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AN ABSTRACT OF THE THESIS OF Dody Michaelson Orendurff 

for the Master of Science in Psychology presented 

August 1, 1979. 

Title: Consciousness, Neurons, and Laughing Gas. 

Psychological and physiological effects of nitrous 

oxide resemble those of eight other drug categories. Lipid 

solubility or hydrate microcrystal theories correlate behav­

ioral measures with measurable parameters of the molecule 

N20. N20, a spindle poison, halts mitosis in metaphase, 

producing widespread physiological consequences. N20 affects 

the microtubules of the spindle in a number of specific ways. 

Microtubules are utilized in other parts of eukaryotic cells, 

in a wide variety of functions. In neurons, microtubules 

build and maintain dendritic sensory processes. 

Since microtubules are built of two dissimilar pro­

teins, constantly assemble and disassemble, and maintain a 

more negative interior potential, they would be responsive to 

changes in summed post-synaptic dendritic potential. 

Microtubules respond to N20 with a loss of communica­

tion between subcellular components, and between cells. 

Chromosomes, proteins, and ATP are no longer transported 

efficiently. Such fundamental changes might explain nitrous 

oxide's effects in "potentiating" other drugs, and upon 

perception and memory. 
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CHAPTER I 

INTRODUCTION 

This thesis is a review of the literature on nitrous 

oxide, laughing gas, with the intention of developing 

a new model of how nitrous oxide produces effects upon 

the experience, consciousness and behavior of humans. 

I chose to study nitrous oxide (1) because of its wide 

use, both in surgery and in the dentist's office; (2) 

because of its chemical simplicity and biologically inert 

qualities; (3) because it produces remarkable subjective 

experiences and physiological effects; and (4) because, 

although many theories exist, its mechanism of action 

has not as yet been determined. 

Present day experimental psychology emphasizes two 

major fields of study: the behavior of organisms, and 

the physiological processes underlying that behavior. 

The subjective experiences of humans in an experimental 

situation are frequently ignored, while their reaction 

times or blood pressures are carefully monitored. This 

thesis will emphasize human experience under nitrous oxide, 

as well as effects of nitrous oxide upon cells, neurons, 

and parts of living neurons. In emphasizing both experi­

ence and neuronal functioning, I am rejecting dualism, 



the separation of mind from brain and body, and I am rejec­

ting mechanism, the view that the brain and body are 

machines. I hold the view of the identity of consciousness 

and matter, of the continuum of the development of 

consciousness from the earliest species of creatures to 

the latest. "Wherever there are organs of perception, 

however crude, there must be a perceiving consciousness, 

however dim" (Firsoff, 1967, p. 47). I shall begin by 

reviewing historical definitions and criteria for 

consciousness. 

A modern definition of consciousness is that state 

of being which is characterized by sensation, emotion, 

and thought. A behavioral definition of consciousness 

or awareness considers the question: can the subject 

discriminate between stimuli presented? Nitrous oxide 

is a drug that affects perception, discrimination between 

stimuli, motor coordination, motivation, cognition, 

awareness, emotion, memory, one's sense of identity, and 

one's consciousness of inhabiting a body in a particular 

time and place. For these reasons it seems to me to be 

a drug that a psychologist might well spend time investi­

gating. Since the study of psychology also includes the 

study of the physiological functioning of the brain and 

the neuron, it will not be outside the realm of psychology 

for me to investigate the effects of nitrous oxide upon 

neurons, including their subcellular protein systems. 

2 



As a method of approach to understanding modern definitions 

of states or degrees of consciousness, I shall review 

stages of anesthesia (a state of unconsciousness); anal­

gesia (a state of feeling no pain); amnesia (a state of 

loss of memory); euphoria (a state of pleasure, joy, or 

bliss); and psychedelia (a state of altered perception). 

It is instructive to compare the subjective reports of 

persons who have breathed nitrous oxide (Roget, 1799; 

Davy, 1799; Blood, 1879; James, 1899) with the subjective 

report of a person who has used opium (de Quincey, 1821). 

Having reviewed historical and current definitions 

of consciousness, I shall review human behavioral studies 

of the effects of nitrous oxide. These experiential and 

behavioral effects of N20 will be followed by a review 

of physiological effects of N20, both in vivo and in vitro. 

I shall start that section by reviewing the toxicity of 

nitrous oxide and some problems in the medical use of 

3 

N
2
0. I am collecting effects of N20 from a number of 

different fields of study and from a wide variety of 

journals. Nitrous oxide affects the immune response as 

well as the growth and development of embryos. Anesthe­

siologists have noted a rise in plasma norepinephrine 

levels as nitrous oxide enters the system. Geneticists 

have noted that nitrous oxide acts like a "spindle poison," 

halting mitosis in metaphase. Nitrous oxide has caused 

spontaneous abortions, miscarriages, and birth defects 



in the children of both female and male anesthesiologists, 

dentists, and nurses who are exposed to trace levels of 

N20 while they work. 

4 

After I have reviewed physiological effects of nitrous 

oxide in vivo, I shall review effects of N20 upon cells, 

including neurons, in vitro. As a psychologist, I am 

searching for the links that might join a particular 

experiential or behavioral effect with a physiological 

effect of N20 upon the neuron. I shall review some past 

hypotheses about the mechanism of action of nitrous oxide, 

beginning with the hypothesis that N20 interferes with 

the transport or use of oxygen. 

I shall review theories of anesthesia. Nitrous 

oxide is not an anesthetic, but it is given in large quanti­

ties with the actual anesthetic. It is included with 

anesthetics or inert gases when investigators attempt 

to develop a theory of anesthesia. I shall review the 

oldest theory, that of lipid solubility, as well as a 

the0ry by Linus Pauling on hydrate microcrystals. I shall 

review theories that relate anesthesia to polarizability, 

surface film affinity, mole volume, and dipole moment. 

Nitrous oxide is considered in these theori.es. I shall 

review cation permeability theories and pressure reversal 

of anesthesia. 

Nitrous oxide is an analgesic, comparable in potency 

to morphine. I shall review theories of analgesia and 



our endogenous opiates. In my search to understand how 

nitrous oxide produces analgesia, I shall review brain 

distribution of opiate receptors to brain transmitters. 

I shall review brain electrical stimulation, which may 

involve the release of endogenous molecules similar to 

the opiates, as well as experiments that seem to relate 

N20 to this same phenomenon, the release of endogenous 

"opiates." 

Since nitrous oxide has been shown to have an effect 

upon cell division, halting the process of mitosis in 

metaphase, I shall review the development of the neuron, 

with an emphasis on the role played by microtubules, both 

in cell division, and in the lifelong growth, development, 

and moment-to-moment functioning of our neurons. 

5 

I have mentioned how nitrous oxide affects the immune 

response, causing a sudden drop in the red blood cell 

production, leading to anemia, and a sudden drop in white 

blood cell production, leading to illness and death. I 

have mentioned the teratogenic activity of nitrous oxide, 

that it produces death of embryos, or birth defects, both 

in experimental animals and in humans whose jobs lead 

to occupational exposure to trace levels of N20. I shall 

review physiological experimental studies on the effects 

of N20 upon the process of mitosis. Humphrey Davy (1799) 

was the first to notice that plants will not grow, seeds 

will not germinate, in an atmosphere containing nitrous 



oxide. Later research has shown that N20, like other 

"spindle poisons," halts mitosis in metaphase. If N20 

treatment lasts for 4 hours, cells can recover and proceed 

through mitosis. If N20 lasts for 12 or 16 hours, cells 

cannot recover. Abnormal cells, with two nuclei, occur. 

Having reviewed the essential and versatile functions 

of microtubules in cells, especially neurons, I shall 

review how nitrous oxide blocks mitosis, how it affects 

microtubules. These effects can be seen with an electron 

microscope. 

I shall then present a theoretical proposal for 

the mechanism of action of nitrous oxide. 

6 



CHAPTER II 

HISTORICAL DEFINITIONS OF CONSCIOUSNESS 

Over the centuries philosophers, physiologists and 

psychologists have wrestled with the problems of defining 

consciousness, setting criteria for consciousness, and 

measuring various aspects of consciousness. 

Aristotle (384-322 B.C.) was the first to view the 

mind of the newborn infant as a tabula rasa. He numbered 

our senses as five, and mentioned the complex nature of 

our sense of touch. He noted that memory classifies 

objects according to their similarity, their contrast, 

or their contiguity. Although his philosophy foreshadowed 

materialism by dividing things into form or matter, he 

did not embrace determinism, holding that mind is one, 

and mind is free. 

MECHANISTIC DUALISM 

Rene Descartes (1596-1650) accepted this view of 

the mind as one and free. Descartes, a mathematician, 

sought for evidence and proof, by a method of doubting 

everything around him. He found that he could not doubt 

the existence of the perception, the doubt, or the thought. 

From his he concluded that the perceiver, the doubter, 



the thinker himself, also existed. (Santayana (1937) 

has pointed out that, at the moment of perception, we 

are unaware of ourselves as perceiver, and hence he doubts 

even Descartes' "Cogito, ergo sum.") Descartes, sure 
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of the existence of his own mind only, then asked if matter 

exists. Material things include our own brains, bodies, 

other humans, animals, all other nature, all of the material 

universe. He concluded that all these things exist since 

God exists, and God would not fool us. Animals, having 

no minds, are automata. Even the human body is mechani­

cally controlled, although it interacts with the mind. 

Reflex action, as well as the circulation of the blood, 

were examples of our machine-like bodies. In his separation 

of mind from brain, Descartes was the first dualist in 

psychology, and a number of Cartesian materialists have 

followed his ideas to even more extreme conclusions. 

Julien de La Mettrie (1709-1751) extended Descartes' 

mechanistic views of the brain and body to include deter­

minism and predestination. La Mettrie came to believe 

tha t II thought is after all nothing but the result of 

the mechanical action of the brain and the nervous system" 

(Boring, p. 213). He can thus be seen as the first 

behaviorist, the first "objective" psychologist. 

Immanuel Kant (1724-1804) re-established Cartesian 

dualism. Kant viewed the conception of space as a native 

perception, a given physical property of the nervous 



system. Muller, Hering, Mach and Stumpf followed Kant's 

percep·tions on the nature of the physical brain. Georg 

MUller (1850-1934) studied sensory attention methods of 

psychophysical measurement, constant stimuli, the psycho­

physics of vision and memory. Ewald Hering (1834-1918) 

investigated problems of visual space perception, and 

believed that space perception is innate. He endowed 

the cells of the retina with sensitivity for height, depth, 

and right-left position. Hering later developed his three­

retinal cell, six-color theory: in this red-green are 

opposing responses of one type of cell; yellow-blue 

responses of another type of cell; and white-black for 

the third type of cell. Hering's temperature theory sup­

poses warmth and cold to be sensed by similar opposing 

processes. Hering saw sensations as a part of 

consciousness. 

Ernst Mach (1838-1916) investigated visual space 

perception, theory of hearing, the sense of time, the 

perception of rotation, and the functions of the semi­

circular canals. Mach believed all science to be 

observation; sensation is the basis of this observation; 

introspection is justified as a method of observing 

conscious data. Sensations are the "given" data; there 

is no ego beyond these. 

Carl Stumpf (1848-1936) studied the origin of space 

perception, and believed both color and extension to be 

9 
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innate visual sensations. His most famous studies were 

his investigations into hearing, music, tones, tonal fusion, 

attention, analysis, practice and fatigue. 

These early mechanists were all pursuing the study 

of psychophysical phenomena in human beings. There is 

a later group of mechanists who studied animal behavior. 

Lloyd Morgan (1852-1936) first stated their credo of parsi­

mony, an attempt to interpret every behavior as the outcome 

of the lowest possible state of development of the animal 

mind. Jacques Loeb (1859-1924) was able to follow the 

spirit of this mechanistic belief in his work on tropisms. 

Loeb held as a criterion of consciousness the ability 

to develop an "associative memory." He had faith in 

physical and chemical methods as a tool for studying 

behavior. 

The mechanistic viewpoint was extended to Thomas 

Beer, Albrecht Bethe (1872-1931) and J. von Uexklill, who 

proposed in 1899 to discard all psychological terms and 

to write only of receptions and reflexes. They suggested 

that the social insects might be robots. I. M. Sechenov 

(1829-1905) studied neural action, the Reflexes of the 

Brain (1863). He believed that "all acts of conscious 

or unconscious life are reflexes" (Boring, p. 635). V. M. 

Bekhterev (1857-1927) extended Sechenov's work to include 

Human Reflexology (1917), an effort to battle the methods 

of introspection. 



Ivan Pavlov (1849-1936) was a physiologist studying 

the pancreas who won the Nobel Prize for this research. 

His technique of the conditioned reflex was a measure 

of anticipation. Conditioning could thus substitute for 

introspection, could become a language for communication 

between animal and scientist. This language uses only 

the terms of stimuli, nerve-action, and secretion. 

Consciousness is a superfluous concept. 

11 

John B. Watson (1878-1958) the founder of behaviorism, 

began his career with a thesis on Animal Education: The 

Psychical Development of the White Rat (1903); then came 

Neurological and Psychological Maturation of the White 

Rat and Somesthetic Sensation in the Rat in the Maze (1907). 

In these papers Watson still drew inferences about animal 

consciousness from his research on animal behavior. 

However, in 1913 Watson "announced that introspection 

must not be employed and that only motor (and glandular) 

activities must be discovered" (Boring, p. 565). Watson 

thus surpassed even Lloyd Morgan in removing consciousness 

from the field of study of psychology. Watson wished 

psychologists to ignore consciousness, so as to deal with 

the reliable data of behavior. Watson translated concepts 

of imagery, feeling and association into behavioristic 

terms. Verbal responses and subvocal thinking or voci­

motor behavior were the cow1terparts of imagery and 

thinking. Feeling turned out to be tumescence or 
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detumescence. Association was, of course, the conditioned 

reflex. Behaviorism could be used on infants; "Little 

Albert" was thus frightened. It could be used in adver­

tising, Watson's field of interest after he resigned from 

Hopkins in 1920. Watson's methods of controlling us through 

advertising are still with us today in every TV commercial. 

Edwin Holt (1873-1946) wrote The Concept of 

Consciousness (1914); he believed that only through behavior 

can we understand mind. Holt studied behavior as a whole, 

including its purpose. Behavior, the response relation, 

is meaning. Behaviorism is a psychology of meanings. 

Edward Tolman (1886- ) studied the temporal 

relations of meaning and imagery, writing a behavioristic 

definition of consciousness. It did not matter whether 

rats were conscious or not; their actions were purposive 

and objective. Tolman saw the data of consciousness as 

ineffable, not public, and hence not scientific data. 

Karl Lashley (1890-1958) discovered the imprecision 

and delocalization of brain functions. He was a physio­

logical psychologist, who felt the concept of consciousness 

was unnecessary. He wrote the Behavioristic Interpretation 

of Consciousness (1923). He attempted to discover the 

neural bases for learning and discrimination. 

Albert Weiss (1879-1931) believed that all the 

phenomena of psychology could be reduced to physical­

chemical terms or to social relations. Thus we do not 
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need the conception of consciousness. 

Walter Hunter (1889- ) wrote against introspection; 

he translated descriptions of consciousness into terms of 

stimulus and response. 

B. F. Skinner (1904- ) published The Behavior of 

Organisms (1938). He does not see behavior as essen­

tially purposive, but has developed a reflexology instead. 

Clark Hull (1884-1952) studied hypnosis and suggesti­

bility, as well as conditioned reflexes and learning. He 

formulated a Mathematico-Deductive Theory of Rote Learning 

(1940) and wrote Principles of Behavior (1943). 

I have briefly described the changing viewpoints of 

these scientists, from Descartes to Hull; I have followed 

the development of mechanism in psychophysical phenomena, 

in comparative psychology, and in behaviorism. 

THE IDENTITY OF CONSCIOUSNESS AND MATTER 

A different tradition of approaching the study of 

mind began with Wilhelm Leibnitz in 1680. This view 

emphasizes the identity of consciousness and matter, the 

continuum of the development of consciousness from the 

earliest species of creatures to the latest. Following 

this emphasis on perception and experience were Locke, 

Berkeley, Herbart, Weber, Fechner, Helmholtz, Wundt, 

James, Ebbinghaus, Darwin, Binet, and H. Jennings. 

John Locke and Wilhelm Leibnitz were both influenced 



by Descartes, and both drew up philosophies that opposed 

the mechanism of Descartes. 
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John Locke (1632-1704) wrote his Essay Concerning 

Human Understanding (1690) when he was 57 years old. Locke 

saw ideas as the units of mind. Ideas are logical concepts, 

meanings, or items of knowledge. Ideas are not innate, 

as Descartes believed, but come from experience. Locke 

thus expanded Aristotle's concept of the tabula rasa. 

Ideas come to us from reflection as well as from sensation. 

Wilhelm Leibnitz (1646-1716) developed a far more 

comprehensive view of mind than did John Locke. Leibnitz 

believed that Nature cannot be explained in a mechanistic 

way. liThe ultimate elements of the universe are individual 

centers of force; they are simple, percipient, self-active 

beings. The very atoms of nature are centers of force, 

without parts, extension or form" (Sorley, 1952, p. 886). 

(Here we might use the word 'quark' instead of atom.) 

Space and time are merely relative. Consciousness lies 

along a continuum, and develops. "Different species of 

creatures rise by insensible steps from the lowest to 

the most perfect form" (Sorley, 1952, p. 886). 

In the human mind perception is developed into self­

conscious thought. The appetite of the most primitive 

creatures develops into will. The spontaneity of a 

protozoa develops into the freedom of a human being. "The 

end determining the will is pleasure, and pleasure is 



the sense of an increase of perfection. In love one finds 

joy in the happiness of another; and from love follow 

justice and law" (Sorley, 1952, p. 887). 

15 

George Berkeley (1685-1753) saw perception as reality, 

saw ideas as the one thing of which we are sure. This 

extreme view leads to solipsism, a doubting of the exist­

ence of anything beyond one's own immediate perceptions. 

Johann Herbart (1776-1841) wrote "Psychology as 

Science, newly grounded on Experience, Metaphysics, and 

Mathematics" (1825). He believed in an empirical psycho­

logy, using the method of observation. Perceptions (or 

ideas) seem to differ from each other in quality; each 

one is individual; we do not mistake sweet, red, or hard. 

Perceptions also vary in intensity and in duration. 

Intensity, force, or clearness, may be sufficient to bring 

the perception (or idea) across the threshold of conscious­

ness. The perception enters, crosses the limen (threshold), 

and is assimilated into memory, the previous totality 

of conscious ideas. In this sense memory may merely 

consist of recognition of a perception as familiar, or 

else of the sudden attention to a perception that is stranga 

Herbart envisaged the totality of perceptions as actively 

selecting for assimilation those new sense-impressions 

which stand out in uniqueness (differing in quality from 

the old) or in intensity, or in duration. The rest do 

not enter consciousness, and are suppressed. Herbart's 



method of observation is a transition from the pure specu­

lation of Kant, to the methods of experimentalism of 

Fechner, Helmholtz, and Wundt. 

16 

Ernst Weber (1795-1878) wrote Touch and Common 

Sensibility (1846) • He saw sensation as varying in quality 

(pressure, temperature) and in degree. Spatial location 

and duration depend on the activity of the mind in inter­

preting the local sensations. Weber saw that the smallest 

perceptible difference can be expressed as a ratio: 1/40 

for weights; 1/50 to 1/100 for lines; and 1/160 for tones. 

Gustav Fechner (1801-1887) rejected dualism as an 

unreal view. Even psychophysical parallelism did not 

represent reality. Fechner upheld the identity hypothesis 

as the relation of body and mind. Only for purposes of 

measurement do we need to regard body (or sensation) as 

different from mind (or perception). Rather than following 

Herbart's view of a limen of excitement crossed with a 

stimulus of sufficient intensity, Fechner believed this to 

be a limen of consciousness, since there is a distinction 

between attention and inattention, as well as one between 

sleep and waking. Fechner developed three ways of measuring 

this limen of consciousness: the just noticeable differ­

ence, or method of limits; the method of constant stimuli; 

and the method of adjustment. He extended Weber's Law, 

6R/R = k to Fechner's Law S = k log R, where R = magnitude 

of the stimulus and S = magnitude of the sensation or 
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perception. 

Hermann von Helmholtz (1821-1894) investigated almost 

the whole field of science, from mechanics to physiology. 

At 26, he read his paper On the Conservation of Force 

to physicists; by 30, he had invented the opthalmoscope. 

He studied the lens of the eye, accommodation for distance, 

color vision, and binocular vision. He gave a secure 

foundation to Thomas Young's theory of color vision, and 

showed the three primary colors to be red, green, and 

violet. He applied this theory to explain color-blindness. 

At 45, he wrote Physiological Optics. He studied hearing, 

explained the bones of the middle ear, and applied princi­

ples of sympathetic vibration to explain hearing in the 

cochlea. He explained tonal quality, due to the order, 

number and intensity of harmonics. He wrote Sensations 

of Tone (1862). He gave a velocity of light figure of 

314,000 meters per second. 

Helmholtz was an empiricist. He did not follow 

the doctrine of innate ideas. He believed that all knowl­

edge is founded on experience. Kant and Hering had viewed 

space-perception as innate. Muller also felt space is 

native to the mind. Helmholtz could accept the theory 

of specific nerves, specific retinal cells, but he argued 

that the integration of these nerve energies into our 

whole concept of space around us is an inference of mind, 

built by all our past experience. Helmholtz noticed 
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that some double images are perceived to be single, after 

a period of experience. Helmholtz's theory of perception 

embraces the doctrine of unconscious inference. By this 

he means that humans who know nothing at all of geometry 

still come to recognize objects as near or far by the 

associated tension in the eye muscles. These unconscious 

inferences are not correctable by conscious effort, and 

thus are normally irresistible. Sensation occurs before 

the unconscious inference; perception depends on it. 

Imagination and memory enter into these unconscious infer­

ences. Scientific observation depends on the unconscious 

inferences of the scientist. 

In 1845, when Helmholtz was 24, he joined three 

other young physiologists, Carl Ludwig, Emil du Bois­

Raymond, and Ernst Brucke in a declaration against vitalism. 

There are several meanings attached to this concept. One 

of these is the question "Can we explain the functions 

of a living organism with physical and chemical forces? 

Or do we need to bring in a different force, the vital 

principle?" Another slightly different meaning of vitalism 

lies in the question, "Are the processes of life explicable 

by the laws of chemistry and physics alone?" We might 

now ask, "Which laws? Those discovered in Helmholtz's 

time, or by 1845? Those discovered so far, by 1979?" 

The difficulty is that there are still mysteries, not 

yet explained in spite of our explosive growth of physical 



and chemical knowledge during these years. The third 

meaning of the word vitalism lies in the assertion that 

"Life is in some part self-determining." 

Helmholtz certainly did not wish to bring in a 

different force, the vital principle, which may be charac­

terized by God, the soul, or pantheism. He wished to 

explain vision and hearing, using the laws of optics and 

harmony. But in his doctrine of unconscious inference, 
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in believing that all knowledge is founded upon experience, 

he was offering explanations of living processes which 

went beyond the laws of chemistry and physics. Mind seemed 

to show some kind of self-determining properties. 

Wilhelm Wundt (1832-1920) saw perception as different 

from the physiologist's sensation. He used the phrase 

"unconscious inference," as did Helmholtz. Wundt said, 

"All psychology begins with introspection" (Boring, p. 320). 

Introspection was analytical, an attempt to resolve an 

experience into its different sensations. Wundt analyzed 

feelings into three different dimensions: pleasant­

unpleasant, calm-excitement, and strain-relaxation. These 

dimensions are not orthogonal, since calmness and relaxation 

are almost synonymous. Wundt hoped to find bodily corre­

lates, such as pulse and breathing, for each of these 

six directions along his three-dimensional scheme. 

Wundt defined psychology as dealing with immediate 

experience; the method of examining this subject is that 
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of introspection. Wundt was a psychophysical parallelist; 

the elements of phenomenal experience are the mental 

processes, the sensations, images, and feelings. Conscious 

data are interdependent. The active mind naturally grows 

and develops by lawful processes. Perceptual associations 

develop by fusion (as harmonics are fused into the complex 

tone) by assimilation (as optical illusions take place) 

and by complications (as visual images include a component 

of temperature or sound). Wundt differentiated between 

the field of consciousness and the focus (the range of 

attention) . 

Franz Brentano (1838-1917) wrote Psychology from 

an Empirical Standpoint (1874). He thought that an over­

emphasis on the methods of experimentation led to a tendency 

to ignore the main issue, the interpretation of experience. 

Perception involves actions which possess both intention 

and reference. Acts include sensing, imagining, perceiving, 

rejecting, recalling, resolving, intending, feeling, 

wishing, desiring. 

William James (1842-1910) studied chemistry, anatomy, 

medicine and physiology. In The Principles of Psychology 

(1890) he discusses the structure and functions of the 

brain, as well as the evolution of consciousness. James 

saw that liThe self-same atoms which, chaotically dispersed 

made the nebula, now •.. form our brains. (p. 146) 

.•. If evolution is to work smoothly, consciousness 



in some shape must have been present at the very origin 

of things" (James, p. 149). 

Hermann Ebbinghaus (1850-1909) wrote his doctoral 

dissertation on the philosophy of the unconscious. He 
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read Fechner's work on sensation and perception and wished 

to extend such scientific methodology to the study of 

memory and thought. Using nonsense syllables, and h~self 

as the sole subject, he was able to study the higher mental 

processes. He went on to study brightness contrast, color 

vision, and mental testing for children. 

Oswald Klilpe (1862-1915) began his studies with 

the radical view that what can not be observed does not 

exist, for science. However, as his work progressed, 

he studied sensations, reaction time, and attention, and 

defined psychology as the science of the facts of experi­

ence. He continued to study memory, feeling, tonal fusion, 

colors, touch blends, and emotions, as well as time sense 

and space perception. He wrote about the will, about 

self-consciousness, about imageless thought, esthetics, 

abstractio~ and association. He attempted to find what 

is in consciousness besides sensations and images. He 

studied the psychology of thought, distinguishing thoughts 

from thinking. 

Edward Titchener (1867-1927) wanted to study sensory 

consciousness and the mind. He wrote Psychology of Feeling 

and Attention (1908), and Experimental Psychology of the 



Thought Processes (1909). Titchener gave to feeling only 

the dimension of pleasantness or unpleasantness. He felt 

that sensory processes have an attribute of clearness, 
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as well as quality and intensity. When attention shifts, 

it is clearness, or vividness, that is changing. Titchener 

was opposed to Klilpe's imageless thought, although he 

agreed that thought may be unconscious. He felt that 

introspection was the method to use in psychology, and 

he had faith in the importance of consciousness. 

In this chapter I have briefly reviewed some histor­

ical definitions of consciousness. I have not attempted 

to give a complete or comprehensive review. I have noted 

that, while the mechanistic dualists have removed the 

study of consciousness from the domain of psychology, 

there still remains a group of psychologists who take 

seriously the study of consciousness. There seems to 

be a recurring interest in the topic of consciousness, 

which rises afresh each decade, each year, as new students 

and investigators enter the field of psychology. I wish 

to continue this tradition of attempting to explore 

consciousness. As a method of exploring consciousness, 

one can observe what sort of altered states of conscious­

ness are produced by different drugs. Nitrous oxide is 

one of the very simplest drugs, and yet it produces a 

wide variety of changes in states of consciousness. I 

shall review the different states of consciousness, 
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mentioning other drugs that seem to produce states similar 

to those of nitrous oxide. When possible, I shall describe 

the mechanisms of action by which these other drugs produce 

their effects. In the next chapter, I shall review the 

states of anesthesia, analgesia, amnesia, euphoria, and 

psychedelia. 



CHAPTER III 

STATES OR DEGREES OF CONSCIOUSNESS 

ANESTHESIA 

Responsiveness is gradually lost by a human being 

entering anesthesia, a state of unconsciousness. Anesthe­

siologists have developed behavioral definitions of the 

different stages of anesthesia. Nitrous oxide is not a 

powerful enough drug, when given only with oxygen, to 

cause surgical anesthesia, that state of unconsciousness 

in which the subject does not respond to the first slice 

of a scalpel across the abdomen. 

One of the ways of studying consciousness is by 

examining the effects of anesthetics. By studying anes­

thesia we gain an understanding of consciousness. Different 

anesthetics may utilize different mechanisms of action, but 

anesthesiologists have developed a system for classifying 

the stages of anesthesia (Jenkins, 1969). Behavioral 

measures used to assess the depth of early stages of 

anesthesia include: 

(1) mental performance, such as answering questions 

or mathematical problems; 

(2) subjective reports on sensations experienced or 

anxiety level (''I feel the pain, but I don't care. ") 



(3) amnesia for recent events; 

(4) electroencephalogram changes; 

(5) analgesia; 

(6) the disappearance of color vision; 

(7) impaired cerebellar functioning (the subject 

may stagger); 

(8) ataxia, the inability to coordinate voluntary 

muscle movements; 

(9) nystigmus, sudden eye movements that go one 

way then correct back in a series of jerks; 

(10) inability to focus eyes. 
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All these changes take place during what is termed Stage I 

of anesthesia. Electroencephalograms show waves of 50 

to 100 microvolts in amplitude, moving at a fast frequency 

of 20 to 25 cycles per second. Normal alpha rhythm varia­

bility disappears. 

Stage II, a period of delerium and excitement, is 

most clearly observable, at the onset, with the electro­

encephalogram. There is a sudden appearance of wide, 

slow swings, with an amplitude of 200 to 300 microvolts, 

and a frequency of 2 to 8 cycles per second. These waves 

are rhythmic and steady. During Stage II, the patient 

may laugh, shout, sing, and thrash about. Amnesia and 

analgesia increase. He does not appear conscious of what 

he is doing. The jaw becomes set, skeletal muscle tone 



increases, and breathing is irregular. The patient 

struggles. Muscle movements are uninhibited. Reflexes 

are exaggerated. The pupils dilate. Ocular movements 
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are erratic. There may be retching, vomiting, urination, 

and defecation. There is hypertension and tachycardia. 

When there is a sudden increase in anesthetic vapor, there 

is reflex swallowing and respiratory arrest. All this 

is exhausting for the patient. 

Stage III starts with the beginning of surgical 

anesthesia. EEG waves show a sudden loss of rhythmicity. 

A complex of slow waves with superimposed faster discharges 

appears. There are roving movements of the eyeballs. 

Respiration is entirely automatic; breathing is regular 

because psychic influences are absent and voluntary path­

ways are interrupted. There is no eyelid reflex, no 

blinking. An arm that is lifted and released falls flail­

like. 

As surgical anesthesia deepens, a new change can 

be observed on the electroencephalogram. The amplitude 

of the waves definitely falls to 150 microvolts; frequency 

falls to 2 to 4 cycles per second. Periods of inactivity 

occur, during which amplitude falls to less than 20 micro­

volts. These burst suppression periods last no longer 

than 3 seconds. The eyeballs are fixed, and the pupils 

dilate. When there is a sudden increase in the concen­

tration of the gas or vapor, there is no reflex swallowing 



and no respiratory arrest. There is a delayed thoracic 

inspiratory effort. 

At a still deeper level of surgical anesthesia, 

EEG burst suppression periods last longer, from 3 to 10 

seconds. The pupils show a light reflex. There is a 

beginning paralysis of intercostal muscles, and a loss 

of muscle tone. 
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At the deepest level of surgical anesthesia, EEG 

burst suppression periods last longer than 10 seconds, 

and the amplitude of the waves between suppression periods 

has fallen to about 70 microvolts. Pupils no longer show 

a light reflex, and intercostal muscles are completely 

paralyzed. 

