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BHT-QAOA: The Generalization of Quantum Approximate
Optimization Algorithm to Solve Arbitrary Boolean Problems
as Hamiltonians

Ali Al-Bayaty * and Marek Perkowski

Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97201, USA;

h8mp@pdx.edu

* Correspondence: albayaty@pdx.edu

Abstract: A new methodology is introduced to solve classical Boolean problems as Hamiltonians,

using the quantum approximate optimization algorithm (QAOA). This methodology is termed the

“Boolean-Hamiltonians Transform for QAOA” (BHT-QAOA). Because a great deal of research and

studies are mainly focused on solving combinatorial optimization problems using QAOA, the BHT-

QAOA adds an additional capability to QAOA to find all optimized approximated solutions for

Boolean problems, by transforming such problems from Boolean oracles (in different structures)

into Phase oracles, and then into the Hamiltonians of QAOA. From such a transformation, we

noticed that the total utilized numbers of qubits and quantum gates are dramatically minimized for

the generated Hamiltonians of QAOA. In this article, arbitrary Boolean problems are examined by

successfully solving them with our BHT-QAOA, using different structures based on various logic

synthesis methods, an IBM quantum computer, and a classical optimization minimizer. Accordingly,

the BHT-QAOA will provide broad opportunities to solve many classical Boolean-based problems as

Hamiltonians, for the practical engineering applications of several algorithms, digital synthesizers,

robotics, and machine learning, just to name a few, in the hybrid classical-quantum domain.

Keywords: Boolean oracles; phase oracles; logical structures; logic synthesis; Hamiltonians; QAOA

1. Introduction

The quantum approximate optimization algorithm (QAOA) was introduced by Farhi
et al. [1,2] to mainly solve combinatorial optimization problems, such as the MaxCut [3,4],
in the quantum domain. The MaxCut problem is a subset of the classical graph theoretical
problems, which is represented by a number of nodes (n) connected through a set of edges
{j, k}, where j and k are the indices of two connected nodes. The solutions for a MaxCut
problem can be determined by finding the maximum number of cuts (in edges) for the
connected nodes. In the quantum domain, the QAOA represents the MaxCut problem in
the form of an ansatz Hamiltonian oracle, which is termed the “Hamiltonian clauses (HC)”,
and ansatz Hamiltonian operator, which is termed the “Hamiltonian mixer (HM)”.

The wording “ansatz” means that HC and HM consist of parameterized rotational
quantum gates of Pauli-Z (RZ) and Pauli-X (RX), respectively [1,2], such that HC consists of
a number of RZ(v·
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RX(ω·β), where v and ω are the coefficients (as the time evolutions for both HC and HM),
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that
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and β are rotated between the angles of [0, 2π] and [0, π], respectively [1,2].
In general, the following steps illustrate the complete construction of QAOA, to find

all approximated solutions for a classical MaxCut problem:

1. All n nodes of the MaxCut problem are represented into their equivalent n input
qubits, which are initially set to the |0〉 state.
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2. Hadamard (H) gates are applied to all n input qubits, to create the complete quantum
search space of {0,1}⊗n for QAOA to find all solutions.

3. Hamiltonian HC represents the quantum circuit of a MaxCut problem as the unitary

operator
(

e− iγHC
)

, which is a set of non-connected nodes as RZj(v·
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), where j and k are the indices of input qubits.
4. Hamiltonian HM represents the quantum circuit for the sum of all n input qubits as

the unitary operator
(

e− iβHM
)

, which is a set of n RX(ω·β). Note that HM acts as the
quantum diffusion operator of QAOA analogous to the diffusion operator in Grover’s
algorithm [5–8], and HM may include other variants and types of gates, not just RX
gates, depending on the model of QAOA used (see the Related Work section).

5. To improve the quality of all approximated solutions, HC and HM are iterated for a

number of repetitions (p), where p ≥ 1, such that every e−iγp HC consists of RZ(v·
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p), etc., and every e− iβp HM consists of RX(ω·βp).

6. The numerical values of coefficients (v and ω) are calculated during the construction
of HC and HM in the classical domain.

7. The numerical values of angles (
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and β) are initially randomized as [
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for HC and HM, respectively, in the classical domain. Note that some studies initialized
such angles to defined values using machine learning and tensor techniques [9–13].

8. The quantum circuit of QAOA (H {HC HM}p) is executed with a quantum processing
unit (QPU) and then measured (in the classical domain) for approximated solutions
depending on the chosen values of
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9. The measured solutions (as the energy cost of QAOA [1,2]), the chosen values of
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ttand β (as the optimization parameters of QAOA), and the Hamiltonians (HC and HM

as an objective function) are fed to a classical optimization minimizer [14–16]. This
minimizer re-calculates the numerical values of these optimization parameters based
on the energy cost from the objective function and updates the HC and HM of QAOA
with a new set of optimized numerical values of
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and β, respectively.
10. For a number of objective function evaluations (nfev), Steps 8 and 9 are concurrently

repeated between a QPU and a minimizer, until finding all optimized approximated
solutions for a MaxCut problem or stopping based on a pre-defined “halt condition”.

The aforementioned ten steps show why QAOA is considered a variational quantum
algorithm solving combinatorial optimization problems in the hybrid classical-quantum
domain [17–19]. The wording “variational” is equivalent to the meaning of “ansatz”.

