
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

10-13-2024

A Concept of Controlling Grover Diffusion Operator: A Concept of Controlling Grover Diffusion Operator:

a New Approach to Solve Arbitrary Boolean-Based a New Approach to Solve Arbitrary Boolean-Based

Problems Problems

Ali Al-Bayaty
Portland State University, albayaty@pdx.edu

Marek A. Perkowski
Portland State University, h8mp@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Al-Bayaty, A., & Perkowski, M. (2024). A concept of controlling Grover diffusion operator: a new approach
to solve arbitrary Boolean-based problems. Scientific Reports, 14(1).

This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/823
mailto:pdxscholar@pdx.edu

A concept of controlling Grover
diffusion operator: a new approach
to solve arbitrary Boolean-based
problems
Ali Al-Bayaty & Marek Perkowski

A controlled-diffusion operator for Boolean oracles is designed as a new approach for Grover’s
algorithm to search for solutions for arbitrary logical structures of such oracles, since the Grover
diffusion operator is not able to find correct solutions for some logical structures of Boolean oracles. We
also show that the Phase oracles do not work sometimes correctly using the Grover diffusion operator.
Our proposed controlled-diffusion operator relies on the states of output qubit, as the reflection of
Boolean decisions from a Boolean oracle without relying on the phase kickback. We prove that on
many examples of Boolean and Phase oracles the Grover diffusion operator is not working correctly.
The oracles in these examples are constructed using different structures of POS, SOP, ESOP, CSP-SAT,
and XOR-SAT. Our mathematical models and experiments prove that the proposed controlled-diffusion
operator successfully searches for all solutions for all Boolean oracles regardless of their different
logical structures.

Keywords Grover’s algorithm, Grover diffusion operator, Controlled-diffusion operator, Boolean oracle,
Phase oracle, Logical structures

Grover’s algorithm1–5 is the most well-known quantum search algorithm to find solutions for both Boolean
and Phase oracles with quadratic speedup, and to construct other quantum algorithms, such as the quantum
counting algorithm4,6–8. The papers of L. K. Grover1,2 introduced Grover’s algorithm for the Phase oracles, and
his paper3 presented Grover’s algorithm for the Boolean oracles. Although the quantum circuit of a Phase oracle
usually utilizes fewer qubits and requires less quantum gates than the quantum circuit of a Boolean oracle9,
the Boolean oracles are very useful because they are reversible binary circuits that can be easily converted
from classical Boolean circuits. In the classical domain, an NP-complete problem4,5,10 can be expressed as a
sequential exercise of a classical Boolean oracle. The designer can construct a classical Boolean oracle using
different Boolean structures, such as Product-Of-Sums (POS)11, Sum-Of-Products (SOP)12, Exclusive-or Sum-
Of-Products (ESOP)13–16, XOR-Satisfiability (XOR-SAT)17–19, just to name a few. These Boolean structures
utilize classical Boolean gates, e.g., NOT, AND, OR, etc. Classical Boolean oracles are then transformed into
their equivalent quantum Boolean oracle using reversible quantum gates. There are many known methods to
synthesize and optimize quantum reversible circuits. For instance, the reversible quantum gates for a quantum
Boolean oracle can be designed based on their classical truth tables, De Morgan’s Laws20, Algebraic Normal
Form (ANF) (or Reed-Muller expansion)21–23, and ESOP synthesis13–16, depending on the functionality of a
problem. The designer familiar with classical digital systems uses hierarchical blocks, such as arithmetic circuits,
comparators, counters, etc., to design the Boolean reversible circuit of a quantum Boolean oracle.

When the reversible quantum gates are designed for flipping the states of input qubits, i.e., from |0〉 to |1〉 or
vice versa, then the final quantum oracle is termed the “Boolean oracle”. However, when the reversible quantum
gates are designed for inverting the phases of input qubits (q), i.e., from +|q〉 to –|q〉 or vice versa, then the final
quantum oracle is termed the “Phase oracle”. Hence, a Boolean oracle is built from “quantum Boolean-based
gates”, while a Phase oracle is built from “quantum phase-based gates”. The Boolean or Phase oracle is then
evaluated using Grover’s algorithm, in the evaluation complexity of O

(√
N
)

 for one solution (one marked

element) or in O
(
π
4

√
N
k

)
 for k solutions (k marked elements). The evaluation complexity is the so-called

Department of Electrical and Computer Engineering, Portland State University, Portland, USA. email:
albayaty@pdx.edu

OPEN

Scientific Reports | (2024) 14:23570 1| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports

scientific reports
Check for updates J

nature portfolio

http://orcid.org/0000-0003-2719-0759
http://orcid.org/0000-0002-0358-1176
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf

“Grover iterations” or “Grover loops”. In binary quantum computing, N = 2n, where n is the total number of
input qubits for an oracle that Grover’s algorithm utilizes them to solve a problem.

In general, Grover’s algorithm consists of three components, which we termed them the “Blocks” in this
article:

 1. “Block1” initializes n input qubits to a uniform distribution using Hadamard (H) gates. The H gates im-
pose all n input qubits into uniform superposition states, to generate a complete quantum search space of
{|0⟩ , |1⟩ }⊗n for Grover’s algorithm to search for marked elements (solutions). The H gates are considered as
an implicit generator for Grover’s algorithm.

 2. “Block2” consists of a Boolean or Phase oracle that adds negative phases to marked elements, i.e., inverts the
phases of vectors of input qubits as the “first rotation of solutions” over the complete quantum search space.
Such phase inversion occurs due to the phase kickback for a Boolean oracle, or due to the effect of quantum
phase-based gates on the input qubits for a Phase oracle.

 3. “Block3” consists of the Grover diffusion operator that performs the “second rotation of solutions”, through
the conditional phase shift and phase inversion, by rotating and amplifying the amplitudes of the marked
elements from Block2. Note that both Block2 and Block3 are treated as one Grover iteration.

For a Boolean oracle, the output qubit ensures the phase kickback on the marked elements, when the output
qubit is initially set to the state of |–⟩. In our article, the output qubit is termed the “functional qubit (fqubit)”.
However, neither the fqubit nor the phase kickback is utilized for a Phase oracle, since the inversion of phases
is implicitly performed using quantum phase-based gates, e.g., Pauli-Z gate (Z), controlled-Z gate (CZ), and
similar gates. For instance, to solve a problem using Grover’s algorithm1–5 with Block1 in one Grover iteration,
we need the following:

• The Boolean oracle (UB) of input qubits (q) represents a problem by utilizing the fqubit as an output qubit;
such that f (q, fqubit) : UB |q , fqubit⟩ → |q , fqubit⊕ f (q)⟩, i.e., the f(q) is encoded in the fqubit as com-
putational basis states of |0〉 (a non-solution) and |1〉 (a solution).

• The phase kickback reflects the solution of UB in the encoded states of fqubit to the input qubits as phase
inversion; such that f (q,−) : UB |q , −⟩ → (−1)f(q) |q , −⟩, i.e., the phase kickback occurs when the fqubit
initially sets to the state of |–〉, and the solution is now represented by the inverted phase (–) on the vectors of
input qubits (as one marked element).

• The Phase oracle (UP) of input qubits (q) represents a problem without utilizing the fqubit and the phase kick-
back; such that f (q) : UP |q ⟩ → (−1)f(q) |q ⟩, i.e., the solution is directly represented by the inverted phase
(–) on the vectors of input qubits (as one marked element).

• The Grover diffusion operator rotates and amplifies the amplitude of the marked element, in which it is then
measured as the highest probability as the solution for a problem, in the classical domain.

For a complete Gover’s algorithm, Block1 and all O
(√

N
)

 Grover iterations (repetitions of Block2 and Block3)
are applied at once to search for one marked element, and then all n input qubits are classically measured to
observe the highest probability as one solution1–3. However, in our modified method of Grover’s algorithm, we
apply Block1 and one Grover iteration, if a solution is not observed after measurement, then Block1 and two
Grover iterations are re-applied, and so on until all k solutions are observed in O

(
π
4

√
N
k

)
 for k ≥ 1, as illustrated

in Fig. 1a. Moreover, the components of the Us operator are operationally demonstrated in Fig. 1b.
In the terminology of Grover’s algorithm, (i) a Boolean or Phase oracle is denoted as Uω, where U states

for “unitary” and ω states for “winner” (as a marked element), and (ii) Grover diffusion operator is denoted
as Us, where s states for “search”. Such that, a Uω evaluates a problem for one marked element and a number of
unmarked elements. All marked and unmarked elements have equally normalized amplitudes

(
1√
N

)
. Thereafter,

the Us operator searches only for the marked element by rotating and amplifying its amplitude
(
> 1√

N

)
 as well

as decreasing the amplitudes of unmarked elements
(
< 1√

N

)
, in one Grover iteration1–5.

