
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

11-3-2024

A 3D Memristor Architecture for In-Memory A 3D Memristor Architecture for In-Memory

Computing Demonstrated with SHA3 Computing Demonstrated with SHA3

Muayad J. Aljafar
Xenergic AB

Rasika Joshi
Intel Hillsboro

John M. Acken
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Published as: Aljafar, M. J., Joshi, R., & Acken, J. M. (2024). A 3D Memristor Architecture for In-Memory
Computing Demonstrated with SHA3. arXiv preprint arXiv:2402.09545.

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/827
mailto:pdxscholar@pdx.edu

A 3D Memristor Architecture for In-Memory
Computing Demonstrated with SHA3

Muayad J. Aljafar, Rasika Joshi, and John M. Acken

Abstract—Security is a growing problem that needs hardware support. Memristors provide an alternative technology for

hardware-supported security implementation. This paper presents a specific technique that utilizes the benefits of hybrid CMOS-

memristors technology demonstrated with SHA3 over implementations that use only memristor technology. In the proposed

technique, SHA3 is implemented in a set of perpendicular crossbar arrays structured to facilitate logic implementation and

circular bit rotation (Rho operation), which is perhaps the most complex operation in SHA3 when carried out in memristor arrays.

The Rho operation itself is implemented with CMOS multiplexers (MUXs). The proposed accelerator is standby power-free and

circumvents the memory access bottleneck in conventional computers. In addition, our design obscures the intermediate values

from the I/O interface and outperforms the state-of-the-art memristor-based designs in terms of size and energy. Demonstrating

the memristor implementation of SHA3 provides an impetus for utilizing memristors in information security applications.

Index Terms— Architecture, crossbar arrays, in-memory computing, memristors, programmable diode gates, volistor logic,

SHA3.

1 INTRODUCTION

RYPTOGRAPHIC hash functions are widely used in
information security applications such as digital signa-

ture generation and verification, pseudorandom bit gener-
ation, and key derivation. The need for high-speed secure
implementation of such functions is generally true, but
mainly for big data applications. Software implementa-
tions of hash functions fall short in performance and secu-
rity; therefore, we focus on hardware implementations.
Various CMOS-based hardware accelerators for the recent
standard secure hash algorithm, SHA3, have been pro-
posed. Some of these accelerators were optimized for the
area [1] speed [2] reliability [3], and throughput [4]. Yet, the
distance between memory and logic units in the accelera-
tors results in additional power dissipation and delay
when reading and writing the data on top of performing
the hash algorithm. At deep sub-100nm fabrication nodes,
the leakage power and data traffic are significant. When
hashing large objects stored in memory, data transfer be-
comes a bottleneck. To overcome the bandwidth limitation
of data bus traffic, this paper relies on memristor technol-
ogy for in-memory computing—a computing model
where calculations are implemented in memory, unlike the
conventional computing model where the calculation unit
is separate from the memory unit. The benefit of in-

memory computing is well described in [5], [6]. Computa-
tions in this computing paradigm, however, are sequential
and slow. We propose a new technique that utilizes the
benefits of a hybrid CMOS-memristors technology demon-
strated with SHA3 over implementations that use only
memristor technology. Our accelerator is highly optimized
for area and energy and can be used in resource-con-
strained applications. The details of the comparisons are
shown in Section 5.
Previous Work: Emerging technologies have been em-
ployed in the implementation of SHA3. Oved et al. [7], for
instance, utilized a general-purpose in-memory compu-
ting architecture to implement SHA3. They additionally
devised a technique for the bit rotation operation and op-
timized their design for energy efficiency. Bhattacharjee et
al. [8] employed ReRAM technology to compute the round
function in SHA3 within resource-constrained Internet of
Things (IoT) nodes. This computation was realized in Re-
RAM-based VLIW architecture (ReVAMP), comprising
two 1S1R crossbar arrays and lightweight peripheral cir-
cuitry. Notably, one of the crossbar arrays was dedicated
to instruction memory, while the other was utilized for
data storage and computation. The implementation of
SHA3 involved a set of majority functions and inversion
operations. Xue et al. [9] introduced a memristive RISC-V
processor designed to facilitate in-memory computing for
blockchain technology. This processor was specifically de-
veloped for Internet of Things (IoT) applications. The au-
thors demonstrated a general compiling policy for imple-
menting the SHA3 algorithm as an illustrative example.
Yang et al. [10] carried out the implementation of SHA3 us-
ing a crossbar array of voltage-gated spin hall-effect-
driven magnetic tunnel junctions (VG-MTJ). Their design
included both a non-pipelined single message hash circuit

————————————————

 M.J. Aljafar is with Xenergic AB, Scheelevägen 15, 223 70 Lund,
Sweden. E-mail: muayad.aljafar@xenergic.com.