The goal of this article is to introduce a new methodology to solve classical Boolean
problems as Hamiltonians (HC and HM) using QAOA. For that, our methodology is termed
the “Boolean-Hamiltonians Transform for QAOA” (BHT-QAOA), which can be summa-
rized as follows. Firstly, an arbitrary classical Boolean problem is constructed as a quantum
Boolean oracle [8,20]. This constructed oracle can be expressed in arbitrary structures, such
as the Product-Of-Sums (POS) [21,22], Sum-Of-Products (SOP) [21,23], Exclusive-or Sum-
Of-Products (ESOP) [24,25], XOR-Satisfiability (CNF-XOR SAT and DNF-XOR SAT) [26,27],
and Algebraic Normal Form (ANF) (or Reed–Muller expansion) [28,29], just to name a
few. Secondly, this constructed oracle (in any structure) is converted into its equivalent
quantum Boolean oracle in ESOP structure, unless it was initially constructed in ESOP
structure. Thirdly, the quantum Boolean oracle in ESOP structure is transformed into
its equivalent quantum Phase oracle [8,20]. Fourthly, the Hamiltonians (HC and HM) of
QAOA are generated from this transformed quantum Phase oracle, based on our modified
composition rules originally presented by Hadfield [30]. Finally, all the above-mentioned
ten steps of QAOA are performed in sequence using the generated HC and HM.

Please observe that a quantum Boolean oracle is easier and more straightforward in
expressing an arbitrary classical Boolean problem than a quantum Phase oracle, because
(i) the quantum Boolean-based gates can be directly realized using the truth tables (and
De Morgan’s Laws [21]) of their equivalent classical Boolean gates, and (ii) the quantum
Boolean-based gates and their qubits can be easily analyzed using classical Boolean logic,
such as a Boolean logic of ‘0’ represents a quantum state of |0〉 and a Boolean logic of ‘1’
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represents a quantum state of |1〉. For ease of description, the quantum Boolean oracle and
the quantum Phase oracle will be simply denoted as the “Boolean oracle” and the “Phase
oracle”, respectively.

In BHT-QAOA, converting a Boolean oracle (in any structure) into a Phase oracle will
(i) remove all ancilla qubits (including the output qubit), i.e., the total number of utilized
qubits will be dramatically reduced to the number of input qubits only, and (ii) omit the
mirror (as the uncomputing part) of an oracle, i.e., the total number of quantum gates are
significantly minimized for the quantum circuit of a Phase oracle, depending on the initial
construction of a Boolean oracle that expresses a classical Boolean problem.

In this article, arbitrary classical Boolean problems (as applications) are expressed
as Boolean oracles in various structures, and these Boolean oracles are then solved using
BHT-QAOA for p repetitions, with an IBM QPU and SciPy optimization minimizer [31].
These applications are (i) an arbitrary Boolean problem in POS structure, (ii) an arbitrary
Boolean problem in SOP structure, (iii) an arbitrary Boolean problem in ESOP structure,
(iv) a 2 × 2 Sudoku game, and (v) a 4-bit conditioned half-adder digital circuit. Eventually,
our proposed BHT-QAOA successfully finds all optimized approximated solutions for
these applications, as a proof of concept for utilizing BHT-QAOA to solve arbitrary and
practical classical Boolean problems in the hybrid classical-quantum domain.

2. Related Work

Various research works and different implementations have been proposed to focus
on enhancing the optimization workflow of the following essential topics of QAOA:

1. Solving combinatorial optimization problems, such as graphs, k-SAT, and MaxCut
problems [3,4,32,33], where k ≥ 3 literals (inputs).

2. Finding the optimized numerical values of the angles (

tt
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and β) for the Hamiltonians
(HC and HM), respectively, with fewer function evaluations (nfev) and repetitions
(p) [34–38], or initially using machine learning techniques [9–13].

3. Developing variants of HM for a better QAOA in finding all optimized approximated
solutions for combinatorial optimization problems [11,39–45].

On the other hand, Hadfield [30] proposed a set of composition rules for constructing
the Hamiltonians (Hf), to represent a wide variety of Boolean operators and functions.
These Hamiltonians (Hf) are then combined to generate simpler clauses (building blocks)
of the final Hamiltonians for the applications of quantum annealing [46,47] and QAOA.

In BHT-QAOA, based on our modified sets of Hadfield’s composition rules, the
Hamiltonians (HC and HM) of QAOA are simply generated from a Phase oracle, which is
transformed from a Boolean oracle (in any structure) representing a Boolean problem.

3. Materials and Methods

The essential methodology of BHT-QAOA can be discussed and evaluated using the
following illustrative example. Assume an arbitrary classical Boolean problem is given, as
stated in Equation (1) below, and then expressed as a Boolean oracle in POS structure, as
shown in Figure 1. The following subsections discuss how to (i) convert this Boolean oracle
in POS structure into the Boolean oracle in ESOP structure, (ii) transform the Boolean oracle
in ESOP structure into the Phase oracle, (iii) generate the Hamiltonians (HC and HM) based
on the transformed Phase oracle, and (iv) construct the overall architecture of BHT-QAOA
for HC and HM in p repetitions, where p ≥ 1. Note that, for other classical Boolean problems,
differently expressed Boolean oracles (in any structure) can simply follow the same steps
of conversion, transformation, and generation stated in these subsections, and the fqubit
(functional qubit) is the output ancilla qubit of a Boolean oracle (in any structure).

