (a0 ⊕b0)  
∨ (a1 ⊕ b1)

DNF-XOR SAT 
(OR-XOR) Partial 1 False 1 True 1

1-bit ORed half-adder: (a ∧ b) ∨ (a ⊕ b) OR-AND/XOR False 1 False 1 True 1

3-node graph coloring: (node0 ⊕ node1) ∧ 
(node1 ⊕ node2)

CNF-XOR SAT 
(AND-XOR) True 1 True 1 True 1

2 × 2 Sudoku game: (cell0 ⊕  cell1) ∧ 
(cell0 ⊕ cell2) ∧ (cell1 ⊕ cell3) ∧ (cell2 ⊕ cell3)

CNF-XOR SAT 
(AND-XOR) True 2 True 2 True 2

Table 1. Summary of Grover’s algorithm solving arbitrary problems using the Grover diffusion operator (Us) 
and our proposed controlled-diffusion operator (CUs).
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and the Boolean forms of collector gates. In conclusion, utilizing the states of fqubit is a more successful and 
effective search approach than utilizing the phase kickback or phase inversion for Boolean and Phase oracles, 
respectively. Therefore, the CUs operator can replace the Us operator for Grover’s algorithm to search for all 
solutions for Boolean oracles. Further Boolean oracles can be constructed in different Boolean structures with 
different Boolean forms of their collector gates for practical applications in the topics of digital synthesizers, 
robotics, machine learning, just name a few, and then Grover’s algorithm of our proposed CUs operator will 
successfully and effectively solve such applications, in the quantum domain.

Methods
The algorithms, quantum circuits analyses, and mathematical models for the Grover diffusion operator (Us) 
and our proposed controlled-diffusion operator (CUs) are discussed and illustrated in the “Supplementary 
Information”.

Data availability
All relevant data are available from the corresponding author (A.A.-B) upon request.
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