Before the Us operator rotates and amplifies the amplitude of a marked element, a Boolean or Phase oracle
(Uω) needs to be uncomputed to ensure that all its ancillae are reset to their initial states of |0〉. Resetting the
ancillae ensures to re-utilize them for further Grover iterations, and such a resetting is achieved by reversing
(mirroring) the Uω, except for its “collector gate”. Note that (i) if a Uω (Boolean or Phase oracle) does not utilize
any ancillae in its design, then the mirroring is not needed, and (ii) the collector gate of a Uω (Phase oracle only)
is implicitly fused with the other quantum phase-based gates depending on the design implementation9,24. For
that, the total number of utilized qubits decreases for Phase oracles and increases for Boolean oracles. Depending
on the design implementation, Phase oracles are mainly utilizing n input qubits with almost no ancillae, while
Boolean oracles are mostly utilizing n input qubits, m ancilla qubits (ancillae), and one fqubit, where n ≥ 2 and
m ≥ 0.

Definition 1: The collector gate is the junction gate(s) associated with the clause(s) of literal(s) for a Boolean
structure that defines a Boolean oracle. Such that, (i) the collector gate for a Boolean structure in conjunctive
normal form (CNF)25, also called POS, is the conjunction AND gate(s) for the disjunction OR clause(s) of
literal(s), (ii) the collector gate for a Boolean structure in disjunctive normal form (DNF)26, also called SOP, is
the disjunction OR gate(s) for the conjunction AND clause(s) of literal(s), (iii) the collector gate for a Boolean

Scientific Reports | (2024) 14:23570 2| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

nature portfolio

http://www.nature.com/scientificreports

structure in ESOP is the XOR gate(s) for the conjunction AND clause(s) of literal(s), just to name a few. The
literals are the inputs of the Boolean structure for a Boolean oracle.

For instance, the Boolean oracle (Uω) for a problem in the Boolean structure of (a⊕ b) ∧ (¬a⊕ ¬b) consists of
(i) the conjunctive AND gate, i.e., the collector gate as Toffoli gate, and (ii) two XOR clauses for the literals (a
and b), as illustrated in Fig. 1c, where the Uω is surrounded by the blue rectangle, the collector gate is located in
the green area, and the mirror (uncompute) is surrounded by the orange rectangle.

In this article, our work shows that Grover diffusion operator (Us) successfully searches for solutions when
the collector gate for a Boolean oracle (Uω) is expressed in the form of Boolean AND gate, for the Boolean

Fig. 1. Schematics of Grover’s algorithms, Boolean oracles, a collector gate, and quantum operators: (a)
Grover’s algorithm for n input qubits, m ancilla qubits, one functional qubit (fqubit), n classical bits (for final
measurement), Block1 consists of H gates for n input qubits, Block2 is a Boolean oracle (Uω), Block3 is Grover
diffusion operator (Us), and the number of Grover iterations, (b) the components and functionalities of
Grover diffusion operator (Us) for the second rotation operation (H), conditional phase shift (X), and phase
inversion (Z0), (c) the quantum Boolean-based problem in the Boolean structure of (a⊕ b) ∧ (¬a⊕ ¬b)
, as a Boolean oracle (Uω), the collector gate is in the form of Boolean AND gate (Toffoli in green), and the
mirror (uncomputing part) of Uω, (d) Grover’s algorithm for n input qubits, m ancilla qubits, one fqubit, n
classical bits (for final measurement), Block1 consists of H gates for n input qubits, Block2 is a Boolean oracle
(Uω), Block3 is our proposed controlled-diffusion operator (CUs), and the number of Grover iterations, and
(e) the components and functionalities of our controlled-diffusion operator (CUs) for the second rotation
operation (H), conditional phase shift (X), and controlled phase inversion (CZ0) by the states of fqubit. Where
n ≥ 2, m ≥ 0, N = 2n, and k ≥ 1 solution (marked element). Note: Grover’s algorithm for a Phase oracle can be
constructed similarly as in (a), without the fqubit and the number of ancillae varies depending on the circuit
design of a Phase oracle.

Scientific Reports | (2024) 14:23570 3| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

Block,

Block,

Block2 Block3 Block2 Block3

Grover iteration 1 Grover iteration 2

o(i N) Grover iterations

(a)

a

b
I I
I I

/ ... - conditional phase shift us'',

(I ' ,~ : ,,, ------ , ,--~ ,,, ------, ,--,, ,,,. ------ , I
I I : : I I : : 1 1 : :

"
I

" Zo
,, ,,. ,,. ,,. ,,

" -----. ~---~. I I '----~.' I '. '- -- .- -- ✓' : __ ,", --.--✓' : I \ t ✓ :
: 2nd rotation phase preparing q®" for 1

\ of q®n inversion measurement or next,'

...... __________________ Grover iteratio~ .,, /

(b)

xor_left 10) "t--,t-t-1-++-----1---+-----.-- ---'--+---f----++-1+-1-+.

xor_ right 10) +-------+--t--+----+-++----.----+- ++-+----+--1-1-----~

fqubit 10) ,------------+-+-+-~ +-----------'-

' oracle (Uw) _ _ _ _ _ collector gate , '

(c)

Block2 Block3 Block2 Block3

Grover iteration 1 Grover iteration 2

o(i N) Grover iterations

(d)

J I

mirror (uncompute) ,' ... _____________ .,,

fqubit

, conditional phase shift cu;',

:' I ' , :, ... ------, ,-- ------, ,-- ------,,:
1 , II

~ I I

• 1 I : : • e,: H®n CZ,, H®n ,, •

· : I : : ·

·, :,_~---~.
I

2nd rotation
\ of q®n

'

controlled preparing q®" for ,
phase measurement or next ,'

inversion Grover iteration , ' ... ___________________________ ...

(e)

nature portfolio

http://www.nature.com/scientificreports

structures of AND-XOR, ESOP, and a few of POS! However, the Us operator fails to search for solutions when the
collector gate for a Boolean oracle (Uω) is expressed in different Boolean gates, such as NAND, OR, or XNOR,
for different Boolean structures, e.g., OR-XOR and SOP. That means the phase kickback does not effectively
invert the phase of a marked element, as a solution, for a Boolean oracle built from quantum Boolean-based
gates. Similarly, the Us operator either succeeds or fails for a Phase oracle equivalent to a Boolean oracle for the
same problem!

For such a reason, our work redesigns Grover diffusion operator (Us) to the controlled-diffusion operator
that searches for solutions based on the computational basis states of fqubit, i.e., |0〉 and |1〉, instead of relying on
the phase kickback, for Boolean oracles only. Our controlled-diffusion operator is substantially the Us operator
that is controlled by the states of fqubit. The states of fqubit act as the controlling signals that inform the Us
operator to distinguish between the unmarked element (a non-solution) and the marked element (a solution).
For the controlled-diffusion operator, the fqubit is initially set to the state of |0〉 instead of |–〉, so the collector
gate of a Boolean oracle (Uω) just flips a state of fqubit from |0〉 to |1〉 to indicate a marked element, or the
state of fqubit remains at |0〉 to indicate an unmarked element. Both indications are then utilized to signal the
controlled-diffusion operator.

Consequently, our proposed controlled-diffusion operator is denoted as the “Controlled-Us (CUs)” operator.
As mathematically and experimentally proved in this article (and in the “Supplementary Information”), the CUs
operator successfully searches for all k solutions for arbitrary Boolean oracles regardless of their (i) different
Boolean structures and (ii) different Boolean forms of collector gates, in O

(
π
4

√
N
k

)
 Grover iterations for k ≥ 1.