There is a Stage IV of anesthesia, but it is 

described only so that it can be avoided. The electro­

encephalogram shows essentially no measurable waves. All 

respiratory effort ceases, bringing about respiratory 

paralysis. The circulation fails. There is vasomotor 

collapse. Death follows. 

Surgical anesthesia, termed Stage III, would 

certainly seem to be a state of unconsciousness. However, 

there have been a number of articles that describe aware­

ness during surgery (Parkhouse, 1960; Rosen, 1959; 

Pearson, 1961; McIntire, 1966; Terrell, 1969). Memories 

seem to be stored, during the apparent unconsciousness 

of surgical anesthesia, of remarks made by surgeons. These 
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memories have been recalled during hypnosis a month later. 

ANALGESIA 

Analgesia, freedom from pain, differs from anesthesia, 

a state of unconsciousness. Pain is difficult to define 

or to describe. Some humans are born with a congenital 

insensitivity to pain (McMurray, 1950; Baxter, 1960). 

Familiar weak analgesics are aspirin and tylenol; xylocaine 

is injected into jaw neurons in dentistry; cocaine is 

an excellent local analgesic for work on the eye; codeine, 

perkodan, morphine and heroin, all opiates, are well known 

for both analgesia and euphoria. Demerol is a substitute 

for morphine; methadone is a substitute for heroin. 

Fentanyl is the strongest analgesic, 80 times the strength 

of morphine. Nitrous oxide is as good an analgesic as 

morphine. 

AMNESIA 

Amnesia begins as a "dazed" state in which the person 

reacts somewhat automatically to the environment, guiding 

his movements by external stimuli, but not aware of what 

he is doing, and not aware of the fact that he has lost 

his personal identity. 

This is followed by a "bewildered" state in which 

there is loss of personal identity, and the individual 

is aware of the loss and troubled by it. This is followed 



in turn by a return to "normal" in which personal identity 

is restored, even though there may still be some gaps 

in memory, particularly for the events of the first stage. 

Nitrous oxide sometimes produces an amnesia of a 

few hours, in which humans appear normal, can drive a 
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car accurately, yet cannot find the way home, cannot recog­

nize their own street. This amnesia is puzzling because 

under nitrous oxide it appears so early in the progession, 

of descent through Stages I and II of anesthesia. Under 

nitrous oxide given in a dental office, at a level of 

25% N20 up to perhaps 45% N20, the patient can answer 

questions, can report that anxiety is lowered, and that 

analgesia is present. The more extreme changes of Stage I, 

loss of color vision, impaired cerebellar functioning, 

ataxia, nystigmus, and the inability to focus the eyes, 

all these seem to be absent under these light doses of 

N20. When the drilling is finished, and the nitrous oxide 

turned off, the patient appears to recover a completely 

normal state of consciousness. He appears normal to the 

dentist, the hygienist, the secretary. He exits to drive 

his car home. The task of driving is performed normally. 

Reflexes such as brake reaction time are unimpaired. 

Nevertheless, about one patient in 20 experiences 

a lingering amnesia that may last several hours. He reacts 

automatically while driving, but he is not aware of where 

he is going, and may drive for an hour in the wrong 



direction from his home. He is not yet aware that he 

is lost. This is followed by the bewildered state in 

which he realizes that he is lost, and cannot recognize 

the streets. He is aware of his temporary amnesia and 

is troubled by it. Slowly his orientation to places and 

streets is restored, and he returns to his home, but he 

may then still have some gaps in memory for his thoughts 

while he was IIlost.1I 
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Besides the dimensions of awareness, anesthesia, 

analgesia, and amnesia, there are a number of other altered 

states of awareness. The most obvious and universal 

altered states of consciousness are those of sleep and 

dreaming. Other altered states include day-dreaming, 

meditation, the state of hypnosis, hypnogogic states, 

euphoria, hallucinations, delerium, and the neuroleptic 

state. 

EUPHORIA 

Nitrous oxide is one of a large class of conscious­

ness altering drugs. Its excellent analgesic properties 

were recognized in 1799 by its discoverer, Humphrey Davy. 

Nitrous oxide also produces euphoria, a sense of bliss, 

of being past caring, a IIpleasurable delerium .•• a 

highly pleasurable thrilling in all the muscles • 

exhilaration • • • sublime emotions • • • excitement equal 

in duration and superior in intensity to that occasioned 
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by high intoxication from opium or alcohol • • • a pleasur­

able trace" (Davy, 1799). The euphoria produced by nitrous 

oxide has been described by Humphrey Davy, Peter Mark 

Roget, Benjamin Blood, and William James (see Appendix). 

PSYCHEDELIA 

There are aspects of the experiences and perceptions 

of these writers which suggest that nitrous oxide produces 

not only euphoria but also a state of consciousness which 

is best described as the psychedelic state. The person 

who breathes nitrous oxide often perceives and comprehends 

the world in a novel way. The psychedelic state could 

be produced by a change in the direct impressions of the 

senses, but it probably also involves a change in how 

we interpret those sensory impressions. Such a change 

in perception is a different state of consciousness from 

those discussed so far: anesthesia, analgesia, amnesia, 

and euphoria. The psychedelic state may occur with one 

of the other states, or it may occur without them. Such 

a state of consciousness may include vivid images in any 

sense modality, sometimes termed hallucinations, or it 

may not include such effects. Nitrous oxide occasionally 

produces visual effects; it often produces effects on 

auditory perceptions; the frequent sensation of "floating" 

resembles an hallucination of touch. 

Because of its analgesic properties, nitrous oxide 



is one of the most widely used drugs. Surgical operations 

typically use very small amounts of the actual anesthetic, 

halothane, methoxyflurane, or sodium pentothal. Oxygen 

is provided, in larger percentages than exist in air. 

The remainder of the gas inhaled is nitrous oxide, 60% 

32 

or 70% of the mixture. Humans absorb a liter of N20 every 

minute for thirty minutes before their tissues are saturated 

with nitrous oxide (Dripps, 1972, p. 127). Nitrous oxide 

acts as an analgesic, and it potentiates the strong anes­

thetics, so that lesser amounts of these more dangerous 

drugs are needed (Dripps, 1972, p. 121). In spite of 

this widespread use, the mechanism of action of nitrous 

oxide is not understood. I chose to explore the effects 

of N20, both in living creatures and in laboratory tissue 

cultures, because of its wide use, its chemical simplicity, 

and its unknown mechanism of action, as well as because 

it alters consciousness in complex and mysterious ways. 

I have reviewed the different states of consciousness 

produced by nitrous oxide. I shall, in the next chapter, 

review human behavioral studies of the effects of nitrous 

oxide and, in the following chapter, physiological effects 

of nitrous oxide. 



CHAPTER IV 

HUMAN BEHAVIORAL STUDIES OF THE EFFECTS 

OF NITROUS OXIDE 

Human behavioral studies on nitrous oxide have been 

performed by Davidson, 1924; McKinney, 1932; Marshall, 

1937, 1938; W. P. Chapman et al., 1943; Wilson et al., 

1950; Steinberg, 1954, 1955, 1956, 1957, 1961; Parkhouse 

et al., 1960; Robson et al., 1960; Frankenhaeuser and 

Beckman, 1961; Frankenhaeuser and Jarpe, 1962; Franken­

haeuser et al., 1963a; Frankenhaeuser, 1963b; Lader and 

Norris, 1969; Jarvis and Lader, 1971; Biersner, 1972; 

C. R. Chapman et al., 1973; Garfield et al., 1975; and 

Bradley and Dickson, 1976. The earlier studies mention 

the subjective effects reported by the subjects, such 

as parasthesia, difficulty of concentrating, a subsequent 

prolonged feeling of depression, slight nausea, a curious 

sensation of reawakening from death to life (Davidson, 

Marshall). 

Subjective verbal reports such as those by Humphrey 

Davy, Peter Roget, Benjamin Blood, and William James were 

followed much later by human behavioral studies. Fred 

McKinney (1932) used N
2

0 in the study of central disso­

ciation. In his review of the literature he discovered 
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that impressions of the effects of nitrous oxide, such 

as those by Davy, Roget, Blood, or James, were only 

qualitative statements, similar to those made by physicians 

on the effects of this drug. McKinney tested nine subjects, 

using 25% N
2
0, on pitch discrimination, two-point threshold, 

visual acuity, auditory acuity, and weight judgments, 

as well as on learning nonsense syllables, word preference, 

opposites, and on free association. 

Under the gas, free association tended to become 
more peculiar, all reactions were slowed, learning 
ability decreased, suggestibility increased, 
tapping failed to show a decrement, and the senses 
did not show evidence of being more acute. 

(McKinney, 1932, p. 199) 

Nitrous oxide reduced the tendency to use a common or 

trite association. McKinney ran three subjects under 

50% N20, and found they could no longer read because every­

thing looked blurry to them. Writing became larger and 

incoordinated. Other reactions were all slowed. 

c. R. Marshall (1937), who had produced research 

on Indian hemp in 1897, mechanically recorded reaction 

times as well as aiming errors, and performed a number 

of experiments on remembering under nitrous oxide. He 

defined moderate intoxication, produced by 30% N
2
0, as 

that dose which caused an increase of simple reaction 

time of 15% to 25%. He defined severe intoxication, 

produced by 45% N20, as that dose which increased simple 

reaction time 25% to 40%. Tasks to be used to assess 



remembering included writing out the Lord's Prayer and 

answering 10 simple questions in writing. 

As N20 concentration increased, performance of the 

tasks took a longer time, and "troublesome points began 

to occur. Thus 'Lead us not into temptation' was momen-

tarily left out of the Prayer" (p. 23). "With deeper 

intoxication the two chief stumbling blocks in the Prayer 

were at 'Lead us not into temptation' and 'Give us this 

day our daily bread,' and in this order." Above 50% N20 

the remembrance of the Prayer began to break down. 
The earliest part of the prayer was the most fixed 
in memory. The end portion, even the 'Amen,' was 
never remembered if memory for the middle part 
failed. When remembrance of all beyond 'Thy will 
be done' had gone the earlier part of the Prayer 
could still be repeated. 

At 60% N20, memory of the first line began to fail. When 

a word series was listened to, as the inhalation of N20 

was beginning, lithe earlier words, heard under slighter 
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degrees of intoxication, were remembered better than those 

at the end of the series" (p. 26). 

C. R. Marshall continued his research on nitrous 

oxide in a paper entitled "The Threshold of Unconsciousness" 

(1938). The dosage level of N20 was at 70%, which produced 

unconsciousness in 4 minutes, 30 seconds. A period of 

excitement just preceded unconsciousness. "Disinclination 

for work may be said to characterize all grades of intoxi-

cation" (p. 424). At 50% N20 II incoordination of movements 

becomes noteworthy and with it begins a loss of all sense 



of self." Reaction times showed the familiar increase 

in length at low doses of N20. As N20 increased, varia­

tions from the average increased reaction time became 
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larger and more frequent. At the borderline of unconscious-

ness, lithe responses tended to be violent. Considerable 

persuasion and even intimidation were then often required 

to obtain them" (p. 425). "Vision was apparently impaired 

at this stage" (p. 426). 

At these high dosage (50% N20) levels, "a qualitative 

change of character occurred. . • • It had a character 

of omniscience and commenced with an exaggerated estimate 

of one's own abilities." The subject wrote "Intellectually 

I feel as keen as ever • . . I feel capable of conducting 

the Government . . • If I were Foreign Secretary I could 

set the international muddle aright" (1935). 

On the verge of the threshold [the subject] wrote 
"Time is beginning to have no meaning for me . . . 
The effect experienced [at 60% N20] was one almost 
of non-existence. • . • On recovering from the 
unconsciousness of 70% N20 to the consciousness 
of 50% N20 in a continuous experiment, I had the 
curious experience of an awakening from death to 
life. . • • Late in the research I became imbued 
with the thought, especially in the early morning 
after awakening from sleep, that the experiments 
I had been conducting were of great educational 
value. II (p. 429) 

After C. R. Marshall's death there was little research 

upon behavioral effects of nitrous oxide. Some investi-

gations were undertaken on nitrogen narcosis, and on the 

effects of carbon dioxide and of cold combined with 
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pressure, by Case and Haldane (1941). A thorough review 

of Theories of General Anesthesia, by Thomas Butler, 

appeared in 1950. The next research on human behavior 

under nitrous oxide was done by Hannah steinberg in 1954. 

She examined the effects of 30% N20 upon cognitive behavior, 

expecting to find a deterioration under the drug condition, 

and expecting this deterioration to selectively impair 

more "complex" behavior to a greater degree than the simple 

motor tasks. As expected, performance on all tasks was 

impaired by 30% N20; however, the IIBall-bearing" task 

was the task most sensitive to the drug. This task, which 

was also used by Case and Haldane (1941) in their study 

of nitrogen narcosis, consists of inserting "with a pair 

of forceps steel balls as quickly as possible into a 

vertical tube" (Steinberg, 1954, p. 172). The dependent 

variable was the number of balls inserted in 40 seconds. 

The next most impaired tasks were two multiple choice 

tests, IIVerbal Analogies" and "Non-Verbal Analogies." 

The next most impaired task was another motor task, 

"Dotting,1I which embodied "a revolving spiral of irregu­

larly placed dots at which the subject aimed with a pencil." 

Two mental tasks followed, "Arithmetic" (written) and 

"Digit Span, Backwards" (verbal). The next most impaired 

task was a motor task, "Tapping," and finally three 

slightly impaired verbal tasks, IIFluency Flowers," 

"Fluency Things to Eat, II and IIDigit Span, Forwards." 



Thus Steinberg found that N20 did not impair skills 

in a strictly hierarchical manner, but instead showed 

impaired performance scattered fairly evenly among motor, 

written, and verbal skills. 

Subjective impressions of time estimations did not 

correlate with performance tasks of time estimation 

(Steinberg, 1955). Subjects reported feeling far away, 

detached, with impressions of vivid imagery. Some felt 

flashes of insight. 

Nitrous oxide produces analgesia, freedom from pain, 

and produces a tendency to forget about the presence of 

pain, and to attach little importance to the presence 

of painful stimuli (Parkhouse, 1959). Nitrous oxide pro­

duces pronounced subjective changes even when performance 

is undisturbed on such tasks as Peg-board, picture 

arrangement, and the Stroop colour-word test (Franken­

haeuser and Jarpe, 1962). 

Thirty percent N20 caused subjects to slow down, 
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and also to make more errors on identifying opposites 

(verbal), multiplication, inductive problems of 4-letter 

groups, and counting blocks in a drawing (Frankenhaeuser 

and Beckman, 1961). Nitrous oxide diminishes the response 

evoked by an auditory signal, as measured by an EEG; evoked 

response time is slowed and amplitude is lowered (Jarvis, 

1971). Hand-tool dexterity and Peg-board performance 

was not impaired at 30% N20 (Biersner, 1972). The Wechsler 



Memory Scale showed no impairment of orientation, mental 

control, digit span or short term visual recall under 

30% N20. Short term memory and associative learning were 

impaired. N20 seemed to impair short term memory for 

simple geometric figures (Biersner, 1972). N20 at 33% 

evokes analgesia, freedom from pain, while not altering 
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a subject's willingness to label a stimulus as hot (C. R. 

Chapman, 1973). N20 at 30% did not impair vigilance or 

sustained attention in 8 out of 12 subjects, who performed 

perfectly (Garfield, 1975). If a subject had formulated 

a decision strategy, then 30% N20 did not impair perform­

ance on this task. No coding errors were made on the 

digit symbol substitution test. Reaction times were 

slowed (Garfield, 1975). Choice reaction time (Bradley, 

1976) was slowed from 0.41 sec to 0.50 sec under 30% N20. 

Simple reaction time was slowed from 0.25 sec to 0.32 

sec under 30% N20. There were profound subjective 

sensations (Bradley, 1976). 

Having reviewed human behavioral studies of the 

effects of nitrous oxide, I shall next review physiological 

effects of nitrous oxide. After that I shall turn away 

from considering N20 effects upon the living creature, 

and instead start to consider the nitrous oxide molecule 

itself. In so doing, I shall be comparing nitrous oxide 

to other analgesics, to euphorics, and to the anxiety­

reducing drugs. 



CHAPTER V 

THE PHYSIOLOGICAL EFFECTS OF NITROUS OXIDE 

Both Humphrey Davy in 1799 and C. R. Marshall in 

1938 describe breathing nitrous oxide to unconsciousness. 

Marshall used a dosage level of 70% N20. It is essential 

to breathe oxygen with the nitrous oxide, since there 

is no available oxygen in the nitrous oxide molecule. 

Breathing 100% nitrous oxide has produced death in rats 

within 45 seconds. 

Until 1956, nitrous oxide appeared to be completely 

safe to use for any length of time, as long as adequate 

oxygen was breathed with the N20. The first indication 

that nitrous oxide might alter the immune response appeared 

in an article by H. C. Lassen (1956). The patient, a 

fifteen year old boy with fulminant tetanus, was undergoing 

convulsions and rigidity, with the danger that he might 

suffocate from laryngeal spasms, or a complete tetanic 

standstill of the respiratory muscles. The previous 

conventional treatment included barbiturates, chloral 

hydrate and d-tubocurarine chloride. Lassen chose to 

also use 50% to 60% nitrous oxide, in order to lessen 

the need for curare and the sedatives, and to lessen the 

great emotional strain of being unable to communicate 



because of the curare paralysis. Unfortunately, the boy 

developed aplastic anemia, with a Hemoglobin of 80% of 

normal. Leucocytes (white blood cells) fell from a normal 

level of about 14,000 down to 1,200 per cubic millimeter. 

Granulocytes fell to 10% of normal. Despite ten blood 

transfusions and five different antibiotics, he developed 

septicaemia and myocarditis, and died on the 29th day. 

One more patient died before Lassen realized that 

nitrous oxide was the common factor in these sudden blood 

cell changes. Other patients either had not been given 
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N20 for so many days, or the N20 was halted as soon as 

their blood cells showed this loss. Eastwood (1963) tested 

the effects of 80% N20 for six days on albino rats. White 

blood cells fell from a normal count of 13,000 to 1,130. 

Polymorphonuclear cells disappeared first. Bone marrow 

showed a total cessation of reproduction of cells, with 

mitosis disappearing. Eastwood tried nitrous oxide as 

a last resort in cases of myelogenous leukemia, since 

these patients had white blood cell counts of 170,000 

and 181,000, far too high. N20 did bring the white blood 

cell count down, but the patients died from intracranial 

hemorrhage and a high fever. 
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PHYSIOLOGICAL EFFECTS OF N20 

There are a number of physiological in vivo responses 

to nitrous oxide which are immediately measurable and 

are very puzzling to explain. Some researchers have pro­

posed that nitrous oxide is an a-adrenergic agonist, that 

is, that N
2

0 potentiates or releases plasma norepinephrine, 

an excitatory substance that we subjectively experience 

as "a rush of adrenaline." Evidence is conflicting and 

the cardiovascular responses are extremely complex. 

Craythorne and Darby (1965) showed that nitrous oxide 

produced an immediate decrease in ventricular force, without 

causing a change in blood pressure, heart rate, or cardiac 

output, in dogs. Lundberg (1966) found that N20 increased 

heart rate but reduced stroke volume in dogs. 

N. Ty Smith (1966) found that nitrous oxide caused 

no cardiovascular changes except for a rise in total peri­

pheral resistance in dogs. R. A. Millar (1969, 1970) 

found that N20 produced an increase in sympathetic dis­

charges in cats. J. H. Eisele (1969) found that nitrous 

oxide produced a reduction of the maximum aortic acceler­

ation within 8 seconds of the first breath in dogs. 

Nitrous oxide reduced the heart rate and stroke volume, 

but their was also a slight rise in mean arterial blood 

pressure. 

N. Ty Smith (1970) found that nitrous oxide caused 



an increase in mean arterial pressure, in right atrial 

pressure, in systemic vascular resistance, and in forearm 

vascular resistance, in humans. Forearm blood flow was 

reduced. Pupils dilated. Plasma norepinephrine levels 

rose. Leighton (1973) concluded from Ty Smith's studies 

that there is good evidence that nitrous oxide is an 

a-adrenergic agonist. 

PHYSIOLOGICAL EXPERIMENTAL STUDIES ON N20 

Besides its effects upon the immune response, and 
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its possible action as an a-adrenergic agonist, nitrous 

oxide affects the process of mitosis in profound and myste­

rious ways. Humphrey Davy (1799) was the first to notice 

that plants will not grow, seeds will not germinate, in 

an atmosphere containing nitrous oxide. The first modern 

indication that nitrous oxide might produce changes in 

the process of mitosis came when Ostergren (1944) tested 

this analgesic gas upon the pea plant Pisum sativum. N20 

halted mitosis in metaphase. 

In 1950, Ferguson was able to induce polyploidy 

in the onion plant Allium cepa, but only at a pressure 

of 6 atmospheres. In 1958, Ebert and Hornsey speculated 

that inert gases, such as nitrous oxide, seem to compete 

with oxygen for access to as yet unidentified, but specific, 

sites within the cell, perhaps within the nucleus. 

In 1963, Green and Eastwood noted that rats and 
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humans are similar in their response to nitrous oxide; both 

exhibit depression in their nervous systems and in their 

haemopoietic (blood-forming) systems. In 1964, Rector 

and Eastwood showed that N20 (high levels) is lethal to 

the chick embryo. In 1965, Smith, Gaub, and Moya noted 

the teratogenic (causes deformities) effects of anesthetic 

agents, among them, N20. In 1966, Fink and Kenny found 

that N20 decreases the rate of mammalian cell proliferation 

in monolayer culture. In 1967, Fink, Shepard and Blandau 

studied the teratogenic activity of N20. The effects 

that nitrous oxide produces on mitosis have ramifications 

far beyond tissue culture procedures or hybrid crop improve­

ments. Embryos do not grow normally in pregnant rats 

who are exposed to 50% N20 (Fink et al., 1967). Even 

2 days in 50% N20 is enough to cause death in 19% of the 

embryos who are then resorbed. Resorptions rise to 25% 

after 4 days of nitrous oxide, and rise to 57% after 6 

days of nitrous oxide. Weight of embryo falls from 3.7 g 

to 2.7 g. Every embryo who survived had defective verte­

brae. Some vertebrae had no center of ossification on 

the affected side. Some ribs were fused. Adjacent 

vertebrae were fused together between their ossification 

centers. Three embryos were hydrocephalic. One had a 

damaged kidney; one had an enlarged heart. Half as many 

males (35) as females (70) survived. More than half of 

the male embryos were absorbed. Nitrous oxide appears 



to be selectively lethal for males. The rats in the study 

of Fink et ale (1967) were treated with 50% N20, 25% 02' 

and 25% N2 from day 8 to day 12 of the pregnancy, too 

early for gonadal differentiation. Fink et ale thought 

that N20 affected skeletal growth through direct gene 

action. 
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Green (1968) investigated the effect of N20 on RNA 

and DNA content of rat bone marrow and thymus. Bone marrow 

is involved in the creation of red blood cells and white 

blood cells. The thymus gland is involved in changing 

immature white blood cells into immunologically competent 

white blood cells, those that can recognize and bind a 

foreign substance, an antigen. 

Snegireff, Cox, and Eastwood (1968) investigated 

the effect of N20 on the developing chick's embryo, noting 

weight, mortality, and gross anomaly rate, as well as 

the neural tube mitotic index. Mitotic rate is a ratio 

of the number of cells that enter mitosis, to the total 

number of cells. A normal mitotic index is 0.03, as about 

3% of the total cells will be entering mitosis at any 

one time. Low temperatures cause growth rate to approach 

zero; the mitotic index in this condition increases to 

0.36. Thirty-six percent of cells have entered mitosis 

but are unable to complete cell division. Colcemide causes 

the mitotic index to climb to 0.65. A pH of 7.7 (slightly 

basic) at 29 degrees Celsius brings the mitotic index 
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up to 0.44. Cells enter metaphase and then remain there. 

N20 at 5.1 atmospheres (Rao, 1968) upon mammalian carcinoma 

Hela cells caused an increase in mitotic index from 0.03 

up to 0.62 after 16 hours. Growth was blocked in metaphase. 

Nitrogen, N
2

, at similar pressure caused no metaphase 

block. If cells are treated with thymidine, a normal 

constituent of DNA, they will all start to enter mitosis 

together, after 3-3/4 hours. If, at that point, the cells 

are placed in N20 at 5.1 atmospheres, the mitotic index 

will rise from zero to 0.94 in 8~ hours. This N20 block 

is reversible; when N20 is removed, cells can now complete 

mitosis. About 90% of cells completed mitosis one hour 

after N20 was removed (Rao, 1968). 

Johnson (1971) kept rats in an atmosphere of 80% 

N20 for six days, noted the characteristic changes in 

blood cell counts, and then kept them in room air for 

days 7-11. Reticulocyte count, which had fallen to 30% 

of normal, recovered, and in fact rose to 168% of control 

levels. Phagocytes recovered their normal mobility. Red 

blood cell production, as measured by incorporation of 

radioactive iron, recovered from a low point of 25% of 

normal to a "rebound" high level of 225% of normal~ Cell 

division, mitosis, as measured by incorporation of radio-

, 14c h 'd" 'h h f h' act~ve -t ym~ ~ne ~nto DNA ~n t e c romosomes 0 w ~te 

blood cells, recovered from a low point of 25% of normal 

to a high level of 125%. Johnson hypothesized that these 
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changes were due to the ability of nitrous oxide to function 

as a free radical scavenger, but he could find no causal 

relationships between the tissue content of free radicals 

and the blood cell changes brought on by nitrous oxide. 

Brinkley and Rao (1973) again used Hela cells whose 

division had been synchronized with thymidine, and placed 

these in N
2

0 under a pressure of 80 Ib/in2 • If the N20 

treatment lasted for 4 hours, cells recovered afterward 

and proceeded through mitosis. However, if N20 treatment 

lasted for 12 or 16 hours, cells did not recover. Bipolar 

cells, those dividing normally into two daughter cells, 

usually comprise 96% of the population, with a few tripolar 

or tetrapolar. After 12 or 16 hours under N
2
0, incidence 

of bipolar cells had fallen to 55%, while tripolar cells 

rose to 27%, and tetrapolar cells rose to 13%. After 

36 hours of N20, the count of bipolar cells had fallen 

even lower, to 40%, while tripolar cells rose to 42%, 

and tetrapolar cells rose to 17%. Cells with two nuclei, 

an abnormal condition which follows the tetrapolar state, 

usually comprise 3.75%; after N20, binucleate cells com­

prise 13.5%. 

In 1973, Corbett et ale studied the effects of low 

concentrations of N20 in rat pregnancy. Even 100 ppm 

of N20 for 8 hours a day produced a high fetal death rate 

of 14.5% to 18.4% when the days of exposure were the 4 

days from day 10 to day 13, or the 6 days from day 14 



to day 19 of the rat pregnancy. In 1974, Bussard et ale 

showed fetal changes in hamsters exposed to N20. 

PHYSIOLOGICAL EFFECTS ON HUMANS 
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In 1960, Triconi, Ser4 and Solish observed that 

nitrous oxide had an adverse effect upon human embryos, 

causing selective mortality of males during early pregnancy. 

By 1968, it was recognized that anesthetics like nitrous 

oxide might create a special hazard for those who work 

with them, and Bruce, Eide, Linde, and Eckenhoff (1968) 

studied the causes of death among anesthesiologists--

a 20 year survey. Lymphoid cancers were one of the leading 

causes of death. 

In 1969, Linde and Bruce measured ppm of anesthetic 

gases in operating rooms, indicating the occupational 

exposure of anesthetists to N20 and other anesthetics. 

David Bruce wrote a review article on changes in the immune 

response brought on by anesthetics, including N20, but 

again the mechanism of action is not understood (Bruce, 

1971). Bone marrow fails to produce the normal numbers 

of white blood cells and red blood cells. He commented 

on the seriousness of this problem. 

In 1971, Cohen, Belvill, and Brown published an 

article entitled "Anesthesia, Pregnancy, and Miscarriage-­

A Study of Operating Room Nurses and Anesthetists. II 

Exposed operating nurses had 29.7% miscarriages compared 



to control nurses' rate of 8.8%. Exposed female anesthe­

tists had 37.8% miscarriages compared to control female 

doctors' rate of 10.3%. In 1972, Pfaffli, Nikki, and 

Ahlman showed that anesthetics, including N20, not only 

exist in operating room air, but also in "end-tidal air 

and in venous blood of surgical personnel." They showed 

that there is chronic exposure to such anesthetic gases 

in the operating theater and in the recovery room. 

In 1972, Knill-Jones and Moi4 and Rodrigues and 

Spence made a control survey of woman anesthetists in 

the United Kingdom, correlating practice with problems 

of pregnancy. Exposed women anesthetists had 18.2% spon­

taneous abortions compared to control female physicians 

who had 14.7% spontaneous abortions. The women 

anesthetists had 5.5% congenital abnormalities of infants 

compared to 3.6% for the infants of female physicians. 
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In 1974, Corbett, Cornell, Endres, and Leading 

documented birth defects among children of nurse anesthe­

tists. In 197~ Cohen et ale made a national study of 

occupational disease among operating room personnel. In 

1974, Bruce et ale showed that even trace anesthetics 

including N20 at 50 ppm, produce decrements in perceptual, 

cognitive, and motor skills. 

In 1974, Millard and Corbett measured N20 concen­

tration in the dental operatory. In 1975, Knill-Jones 

et ale made a control survey of male anesthetists in the 



United Kingdom, correlating anesthetic practice of the 

husband with problems in their wives' pregnancies. In 
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1975, Cohen et ale made a survey of anesthetic health 

hazards in pregnancies of dentists' wives. Wives of exposed 

dentists had a spontaneous abortion rate of 16% compared 

to a rate of 9% for wives of unexposed dentists. In 1975, 

Lecky measured anesthetic trace levels in 98 U.S. hospitals. 

In 1976, Bruce and Bach showed the trace effects of anes­

thetic gases on behavioral performance of operating room 

personnel. In 1976, Kripke et ale studied in rats testi­

cular reaction to prolonged exposure to 20% N20. After 

14 days they could see damage to seminiferous tubules, 

and multi-nucleated spermatozoa. 

There are about 25,000 hospital operating rooms 

and each year about 20 million patients are anesthetized. 

Nitrous oxide is the most widely used inhalation anesthetic 

gas. Every day about 50,000 hospital operating room 

personnel breathe traces of N20 and other gases. In dental 

offices (100,000 dentists and assistants) about 4.5 million 

patients are anesthetized with N20 and supplementary drugs 

every year. The usual occupational exposure level for 

N20 is 400 ppm to 3,000 ppm. Dental offices have levels 

of 5,900 ppm to 6,800 ppm (Occupational Exposure to Waste 

Anesthetic Gases and Vapors, DHEW, NIOSH, March 1977). 

To summarize, nitrous oxide affects the immune 

response, it seems to be an a-adrenergic agonist, and 



it causes abnormal mitosis, fetal death, and congenital 

abnormalities in experimental animals and in human beings. 

In order to continue exploring further the effects 

of nitrous oxide, we must shift our focus from in vivo 

research on humans or animals to in vitro research upon 

cells, and particularly upon neurons. 