(a ∨ b ∨ ¬ c) ∧ (¬ a ∨ c) ∧ (¬ b ∨ c) (1)
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Figure 1. The quantum circuit of a Boolean oracle in POS structure for the classical Boolean problem

(a ∨ b ∨ ¬ c) ∧ (¬ a ∨ c) ∧ (¬ b ∨ c), where the OR1 ancilla qubit represents the term (a ∨ b ∨ ¬ c), the

OR2 ancilla qubit represents the term (¬ a ∨ c), the OR3 ancilla qubit represents the term (¬ b ∨ c), the

fqubit ancilla qubit performs all AND operations (∧), and the quantum gates in red denote the mirror

(as the uncomputing part) of this Boolean oracle to reset all ancilla qubits to their initial quantum

states. Note that all ancilla qubits are initially set to the |0〉 states.

3.1. Converting Boolean Oracles from Any Structure to ESOP Structure

There are many synthesis methods to convert a Boolean oracle (in any structure) to its
equivalent Boolean oracle in ESOP structure. These synthesis methods include ESOP synthe-
sis [24], Karnaugh map synthesis [21], and binary decision diagram (BDD) synthesis [48,49],
just to name a few. For instance, the Karnaugh map synthesis for a Boolean oracle (from any
structure to ESOP structure) can be summarized in the following steps.

1. Sketch an empty Karnaugh map with literals (a, b, c, . . .) and their binary Gray codes.
2. Evaluate a Boolean oracle (in any structure) for solutions (as the true minterms of ‘1’)

and non-solutions (as the false minterms of ‘0’).
3. Group all solutions together from step 2, using 1-cell groups, 2-cell groups, etc.
4. Formulate each group from step 3, to generate products (∧) of literals.
5. XOR (⊕) all formulated groups together from step 4, to generate an ESOP structure.

From Equation (1) above, since the Boolean oracle in POS structure is simple, the
Karnaugh map synthesis is utilized to convert it to the Boolean oracle in ESOP structure, as
stated in Equation (2) below and illustrated in Figure 2a,b, and the final quantum circuit of
this Boolean oracle in ESOP structure is shown in Figure 2c. Note that in Figure 2c, (i) there
is no need to optimize this Boolean oracle by removing the identical neighboring X gates,
since all these gates are required for generating Hamiltonians (HC and HM) and calculating
their coefficients (v and ω), respectively, and (ii) all mirrored gates and ancillae (except for
fqubit) are removed when a Boolean oracle is in ESOP structure.

(¬ a ∧ ¬ b ∧ ¬ c) ⊕ (a ∧ ¬ b ∧ c) ⊕ (b ∧ c) (2)

Please observe that the aforementioned steps of Karnaugh map synthesis may not
generate the minimized ESOP structure, as shown in Figure 2b, since these steps usually
create the DSOP (Disjoint Sum-Of-Products) structure, as shown in Figure 2c, which is
an expensive structure as compared to the minimized ESOP structure depending on the
numbers of n-bit Toffoli gates, where n ≥ 3 qubits. However, we just want to illustrate how
to convert a Boolean oracle (in any structure) to its equivalent Boolean oracle in ESOP (or
DSOP) structure.
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Figure 2. The synthesis method for the classical Boolean problem of Equation (1) above: (a) the

Karnaugh map synthesis from the Boolean oracle (in Figure 1) to the Boolean oracle in (c), based

on grouping all true minterms ‘1’ (as solutions) only, (b) the Karnaugh map synthesis from the

Boolean oracle (in Figure 1) to its equivalent Boolean oracle in ESOP structure ((¬ a ∧ ¬ b) ⊕ c),

based on grouping all ‘1’ minterms (as solutions) with one ‘0’ minterm (as an XORed solution), and

(c) the Boolean oracle in DSOP structure of Equation (2) above, where the fqubit performs all XORing

operations (⊕).

3.2. Transforming Boolean Oracles in ESOP Structure to Phase Oracles

In this article, we utilize the technique originally discussed by Figgatt et al. [20] for
transforming 4-bit Toffoli gates to 3-bit controlled-Z (CCZ) gates, for Grover’s algorithm
of single-solution [5–8]. We efficiently generalize their technique to involve the Feynman
(CX) and n-bit Toffoli gates, where n ≥ 3 qubits, for transforming Boolean oracles in ESOP
structure to their equivalent Phase oracles, as presented in the following three rules and
shown in Figure 3. For that, we termed these rules the “generalized transformation rules”.

Rule 1: A Feynman (CX) gate is transformed into a Pauli-Z (Z) gate when Equation (3)
stated below is a solution-satisfiable as demonstrated in Figure 3a, where j is the index of
an input qubit (q). The left side of Equation (3) is the Boolean-based output of a CX gate,
and its right side is the phase-inverted output of a Z gate.

qj ⊕ fqubit = −(− 1)
qj (3)

Rule 2: A Toffoli gate is transformed into a controlled-Z (CZ) gate when Equation (4)
stated below is a solution-satisfiable as shown in Figure 3b, where j and k are the indices of
input qubits (q). The left side of Equation (4) is the Boolean-based output of a Toffoli gate,
and its right side is the phase-inverted output of a CZ gate.