For Grover’s algorithm, the CUs operator is designed to search for all k solutions for Boolean oracles based on
the states of fqubit. However, the CUs operator is not designed for Phase oracles since the fqubit is not utilized
in their quantum circuits design. Note that, for a Boolean oracle (Uω), (i) the Us operator searches for solutions
by rotating and amplifying the amplitudes of marked elements throughout the reflection of phase kickback from
the fqubit to Uω, in O

(
π
4

√
N
k

)
 Grover iterations, while (ii) our CUs operator searches for solutions by rotating

and amplifying the amplitudes of marked elements throughout the reflection of Boolean decisions from the
collector gate of Uω to the states of fqubit, in O

(
π
4

√
N
k

)
 Grover iterations.

The CUs operator follows the same structural design of Grover’s algorithm using the aforementioned three
blocks, except for the fqubit that initially sets to the |0〉 state, since the phase kickback is not utilized in our design
methodology. Figure 1d illustrates the workflow of Grover’s algorithm of CUs operator, and the components
and functionalities of the CUs operator are demonstrated in Fig. 1e. Note that, in Fig. 1e, Pauli-X gates of the
conditional phase shift are added to fqubit to match the working philosophy of Us operator as well, i.e., CZ0 ≡ Z0,
(as it is discussed further in the “Supplementary Information”).

Our work is concentrated on implementing Grover’s algorithm of CUs operator to search for all solutions for
Boolean oracles, due to the reasons of (i) Boolean oracles are easier and more straightforward in design using
quantum Boolean-based gates (X, CX, CCX) rather than quantum phase-based gates (Z, CZ, CCZ), (ii) the
quantum Boolean-based gates can be directly realized using the truth tables or De Morgan’s Laws for classical
Boolean gates, (iii) the quantum Boolean-based gates and their qubits can be easily analyzed using classical
Boolean Logic, i.e., a Boolean Logic of ‘0’ represents a quantum state of |0〉 and a Boolean Logic of ‘1’ represents
a quantum state of |1〉, and (iv) Boolean oracles consists of collector gates that easily flip the states of fqubit to
indicate the marked elements (solutions), while collector gates are not utilized in Phase oracles.

In this article, arbitrary problems are designed as Boolean and Phase oracles, and then these oracles are
evaluated using Grover’s algorithm of Us operator (for both Boolean and Phase oracles) and using Grover’s
algorithm of CUs operator (for Boolean oracles only). Subsequently, the two Grover’s algorithms for Us and
CUs operators, respectively, are compared in the manner of (i) their ability to search for all solutions and (ii)
how many Grover iterations are required. These Boolean and Phase oracles are chosen to represent different
applications in the Boolean structures of primitive Boolean gates (NOT, AND, NAND, OR, NOR, XOR, and
XNOR), POS, SOP, ESOP, 1-bit ORed half-adder27, 2-bit inequality comparator27, 3-node graph coloring28,29,
and 2 × 2 Sudoku game30,31. Concluding that Grover’s algorithm of Us operator only solves Boolean oracles (and
their equivalent Phase oracles), when their collector gates are in the form of Boolean AND gates for the Boolean
structures of ESOP, AND-XOR, and a few of POS. While Grover’s algorithm of CUs operator successfully solves
all Boolean oracles regardless of their Boolean structures and the Boolean forms of their collector gates. For
solved applications, both Grover’s algorithms of Us and CUs operators find similar solutions for the same Grover
iterations.

Different research papers, for instance in9,32–35, evaluated Boolean and Phase oracles using Grover’s algorithm

of Us operator, in the manner of (i) reducing Grover iterations for ≤ O
(
π
4

√
N
k

)
, and (ii) converting Boolean

oracles to Phase oracles for a fewer number of quantum gates and qubits. To the best of our knowledge, all
these propositions and implementations were performed using Grover’s algorithm of Us operator, which totally
depends on the phase kickback for a Boolean oracle and the phase inversion for a Phase oracle. In9,32–35, we
noticed that all collector gates for Boolean oracles are constructed in the form of Boolean AND gate (as the
Toffoli gate), and in the form of multiple-controlled Z gate (as the Toffoli-based) for Phase oracles. However,
none of these papers realized the collector gates in other forms of Boolean gates, such as NAND and OR.
Consequently, the following questions may arise when solving problems using Grover’s algorithm of Us operator:

Scientific Reports | (2024) 14:23570 4| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

nature portfolio

http://www.nature.com/scientificreports

1. How does Grover’s algorithm solve an oracle problem formulated in the Boolean structure of SOP? Grover’s
algorithm of Us operator is not able to solve the corresponding oracle in the structure of SOP!
2. How does Grover’s algorithm solve any oracle problem formulated in any Boolean structure with NAND or
NOR as a collector gate? Grover’s algorithm of Us operator is not able to solve any oracle in such structures!

In this article, our research focuses on solving arbitrary problems that are transformed into Boolean oracles of
various Boolean forms of collector gates and in different Boolean structures. For that, we design and propose the
controlled-diffusion operator (CUs) for Grover’s algorithm to successfully search for all k solutions for Boolean
oracles only, in O

(
π
4

√
N
k

)
Grover iterations for k ≥ 1 solution, as compared to such non-solvable problems when

using Grover’s algorithm of Grover diffusion operator (Us) for Boolean and Phase oracles.

Results
In the classical domain, arbitrary problems are designed in the Boolean structures of classical Boolean gates,
POS, SOP, ESOP, digital logic circuits, constraint satisfaction problems–satisfiability (CSP-SAT)29,36, and XOR-
SAT. Thereafter, these designed problems are transformed into their equivalent Boolean and Phase oracles (Uω)
using quantum Boolean-based gates and quantum Phase-based gates, respectively. To solve these designed
problems and search for all their solutions in the quantum domain, their oracles of different collector gates,
which are chosen based on the purpose of classical applications, are evaluated using Grover’s algorithm of Us
operator for Boolean and Phase oracles and Grover’s algorithm of CUs operator for Boolean oracles only, in
O
(
π
4

√
N
k

)
 Grover iterations, where N = 2 (total no. of input qubits) and k ≥ 1 solution.

In our work, the CUs operator successfully searches for all solutions for Boolean oracles regardless of their
various Boolean forms of collector gates. While the Us operator only searches for solutions for Boolean and
Phase oracles when their collector gates are in the form of Boolean AND gate, and it fails on other Boolean
forms of collector gates. For ease of illustrating the purpose of our proposed CUs operator as compared to the
Us operator, the Boolean and Phase oracles (Block2) are only sketched without the other components (Block1
and Block3) of Grover’s algorithm as well as the measurements. Note that the complete Grover’s algorithms for
both operators (Us and CUs) follow the previously illustrated constructions in Fig. 1a and Fig. 1d, respectively.

The IBM Quantum Platform was utilized to design Boolean and Phase oracles, implement both operators (Us
and CUs), and perform Grover’s algorithm to solve the problems. Grover’s algorithm was simulated using the
quantum simulator (ibmq_qasm_simulator) with 1024 resampling simulation times (as shots)37. However, the
time of simulations (as a speed comparison factor) is not considered in this article, since such a factor varies and
depends on (i) the current usage of this on-the-cloud simulator and (ii) the internet speed. The Boolean oracles
are constructed using the truth tables and De Morgan’s Laws of their transformed classical Boolean gates, while
the Phase oracles are directly generated using the Qiskit instruction (PhaseOracle)24.

Oracles of primitive boolean gates
The following Boolean and Phase oracles are designed as single collector gates using a primitive form of Boolean
gates (NOT, AND, NAND, OR, NOR, XOR, and XNOR). The Boolean oracles of all primitive Boolean gates have
two input qubits and one output qubit (fqubit), except for the Boolean NOT oracle that has one input qubit and
one fqubit. Thus, these Boolean oracles imitate the same architecture of classical Boolean gates in the quantum
domain.