 R. Joshi is with Intel Hillsboro, OR, USA. E-mail: joshiras@pdx.edu.
 J.M. Acken is with the Electrical and Computer Engineering Depart-

ment, Portland State University, Portland, OR 97201. E-mail:
acken@pdx.edu.

C

2

and a pipelined multiple message hash circuit to execute
SHA3, incorporating stateful logic gates. Additionally, Na-
garajan et al. [11] put forward a high-performance, area-
efficient implementation for SHA3 named SHINE, which
is based on ReRAM technology. SHINE facilitates in-
memory computing and executes various functions in a
sum-of-products (SOP) form within crossbar arrays.
The proposed work:
We present a 3D CMOS-memristor accelerator designed
for SHA3 implementation. The accelerator consists of four
sets of memristor arrays: state, Rho, Chi, and Iota. These ar-
rays perform distinct functions and communicate through
CMOS transmission gates. The state array functions both
as a logic and memory unit, while the Rho array exclu-
sively operates as a memory unit. Additionally, the Chi
and Iota arrays are dedicated to logic and memory opera-
tions, respectively. Structured for SHA3 execution within
a compact architecture, these arrays directly incorporate
the data representation outlined in Section 4, facilitating
parallel and pipeline computations. The memristor arrays
utilize rectifying memristors, specifically those with diode
behavior. Opting for crossbar arrays with rectifying
memristors, instead of non-rectifying ones, offers the ad-
vantage of suppressing sneak currents and simplifying the
memristor arrays by eliminating the need for external se-
lectors. Furthermore, the use of rectifying memristors ena-
bles the implementation of native volistor gates, such as
XOR/XNOR, seamlessly integrated into our design.
The accelerator exhibits high speed, with its primary focus
on optimizing area and energy overheads. It capitalizes on
the benefits of hybrid CMOS-memristor technology, spe-
cifically integrating CMOS in the implementation of a cir-
cular bit rotation operation, known as the Rho operation.
This strategic use of CMOS simplifies the design, espe-
cially in managing the complexities associated with exe-
cuting the Rho operation solely with memristor arrays.
Notably, the Rho operation in our accelerator is completed
in just five clock cycles. Alternatively, achieving a high-
speed implementation of the Rho operation solely using
memristor arrays would necessitate extensive parallel op-
erations, resulting in significant area overhead (Section 5).
The proposed accelerator achieves a well-balanced
tradeoff among energy, area, and speed, attributed to our
architectural decisions and the utilization of rectifying
memristors.
In summary, this work introduces a method for imple-
menting the SHA3 algorithm using perpendicular crossbar
arrays. These arrays and their interconnections are de-
signed to support logic implementation and the circular bit
rotation operation, which is arguably the most intricate op-
eration when implemented in memristor technology. The
circuit structure employed, as detailed in the initial para-
graph of Section 4, constitutes the primary innovation of
this work.

Fabrication Feasibility: Advancements in 3D memristor
fabrication technology affirm the feasibility of our architec-
ture [12]. For instance, the procedures detailed in [13]
showcase the fabrication of multiple stacked crossbar ar-
rays using rectifying memristors, aligning with the

memristor type employed in our design. Moreover, the
idea of arranging rotated crossbar arrays alongside each
other in our design has been extensively deliberated in var-
ious publications [14], [15], [16], [17]. These examples in the
literature underscore the viability of constructing 3D cross-
bar arrays akin to our proposed design.
The suitability of memristors for cryptography lacks the
same tolerance observed in neuromorphic applications.
Testing memristors is beyond the scope of our paper and
has been extensively covered in numerous publications
[18], [19]. Moreover, memristors are still emerging devices,
and consequently, attack models in this technology, unlike
CMOS, have not been extensively developed. While this
presents an advantage in applying memristors to security
applications, there is a need for more information on the
reliability and fault tolerance guidance of memristors.
The security analysis of the proposed circuit falls beyond
the scope of this paper; however, the performance evalua-
tion of the circuit is provided in Section 5. It is noteworthy
that memristor technology has been applied in security ap-
plications, such as physically unclonable functions (PUF)
[20], [21], and true random number generators (TRNG)
[22], where the stochastic switching behavior in memris-
tors was exploited as a source of entropy. In this work, the
stochastic behavior of memristors is not utilized; rather,
the memristors are employed for logic and memory oper-
ations.
The remainder of the paper is structured as follows. Sec-
tions 2 and 3 provide a concise review of memristor tech-
nology and the SHA3 standard, respectively. Sections 4
and 5 present the introduction and analysis of our SHA3
implementation. Finally, Section 6 serves as the conclusion
of the paper.