(

qj ∧ qk

)

⊕ fqubit = −(− 1)
qj · qk (4)

Rule 3: An n-bit Toffoli gate is transformed into an (n−1)-bit multi-controlled Z (MCZ)
gate when Equation (5) stated below is a solution-satisfiable as shown in Figure 3c, where j
is the index of an input qubit (q) and n ≥ 3 qubits (q + fqubit). The left side of Equation (5)
is the Boolean-based output of an n-bit Toffoli gate, and its right side is the phase-inverted
output of an (n−1)-bit MCZ gate.

(

∧n–1

j=1
qj

)

⊕ fqubit = −(− 1)∏
n–1
j=1 qj (5)
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Figure 3. Schematics of our generalized transformation rules from the quantum Boolean-based gates

(Feynman, Toffoli, and n-bit Toffoli gates) to the quantum Phase-based gates (Z, CZ, and (n−1)-bit

MCZ gates) with their truth tables, where n ≥ 3 qubits (q inputs + fqubit), and texts in red indicate the

solutions: (a) Rule 1 transforms a Feynman (CX) gate into a Z gate, (b) Rule 2 transforms a Toffoli

gate into a CZ gate, and (c) Rule 3 transforms an n-bit Toffoli gate to an (n−1)-bit MCZ gate. Note

that the total number of qubits is reduced by one after applying these rules, i.e., the fqubit is removed.

After applying our generalized transformation rules on the Boolean oracle in ESOP
(or DSOP) structure, as stated in Equation (2) above and shown in Figure 2c, the resultant
quantum circuit of the Phase oracle is then simply constructed, as illustrated in Figure 4.

ff ff −
≥

ff
ff −

 

∨ ∨ ∧ ∨ ∧ ∨

ff ff

Figure 4. The Phase oracle for the classical Boolean problem (a ∨ b ∨ ¬ c) ∧ (¬ a ∨ c) ∧ (¬ b ∨ c), after

applying our generalized transformation rules on its Boolean oracle in ESOP structure, such that

(i) two 4-bit Toffoli gates are transformed into two 3-bit MCZ gates and one Toffoli gate into one CZ

gate, (ii) all ancilla qubits (including fqubit) are removed, and (iii) there is no mirror for this oracle.

Table 1 summarizes the advantages of converting the Boolean oracle in POS structure
to the Boolean oracle in ESOP structure, and transforming the Boolean oracle in ESOP
structure to the Phase oracle, in the context of (i) the utmost removal of all ancilla qubits
(including the fqubit), i.e., the width of the final quantum circuit is reduced, and (ii) the
dramatic minimization of multi-controlled quantum gates (after transforming the POS
structure into the ESOP structure and then applying the three aforementioned generalized
transformation rules), i.e., the depth of the quantum circuit is shrunk.
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Table 1. Comparison of the number of qubits and quantum gates for the Boolean and Phase oracles for

the Boolean problem of Equation (1) stated above, after applying the generalized transformation rules.

Oracular
Problems

Number of Qubits Number of Multi-Controlled Gates Quantum
Circuit

Required a
Mirror?

Inputs
Ancillae

(with fqubit)
Total

Feynman
(CX)

3-bit
Toffoli

4-bit
Toffoli

Boolean oracle in
POS structure

3 4 7 0 4 3 Yes

Boolean oracle in
ESOP structure

3 1 4 0 1 2 No

Phase oracle 3 0 3 1 (as a CZ) 2 (as a CCZ) 0 No

3.3. Generating Hamiltonians (HC and HM) from Phase Oracles

Hadfield discussed, in [30], the composition rules for generating HC from a set of
Hamiltonians (Hf), which represent a variety of Boolean functions as simpler clauses, as
stated in Table 2. In this article, to generate HC and HM from Phase oracles, we generalize
some of Hadfield’s Boolean-based composition rules (Hf) to Phase-based composition rules,
which we termed the “generalized composition rules (Hg)”. Based on our proposed three
generalized transformation rules stated above, four generalized composition rules (Hg) are
derived from Hf, as expressed in Table 3, where Rules 1, 2, and 3 of Hg are simply inverting
the signs (±) of their corresponding Hf, for both identity (I) and RZ gates.

Table 2. Some of Hadfield’s Boolean-based composition rules (Hf) [30], where j and k are the indices

of input qubits (q), Zj is the RZ gate applied on qj, and fqubit initially sets to the |0〉 state.

Gate Type f (x) Hf

Feynman (CX) Boolean qj ⊕ fqubit = qj
1
2 I − 1

2 Zj

Toffoli Boolean qj ∧ qk
1
4 I − 1

4

(

Zj + Zk − ZjZk

)

n-bit Toffoli Boolean
∧n−1

j=1 qj
1

2n–1 ∏
n–1
j=1

(

I − Zj

)

Table 3. Our proposed generalized composition rules (Hg) for Phase oracles, where j and k

are the indices of input qubits (q), Zj is the RZ gate applied on qj, Q = {qj, qk. . .qjqk. . .}, and

ZQ = {Zj, Zk. . .ZjZk. . .}.

Rules Gate Type g(x) Hg

Rule 1 Pauli-Z (Z) Phase (−1)
qj − 1

2 I+ 1
2 Zj

Rule 2 CZ Phase (−1)
qj·qk − 1

4 I+ 1
4

(

Zj + Zk − ZjZk

)

Rule 3 MCZ Phase (−1)∏
n
j=1 qj 1

2n ∏
n
j=1 (− 1) j+1( I − Zj

)

Rule 4 Pauli-X (X) Phase (−1)∀j ∈ Q Invert signs (±) of all jth qubits in ZQ

Rule 1: Performs Rule 1 of the generalized transformation rules, as stated in Equation (3)
above and previously shown in Figure 3a.