(i) The Boolean oracle for the classical Boolean NOT gate is designed, as shown in Fig. 2a. The CUs operator
successfully searches for the solution, as shown in Fig. 2b. While the Us operator cannot be constructed for
such an architecture of classical Boolean NOT gate for Boolean and Phase oracles! Hence, the CUs operator
shows its advantage over the Us operator in searching for solutions for further arbitrary Boolean oracles, when
their collector gates are associated with the form of Boolean NOT gate, such as NAND, NOR, and XNOR.
For this primitive Boolean gate, its Boolean oracle is generated using the Boolean structure of (¬a) based on
NOT’s truth table.
(ii) The Phase oracle for the classical Boolean AND gate is simply the controlled-Z gate (CZ), as illustrated
in Fig. 2c, and its Boolean oracle is simply the Toffoli gate, as shown in Fig. 2d. The Us operator successfully
searches for the solution for the Phase and Boolean oracles, as demonstrated in Fig. 2e and Fig. 2f, respective-
ly. Also, the CUs operator successfully searches for the solution for the Boolean oracle, as presented in Fig. 2g.
Boolean and Phase oracles are generated using the Boolean structure of (a ∧ b) based on AND’s truth table.
(iii) The Phase and Boolean oracles for the classical Boolean NAND gate are designed, as shown in Fig. 2h and
Fig. 2i, respectively. The CUs operator successfully searches for all solutions for the Boolean oracle, as illus-
trated in Fig. 2l, while the Us operator fails to search for solutions for Phase and Boolean oracles, as shown in
Fig. 2j and Fig. 2k, respectively. We noticed that the Us operator treats these Phase and Boolean NAND oracles
as Phase and Boolean AND oracles! Therefore, the CUs operator shows its advantage over the Us operator in
searching for all solutions for further arbitrary Boolean oracles, when their collector gates are in the form
of Boolean NAND gate. For this primitive Boolean gate, Boolean and Phase oracles are generated using the
Boolean structure of ¬ (a ∧ b) based on NAND’s truth table.
(iv) The Boolean and Phase oracles for the classical Boolean OR gate are designed using either the OR’s truth
table or De Morgan’s Law. Note that both designs have the same ORing functionality. Phase and Boolean or-
acles are generated using the Boolean structure of (a ∨ b) based on OR’s truth table, as shown in Fig. 3a and
Fig. 3b, respectively. Moreover, the Boolean oracle can be designed using the Boolean structure of ¬ (¬a ∧ ¬b)
based on De Morgan’s Laws, as presented in Fig. 3c. The CUs operator successfully searches for all solutions

Scientific Reports | (2024) 14:23570 5| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

nature portfolio

http://www.nature.com/scientificreports

Fig. 2. Boolean and Phase oracles for classical primitive Boolean gates (NOT, AND, NAND) with the final
measured solutions using the Us and CUs operators: (a) Boolean oracle of classical Boolean NOT gate, this
Boolean gate cannot be implemented as Phase oracle, (b) the solution for Boolean NOT oracle using the CUs
operator, (c) Phase oracle of classical Boolean AND gate, (d) Boolean oracle of classical Boolean AND gate,
(e) the solution for Phase AND oracle using the Us operator, (f) the solution for Boolean AND oracle using
the Us operator, (g) the solution for Boolean AND oracle using the CUs operator, (h) Phase oracle of classical
Boolean NAND gate, (i) Boolean oracle of classical Boolean NAND gate, (j) the non-solution for Phase NAND
oracle using the Us operator, (k) the non-solution for Boolean NAND oracle using the Us operator, and (l) the
solutions for Boolean NAND oracle using the CUs operator. Note: the CUs operator successfully searches for all
solutions for all Boolean oracles of classical primitive Boolean gates (NOT, AND, and NAND).

Scientific Reports | (2024) 14:23570 6| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

Measurementofinputqubits lor Gro¥ef"s 111goothm (L.oopS=l)

(a) (b)

a

:r b

fqubit

(c) (d)

MeasurementofinputqubitslorGrover'salgorithm lLoops=U MeasurementofinputqubitsforG<over'salgorithm tL.oopS=U Measurement of input qubits for Grt>\ler'S algoritlvn (Loops = 1)

0.50

0.25 0.2

o.oo
8 " " =:

(e) (f) (g)

a

b

fqubit

(h) (i)

Measurement ofinputqubits forGrover'salgorithm (Loops = l) MeasurementofinputqubitsforG<over's a lgorithm CL.oopS= ll MeaSlllefTlelltolinputqubitsforGrover'salgonthm lloops=l)

032

02'

016

008

000
8 " " =:

U) (k) (I)

nature portfolio

http://www.nature.com/scientificreports

for the Boolean oracle, as shown in Fig. 3f, while the Us operator fails to search for solutions for Phase and
Boolean oracles, as demonstrated in Fig. 3d and Fig. 3e, respectively. We noticed that the Us operator treats
these Boolean and Phase OR oracles as Boolean and Phase NOR oracles! Concluding that the CUs operator
shows its advantage over the Us operator in searching for solutions for collector gates in the form of Boolean
OR gate.
(v) The Boolean oracle for the classical Boolean NOR gate is designed using either the NOR’s truth table or
De Morgan’s Law, or simply by negating the Boolean OR oracles, as shown in Fig. 3h and Fig. 3i, respectively.
Note that both designs have the same NORing functionality. While the Phase oracle is generated using any
design, as demonstrated in Fig. 3g. Both operators (Us and CUs) successfully search for solutions for Boolean
and Phase oracles, as shown in Fig. 3j–l. Boolean and Phase oracles are generated using the Boolean structure

Fig. 3. Boolean and Phase oracles for classical primitive Boolean gates (OR and NOR) with the final measured
solutions using the Us and CUs operators: (a) Phase oracle of classical Boolean OR gate, (b) Boolean oracle
of classical Boolean OR gate from the OR’s truth table, (c) Boolean oracle of classical Boolean OR gate from
De Morgan’s Law of ¬ (¬a ∧ ¬b), (d) the non-solution for Phase OR oracle using the Us operator, (e) the
non-solution for Boolean OR oracle using the Us operator, (f) the solutions for Boolean OR oracle using the
CUs operator, (g) Phase oracle of classical Boolean NOR gate, (h) Boolean oracle of classical Boolean NOR
gate from the NOR’s truth table, (i) Boolean oracle of classical Boolean NOR gate from De Morgan’s Law of
(¬a ∧ ¬b), (j) the solution for Phase NOR oracle using the Us operator, (k) the solution for Boolean NOR
oracle using the Us operator, and (l) the solution for Boolean NOR oracle using the CUs operator. Note: the CUs
operator successfully searches for all solutions for all Boolean oracles of classical primitive Boolean gates (OR
and NOR).

Scientific Reports | (2024) 14:23570 7| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

(a) (b) (c)

Musu,.......,t olinputqubitsfll<'Grove.-salgorithmlL.aop•=l) Mea ... lflMfltofinpulq,ubitsforGRW«"salgorithm(I.OOpS:l) ~asurementof1nputqubitsforGro\le<"sa'9orithmCLoops: l)

8

{d) (e) (f)

a a

b b

fqubit fqubit --------ll-+-1-----

(g) (h) (i)

Meuuremenl of input qubits f0< Grove.-s algorithm {1.00pS=l) MHSUrementofinputciubitsforGrov«"salgorithm CLOopS=l)
MeasurementofinputqubitsforGrover'salgorithm (loops:ll

o.,

8 8

U) (k) (I)

nature portfolio

http://www.nature.com/scientificreports

of ¬ (a ∨ b) based on NOR’s truth table or from the Boolean structure of (¬a ∧ ¬b) based on De Morgan’s
Laws.
(vi) The Boolean oracle for the classical Boolean XOR gate is designed using either the XOR’s truth table or
the composite (in-cascade) design, as shown in Fig. 4b and Fig. 4c, respectively. Note that both designs have
the same XORing functionality. While the Phase oracle is generated using any design, as demonstrated in
Fig. 4a. The CUs operator successfully searches for all solutions for the Boolean oracle, as illustrated in Fig. 4f,
while the Us operator fails for Phase and Boolean oracles, as demonstrated in Fig. 4d and Fig. 4e, respective-
ly. Hence, the CUs operator shows its advantage over the Us operator in searching for solutions for further
arbitrary Boolean oracles when their collector gates are in the form of Boolean XOR gates. Note that when
searching for solutions for Boolean oracles in the Boolean structure of ESOP using the Us operator, the im-
plicit XORing functionality of fqubit is utilized, i.e., without using a collector gate in the form of Boolean XOR

Fig. 4. Boolean and Phase oracles for classical primitive Boolean gates (XOR and XNOR) with the final
measured solutions using the Us and CUs operators: (a) Phase oracle of classical Boolean XOR gate, (b)
Boolean oracle of classical Boolean XOR gate from the XOR’s truth table, (c) Boolean oracle of classical
Boolean XOR gate from the composite (in-cascade) design (a⊕ b⊕ fqubit), (d) the non-solutions for Phase
XOR oracle using the Us operator, (e) the non-solutions for Boolean XOR oracle using the Us operator, (f)
the solutions for Boolean XOR oracle using the CUs operator, (g) Phase oracle of classical Boolean XNOR
gate, (h) Boolean oracle of classical Boolean XNOR gate from the XNOR’s truth table, (i) Boolean oracle of
classical Boolean XNOR gate from the composite (in-cascade) design ¬ (a⊕ b⊕ fqubit), (j) the non-solutions
for Phase XNOR oracle using the Us operator, (k) the non-solutions for Boolean XNOR oracle using the
Us operator, and (l) the solutions for Boolean XNOR oracle using the CUs operator. Note: the CUs operator
successfully searches for all solutions for all Boolean oracles of classical primitive Boolean gates (XOR and
XNOR).