OXYGEN USE AND N20 
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At the time that Humphrey Davy discovered nitrous 

oxide in 1799, scientists were just beginning to understand 

that humans, animals, and plants need and use oxygen from 

the air, in order to stay alive. If a drug such as nitrous 

oxide at 70% can produce unconsciousness, does it do so 

by interfering with the transport or use of oxygen? 

Nitrous oxide is absorbed by the surfacants on the 

inside of the lungs at the alveolar membrane (Stanaszek, 

1972). As it is breathed into the lungs, some patients 

take note of the slightly sweet taste of nitrous oxide. 

Humphrey Davy also spoke of "a feeling in my lungs akin 

to taste. II Nitrous oxide causes people to breathe faster. 

When resting, an average respiratory frequency is about 

11 breaths per minute. With 30% N20, this rate rises 

to about 14 breaths/minute (Bradley, 1976). This increase 

from N20 also happens with moderate exercise, from about 

26 breaths/min to 30/min, and with strenuous exercise 

with N20 from about 34/min to 39/min. Breathing is 
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slightly shallower; tidal volume increases with increasing 

levels of N20 (Bradley, 1976). Liters per minute increased 

under N20, since even with shallow breaths, enough breaths 

per minute were breathed to cause an increase in respiratory 

minute volume, from 6.79 L/min to 7.02 L/min at 30% N
2

0 

at rest. This increase was most pronounced with strenuous 

work, changing from 55.39 L/min to 59.45 L/min (Bradley, 

1976) . 

Nitrous oxide enters the alveolar epithelial cells, 

crosses the subepithelial tissue, and enters the pulmonary 

capillaries. N20 is 30 times more soluble in body fluids 

than is nitrogen, N2 • Because of this big difference 

in solubilities, N20 pours into the body at a tremendous 

rate, while the N2 leaves much more slowly. Humans absorb 

a liter (1,000 cc) of N20 each minute until equilibrium 

is reached after half an hour of breathing a mixture of 

nitrous oxide and oxygen. Oxygen is used at a rate of 

240 cc/min when resting. A typical N20/02 mixture is 

2 liters/min of N20 with 5 liters/min of oxygen. 

When humans or animals are resting, they use less 

oxygen while breathing nitrous oxide, than they use while 

breathing air (Schatte, 1973, 1974; Bradley, 1976). This 

is not surprising since narcosis seems to slow down many 

processes, including metabolism. But even while exercising, 

both Schatte et ale (1974), and Bradley and Dickson (1976), 

found that humans used less oxygen while breathing nitrous 
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oxide than while breathing air. In these experiments 

nitrous oxide does seem to be interfering in some mysterious 

way with the transport or use of oxygen. 

Nitrous oxide is often called the IIfirst gas ll in 

articles by anesthesiologists, and the actual anesthetic, 

such as halothane, is called the "second gas. II Because 

N20 rushes in so fast, it drags the "second gas ll into 

body tissues faster than that gas would enter ordinarily. 

N20 produces this IIsecond gas effect" with halothane 

(Epstein, 1964), with ethylene and with cyclopropane 

(Stoelting, 1969) and with carbon dioxide (Kitahata, 1971). 

Carbon dioxide is not, of course, given as an anesthetic; 

but it is the gas we breathe out, and when we breathe 

in N20, the N20 enters so fast that it keeps the carbon 

dioxide in our alveolar capillaries. Whitteridge and 

Bulbring (1944) noted that N20 caused an increase in the 

discharge frequencies of pulmonary inflation receptors 

and in pulmonary deflation receptors. Perhaps this is 

due to the CO2 second gas effect. Perhaps N20 somehow 

sensitizes these receptors. 

Nitrous oxide rushes into alveolar tissue, into 

capillaries and the bloodstream, and from there to every 

part of our bodies, including nervous tissue. Subjects 

report III feel different now," with the second or third 

breath of 25% to 30% N20. Such subjective effects are 

felt even sooner with higher concentrations of nitrous oxide 
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In the bloodstream, N20 is absorbed by serum albumin, 

a blood protein (Stanaszek, 1972). Nitrous oxide does 

not appear to bind to hemoglobin, nor to affect the ability 

of hemoglobin to carry oxygen (C. Waltemath, 1971). N20 

does not cause any change in the spectrophotometric curve 

of hemoglobin with oxygen. There is no change in the 

Bohr effect, an interaction between hemoglobin and the 

dissolved carbon dioxide within the red cell. There is 

a transient effect of N20 on red blood cells in vitro. 

First they shrink from the initial N20. Then they swell 

again (Longmuir and Grace, 1970). Erythrocytes (red blood 

cells) do not seem to be impaired in their ability to 

retain potassium ions (K+) in spite of this shrinking 

and swelling. Platelet aggregation is inhibited 34% by 

64% N20 (Ueda, 1971). 

The serum enzymes such as serum transaminase, dehydro­

genase, aminopetidase, phosphatase (Boehmer, 1970), serum 

proline hydroxylase, alkaline phosphatase and alanine 

amino transferase (Stein et al., 1972), appear to be 

unaffected by N
2
0. Tyrosinase is inhibited by N20 (Behnke 

et al., 1969). Aspartate amino transferase levels rise 

(Stein et al., 1972). 

There is a temporary rise in blood sugar level 

(Atkins and Thornburn, 1971), and an increase in free 

fatty acids (Allison et al., 1969). Insulin levels fall 

(Allison, 1969). There is some controversy over whether 



nitrous oxide is an a-adrenergic agonist, that is, whether 

it causes a sudden release of adrenaline (epinephrine) 

from our adrenal glands into our bloodstream, thus 

preparing us for IIfight or flight. II Norepinephrine (N.E.) 

is a neural transmitter which may also be released by 

nitrous oxide. This has an excitatory effect upon a wide 

range of neurons in the brain as well as in the heart 

(Goodman and Gilman, 1975). Experiments concerning the 

effect of nitrous oxide upon postganglionic adrenergic 

nerve endings have been performed using the stellate gan­

glion and related heart-regulating nerve centers. These 

results were summarized earlier in this chapter under 

the heading, "Physiological Effects of N20. 11 
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A number of different researchers have investigated 

the effect of nitrous oxide upon the firing rate of differ­

ent groups of neurons. Mori et ale (1972) found that 

N20 produced no consistent change in neuron firing of 

thalamic relay nuclei. Kitahata et ale (1973) found that 

N20 reduced the firing of central trigeminal nociceptors, 

but N20 increased the firing rate of nucleus caudalis 

neurons. Sa sa et ale (1967) found that N20 reduced the 

firing rate in the inferior colliculus and in cortical 

evoked click potentials by 20%. 

Some researchers have investigated the interaction 

of nitrous oxide with the cortical response to monoamines, 

to norepinephrine, to 5-hydroxytryptamine, and to 



acetylcholine (E. Johnson et al., 1969). Others have 

used such a microelectrophoretic technique with gamma 

amino butyric acid (GABA) and with assorted amino acids 

as well as acetylcholine on the cortical cerveau isole 

(Crawford, 1970). 
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Hills (1972) found that spontaneous neuron firing 

was increased by nitrous oxide, which caused cellular 

dilation by disturbing the osmotic regulation. Gottlieb 

et al. (1968) found that N20 interfered with sodium active 

transport in sciatic nerve and across frog skin. 

In trying to understand the complex effects of nitrous 

oxide, I have so far considered its effects on lung tissue, 

on ~-adrenergic release on receptors, on heart function, 

on some brain neuron groups, and on the interaction of 

nitrous oxide with transmitter substances and brain meta­

bolites. As we consider the effect of N20 upon neurons 

we are moving from a focus upon the whole organ, group 

of cells, or individual cells, inward to concentrate upon 

the living cell itself. 



CHAPTER VI 

NITROUS OXIDE ANALGESIA AND OTHER ANALGESICS 

Berkowitz et al. (1976) wished lito characterize 

the nature of nitrous oxide analgesia." As a dependent 

variable for pain, he used the phenylquinone writhing 

test: a peritoneal injection of phenylquinone, and then 

a count of the number of writhes exhibited by the mice 

during a five minute period. 

40% N20 lowered the number of writhes by 26%. 
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Naloxone and naltrexone, both morphine antagonists, 

also antagonized the analgesia produced by nitrous oxide. 

Naloxone or naltrexone alone had no significant effect 

upon writhing. But naloxone or naltrexone, given just 

before the nitrous oxide, reduced the analgesia. Instead 

of lowering the number of writhes, 
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80% N20 with naltrexone was not measured. 

Naloxone or naltrexone dosage level had to be at 5 mg/kg 

to be effective. 

N20 analgesia was not only antagonized by naloxone 

or naltrexone, it was also made ineffective by rendering 

the mice tolerant to morphine. Morphine was given in 

an increasing dosage: 

30 mg/kg twice on day 1 

50 mg/kg twice on day 2 

60 mg/kg three times on day 3. 

On day 4, no morphine was given; phenylquinone was 

given, and the number of writhes were observed with and 

without N20. An additional control group of mice had 

been given saline injections in a regimen paralleling 
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the morphine injections. The previously given morphine 

did not have any lingering analgesic effect. Morphine 

tolerant mice writhed 60 and 56 times. Saline injected 

mice writhed 53 and 57 times. In the saline-treated mice, 

80% N20 reduced writhes by 93%. In the morphine-tolerant 

mice, 80% N20 reduced writhes by only 16%. Berkowitz 

et ale (1976) concluded from these experiments that N20 

may release or potentiate one of our endogenous opiates, 

enkephalin or ~-endorphin. The other explanation offered 

is that naloxone or naltrexone may antagonize any anal­

gesic, not only the opiate alkaloids. 

Relief of pain is complicated to investigate 



experimentally. It is difficult to synthesize the various 

drug effects with the analgesic effects of hypnosis, 

acupuncture, and electrical stimulation of periventricular 

brain areas. Although Berkowitz et al. chose the phenyl­

quinone writhing test, other investigators have used a 

hot-plate tail-flick test. In this test, a response to 

pain occurs in a few seconds; if analgesia prevents the 

tail-flick response, the stimulus is automatically turned 

off before the animal is physically hurt. This test is 

more sensitive to momentary pain or analgesia, and is 

not confounded by contractions occurring in intestinal 

smooth muscle. Opiates act directly on smooth muscle 

cells to inhibit contractions, as well as relieving pain 

from any source. Phenylquinone causes contractions as 

well as pain. Nitrous oxide relieves pain but has no 

special effects upon smooth muscle. 

Since the discovery of enkephalin and S-endorphin, 

investigators have leaped upon the bandwagon, attempting 

to explain all analgesia by a binding of the drug to the 

endogenous opiate receptor protein, or by a release of 

the endogenous opiate. Nitrous oxide does not seem to 

bind to any protein. It "potentiates" a large number 

of drugs, including all the anesthetics. This word 

"potentiates" has simply been defined as: the same 

behavioral effect is produced, using N
2

0 plus a lower 

dosage level of the stronger drug, as is obtained using 
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a higher dosage level of the strong drug alone. 

To test whether N20 releases enkephalin or 

~-endorphin one would have to perform a much more sensitive 

experiment, perhaps implanting micropipettes into periven­

tricular areas of the animals' brains. One would have 

to ascertain normal baseline values for enkephalin and 

~-endorphin, which would undoubtedly show a wide variation 

among the individual animals. Then N20 could be given 

at different levels, and any changes noted in the amounts 

of enkephalin and ~-endorphin released. N20 dosage levels 

needed for sufficient analgesia vary widely among humans 

(23% to 60%), a further complicating factor. 

Akil et ale (1976) electrically stimulated periven­

tricular neurons in rat brains, and believed that such 

stimulation produced analgesia by increasing the release 

of endorphin from these neurons. The critical experiment 

by Akil, Mayer, and Liebeskind (1976) supporting this 

hypothesis, offered as evidence the blocking of analgesia 

from electrical stimulation by naloxone. Mayer and Hayes 

(1975) produced acupuncture analgesia in humans, rotating 

needles at the base of the thumb to block pain from electri­

cal stimulation of a tooth-pulp cavity. This effect was 

blocked by naloxone. Stress itself produces analgesia 

that is not abolished by naloxone (Mayer and Hayes, 1975). 

Hayes (1977) offers some cautionary thoughts on 

all these experiments. Naloxone antagonism is the primary 



61 

evidence cited by those investigators who seek to unite 

all analgesic effects under the common mechanism of the 

release of endogenous opiates. Naloxone blocks the anal­

gesic effects of electrical brain stimulation, acupuncture, 

N20, lanthanum, marijuana, and acetylcholine, as well 

as blocking other responses produced by cholinergic agents, 

glutamate and dextroamphetamine (Hayes et al., 1977). 

Naloxone thus may activate some opposing system rather 

than merely competing with endogenous opiates for the 

opiate receptor protein sites. 

Naloxone antagonism may be a necessary condition 

to show that endogenous opiates are released. But naloxone 

antagonism is not a sufficient cause to infer that analgesia 

is produced only by an endogenous opiate release and binding. 

Hayes feels this cautious "approach should be given more 

explicit attention in current behavioral and physiological 

research" (Hayes et al., 1977). 

Even while we are considering the analgesic effects 

of nitrous oxide, we must also keep in mind its remarkable 

effects in producing euphoria and amnesia, in reducing 

anxiety, and in halting cell division in metaphase. Even 

if N20 produces its analgesia by releasing endogenous 

opiates, we must search more deeply into the effects N20 

produces upon neurons if we hope to explain its other 

qualities. The list of drugs that produce effects similar 

to those of nitrous oxide is a formidable one, and includes 



molecules which are chemically different and which produce 

different behavioral and experiential effects. 
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Analgesia for pain of low intensity is accomplished 

by aspirin (acetylsalicylic acid) and by tylenol (aceta­

minophen). Aspirin works on the peripheral nervous system, 

at the site of origin, as well as on the central nervous 

system. Aspirin inhibits the synthesis of prostaglandins 

that occurs in inflamed tissues. This inhibition prevents 

mechanical or chemical stimulations from sensitizing the 

pain receptors (Woodbury and Fingl, 1975). In the central 

nervous system, investigators have suggested that aspirin 

acts upon the hypothalamus, lowe!ing fever as well as 

pain. Aspirin does not appear to affect the reticular 

activating system. Aspirin is about 1/10 as strong as 

codeine, as an analgesic. Aspirin affects the electron 

transport chain of proteins within the mitochondria, 

uncoupling the synthesis of ATP from the transport of 

electrons (Miyahara, 1965). The result of this is an 

increased need for oxygen and an increased production 

of carbon dioxide. Aspirin also causes the release of 

epinephrine from the adrenal medulla. Tylenol, like 

aspirin, acts upon the hypothalamus in reducing fever. 

Xylocaine is the analgesic commonly injected locally 

at the dentist's office. Such local anesthetics block 

nerve conduction in every type of nerve fiber. Several 

different mechanisms of action have been suggested. 



Perhaps xylocaine interferes with the binding of Ca++ 

ions. The site of action may be at the inside of the 

cell membrane. Maybe xylocaine increases the surface 

pressure of the lipid layer, thus closing the "pores" 
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of the neuron cell membrane (Shanes, 1963). Maybe xylo­

caine increases the degree of disorder in the neuron lipid 

cell membrane (Metcalfe, 1968). 

Cocaine resembles xylocaine and the other local 

anesthetics in all these effects. In addition, cocaine 

blocks the uptake of catecholamines at adrenergic nerve 

endings. Catecholamines are the lIexcitatoryll neuron trans­

mitters that cross the synapse from one neuron to the 

next. Catecholamines include ephinephrine (adrenaline), 

norepinephrine, and dopamine. Cocaine, as well as other 

local anesthetics, also inhibits cell division in sea 

urchin eggs. 

Cocaine, since it blocks re-uptake of norepinephrine 

and the other catecholamines, produces excitement like 

the amphetamines. The user experiences this subjectively 

as a happier mood, a sense of alertness and increased 

energy, restlessness, and garrulousness. Cocaine addicts 

describe this euphoria in the same words as are used by 

amphetamine addicts, buyers and lovers of IIspeed. 1I The 

users feel their mental powers are increased. liThe user 

feels fascinated or preoccupied with his own thinking 

processes and with philosophical concerns about 'meanings' 



and 'essences· 1I (Jaffe, 1975). Animal amphetamine users 

show stereotyped behavior which is thought to involve 

dopaminergic structures in the corpus striatum. Animals 

will self-administer cocaine in a cyclic pattern of use 

and abstinence. 

Later, in Chapter VIII, I will describe the enkepha­

lins and endorphins and their "opiate" receptor proteins 

which exist in neurons of the periventricular areas of 
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the brain. Current hypotheses about the opiate alkaloids, 

morphine, heroin, percoda~ and codeine, suppose that these 

drugs are bound by the opiate receptor proteins and this 

results in analgesia and euphoria. 

EUPHORIA AS AN ANALGESIC RESPONSE 

Commentators and reviewers often speak scornfully 

of the sense of wonder expressed by those writers who 

try to describe the e~fect of a drug such as opium or 

nitrous oxide. In their haste to condemn the use of drugs 

which have led to physical addiction, many reviewers have 

also belittled the experience of euphoria. 

To belittle the experience of euphoria shows a lack 

of understanding of the importance of euphoria as a part 

of the complete effect of analgesia. Subjective aspects 

of the experience of pain, when it is possible to separate 

this factor from the physical stimulus, play a crucially 

important role. The most powerful analgesics do more 
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than simply dull the painful sensation or eliminate the 

direct sensation. They act by affecting both the physical 

components and the psychological components of the experi­

ence of pain. Nitrous oxide has this double aspect, both 

lowering physical pain locally and lowering general anxiety. 

The sensation of physical hurt seems attenuated, dulled, 

or eliminated. The feelings of psychological pain, which 

we name "anxiety" or "fear," are also attenuated. This 

change is reported in paradoxical statements by the patient, 

such as "I feel the pain but I don't care (laughs)." Drugs 

which produce this kind of euphoria with analgesia induce 

feelings of well-being, excitement, or pleasure. 

When we consider the problem of addiction, these 

two components of pain are seen most clearly. Obviously 

a person who suffers physical pain may become an addict 

of a powerful analgesic. We even sympathize with such 

a problem. However, people who suffer from chronic free­

floating anxiety and fear may also become addicted to 

such drugs. Psychological pain drives these people to 

crave the drugs that will bring them euphoria. Our cul­

tural attitude, our "Puritan ethic," condemns such 

sufferers, as well as prevents us from understanding 

euphoria as an analgesic response. 

Those writers who are describing euphoria go beyond 

the dictionary definition, "a sense of well-being and 

bouyancy" (Webster's, 1977, p. 344). There seem to be 
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a number of different subjective effects included in the 

experience of euphoria. Perhaps a lowering of anxiety 

is the most central feeling. This dimension is described 

as a sense of peacefulness; one is past caring; writers 

here go on to use the word sublime, a sense of bliss. 

A different dimension of euphoria is the sense of excite-

ment, of intensity of one's emotions. Humans are willing 

to accept a degree of fear in order to experience excite-

ment. The combination of fear and bliss in close temporal 

juxtaposition is such a novel sensation that humans seek 

out plants and chemicals that produce such effects. Even 

hallucinations may be sought out for their novelty, out 

of curiosity. Nitrous oxide seldom produces visual hallu-

cinations; it often produces hallucinations of floating 

or sinking. Subjective sensations under N20 are described 

by Roget (1799), Davy (1799), Blood (1874), and James 

(1882) (see Appendix) . 

The most complete description of the euphoria of 

opium has been given by Thomas de Quincey (1821): 

Dread agent of unimaginable pleasure and pain • . . 
the abyss of divine enjoyment thus suddenly revealed 
. • • a panacea--a soothing drug for all human woes 
• • . the secret of happiness • • • at once dis­
covered . . . happiness might now be bought for a 
penny • • . portable ecstasies might be had corked 
up in a pint bottle; and peace of mind could be 
sent down in gallons . . . Nobody will laugh long 
who deals much in opium; its pleasures even are of 
a grave and solemn complexion; and in his happiest 
state, the opium eater even then speaks and thinks 
as becomes II Penseroso. 

No quantity of opium ever did, or could, 



intoxicate • • • crude opium is incapable of 
producing any state of body at all resembling that 
which is produced by alcohol. 
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The pleasure given by opium, when once gener­
ated is stationary for 8 or 10 hours; a case of 
chronic pleasure, a steady and equable glow. Opium 
introduces among the mental faculties the most 
exquisite order, legislation, and harmony. Opium 
greatly invigorates a man's self-possession. Opium 
communicates serenity and equipoise to all the facul­
ties, active or passive. 

Opium gives, to the temper and moral feelings 
in general, simply that sort of vital warmth which 
is approved by the judgment. 

Opium gives an expansion to the heart and the 
benevolent affections. This expansion of the 
benigner feelings, incident to opium, is no febrile 
access, but a healthy restoration to that state 
which the mind would naturally recover upon the 
removal of any deep-seated irritation of pain that 
had disturbed and quarreled with the impulses of 
a heart originally just and good. 

Opium always seems to compose what had been 
agitated, and to concentrate what had been 
distracted (p. 73). 

Opium has been used at least since 4000 B.C., and 

contains more than twenty alkaloids, which constitute 

25% of the weight of powdered opium. Morphine constitutes 

10% of the weight, codeine about 0.5% of the weight. 

Heroin is manufactured from morphine, about 2~ times as 

potent as morphine, and is rapidly converted into morphine 

in the body. 

Methadone does not appear to resemble the opiate 

alkaloids when drawn as the two-dimensional chemical struc-

ture, but when folded into its three-dimensional form, 

it resenililes morphine, and 1S bound to protein as is 

morphine. It is as strong an analgesic as morphine, it 

causes physical dependence, and its effect is blocked 



by naloxone and naltrexone. 

Demerol (meperidine) is a synthetic analgesic, 

chemically quite dissimilar to morphine, but also classed 

as a narcotic. In its three-dimensional form it also 

can fit into the opiate receptor protein. It produces 

euphoria as well as analgesia, and its effects can be 

antagonized by naloxone and other narcotic antagonists. 

Fentanyl is a synthetic opioid which is 80 times 
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as potent as morphine. Its analgesic and euphoric effects 

can be antagonized by naloxone and other opioid antagonists. 

Fentanyl is used exclusively for anesthesia. Sometimes 

fentanyl is gi~en as preanesthetic medication, instead 

of morphine or demerol. Sometimes fentanyl is combined 

with a neuroleptic drug, droperidoli together these two 

drugs produce neurolept analgesia, a general quiescence, 

a state of seeming indifference to environmental stimuli. 

Given intravenously, and combined with nitrous oxide, 

they are potent enough for surgical operations. They 

do not produce sleep, nor unconsciousness, as usually 

defined for anesthetics. Induction is fairly slow, perhaps 

5 minutes, and cannot be hurried by raising the N20 level, 

because an induction delirium will occur. If there is 

postoperative respiratory depression, this can be counter­

acted by naloxone or other narcotic antagonists. 

I have reviewed the behavioral effects and the hypo­

thesized mode of action of all these analgesics: aspirin, 



tylenol, xylocaine, cocaine, the opiate alkaloids, metha­

done, demerol, and fentanyl, in an attempt better to 

comprehend the analgesic action of nitrous oxide. 

Nitrous oxide also produces a lowering of anxiety, 

calmness, sedation, a tranquil state of mind. Since it 

is a gas, bottled under pressure, needing valves, dials, 
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and a mask to administer, N20 is not prescribed for anxiety 

or nervousness as are the tranquilizers. Nevertheless, 

it is instructive to consider the mode of action of tran­

quilizers, in attempting thoroughly to study the mode 

of action of nitrous oxide. 

ANTI-ANXIETY DRUGS 

Tranquilizers, or anti-anxiety drugs, are prescribed 

more frequently than any other group of therapeutic agents. 

For reasons given earlier in this chapter when discussing 

euphoria, an anti-anxiety effect can be seen as a kind 

of analgesic effect, but dealing with the dimension of 

IIpsychological pain.1I IINo consistent mode of action has 

been hypothesized for these drugs ll (Goodman and Gilman, 

1975, p. 188). Meprobamate (Miltown, Eguanil) is the 

prototype, and one of the most widely used. It resembles 

phenobarbital in its effects. Its mode of action is 

unknown. It does not depress the reticular activating 

system. High doses (1600 mg) depress learning, motor 

coordination, and reaction time (Kornetsky, 1958; McNair, 



1973) • 

McNair (1973) reviewed all studies of the effects 

of anti-anxiety drugs on human performance, and decided 

that no real conclusion could be drawn. Meprobamate sup­

presses REM sleep, as does phenobarbital and all barbitu­

rates. Meprobamate cessation produces REM rebound, a 

temporary increase in the proportion of time spent in 

REM-state sleep. Tolerance and physical dependence 

develop. 

Valium (diazepam) and Librium (chlordiazepoxide) 
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are also used as anti-anxiety drugs, and work by some 

mechanism of action that is unknown. Of course, we cannot 

as yet define anxiety in any neurophysiological or bio­

chemical way either. Valium and Librium do not suppress 

REM sleep. Tolerance and physical dependence develop. 

Paradoxically, there is an increase in hostility (DiMascio, 

1973) . 

Quaalude (methaqualone) is used as an anti-anxiety 

drug even though it is classified as a hypnotic and seda­

tive. The mechanism of action is unknown. Investigators 

disagree about whether Quaalude disturbs REM sleep. "In 

rat brain and mitochondria, it appears to compete with 

Krebs cycle intermediates for NAD-dependent enzymes" 

(Goodman and Gilman, 1975, p. 130). Tolerance occurs. 

Hangovers occur when quaalude is used as a hypnotic. 

Sweating is more profuse. Amnesia occasionally occurs. 



71 

Quaalude was rapidly taken up by drug abusers, who ascribed 

to it aphrodisiac qualities, and an increase in "open" 

communication. Some Quaalude addicts think it feels like 

heroin. 

Dalmane (flurazepam hydrochloride) is another tran­

quilizer which is classified as a hypnotic and sedative. 

Low doses (30 mg) do not suppress REM sleep; higher doses 

(60 mg) may do so. No REM rebound occurs. Its mechanism 

of action is unknown. 

Tofranil (imipramine hydrochloride) is a tricyclic 

antidepressant, so named because of its chemical structure. 

This is used in the treatment of depression, which is 

often mixed with anxiety in the patient. Tricyclic anti­

depressants do not actually cheer up a normal subject 

or elevate the subject's mood. The normal subject, given 

Tofranil, may complain about the difficulty of thinking 

or concentrating. The depressed patient, given Tofranil, 

may not be cheered up at once either. But after 3 weeks, 

they may feel more cheerful. Investigators have described 

the effects of Tofranil as a "dulling of depressive idea­

tion" (Goodman and Gilman, 1975, p. 175). If used as 

a hypnotic, Tofranil causes hangover. Tofranil suppresses 

sleep. "All tricyclic antidepressants block the re-uptake 

of norepinephrine by adrenergic nerve terminals" (Goodman 

and Gilman, 1975, p. 176). Tolerance develops. Sweating 

is more profuse. 



Thorazine (chlorpromazine hydrochloride) is not 

really used as an anti-anxiety drug, but rather is used 

in the behavioral control of diagnosed schizophrenic 

patients. Delay and Deniker (1952) felt that thorazine 

not only improved outward behavior but also moved brain 

processes away from psychosis and toward normality. 
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I shall in Chapter VIII review theories of anesthesia, 

since nitrous oxide has often been included among the 

gaseous anesthetics investigated by various theorists 

(Nahrwold, 1973; Pauling, 1961; Featherstone, 1963; Brauer, 

1970; Roth, 1972; Johnson, 1973). I have reviewed behavioral 

studies of nitrous oxide analgesia, since N20 is an excel­

lent analgesic (Berkowitz et al., 1976; Parkhouse, 1959; 

Chapman, 1973). I have reviewed analgesia brought about 

by opiate alkaloids, by brain electrical simulation, by 

aspirin, xylocaine, cocaine, and other analgesics, noting 

when nitrous oxide produced an effect similar to these 

other drugs. I have also noted a mechanism of action pro­

posed for a drug, which has also been proposed for nitrous 

oxide, for instance that it increases the degree of disorder 

in the lipid cell membrane: a theory for xylocaine 

(Metcalfe, 1968), and also for N20 (Clements and Wilson, 

1962; Roth, 1972; M. Johnson, 1973). I shall now turn 

to some of the other subjective, behavioral, and physio­

logical effects of nitrous oxide. Nitrous oxide produces 

amnesia, a temporary forgetting of which road to take horne. 



N20 produces a psychedelic effect, a change in perception, 

such as a sensation of "floating." Nitrous oxide is a 

spindle poison, that is, it halts mitosis in metaphase. 

In the next chapter, I shall review other drugs which 

produce amnesia or psychedelia, or act as spindle poisons. 
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CHAPTER VII 

OTHER PROPERTIES OF NITROUS OXIDE: AMNESTIC 

PSYCHEDELIC, AND SPINDLE POISON 

Besides its function as an anesthetic and an anal­

gesic, nitrous oxide also occasionally produces a temporary 

amnesia. Scopolamine, one of the belladonna alkaloids, 

regularly produces amnesia. Scopolamine acts by competing 

with acetylcholine, the normal nerve-muscle transmitter 

molecule, which is also used in the sodium-potassium active 

transport system of neuron membrane. Morphine and scopo­

lamine, a mixture called "twilight sleep," used to be 

given for childbirth, in order to produce both analgesia 

and amnesia. 

Nitrous oxide produces a psychedelic state (see 

Chapter III, p. 31). Some psychedelic effect is produced 

by a wide variety of drugs, such as alcohol, ether, 

morphine and other opiate alkaloids, cocaine, psilocybin, 

marijuana, mescaline, and LSD. These drugs are chemically 

of such different structures that it seems unlikely that 

they would share any common mechanism of action. Alcohol 

blocks peripheral nerve conduction, but only at a high 

concentration (Israel, 1971). It is thought to act upon 

the reticular activating system (Himwich, 1972). The 



" 

mechanism of ether is as yet unknown. I have reviewed 

the mechanism of action of morphine and the other opiate 

alkaloids, and the subjective state of opium intoxication. 

I have reviewed possible mechanisms of action for cocaine, 

and its subjective effects. Psilocybin occurs in wild 

mushrooms of the genus Psilocybe. Mescaline is from the 

cactus plant Lophophora williamsii (peyote). These drugs 

may produce their subjective effects, when the receptor 

protein for the normal transmitter, 5-hydroxy-tryptamine, 

instead binds psilocin, the metabolite; or the receptor 

protein for norepinephrine instead binds mescaline. The 

normal brain transmitters are more water-soluble, less 

lipid soluble, than these two "transmitter mimikers.1I 
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LSD, lysergic acid diethylamide, produces a wide 

variety of unusual subjective effects. IISeveral feelings 

may seem to coexist at the same time" (Jaffe, 1975, p. 310). 

We are not usually aware of the fact that, in order to 

see the new, current pattern or image, our eyes and brain, 

having registered the past image, must "erase" it, toss 

it away. Under LSD, this "erasing" is slowed up, with 

the result that the former pattern persists, while the 

current pattern is being seen. This gives the viewer 

the strange perception that spots on a fern, letters on 

a page, or patterns on a wall, are IIcrawling" around. 

The effect is as if the temporal threshold for the phi 

phenomenon has changed; or perhaps there is a persistance 
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of an after-image effect. Whether such altered perceptions 

arouse fear or merely curiosity and interest must lie 

with the individual user and with the setting in which 

the perception takes place. A supportive social context 

tends to decrease fear and arouse interest. 