Rule 2: Performs Rule 2 of the generalized transformation rules, as stated in Equation (4)
above and previously shown in Figure 3b.

Rule 3: Performs Rule 3 of the generalized transformation rules, as stated in Equation (5)
above and previously shown in Figure 3c.

Rule 4: Inverts all signs (±) of generated RZ gates in Hg (Rules 1, 2, and 3), since the X
gates are proposed here to only invert the phases of qubits in an Hg.

Consequently, from Table 3, the four generalized compositions rules (Hg) will be then
directly applied to the Phase oracle (shown in Figure 4) to generate HC and calculate its v
coefficient, as demonstrated in Figure 5 and expressed in the following steps (starting from
the left side of this figure).
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·ɣ − ·
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ɣ
tt

ff − − − −

β π
ffi ω π

Figure 5. Steps of generating the Hamiltonian (HC) using our generalized composition rules (Hg)

from the Phase oracle shown in Figure 4, such that HC = (Hg1 → Hg2) + (Hg3 → Hg4) + Hg5.

1. Construct one Hg for one Z, CZ, or MCZ, using Rule 1, Rule 2, or Rule 3, respectively.
2. If there are X gates (with their mirrored gates) surrounding Z, CZ, or MCZ in Step 1,

then apply Rule 4 on Hg from Step 1 to construct a new Hg. If not, proceed to Step 3.
3. Repeat Steps 1 and 2 for another Hg until there are no remaining Z, CZ, and MCZ.
4. Group all constructed Hg into one Hamiltonian, which is HC.
5. Calculate (add or subtract) all the identical terms of HC to find the v coefficient.

From Table 3 and Figure 5, the Hamiltonians (Hg) are step-by-step calculated, as stated
in Equation (6) below. Next, the HC is simply generated from Hg2 + Hg4 + Hg5, as expressed
in Equation (7) below.

Hg1
= 1

8 ((I − Za)(−I+Zb)(I − Zc)) =
1
8 (−I+Za + Zb + Zc − ZaZb − ZaZc − ZbZc + ZaZbZc)

Hg2
= 1

8 (−I − Za − Zb − Zc − ZaZb − ZaZc − ZbZc − ZaZbZc)

Hg3
= 1

8 ((I − Za)(−I+Zb)(I − Zc)) =
1
8 (−I+Za + Zb + Zc − ZaZb − ZaZc − ZbZc + ZaZbZc)

Hg4
= 1

8 (−I+Za − Zb + Zc + ZaZb − ZaZc + ZbZc − ZaZbZc)

Hg5
= 1

4 ((I − Zb)(−I+Zc)) =
1
4 (−I+Zb + Zc − ZbZc)

(6)

HC = Hg2
+ Hg4

+ Hg5
= −

1

2
I+

1

4
Zc −

1

4
(ZaZc + ZbZc)−

1

4
ZaZbZc (7)

Hence, from Equation (7) above, v = [v1, v2, v3, v4] = [− 1
2 , 1

4 , − 1
4 , − 1

4 ], where v1

is for all non-connected input qubits (as the identity ‘I’), v2 is for c input qubit only, i.e.,
RZc(0.25·

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

), v3 is for only two connected input qubits {a and c; b and c}, i.e., RZaZc(−0.25·

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

)
and RZbZc(−0.25·

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

), and v4 is for all connected input qubits {a, b, c}, i.e., RZaZbZc(−0.25·

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

).
For a practical quantum implementation of QAOA as well as our introduced BHT-QAOA,
HC in Equation (7) is rewritten as the following format for the sequence of three qubits {c, b,
a}, as stated in Equation (8) below, where ‘ZII’ is equivalent to RZc, ‘ZIZ’ is equivalent to
RZaZc, ‘ZZZ’ is equivalent to RZaZbZc, and so on.

HC = ([‘III’, ‘ZII’, ‘ZIZ’, ‘ZZI’, ‘ZZZ’], coeffs = [−0.5, 0.25, −0.25, −0.25, −0.25]) (8)

Because β (as a set of rotational angles of HM) rotates between [0, π] [1,2], we set its
coefficient (ω) to cover the entire range between [0, 2π] for possible phase values of RX
gates in HM, to find all optimized approximated solutions for an arbitrary classical Boolean
problem. In other words, ω (as the coefficient of β) is initially set to ‘2.0’ for all n numbers
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of RX(ω·β) gates in HM, where n is the total number of input qubits. Similar to the practical
implementation of HC, HM is rewritten as the following format for the sequence of three
qubits {c, b, a}, as stated in Equation (9) below, where ‘XII’ is equivalent to RXc, ‘IXI’ is
equivalent to RXb, and ‘IIX’ is equivalent to RXa.

HM = ([‘XII’, ‘IXI’, ‘IIX’], coeffs = [2.0, 2.0, 2.0]) (9)

From Equations (8) and (9) above, the quantum circuit of BHT-QAOA for the generated
Hamiltonians (HC and HM) of the Boolean problem (a ∨ b ∨ ¬ c) ∧ (¬ a ∨ c) ∧ (¬ b ∨ c) is
eventually constructed for one repetition (p = 1), as illustrated in Figure 6.