Scientific Reports | (2024) 14:23570 8| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

(a) (b) (c)

Me;is,..,_t of i"l)IA c,ubits for Grover's ;,lgorithm Ctoops=ll Me.isu.- of input qubits for Grover's algorithm (Loops= l)

0.30

0.15

" ~

(d) (e) (f)

a a

0 a

b b

b ED 0 ED fqubit fqubit

(g) (h) (i)

~uu..-tof,nputqub,uto,,a.rov.,-s ;,9)nthm CL.Da9S• II Mnsu........iofinputqubotsforGl'ow<'s ;,lgonthmCt.oops• l)

0.60

0.45

(j) (k) (I)

nature portfolio

http://www.nature.com/scientificreports

gate, as discussed in the following subsection “Oracles for POS, SOP, and ESOP”. Boolean and Phase oracles
are generated using the Boolean structure of (a⊕ b) based on XOR’s truth table or from the Boolean structure
of(a⊕ b⊕ fqubit) based on the composite (in-cascade) design.
(vii) The Boolean oracle for the classical Boolean XNOR is designed using either the XNOR’s truth table
or the composite (in-cascade) design, as shown in Fig. 4h and Fig. 4i, respectively. Note that both designs
have the same XNORing functionality. While the Phase oracle is generated using any design, as demonstrat-
ed in Fig. 4g. The CUs operator successfully searches for all solutions for the Boolean oracle, as shown in
Fig. 4l, while the Us operator fails for Phase and Boolean oracles, as shown in Fig. 4j and Fig. 4k, respectively.
Therefore, the CUs operator shows its advantage over the Us operator in searching for solutions for arbitrary
Boolean oracles of collector gates in the form of Boolean XNOR gate. Boolean and Phase oracles are gener-
ated using the Boolean structure of ¬ (a⊕ b) based on XNOR’s truth table or from the Boolean structure of
¬ (a⊕ b⊕ fqubit) based on the composite (in-cascade) design.

Concluding that the Us operator only searches for solutions for Boolean and Phase oracles, when their collector
gates are in the forms of Boolean AND gate and Boolean NOR gate! While the CUs operator successfully searches
for all solutions for all Boolean oracles regardless of the Boolean forms of their collector gates.

Oracles for POS, SOP, and ESOP
Three classical Boolean structures of POS, SOP, and ESOP are implemented for arbitrary problems consisting of
three classical literals (a, b, and c), and their Boolean and Phase oracles are constructed in various Boolean forms
of collector gates. Such that, the POS represents the Boolean structure in (1), the SOP represents the Boolean
structure in (2), and the ESOP represents the Boolean structure in (3) below.

 (a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c) (1)

 (a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c) (2)

 (a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c) (3)

(i) From (1) above, the Boolean POS oracle utilizes the Boolean AND gate as its collector gate, as shown in
Fig. 5b, and the Phase POS oracle is generated as shown in Fig. 5a. The CUs operator successfully searches for
all solutions for the Boolean POS oracle, as shown in Fig. 5e. While the Us operator fails to search for solutions
for Phase and Boolean POS oracles, even though the collector gates of these oracles are in the form of Boolean
AND gate, as illustrated in Fig. 5c and Fig. 5d, respectively! To the best of our knowledge, so far no one has
found that some logical structures of oracles do not work correctly for both Boolean and Phase oracles. This
is perhaps for two reasons: (A) most authors formulate constraints satisfaction problems as product of con-
straints (products of predicates), so that they do not formulate those problems with other collector gates, and
(B) the numerical errors in their measurements they attribute perhaps to the errors of computer hardware or
models in simulator rather than to the fundamental mistakes in the algebraic design of diffusers!
(ii) From (2) above, the Boolean SOP oracle has its collector gate in the form of Boolean OR gate, as shown
in Fig. 5g, and the Phase SOP oracle is generated as shown in Fig. 5f. The CUs operator successfully searches
for all solutions for the Boolean SOP oracle, as presented in Fig. 5(j). While the Us operator fails for Phase
and Boolean SOP oracles, as demonstrated in Fig. 5h and Fig. 5i, respectively. This gives an intuitive thought
that the Us operator always fails in searching for solutions for Boolean and Phase oracles when their collector
gates are in the form of Boolean OR gate, as discussed above in the subsection “Oracles of Primitive Boolean
Gates (iv)”.
(iii) From (3) above, in this article, the Boolean ESOP oracle is implemented to not have any collector gate,
since this design relies on the implicit XORing functionality of fqubit, as shown in Fig. 5l. While the Phase
ESOP oracle is generated as shown in Fig. 5k. Both operators (Us and CUs) successfully search for all solutions
for Phase and Boolean oracles, as illustrated in Fig. 5m–o.

For POS and SOP oracles (Boolean and Phase), the Us operator fails and is not capable of searching for solutions,
except for the ESOP oracles (Boolean and Phase). While the CUs operator successfully searches for all solutions
for Boolean oracles in the structures of POS, SOP, and ESOP. We also noticed that the Us operator fails to search
for solutions for (i) POS oracles (Boolean and Phase) even when their collector gates are expressed in the form
of Boolean AND gate and (ii) any Boolean oracle that has too many quantum Boolean-based OR gates in its
circuit design, based on our experimental observations! Hence, the CUs operator has the advantage over the
Us operator for searching for all solutions for Boolean oracles regardless of (i) their Boolean structures, (ii) the
Boolean forms of their collector gates, and (iii) the number of utilized quantum Boolean-based gates in their
circuit design.

Oracles for digital logic circuits
Two digital logic circuits, as arbitrary classical problems, are designed and then transformed into Boolean and
Phase oracles, to illustrate how the CUs operator is a more effective approach than the Us operator in searching
for all solutions for Boolean oracles, when their collector gates are in the form of Boolean OR gate. The first
problem is the classical 2-bit inequality comparator, which outputs ‘1’ when both input numbers are unequal,
as shown in Fig. 6a. Its equivalent Phase and Boolean oracles are designed as shown in Fig. 6b and Fig. 6c,
respectively. The CUs operator successfully searches for all solutions for the Boolean oracle, as illustrated in

Scientific Reports | (2024) 14:23570 9| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

nature portfolio

http://www.nature.com/scientificreports

Fig. 5. Boolean and Phase oracles in different Boolean structures (POS, SOP, and ESOP) for arbitrary
problems of the literals (a, b, and c): (a) Phase POS oracle of (a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c), (b) Boolean
POS oracle of (a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c), (c) the non-solutions for the Phase POS oracle using the
Us operator, (d) the non-solutions for the Boolean POS oracle using the Us operator, (e) the solutions for
the Boolean POS oracle using the CUs operator, (f) Phase SOP oracle of (a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c)
, (g) Boolean SOP oracle of (a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c), (h) the non-solutions for the Phase
SOP oracle using the Us operator, (i) the non-solutions for the Boolean SOP oracle using the Us
operator, (j) the solutions for the Boolean SOP oracle using the CUs operator, (k) Phase ESOP oracle of
(a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c), (l) Boolean ESOP oracle of (a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c), (m)
the solutions for the Phase ESOP oracle using the Us operator, (n) the solutions for the Boolean ESOP oracle
using the Us operator, and (o) the solutions for the Boolean ESOP oracle using the CUs operator. Note: the CUs
operator successfully searches for all solutions for all Boolean oracles in different Boolean structures (POS,
SOP, and ESOP) for arbitrary problems.