Hofmann, the Swiss chemist who synthesized LSD and 

ingested a large amount of it, described his subjective 

experiences: 

My field of vision swayed before me and objects 
appeared distorted like images in curved mirrors. 
I had the impression of being unable to move from 
the spot, although my assistant told me afterwards 
that we" had cycled at a good pace .•. As far as 
I remember, the following were the most outstanding 
symptoms: vertigo, visual disturbances; the faces 
of those around me appeared as grotesque colored 
masks . • • [I had] clear recognition of my condi­
tion, in which state I sometimes observed, in the 
manner of an independent, neutral observer, that 
I shouted insanely or babbled incoherent words. 
Occasionally I felt as if I were out of my body. 
• • • When I closed my eyes, an unending series 
of colorful, very realistic and fantastic images 
surged in upon me. A remarkable feature was the 
manner in which all acoustic perceptions (e.g. the 
noise of a passing car) were transformed into 
optical effects, every sound evoking a corresponding 
colored hallucination constantly changing in shape 
and color like pictures in a kaleidoscope. • 
I fell asleep and awoke next morning feeling 
perfectly well. (Hofmann, 1970) 

Some investigators believe that LSD acts by being 

bound by the receptor proteins whose normal transmitter 

substrate is 5-hydroxy-tryptamine (Aghajanian and Haigler, 

1974). 5-HT occurs in neurons of the raphe nuclei, a 

group of neurons of our brain stem. 5-HT was identified 

in these neurons by fluorescence methods (Dahlstrom and 
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Fuxe,1964). Raphe nuclei neurons seem to be involved 

in inducing sleep, as well as other states of consciousness 

(Jouvet, 1965). These neurons have long axons that extend 

to all parts of our brain. 

Nitrous oxide, like LSD, frequently produces a strange 

"detached" feeling that the subject is watching himself. 

"I felt as if I were far distant and that the individual 

performing the tests were someone else" (Steinberg, 1956, 

p. 190). LSD, psilocybin, and mescaline show cross-

tolerance to each other. If you have been taking one 

of these three regularly, and try one of the other two, 

it takes a bigger dose to produce the same effect. 

Marijuana, the crude leaves and flowers of the plant 

Cannabis sativa, contains a resin which includes a mixture 

of about eight cannabinoids, of which ~-~9_tetra-

hydrocannabinol (~9-THC) is thought to be the most psycho-

active ingredient. 

The mechanism of action of ~9-THC is unknown. 
. • . Patients maintained on lithium or methadone 
continue to experience the effects of marijuana 
without apparent alteration. . . • Substantial 
behavioral effects of ~9-THC are seen with [low] 
doses that have no effects on brain 5-HT 
[5-hydroxy-tryptamine]. (Jaffe, 1975, p. 307) 

The euphoria and psychedelia brought about by mari-

juana is, of course, different for different people. 

Anxiety is lowered. Light-heartedness is perhaps an apt 

term for this euphoric state. Friends may giggle over 

silly word puns. Thoughts rising to the surface of 



consciousness may be more readily spoken, with less self­

consciousness and self-censorship. Time perception is 

altered. Fresh ideas may appear and seem highly signifi­

cant. One's mind may for the first time juxtapose two 

different bits of knowledge and see the relationship 

between them with sudden insight, and the perceiver may 

even wish to write down these new "profound thoughts." 

Short term memory of the words of a conversation, even 

the words one is speaking in a long or complex sentence, 

may drift away, perhaps interfered with by the sparkling 

rapid influx of new thoughts. 
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The last category of drugs which nitrous oxide falls 

into is that of the spindle poisons: nitrous oxide, 

colchicine, vinblastine, podo-phyllotoxin, and griseo­

fulvin. Except for N20, these are many-ringed, complex 

molecules. A spindle poison is a substance that halts 

mitosis, not by denying the cell oxygen, ATP, or some 

essential metabolite, but by interfering with the normal 

building or function of the "spindle," that array of micro­

tubules which holds and moves the chromosomes. 

Colchicine is an alkaloid found in the autumn crocus 

or meadow saffron. Colchicine is used medicinally for 

the relief of gout. It inhibits the migration of 

granulocytes (a type of white blood cell) to the affected 

joint, and thus prevents the inflammation which causes 

part of the pain. Gout seems to be caused by deposits 



of monosodium urate crystals that are deposited at the 

joint. Granulocytes come there to engulf these urate 

crystals. Colchicine is not an analgesic for any other 
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type of pain. Colchicine is concentrated in kidney, spleen, 

and liver, but does not enter brain tissue. 

Vinblastine, along with three other vinca alkaloids, 

is obtained from the periwinkle plant Vinca rosea, which 

is a kind of myrtle. Vinblastine binds onto tubulin, 

and dissolves microtubules, and forms crystals of tubulin­

vinblastine in the cell. The binding site differs from 

that of colchicine and podo-phyllotoxin. Vinblastine 

is used in chemotherapy for cancer. While under treatment, 

leukemia may develop in the central nervous system. 

Vinblastine is thought not to cross the blood-brain barrier 

in any great quantity, but the patient may be depressed 

after a few days of treatment. 

Griseofulvin is a mold metabolite, isolated from 

Penicillin. It is used medically against certain fungus 

infections. It is tightly bound to keratin, so that new 

hair and nails are free of the fungus infection, after 

administration. It may cause mental confusion. 



CHAPTER VIII 

THE ACTION OF ANESTHETICS AND ANALGESICS ON NEURONS 

SPECIAL ATTRIBUTES OF NEURONS 

Neurons are living cells that possess extraordinary 

attributes. They are complicated and highly organized, 

with intricate internal structures. Each part, such as 

the nucleus, the excitable cell membrane, the ribosomes, 

the mitochondria, the endoplasmic reticulum, the centri­

oles, and the microtubules, appears to have a special 

purpose or function. Even the individual proteins also 

have specific functions. 

When considering where and how an anesthetic and 

analgesic like nitrous oxide might affect the use of oxygen 

within the neuron, a natural first place to look is at 

the process of "burning" sugar for energy by using oxygen. 

A human brain weighs less than 2% of our total weight. 

It uses 20% of both the oxygen we breathe and of the 

starches we eat. Starches are broken down into individual 

glucose molecules, and both oxygen and glucose cross over 

capillary walls to enter neurons. Our brains contain 

about 14 billion neurons (White, Handler, and Smith, 1973). 

Inside the watery cytoplasm of the neuron cell, 

a series of cooperating proteins cleave the 6-carbon 



sugar, glucose, into two 3-carbon pyruvate molecules. 

The first one of these proteins, hexokinase, is 20 times 

81 

as abundant in neurons as in any other kind of cell. These 

cooperating proteins, the glycolytic enzymes, are located 

at axon terminals as well as in the central cell body. 

The third glycolytic protein in this series, phospho­

fructokinase, speeds up or slows down the whole process 

according to the needs of the neuron cell for ATP. 

Blood glucose levels are normally at 80 mg/100 ml. 

In insulin coma, blood glucose levels have fallen to about 

8 mg/100 ml. The mitochondria within the neuron cells 

cannot make enough ATP for the human to remain conscious. 

In normal health, 10% of the glucose molecules are used 

to make amino acids, lipids, and nucleic acids. Other 

tissues than brain do not convert so much glucose into 

protein. 

Neuron cells transport amino acids from the blood 

into the neuron cytoplasm. These amino acids, and those 

made by the neuron proteins from glucose, are rapidly 

made into proteins. Protein synthesis occurs in the ribo­

somes, huge groups of about 80 cooperating proteins. Ribo­

somes are chiefly visible attached to the endoplasmic 

reticulum in the cell body, but protein synthesis also 

occurs in the nucleus, in the mitochondria, in the axon, 

and near the synapse (White, Handler, and Smith, 1973). 

Neurons have the highest amount of RNA in the body, 
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reflecting their high rate of protein synthesis. Ribosomes 

contain about 50% protein and 50% ribosomal RNA. Every 

amino acid used in protein synthesis is first attached 

to transfer RNA. The printed message, designating the 

ordered sequence of amino acids for each kind of protein, 

is contained in messenger RNA. When a neuron is stimulated 

frequently, it synthesizes more protein and also more 

RNA. 

PSYCHOLOGICAL EFFECTS FROM METABOLIC DEFICIENCIES 

Both DNA and RNA are built of purines (adenine and 

guanine) and pyrimidines (uracil, thymine, and cytosine) • 

Brain cells cannot synthesize pyrimidines "from scratch," 

but they can synthesize purines. Normally guanine is 

attached by a protein to the phosphorylated sugar ribose, 

and then this structure can be incorporated into RNA. 

A genetic defect, which is linked to the X-chromosome, 

causes this transferase protein to be almost completely 

missing (1% of the normal), and the behavioral result 

is mental deficiency, aggressive behavior, and self­

mutilation (White, Handler, and Smith, 1973). 

I have emphasized the utilization of glucose and 

oxygen to make ATP, and the high rate of protein synthesis 

in neurons, in order to draw attention to the maintenance 

of consciousness and the process of information storage 

into memories. Neuron membranes are excitable, keep sodium 



ions outside, demonstrate an action potential when stimu­

lated, and can transmit 500 impulses per second. We are 

able to measure these changes, and therefore consider 

them to be of primary importance. I consider the constant 

high biosynthesis of proteins to be of equal importance, 

if not more so. More than naIf of the soluble proteins 

of developing brains consist of the tubulins, in micro­

tubules, and of dynein, in microfilaments (Olmsted and 

Borisy, 1973). Microtubules are constantly formed and 

dissociated in neurons (Inoue, 1953); this is at least 

as fundamental a process as the production of the action 

potential. 

We have followed oxygen from lungs to hemoglobin, 

noting alterations produced by N
2

0 along the way. We 

have followed glucose into the neuron, and as far along 
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as its change into two molecules of pyruvate. This process, 

anaerobic glycolysis, is not depressed by 95% N
2

0 (DiFazio 

et al., 1969). Pyruvate, a 3-carbon sugar, enters the 

mitochondria, and here one of the carbons is removed as 

carbon dioxide, while the other two carbons continue onward 

as acetyl-CoA. The complex of cooperating proteins which 

accomplish this step from pyruvate to acetyl-CoA, use 

the vitamin thiamine in the process. Thiamine deficiency 

shows in neurological signs: there is marked peripheral 

neuritis; deep reflexes are lost; sensory changes occur; 

there is anxiety and mental confusion. These symptoms 



84 

appear in chronic alcoholics as the Wernicke syndrome. 

CONSCIOUSNESS, MITOCHONDRIA, AND ATP 

The last 2 carbons, on acetyl-CoA, enter the Krebs 

cycle within the watery matrix of the mitochondria. Again 

a series of cooperating proteins accomplish the orderly 

removal of electrons and carbon atoms. The carbon atoms 

leave as carbon dioxide, and the electrons are transferred 

to a series of cooperating proteins which are attached 

to the lipid inner membrane of the mitochondria. These 

lipid proteins, the electron transport chain, use the 

energy from the moving electrons to make ATP, the energy 

unit for all living things. The electrons are transferred 

to oxygen, the final electron acceptor. 

Maintaining consciousness and even life itself depends 

upon this production of ATP within the mitochondria. If 

oxygen cannot get to the mitochondria, we fall unconscious. 

If glucose levels fall, or if glucose cannot enter the 

neuron, we approach a diabetic coma. If a drug, such 

as the barbiturates, interferes with the functioning of 

the electron transport chain, our ATP levels fall, and 

we become drowsy (phenobarbital), go to sleep (seconal), 

or become unconscious (pentothal). ATP production by 

mitochondria cannot fall even to 97% of normal, without 

our becoming unconscious. 
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NITROUS OXIDE EFFECTS UPON OXYGEN USE 

Nitrous oxide has been shown to produce a significant 

reduction in oxygen consumption in vivo (Schatte and Ben­

nett, 1973; Schatte et al., 1974; Bradley, 1976). However, 

when DiFazio et ale (1969) measured oxygen consumption 

in vitro, using rat bone marrow in a Warburg flask, there 

was no significant reduction in 02 consumed in 80% N20 

compared to controls. Nahrwold and Cohen (1973) isolated 

mitochondria from rat liver, and used lIa polarographic 

estimate of state 3 oxygen uptake at 25°C with glutamate 

as substrate. 1I N20 at 67% caused a 5% inhibition of state 

3 oxygen uptake, not significantly (p > 0.10) different 

from control values. Nitrous oxide in this experiment 

did enhance the effect of halothane upon 02 uptake of 

mitochondria, producing a similar inhibition with halothane 

at 0.37% (N 20 at 67%) as was shown with halothane alone 

at 0.69%. Nahrwold related inhibition of oxygen uptake 

to lipid solubility (oil/gas partition coefficients) of 

the gas involved. 

THEORIES OF ANESTHETIC ACTION 

1. Lipid Solubility 

The lipid solubility theory of anesthetic mechanism 

of action is one of the oldest theories (Meyer, 1899). 

Butler (1950) has rightly pointed out that these theories 



depend on correlations of lipid solubility with anesthetic 

potency, but such correlations are misleading. Usually 

the authors have only examined a small group of drugs, 

often only a homologous series. The barbiturates form 

such a series, but since the discovery of the site of 

action of barbiturates upon the electron transport chain 

(Krebs, 1961), we no longer cite lipid solubility as an 

explanation for barbiturates. The opioid alkaloids form 

such a homologous series, but since the discovery of the 

enkephalins (Hughes, 1974), and the endorphins (Li and 

Chung, 1976), we recognize that the site of action of 

the opiate alkaloids is upon the protein receptor for 

our endogenous "opiates." Lipid solubility was not the 

explanation. The alcohols form such a homologous series. 

So do the anesthetics. One can form a series correlating 

anesthetic activity with lipid solubility for such chemi­

cally diverse drugs as ether, chloroform, paraldehyde, 

the barbiturates and trichloroethanol, the metabolite 

of chloral hydrate. 

Lipid solubility theories have even been attempted 

for the inert gases, 1) hydrogen, 2) helium, 3) nitrogen, 

4) neon, 5) argon, 6) krypton, 7) xenon, 8) ethylene, 

9) cyclopropane, and 10) nitrous oxide. Helium does not 

produce narcosis or anesthesia. It is just as important 

to explain why a particular inert gas does not affect 

lipid systems as it is to explain why another gas does 
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so. Nitrogen at 10 atmospheres produces narcosis but 

not anesthesia. At this pressure the human body contains 

about 0.007 moles of nitrogen per kilogram. With ether 

under light anesthesia the body contains about 0.015 moles 

of ether per kg. Hydrogen gas produces no effect at 10 

atmospheres, but causes loss of righting reflex in mice 

at about 130 atmospheres (Brauer, 1970). Neon has not 

been investigated. Because of the puzzling exceptions 

of helium, hydrogen, and neon, Case and Haldane (1941) 

abandoned the lipid solubility theory for inert gases. 

Lipid solubility theories do not die; they merely 

expand to include more of the parameters of the inert 

gases that we are able to measure. Carpenter (1954) 

measured action potentials of isolated sciatic nerves 
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from rats, using eleven inert gases, and plotted the atmo­

spheric pressure needed for narcosis against the lipid 

solubility of these gases. This blockade of the action 

potential by 90% N20 did not occur at 5 atmospheres, 

although oxygen consumption fell 35%. At 13 atmospheres 

90% N20 blocked the action potential, and oxygen consump­

tion fell 65%, but this blockade took 20-30 minutes to 

be complete. Carpenter saw this as evidence of physical 

saturation of the nerve membrane lipids. This blockade 

was reversible. Carpenter pointed out that mitochondria 

make up about 50% of the total phospholipids in the central 

nervous system. 
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2. Hydrate Microcrystals 

In 1961 Linus Pauling moved away from lipid solubility 

theories to advocate a theory of hydrate microcrystals 

which inclose a molecule of the inert gas in a lattice 

of water molecules. Hydrates can be formed with argon, 

krypton, xenon, methane, nitrogen, and nitrous oxide 

(deForcrand, 1902). Stability of the hydrate increases 

with the polarizability of the entrapped gas. The xenon 

hydrate is composed of one atom of xenon and 46 water 

molecules. Pauling suggested that the formation of hydrate 

microcrystals involves both the anesthetic agent and the 

side chains of amino acids. These side chains may exert 

a stabilizing effect, and allow the complicated hydrate 

to slowly form. Pauling suggested that such microcrystals 

may adhere to the cell membranes of neurons, and clog 

up the free movement of substances in the synaptic cleft. 

The resultant decrease in neuron firing is what we experi­

ence as narcosis, a loss of sensation accompanied by stupor. 

The formation of hydrate microcrystals undergoes a sudden 

change in phase from liquid to crystal. 

Pauling's theory does not offer an explanation for 

the initial period of excitement that precedes the surgical 

anesthesia. It does not offer an explanation for the 

differences in induction times among the various anes­

thetics. Ether and methoxyflurane have long induction 

times, measurable in terms of their high blood/gas 



partition coefficients, 15.6 for ether and 13.0 for 

methoxyflurane. Cyclopropane, at 0.46 and nitrous oxide 

at 0.47 have very fast induction times. Pauling suggested 

that even ether, which enters lipid membranes until there 

are 65,000 ml of ether in every 1,000 ml of lipid, does 

not alter the .insulating properties of the neuronal 

membrane. 
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Ether, as well as nitrous oxide, has produced lowered 

production of white blood cells, as have xenon, cyclopro­

pane, and ethylene (Pittinger et al., 1953). Nitrous 

oxide, ether, and cyclopropane all produce characteristic 

EEG changes correlated with depth of anesthesia (Courtin 

et al., 1950; Faulconer, 1952). However, with xenon in 

monkeys, even at three atmospheres, there is no burst 

suppression (Pittinger et al., 1955). Xenon produces 

anesthesia in humans even at atmospheric pressure. For 

other mammals, elevated pressures must be used. Xenon 

is often compared to N20, ethylene, and cyclopropane in 

its biological inertness. Featherstone and Muehlbaecher 

(1963) in a review on properties of inert gases used in 

anesthesia, rejected the idea that xenon or N20 may inhibit 

glucose or pyruvate oxidation, or that these gases may 

interfere with the production of ATP by the electron 

transport chain. 



3. Polarizability, Surface Film Affinity, Mole Volume, 

and Dipole Moment 

The rare gases, helium, neon, argon, krypton, and 

xenon are simply single atoms which have a dense positive 

nucleus surrounded by a diffuse cloud of electrons. 

Centers of positive and negative charge coincide, and 

these atoms have no dipole moment. These atoms can, how-

ever, be polarized; that is, in the presence of a charged 

molecule, their electric symmetry is distorted, the elec-

tron cloud being drawn toward a + charge, or repulsed 

by a - charge. This polarization is an induced dipole 

moment. The heavier rare gases, such as xenon, are more 

easily polarized than the lighter ones, such as helium 

or neon. Nitrous oxide (3.2) can also be polarized, with 

a value falling between krypton (2.46) and xenon (4.00). 

These numbers are an index of ease of polarization. 

A measure of the dipole moment, in debyes,. is given 

by the tendency for an electric current to flow through 

a gas, as compared to the flow through a vacuum. The 

dipole moment unit is a product of the magnitude of the 

charges and the distance separating the charges. One 
_9 

debye unit = 1 X 10 electrostatic units X n m. Nitrous 

90 

oxide by itself has a dipole moment of 0.167 debyes, small 

compared to water (1.85 debyes), but still differing from 

carbon dioxide, CO 2 (0.000 debyes). 

Ostergren, in 1944, suggested that changes in mitosis 



and narcosis are both brought about by a single mechanism, 

interaction of the chemically unreactive gas, N20, with 

the, lipophilic side chains of proteins so as to cause 

a change in the shape of the protein molecule. It is 

a mark of the brilliance of Ostergren that, even without 
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an electron microscope, or a sight of the action of centri-

oles and microtubules, he still was able to hypothesize 

the essential role of nitrous oxide in affecting both 

mitosis and consciousness. 

Lipid solubility of nitrous oxide was suggested 

as the causative factor of narcosis by Sears and Fenn 

(1957) using an oil-in-water emulsion and N20 at 53 

atmospheres. Lipid solubility of N20 was investigated 

by Clements and Wilson (1962), using a monomolecular film 

of several membrane lipids, and noting surface tension 

changes. -10 A square cm of film absorbed 0.16 X 10 mole 

Correlations were made for eleven anesthetic 

agents between anesthetic potency and surface film 

affinity. 

Featherstone and Muehlbaecher (1963) plotted a 

number of measurable parameters of gaseous anesthetics 

against their anesthetic potency. Going on the assumption 

that inert gases, such as cyclopropane and N2~ produce 

anesthesia in the same manner as xenon, they considered 

both polarizability and mole volume, or Van der Waals 

b factor, the volume which 6.02 X 10 23 molecules of a 



gas occupied at the critical temperature and pressure. 

This measure refers to the finite volume of molecules, 

and to their general incompressibility. For N20 this 

mole volume is 4.42 X 10-2 liters/mole, between krypton 

(3.97) and xenon (5.08). They believed that the ratio 

of polarizability to mole volume must be the critical 

measure to correlate with anesthetic potency. This ratio 

for N20 is given as 0.92, bigger than xenon, 0.82. 

Lipid solubility can be thought of as a measure 

of the Van der Waals attraction between a gas and the 
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lipid molecules. Such forces are at 0.5 K cal bond strength 

compared to 2-5 K cal for hydrogen bonds, and 5 K cal 

for ionic bonds. Absorption of a gas at a membrane, an 

interface, or in a lipid "pocket" of a protein is also 

held by these Van der Waals forces. Vapor pressure of 

a gas, often used in thermodynamic activity theories of 

narcosis, depends on the Van der Waals attraction of the 

gas molecules for each other. Pauling's hydrate micro-

crystals depend on Van der Waals forces attracting the 

water molecules to the gas. Featherstone and Muehl-

baecher discount the permanent dipole moment possessed 

by N20 (a value of 0.167 debyes) as a factor, because 

xenon has no permanent dipole. 

4. Cation Permeability and Pressure Reversal 

These same measures on the lipid solubility of N20, 

its van der Waals forces, polarizability, molecular volume 



and permanent dipole, are cited by Gottlieb et ale (1968) 

in an experiment on sodium active transport. This experi­

ment was performed on frog skin in Ringer's solution, 

using a pressure of 200 pounds per square inch. N
2
0 was 

compared to krypton and xenon. N20 (200 psig) , xenon 
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(200 psig) , and krypton (950 psig) showed marked inhibition 

of Na+ active transport as measured by short circuit 

current techniques. However, no effect from N
2

0 was 

observed during the first hour, even at 200 psig. 

Brauer (1970) compared nitrous oxide with hydrogen, 

helium, and nitrogen, on the effect of these gases under 

pressur~ upon the loss of the righting reflex in mice. 

Helium did not alter the righting reflex, instead producing 

convulsions at 85 atmospheres. Hydrogen produced loss 

of righting reflex at 128 atmospheres. Nitrogen produced 

loss of righting reflex at 32 atmospheres. N20 produced 

loss of righting reflex at 1.3 atmospheres. Helium and 

hydrogen were the "weakest" in anesthetic effects, nitrogen 

the next weakest. Brauer mentions that argon is about 

twice as potent as nitrogen, and that xenon is slightly 

more potent than N20. N20 seems to be 25 or 28 times 

as potent as nitrogen. Krypton is about 10 times as potent 

as nitrogen. Brauer (1970), like Featherstone and Muehl­

baecher (1963), correlated narcotic potency with the ratio 

of polarizability to molal volume. Brauer proposed a 

model for inert gas narcosis which involves the reversible 



formation of some compound involving the inert gas and 

"specific reactive sites in the susceptible tissue" 

(Brauer, 1970, p. 29). 
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Roth et al. (1976) returned to the lipid solubility 

theory in an experiment on frog sciatic nerve in Ringers 

solution, measuring depression of action potential amplitude 

by N20 under pressure. He hypothesized that anesthetics 

expand the lipid component of membrane. Action potential 

amplitude was depressed 50% by 4.86 atmospheres of N20, 

and depressed to 10% of control value by 8.2 atmospheres 

N20. When helium was added to the N20 to increase the 

pressure to 68 atmospheres, the action potential amplitude 

rose again to 70% of control values. The increase in 

pressure seemed to reverse the anesthesia. Roth speculates 

on the higher concentration of anesthetic needed to depress 

transmission in axons, compared to the lower concentration 

needed to block synaptic transmission. He feels this 

indicates the factors of fiber size and myelination are 

crucial. Volume expansion of lipid membranes is implied 

by the puzzling phenomenon of pressure reversal of anes­

thesia. 

This offspring of the lipid solubility theory has 

been termed the critical volume hypothesis. This hypothesis 

suggests that the lipids absorb an inert substance such 

as N20 until they expand beyond a certain critical volume, 

and then anesthesia occurs. Such a hypothesis emphasizes 



the role of lipids in the neuron membrane; it is equally 

important to emphasize the lipid pockets in microtubular 

proteins, since we can see the changes in these proteins 

under N20. Pressure opposes anesthesia by compressing 
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the lipids. Johnson (1973) prepared artificial phospholipid 

membranes in a single spherical bilayer shell of 24 nm 

to 50 nm diameter, surrounding an aqueous center. Cation 

permeability was measured for these vesicles with different 

anesthetics. Cations are positively charged ions, such 

as H+ (hydrogen), Na+ (sodium), K+ (potassium), Mg++ 

(magnesium), and Ca++ (calcium). Neurons and other cells 

spend energy (ATP) to keep Na+ outside the cell membrane, 

and keep K+ inside the cell membrane. Inside a relaxed 

muscle cell Ca++ ions are segregated in the sarcoplasmic 

reticulum, a double membrane "lace sleeve" surrounding 

each bundle of myofibrils. When a nerve impulse stimulates 

the muscle cell, this sarcoplasmic reticulum double membrane 

increases in permeability, and the Ca++ ions leak out 

in huge numbers, causing the muscle to contract. When 

the muscle is no longer stimulated by the nerve impulse, 

the sarcoplasmic reticulum membrane proteins pump the 

Ca++ ions back inside the membrane, using energy (ATP) 

to do so. 

Mg++ (magnesium) is required by many proteins and 

is often held by ATP or ADP (the unenergized form). H+ 

ions are used by mitochondria in forming ATP as electrons 



flow along the electron transport chain. Mitochondria 

keep H+ ions outside their inner membrane and use this 

electrical (more acid) gradient to help in making ATP. 
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Thus it is obvious that if anesthetics such as N20 

disturb this careful segregation of cations by the membrane 

proteins, this might go far to explain their effect. Neu-

rons carry an impulse along the axon by the action potentiaL 

a sudden leaking in of Na+ ions which changes the inside 

electrical potential from -70 mv to +40 mv. Neurons 

recover the -70 mv potential by first letting K+ ions 

outside, and then pumping out Na+ ions, using ATP in the 

process. 

Johnson (1973) measured cation permeability by forming 

the spherical membranous liposomes in an aqueous solution 

.. 42 K+ d" . d/ 14c 1 contalnlng , ra 10actlve potasslum, an or g ucose, 

radioactive glucose. When the membrane was rendered more 

permeable by the anesthetic, the escaping radioactivity 

could be measured in a scintillation counter. 42K could 

42 be counted at once; K decays completely in 10 days, 

and then the radioactive glucose could be counted. Johnson 

plotted the permeability of potassium against increasing 

concentrations of ether, nitrous oxide, helium, halothane, 

chloroform, and sodium pentobarbital. As a dosage level 

for these anesthetics, he chose that concentration which 

produced loss of righting reflex in the newt. N
2

0 was 

used at about 6 atmospheres, 11 atmospheres, and 16 



atmospheres. Newt anesthetic pressure actually occurred 

at 0.75 atmospheres. Helium is not an anesthetic gas, 

and was used in order to increase pressure only, with 

42 the result that less K leaked out of the membranous 

liposomes, even in the presence of an anesthetic dose 

of ether, as helium pressure was raised to 100, 200, and 

300 atmospheres. This pressure reversal also applied 

to halothane, chloroform, and sodium pentobarbital. 

The anesthetics produced an increase in membrane 

volume, and a disordering of the bilayer structure. Glu-

cose permeability was not affected by the anesthetics. 

Pressure might squeeze out "molecules of the anesthetic 

from the membrane, or pressure may simply compress and 
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re-order the membrane. II Johnson (1973) favors this latter 

hypothesis, partly because this gives him a completely 

self-consistent argument. 

In reviewing the effects of N20 upon the cell, 

particularly the neuron, I have discussed N20 effects 

upon glycolysis, upon use of oxygen in vivo and in vitro, 

and upon mitochondria. I have reviewed lipid solubility 

theories of narcosis by nitrous oxide and its effects 

upon the action potential. I have reviewed hydrate micro-

crystal theories of narcosis by N20, and theories 

considering its polarizability, molal volume, and dipole 

moment. Experiments which have used as a dependent variable 

the loss of righting reflex notice an effect from N20 



at atmospheric pressure or close to it (1.3 atm, Brauer, 

1970). Experiments which use as a dependent variable 
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a loss of the action potential, or leakage of K+ ions, 

notice an effect from N20 only at 4.86 atmospheres (Roth, 

1972), at 6 atmospheres (Johnson, 1973), at 13 atmospheres 

(Carpenter, 1954), or at 200 psig after one hour (Gottlieb, 

1968) . 

ANALGESIA AND ENDOGENOUS "OPIATES II 

The use of analgesia as the dependent variable to 

measure the effect of nitrous oxide has brought to light 

some puzzling interactions with other drugs. Ever since 

the discovery of our endogenous "opiates," enkephalin 

(Hughes, 1975) and a-endorphin (Li and Chung, 1976), experi­

menters have attempted to explain other analgesic effects 

through these same endogenous "opiates. 1I It has been 

shown (Kuhar et al., 1973) that morphine and other opioid 

alkaloids are bound by certain specific opiate receptor 

proteins, which exist in a wide variety of areas in the 

brain. 

The perception of pain is a curious phenomenon that 

involves many different levels of analysis. Emotions 

such as fear or despair can magnify the affective aspect 

of pain. Joy or excitement can diminish this affective 

aspect so much that the person may not even notice an 

injury at the time. Analgesics such as morphine, heroin, 
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demerol, fentanyl, and nitrous oxide relieve pain in ways 

that we are just beginning to understand. 

This subjective experience of pain seems to be 

lacking in some people (McMurray, 1950; Baxter, 1960). 

To be born with no pain sense would seem to be a blessing, 

but such children are in grave danger of doing themselves 

some permanent injury. A three-year-old boy liked to 

thrust his hands into the flames; "it tickles," he would 

respond when asked why he did it. Such individuals may, 

with care, live to be 35 or 40 years old, when death occurs 

from bone disease brought on by not moving while they 

sleep. 

BRAIN DISTRIBUTION OF OPIATE RECEPTORS 

Normal pain sensation, from arms, legs, and body, 

travels up the spinal cord to a "way station" in the lower 

brain stem, called the substantia gelatinosa. Evidence 

that these particular neurons are involved in pain sensa-

tion, and in the inhibition of pain sensation, comes from 

an experiment performed by Pert, Kuhar, and Snyder in 

1975. Rats were injected i.v. with radioactively labeled 

3H-diprenorphine, an extremely potent morphine antagonist. 