ω ffi β
ω·β

tt

ff

∨ ∨ ∧ ∨ ∧ ∨

 

∨ ∨ ∧ ∨ ∧ ∨

ffi − ଵ ଶ ଵ ସ − ଵ ସ − ଵ ସ ffi ω ɣ β

ffi ω
ɣ β

ɣ β tt

 
 
 ɣ β

ɣ β
ff

ffi

Figure 6. The quantum circuit for the classical Boolean problem of (a ∨ b ∨ ¬ c) ∧ (¬ a ∨ c) ∧ (¬ b ∨ c)

after applying our generalized transformation rules (Hg) to generate two Hamiltonians (HC and HM)

in one repetition (p), where H is the Hadamard gate, HC is (‘III’, ‘ZII’, ‘ZIZ’, ‘ZZI’, ‘ZZZ’) with its

coefficient v = [− 1
2 , 1

4 , − 1
4 , − 1

4 ], HM is (‘XII’, ‘IXI’, ‘IIX’) with its coefficient ω = 2.0, and

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β

are the optimization angular parameters for HC and HM, respectively.

3.4. Architecture of BHT-QAOA

After transforming an arbitrary classical Boolean problem to the Hamiltonians (HC

and HM) and calculating their coefficients (v and ω), respectively, the numerical values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

ttand β are initially randomized and then plugged into the architecture of BHT-QAOA for
first execution, as shown in Figure 7. Subsequently, the SciPy optimization minimizer [31]
is utilized to optimize these numerical values (

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β) for better-approximated solutions,
in a number of function evaluations (nfev), by employing three cofactors as follows.

1. HC and HM (in a number of p), as the “objective function” needs to be minimized.
2. Measured solutions of BHT-QAOA, as the “energy cost” of the objective function.
3. Previously calculated

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β, as their “numerical values” need to be optimized.

For the SciPy optimization minimizer, we use the constrained optimization by linear
approximation (COBYLA) algorithm [14,16,31], which is a parametric iterative method for
derivative-free constrained optimization that updates and minimizes the approximation
values (as

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β) for an objective function (as HC and HM of lower energy cost). On the
other hand, our future work will focus on finding a cost-effective minimizer algorithm, to
efficiently implement BHT-QAOA with a smaller value of p (in the quantum domain) and
fewer nfev (in the classical domain).
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ff
≥

ɣ β

ɣ β

Figure 7. The architecture of our Boolean–Hamiltonian Transform for QAOA (BHT-QAOA) to solve

arbitrary classical Boolean problems as Hamiltonians (HC and HM). The BHT-QAOA is mainly

grouped into two processing domains: (i) the classical processing domain as denoted by blue, and

(ii) the quantum processing domain as denoted by red.

4. Results and Discussion

Arbitrary classical Boolean problems (applications) are designed as Boolean oracles
(in different structures), and these Boolean oracles are then solved using our introduced
BHT-QAOA for p repetitions, where p ≥ 1. In our experiments, the ibm_brisbane [50]
QPU of 127 qubits performs the quantum processing domain of BHT-QAOA, i.e., executes
the quantum circuit of an application in p repetitions, and the SciPy minimizer function
performs the classical processing domain of BHT-QAOA, i.e., optimizes the numerical
values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β based on the minimized energy cost of their Hamiltonians (HC and HM),
for a number of function evaluations (nfev).

Because of our IBM Quantum Platform account limitations, the complete architec-
ture of BHT-QAOA (shown in Figure 7) is completely simulated in the classical domain
using IBM quantum libraries (Qiskit, AerSimulator, and Aer-EstimatorV2 [50–52]), for
1024 resampling times, which are the so-called “shots” [53]. After this classically simulated
BHT-QAOA, the final optimized numerical values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β (from the SciPy minimizer)
are plugged into their respective Hamiltonians (HC and HM) of the quantum circuit for an
application, in which it is then executed once with ibm_brisbane QPU.
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Please observe that due to the limited physical connectivity of four neighboring qubits
for the recent quantum layouts of IBM QPUs, the constructed Boolean oracles (in various
structures) for the following applications must have n input qubits and m ancilla qubits
(including fqubit), where 2 ≤ n ≤ 4 and m ≥ 1. The m ancilla qubits (i) do not affect
the fidelity of the final optimized approximated solutions of applications utilizing the
BHT-QAOA and (ii) have no relation to the limited physical connectivity of any IBM
QPU, because all these constructed Boolean oracles are transformed into Phase oracles
and then into Hamiltonians (HC and HM). In other words, Hamiltonians do not have any
ancilla qubits in their quantum circuits, and all m ancilla qubits are removed. Figure 8
demonstrates the classical representations and the quantum circuits of Boolean oracles for
these applications, as follows.

 
 

(a) (b) 

cell1 cell2 

cell3 cell4 

 

 
(c) (d) 

 
 

(e) (f) 

tt
tt

ff

→

→ → → → →
→ → → → →
→ → → → →
→ → → → →

ff → → → →
ff → → → → →
ff →

Figure 8. Schematics of the classical representations and the quantum circuits for arbitrary Boolean

problems: ((a), upper-left) the Boolean oracle in SOP structure representing Equation (10) above,

((b), upper-right) the Boolean oracle in ESOP structure representing Equation (11) above,

((c), middle-left) the board layout of 2 × 2 Sudoku, ((d), middle-right) the Boolean oracle in CNF-

XOR SAT structure of 2 × 2 Sudoku, ((e), bottom-left) the classical 4-bit conditioned half-adder for two

2-bit numbers (A = a1a0 and B = b1b0), and ((f), bottom-right) the Boolean oracle in a mixed structure

representing Equation (13) above.