Scientific Reports | (2024) 14:23570 10| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

c ED0ED
a

,:1111 iii 11
I i $ i I i g 2

C

:r
c-@

•:I 111 I IJ 111
I i $ i I i g 2

h

·~I •• ~I~l 1.1
I i $ i I i g 2

m

a -ttt--T+t-J--,-----..---+H~+J

b -ttt--++1-J--+--.-----------..--+-----+H--+--i+J
c _..._-H'._._-+--+---+--++¼--+--

oro 10) -H¼iFH---+--+-.--+--+-----f+¼f+¼
or1 10) -------fl:.m--t-+-+-------i:-!Ht't---
or2 10) ----------.ffi-ftl--+---ftl-{-9------
fqubit --------t+t-------

b

ando I 0) -1H-J----+---+-,Hi-,-tt-t--+-+----Hi--

and 1 10) ---tt-,------t-<t-t-t--.-ttT"""t--1t-t-t---

and2 10) ------fti-1Hi-t-ft-H-Hl-----
fqubit -----------a~-i-.-------

8-~~--
b---+-----+--+++---+-++4-

C +++--+-+H-+---+--
fqubit -jf-H--fi-l-f+¼--

........... , =
I 8 1 ~ l ~

0

nature portfolio

http://www.nature.com/scientificreports

Fig. 6. Phase and Boolean oracles for arbitrary digital logic circuits with the final measured solutions using
the Us and CUs operators: (a) the 2-bit inequality comparator circuit in the classical domain, (b) Phase oracle
of 2-bit inequality comparator, (c) Boolean oracle of 2-bit inequality comparator, (d) the partial solutions for
(b) using the Us operator, (e) the inverted solutions for (c) using the Us operator, (f) the solutions for (c) using
the CUs operator, (g) our designed 1-bit ORed half-adder circuit in the classical domain, (h) Phase oracle of
1-bit ORed half-adder, (i) Boolean oracle of 1-bit ORed half-adder, (j) the non-solution for (h) using the Us
operator, (k) the non-solution for (i) using the Us operator, and (l) the solutions for (i) using the CUs operator.
Note: the CUs operator successfully searches for all solutions for all Boolean oracles of arbitrary digital logic
circuits (2-bit inequality comparator and 1-bit ORed half-adder).

Scientific Reports | (2024) 14:23570 11| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

d

h
~uurement of ,nput qubits for Grover-s ;,lgonthm (I.OOpS=l)

8

a

b

I

a

ao - -------------- -

8 1 -+------------..... --+-

b1 ---1-1-1--+-+--1----1..+-1--1-+-+--

fqubit ----t-+-t-t-t--.------

Mleuu..........i.clinp.11q,ubtsfo<Grov«"•algonlhmtL.oops~ll

;;;
;;; fl

f= 1

0.011 o.aee 0°'°

o.ono.01~

b ----4t---+-..-----------<1----+--

ca rry _ out IO) -+-t-+--+---+---1-+-1---++-1---+-+---1-++-

sum 10)--.., ______ +-+-,....... __ _

fqubit --------1t-+-1+-+-+-------

0·0 '"oon

Me.i"'rement of ,npu1 qubots for Gnwe.-s algonthm CLOopS=ll Measurementolinputq,ubitsforGn,vN'salgorithm (I.OOpS: l)

8

k

nature portfolio

http://www.nature.com/scientificreports

Fig. 6f. While the Us operator fails to search for solutions for the Phase and Boolean oracles, as illustrated in
Fig. 6d and Fig. 6e, respectively. Note that the input qubits are denoted in Dirac notation4,5 of |MSQ LSQ〉, where
LSQ is the least significant qubit (most-right) and MSQ is the most significant qubit (most-left). Such that,
number0 =|a1a0〉 and number1 =|b1b0〉. For this first problem, the Boolean and Phase oracles are generated using
the Boolean structure in (4) below.

 (a0 ⊕ b0) ∨ (a1 ⊕ b1) (4)

The second problem is our designed “1-bit ORed half-adder” that outputs ‘1’ when the sum and/or the carry-out
signals have ‘1’, as shown in Fig. 6g, and its equivalent Phase and Boolean oracles are implemented as shown in
Fig. 6h and Fig. 6i, respectively. The CUs operator successfully searches for all solutions for the Boolean oracle, as
shown in Fig. 6l, while the Us operator fails to search for solutions for Phase and Boolean oracles, as illustrated
in Fig. 6j and Fig. 6k, respectively. For this second problem, the Boolean and Phase oracles are constructed using
the Boolean structure in (5) below.

 (a ∧ b) ∨ (a ⊕ b) (5)

Note that, for the second problem, the Phase oracle is generated as similar to the Phase OR oracle, as discussed
above in the subsection “Oracles of Primitive Boolean Gates (iv)” and shown in Fig. 3a! The Us operator fails to
search for solutions for the two Boolean oracles for the first and second problems, since the Us operator treats
their collector gates in the form of Boolean OR gate as the collector gates in the form of Boolean NOR gate,
as also previously stated in the subsection “Oracles of Primitive Boolean Gates (iv)”. While the CUs operator
successfully searches for all solutions for these two Boolean oracles, when their collector gates are expressed in
the form of Boolean OR gate.

Oracles for CSP-SAT
Two arbitrary classical CSP-SAT problems are designed as Boolean and Phase oracles to search for solutions
using Grover’s algorithm of both operators (Us and CUs). The first problem is the 3-node graph coloring that
satisfies, i.e., its output equals to ‘1’, when every two adjacent nodes have different colors, i.e., when every two
connected nodes have different values, and these inequality conditions are the so-called “constraints”. These
constraints for the conditional coloring of these three nodes are mathematically expressed in (6–7) below.
Figure 7a presents the classical representation of this problem, and its Phase and Boolean oracles are designed as
illustrated in Fig. 7b and Fig. 7c, respectively. Both operators (Us and CUs) are employed to search for solutions,
and both operators successfully search for all solutions for Boolean and Phase oracles in one Grover iteration, as
demonstrated in Fig. 7d–f. Note that (i) each node is represented by one input qubit and (ii) the color of a node is
represented by the quantum state of |0〉 or |1〉 that met the constraints. For this first CSP-SAT problem, Boolean
and Phase oracles are generated using the Boolean structure in (8) below.

 inequal0 : node0 ̸= node1 (6)

 inequal1 : node1 ̸= node2 (7)

 (node0 ⊕ node1) ∧ (node1 ⊕ node2) (8)

The second CSP-SAT problem is the 2 × 2 Sudoku game that satisfies when all Sudoku’s constraints are met.
These constraints are: (i) all cells in a row should not have similar values and (ii) all cells in a column should not
have similar values, as stated in (9–12) below. Figure 7g demonstrates the classical representation of this problem
as the four-cell board layout of Sudoku, and its Phase and Boolean oracles are constructed as shown in Fig. 7h
and Fig. 7i, respectively. Both operators (Us and CUs) are employed to search for solutions, and both operators
successfully search for all solutions for Boolean and Phase oracles, as illustrated in Fig. 7(j–l), in two Grover
iterations. Note that (i) each cell is represented by one input qubit and (ii) the value of a cell is represented by
the quantum state of |0〉 or |1〉 that met the constraints. For this second CSP-SAT problem, Boolean and Phase
oracles are generated using the Boolean structure in (13) below.

 inequal0 : cell0 ̸= cell1 (9)

 inequal1 : cell0 ̸= cell2 (10)

 inequal2 : cell1 ̸= cell3 (11)

 inequal3 : cell2 ̸= cell3 (12)

 (cell0 ⊕ cell1) ∧ (cell0 ⊕ cell2) ∧ (cell1 ⊕ cell3) ∧ (cell2 ⊕ cell3) (13)

Consequently, the Us operator successfully searches for all solutions for Boolean and Phase oracles of the two
CSP-SAT problems, since (i) the collector gates for these oracles are in the form of Boolean AND gate and (ii)
the quantum Boolean-based OR gates are never used in the circuit design of these oracles. In our experiments,
the CUs operator successfully searches for all solutions for the two CSP-SAT Boolean oracles regardless of their
Boolean forms of collector gates as well as the number of utilized quantum Boolean-based gates in their circuit
design.