After one hour, the rats were killed, the brains cut into 

4 rom coronal sections, frozen in liquid nitrogen, cut 

to 4 ~m thickness, and put on emulsion coated microscope 

slides. After five weeks of exposure in a dark lead-lined 
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cabinet, the slides were developed, stained, and viewed. 

Autoradiographic grain counts were made of 2,400 ~m2 areas 

for each region of the brain. Mean number of grains per 

100 ~m2 showed very different distributions for the differ-

ent areas of the brain. The substantia gelatinosa in 

the spinal cord or lower brain stem showed 10.4 grains 

2 per 100 ~m • 

Opiate receptors are highly selective proteins that 

occur in high concentrations in the post synaptic membranes 

of specific neurons in certain well defined regions of 

the brain. After the pain sensation has gone through 

the substantia gelatinosa, it moves upward through the 

locus coeruleus, a small group of neurons scattered through 

the reticular formation, that part of our brain involved 

in sleep or arousal. Here opiate receptors were found 

labeled with 10.0 autoradiographic grains per 100 ~m2. 

These neurons of the locus coeruleus are thought to be 

involved in the response to anesthetics such as ether, 

halothane, or methoxyflurane. 

Above the reticular formation lies the substantia 

nigra, where a second group of neurons, those of the zona 

compacta, also possess opiate receptors and thus also 

seem either to allow the pain stimulus to proceed onward 

or to inhibit this message. Autoradiographic grains in 

this group, the zona compacta of the substantia nigra, 

were 6.5 grains per 100 ~m2. 
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Traveling upward from the substantia nigra, we come, 

in mammals, to the thalamus. Here a curious anomaly pre­

sents itself, understandable only in terms of evolution. 

Only mammals have a thalamus, that central, two lobed 

body of neurons that seems to us to be the center of our 

consciousness, our thoughts, emotions, and feelings. The 

more primitive structure--the striatum--fulfills in all 

other vertebrates, who are not mammals, all the functions 

that the thalamus fulfills in ourselves. We also have 

a striatum, which has been pushed outward to both sides, 

as the thalamus developed in the most central position. 

Our sense of smell, with its emotion-laden nostalgic asso­

ciations, comes directly from nose to striatum, and thence 

around to our amygdala, those "tails" of the striatum 

that extend into our temporal lobes. Autoradiographic 

grains labeling the opiate receptors of the striatum showed 

the highest concentrations in the brain, 11.5 grains/IOO ~m2 

in the nuclear "streak" of the caudatus putamen, 10.5 

grains in the nuclear clusters of the caudatus putamen, 

and 12.3 grains/IOO ~m2 in the amygdala. Here then in 

our striatum, including the amygdala, is our greatest 

concentration of opiate receptors; both pain and pleasure 

seem to enter awareness through these brain areas. 

Our thalamus, hypothalamus, and hippocampus form 

a connected unit through the fornix. The fornix, twin 

bundles ofaxons from the hypothalamus, stretches upward, 
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backward, and around into the temporal lobes, ending in 

the hippocampus which lies just beside the amygdala. 

Thalamus sections contained 5.5 grains/100 ~2, hypothalamus 

contained 6.6 grains and hippocampus contained 1.7 grains/ 

100 ~m2. The amygdala, with 12.3 grains, contrasts sharply 

with its closest neighboring structure, the hippocampus, 

both of these lying in the temporal lobes. 

The grey cell bodies of the cerebral cortex are 

in general separated from all these central structures 

of our brain (thalamus, striatum, etc.) by masses of 

axons which appear white because of their entwining myelin 

sheaths. The only place where grey cell bodies of the 

cortex merge closely with grey cell bodies of the central 

structure is the septum, a part of the frontal lobe cortex 

which touches the hypothalamus, and is indeed continuous 

with it. Here is another opiate binding area of the brain, 

forward from the hypothalamus through the septum and on 

forward to the frontal pole of the cerebral hemispheres. 

Opiate binding assays for frontal pole were performed 

on human brains with dihydromorphine by Goldstein et ale 

(1971); results were 14.6 f mol (per mg protein). 

Human brains, monkeys, rats--it does not surprise 

us if mammals like ourselves possess opiate receptors. 

But all vertebrates, even the most primitive fish, have 

as many opiate receptors as we do. Invertebrates do not 

have opiate receptors. 



ATTEMPTS TO RELATE OPIATE RECEPTORS 

TO BRAIN TRANSMITTERS 
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Researchers have attempted to correlate those neurons 

which have opiate receptors with particular neurotrans­

mitters used. Morphine and other opiates inhibit the 

firing of single cerebral cortex cells. Perhaps our 

endogenous enkephalins or endorphins act as inhibitory 

transmitters. Kuhar, Pert, and Snyder (1973) compared 

regional opiate binding to brain distribution of choline 

acetyl transferase, gamma aminobutyric acid, and tyrosine 

hydroxylase in monkey brains. None of these substances 

showed correlation with opiate receptor binding. 

Another method of attempting to trace opiate binding 

receptors which correlate with a particular neurotrans­

mitter is by destroying a particular area with an electro­

lytic lesion. For example, lesions in the septal area 

of the rat brain, near the fornix, destroy cholinergic 

projections to the hippocampus. Four days later, or 15 

days later, choline acetyl transferase levels have fallen 

from 3.9 ~mol/hour/gram to 0.65 ~mol/hour/gram, but opiate 

receptor binding remains at the same level, 19 f mol per 

mg protein before and after lesioning (Kuhar et al., 1973). 

Lesions of the locus coeruleus destroyed ascending 

norepinephrine axons in the ipsilateral cerebral cortex, 

and NE levels there fell 70%. But opiate receptor binding 

remained constant 21 days later at 4 f mol per mg protein. 
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Destruction of the raphe nuclei of the pons decreases 

5-hydroxy-tryptamine levels in the forebrain of rats by 

75% after 15 days, but opiate receptor binding levels 

showed no change from 2 f mol per mg protein. 

These results are puzzling. How do our endogenous 

opiates act? They seem to be unrelated to any known 

neurotransmitter system. 

~ddicti6n is an aspect of opiate use which may 

shed light on the effects of endogenous opiates. Addiction 

includes tolerance, physiological dependence, and compulsive 

craving. Tolerance implies we need a bigger dose to get 

the same effect. Physiological dependence involves the 

appearance of withdrawal symptoms. Compulsive craving 

is a term used to describe wanting a drug again even many 

years later, when withdrawal would presumably be long 

past. 

Opiate receptor assays do not show any systemic 

changes in addiction. Opiate agonists do, however, 

decrease cAMP in a clone of neuroblastoma-glioma hybrid 

cell culture and increase cGMP (K1ee, 1974; Sharma, 1974; 

Traber, 1974). Prostaglandin E1 and adenine normally 

stimulate adeny1ate cyclase; morphine antagonizes this 

normal stimulation (K1ee, 1974). Cells that are "tolerant" 

to morphine no longer show this antagonism (K1ee, 1975). 

Cells put into "withdrawal" by naloxone become supersen­

sitive to prostaglandin E1 as a stimulator of adeny1ate 

cyclase. 



BRAIN ELECTRICAL STIMULATION AND 

ENDOGENOUS "OPIATES" 
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Endogenous opiates seem to be released by electrical 

stimulation of brain sites surrounding the cerebral aqueduct 

and the III and IV ventricles (Mayer, 1975). This stimu­

lation-produced analgesia can be produced by trains of 

biphasic, rectangular wave pulse-pairs: 50 ~sec of +7 

milliamperes, 100 m sec rest, 50 ~sec of -7 milliamperes, 

100 m sec rest and so on. This stimulation frequency 

was generally 20 per second. Brain stimulation is applied 

for 20 seconds before testing for analgesia. The stimu­

lation intensity required for analgesia has to be 

individually found for each animal, and varies from 1 

to 7 milliamperes. These individual differences are also 

seen in analgesic drug requirements for humans. For some 

people 23% nitrous oxide is already an overwhelming dose; 

for others, 50% nitrous oxide does not yet affect them. 

After rats showed reliable analgesia from 20 seconds 

of brain stimulation, they were tested to see if tolerance 

developed. Control points of 85% to 95% analgesia showed 

reliability when tested at two week intervals (Mayer, 

1975). If the rat were stimulated for 24 hours, 10 pulses 

per second, of the 200 ~sec pulse, and rested for 24 hours, 

then given the regular 20 second brain-stimulation and 

then tested for analgesia, then percent of analgesia had 
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fallen to 73%. Another 24 hours of rest, followed by 

24 hours of brain stimulation, then 24 hours of rest 

preceded the second testing for tolerance. Again, 20 

seconds of brain stimulation, which normally evokes about 

90% analgesia, now evoked only 47% analgesia. Tolerance 

did not increase beyond this point. Recovery of analgesia 

occurred in two weeks. 

Cross-tolerance to morphine was shown (Mayer, 1975). 

First, rats were shown to exhibit reliable analgesia with 

brain stimulation. Then they were injected twice daily 

with increasing doses of morphine sulfate: up to a high 

dose of 600 mg/kg per day. One day after this last dose 

of morphine, analgesia had fallen from 85% to 53%. A 

further drop to 44% analgesia occurred the following day. 

Analgesia was tested for by giving brain electrical stimu­

lation just 20 seconds before the hot plate tail-flick 

test. There was no change in baseline latency behavior 

(response to radiant heat within 4 seconds when no brain 

stimulation was applied), showing that normal response 

to painful stimuli was not affected by withdrawal from 

morphine. Recovery from this cross-tolerance to morphine 

occurred from two to four weeks later. 

Analgesia produced by brain stimulation can be 

prevented by the administration of naloxone, a morphine 

antagonist (Akil et al., 1976). In this experiment the 

rectangular biphasic pulse-pairs of brain stimulation 
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were given at a rate of 3 per second (100 m sec each) 

for a period of 20 seconds. Current intensity was raised 

in steps of 10 ~ amperes until 100% analgesia was reached. 

Naloxone, 1 mg/kg, reduced analgesia on the average to 

62%, with some animals showing a reduction to 7%. Naloxone 

did not affect the baseline latencies, a measure of pain 

responsiveness without brain stimulation. Higher doses 

of naloxone (2 to 4 mg/kg) did not cause any further reduc­

tion in analgesia. Brain stimulation from electrodes 

placed in the periventricular grey matter produces anal­

gesia in humans as well as in rats. Eight patients have 

been relieved of chronic pain for three years, by this 

method of analgesia. 



CHAPTER IX 

THE STRUCTURE AND FUNCTION OF 

MICROTUBULES IN CELLS 

Whether we consider the nature of consciousness 

or whether we consider the effects of anesthetics and 

analgesics, or whether we consider the effects of nitrous 

oxide upon brain neuron groups, we always come to the 

point of focusing our attention upon the neuron cell itself. 

Neuron cells are unique in many ways. They may 

have elongated processes which are 100,000 times as long 

as their diameter. They are able to produce a summed 

pre-synaptic dendritic potential, an action potential, 

and synaptic transmitter substances. In these ways they 

are highly specialized for communication. In other ways, 

neurons resemble the other cells of our body; in fact, 

neurons share some structures and functions with all other 

eukaryotic ("true nucleus") cells. One example of such 

a structural and functional process shared with other 

eukaryotes is the process of the growth and function of 

microtubules, a process which allows varied application 

to different tasks. 

In order to understand how neurons function, there 

are two compelling reasons for studying microtubules. 



One reason is that microtubules are strikingly involved 

in the processes of motility and sensitivity. Together, 

these are the two essential components of irritability 
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or responsiveness, a universal property of living creatures. 

Mobility and sensitivity are equally important processes 

in behavior and experience, just as the processes of growth 

and responsiveness are in the functions of nervous tissue. 

A second reason for studying microtubules lies in their 

ability to form and reform at high rates. This ability 

suggests a process which can proceed in real time as a 

correlate of behavior and experience. 

In this thesis, which attempts to show how nitrous 

oxide could produce its remarkable effects upon behavior 

and experience, the study of microtubules has a particular 

relevance. Nitrous oxide is one of a group of compounds, 

described in Chapter VII, which affect the spindle of 

a cell in the process of division. N20 is a "spindle 

poison. II Microtubules make up the spindles of dividing 

cells. 

Neurons are the first cells to differentiate in 

the newly conceived human being. Before this differen­

tiation occurs, egg and sperm have united and a large 

number of cell divisions have taken place. Cell division 

and mitosis are very complex processes. Human genes, 

like those of all other eukaryotic cells, lie along the 

human chromosomes in carefully specified, ordered segments 



of DNA. DNA is deoxyribonucleic acid, and occurs in the 

23 pairs of chromosomes which lie in the nucleus of every 

human cell. Each of our cells contains about 2 meters 
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of DNA. There are about 100,000 different kinds of pro­

teins, and the specification of everyone of these proteins 

is encoded in its own specific segment of the DNA (Lehninger, 

1975). Each of the 23 pairs of chromosomes contains one 

chromosome from the mother and one from the father. 

Presumably at the moment of conception a decision is 

made as to which gene will later find some phenotypic 

expression in the living creature, and which gene will 

be "silently" carried on to the next generation. However, 

in females, who have two XX chromosomes, one from the 

mother and one from the father's mother, the decision 

as to which X chromosome will be expressed is different 

in different cells of the body. Calico cats or pinto 

ponies have hair of different color on different patches 

of their skin, and this is due to one or the other of 

the XX chromosomes being expressed. The non-expressed 

chromosome can be seen in neuron cells, which also differ 

in this way, as a small dark body held against the nuclear 

membrane, the Barr body (Barr and Bertram, 1949). 

When mitosis is about to begin, a complicated process 

takes place. Each strand of DNA in each chromosome must 

be carefully copied. The two copies must be separated 

and pulled to opposite poles of the cell. Eukaryotic 
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DNA does not exist as a naked helix of two strands of 

DNA, but as DNA wrapped in proteins. These chromosomal 

proteins, called histones, and non-histone chromosomal 

proteins, play some not-we11-understood role in the decision 

as to which parent's gene is to be expressed. Of course, 

just as the whole two meters of DNA must be copied exactly, 

so must the chromosomal proteins also be duplicated and 

attached each to its own segment of DNA. 

After the protein-wrapped DNA is duplicated, the 

doubled pairs of chromosomes appear as short, fat, dark 

bodies which are embedded in the spindle. The spindle, 

which is seen during mitosis, is constructed of micro­

tubules, which connect the chromosomes in the center to 

the two poles of the spindle. At each pole of the animal 

cell spindle is a pair of centrioles. All eukaryotic 

cells, both plant and animal, have microtubu1es. 

Each of these paired centrioles appears under the 

electron microscope as a cylinder; centrioles are always 

set at right angles to each other. A cross section of 

one centriole shows a flower-like arrangement of micro­

tubules: nine microtubu1es arranged around a circle. 

Tenuous threads of protein form the spokes of the wheel. 

Cilia, flagella, mitotic spindles, axonal microtubules, 

and sensory processes are all subcellular structures built 

of microtubu1es and centrioles. 

One of the pair of cylindrical centrioles seems 



to act as the root: of a cilium, a flagellum, a sperm 

tail, one half of the mitotic spindle; of the outer pro­

cesses of a rod cell in the retina; of the outer process 

of an olfactory cell in the nose; and so on. The other 

centriole is at right angles to the actively growing 

centriole, is very short, and appears to be passive until 

just before mitosis. When a eukaryotic animal cell is 

about to undergo mitosis, not only is the DNA doubled 

and carefully separated among the two daughter cells, 

but also the two mitotic centrioles. This doubling of 
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the centrioles comes about in an organized, unidirectional 

process, which is repeated every time animal cells divide. 

First the longer centriole gets still longer, 5 to 10 

times its pre-mitotic length. The short centriole doubles 

or triples in length. Both centrioles are still very 

close to each other at one end, almost touching, while 

their growing ends stretch out at right angles to each 

other, toward what will be the poles of the spindle. Now 

the two polar ends of the centrioles start to grow the 

microtubules that will form the spindle. As the micro­

tubules form the spindle, the centrioles part from each 

other and each old centriole moves to one end of the 

spindle. At once a new small centriole is formed, at 

a right angle to, and next to the old centriole, from 

which stream the microtubules of the spindle. Thus the 

new daughter cells, when mitosis is completed, will each 
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have one old centriole and one new centriole; one daughter 

cell got the long cylinder, the other daughter cell got 

the short cylinder; each replicated the opposite kind 

to complete the pair. 

Evidently some critical evolutionary advantage follows 

from this careful division, replication, and perpetuation 

of the centrioles (Pitelka, 1974). Animals supply all 

their cells with these identical centrioles. All cells 

are capable, then, of developing a cytoplasmic network 

of microtubules, useful in transporting proteins to the 

periphery of the cell, or from the periphery to the 

nucleus. For cells that will divide further, centrioles 

are able to produce the mitotic spindle. For cells that 

will produce cilia (such as olfactory neurons, "hair" 

cells of the cochlea, "hair" cells of the vestibular system 

that are involved with our sense of balance and head posi­

tion, or cilia of our bronchial tubes), centrioles, after 

mitosi~ will migrate toward the cell membrane and start 

to grow into the appropriate structure. "Both the orien­

tation and the spacing of young centrioles, bearing 

microtubular rootlets, are anarchic at first" (Pitelka, 

1974) . 

The organization of the centriole, and thus of the 

self-assembling microtubules which form the nine outer 

tubules of the circle, is both determined by pre-existing 

structures and yet also modifiable when local conditions 



change (Pitelka, 1974). Microtubules are composed of 

two proteins, ~-tubulin and ~-tubulin, whose amino acid 

sequences, as with all other proteins, are encoded in 
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our DNA (Olmsted and Borisy, 1973). A single microtubule 

is formed as a hollow cylinder of 13 tubulins in circum­

ference, alternating ~- and ~-tubulins which form a helix 

as they build the cylinder lengthwise (Olmsted and Borisy, 

1973). This basic assembly process seems to be determined 

(Pitelka, 1974). 

Whether microtubules will attach themselves to chromo­

somes during mitosis or meiosis, what direction they will 

choose to build toward, whether they can pull the chromo­

somes toward the centrioles at the poles of the spindle-­

these behaviors are altered in the presence of nitrous 

oxide. Microtubules are also generally assumed to function 

in the transport of proteins from their assembly place, 

in the ribosomes of the endoplasmic reticulum, to their 

place of use: perhaps in the cell membrane, perhaps at 

the synapse, perhaps to be released from the cell as 

endorphins, oxytocin, vasopressin, or hypothalamic 

releasing factors. Besides functioning as transporters 

of protein from the nucleus toward the cell membrane, 

microtubules in neurons also transport proteins from the 

synapse back to the nucleus. 

Microtubules function in white blood cells in several 

different ways. Mitosis is accomplished by microtubules 
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that form the spindle and the centrioles. Proteins are 

transported to and from the nucleus. Some white blood 

cells move among the red blood cells, or through capillary 

walls, much as an amoeba moves with its pseudopods. Micro­

tubules form the structure of these pseudopods, thus acting 

as "muscles" for the mobile cell. Cells that form flagella 

or cilia, such as sperm or bronchial tube cells, do so 

with a centriole built of the nine outer microtubules 

and two more microfilaments made of dynein at the center 

of the circle (see figure in Appendix II). The two central 

microfilaments determine the plane of the beat in these 

motile structures. Sperm tail centrioles form a hollow 

cylinder near the body of the sperm, made up of 27 micro­

tubules, three at each of the 9 places around the circle, 

as well as an extensive system of 9 branching roots that 

reach out to touch the surrounding mitochondria (see figure 

in Appendix II). A short distance away from the body 

of the sperm the two central microfilaments which are 

characteristic of cilia and flagella in eukaryotic cells 

start to form, and these extend the whole length of the 

sperm tail. These are not made of tubulin but of dynein, 

a different protein. 

Some protozoa possess cilia or flagella. A few 

examples are Paramecium, Stentor, and Euglena. These 

tiny one-celled animals are eukaryotic cells, that possess 

a nucleus and undergo mitosis just as our own cells do. 
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Many microbiologists have remarked upon the responsiveness 

of these tiny creatures, comparable to that of higher 

animals in the purposive behaviors they exhibit. 

Such responsiveness is in sharp contrast to the 

behavior of bacteria or plants. Bacteria are prokaryotic 

cells. They have no nucleus, no mitochondria, no chloro­

plasts, no protein wrapped around their DNA. They do 

not undergo mitosis. Cell division is accomplished by 

duplication of their single, circular, naked DNA, but 

no spindle is built. Bacteria often have cilia or flagella, 

but these are not built of tubulin, but of a bacterial 

protein flagellum. These cilia or flagella beat by means 

of a fixed machine-like arrangement of rings set in the 

stiff peptidoglycan cell wall. Bacteria with flagella 

may move when local conditions are not optimal for their 

survival and, by chance, may come to an area where condi­

tions are more suitable. The directed, efficient 

responsiveness of single-celled eukaryotic cells is not 

a characteristic noted in bacteria by microbiologists. 

Multicellular plants are also made up of eukaryotic 

cells. As a plant cell reaches its full size, it forms 

an outer cell wall of cellulose that is thick, strong, 

rigid, retaining, and protective. Such an armored device 

does not allow for maximum responsiveness or for further 

cell division and, indeed, there are no functional 

centrioles in these vegetative cells. 
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Tubulin, the protein in our own microtubules is 

the same protein in the mitotic spindle, in cilia, flagella, 

and in neurons, when judged by the criteria of molecular 

weight, amino acid composition, electrophoretic mobility, 

and immunological specificity. a-tubulin migrates more 

slowly, and ~-tubulin migrates faster in an electrical 

field. 

The centriole, with its 9 outer triplets, is 

inherently asymmetrical, and possesses polarity in its 

microtubular skeleton. The triplets are set at an angle 

to the radii of the centriole. The slanted angle of the 

triplets specifies directions both around the centriole 

and along its axis. Frequently one of the triplets will 

possess a "ribbon" of microtubules extending the trans­

verse axis of this triplet. Such a microtubule ribbon 

distinguishes this triplet from all others, and thus also 

specifies the other eight triplets in a unique relationship 

to this "landmark" ribbon (Pitelka, 1974). The ribbon 

forms an index marker; the angled triplets specify a 

direction. Such an arrangement could form a useful geo­

metric, spatial code which could supplement the linear 

code of our DNA. 

Animal cells "migrate" during our embryonic develop­

ment, thus differing in yet another way from plant 

development. Such cell migration is accomplished by 

microtubular pseudopods. Growth, the addition of new 
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protein at the tip of the growing neuron, involves protein 

transport by microtubules. Recognition of surrounding 

cells involves carrying a message back to the nucleus 

and microtubules can do this. Sensory processes, dendrites 

themselves, the most responsive and sensitive tissues, 

are all built by centrioles and microtubules. 

Is it possible that not only responsiveness, but 

also memory, could be a function of microtubules? A union 

of memory with responsiveness produces learning. Perhaps 

this is the critical evolutionary advantage which is the 

function of centrioles in animal cells. 

Neurons, of course, contain many other subcellular 

structures than microtubules and centrioles. A neuron 

is a delicately balanced symbiosis of thousands of proteins. 

I have spoken in this chapter of chromosomal proteins 

that enfold our DNA, and of the tubulins that make up 

our centrioles, first of all because of their early and 

striking motility in the process of development. If you 

watch a movie of the development of an embryo, these 

structures are the first actors whose motions are seen 

upon the microscope slide. 



CHAPTER X 

EFFECTS OF NITROUS OXIDE UPON MICROTUBULES 

I have described in some detail the role played 

by microtubules and centrioles in the functions of cells, 

especially neurons. I shall now return to a more detailed 

consideration of how nitrous oxide produces its remarkable 

effects upon mitosis. Earlier in this thesis, under 

"Physiological Experimental Studies on N
2
0," I described 

an experiment by Brinkley and Rao (1973), in which N20 

was shown to affect mitosis. If the N20 treatment lasted 

for 4 hours, cells recovered and proceeded through mitosis. 

If N20 treatment lasted for 12 or 16 hours, cells did 

not recover. 

Microtubule proteins form the spindle which is 

visible during metaphase. This protein, tubulin, occurs 

in a dimer form, a-tubulin and ~-tubulin. Tubulin attaches 

to the kinetochore region of the chromosomes, and the 

microtubules are built in an assembly process that uses 

GTP. a- and ~-tubulin each have molecular weights of 

about 52,000. Two other unnamed proteins, that weigh 

290,000 and 310,000, seem to participate in microtubule 

assembly. Microtubules seem to be assembled at a rate 

of about 5~ per minute. a- and ~-tubulins differ in amino 
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acid composition and sequence, but the differing amino 

acids seem to have evolved through single nucleotide changes 

in the coding triplets. Thus, a- and S-tubulins may have 

evolved from a single ancestral protein, before the chor­

dates diverged from the echinoderms. The primary structure 

of these crucial proteins was strongly conserved through 

millions of years of evolution (Snyder and McIntosh, 1976; 

Luduena and Woodward, 1973; Bryan, 1974). 

All cells divide, from prokaryotes to humans. But 

prokaryotes do not have microtubules. Eukaryotic cells 

have microtubules and use them in mitosis, in changing 

their shapes, in cell movements, and in transport of pro­

teins and other complex substances down the axons of 

neurons. Squid axoplasm contains dense strands of micro­

tubules running lengthwise down the axon. 

Tubulin is transported down the axon into the nerve 

ending in mammalian brain (Feit et al., 1971). Tubulin, 

like other proteins, is synthesized by ribosomes using 

a mRNA code, and this occurs in the cytoplasm of the cell 

body, not any great distance from the nucleus. Axons 

or dendrites may be more than a meter long in humans and 

even longer in larger animals. Some tubulin is transported 

very rapidly down the axon and some tubulin more slowly. 

Tubulin may be associated with membranes at the nerve 

ending. 

Unlike colchicine, N
2

0 has no discernible effect 



on the formation and assembly of spindle microtubules. 

Yet the chromosomes do not line up properly on the meta­

phase plate. 

Brinkley and Rao (1973) observed this effect on 

Hela cells which had been partially synchronized by a 

thymidine blockade. After release from this block, the 

Hela cells were placed in fresh media in petri dishes, 

allowed to attach to the dish, given a change of medium, 

and placed in the nitrous oxide chamber under pressure 
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(80 Ib/in2 at 37°C). A control batch of cells, also syn-

chronized in S phase by the reversal of excess thymidine 

double-block technique, was kept at 37° and observed as 

they proceeded into mitosis. 

The experimental cells were kept under N20 for 

varying periods: 4 hours, 12, 16, and 36 hours. Then 

they were observed after removal of N20 at varying 

intervals: 30 min, 60, and 90 min of incubation at 37°C. 

When these cells are observed with a light microscope, 

the chromosomes resemble chromosome arrays produced by 

colchicine and other spindle poisons. However, when an 

electron microscope was used, the following differences 

from colchicine inhibition became apparent. 

Colchicine is bound by tubulin; this prevents micro­

tubule assembly. Colchicine effects are irreversible. 

Nitrous oxide interferes with mitosis in the following 

ways: 1) bipolar spindles form, with a pair of centrioles 



122 

at each pole, but the poles are farther apart (25,000 rum) 

than the normal distance (10,000 nm)i 2) interpolar micro­

tubules form and converge toward the centrioles, and 

microtubules form, but these chromosomal microtubules 

do not always orient themselves toward the poles. Attach­

ment to the kinetochore appears normal, but instead of 

the microtubule being built toward the pole, it often 

reaches out at right angles, or at random angles, to the 

pole-pole axis of the spindle. Several microtubules may 

attach to a single sister kinetochore, and start extending 

themselves outward at two different angles. Chromosomes 

seem to be randomly scattered throughout the spindle. 

Chromosomes did not migrate to the metaphase equatorial 

plate. Spindle microtubules do not appear to interact 

to bring about chromosome movement. 

If the nitrous oxide treatment lasts for 4 hours, 

cells recover and proceed through mitosis normally. Pole­

to-pole distance shortens to the normal 10,000 rum. 

Chromosomes are now aligned properly on the equator and 

a typical bipolar spindle is seen. Metaphase appears 

normal. Cells approach anaphase in synchrony. Telophase 

follows without further abnormalities. 

However, if N20 treatment lasts 12 or 16 hours, 

cells do not recover normally. The number of bipolar 

cells falls to 55%; tripolar cells comprise 27%; tetra­

polar cells comprise 13%. After 36 hours of nitrous 



oxide, 42% are tripolar, 40% are bipola4 and 17% are 

tetrapolar. Even with these multipolar spindles, each 

pole has a pair of centrioles. 

These effects of nitrous oxide do not appear to 
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be due to simple anoxia. When nitrogen gas (N 2) is applied 

to Hela cells under identical experimental conditions, 

no increase in mitotic index is seen (Rao, 1968). 

Nitrous oxide does not appear to act in the same 

way as colchicine and other spindle poisons. Unlike colchi­

cine, N
2

0 does not appear to interfere with microtubule 

assembly. Spindles form, but chromosomes are not moved 

about in a normal manner. Chromosome movements appear 

random and microtubule direction and orientation appear 

random. 

Tubulin makes up at least 25% of the total brain 

protein. Tubulin is polymerized into microtubules by 

two other heavier proteins of 290,000 and 310,000 mol 

wt. GTP is used in the assembly (Borisy et al., 1974). 

Two moles of GTP are bound per dimer (a,S) tubulin molecule; 

one of these is tightly bound. Microtubules assemble 

in a unidirectional way. Kinetochores seem to be the 

sites for the formation of spindle fibers. 

Tubulin, the subunit protein of microtubules, is 

highly acidic. It can be isolated from the brain, a tissue 

rich in tubulin, by following a procedure for isolating 

mitochondria by centrifugation. When the mitochondria 



are packed into the pellet, tubulin can be found in the 

supernatant. This supernatant can be concentrated and 

warmed, and then the tubulin proteins will assemble them­

selves into microtubules again. a- and ~-tubulin differ 
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in amino acid structure and ~-tubulin moves farther under 

electrophoresis. Both a- and ~-tubulin weigh about 52,000. 

Two larger unknown proteins, of molecular weight 290,000 

and 310,000, were found in purified brain tubulin prepara­

tions (Borisy, 1974). a- and ~-tubulins are associated 

as heterodimers in protozoa, sea urchins, and chordates. 

A microtubule model has been suggested by Bryan 

(1974) showing the paired a- and ~-tubulin proteins winding 

around the hollow core of the microtubule, like paired 

strands of light and dark colored wool, or chequered light 

and dark stitches. A helical turn with a repeat distance 

of 80 nm and an intrinsic polarity to the microtubule 

are included in this model. This helix exhibits left­

handed chirality in an absolute sense (Snyder and McIntosh, 

1976; Erickson, 1974). 

Microtubules are, of course, involved in cellular 

movement in cilia, flagella, and sperm tails. In those 

structures there seems to be an associated protein, dynein, 

which is an ATPase. Microtubules transport proteins down 

an extension of the cell. Thus they are involved in the 

growth of all eukaryotic cells. Microtubules are involved 

in root tip growth. Microtubules are associated with 



the majority of sensory neurons (Bied1er, 1970; Barber, 

1974). Exceptions are in vertebrate taste receptors and 

in the eyes of many invertebrate species. Microtubu1es 

in brain tissue bind two moles of 3H- GTP for each dimer 
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of a- and S-tubu1in. One molecule of GDP is tightly bound 

and non-exchangeable. This is then phosphorylated to 

GTP, using a phosphate from the readily exchangeable GTP. 