1. An arbitrary Boolean problem in POS structure, as stated in Equation (1) above and
shown in Figure 1.

2. An arbitrary Boolean problem in SOP structure, as stated in Equation (10) below and
shown in Figure 8a.
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(a ∧ b ∧ ¬ c) ∨ (¬ a ∧ c) ∨ (¬ b ∧ c) (10)

3. An arbitrary Boolean problem in ESOP structure, as stated in Equation (11) below and
shown in Figure 8b.

(a ∧ b ∧ ¬ c) ⊕ (¬ a ∧ c) ⊕ (¬ b ∧ c) (11)

4. A 2 × 2 Sudoku game, which is the constraints satisfaction problem—satisfiability
(CSP-SAT) [54,55], as stated in Equation (12) below and illustrated in Figure 8c,d.

(cell1 ⊕ cell2) ∧ (cell1 ⊕ cell3) ∧ (cell2 ⊕ cell4) ∧ (cell3 ⊕ cell4) (12)

5. A 4-bit conditioned half-adder digital circuit, which is ORing two 1-bit sums and
then ANDing them with one 1-bit carry-out, as stated in Equation (13) below and
demonstrated in Figure 8e,f.

[(a0 ⊕ b0) ∨ ((a0 ∧ b0) ⊕ (a1 ⊕ b1))] ∧ [(a1 ∧ b1) ∨ ((a0 ∧ b0) ∧ (a1 ⊕ b1))] (13)

Table 4 states the removal of all ancilla qubits (including fqubit) and the reduction
number of quantum gates, after applying the generalized transformation rules to form
Phase oracles. These Phase oracles are then transformed into the Hamiltonians (HC and
HM) of BHT-QAOA. Note that, in Table 4, (i) a Pauli-X (X) gate in a Boolean oracle remains
as-is for a Phase oracle, (ii) a Feynman (CX) gate in a Boolean oracle is equivalent to the
controlled Pauli-Z (CZ) gate in a Phase oracle, and (iii) an n-bit Toffoli gate in a Boolean
oracle is equivalent to an n-bit MCZ gate in a Phase oracle, where n ≥ 3 qubits.

Table 4. The effect of generalized transformation rules on removing all ancilla qubits (including

fqubit) and reducing the numbers of quantum gates for the final Phase oracles for BHT-QAOA.

Entities in a Boolean Oracle → Entities in a Phase Oracle

Qubits and
Quantum Gates

(Entities)

Arbitrary
Problem
in POS

Arbitrary
Problem
in SOP

Arbitrary
Problem
in ESOP

2 × 2 Sudoku
Game

4-bit Conditioned
Half-Adder

Circuit

Input qubits 3 → 3 3 → 3 3 → 3 4 → 4 4 → 4
Ancilla qubits 4 → 0 4 → 0 1 → 0 5 → 0 9 → 0

Pauli-X (X) 16 → 8 15 → 6 6 → 6 0 → 8 12 → 2
Feynman (CX) 0 → 1 0 → 1 0 → 2 16 → 0 12 → 0

3-bit Toffoli 4 → 2 4 → 2 2 → 1 – 11 → 1
4-bit Toffoli 3 → 0 3 → 0 1 → 0 0 → 2 0 → 1
5-bit Toffoli – – – 1 → 0 –

On the one hand, the classically simulated BHT-QAOA successfully optimizes the
numerical values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β and finds all approximated solutions for these applications, as
a proof of concept for utilizing our introduced BHT-QAOA in solving arbitrary classical
Boolean problems in the simulated classical-quantum domain.

On the other hand, the quantum circuit of every application (using the simulated
optimized numerical values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β) is executed once with ibm_brisbane QPU for
solution fidelity, as a proof of concept for utilizing BHT-QAOA to solve arbitrary classical
Boolean problems in the hybrid classical-quantum domain.

Figure 9 depicts the final measured solutions for every application from the real
quantum executions using ibm_brisbane QPU. In Figure 9, the first measured bit (the
upper-right) of a solution is equivalent to the first input qubit, and the last measured bit
(the bottom-left) of a solution is equivalent to the last input qubit for the Boolean oracle of
an arbitrary application.
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Figure 9. The final measured solutions for arbitrary applications executed with ibm_brisbane QPU

(for 1024 shots): ((a), upper-left) the four solutions {
-
a

-
b

-
c, a

-
bc,

-
abc, abc} for the Boolean oracle in POS

structure of Equation (1) above, ((b), upper-middle) the four solutions {ab
-
c,

-
a

-
bc, a

-
bc,

-
abc} for the Boolean

oracle in SOP structure of Equation (10) above, ((c), upper-right) the three solutions {ab
-
c, a

-
bc,

-
abc} for

the Boolean oracle in ESOP structure of Equation (11) above, ((d), bottom-left) the two permutative

solutions {solution 1: cell1 = cell4 = 0 and cell2 = cell3 = 1; solution 2: cell1 = cell4 = 1 and cell2 = cell3 = 0}

for the 2 × 2 Sudoku game of Equation (12) above, ((e), bottom-middle) the three solutions as two 2-bit

numbers {a0a1b0b1, a0a1b0b1, a0a1b0b1} for the 4-bit conditioned half-adder of Equation (13) above,

and ((f), bottom-right) the required nfev for the SciPy optimization minimizer to successfully optimize

the numerical values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β for the above-mentioned applications, in the subfigures (a–e).