Table 1 states the summary for both operators (Us and CUs) in searching for all solutions for the aforementioned
arbitrary problems as Boolean and Phase oracles, as well as how many Grover’s iterations are required. Note that

Scientific Reports | (2024) 14:23570 12| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

nature portfolio

http://www.nature.com/scientificreports

Fig. 7. Phase and Boolean oracles for arbitrary CSP-SAT problems with the final measured solutions using
the Us and CUs operators: (a) the 3-node graph coloring problem in the classical domain, (b) Phase oracle
of 3-node graph coloring, (c) Boolean oracle of 3-node graph coloring, (d) the solutions for (b) using the Us
operator, (e) the solutions for (c) using the Us operator, (f) the solutions for (c) using the CUs operator, (g) the
2 × 2 Sudoku board layout in the classical domain, (h) Phase oracle of 2 × 2 Sudoku, (i) Boolean oracle of 2 × 2
Sudoku, (j) the solutions for (h) using the Us operator, (k) the solutions for (i) using the Us operator, and (l) the
solutions for (i) using the CUs operator. Note: both operators (Us and CUs) successfully search for all solutions
for all Phase and Boolean oracles of CSP-SAT problems.

Scientific Reports | (2024) 14:23570 13| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

node 1

inequal0 inequal1

node0 __.,__ ____________ ___

node1 -----<'----------~~--_..__
node2 ___.,___,_ _ _,__.._ ___ ___.,___,_ _ _..__

i neq ualo IO) ++.......,_~-+------Jf--...__----1--- -1--------<J.-.1-<1--&-1--1-

i neq ua I 1 10) -------11-+-1++..-~1-+-1++..---

fqubit ______,__ _____ _

C
Mu....-ot,nputqubrtsforCin:>ftr"•algorrthm(I..OOp<•l l --olonputqubltslol/Gro'Hr'salgontlwn{L.oop<• l)

d e

a ,oo

8

h
Measurement of input qubits forGrove<°s illgorilhm (Loop;]) .,

ce/10
ce//1
ce/12
ce/13

inequal0 10)
inequal1 10)
inequal2 10)
inequal3 10)

fqubit

--ofinp.,tqubltsfofGrolltnal9<>ritl'lmC1.00p5• 21

Oll<IOO-aoolaml 11 •- omoooo10000o"""•'"'l0'""

lifiii#ff!ifi!!§§
k

,,

Nf!-of,nputqubrtsto,-~ •

lifiii#ff!ifi!!§f!
I

nature portfolio

http://www.nature.com/scientificreports

“N.A.” means that an operator is not applicable to be designed for Grover’s algorithm, “True” means that an
operator searches for all solutions, “False” means that an operator searches for all solutions when an oracle is
inverted in design, i.e., when inverting a problem, “Partial” means that an operator searches for a few solutions,
and “None” means that an operator gives random outputs, i.e., the superposition states of all input qubits for an
oracle.

Accordingly, the CUs operator successfully and effectively searches for all solutions for Boolean oracles
regardless of (i) their Boolean structures, (ii) the Boolean forms of their collector gates, and (iii) the number of
utilized quantum Boolean-based gates in their circuit design. Grover’s algorithm of CUs operator will provide
broad opportunities to solve and search for all solutions for many problems (as Boolean oracles) that are neither
designed nor solved using Grover’s algorithm of Us operator. Thus, various problems and applications constructed
in different Boolean structures of POS, SOP, ESOP, XOR-SAT, digital logic circuits, digital synthesizers, robotics,
and machine learning can be realized as Boolean oracles, and then solved with all k solutions using Grover’s
algorithm of our proposed CUs operator, in O

(
π
4

√
N
k

)
Grover iterations for k ≥ 1.

Discussion
In this article, we noticed that the Grover diffusion operator (Us) of Grover’s algorithm searches for solutions
for Boolean and Phase oracles (Uω), when their collector gates are in the form of Boolean AND gate, i.e., the
Toffoli gate for a Boolean oracle and the multiple-controlled Z gate for a Phase oracle. The collector gate is a
quantum gate that acts as the junction gate(s) for the Boolean structure of an oracle that represents a problem. In
contradiction, when a Boolean or Phase oracle utilizes its collector gate in a different form of Boolean gate, such
as NAND, OR, NOR, or XNOR, then the Us operator fails to search for all solutions! Our work redesigns the Us
operator to a controlled-diffusion operator for Boolean oracles only, which is termed the controlled-Us (CUs).
The CUs relies on the computational basis states of the functional, or output, qubit (fqubit), instead of relying
on the phase kickback. The CUs operator is essentially the Us operator controlled by the states of fqubit. For the
CUs operator, the fqubit is initialized to the state of |0〉 instead of |–〉. The collector gate of a Boolean oracle flips
the states of fqubit to indicate the marked elements and the unmarked elements for a problem. The Us operator
searches for solutions by rotating and amplifying the amplitudes of marked elements, throughout the effect of
phase kickback for a Boolean oracle or the phase inversion for a Phase oracle. While our proposed CUs operator
searches for solutions by rotating and amplifying the amplitudes of marked elements, based on the states of
fqubit for a Boolean oracle only. Such that the state of |0〉 represents an unmarked element, while the state of
|1〉 represents a marked element. In our research, different Boolean and Phase oracles for arbitrary problems in
the Boolean structures of POS, SOP, ESOP, and XOR-SAT are designed with various Boolean forms of collector
gates, and these oracles are then evaluated using Grover’s algorithm of both Us and CUs operators. We concluded
that the Us operator searches for solutions for Boolean and Phase oracles, when their collector gates are in the
form of Boolean AND gate, and for a few Boolean structures, specifically the ESOP and XOR-SAT! While our
CUs operator successfully searches for all solutions for all Boolean oracles regardless of their Boolean structures

Grover’s Us operator Our CUs operator

Phase oracle Boolean oracle Boolean oracle

Arbitrary problems
Logical
structures Solved?

O
(
π
4

√
N
k

)
Solved?

O
(
π
4

√
N
k

)
Solved?

O
(
π
4

√
N
k

)

¬a NOT N.A True 1

a ∧ b AND True 1 True 1 True 1

¬ (a ∧ b) NAND False 1 False 1 True 1

a ∨ b OR False 1 False 1 True 1

¬ (a ∨ b) NOR True 1 True 1 True 1

a⊕ b XOR None 1 None 1 True 1

¬ (a⊕ b) XNOR None 1 None 1 True 1

(a ∨ b ∨ ¬c) ∧ (¬a ∨ c) ∧ (¬b ∨ c) POS (AND-OR) None 1 None 1 True 1

(a ∧ b ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ c) SOP (OR-AND) None 1 None 1 True 1

(a ∧ b ∧ ¬c)⊕ (¬a ∧ c)⊕ (¬b ∧ c) ESOP (XOR-
AND) True 1 True 1 True 1

2-bit inequality comparator: (a0 ⊕b0)
∨ (a1 ⊕ b1)

DNF-XOR SAT
(OR-XOR) Partial 1 False 1 True 1

1-bit ORed half-adder: (a ∧ b) ∨ (a ⊕ b) OR-AND/XOR False 1 False 1 True 1

3-node graph coloring: (node0 ⊕ node1) ∧
(node1 ⊕ node2)

CNF-XOR SAT
(AND-XOR) True 1 True 1 True 1

2 × 2 Sudoku game: (cell0 ⊕ cell1) ∧
(cell0 ⊕ cell2) ∧ (cell1 ⊕ cell3) ∧ (cell2 ⊕ cell3)

CNF-XOR SAT
(AND-XOR) True 2 True 2 True 2

Table 1. Summary of Grover’s algorithm solving arbitrary problems using the Grover diffusion operator (Us)
and our proposed controlled-diffusion operator (CUs).