A phosphate is also covalently linked to a serine residue 

on s-tubu1in. 

Microtubu1es are assembled from the a- and 

s-tubu1in proteins which are floating in the cytoplasm. 

A dynamic equilibrium exists between the free and the 

assembled tubu1in. How is microtubule growth initiated? 

How is a direction of growth chosen? 

Spindle microtubu1es that are assembled show bire­

fringence (Inoue, 1953). This disappears when colchicine 

causes the disassembly of microtubu1es. Birefringence 

also naturally fluctuates during mitosis since the micro­

tubules are assembling and disassembling as they build 

the spindle, asters, chromosomal microtubu1es and then 

draw the chromosomes to their respective poles. Since 

cold prevents mitosis from continuing, temperature changes 

are also reflected in birefringence changes. Any disruption 

of the ordered array of microtubules is visible as a 

disruption of birefringence. Microtubule assembly is 

endothermic and proceeds with a large increase in entropy 



(Inoue, 1967). There is a loss of structured water. A 

large pool of u- and ~-tubulin proteins exists constantly 

and is drawn upon when microtubules are assembled (Raff, 

1971). Microtubules seem to be assembled, but not in 
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a spindle array, during interphase; they are disassembled 

in prophase, and then assembled into the familiar spindle 

array during metaphase. 

Such a dynamic equilibrium for microtubules exists 

not only in the mitotic spindle formation, but also in 

neurons, where microtubules constantly form and change. 

Reassembly is extremely rapid and proceeds regardless 

of the presence of protein synthesis inhibitors such as 

actinomycin D. Neurite outgrowth depends on microtubule 

assembly. Lens cell elongation also depends on the orderly 

assembly of microtubules. Microtubules play an essential, 

but mysterious, role in sensory transduction. 

Kinetochores seem to act as orienting centers for 

the newly assembling spindle microtubules. If kineto­

chores are irradiated with uv light, then microtubules 

do not assemble, and no birefringence is seen (Inoue, 

1964) • 

Neurons in a developing stage show a very ordered 

proliferation of microtubules, but there do not seem to 

be any centers for growth or orientation. Centrioles 

do not seem to be involved in neuron microtubule growth. 

Platelets show microtubules oriented around the inner 
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side of the cell membrane. 

Mitotic spindle asters form only in activated oocyte 

homogenates; if unactivated oocytes are used, or if only 

the supernatant is used, then the spindle aster will not 

form. There seems to be some sort of microtubule organizing 

center in the activated oocyte homogenate which organizes 

the spindle aster. 

Mitosis inducing substances seem to be created during 

interphase, rising to a critical level just before mitosis. 

Nitrous oxide at 5.1 atmospheres (80 psi) causes mitotic 

synchrony in tissue culture cells such as Hela. The mitotic 

index can be raised to 98%, using first, excess thymidine 

and second, N20. This mitotic block is completely rever­

sible after 20 hours of excess thymidine followed by 10 

hours of N20 (Rao, 1976). Colcemid block is not reversible. 

When N20 was removed from the Hela cells, the mitotic 

index fell from 98% to 18% within l~ hours. Cells completed 

mitosis and entered the Gl growth period. Hela cells 

ordinarily are mononucleate, with a small (3.75%) group 

of binucleate cells. N20 causes this group to increase 

to 13.5% binucleate cells. This increase is due to N20, 

t t th 3 h 'd' no 0 e excess H-t ym~ ~ne. N20 also increases the 

frequency of tripolar and tetrapolar mitotic spindles. 

Binucleate cells have a shorter Gl growth period than 

mononucleate cells. Binucleate and trinucleate cells 

enter the S phase of DNA synthesis with nearly perfect 
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synchrony. Initiation of DNA synthesis appears to occur 

independently among the several nuclei, but when one nucleus 

has begun DNA synthesis, the others follow at once (Rao, 

1976). There is some factor which initiates DNA synthesis 

in S phase cells. These initiating factors are probably 

proteins. 



CHAPTER XI 

A THEORETICAL PROPOSAL 

Is it possible to construct a hypothesis of the 

action of nitrous oxide upon neurons which could unite 

all the diverse effects that have been noted? It seems 

worth attempting such a project, in spite of the 

difficulties. 

Nitrous oxide affects the microtubu1es visible in 

the spindle during mitosis in the following ways: 

(1) direction of growth seems random 

(2) distance of growth is 2~ times normal 

(3) more than one microtubule attaches to the 

kinetochore 

(4) chromosomes are not moved to poles 

(5) more than two poles are built on the spindle 

(6) cells end up with two nuclei, or three nuclei. 

It seems as though nitrous oxide produces a breakdown 

in communication between the various parts of the mitotic 

apparatus. We know that the tubulin in the mitotic spindle 

is the same protein that occurs in microtubules in neurons, 

using the criteria of molecular weight, amino acid compo­

sition, electrophoretic mobility, and immunological 

specificity. Therefore, it seems logical to infer that 



nitrous oxide might affect microtubules in neurons as 

it does in mitosis. 

What might be the result, in neurons, of such an 

effect upon microtubules? Widespread consequences seem 

130 

to follow, when we consider the many functions of micro­

tubules. A logical first place to look is at the transport 

of ATP. We know that ATP is transported by microtubules, 

since we see this process occurring in sperm tails. The 

outer ring of 27 microtubules (nine triplets) use GTP 

as their source of energy, and thus they can transport 

ATP down the length of the sperm tail. The inner 2 

microfilaments of a sperm tail are not tubulin, but dynein, 

which uses ATP. 

While mitochondria make ATP, it still must be trans­

ported from the vicinity of the mitochondria over to the 

place of use, perhaps over to the neuron membrane to be 

used by the Na+-K+ active transport system of proteins, 

perhaps to the synapse, to the end of the axon or dendrite, 

or to a neuron membrane protein that makes cyclic AMP. 

If microtubules cannot "pull ll chromosomes out of metaphase 

toward the poles while under nitrous oxide, perhaps they 

cannot transport ATP in neurons away from the vicinity 

of the mitochondria. 

What would be the effect of letting the ATP remain 

close to the mitochondria? The mitochondria would slow 

down the production of ATP, and hence use less oxygen. 
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We see this effect in humans or animals who are breathing 

nitrous oxide and who seem to use less .oxygen than normally 

(Schatte and Bennett, 1973; Schatte et al., 1974; Bradley 

and Dickson, 1976). But when DiFazio et al. (1969) 

measured oxygen consumption in rat bone marrow in a Warburg 

flask, and when Nahrwold and Cohen (1973) measured oxygen 

consumption in rat liver mitochondria, they found no change 

in oxygen consumption under N20. This puzzling discrepancy 

makes sense when we realize that these investigators were 

using bone marrow homogenate or isolated mitochondria. 

In such preparations, microtubules are thrown away with 

the supernatant, and the N20 effect upon microtubules 

is no longer apparent. The surrounding medium of mito­

chondria prepared in this way is more watery, contains 

less protein, and ATP is free to drift away from the 

mitochondria. Hence, oxygen consumption shows no change 

in vitro in these preparations. 

When Carpenter (1954) used isolated rat sciatic 

nerve and 90% N20 at 5 atm, oxygen consumption fell 35%, 

although no change occurred in action potential. When 

Carpenter increased 90% N20 pressure to 13 atm, oxygen 

consumption fell 65%, and action potential was blocked, 

but only after 20-30 minutes. We can, using a microtubule 

loss of function model of N20 narcosis, make sense of 

these results also. Oxygen consumption can fall 35%, 

as ATP are not transported away from mitochondria at the 
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normal rate, yet still enough ATP reaches the Na+K+ active 

transport system of proteins so that action potential 

is unimpaired. But when oxygen consumption falls as much 

as 65%, so little ATP is being transported by microtubules 

that action potential is blocked. 

When C. R. Marshall (1938) experienced unconsciousness 

with 70% N20 in 4 minutes, 30 seconds, this might also 

be due to lack of transport of ATP by microtubules. This 

effect was produced rapidly, and also was rapidly reversed. 

Microtubules assemble and disassemble very rapidly, at 

a rate of 21 tubulin proteins/second. 

100% N20 produces death in less than 45 seconds 

in a rat. If microtubules are totally disorganized by 

N20, then no ATP would be transported to the appropriate 

sites, and all action potentials would cease. 

The rise in plasma norepinephrine is a complex effect 

which may also be a result of disrupted microtubules. 

Olmsted and Borisy (1973) suggest "that microtubules were 

involved with the mobilization of material for secretion" 

(p. 510). Such a function, if disturbed by N
2
0, could 

result in sudden release of norepinephrine (N. Ty Smith, 

1970), or in release of endorphins or enkephalins (Berko­

witz et al., 1976). Bone calcification was interfered 

with in rat embryos (Fink et al., 1967). Either micro­

tubules did not transport substances properly in the growing 

vertebrae, or the cell-cell communication system, which 
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must depend greatly upon the sub-cellular microtubule 

communication system, was disrupted by N20. Orderly growth 

and development of all cells depends both on the process 

of mitosis occurring perfectly, and on the protein-transport 

functions of microtubules continuing in their usual highly 

coordinated manner. 

If nitrous oxide effects upon microtubules interfere 

with the transport of ATP, this might explain the common 

subjective feeling of lassitude while breathing N20, a 

"disinclination for work" (Marshall, 1938, p. 424). 

Ordinarily a release of norepinephrine or other catechol­

amines results in a feeling of loss of tiredness, an 

energetic restlessness such as results from an amphetamine 

pill. Nitrous oxide produces the subjective sensation 

of a "state of extreme hurry, agitation, and tumult" (Roget, 

1799) combined with "a disinclination to motion •.. 

torpor" (Roget, 1799). Perhaps this effect also results 

in the characteristic increase in reaction time observed 

under nitrous oxide (Marshall, 1937; Garfield, 1975; Bradley 

and Dickson, 1976). "Incoordination of movements becomes 

noteworthy" (Marshall, 1938). Steinberg (1954) found 

the motor task "Ball-bearing" to be the task most sensitive 

to the drug, followed by the motor tasks "Dotting ll and 

"Tapping." 

Changes in the immune response, in the bone-marrow 

production of red blood cells and white blood cells (Lassen, 
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1956; Eastwood, 1963 and 1964; Green, 1968; M. C. Johnson, 

1971) can now be understood as being directly produced 

by the effects of nitrous oxide upon microtubule function 

during mitosis. Johnson (1971) supposed that N20 produced 

haemopoietic and mitotic changes by means of its ability 

as a free radical scavenger, but he could find no causal 

relations~ips. The causal relationship can now be seen 

as mediated through the effects of N20 upon microtubules. 

Ebert and Hornsey (1958) speculated that N
2

0 competes 

with oxygen for access to unidentified but specific sites 

within the cell, perhaps within the nucleus. The site 

of action of N
2

0 now can be seen as upon the microtubules; 

this does not seem to be a simple competition with oxygen. 

Teratogenic effects of nitrous oxide can now be 

seen as due to the effect of N20 upon microtubules, both 

during mitosis and during cell growth, development, and 

differentiation. An interference with microtubule 

functioning can explain the death of embryos, and the 

weight loss in surviving embryos (Fink, 1967). I do not 

understand why male embryos should be more susceptible 

to N20 than females, except to note that this same vulner­

ability of males extends to a wide variety of other dangers. 

Fink thought that N20 affected skeletal growth through 

direct gene action. N20 may affect chromosomal proteins. 

I have found no evidence either way for this hypothesis. 

But the effect of N20 upon microtubules is remarkable 



enough to affect skeletal growth by itself. 

Changes in respiratory frequency (rises) in tidal 

volume (falls) and in minute volume (rises) which were 

observed by Bradley and Dickson (1976) may be due to a 

"second gas" effect of N20 upon CO 2 , causing CO 2 blood 

levels to remain slightly elevated. Or, as Whitteridge 

135 

(1944) speculated, N
2

0 may sensitize pulmonary inflation 

receptors and deflation receptors, since N20 causes increased 

discharge frequencies in both of these groups. 

It is difficult to correlate all the effects produced 

by N20 upon neuron firing frequencies (Whitteridge and 

Bulbring, 1944; Mori, 1972; Kitahata, 1973; Sasa, 1967; 

Hills, 1972). Is this an effect that might follow an 

effect of N20 upon microtubules? Microtubules maintain 

a more negative electrical potential inside the microtubule 

than exists outside in the cytoplasm, by continually 

ejecting H+ (hydrogen) ions while retaining OH- (hydroxl) 

ions inside. An action potential, which changes the cyto­

plasmic potential from -70 mv to +40 mv would certainly 

produce an effect upon microtubules, which are also 

exerting energy to maintain a difference in electrical 

potential. Could such an effect go the other way? That 

is, could microtubules, by altering their own electrical 

potential gradient, affect the neuron enough to cause 

a change in firing rate? If microtubules within the axon 

do not affect the action potential, still microtubules 
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within dendrites might affect the summed dendritic post­

synaptic potentials, a more finely-tuned and delicate 

system. If N20 disturbed the normal functioning of micro­

tubules within dendrites, widespread effects could be 

expected. 

Dendrites are the receivers of information in all 

our neurons. In the rod cells of our retina, dendrites 

contain 1,000 disks, which each contain 30,000 molecules 

of rhodopsin protein, each of which holds a molecule of 

vitamin A in a bent, potentially energizable form. If 

one photon of light enters the rod cell, and strikes the 

vitamin A molecule, vitamin A unfolds, straightens out, 

and thus alters the conformation of its enfolding protein, 

rhodopsin. This change is amplified and runs along the 

dendrite of the rod cell. This dendrite was built by 

a centriole, which exists in the narrow "stem" of the 

rod cell, between the dendritic part of this neuron and 

the next volume of neuron, which contains the mitochondria. 

ATP is certainly transported by the microtubules of this 

centriole. New proteins, especially rhodopsin, must be 

transported from the nucleus to the dendrite of the rod 

cell by the microtubules of the centriole. Vitamin A 

must be transported there. The whole end of the rod cell, 

the whole 1,000 disks, is replaced within 3 weeks, a fast 

turnover of materials. 

Suppose N20 affects microtubules in rod cells. 
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Could this produce subjective effects such as "suddenly 

lose sight of all the objects around me, they being 

apparently obscured by clouds, in which were many luminous 

points" (Roget, 1799) or "luminous points seemed frequently 

to pass before my eyes" (Davy, 1799)? 

If N20 affects the functioning of microtubules in 

dendrites, the sensory processes of all our neurons, then 

subjective sensations and perceptions of all kinds might 

follow. Parasthesia, numbness, tingling, "pleasurable 

thrilling in all the muscles" (Davy, 1799), a feeling 

of floating or sinking--all these effects from N20 might 

follow from its effect upon microtubules in dendrites. 

Microtubules assemble themselves at a regular rate, 

21 tUbulins/second. It takes about 2 minutes to assemble 

the spindle, a length of 10,000 nm, with about 3,000 

microtubules in a spindle (Borisy et al., 1974). Under 

nitrous oxide this length is extended to 25,000 nm (Brinkley 

and Rao, 1973). The rate of assembly might also differ 

under nitrous oxide. Such a change in assembly rate of 

microtubules may be involved in subjective changes in 

time estimation. We do not know how humans estimate time, 

whether they are subconsciously noticing breathing rate 

(rises under N20, Bradley and Dickson, 1976) or heartbeat 

(no change, Craythorne and Darby, 1965; increased rate, 

Lundborg, 1966; no change, Ty Smith, 1966; reduced rate, 

Eisele, 1969). Marshall (1937) said, "time is beginning 
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found changes in time estimation. 
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When we consider changes in thought processes brought 

about by nitrous oxide, we are entering a difficult area 

of research. Memory and learning are brain functions 

that have generated a large volume of research, and no 

great agreement among investigators. Our immune system 

seems to show a kind of learning and long term memory. 

The current hypothesis seems to be that all possible anti­

bodies are already coded for in our DNA, and the arrival 

of an antigen merely accelerates the production of the 

particular antibody that fits this antigen. Such a model 

for learning and memory for our immune system seems to 

be adequate. But if we are to code thoughts and memories 

in our brains, it does not seem possible that all possible 

thoughts could be coded in our DNA. Yet if we do not 

code memories as proteins, how could we code them at all? 

Dorothy Pite.lka (1974) suggests that the complicated 

arrangement of microtubules in centrioles, including a 

"ribbon" that specifies one group among the 9 groups of 

three microtubules around the centriole, might form such 

a coding arrangement for learning. This geometic, spatial 

code would be flexible and adaptable, in contrast to our 

DNA code, which is linear, digital, and stable. Both 

kinds of code are necessary for survival. 

Tubulin occurs in two forms, ~ and S. The tubulin 
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monomers assemble in some regular pattern, perhaps like 

strands of light and dark wool, or perhaps like a checker­

board pattern, winding around the hollow center of the 

microtubule. This regular pattern is undisturbed when 

the neuron or cell is not stimulated. But when a stimulus 

occurs, any change in the electrical potential of the 

neuron, or in the composition of the cytoplasm, could 

result in a change in the regular pattern of assembly. 

Since 21 tubulins/second are assembled, changes could 

occur from moment to moment in the process of assembly. 

Since microtubules maintain an electrical gradient between 

inside and outside, changes in the cytoplasm could affect 

the process of assembly and thus alter the pattern. 

What might such changes mean in the lifetime of 

a human being? From the first moments of cell differen­

tiation, responsiveness to outside stimuli, and adaptability 

to the surrounding environment would be possible. If 

memories can be coded into a spatial arrangement of pro­

teins, with moment to moment responsiveness, we do not 

need to delay 20 minutes, in order to build a new protein, 

in order to code a new memory. 

Each one of us feels we are a unique individual, 

different, not only because of our inherited genetic code, 

but also because of our own unique environment, our own 

experiences since earliest childhood. If we suppose our 

memories to be coded in our centrioles and microtubules, 



our uniqueness is comprehensible, since even identical 

twins would develop differently coded centrioles. 

Nitrous oxide produces "a loss of all sense of self 

a feeling of non-existence . . • an awakening from 

death to life II (Marshall, 1938). Subjects feel far away, 

detached. Amnesia sometimes occurs. If our thoughts 

and memories are indeed encoded by centrioles and micro­

tubules, it is not surprising that changes produced by 

nitrous oxide upon these structures should produce such 

remarkable subjective effects. 
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Nitrous oxide does not halt the formation of micro­

tubules; it does alter their orientation. This disruption 

might account for those experiences typical of psychedelic 

states: the experience of new meaning, the juxtaposition 

of thoughts and feelings in new and unexpected ways which 

produce mirth and insight, the rapid and kaleidoscopic 

flow of ideas and images. All of these effects might 

follow from the effects of N20 upon neuronal microtubules. 

Past theories about the mechanism of action of nitrous 

oxide have considered its lipid solubility, its ability 

to form a hydrate microcrystal, its polarizability, surface 

film affinity, mole volume, and dipole moment. It has 

been seen as affecting cation permeability, and as releasing 

endogenous opiates. It has been seen as acting at the 

synapse, or within the lipid membrane. Whenever we 

approach one of these theories, 'we must keep in mind 
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substances which do have the property or action being 

considered, but which do not produce the narcosis or anal­

gesia. For example, camphor has a high lipid solubility 

coefficient, yet has no anesthetic properties. Nicotine 

selectively blocks synaptic transmission more than any 

narcotic or analgesic, yet nicotine does not act as an 

anesthetic. The Na+-K+ active transport protein assembly 

is selectively blocked by the cardiac glycosides, ouabain, 

digitoxigenin, or scillaridin, more than by any narcotic 

or analgesic, yet these drugs do not act as anesthetics. 

Because of my dissatisfaction with such past 

theories, I kept on searching for an effect of nitrous 

oxide that I felt might encompass not only a particular 

physiological effect, but many physiological effects, 

even behavioral effects, and even experiential effects. 

Whether the effects of nitrous oxide upon microtubules 

will actually prove to become an accepted theory of action 

of nitrous oxide is for others to determine. For myself, 

the interest of the search, the wonder of discovery, the 

miraculous awareness of proteins that live within our 

neurons--these brought me ample return for the work 

involved. 



BIBLIOGRAPHY 

Adriani, J. Pharmacology of anesthetic drugs. Springfield, 
Ill.: Charles C. Thomas, 1970. 

Aghajanian, G. K., & Haigler, H. J. Serotonin--new vistas. 
In E. Costa, G. L. Gessa, & M. Sandler (Eds.), Advances 
in biochemical psychopharmacology. New York: Raven 
Press, 1974. 

Ahlquist, R. P., & Levy, B. Classification of sympathetic 
nervous system receptors. Journal of Pharmacology 
and Experimental Therapeutics, 1959, 127, 146. 

Akil, H., Mayer, D. J., & Liebeskind, J. C. Antagonism 
of stimulation produced analgesia by naloxone, a narcotic 
agent. Science, 1976, 191, 961. 

Akil, H., Watson, S. J., Berger, P. A., & Barchas, J. D. 
Endorphins, S-LPH, and ACTH: Biochemical, pharmaco­
logical, and anatomical studies. In E. Costa & 
M. Trabucci (Eds.), Advances in Biochemical Psycho­
pharmacology. New York: Raven Press, 1978. 

Aldreti, J. A., & Virtue, R. W. Prolonged inhalation 
of inert gases by rats. Anesthesia and Analgesia 
Current Research, 1967, 46, 562-565. 

Allen, R. A. Cilia observed in human retinal neurons. 
Journal of Ultrastructure Research, 1965, 12, 730-747. 

Allison, S. P., Tomlin, P. J., & Chamberlain, M. J. 
Effects of anaesthesia and surgery on carbohydrates and 
fat metabolism. British Journal of Anaesthesiology, 
1969, 41(7), 588-593. 

Alper, M. H., & Flacke, W. The peripheral effects of 
anesthetics. Annual Review of Pharmacology, 1969, 
2., 273. 

Anderson, N. B. The effect of CNS depressants on mitosis. 
Acta Anaesthesiol. Scand. Suppl., 1966, 22, 1-36. 

Askrog, V. Changes in (a-A) CO~ difference and pulmonary 
artery pressure in anestheti2ed humans. Journal of 
Applied Physiology, 1966, 21, 1299-1305. 



143 

Atkins, T., & Thornburn, C. C. Effect of some anesthetics 
on the blood sugar of mice. Comparative General 
Pharmacology, 1971, ~(5), 36-42. 

Atwood, D. G. Centriole in sperm tail of Leptosynapta. 
Cell Tissue Research, 1974, 149(2), 223-234. 

Avers, C. Cell biology. New York: Van Nostrand, 1976. 

Balasubramanian, D., & Wetlaufer, D. B. Reversible 
alteration of the structure of globular proteins by 
anesthetic agents. Proceedings of the National Academy 
of Sciences, 1966, 55, 762. 

Bangham, A. D., Standish, M. M., & Miller, N. Cation 
permeability of phospholipid model membranes: Effects 
of narcotics. Nature (London), 1965, 208, 1295. 

Barber, T. X. LSD, marijuana, yoga, and hypnosis. Chicago: 
Aldine Press, 1970. 

Barber, V. C. Cilia in sense organs. In M. Sleigh (Ed.), 
Cilia and flagella. New York: Academic Press, 1974. 

Barnes, B. G. Functions of cilia. Journal of Ultrastructure 
Research, 1961, ~, 453-467. 

Barondes, S. H. Synaptic macromolecules. Annual Review 
of Biochemistry, 1974, il, 152-168. 

Barondes, S. H., & Cohen, H. D. Puromycin effect on succes­
sive stages of memory storage. Science, 1966, 151, 
594-595. 

Barr, M. L., & Bertram, E. G. A morphological distinction 
between neurones of the male and female, and the behavior 
of the nucleolar satellite during accelerated nucleo­
protein synthesis. Nature, 1949, 163, 676. 

Baxter, D. W., & Olszewski, J. Congenital insensitivity 
to pain. Brain, 1960, ~, 381. 

Bazett, H. C. Medical physiology. St. Louis: Mosby, 
1956. 

Beecher, H. K. Anesthesia's second power: probing the 
mind. Science, 1947, 105, 164. 

Behnke, J. R., Fennema, 0., & Powrie, W. D. Anesthetic 
activity of nitrous oxide: Tyrosinase enzyme response 
under high pressure. Journal of Food Science, 1969, 
1!(4) , 370-375. 



Beidler, L., & Reichardt, W. Microtubules in sensory 
neurons. Neuroscience Research Progress Bulletin, 
1970, .!!(5) , 459-460. 

Berkowitz, B. A., Ngai, S. H., & Finck, A. D. 
"analgesia": Resemblance to opiate action. 
1976, 194, 967. 

N ° §cience, 

Berkowitz, B. A., Tarver, J. T., & Spector, S. Norepi­
nephrine in blood vessels: Concentration, binding, 
uptake, and depletion. Journal of Pharmacology and 
Experimental Therapeutics, 1971, 177(1), 119-126. 

Berry, R., & Shelanski, M. Microtubules. Journal of 
Molecular Biology, 1972, 71, 71-80. 

Bert, Paul. On the probability of producing by means 
of protoxide of nitrogen, prolonged insensibility, 

144 

and on innocuous quantities of the anesthetic. Medical 
Press and Circular, 1879, ~, 99. 

Bhuyan, B. K. Mitosis. Cancer Research, 1977, 11, 3204. 

Biersner, R. J. Selective performance effects of N20. 
Human Factors, 1972, 14(2), 187-194. 

Blood, B. P. The anesthetic revelation and The gist of 
philosophy. Amsterdam, New York, 1879. 

Blood, B. P. In Dictionary of American biography. New 
York: Charles Scribner's Sons, written 1879, published 
1929. 

Bloom, F., Segal, D., Ling, N., & Guillamin, R. 
Endorphins: Profound behavioral effects in rats suggest 
new etiological factors in mental illness. Science, 
1976, 194, 630. 

Boehmer, D. Rise in serum enzyme activity after chloro­
form and halothane, relative to dose and duration of 
anesthesia. Progress in anesthesiology: Proceedings 
of the 4th World Congress of Anesthesiologists. 1970. 

Bojrab, L. Extent and duration of the N ° second gas 
effect on oxygen. Anesthesiology, 1974, 40, 201-203. 

Boring, E. G. A history of experimental psychology. 
2nd edition. New York: Appleton-Century-Crofts, Inc., 
1957. 



Borisy, G. G., Olmsted, J. B., Marcum, J. M., & Allen, 
C. Microtubule assembly in vitro. Federation 
Proceedings, 1974, 1l(2), 167-

Borisy, G. G., & Taylor, E. W. Mechanism of colclucine 
action I. Journal of Cell Biology, 1967, 34, 525-533. 

Bourbon, P. Effect in vitro of nitrous oxide on the 
dissociation curve of oxyhemoglobin. c. R. Acad. 
Sci. [D] (Paris), 1975, 280(21), 2503. 

Bradley, M. E., & Dickson, J. G. The effects of nitrous 
oxide narcosis on the physiologic and psychologic 
performance of humans at rest and during exercise. 
In National Academy of Sciences, Proceedings of the 
Fifth Symposium on Underwater Physiology. Washington, 
D.C.: Nat'l. Res. Council Publ., 1976. 

Brauer, R. W., & Wa~ R. 0. Relative narcotic potencies 
of hydrogen, helium, nitrogen, nitrous oxide, and 
their mixtures. Journal of Applied Psychology, 1970, 
~(l), 23-31. 

145 

Brazier, M. A. B. The action of anesthetics on the central 
nervous system. In J. F. Delafresnaye (Ed.), Brain 
Mechanisms and Consciousness: A Symposium. Springfield, 
Ill.: Charles C. Thomas, 1954. 

Brinkley, B. R., & Rao, P. N. N?O effects on the mitotic 
apparatus and chromosome movement in Hela cells. 
Journal of Cell Biology, 1973, ~, 96-106. 

Brodal, A. Neurological anatomy. 2nd edition. New York: 
Oxford Univ. Press, 1969. 

Browne, R. A. Awareness during anaesthesia: a comparison 
of anaesthesia with N20 and 02' and N20 with innovar. 
Canadian Anaesthesiology Society Journal, 1973, ~, 
763-768. 

Bruce, D. L., & Bach, M. J. Trace effects of anesthetic 
gases on behavioral performance of operating room 
personnel. HEW publication #76-169. National Institute 
for Occupational Health and Safety, 1976. 

Bruce, D. L., Bach, M. J., & Arbit, J. Trace anesthetic 
effects on perceptual, cognitive, and motor skills. 
Anesthesiology, 1974, iQ, 453. 



Bruce, D. L., Eide, K. A., Linde, H. W., & Eckenhoff, 
J. E. Causes of death among anesthesiologists--A 20 
year survey. Anesthesiology, 1968, 29, 565-569. 

Bruce, D. L., & Wingard, D. Anesthesia and the immune 
response. Anesthesiology, 1971, l!(3), 271-282. 

Bryan, J. Microtubules. Biochemistry, 1972, 11, 2611. 

Bryan, J. Microtubules. Biological Science, 1974, 24, 
701-711. 

Bryan, J. Microtubules. Federation Proceedings, 1974, 
n(2), 152-157. 

Bullock, T. H., Orkand, R., & Grinnell, A. Introduction 
to Nervous Systems. San Francisco: W. H. Freeman, 
1977. 

Burns, J. D. Hyperbaric gas effects on critical flicker 
frequency in the rhesus monkey. Physiology and 
Behavior, 1971, 2, 151-156. 

Burns, R. B., Robson, J. L., & Welt, L. T. N20 effects 
on thresholds for vision, touch, skin pain, warmth, 

146 

and hearing. Canadian Anaesthesiology Society Journal, 
1960, 2, 411. 

Bussard, D. A., Stoelting, R. K., Peterson, C., & Ishaq, M. 
Fetal changes in hamsters anesthetized with N20 and 
halothane. Anesthesiology, 1974, 41, 275. 

Butler, T. Theories of anesthesia. Pharmacological Review, 
1950, £, 121-160. 

Carlini, E. A. Tolerance to chronic marijuana in rats. 
Pharmacology, 1968, 1, 135-142. 

Carpenter, F. G. Depressant action of inert gases on 
the CNS in mice. American Journal of Physiology, 1953, 
172, 471. 

Carpenter, F. G. Anesthetic action of inert and unreactive 
gases on intact animals and isolated tissues. American 
Journal of Physiology, 1954, 178, 505. 

Case, E. M., & Haldane, J. B. S. Human physiology under 
high pressure. 1. Effects of nitrogen, CO2 , and cold. 
Journal of Hygiene, 1941, 41(3), 225-249. 

Chapman, C. R. Acupuncture compared with 33% nitrous 
oxide for dental analgesia: A sensory decision 



theory evaluation. Anesthesiology, 1975, ~(5), 
532. 

Chapman, C. R., Murphy, T. M., & Butler, S. H. Analgesic 
strength of 33% N20: A signal detection theory evalu­
ation. Science, 1973, 179, 1246. 

Chapman, W. P., Arrowood, J. G., & Beecher, H. K. Human 
behavior under nitrous oxide. Journal of Clinical 
Investigation, 1943, 22, 871. 

Cheek, D. B. Recall under hypnosis. American Journal 
of Clinical Hypnosis, 1964, ~, 237. 

Cherkin, A. Parnassus revisited. Science, 1967, 155, 
266. 

Cherkin, A. Molecules, anesthesia, and memory. In 

147 

R. Alexander & N. Davidson (Eds.), Structural Chemistry 
and Molecular Biology. San Francisco: W. H. Freeman 
& Co., 1968. 