2 BACKGROUND ON MEMRISTORS

The existence of memristors as the fourth circuit element
was mathematically predicted by Chua in 1971 [23] and in
2008, a group of researchers at HP Labs showed the first
analytical example of a memristor [24]. Memristors are
non-volatile nanoscale devices that enable in-memory
computing [25], [26]. A common structure for memristive
circuits is crossbar arrays. They support a large number of
connections in a small footprint, however, crosstalk due to
sneak paths of current limits the size of these crossbar ar-
rays. There are techniques for mitigating the sneak paths
in crossbar arrays [27], [28]. In this work, we rely on recti-
fying memristors [29], [30], [31] to reduce the sneak paths
effect. Specifically, the rectifying memristors have a large
ROFF/RON ratio (e.g., 103 ≤ ROFF/RON ≤ 106) that aids to mitigate
the effect of the sneak paths in crossbar arrays and leaves
a margin to differentiate between high and low resistance
states, hence improving logic computations. In addition,
this type of memristors enables the implementation of
volistor and programmable diode gates—styles of memristor
logic gates utilized in this paper for implementing the
SHA3 algorithm [26], [32], [33]. Fig. 1 shows the i-v charac-
teristic and symbolic diagram of a rectifying memristor, il-
lustrating the response to an applied sinusoidal signal with

 3

an amplitude of 1.2V and a frequency of 100MHz. The di-
agram has been replicated from [39], employing the
LTspice simulator. Programming the memristor to low re-
sistance state RON requires applying VSET across the device.
VSET is a positive voltage larger than the voltage threshold
VCLOSED. Similarly, programming the memristor to high re-
sistance state ROFF requires applying VCLEAR across the de-
vice. VCLEAR is a negative voltage smaller than the voltage
threshold VOPEN. Applying a voltage between VOPEN and
VCLOSED will not change the current state of a memristor. The
equation (1) defines the resistance and dynamics of the
memristor, as outlined in [39]. In this equation, R repre-
sents the resistance of the memristor, and v is the applied
voltage across the memristor. The memristor is described
by a state variable w ∈[0, 1], representing its resistance in
the forward-biased direction. Specifically, when w=0, the
memristor is in the High-Resistance State (HRS), exhibiting
ROFF resistance. Conversely, when w=1, the memristor is in
the Low-Resistance State (LRS), demonstrating RON re-
sistance. The positive constant α, representing the pro-
gramming rate, is assumed to be 1×109 (Vs)-1. With this
specified value of α, a memristor initially in state w=0 can
be programmed to state w=1 in 1ns by applying a voltage
of +1.2V across it. The parameter values employed for the
memristor model align with those described in [39].

𝑅 = {
𝑅𝑂𝐹𝐹 (

𝑅𝑂𝑁

𝑅𝑂𝐹𝐹
)

𝑤

, 𝑣 ≥ 0

𝑅𝑂𝐹𝐹 , 𝑣 < 0
 (1)

𝑑𝑤

𝑑𝑡
= {

𝛼(𝑣 − 𝑣𝐶𝐿𝑂𝑆𝐸𝐷), 𝑣 ≥ 𝑣𝐶𝐿𝑂𝑆𝐸𝐷

𝛼(𝑣 − 𝑣𝑂𝑃𝐸𝑁), 𝑣 ≤ 𝑣𝑂𝑃𝐸𝑁

0, 𝑣𝑂𝑃𝐸𝑁 < 𝑣 < 𝑣𝐶𝐿𝑂𝑆𝐸𝐷

In this study, the logic ‘1’ state is represented by RON, and

the logic ‘0’ state is represented by ROFF.

A concise overview of the volistor XOR/XNOR gate and

the programmable diode AND/NAND gate employed in

the SHA3 design is provided below. For additional infor-

mation, please refer to [32], [33], [34]. Volistors possess the

ability to implement in-memory computing. Their opera-

tion involves using voltage as input and resistance as out-

put, leveraging the diode behavior of rectifying memris-

tors. In contrast, programmable diode gates lack the capa-

bility of in-memory computing. They depend on rectifying

memristors but utilize voltage as both input and output.

Both volistors and diode gates are exclusively imple-

mented in two-dimensional crossbar arrays. This is in con-

trast to stateful logic gates, which have the flexibility to be

realized in one-dimensional memristor arrays (such as 1×n

or n×1).

The decision to use memristors for diode gates, tradition-
ally implemented with resistors and diodes, may raise
questions for readers. However, the rationale behind this
choice is twofold. Firstly, crossbar arrays of rectifying
memristors can execute diode gates using the same CMOS

drivers employed for stateful logic gates, thereby avoiding
additional complexity or area overhead in the CMOS driv-
ers. Secondly, these gates can be cascaded with volistor
logic gates within crossbar arrays to achieve subsequent
logic levels. This proves to be a time-efficient solution for
implementing functions suitable for sum-of-products or
product-of-sums structures. This advantage cannot be
solely attained through the use of stateful logic gates, as
highlighted in [32].