Scientific Reports | (2024) 14:23570 14| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

nature portfolio

http://www.nature.com/scientificreports

and the Boolean forms of collector gates. In conclusion, utilizing the states of fqubit is a more successful and
effective search approach than utilizing the phase kickback or phase inversion for Boolean and Phase oracles,
respectively. Therefore, the CUs operator can replace the Us operator for Grover’s algorithm to search for all
solutions for Boolean oracles. Further Boolean oracles can be constructed in different Boolean structures with
different Boolean forms of their collector gates for practical applications in the topics of digital synthesizers,
robotics, machine learning, just name a few, and then Grover’s algorithm of our proposed CUs operator will
successfully and effectively solve such applications, in the quantum domain.

Methods
The algorithms, quantum circuits analyses, and mathematical models for the Grover diffusion operator (Us)
and our proposed controlled-diffusion operator (CUs) are discussed and illustrated in the “Supplementary
Information”.

Data availability
All relevant data are available from the corresponding author (A.A.-B) upon request.

Received: 29 May 2023; Accepted: 27 September 2024

References
 1. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. of the 28th Ann. ACM Symp. on Theory of

Computing. 212–219 (1996).
 2. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997).
 3. Grover, L. K. A framework for fast quantum mechanical algorithms. In Proc. of the 30th Ann. ACM Symp. on Theory of Computing.

53–62 (1998).
 4. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2010).
 5. LaPierre, R. Introduction to Quantum Computing 1st edn. (Springer, 2021).
 6. Boyer, M., Brassard, G., Høyer, P. & Tapp, A. Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics

46(4–5), 493–505 (1998).
 7. Brassard, G., Høyer, P. & Tapp, A. Quantum counting. In Automata, Languages and Programming (eds Brassard, G. et al.) (Springer,

1998).
 8. Brassard, G., Hoyer, P., Mosca, M. & Tapp, A. Quantum amplitude amplification and estimation. Contemp Math. 305, 53–74

(2002).
 9. Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun. 8(1), 1–9 (2017).
 10. Li, W. et al. Parameterized algorithms of fundamental NP-hard problems: A survey. Hum.-Centric Computing Inf. Sci. 10(1), 1–24

(2020).
 11. Huang, W. & Zhang, L. X. A note on the invariance principle of the product of sums of random variables. Electronic Commun.

Probab. 12, 51–56 (2007).
 12. Zimmermann, R. & Tran, D. Q. Optimized synthesis of sum-of-products. IEEE 37th Asilomar Conf. on Signals, Systems &

Computers. 867–872 (2003).
 13. Sasao, T. EXMIN2 a simplification algorithm for exclusive-or-sum-of-products expressions for multiple-valued-input two-valued-

output functions. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 12(5), 621–632 (1993).
 14. Song, N. & Perkowski, M. Minimization of exclusive sum-of-products expressions for multiple-valued input, incompletely

specified functions. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(4), 385–395 (1996).
 15. Mishchenko, A. & Perkowski, M. Fast heuristic minimization of exclusive sums-of-products. Proc. RM’2001 Workshop. 242–250

(2001).
 16. Schaeffer, B., Tran, L., Gronquist, A., Perkowski, M. & Kerntopf, P. Synthesis of reversible circuits based on products of exclusive

or sums. In 2013 IEEE 43rd International Symposium on Multiple-Valued Logic (eds Schaeffer, B. et al.) (IEEE, 2013).
 17. Creignou, N. & Daude, H. Satisfiability threshold for random XOR-CNF formulas. Discret. Appl. Math. 96, 41–53 (1999).
 18. Ibrahimi, M., Kanoria, Y., Kraning, M. & Montanari, A. The set of solutions of random XORSAT formulae. In Proc. of the twenty-

third annual ACM-SIAM symposium on Discrete Algorithms (eds Ibrahimi, M. et al.) (SIAM, 2012).
 19. Soos, M. & Meel, K. S. 2019 BIRD: engineering an efficient CNF-XOR SAT solver and its applications to approximate model

counting. In Proc. of the AAAI Conf. on Artificial Intelligence. 33(1), 1592–1599 (2019).
 20. Hurley, P. J. A Concise Introduction to Logic 12th edn. (Cengage Learning, 2015).
 21. Kurgalin, S. & Borzunov, S. Implementation of Boolean functions in Concise Guide to Quantum Computing, Algorithms, Exercises,

and Implementations. 37–43 (Springer, 2021).
 22. Hadfield, S. On the representation of Boolean and real functions as Hamiltonians for quantum computing. ACM Trans. Quantum

Computing 2(4), 1–21 (2021).
 23. Toffano, Z. & Dubois, F. Adapting logic to physics: the quantum-like eigenlogic program. Entropy 22(2), 139 (2020).
 24. Schmitt, B. & De Micheli, G. Tweedledum: a compiler companion for quantum computing. In 2022 Design, Automation \& Test in

Europe Conference \& Exhibition (DATE) (eds Schmitt, B. & De Micheli, G.) (IEEE, 2022).
 25. Schuler, R. An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algorithms. 54(1), 40–44 (2005).
 26. Rijnbeek, P. R. & Kors, J. A. Finding a short and accurate decision rule in disjunctive normal form by exhaustive search. Mach.

Learn. 80(1), 33–62 (2010).
 27. Brown, S. & Vranesic, Z. Fundamentals of Digital Logic with VHDL Design 3rd edn. (McGraw Hill, 2008).
 28. Perkowski, M. & Liu, K. Binary, multi-valued and quantum board and computer games to teach synthesis of classical and quantum

logic circuits. In 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL) (eds Perkowski, M. & Liu, K.) (IEEE,
2021).

 29. Perkowski, M. Inverse problems, constraint satisfaction, reversible logic, invertible logic and Grover quantum oracles for practical
problems. Sci. Computer Program. 218, 02775 (2022).

 30. Simonis, H. Sudoku as a constraint problem. In CP Workshop on Modeling and Reformulating Constraint Satisfaction Problems (ed.
Simonis, H.) (Citeseer, 2005).

 31. Lynce, I. & Ouaknine, J. Sudoku as a SAT problem. In Proc. of the 9th Symp. on Artificial Intelligence and Mathematics (AI&M).
(2006).

 32. Zhang, K. & Korepin, V. E. Depth optimization of quantum search algorithms beyond Grover’s algorithm. Phys. Rev. A. 101(3),
032346 (2020).

 33. Roy, T., Jiang, L. & Schuster, D. I. Deterministic Grover search with a restricted oracle. Phys. Rev. Res. 4(2), L022013 (2022).

Scientific Reports | (2024) 14:23570 15| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

Published online: 09 October 2024

nature portfolio

http://www.nature.com/scientificreports

 34. Mandviwalla, A., Ohshiro, K. & Ji, B. Implementing Grover’s algorithm on the IBM quantum computers. In 2018 IEEE Int. Conf.
on Big Data. 2531–2537 (2018).

 35. Liu, H., Li, F. & Fan, Y. Optimizing the quantum circuit for solving Boolean equations based on Grover search algorithm. Electronics
11(15), 2467 (2022).

 36. Brailsford, S. C., Potts, C. N. & Smith, B. M. Constraint satisfaction problems: algorithms and applications. Eur. J. Oper. Res. 119(3),
557–581 (1999).

 37. Rao, P., Yu, K., Lim, H., Jin, D. & Choi, D. Quantum amplitude estimation algorithms on IBM quantum devices. Quantum
Commun. Quantum Imag. XVIII. 11507, 49–60 (2020).

Author contributions
A.A.-B organized the research, collected and analyzed data, designed and programmed the controlled-diffusion
operator, and contributed to the theory and the manuscript; and M.P. supervised the research and the manu-
script.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1038/s41598-024-74587-y.

Correspondence and requests for materials should be addressed to A.A.-B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Scientific Reports | (2024) 14:23570 16| https://doi.org/10.1038/s41598-024-74587-y

www.nature.com/scientificreports/

nature portfolio

https://doi.org/10.1038/s41598-024-74587-y
https://doi.org/10.1038/s41598-024-74587-y
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	A Concept of Controlling Grover Diffusion Operator: a New Approach to Solve Arbitrary Boolean-Based Problems
	Let us know how access to this document benefits you.
	Citation Details

	A concept of controlling Grover diffusion operator: a new approach to solve arbitrary Boolean-based problems
	Results
	Oracles of primitive boolean gates
	Oracles for POS, SOP, and ESOP
	Oracles for digital logic circuits
	Oracles for CSP-SAT

	Discussion
	Methods
	References