Cherkin, A. Mechanisms of general anesthesia by non­
hydrogen-bonding molecules. Annual Review of 
Pharmacology, 1969, ~, 259. 

Clement, F. W. Nitrous oxide/oxygen anesthesia. 
Anesthesiology, 1946, 2, 616. 

Clements, J. A., & Wilson, K. M. The affinity of narcotic 
agents for interfacial films. Proceedings of the 
National Academy of Sciences, 1962, ~, 1008. 

Cohen, E. N., Be1vi11, J. W., & Brown, B. W. Anesthesia, 
pregnancy, and miscarriage--A study of operating room 
nurses and anesthetists. Anesthesiology, 1971, ~, 
343. 

Cohen, E. N., Brown, B. W., Bruce, D. L., Cascorbi, H. F., 
Corbett, W., Jones, T. H., & Whitcher, C. E. Occupa­
tional disease among operating room personne1--A 
national study. Anesthesiology, 1974, 41, 321. 

Cohen, E. N., Brown, B. W., Bruce, D. L., Cascorbi, H. F., 
Corbett, W., Jones, T. H., & Whitcher, C. E. A survey 
of anesthetic health hazards among dentists. Journal 
of the American Dental Association, 1975, 2Q, 1291. 

Conn, E. E., & Stumpf, P. K. Outlines of biochemistry. 
3rd edition. New York: John Wiley, 1972. 



148 

Corbett, T. H., Cornell, R. G., Endres, J. L., & Lieding, K. 
Birth defects among children of nurse-anesthetists. 
Anesthesiology, 1974, 41, 341. 

Corbett, T. H., Cornell, R. G., Endres, J. L., & Millard, 
R. I. Effects of low concentrations of N20 on rat preg­
nancy. Anesthesiology, 1973, 39, 299. 

Courtin, R., Bickford, R., & Faulconer, A. Classification 
and significance of EEG patterns produced by N20/ether 
anesthesia during surgical operations. Proceedings of the 
Mayo Clinic, 1950, 25, 197. 

Cox, B. M., Goldstein, A., & Li, C. H. Opioid activity of a 
peptide, ~-lipotropin-(61-91), derived from ~-lipotropin. 
Proceedings of the National Academy of Sciences, 1976, 
]1(6), 1821-1823. 

Crawford, J. M. Anesthetic agents and the chemical sensiti­
vity of cortical neurons. Neuropharmacology, 1970,1(1), 
31-46. 

Craythorne, N. W. B., & Darby, T. D. Cardiovascular changes 
under nitrous oxide. British Journal of Anesthesiology, 
1965, 37, 569. 

Crockett, D. Changes in thought processes and emotional tone 
under marijuana. Journal of Personality Assessment, 1976, 
.!Q.(6), 582. 

Cullen, B. The effect of halothane and N20 on phagocytosis 
and human leucocyte metabolism. Anesthesia and Analgesia 
Current Research, 1974, ~(4), 531-536. 

Cullen, S. (Ed.) Mechanisms of anesthesia: International 
Anesthesiologists Conference. New York: Little, Brown, 
& Co., 1963. 

Dahlstrom, A., & Fuxe, K. Evidence for the existence of 
monoamine-containing neurons in the CNS. Acta Physio1. 
Scand. Supp1., 1964. 232, 1-55. 

Danto, B. L. A bag full of laughs. American Journal of 
Psychiatry, 1964, 121, 612. 

Davidson, B. M. Studies of intoxication. 1. The action of 
nitrous oxide. Journal of Pharmacology and Experimental 
Therapeutics, 1924, 25(2), 91. 

Davy, H. Researches, chemical and philosophical, chiefly 
concerning nitrous oxide, or deph10gisticated nitrous air 
and its respiration. Printed for J. Johnson, St. Paul's 
Church Yard, by Biggs & Cottle, Bristol, 1800. Available 
on microfilm from Univ. of Washington, Seattle. 



149 

DeBold, R. C., & Leaf, R. C. (Eds.) LSD, Man, and Society. 
Middletown, Conn.: Wesleyan Univ. Press, 1967. 

deForcrand, R. Sur la composition des hydrates de gas. 
C. R. Acad. Sci. Paris, 1902, 135, 959. 

Delay, J., & Deniker, P. Trente-huit cas de psychoses 
traitees par la cure prolongee et continue de 4560 
RP. Masson et Cie, Paris: Compte Rendu du Congres, 
1952. 

deQuincey, T. Confessions of an English opium eater. 
New York: Penguin Books, 1971 (orig. pub. in The London 
Magazine, 1821). 

Descartes, R. Selections. (R. M. Eaton, Ed.) New York: 
Charles Scribner's, 1927. 

DiFavio, C. A., Green, C. D., & Smiddy, J. F. Comparative 
in vitro effects of nitrous oxide, halothane, and cyclo­
propane on rat bone marrow oxygen consumption and 
anaerobic glycolysis. Toxicology and Applied Pharma­
cology, 1969, 14, 259-265. 

DiMascio, A. The effects of benzodiazepines on aggression: 
reduced or increased? In S. Garathini, E. Mussini, 
& L. o. Randall (Eds.), The benzodiazepines. New York: 
Raven Press, 1973. 

DiPalma, J. (Ed.) Drill's pharmacology in medicine. New 
York: McGraw-Hill, 1971. 

Dispan, M. P. Experiments of the gaseous oxide of azote. 
Philadelphia Medical Museum, 1808, i, 54-57 (from Annals 
de Chimie) . 

Dottori, 0., Haggendal, E., Linder, E., Nordstrom, G., 
& Seeman, T. The hemodynamic effects of adrenergic 
receptor blockade or stimulation during nitrous oxide 
anesthesia in dogs. Acta Anaesthesiol. Scand., 1976, 
~(4), 414-420, 421-428, 429-436. 

Dripps, R. D., Eckenhoff, J. E., & Van Dam, L. D. Intro­
duction to anesthesia. 4th edition. Philadelphia: 
W. B. Saunders, 1972. 

Dvorak, J., Harvey, B. L., & Coulman, B. E. Use of nitrous 
oxide to produce eupolyploids and aneuploids in wheat 
and barley. Canadian Journal of Genetics and Cytology, 
1973, 15(1), 205-214. 



Eastwood, D. W. (Ed.) Nitrous oxide. Philadelphia: 
F. A. Davis Co., 1964. 

Eastwood, D. W., Green, C. D., Lambdin, M. S., & Gardner, 
R. Effect of N20 on white-cell count in leukemia. 
New England Journal of Medicine, 1963, 268, 297-299. 

Ebert, J. D., & Sussex, I. M. 
development. 2nd Edition. 
& Winston, Inc., 1970. 

Interacting systems in 
New York: Holt, Rinehart, 

Ebert, M., & Hornse~ S. Inert gases like N20 seem to 
compete with oxygen for access to as yet unidentified, 
but specific, sites within the cell, perhaps within 
the nucleus. Nature, 1958, 181, 613. 

Eckenhoff, J. E., & Helrich, M. The effect of narcotics 
thiopental and N20 upon respiration and respiratory 
response to hypercapnia. Anesthesiology, 1958, 19, 
240. 

150 

Efron, D. H. (Ed.) Psychopharmacology, a review of progress, 
1957-1967. Washington, D.C.: U.S. Gov't Print. Off., 
1968. 

Eger, E. I. Effect of inspired anesthetic concentrate 
on the rate of rise of alveolar concentrate. 
Anesthesiology, 1963, 24, 153-157. 

Eisele, J. H. Heart rate, blood pressure, and plasma 
norepinephrine changes produced by N20. British 
Journal of Anaesthesiology, 1969, 41, 86. 

Eisele, J. H. Cardiovascular effects of 40% N20 in 
humans. Anesth. Analg., 1972, 51, 956-963. 

Epstein, R. M., Rackow, H., & Salanitre, E. Influence 
of the conc. effect on the uptake of anesthetic mix­
tures. Anesthesiology, 1964, 25, 364-371. 

Erickson, H. P. Sub-structure of microtubules. Journal 
of Cell Biology, 1974, 60, 153-167. 

Faulconer, A. Correlation of concentrations of ether 
in arterial blood with EEG patterns occurring during 
ether/oxygen and during N20/oxygen/ether anesthesia 
of human surgical patients. Anesthesiology, 1952, 
13, 361. 



151 

Faulconer, A., Pender, J. W., & Bickford, R. G. The influ­
ence of partial pressure of N20 on the depth of anesthe­
sia and the EEG in humans. Anesthesiology, 1949, 10, 
601-609. 

Fawcett, D. W. Cilia and flagella: A sensory function. 
In J. Brachet & A. E. Mirsky (Eds.), The cell, 1, 
pp. 217-297. New York: Academic Press, 1961. 

Featherstone, R. M., Hegeman, S., & Settle, W. Effects 
of inert gas pressure on protein structure and function. 
In C. J. Lambertson (Ed.), Underwater physiology. 
London: Academic Press, 1971. 

Featherstone, R. M., & Muehlbaecker, C. A. The current 
role of inert gases in the search for anesthetic 
mechanisms. Pharmacological Review, 1963, 15, 97-121. 

Feit, H., Dutton, G. R., Barondes, S. H., & Shelanski, 
M. L. Microtubule protein: Identification and trans­
port to nerve endings. Journal of Cell Biology, 1971, 
51, 138. 

Feit, H., Slusarek, L., & Shelanski, M. L. Heterogeneity 
of tubulin subunits. Proceedings of the National 
Academy of Sciences, 1971, 68, 2028-2031. 

Ferguson, J., Hawkins, S. W., & Doxey, D. Polyploidy 
produced in Allium cepa by N20 at 6 atm. Nature, 1950, 
165, 1021. 

Ferraro, D. P., Grilly, D. M., & Lynch, W. C. Effects 
of marijuana extract on the operant behavior of chimpan­
zees. Psychopharmacologia, 1971, 22, 333-351. 

Fink, B. R. Diffusion anoxia. Anesthesiology, 1955, 
16, 511. 

Fink, B. R., & Kenny, G. E. N20 decreases the rate of 
mammalian cell proliferation in monolayer culture 
mitosis. Federation Proceedings, 1966, 25, 56. 

Fink, B. R., Shepard, T. H., & Blandau, R. J. Terato­
genic activity of nitrous oxide. Nature, 1967, 214, 
146-148. 

Firsoff, V. A. Life, mind, and galaxies. Edinburgh, 
Scotland: Oliver & Boyd, 1967. 



152 

Frankenhaeuser, M. 
tive variables. 
1963b, !, 37. 

Effects of N20 on subjective and objec­
Scandinavian Journal of Psychology, 

Frankenhaeuser, M., & Beckman, M. The susceptibility of 
intellectual functions to a depressant drug. Scandinavian 
Journal of Psychology, 1961, ~, 93. 

Frankenhaeuser, M., Graff-Lonnevig, V., & Hesser, C. M. 
Effects on psychomotor functions of different nitrogen­
oxygen gas mixtures at increasing ambient pressures. 
Acta Physiol. Scand., 1963a, 59, 400-409. 

Frankenhaeuser, M., & Jarpe, G. Subjective intoxication 
induced by N20 in various concentrations. Scandinavian 
Journal of Psychology, 1962, 1, 171. 

Freed, J., & Lebowitz, M. M. Microtubules and centrioles. 
Journal of Cell Biology, 1970, 45, 344. 

Gampel-Jobbagy Z. Modification of the radiation sensitivity 
of bacteriophage T7 by 02 and N20. International Journal 
of Radiat. Biology, 1972, 21, 115-125. 

Garber, E. D. Cytogenetics. New York: McGraw-Hill, 1972. 

Garfield, J. M., Garfield, F. B., & Sampson, B. Effects of 
N20 on decision strategy and sustained attention. 
Psychopharmacologia, 1975, 42(1), 5-10. 

Gerard, R. W. Anesthetics and cell metabolism. 
Anesthesiology, 1947, ~, 453. 

Glaser, F. B. Inhalation psychosis and related states: a 
review. Archives of General Psychiatry, 1966, 14, 315. 

Goldberg, A. H. Direct myocardial effects of N20. 
Anesthesiology, 1972, 37, 373-380. 

Goldman, R. Colchicine: Disoriented movement in tissue 
culture cells. Journal of Cell Biology, 1971, 51, 
752-762. 

Goldstein, A., Lowney, L. L., & Pal, B. K. Stereospecific 
and nonspecific interactions of the morphine congener 
levorphanol in subcellular fractions of mouse brain. 
Proceedings of the National Academy of Sciences, 1971, 
68(8), 1742-1747. 

Goodman, L. S., & Gilman, A. The pharmacological basis of 
therapeutics. 5th Edition. New York: Macmillan, 1975. 



153 

Gottlieb, S. F., Cymerman, A., & Metz, A. V. Effect of 
xenon, krypton, and nitrous oxide on sodium active 
transport through frog skin with additional obser­
vations on sciatic nerve conduction. Aerospace Medicine, 
1968, 39(5) ,449. 

Gottlieb, S. F., & Sarvan, S. V. Nitrous oxide inhibition 
of sodium transport. Anesthesiology, 1967, ~, 324-326. 

Green, C. D. The effect of N20 on RNA and DNA content 
of rat bone marrow and thymus. In Toxicity of 
Anesthetics. Baltimore: Williams & Wilkins, 1968a. 

Green, C. D. Strain sensitivity of rats to nitrous oxide. 
Anesthesia and Analgesia Current Research, 1968b, 
47, 509-514. 

Green, C. D., & Eastwood, D. W. Effects of N20 inhalation 
on haemopoiesis in rats. Anesthesiology, 1963, 24, 
341. 

Grisham, L. M., Wilson, L., & Bensch, K. G. Griseofulvin: 
Scattered chromosomes but normally converging micro­
tubules. Nature, 1973, 244, 294. 

Halsey, M. J. Blood: Fluid shifts associated with gas­
induced osmosis. Science, 1973, 179, 1139-1140. 

Harvey, J. A. (Ed.) Behavioral analysis of drug action. 
Glenview, Ill.: Scott Foresman, 1971. 

Hay~s, R., Price, D. D., & Dubner, R. Naloxone antagonism 
as evidence for narcotic mechanisms. Science, 1977, 
196, 600. 

Hebb, D. O. The organization of behavior. New York: 
Wiley, 1949. 

Heller, M. L., & Watson, T. R. The role of preliminary 
oxygenation prior to induction with high N20 mixtures: 
polarographic Pa02 study. Anesthesiology, 1962, ~, 
219-230. 

Henriksen, H. T. The effect of N20 on intracranial pressure 
in patients with intracranial disorders. British 
Journal of Anaesthesiology, 1973, 45, 486-492. 

Hepler, P. K., & Jackson, W. T. Isopropyl-N-phenyl­
thio-carbamate disoriented microtubules. Journal of 
Cell Science, 1969, 5, 727. 



Hills, B. A. Neurologic oxygen toxicity: Effects of 
switch of inert gas and change of pressure. Aerospace 
Medicine, 1972, 43(7), 716-723. 

154 

Himwich, H. E., & Callison, D. A. The effects of alcohol 
on evoked potentials of various parts of the central 
nervous system of the cat. In B. Kissin & H. Begleiter 
(Eds.), The biology of alcoholism, vol. 2: Physiolo-gy 
and behavior. New York: Plenum Press, 1972. 

Hofmann, A. The discovery of LSD and subsequent investi­
gations on naturally occurring hallucinogens. In 
F. J. Ayd & B. Blackwell (Eds.), Discoveries in 
biological psychiatry. Philadelphia: J.B. Lippincott 
Co., 1970. 

Hosein, E. A., Stachiewicz, E., Bowine, W., & Denstedt, 
O. F. The influence of nitrous oxide on the metabolic 
activity of brain tissue. Anesthesiology, 1955, 16, 
708-715. 

Hughes, J. Isolation of 700 mol wt. peptide, enkephalin. 
1974. 

Hughes, J. Isolation of an endogenous compound from the 
brain with pharmacological properties similar to 
morphine. Brain Research, 1975, ~, 295. 

Hyden, H. Determinations of protein synthesis in the 
10- 9 gram range. In F. Mark (Ed.), Memory and nerve 
cell connections. New York: Clarendon Press, 1974. 

Inoue, S. Birefringence of spindle microtubules. 
Chromosoma, 1953, ~, 487-500. 

Inoue, S. Primitive motile systems. 
& N. Kamiya (Eds.), Cell biology. 
Press, 1964. 

In R. D. Allen 
New York: Academic 

Inoue, s., & Sato, H. Mechanism of mitosis. Journal 
of General Physiology Supplement, 1967, 50, 259-288. 

E., Hein, S., Colombo, G., & 
Effects of alcohol on the nerve 
J. Mardones (Eds.), Biological 
New York: John Wiley & Sons, 

Israel, Y., Rosenmann, 
Canessa-Fischer, M. 
cell. In Y. Israel & 
basis of alcoholism. 
1971. 

Jacquet, Y. F., & Marks, N. Endorphins: The C-fragment 
of ~-lipotropin; an endogenous neuroleptic or anti­
psychotogen? Science, 1976, 194. 



155 

Jaffe, J. H. Drug addiction and drug abuse. In L. S. 
Goodman & A. Gilman (Eds.), The pharmacological basis of 
therapeutics. 5th Edition. 1975. 

James, W. Experience and consciousness while breathing 
nitrous oxide. Mind, 1882, 2, 186-208. 

James, W. The principles of psychology. Vol. I. New 
York: Dover Publications, 1950 (originally published 
1890) . 

Jarvis, M. J., & Lader, M. H. The effects of N20 on the 
auditory evoked response in a reaction time task. 
Psychopharmacologia (Berlin), 1971, 20, 201-212. 

Jenkins, L. C. General anesthesia and the central nervous 
system. Baltimore: Williams & Wilkins, 1969. 

Johnson, F. H. Effect of anesthetics on artificial mem­
brane systems. Biochem. Biophys. Acta, 1973, 307(1), 
42-57. 

Johnson, F. H., & Brown, D. S. 
action of certain narcotics. 
1942, 20, 269. 

Pressure reversal of the 
J. Cell Compo Physiol., 

Johnson, F. H., & Flagler, E. A. Hydrostatic pressure 
reversal of narcosis in tadpoles. Science, 1950, 112, 
91. 

Johnson, M. C. Hematologic alterations produced by N20. 
Anesthesiology, 1971, 34, 42-49. 

Johnston, H. Newly recognized vital nitrogen cycle. 
Proceedings of the National Academy of Sciences, 1972, 
69 , 2369- 2372 . 

Johnstone, M. N20 and intracranial pressure. British 
Journal of Anaesthesiology, 1973, 45, 1086. 

Jouvet, M. Paradoxical sleep--A study of its nature and 
mechanisms. Progress in Brain Research, 1965, 18, 
20-62. 

Katz, B. Nerve, muscle, and synapse. New York: McGraw 
Hill, 1966. 

Katz, R. L., & Bigger, J. T. 
anesthesia and operation. 
193. 

Cardiac arrythmias during 
Anesthesiology, 1970, 11, 



156 

Kent, D. W., Halsey, M. J., & Eger, E. I. Pharmacological 
effects of helium, neon, hydrogen, and nitrous oxide. 
In Proceedings of the Fifth Symposium on Underwater 
Physiology. Washington, D.C.: Nat'l Res. Council Publ., 
1976. 

Kety, S. S. The theory and applications of the exchange 
of inert gas at the lungs and tissues. Pharmacological 
Review, 1951, 1, 1-41. 

Kety, S. S., & Schmidt, C. F. The nitrous oxide method 
for the quantitative determination of cerebral blood 
flow in humans: Theory, procedure, and normal values. 
Journal of Clinical Investigation, 1948, 27, 476. 

Kitahata, L. M. The effect of N20 on alveolar C02 tension: 
A second gas effect. Anesthesiology, 1971, ~, 607-611. 

Kitahata, L. M., McAllister, R. G., & Taub, A. Identi­
fication of central trigeminal nociceptors and the 
effects of N20. Anesthesiology, 1973, ~(l), 1219. 

Klee, G. D., Bertino, J., Weintraub, W., & Calloway, E. 
Influence of varying dosage on the effects of LSD-25 
in humans. Journal of Nervous and Mental Diseases, 
1961, 132, 404-409. 

Klee, W. A., & Nirenberg, M. Morphine tolerant cells 
continue to show stimulation of cAMP-ase by adenine 
and prostaglandin El. Proceedings of the National 
Academy of Sciences, 1974, 71, 3474-3477. 

Knill-Jones, R. P., Moir, D. D., Rodrigues, L. V., Spence, 
A. A. Anesthetic practice and pregnancy--Controlled 
survey of women anesthetists in the United Kingdom. 
Lancet, 1972, 1, 1326. 

Knill-Jones, R. P., Newman, B. J., & Spence, A. A. 
Anesthetic practice and pregnancy--Controlled survey 
of male anesthetists in the United Kingdom. Lancet, 
1975, ~, 807. 

Kornetsky, C. Effects of meprobamate, phenobarbital, 
and dextroamphetamine on reaction time and learning 
in humans. Journal of Pharmacology and Experimental 
Therapeutics, 1958, 123, 216. 

Krebs, H. A., Eggleston, L. V., & d'Alessandro, A. The 
effect of succinate and amy tal on the reduction of 
acetoacetate in animal tissues. Biochemical Journal, 
1961, 11, 536. 



Krieg, W. J. S. Functional neuroanatomy. 2nd Edition. 
New York: The Blakiston Co., 1953. 

Kripke, B. J., Kelman, A. D., Shah, N. K., Balogh, K., 
& Handler, A. H. Testicular reaction to prolonged 
exposure to N20. Anesthesiology, 1976, !!, 104. 

157 

Krippner, S. Psychedelic experience and language process. 
Journal of Psychedelic Drugs, 1970, 1(1), 41-51. 

Kuhar, M. J., Pert, C., & Snyder, S. H. Regional distri­
bution of opiate receptor binding in monkey and human 
brain. Nature, 1973, 245, 447. 

Lader, M., & Norris, H. The effects of N20 on the human 
auditory evoked response. Psychopharmacologia (Berlin), 
1969, 16, 115. 

Lashley, K. S., Chow, K. L., & Semmes, J. An examination 
of the electrical field theory of cerebral integration. 
Psychological Review, 1951, 58, 123-136. 

Lassen, H. C. A. Treatment of tetanus: Severe bone 
marrow depression after prolonged N20 anesthesia. 
Lancet, 1956, 1, 527-530. 

Lecky, J. H. Anesthetic trace levels in u.S. hospitals--
98 institutions. In American Society of Anesthesio­
logists, Annual meeting. Chicago: ASA, 1975. 

Ledbetter, M., & Porter, K. Microtubules in root tip 
growth. Science, 1964, 144, 872-874. 

Lehninger, A. L. The mitochondrion. New York: W.A. 
Benjamin, 1965. 

Lehninger, A. L. Biochemistry. 2nd Edition. New York: 
Worth Publ., 1975. 

Leighton, K. M., & Koth, B. Some aspects of the clinical 
pharmacology of N20. Canadian Anaesthesiology Society 
Journal, 1973, ~, 94-103. 

Lenfant, C. Arterial-alveolar difference in PC02 air 
and oxygen breathing. Journal of Applied Physiology, 
1966, 21, 1356-1362. 

Li, C. H. a-endorphin: A pituitary peptide with potent 
morphine-like activity. Archives of Biochemistry 
and Biophysics, 1977, 183, 592-604. 



Li, C. H., & Chung, D. Isolation and structure of an 
untriakontapeptide with opiate activity from camel 
pituitary glands. Proceedings of the National Academy 
of Sciences, 1976, 73(4), 1145. 

Linde, H. W., & Bruce, D. L. Occupational exposure of 
anesthetists to halothane, N20, and cyclopropane. 
Anesthesiology, 1969, lQ, 363. 

Linton, H. B., & Langs, R. J. Empirical dimensions of 
LSD-25 reactions. Archives of General Psychiatry, 
1964, 10, 469-485. 

Longmuir, I. S. Effect of xenon, krypton, nitrogen, 
and N20 on oxygen consumption of rat liver slices. 
Aerospace Medicine, 1968, ~, 1287-1289. 

158 

Longmuir, I. S., & Grace, M. Effect of the osmotic pressure 
of dissolved gases on red cells. Biochem. BioI. Sper., 
1970, 2(3), 127-130. 

Luduena, R. F., & Woodward, D.O. Partial sequence analy­
sis of tubulin proteins from microtubules. Proceedings 
of the National Academy of Sciences, 1973, 70, 3594-3598. 

Lundborg, R. 0. Effects of N20 upon cardiovascular and 
sympathomimetic changes. Canadian Anaesthesiological 
Society Journal, 1966, 13, 361. 

Lynn, E. J. Non-medical use of N20: A preliminary report. 
Michigan Medicine, 1971, lQ, 203-204. 

Lynn, K. R. Anomalous behavior during irradiation of 
chymotrypsin and trypsin under N20. Radiation Research, 
1972, 51, 254-264. 

McGaugh, J. L., & Petrinovich, L. Memory formation is 
enhanced by the stimulant compounds: Strychnine and 
picrotoxin. Psychological Review, 1966, 1, 382. 

McGlothlin, W., Cohen, S., & MsGlothlin, M. S. Long 
lasting effects of LSD on normals. Archives of General 
Psychiatry, 1967, 17, 521-532. 

McIntire, J. W. R. Awareness during anesthesia. Canadian 
Anaesthesiological Society Journal, 1966, 13, 495. 

McIntosh, J. R., Hepler, P. K., & Van Wie, D. G. Models 
of mitosis. Nature, 1969, 224, 659. 



MacIntosh, R., Mushin, W. W., & Epstein, H. G. Physics 
for the anaesthetist. Springfield, Ill.: Charles C. 
Thomas, 1958. 

McKinney, Fred. N20 anesthesia as an experimental tech­
nique in psychology. Journal of General Psychology, 
1932, i, 195-199. 

McMurray, G. A. Experimental study of a case of insensi­
tivity to pain. Archives of Neurology and Psychiatry, 
1950, 64, 650. 

McNair, D. M. Antianxiety drugs and human performance. 
Archives of General Psychiatry, 1973, 29, 611. 

159 

Mains, R. E., Eipper, B. A., & Ling, 
to corticotropins and endorphins. 
the National Academy of Sciences, 
3018. 

N. Common precursor 
Proceedings of 

1977, 74(7),3014-

Mapleson, W. W. N20 anesthesia induced at atmospheric 
and hyperbaric pressures. British Journal of Anaesthe­
siology, 1974, 46, 13-28. 

Markoe, A. M. Effects of inert gases and N20 on the radia­
tion sensitivity of Hela cells. Phys. Med. BioI., 
1970, 15, 200. 

Marshall, C. R. The influence of moderate and severe 
intoxication on remembering. British Journal of 
Psychology, 1973, 28, 18-27. 

Marshall, C. R. The threshold of unconsciousness. 
British Journal of Psychology, 1938, 28, 424-429. 

Marx, J. L. Analgesia: How the body inhibits pain 
perception. Science, 1977, 195, 471. 

Masters, R. E., & Houston J. The varieties of psychedelic 
experience. New York: Holt, Rinehart & Winston, 1966. 

Matsubara, T. Studies on denitrofication. IX. N20, 
its production and reduction to nitrogen. Journal 
of Biochemistry (Tokyo), 1968, ~, 871. 

Matsubara, T. The participation of cytochromes in the 
metabolism of nitrous oxide into nitrogen by a deni­
trifying bacterium. Journal of Biochemistry (Tokyo), 
1975,21(3),627. 



160 

Mayer, D. J., & Hayes, R. L. Stimulation-produced 
analgesia: Development of tolerance and gross-tolerance 
to morphine. Science, 1975, 188, 941. 

Meglio, M., Hosobuchi, Y., Loh, H. H., Adams, J. E., & 
Choh, H. L. ~-endorphin: Behavioral and analgesic 
activity in cats blocked by naloxone. Proceedings 
of the National Academy of Sciences, 1977, 74(2), 
774-776. 

Melcalfe, J. C., & Burgen, A. S. Relaxation of cyto­
membranes in the presence of anesthetics. Nature 
(London), 1968, 220, 587. 

Meyer, H. H. Zur theorie de alkoholnarkose. Arch. Exp. 
Path. Pharmak., 1899, 42, 109. 

Michenfelder, U. D., Van Dyke, R. A., & Thege, R. A. 
Anesthetic agents and techniques on canine cerebral 
ATP and lactate levels. Anesthesiology, 1970, 1l, 
315. 

Millar, B. A. (Ed.) Pharmacological topics in anesthesia: 
International College of Anesthesiologists Symposium. 
New York: Little, Brown & Co., 1971. 

Millard, R. I., & Corbett, T. H. N20 concentrations in 
the dental operatory. Journal of Oral Surgery, 1974, 
1.£, 593. 

Miller, J. G. Unconsciousness. New York: John Wiley, 
1942. 

Miller, K. W., Paton, W. F. M., & Smit~ E. B. Theories 
of anesthesia. British Journal of Anaesthesiology, 
1962, 39, 910. 

Miller, K. W., Paton, W. F. M., & Smit~ E. B. Site of 
action of general aes·thetics. Nature, 1965, 206, 
574-577. 

Miller, R. N. Is halothane a true uncoupler of oxidative 
phosphorylation? Anesthesiology, 1971, }2, 256. 

Miller, S. L. A theory of gaseous anesthetics. Proceedings 
of the National Academy of Sciences, 1961, 47, 1515. 

Miller, S. L., Eger, E. I., & Lundgren, C. Theories 
of anesthesia. Nature, 1969, 221, 469. 



Milner, P. M. Physiological psychology. New York: Holt, 
Rinehart & Winston, 1970. 

161 

Mitchell, T. Elements of chemical philosophy. Cincinatti: 
Corey & Fairbank, 1832. 

Miyahara, J. T., & Karler, R. Effect of salicylate on 
oxidative phosphorylation and respiration of mitochon­
drial fragments. Biochemical Journal, 1965, ~, 194-198. 

Mori, K., Kawamata, M., Miyajima, S., & Fujita, M. Effects 
of anesthetics on neuronal reactive properties of 
thalamic relay nuclei. Anesthesiology, 1972, ~(6), 
550-557. 

Mullins, L. J. Some physical mechanisms in narcosis. 
Chemical Review, 1954, ~, 289-323. 

Nagle, D. R. Anesthetic addiction and drunkenness: A 
contemporary and historical survey. International 
Journal of the Addictions, 1968, 1(1), 25. 

Nahrwold, M. L., & Cohen, P. J. Additive effect of nitrous 
oxide and halothane on mitochondrial function. 
Anesthesiology, 1973, ~(5), 534. 

Naito, H. Effects of halothane and N20 on removal of 
norepinephrine from the pulmonary circulation. 
Anesthesiology, 1973, }2, 575-580. 

Nakken, K. F. The use of N20 in elucidating mechanisms 
of radiosensitization in chemical and biological 
systems. Scandinavian Journal of Clinical Laboratory 
Investigations, 1968, 22: Supplement, 106, 41. 

National Institute for Occupational Safety and Health. 
Occupational exposure to waste anesthetic gases and 
vapors: DHEW (NIOSH) Publ. #77-140. Washington, D.C.: 
DHEW, 1977. 

Neville, J. R. Biologic activity of noble gases. 
Aerospace Medicine, 1969, 40, 733-736. 