Programmable Diode AND/NAND Gate: Our accelerator
employs two distinct implementations for computing logic
AND/NAND, as explained below. The AND gate is uti-
lized to read the output of a volistor XNOR gate, while the
NAND gate is employed in computing the Chi operation
(Section 3).

2.1 Diode AND Gate Implementation in XNOR

Operation

The volistor XNOR gate employs a diode AND gate to gen-
erate its output. In Fig. 2a, the circuit calculates the AND

Fig. 1. i–v characteristic of a rectifying memristor (top). The flow

of current into the device leads to a decrease in resistance. Applied

voltage across the memristor and the corresponding current flow-

ing through it (bottom).

4

gate, with memristors A and B storing inputs and memris-
tors Y1 and Y2 determining the output (vout). This design
utilizes a crossbar array for both memory and computa-
tion. The chosen voltage levels are {0, v+}, where v+ is a pos-
itive voltage smaller than VCLOSED to avoid destructive ef-
fects on memristor states. The voltage v+ is used for reading
inputs, and input values (vA and vB) are applied to memris-
tors Y1 and Y2 for AND logic computation. Wire Y func-
tions as a wired-AND connection influenced by voltage
levels and the polarities of the memristors to which inputs
are applied. Input voltages are applied to terminal B of
memristors Y1 and Y2. Rg is a reference resistor chosen
such that RON ≪ Rg≪ ROFF. In this setup, it's crucial to pro-
gram Y1 and Y2 to the LRS. Fig. 2b demonstrates the cor-
rect behavior of the AND gate when inputs '0' and '1' are
stored in memristors A and B, respectively. Importantly,
all memristors in the crossbar array maintain their re-
sistance states during operation. In this specific case,
memristor Y2 is reverse-biased, i.e., the voltage across Y2
is approximately - v+. Consequently, even though Y2 has
been programmed to the LRS, it exhibits a high-resistance
state. As a result, Y2 effectively suppresses sneak current,
contributing to a robust logic implementation.

2.2 Diode NAND Gate Implementation in Operation
Chi

The circuit depicted in Fig. 2c operates as a NAND gate.

Memristors A and B serve as input storage, while Y1 and
Y2 compute the output (vout). In this configuration, CMOS
transmission gates are employed to isolate the memory
and calculation arrays. Similar to the diode AND gate, this
circuit operates with voltage levels {0, v+}. The voltage v+ is
utilized for reading input values, resulting in the genera-
tion of inverted inputs (v¬A and v¬B). These inverted inputs
are then directed to memristors Y1 and Y2 to implement
NAND logic. Wire Y functions as a wired-OR connection,
and its behavior is influenced by both voltage levels and
the polarities of the memristors to which inputs are ap-
plied. The inputs are directed to terminal A of Y1 and Y2,
and it is crucial to program these memristors to the LRS.
Memristors on row Y that are not actively involved in the
current operation have their vertical wires set to 0V. This
configuration has the potential to induce a reverse-biased
state in these memristors, causing them to exhibit a high-
resistance state without requiring explicit programming.
This setup effectively suppresses sneak current, ensuring a
robust logic implementation. Fig. 2d illustrates the correct
behavior of the NAND gate with '0' and '1' inputs in
memristors A and B, respectively. All memristors in the
crossbar array maintain their resistance states. In this sce-
nario, Y2 is reverse-biased, suppressing sneak current and
contributing to a robust logic implementation.

X

Yvout

v¬A v¬B

0 0 0 0 0 0 0 0

A B

Y1 Y2

LRS HRS

A

B

Y

A

B

Y1

Y2

X

vA

vB

Y

Z v+

(b) (d)

(c) (e)

XNOR 2XNOR 1

vB

vA

(g)

(f)

Rg

v+

Rg

v+

vout

A

B

Y1

Y2

Rg

Rg

vA

vB

v+

(a)

0 0 0 0 0 0 0 0

Fig. 2. Implementation examples of programmable diode AND/NAND gates and volistor XOR/XNOR gates. (a) Implementation of a diode

AND gate. (b) Behavior of the diode AND gate. (c) Implementation of a diode NAND gate. (d) Behavior of the diode NAND gate. (e) Imple-

mentation of a 2-input XNOR gate. (f) Behavior of the XNOR gate. (g) Block diagram of multi-input XOR gate.