As illustrated in Figure 9a–e, the histograms represent the final measured outputs for
the arbitrary Boolean problems (as applications), and each histogram of an application

denotes the results of (a) four solutions {
-
a

-
b

-
c, a

-
bc,

-
abc, abc} for the Boolean oracle in POS

structure of Equation (1) above, (b) four solutions {ab
-
c,

-
a

-
bc, a

-
bc,

-
abc} for the Boolean oracle

in SOP structure of Equation (10) above, (c) three solutions {ab
-
c, a

-
bc,

-
abc} for the Boolean

oracle in ESOP structure of Equation (11) above, (d) two permutative solutions {solution 1:
cell1 = cell4 = 0 and cell2 = cell3 = 1; solution 2: cell1 = cell4 = 1 and cell2 = cell3 = 0} for the
2 × 2 Sudoku of Equation (12) above, and (e) three solutions {a0a1b0b1, a0a1b0b1, a0a1b0b1}
for the 4-bit conditioned half-adder of Equation (13) above.

Note that, in Figure 9, (i) the first measured bit (the upper-right in a histogram) is
equivalent to the first input qubit of QAOA, (ii) the final measured bit (the bottom-left in
a histogram) is equivalent to the final input qubit of QAOA, (iii) p states the number of
repetitions for the Hamiltonians (HC and HM) in the quantum circuit of QAOA, (iv) nfev
is the number of function evaluations from the SciPy optimization minimizer, (v) ‘Count’
is the total number of 1024 shots for all input qubits, where the higher Count indicates a
solution (as a higher probability of qubits measurement) and the lower Count indicates a

non-solution (as a lower probability of qubits measurement), and (vi)
-
x means x has a false

binary value of ‘0’; otherwise, x has a true binary value of ‘1’, where x is a literal (variable)
in an equation that represents a Boolean problem (application), in the classical domain.
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Please observe that the required nfev for the SciPy optimization minimizer varies and
fluctuates, since such a minimizer mainly depends on two factors, as follows.

1. The initially randomized numerical values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β for HC and HM, respectively.
2. The noisy simulation models (AerSimulator and Aer-EstimatorV2), which are utilized

for simulating BHT-QAOA, in the classical domain.

Accordingly, the BHT-QAOA will provide broad opportunities to find all solutions
for many classical Boolean problems constructed as Hamiltonians (HC and HM), which are
neither designed nor solved using the standard QAOA [1,2]. Therefore, various classical
Boolean problems for the applications of digital logic circuits, synthesizers, robotics, and
machine learning can be realized as Hamiltonians and then solved using BHT-QAOA in
the hybrid classical-quantum domain.

5. Conclusions

A new methodology is introduced to solve arbitrary classical Boolean problems as
Hamiltonians (HC and HM), using the quantum approximate optimization algorithm
(QAOA) [1,2]. Our methodology is termed the “Boolean-Hamiltonians Transform for
QAOA” (BHT-QAOA), which is summarized as follows: (i) an arbitrary classical Boolean
problem is expressed as a Boolean oracle in arbitrary structures, e.g., POS, SOP, ESOP,
and XOR SAT, just to name a few, (ii) this Boolean oracle (in any structure) is converted
into its equivalent Boolean oracle in ESOP structure, unless it was firstly constructed in
ESOP structure, (iii) this Boolean oracle in ESOP structure is transformed into its equivalent
Phase oracle based on our modified transformations of Toffoli gates, which are originally
presented by Figgatt et al. [20], (iv) the Hamiltonians (HC and HM) are generated from this
transformed Phase oracle based on our modified set of Hamiltonian compositions, which
are originally presented by Hadfield [30], and (v) all execution steps of the standard QAOA
are performed on the generated HC and HM. A classical optimization minimizer is utilized
to find better-approximated solutions for an arbitrary classical Boolean problem based on
the optimized numerical values of

tt

ff

ff

tz
tz

tz

RZ(v⋅ɣ ⋅ɣ ⋅ɣ
ω⋅β ω ffi

ɣ β
ɣ β π π

tt

tt

tt

tt

and β angles for HC and HM, respectively.
In BHT-QAOA, all ancilla qubits (including the output qubit) and the mirror (as the

uncomputing part) of a quantum circuit will be completely removed when transforming a
Boolean oracle (in any structure) into its equivalent Phase oracle. In other words, during
the conversion and transformation steps of BHT-QAOA, the total number of utilized qubits
will be dramatically reduced to the number of input qubits only, and the total number of
quantum gates will be significantly minimized for the final quantum circuit of a Phase
oracle, for an arbitrary classical Boolean problem.

In this article, arbitrary Boolean applications are constructed as Boolean oracles (in
various structures), and then BHT-QAOA successfully finds all optimized approximated
solutions for these applications using a classical optimization minimizer and an IBM
quantum computer, since our introduced BHT-QAOA is considered as a hybrid classical-
quantum algorithm. In conclusion, further classical Boolean problems can be constructed
as Boolean oracles (in mixed structures) for the practical engineering applications in the
topics of digital synthesizers, computer vision, robotics, and machine learning, just name a
few, and BHT-QAOA will successfully solve such practical applications effectively in the
hybrid classical-quantum domain.
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