Nilsson, L. The effect of anesthetics on the tissue 
lactate, pyruvate, phosphocreatine, ATP, and AMP 
concentrations, and on intracellular pH in the rat 
brain. Acta Physiol. Scand., 1970, ~, 142-144. 

Nilsson, L. Effects of anesthesia on the energy and acid­
base status of the rat brain. Acta Physiol. Scand., 
1973, 17, 119-128. 



Nikki, P., Pfaffli, P., Ahlman, K., & Ralli, R. Chronic 
exposure to anesthetic gases in the operating theater 
and recovery room. Annals of Clinical Research, 1972, 
4, 266. 

Olmsted, J. B., & Borisy, G. G. Microtubules. Annual 
Review of Biochemistry, 1973, 42, 507-540. 

Olmsted, J. B., Witman, G. B., & Carlson, K. Comparison 
of the microtubule proteins of neuroblastoma cells, 
brain, and chlamydomonas flagella. Proceedings of 
the National Academy of Sciences, 1971, 68, 2273-2277. 

Ostergren, G. C-mitosis produced in Pisum sativum 
by N20 at ordinary atm. pressure. Hereditas, 1944, 
30, 429. 

162 

Overton, D. A. State dependent learning depressant and 
atropine-like drugs. Psychopharmacologia, 1966, 10, 6. 

Parkhouse, J. Awareness during surgery. Postgraduate 
Medical Journal, 1960a, 36, 674. 

Parkhouse, J., Hewrie, J. R., Duncan, G. M., & Rome, 
H. P. Nitrous oxide analgesia in relation to mental 
performance. Journal of Pharmacology and Experimental 
Therapy, 1960b, 128, 44. 

Pauling, L. A molecular theory of general anesthesia. 
Science, 1961, 134, 3471. 

Pearson, R. E. Responses to suggestions given under N20 
anesthesia. American Journal of Clinical Hypnosis, 
1961, i, 106. 

Penfield, W. Centroencephalic integrating system. Brain, 
1958, ~, 231. 

Penfield, W. 
reflexes. 
learning. 
1969. 

Consciousness, memory, and conditioned 
In K. Pribram (Ed.), On the biology of 
New York: Harcourt, Brace, & Jovanovich, 

Pert, C. B., Kuhar, M. J., & Snyder, S. H. Localization 
of opiate receptor sites. Life Sciences, 1975, 16, 
1849. 

Pfaffli, P., Nikki, P., & Ahlman, K .•.. and N20 in 
end-tidal air and venous blood of surgical personnel. 
Annals of Clinical Research, 1972, i, 273. 



piatigorsky, J., Webster, H. de F., & Wollberg, M. 
Lens cell elongation. Journal of Cell Biology, 1972, 
55, 82. 

Pitelka, D. R. 
Flagellata. 
Berkeley. 

Observations on flagellum structures in 
University of California Press, 53(11), 

163 

Pitelka, D. R. Electron-microscopic structure of protozoa. 
New York: Macmillan, 1963. 

Pitelka, D. R. In Primitive Motile Systems in Cell Biology, 
R. D. Allen & N. Kamiya (Eds.). New York: Academic 
Press, 1964. 

Pitelka, D. R. Structure and function of centrioles. 
In M. Sleigh (Ed.), Cilia and Flagella. New York: 
Academic Press, 1974. 

Pitelka, D. R., & Schooley, C. N. Comparative morphology 
of some protistan flagella. University of California 
Press, 61(2), 1955, Berkeley. 

Pittinger, C., Faulconer, A., Knott, J., Pinder, J., 
Morris, L., & Bickford, R. EEG and other observations 
in monkeys during xenon anesthesia at elevated pressures. 
Anesthesiology, 1955, 16, 551. 

Pittinger, C., & Keasling, H. H. Theories of narcosis. 
Anesthesiology, 1959, 20, 204-213. 

Pittinger, C., Moyers, J., Cullen, S., Featherstone, R., 
& Gross, E. Clinicopathologic studies associated with 
xenon anesthesia. Anesthesiology, 1953, !i, 10. 

Pomeranz, B. Do endorphins mediate acupuncture analgesia? 
Advances in Biochemical Psychopharmacology, 18, 
351-361. 

Potchen, E. J. 13N20 coincidence counting for rCBF 
measurement--theoretical considerations. Scandinavian 
Journal of Clinical Laboratory Investigations, 1968, 
22: Suppl.: 102, IlJ. 

Powers, E. L. N20 as a sensitizer of bacterial spores 
to X-rays. International Journal of Radiation Biology, 
1970, 11, 501-514. 

Pribram, K. H. The neurophysiology of remembering. 
Scientific American, January 1969, pp. 73-86. 



164 

Pribram, K. H. Languages of the brain. Englewood Cliffs, 
N.J.: Prentice-Hall, 1971. 

Quastel, J. H. Biochemical aspects of narcosis. In 
K. A. C. Elliot, I. H. Page, & J. H. Quastel (Eds.), 
Neurochemistry. Springfield, Ill.: Charles C. Thomas, 
1955. 

Quastel, J. H. Effects of drugs on metabolism of the 
brain in vitro. British Medical Bulletin, 1965, 
11, 49. 

Raff, R., Greenhouse, P., Gross, K., & Gross, P. Cyto­
plasmic pool of a- and s-tubulin. Journal of Cell 
Biology, 1971, 50, 516-527. 

Rao, P. N. Mammalian cell fusion. Experimental Cell 
Research, 1975, ~, 40. 

Rao, P. N., & Engelberg, J. Hela cells: effects of 
temperature on the life cycle. Science, 1965, 148, 
1092. 

Rao, P. N., & Johnson, R. T. Mammalian cell fusion: 
Studies on the regulation of DNA synthesis and mitosis. 
Nature, 1970, 225, 159-164. 

Rao, P. N., Sunkara, P. S., & Wilson, B. A. Regulation 
of DNA synthesis: Age-dependent cooperation among 
Gl cells upon fusion. Proceedings of the National 
Academy of Sciences, 1977, ]i(7) , 2869-2873. 

Rector, G. H. M., & Eastwood, D. W. Teratogenic effects 
of nitrous oxide upon the chick embryo. Anesthesiology, 
1964, ~, 109. 

Rees, H., & Jones, R. N. Chromosome genetics. Baltimore, 
Md.: Univ. Park Press, 1977. 

Ritchie, G. A. Identification of the sources of ~20 
produced by oxidative and reductive processes 1n 
Nitrosomonas europaea. Biochemical Journal, 1972, 
126, 1181-1191. 

Roberts, M., & Hanaway, J. Atlas of the human brain 
in section. Philadelphia: Lea & Febiger, 1970. 

Robson, J. G., Burns, B. D., & Welt, P. J. L. The effect 
of inhaling dilute N20 upon recent memory and time 
estimation. Canadian Anaesthesiological Society Journal, 
1960, 2, 399. 



Roget, P. M. Quoted in H. Davy, Researches, chemical 
and philosophical, chiefly concerning nitrous oxide, 
or dephlogisticated nitrous air, and its respiration. 
Printed for J. Johnson, St. Paul's Church Yard, by 
Biggs & Cottle, Bristol, 1800. 

Rosen, J. Hearing tests during anaesthesia with N20 
and relaxants. Acta Anaesth. Scand., 1959,1, 1. 

Roth, S. H., Smith, R. A., & Paton, W. D. M. Pressure 
reversal of N20 induced conduction failure in peri­
pheral nerve. In Proceedings of the Fifth Symposium 
on Underwater Physiology. Washington, D. C.: Nat'l 
Res. Council Publ., 1976. 

165 

Rzeczycki, W. Mitochondria uncoupling effect of halothane 
dependent on Mg++. Biochem. Biophys. Research Commun., 
1973, 52, 270. 

Santayana, G. Realms of being: The realm of essence, 
the realm of matter. New York: Charles Sc~ibner'sSons 
(Triton Edition, vol. XIV), 1937. 

Sasa, M., Nakai, Y., & Takaori, S. Cortical EEG and evoked 
click potential responses to nitrous oxide. Japanese 
Journal of Pharmacology, 1967, 17(3), 364-380. 

Schatte, C. L., & Bennett, P. B. Acute metabolic and 
physiologic response of goats to narcosis. Aerospace 
Medicine, 1973, !!. 

Schatte, C. L., Hall, P., Fitch, J. W., & Loader, J. E. 
Effects of N20 narcosis on the contraction and repay­
ment of an oxygen debt. Aerospace Medicine, 1974, 
~(10), 1164-1166. 

Sears, D. F., & Fenn, W. o. Narcosis and emulsion 
reversal. Journal of General Physiology, 1957, ~, 
515. 

Seiden, L. S. Neurological basis of drug action. In 
J. A. Harvey (Ed.), Behavioral analysis of drug action. 
Glenview, Ill.: Scott, Foresman, 1971. 

Severinghaus, J. W. Methods of measurement of blood 
and gas CO 2 during anesthesia. Anesthesiology, 1960, 
21, 717-726. 

Shanes, A. M. Drugs and nerve conduction. American 
Review of Pharmacology, 1963, 1, 185. 



Sharma, S. K., Nirenberg, M., & Klee, W. A. Morphine 
receptors as regulators of adenylate cyclase activity. 
Proceedings of the National Academy of Sciences, 1975, 
72(2), 590-594. 

166 

Shelanski, M. L. Chemistry of the filaments and tubules of 
the brain. Journal of Histochemistry and Cytochemistry, 
1973, 21, 529-539. 

Shepard, T. H., & Fink, B. R. Teratogenic activity of 
N20 in rats. In Toxicity of anesthetics. Baltimore, 
Md.: Williams & Wilkins, 1968. 

Shulgin, A. psychomimetic agents related to the catechol­
amines. Journal of Psychedelic Drugs, 1969, ~, 17-29. 

Sieck, L. W. Ion clustering of the cations in the high­
energy irradiation of N20. Radiation Research, 1973, 
~, 441-459. 

Silliman, B. On the nitrous oxide. Philadelphia Medical 
Museum, 1809, i, 208(111). 

Sleigh, M. (Ed.) Cilia and flagella. New York: Academic 
Press, 1974. 

Smith, B. E., Gaub, M. L., & Moya, F. Teratogenic effects 
of anesthetic agents. Anesthesia and Analgesia, 1965, 
ii, 726. 

Smith, D. E. An analysis of marijuana toxicity. In D. E. 
Smith (Ed.), The new social drug: Cultural, medical, 
legal perspectives on marijuana. Englewood Cliffs, N. J.: 
Prentice-Hall, 1970. 

Smith, N. T., & Corbascio, A. N. Cardiovascular and 
adrenergic neural changes under nitrous oxide. 
Anesthesiology, 1970, 32, 410. 

Smith, N. T., Eger, E. I., Whitcher, C. E., Stoelting, 
R. K., & Whayne, T. E. The circulatory effects of the 
addition of N20 to halothane anesthesia in humans. 
Anesthesiology, 1968, 29, 212-213. 

Smith, W. D. Cardiovascular and adrenergic neuron changes 
induced by nitrous oxide. International Anesthesiology 
Clin., 1971, ~(3), 91. 

Smith, W. D. N20 anesthesia induced at atmospheric and 
hyperbaric pressures. British Journal of Anaesthe­
siology, 1974, 46, 3-12. 



167 

Snigireff, S. L., Cox, J. R., & Eastwood, D. W. The effect 
of N20, . • • on neural mitotic index, weight, mortality 
and gross anomaly rate in the developing chick embryo. 
In B. R. Fish (Ed.), Toxicity of anesthetics. Baltimore, 
Md.: Williams & Wilkins, 1968. 

Snyder, J. A., & McIntosh, J. R. Biochemistry and physio­
logy of microtubu1es. Annual Review of Biochemistry, 
1976, 45, 699-720. 

Snyder, S. H. Review article: Opiate receptor in normal and 
drug altered brain function. Nature, 1975, 257, 185. 

Sor1ey, W. R. Quoted in Encyclopedia Brittanica, pp. 886-
887. Vol. 13. Chicago: Encyclopedia Brittanica, 1952. 

Stanaszek, W. F., & Ecanow, B. Anesthetic gas absorption 
properties of surfactant systems. Journal of Pharmaco­
logical Science, 1972, 61(6), 860-862. 

Stein, H. D., Keiser, H. R., & Sjo1rdsma, A. Effects 
of anesthetic agents on serum proline hydroxylase. 
Anesthesiology, 1972, ~(3), 253-256. 

Steinberg, H. Selective effects of an anesthetic drug 
on cognitive behavior. Quarterly Journal of Experi­
mental Psychology, 1954, ~, 170-180. 

Steinberg, H. Changes in time perception induced by 
an anaesthetic drug. British Journal of Psychology, 
1955, ~, 273-279. 

Steinberg, H. IIAbnorma1 behavior ll induced by nitrous 
oxide. British Journal of Psychology, 1956, 47, 
183-194. --

Steinberg, H., Legge, E., & Summerfield, A. Drug induced 
changes in visual perception. In E. Roth1in (Ed.) 
Neuro-psycho-pharmaco1ogy 2: Proceedings of the 2nd 
International Meeting of the Collegia International 
Neuro-Psycho-Pharmaco1ogicum, Bas1e, 1960. 1961. 

Steinberg, H., & Summerfield, A. Influence of a depres­
sant on acquisition in rote learning. Quarterly 
Journal of Experimental Psychology, 1957, ~, 138-145. 

Stetzner, L. C., & DeBoer, B. Changes in rats during 
exposure to N20 at 7, 14, and 21 p.s.i. with physio­
logic levels of 02 and N2 to a total pressure of 36 
p.s.i. Aerospace Medicine, 1972, 729. 



Stoelting, R. K., & Eger, E. I. An additional explanation 
for the second gas effect: A concentrating effect. 
Anesthesiology, 1969, 30, 273-277. 

Tart, C. T. Altered states of consciousness. New York: 
John Wiley, 1969. 

168 

Terrell, R. K., Sweet, W.O., Gladfelter, J. H., & Stephen, 
C. R. Study of recall during anesthesia. Anesth. Ana1g., 
1969, 48, 86. 

Teschemacher, E. F., Opheim, P. A., Cox, L. M., & Goldstein, 
I. M. Endorphin from pituitary acts like morphine, 
inhibits naloxone binding. 

Theye, R. A., & Michenfe1der, J. D. The effect of nitrous 
oxide on canine cerebral metabolism. Anesthesiology, 196~ 
~, 1119-1124. 

Tomlin, P. J. Subjective and objective sensory responses to 
inhalation of N20 and methoxyflurane. British Journal of 
Anaesthesio1ogy, 1973, ~, 719-725. 

Traber, J., Gu11is, R., & Hamprecht, B. Influence of opiates 
on the levels of adenosine 3':5'-cyc1ic monophosphate in 
neuroblastoma X glioma hybrid cells. Life Sciences, 1976, 
16(12), 1863-1868. 

Triconi, V., Serr, D., & Solish, G. Effect of N20 on human 
embryos. American Journal of Obstetrics and Gynecology, 
1960, J..J.., 504. 

Ueda, I. Effects of volatile general anesthetics on adenosine 
diphosphate--induced platelet aggression. Anesthesiology, 
1971, l!(5) , 405-408. 

Van Dyke, R. A. Biotransformation of the volatile anesthet­
ics. Conference on cellular toxicity of anesthetics, 197~ 

Van Dyke, R. A. Induction of microsomal dechlorinating and 
ether-cleavage enzymes. Journal of Pharmacology and 
Experimental Therapeutics, 1966, 154, 364. 

Van Dyke, R. A. In vitro metabolism of methoxyflurane and 
halothane in rat liver slices and cell fractions. 
Biochem. Pharmaco1., 1965, 14, 603. 

Van Dyke, R. A. Conversion in vivo of several anesthetics to 
C02 and chloride. Biochem. Pharmaco1., 1964, 13, 1239. 

Wa1temath, C. L. The effect of C02, ha1othan~ and ethrane 
on hemoglobin function. Anesth. Ana1g., 1971, 50, 426-430. 



Webber, J. T. Respiratory effects of N20 narcosis. 
Master of Arts Thesis, SUNY at Buffalo. Cited in 
Bradley and Dickson, 5th Symposium. 

Webster's New Collegiate Dictionary. Springfield, Mass.: 
G. & C. Merriam Co., 1977. 

White, A., Handler, P., & Smith, E. L. Principles of 
biochemistry. New York: McGraw-Hill, 1973. 

Whitteridge, D., & Bulbring, E. Changes in the activity 

169 

of pulmonary receptors in anesthesia and their influence 
on respiratory behavior. Journal of Pharmacology 
and Experimental Therapeutics, 1944, ~, 340-359. 

Wikler, A. The relation of psychiatry to pharmacology. 
Baltimore, Md.: Williams & Wilkins, 1957. 

Wilson, A., Crockett, G. S., Exton-Smith, A. N., & 
Steinberg, H. Human behavioral changes under nitrous 
oxide. British Medical Journal, 1950, ~, 484. 

Wilson, D. F. Mechanism of action of uncouplers of oxida­
tive phosphorylation. Biochemistry, 1971, 10, 2987. 

Wilson, L., Bamburg, J. R., Mizel, S. B., Grisham, L. M., 
& Creswell, K. M. Interaction of drugs with microtubule 
proteins. Federation Proceedings, 1974, 11(2), 158-166. 

Wilson, L., Bryan, J., Ruby, A., & Mazia, D. Vinblastine 
action upon microtubules. Proceedings of the National 
Academy of Sciences, 1970, 66, 807-814. 

Wintle, F. T. Letter to the editor on ether addiction. 
Lancet, 1847, 1, 162. 

Woodbridge, D. D. 
of anesthesia. 

Changing concepts concerning depth 
Anesthesiology, 1957, 18, 536. 

Woodbury, D. M., & Fingl, E. Analgesic-antipyretics, 
anti-inflammatory agents, and drugs employed in the 
therapy of gout. In L. S. Goodman & A. Gilman (Eds.), 
The pharmacological basis of therapeutics (5th ed.). 
New York: Macmillan, 1975. 

Woodhouse, J. Observations on the effects of the nitrous 
oxide. Philadelphia Medical Museum, 1808, ~, 179. 



Yanagida, H. Hidden factor of cardiac arrhythmia during 
light anesthesia. Acta Anaesthesiol. Scand., 1972, 
16, 59-64. 

Zetler, G. Active peptides in the nervous tissue: 
historical prospects. Advances in Biochemical 
Psychopharmacology, 1978, 18, 1-23. 

170 



APPENDIX I 

SUBJECTIVE SENSATIONS UNDER NITROUS OXIDE 
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PETER MARK ROGET 

liThe first effect was that of making me vertiginous, 

and producing a tingling sensation in my hands and feet; 

I seemed to lose the sense of my own weight, and I imagined 

I was sinking into the ground. I then felt a drowsiness 

gradually steal upon me, and a disinclination to motion; 

even the actions of inspiring and expiring were not 

performed without effort; and it also required some atten­

tion of mind to keep my nostrils closed with my fingers. 

I was gradually roused from this torpor by a kind of 

delirium; which came on so rapidly that the air-bag dropt 

from my hands and I suddenly lost sight of all the objects 

around me, they being apparently obscured by clouds, in 

which were many luminous points, similar to what is often 

experienced on rising suddenly and stretching out the 

arms, after sitting long in one position. I felt myself 

totally incapable of speaking, and for some time lost 

all consciousness of where I was or who was near me. My 

whole frame felt as if violently agitated; I thought I 

panted violently; my heart seemed to palpitate and every 

artery to throb with violence; I felt a singing in my 

ears: all the vital motions seemed to be irresistibly 

hurried on as if their equilibrium had been destroyed 
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and everything was running headlong into confusion. My 

ideas succeeded one another with extreme rapidity, thoughts 

rushed like a torrent through my mind, as if their velocity 

had been suddenly accelerated by the bursting of a barrier 

which had before retained them in their natural and equable 

course. This state of extreme hurry, agitation, and tumult, 

was but transient. Every unnatural sensation gradually 

subsided. 

"I am sensible that the account I have been able 

to give of my feelings is very imperfect. For however 

calculated their violence and novelty were to leave a 

lasting impression on the memory, these circumstances 

were for that very reason unfavorable to accuracy of com­

parison with sensations already familiar. 

liThe nature of the sensations themselves, which 

bore greater resemblance to a half-delirious dream than 

to any distinct state of mind capable of being accu­

rately remembered, contributes very much to increase the 

difficulty. II 

HUMPHREY DAVY 

" the pleasurable delirium • . . a sensation 

analogous to gentle pressure on all the muscles, attended 

by a highly pleasurable thrilling . The objects around 

me became dazzling and my hearing more acute • • • I often 

thought that it produced a feeling somewhat analogous 
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to taste, in its application to my lungs ••• When ten 

quarts had been breathed for near 4 minutes, an exhilaration 

and a sense of slight intoxication lasted for 2 or 3 hours 

• At other times, I had sublime emotions connected 

with highly vivid ideas • Previous to sleep, my mind 

was long occupied with visible imagery • • • I imagined 

that I had increased sensibility of touch • . . Headache 

was wholly removed by two doses of the gas • • • I was 

unconscious of headache after the third inspiration 

I resolved to breathe the gas (N 20) for such a time and 

in such quantities, as to produce excitement equal in 

duration and superior in intensity, to that occasioned 

by high intoxication from opium or alcohol • • • I had 

now a great disposition to laugh, luminous points seemed 

frequently to pass before my eyes, my hearing was certainly 

more acute and I felt a pleasant lightness and power of 

exertion in my muscles ..• I felt a sense of tangible 

extension highly pleasurable in every limb; my visible 

impressions were dazzling and apparently magnified; I 

heard distinctly every sound in the room and was perfectly 

aware of my situation. By degrees as the pleasurable 

sensations increased, I lost all connection with external 

things; trains of vivid visible images rapidly passed 

through my mind, and were connected with words in such 

a manner as to produce perceptions perfectly novel. I 

existed in a world of newly connected and newly modified 



ideas. I theorized; I imagined that I made discoveries 

• • • I continued in the pleasurable trance longer than 

before; the exhilaration continued nearly two hours . . • 

I have often felt very great pleasure when breathing it 

alone, in darkness and silence, occupied only by ideal 

existence • • • Whenever I have breathed the gas after 

excitement from moral or physical causes, the delight 

has been often intense and sublime. 

"From the nature of the language of feeling the 

preceding detail contains many imperfections. I have 

endeavored to give as accurate an account as possible 

of the strange effects of nitrous oxide, by making use 
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of terms standing for the most familiar common feelings 

... I have sometimes experienced from nitrous oxide, 

sensations similar to no others, and they have consequently 

been indescribable." (pp. 458-491) 

BENJAMIN PAUL BLOOD 

liThe anesthetic revelation is the initiation of 

man into the Immemorial Mystery of the Open Secret of 

Being, revealed as the inevitable Vortex of Continuity 

. My grey gull lifts her wings against the night-fall, 

and takes the dim leagues with a fearless eye • . . And 

now, after twenty-seven years of this experience [breathing 

N20], the wing is greyer, but the eye is fearless still, 

while I renew and double emphasize the declaration. I 
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know--as having known--the meaning of existence: the same 

center of the universe--at once the wonder and assurance 

of the soul--for which the speech of reason has as yet no 

name but the Anaesthetic Revelation. 1I 

WILLIAM JAMES 

"Some observations of the effects of nitrous oxide 

gas intoxication ••• With me, as with every other person 

of whom I have heard, the keynote of the experience is 

the tremendously exciting sense of an intense metaphysical 

illumination. Truth lies open to the view in depth beneath 

depth of almost blinding evidence. The mind sees all the 

logical relations of being with an apparent subtlety and 

instantanei ty to which i,ts normal consciousness offers no 
I 

parallel; only as sobriety returns, the feeling of insight 

fades, and one is left staring vacantly at a few disjointed 

words and phrases, as one stares at a cadaverous-looking 

snow-peak from which the sunset glow has just fled, or at 

the black cinder left by an extinguished brand. 

liThe immense emotional sense of reconciliation which 

characterizes the "maudlin" stage of alcoholic drunk-

enness--a stage which seems silly to lookers-on, but 

the subjective rapture of which probably constitutes a 

chief part of the temptation to the vice--is well known. 

The centre and periphery of things seem to come together. 
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The ego and its objects, the meum and the tuum, are one. 

Now this, only a thousandfold enhanced, was the effect 

upon me of the gas; and its first result was to make peal 

through me with unutterable power the conviction that 

Hegelism was true after all, and that the deepest convic­

tions of my intellect hitherto were wrong. Whatever idea 

of representation occurred to the mind was seized by the 

same logical forceps, and served to illustrate the same 

truth; and that truth was that every opposition, among 

whatsoever things, vanishes in a higher unity in which it 

is based; that all contradictions, so-called, are but 

differences; that all differences are of degree; that all 

degrees are of a common kind; that unbroken continuity 

is of the essence of being; and that we are literally in 

the midst of an infinite, to perceive the existence of 

which is the utmost we can attain • • . it is impossible 

to convey an idea of the torrential character of the 

identification of opposites as it streams through the 

mind in this experience. I have sheet after sheet of 

phrases dictated or written during the intoxication . 

which at the moment of transcribing were fused in the 

fire of infinite rationality • Good and evil, life 

and death, I and thous, matter and form, shiver of 

ecstasy and shudder of horror, fate and reason, and 

fifty other contrasts figure in these pages. The 

thought of mutual implication of the parts . • • produced 
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a perfect delirium of theoretic rapture. 

"What is the principle of unity in all this monotonous 

rain of instances? • . • Nothing but the abstract genus of 

which the conflicting terms were opposite species. The 

flood of ontologic emotion was Hegelian through and 

through • • . At the same time the rapture of beholding a 

process that was infinite, changed (as the nature of the 

infinitude was realized by the mind) into the sense of a 

dreadful and ineluctable fate, with whose magnitude every 

finite effort is incommensurable and in the light of which 

whatever happens is indifferent. This instantaneous 

revulsion of mood from rapture to horror is, perhaps, the 

strongest emotion I have ever experienced . . • A pessi­

mistic fatalism, depth within depth of impotence and 

indifference • . . whichever you choose it is all one. 

"Something 'fades,' 'escapes'; and the feeling of 

insight is changed into an intense one of bewilderment, 

puzzle, confusion, astonishment. I know no more singular 

sensation than this intense bewilderment." (pp. 186-208) 
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A ROD CELL 

In the dark, there . I 
is a potential ... SYNAPSE 
difference of 300 v (.3 mv) 
RIBOSOMES between the outer-

most disk and the 
area of the mitochondria. This 
is maintained by a current of 

~ sodium (Na+) ions, continually 
. Na + . being pumpyd out by the membrane near 

+ the mitochondria. In one minute, all 
Na the Na+ ions have gone 

MITOCHONDRIA 
around once. Rod cells 
use a lot of oxygen and 

glucose, and make and use a lot of 
ATP. 

. + 
Na 

+ .Na 
When 1 PHOTON of light strikes 

the bent Vitamin A mo1e-

CENTRIOLES 
cule, then Vitamin A 
straightens out. This 

rapidly results in a reversal of 
the 300 v potential, and current 
flows the other way. 50,000 Na+ 
go the other way. An action 

potential travels along the axon 
to the synapse. 

DOPAMINE crosses the 
synapse to the dendrite 
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of the next neuron, which 
responds with a new action I 

potential, and so on, 
across the brain to 
the visual cortex. 
We experience this 
and say, "Look, 
there's a light!" 

+40 m 

-70 



-4 ~ 
0.1 n m 

one hydrogen 
atom 

microtubules are 

constantly assembling 

and disassembling 
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3.5 n m 
4------------------~~ 

a.-tubulin or B-tubulin 

'" 55,000 mol. wt 

~ 458 amino acids 

one 

microtubule, 

is built 

~ at a rate 
-N 

of 

21 tubulins 

. B 'i\ per second 
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<5 - 0.33 o + 1.08 

N=.=N==.O 
0-0.75' Nitrous Oxide is a 

resonance hybrid. 

--1-----:> 

0.167 = dipole moment 
debyes 

polarizability = 3.2 cc x 1024 

Van der Waals = 

(a) 3.78 liters2 (atm)/moles2 

attractive force between molecules 

(b) 0.0442 liters/mole 

finite volume and incompressibility of molescules 

Vapor density = 1.5; compared to air = 1 

Specific gravity = 1.977; compared to water = 1 

Molecular weight = 44.02; compared to CO2 = 44.01 

Partition coefficients 

blood/gas = 0.47/1; compared to N = N which is 0.0138 

lipid/water = 3.2/1; compared to N = N at 3.5/1 

Lipid solubility 

m1 of gas/liter of lipid = 1,400 ml/liter; compared to N = N 
at 67 ml/liter 

compared to: Ether at 65,000 m1/liter Argon at 140 ml/1iter 

Cyclopropane at 11,200 m1/1iter Krypton at 430 m1/1iter 

Halothane at 224,000 ml/liter Xenon at 1,700 ml/liter 

Methoxyflurane at 825,000 m1/1iter Ethylene at 1,300m1/1iter 



ANESTHETICS INERT GASES 

Methoxyflurane 

Enflurane 

Halothane 

Cyclopropane 

Fluroxene 

Hydrogen 

Helium 

H-H 

He 

AMNESIACS 

Chloroform 

Ether 

Trilene 

Scopolamine 

Nitrogen N == N 

Neon Ne 

Argon Ar 

Krypton Kr 

Xenon Xe 

N .::.:=.=. N = 0 

Veronal Alcohol Valium 

Phenobarbital 

Nembutal 

Seconal 

Thiopental 

Ether Librium 

Opium Equanil 

Cocaine Quaalude 

Marijuana Dalmane 

ANALGESICS 

Fentanyl 

Heroin 

Morphine 

Codeine Cocaine 

Percodan Aspirin 

Methadone 

Demerol 

Xylocaine 

Colchicine 
Vinblastine 
Podophyllotoxin 
Griseofulvin 

Cocaine 

SPINDLE 
POISONS 

HYPNOTICS: Psilocybin 

L.S.D. 
Tofranil ANTI-ANXIETY 

DRUGS CAUl 

ASLEEP 

UNCONSCIOUS 
Mescaline 

EUPHORICS 
PSYCHEDELICS 

Thorazine 
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NALTREXONE NALOXONE 

(MORPHINE ANTAGONISTS) 

DEHEROL 

FENTANYL 

OPIATES 

AND 

ANALGESICS 
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COCAINE 

SCOPOLAMINE 

SECONAL 

(LIPID SOL. = 52) 

Ho -@-t~< C;'" C H3 
II 
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TYLENOL 

HYPNOTICS: CALM, 

ASLEEP, 

UNCONSCIOUS 

~
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" en 
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PHENOBARBITAL 

(LIPID SOL. = 3) 
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VERONAL 

(LIPID SOL. = 1) 

NEt1BUTAL 

(LIPID SOL. = 39) 

~
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BARBITURATES 

THIOPENTAL \~ ~Cif ..... c. N_~ 
(LIPID SOL. = 580) 
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LYSERGIC ACID 
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(L.S.D.) 

EUPHORICS 

PSYCHEDELICS 

ANESTHETICS 
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ULTRAVIOLET 
LIGHT 

COLCHICINE 

(binds tubulin) 

VINBLASTINE 

~- S-r b-
N ::-- N:::= 0 

NITROUS OXIDE 

LUMICOLCHICINE . 

(does not bind tubulin) 

PODOPHYLLOTOXIN 

GRISEOFULVIN 

SPINDLE POISONS 
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