 5

2.3 2-Input Volistor XNOR Gate Implementation

2-input volistor XOR gates are utilized in the Chi and Iota
operations. The setup illustrated in Fig. 2e is employed for
implementing the XOR gate. It functions by applying in-
puts vA and vB to memristors A and B, and the output is
generated through the computation of AND logic based on
the state values of memristors A and B. This computation
is carried out by memristors Y1 and Y2. In this particular
design, input storage and calculation arrays are isolated
through CMOS transmission gates. The chosen input volt-
age levels are {|VCLEAR|, 0} with VCLEAR representing a de-
structive voltage that affects the states of memristors (Fig.
1). In this setup, it is essential to initialize all memristors to
the LRS, corresponding to logic ‘1’. If the inputs are the
same, there will be no state transition in either memristor
A or B, resulting in an output of AND (1, 1) or logic ‘1’. On
the other hand, when the inputs are different, the state of a
memristor connected to the input |VCLEAR| will toggle,
leading to an output of AND (0, 1) or logic ‘0’. This behav-
ior corresponds to the correct implementation of XNOR
logic. In this configuration, wire X serves as a wired-AND
connection and displays 0V when applied inputs are non-
identical. In this scenario, the voltage across a memristor
connected to |VCLEAR|, which is VCLEAR, is adequate to toggle
the state of that memristor. Throughout this process, wire
X is connected to high impedance Z, and wire Y is con-
nected to v+ to prevent any state transition in memristors
Y1 and Y2. Fig. 2f shows the behavior of the XNOR gate for
both identical and non-identical inputs. The state transi-
tion in memristor A connected to |VCLEAR| is evident. Ad-
ditionally, Fig. 2f shows the states of Y1 and Y2, effectively
protected against any unintended change. The logic AND
of the state values of memristor A and B, representing the
output, is calculated in the same manner as shown in Fig
2a. This specific step is not explicitly illustrated in Fig. 2f.
Reusing the XOR gate necessitates programming memris-
tors A and B to the LRS using VSET.

2.4 Multi-Input Volistor XOR Gate Implementation

This gate is used to implement the Theta operation. Fig. 2g
shows the block diagram of the XOR gate. Connecting the
XNOR blocks, as illustrated in Fig. 2g, required adjusting
the voltage levels at the blocks’ outputs due to the different
voltage levels used at the input and output of the XNOR
gates, i.e. {0, |VCLEAR|} and {0, v+}. This adjustment is accom-
plished by cascading inverters with different voltage sup-
plies.

3 SHA3 STANDARD

A cryptographic hash function is a mathematical function
that takes a message and applies a set of mathematical
transformations to produce a digest. SHA3 is a secure hash
function and a subset of Keccak, a family of cryptographic
primitives based on sponge construction [35], [36], [37].
The sponge construction consists of two phases: absorbing
and squeezing (Fig. 3). In the absorbing phase, the algo-
rithm absorbs and processes message blocks 𝑋𝑖 (𝑖 =
0, ⋯ , 𝑡 − 1), and in the squeezing phase, it outputs
(squeezes) the digest 𝑦𝑗 (𝑗 = 0, . . . , 𝑢). Various parameters
govern the dimensions of a message block, the resulting
digest, and the security level of the Keccak algorithm.
These parameters include the state width b, bit rate r (rep-
resenting the size of the message block), and capacity c,
where b = r + c. In the standard SHA3 algorithm, b=1600 bits
arranged in a 5×5 array of 64-bit elements as shown in Fig.
4. The array is denoted by A[x, y], where x and y ∈ {0, 1, 2,
3, 4}. Function Keccak-f is the heart of SHA3 and is used in
both absorbing and squeezing phases. Fig. 5 illustrates the
internal structure of function Keccak-f. The function takes
as input the concatenation of (𝑋𝑖 ⊕ 𝑟) and c and produces
the new state of the Keccak-f function as output. Initially,
both r and c are initialized to zero, therefore, 𝑓(𝑏) =
𝑓(𝑋0||𝑐) where || signifies concatenation operation. Func-
tion Keccak-f consists of nr rounds. In each round, a se-
quence of five operations—θ, ρ, π, χ, and ι—is imple-
mented. These operations contribute to the diffusion and
confusion properties necessary for security. The rounds
are identical except for the operation 𝜄, where the constants
RC[i] vary in each round. In the SHA3 standard, 𝑛𝑟 is set to
24. The operations are further detailed below.

Theta (θ): Theta is the first operation in the round se-

quence. It involves a linear transformation applied to the

array A[x, y]. This transformation combines the bits of the

array A using a specific XOR pattern as defined by equa-

tion (2), where rot(C[x+1], 1) represents a 1-bit circular bit

rotation operation applied to the array C[x+1]. This opera-

tion plays a critical role in contributing to the diffusion and

confusion properties within the cryptographic SHA3 algo-

rithm.

{

𝐴′ = 𝜃(𝐴):

𝐶[𝑥] = 𝐴[𝑥, 0] ⊕ 𝐴[𝑥, 1] ⊕ 𝐴[𝑥, 2] ⊕ 𝐴[𝑥, 3] ⊕ 𝐴[𝑥, 4]

𝐷[𝑥] = 𝐶[𝑥 − 1] ⊕ rot(𝐶[𝑥 + 1],1)

𝐴′[𝑥, 𝑦] = 𝐴[𝑥, 𝑦] ⊕ 𝐷[𝑥]

 (2)

Rho (ρ) and Pi(π): Rho and Pi operations involve a circular
bitwise rotation and column permutation operations
within the array A[x, y]. These operations are clarified by
equation (3), where r[x, y] denotes the rotation offset as
specified in TABLE 1. As an example, the expression A’[1,
4]= rot(A[3, 1], r[3, 1]) applies a rotation offset of 55 to lane
A[3,1] and stores the resulting lane in A’[1, 4]. The term
‘lane’ is defined in Fig. 4.

{
𝐴′ = 𝜋(𝜌(𝐴))

𝐴′[𝑦, 2𝑥 + 3𝑦] = 𝑟𝑜𝑡(𝐴[𝑥, 𝑦], 𝑟[𝑥, 𝑦])
 (3)

Absorbing Squeezing

r

c

0

0

f

XOR

r

X0

f

XOR

r

X1

...

...

f

XOR

r

Xt-1

f

...

...

r

yu

f

r

y1

r

y0

Fig. 3. The sponge construction. The structure consists of absorbing

and squeezing phases [35].

6

Chi(χ): The Chi (χ) operation is a non-linear transfor-

mation that involves applying a set of logical operations to

the bits within each row of the array based on the values of

neighboring bits. The Chi operation is expressed by equa-

tion (4), where ¬A[i, j] represents the complement of A[i, j],

and ∧ denotes logical AND. This operation contributes to

introducing non-linearity and enhancing the confusion

properties within the cryptographic algorithm.

{
𝐴′ = 𝜒(𝐴):

𝐴′[𝑥, 𝑦] = 𝐴[𝑥, 𝑦] ⊕ ((¬𝐴[𝑥 + 1, 𝑦]) ∧ 𝐴[𝑥 + 2, 𝑦])
 (4)

Iota (ι): Iota is the fifth and final operation in the round

sequence, following θ, ρ, π, and χ. It involves the XOR of

a specific constant denoted as RC[i] with A[0, 0]. This op-

eration is detailed by equation (5), where i ∈ {1, 2, ..., 24}.

The constants RC[i] play a significant role in introducing

variability into the algorithm, and the specific values for

each round can be found in the [37]. In all equations, (2)-

(5), it is necessary to apply modulo 5 to the indices to en-

sure proper computation. Readers are urged to consult [37]

for further insights into the operations within the standard

SHA-3 algorithm. Section 4 presents a novel design imple-

mentation for these operations utilizing memristor tech-

nology.

{
𝐴′ = 𝜄(𝐴):

𝐴′[0,0] = 𝐴[0,0] ⊕ 𝑅𝐶[𝑖]
 (5)

4 PROPOSED IMPLEMENTATION OF SHA3

Fig. 6 illustrates a logical representation of the proposed
circuit for implementing SHA3. The diagram comprises
two sets of perpendicular crossbar arrays connected
through MUXs (enclosed in the green box). The CMOS cir-
cuits and memristors are situated on separate layers, with
their physical alignment facilitated by a layer-to-layer in-
terconnect [34]. Memristors are simplified as colored cir-
cles for clarity. On the right side, 64 parallel slices of 5×5
without interconnection (refer to Fig. 4 for the 'slice' defi-
nition) store and process the state values of SHA3. On the
left side, five stacked planes of 5×64 without interconnection
(refer to Fig. 4 for the 'plane' definition) serve as memory
to store intermediate values. Additional components of the
circuit will be elaborated later in this section.
Arranging the crossbar arrays as described above yields
low overhead and high circuit performance. These arrays
are optimal for organizing a message block in three dimen-
sions, aligning directly with the SHA3 structure. The data
on both sides of MUXs can be conceptualized as two 5×5

Fig. 4. Illustration of state width b and its parts organized by dimensions [36]. The numbering of the x and y order is from the NIST

standard [38].

f

b

r r

c c

||

r

c

Round

1

b ...
b Round

nr

b
||

r

c

Theta Rho Pi Chi Iota
b b

Fig. 5. Internal structure of function Keccak-f [37].

5 stacked planes 64 parallel slices

z

1
2

63
64

2

1

0

4

3

y AR
x

Fig. 6. Schematic of the proposed architecture (side view).

 7

arrays (A and R) of 64-bit elements. This configuration
forms a short pipeline circuit where the message can effi-
ciently traverse from crossbar array A to crossbar array R
and undergo processing in just a few clock cycles. The
compact memristor crossbar arrays occupy a minimal area
above the CMOS substrate. Apart from their geometric ad-
vantages, the crossbar arrays operate without standby
power, resulting in zero static power consumption. The
implementation of the Keccak-f function begins with the
Theta operation. However, since the Rho operation is inte-
gral to implementing the Theta operation (i.e., rot(A[],1)),
we will first provide details on the implementation of the
Rho operation.

4.1 Implementation of Operation Rho

In Fig. 6, the green box is responsible for applying the Rho
operation to the planes of the state array A[x, y]. This box
is composed of five lanes, each containing 64 MUXs.
Within each lane, a set of offset values, as specified in row
y in TABLE 1 (y ∈ {0, 1, 2, 3, 4}) is applied to the correspond-
ing lanes of plane y in the state array A.
 In Fig. 7, a top view reveals the state array on the right
connected to the Rho array on the left in the plane y=0
through corresponding MUXs situated in lane y=0. Each
MUX in this lane has five inputs, with each input corre-
sponding to one offset in row y=0 in TABLE 1. For instance,
red and black wires in the illustration correspond to offset
1 and offset 0, respectively. Please note that only a subset
of these wires is depicted due to size constraints.
The Rho operation is executed over five clock cycles. Dur-
ing each clock cycle, data in sheet x of the state array un-
dergo rotation and are then stored in sheet x of the Rho
array (refer to Fig. 4 for the 'sheet' definition). Precisely,
data residing in the lanes of sheet x are simultaneously fed
into corresponding lanes of MUXs, and the resulting out-
puts are stored in the Rho array. In essence, MUXs apply
the offset values of column x in TABLE 1 to sheet x in the
state array A[x, y] within a single clock cycle. Conse-
quently, it requires five clock cycles to apply the offset val-
ues of all five columns, completing the implementation of
the Rho operation.
In this implementation, each sheet of the state array A[x, y]
is linked to a specific input of the MUXs. Consequently, all
MUXs can function with identical control select bit values.
By connecting the three control select bits of all MUXs to a
specific value for each column of offsets (e.g., 001 for off-
sets of column x=1 or 010 for offsets of column x=2), the
data rotation can be executed using only three control se-
lect bits.
In the implementation of operation Theta, it is necessary to
apply offset 1 to every lane of A[x, y] (refer to equation 2).
However, in this design, offset 1 is confined to the offset
values in row y=0 (TABLE 1), affecting solely the lanes in
the plane y=0 within the state array. As a result, the design
needs to be adjusted to implement offset 1 by incorporat-
ing 6-input MUXs in the lanes of y={1, 2, 3, 4} within the
MUXs.

4.2 Implementation of Operation Theta

This implementation necessitates updating the circuit from

Fig. 6 to the one illustrated in Fig. 8. The revised circuit fa-
cilitates data movement from the Rho array to the state ar-
ray through CMOS transmission gates. Furthermore, slices
on both sides are expanded to facilitate data routing. For
instance, the routing sheet on the left side establishes ver-
tical connections between the stacked planes. Additionally,
on the right side, memristors at the bottom right corner of
every slice are substituted with multi-input volistor XOR
gates [33]. The operational steps for executing operation
Theta are clarified as follows. For x, y ∈ {0, 1, 2, 3, 4},
1. Implement the Rho operation with offset 1 on all five

...............

............... .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

6
4

6
3

6
2

6
1

6
0

3
8

3
7

.

.

.

.

.

.

3
5

3
6

3
4

R AMUXs

Offset 0 Offset 1 Offset 62Offset 28Offset 27

Fig. 7. The state array A is connected to the Rho array R through

MUXs. Due to the size limit, only some MUXs’ inputs are shown.

Colors correspond to different offsets as the legend explains.

XOR
XOR

XOR

Rho Array 5 stacked Planes State Array 64 parallel Slices

z

1
2

63
64

2
1

0

4

3

y
x

XOR

Routing

Sheet

Routing

Sheet

3 4 0 1 2 3 4 0 1 2

Fig. 8. Implementation of the Theta operation.

TABLE 1

 OFFSETS OF RHO [37]

 x=3 x=4 x=0 x=1 x=2

y=2 25 39 3 10 43
y=1 55 20 36 44 6
y=0 28 27 0 1 62
y=4 56 14 18 2 61
y=3 21 8 41 45 15

8

lanes of sheet x+1 in the state array and store the out-
puts in the corresponding sheet in the Rho array. In
other words, perform the operation: R[x+1,
y]=ρ(A[x+1, y], 1). This step is carried out within one
clock cycle per sheet.

2. Perform a bitwise XOR operation on column x-1 in
the state array and column x+1 in the Rho array, in-
volving XORing 10 bits in the specified columns. The
resulting output represents the final state of the
multi-input volistor XOR gate used in this implemen-
tation. Simultaneously execute the XOR operation on
all 64 parallel slices of the state and Rho arrays, stor-
ing the results in the corresponding XOR gates. In
other words, perform X=XA[x-1, y]R[x+1, y],
where X is the resulting outputs of the XOR gates and
y ∈ {0, 1, 2, 3, 4}.
The XOR gates function sequentially, with each gate
XORing a current bit with the previously calculated
bit in two clock cycles. As a result, this process of cal-
culating 64 10-input XOR gates is implemented over
19 clock cycles.

3. Perform XOR operations on the outputs of the XOR
gates X with a specified lane in the state array, e.g.,
A[x, y=0]. Save the outcomes in the corresponding
lane in the Rho array, R[x, 0]. The processing of each
lane in A[x, y], involves three clock cycles: The initial
cycle is dedicated to initializing the XOR gate, the
subsequent cycle is for computing the XOR functions,
and the final cycle is for storing the outputs in the Rho
array. Repeat this procedure for the remaining lanes
in A[x, y], i.e., R[x, y]=XA[x, y] where y ∈ {1, 2, 3, 4}.
The described step is executed over 15 clock cycles for
each sheet of x.

4. Initialize lanes of R[x+1, y] for calculating θ(A[x+1, y]).
In a subsequent section, we extend the circuit depicted in
Fig. 8 and save the results of step 3 adjacent to the state
array A.
4.3 Implementation of Operation Pi

The circuit illustrated in Fig. 8 is capable of implementing
the Pi operation. This operation involves mapping lanes of
R, which store ρ(A), back to A, as clarified by equation (3).
This mapping is facilitated through the routing sheet on
the left and CMOS transmission gates on the right-bottom.
The execution of this step takes 25 clock cycles.
4.4 Implementation of Operation Chi

To implement this operation, it is necessary to expand the
state array A according to the configuration shown in Fig.
9. On the right side, each slice not only retains 25-bit state
values but also includes their complements.
The Chi array is set up to perform a sequence of two-level
AND-XOR logic functions (Fig. 9). Specifically, each
wired-OR gate in the Chi array, represented by horizontal
wires, is connected to a 2-input volistor XNOR gate, com-
puting an AND-XOR logic function. In each row of the
state array (A and ¬A), inputs are fed into five AND-XOR
logic functions consecutively. Each function is executed
along a designated horizontal wire in the Chi array within
a single clock cycle. Therefore, this computational step ex-
tents five clock cycles. The outputs of the AND-XOR func-
tions are temporarily stored in the corresponding XNOR

gates. Within the next two clock cycles, the input row in
the state array will be initialized to permanently store the
outputs of the XNOR gates, completing the process within
one clock cycle. In this configuration, consider the upper
wire in this array executing the operation ¬A[4, 2] ∧ A[0, 2].
Here, the memristors associated with the gate's inputs are
set to the LRS, while the non-participating memristors are
connected to 0V, similar to the configuration shown in Fig.
2c. It's crucial to emphasize that the applied values are the
negated inputs. As a result, the output of the wired-OR
gate is (¬A[4, 2] ∧ A[0, 2]), and this output is directed into
the XNOR gate, performing the computation χ(A[3, 2]) =
A[3, 2] ⊕ (¬A[4, 2] ∧ A[0, 2]). The output of the XNOR gate,
χ(A[3, 2]), is temporarily retained within the XNOR gate.
Over the subsequent clock cycles, this output will be per-
manently stored in A[3, 2].
Note that the Chi operation is applied to plane y, which
consists of 64 parallel rows corresponding to the state ar-
ray. In each of these rows, a combination of five AND-XOR
logic gates is implemented within nine clock cycles. The en-
tire process is repeated for y values of 0, 1, 2, 3, and 4. Dur-
ing the implementation of χ(A), the memristors of the
wired-OR gates maintain their resistance states. Therefore,
there is no need to re-program these memristors for the
subsequent Chi operation implementation. The steps for
computing the Chi operation are outlined below, and these
steps are executed over a span of 50 clock cycles.

1. Calculate the complementary values for the state
array A and save the outcomes in the array ¬A. The
complement of each element aij ∈ A is denoted as ¬aij
∈ ¬A, where i and j ∈ {0, 1, 2, 3, 4}. This particular
operation is executed within five clock cycles.

 For i = 0 to 4 {

2. Initialize the XNOR gates.
3. Execute the Chi operation on plane y = i within the

XN

A ¬A

¬A(4,2)ΛA(0,2)

¬A(0,2)ΛA(1,2)

¬A(1,2)ΛA(2,2)

¬A(2,2)ΛA(3,2)

¬A(3,2)ΛA(4,2)

XN

XN

XN

XN

RON ROFF

 3 4 0 1 2 3 4 0 1 2

x

2

1

0

4

3

One SliceΛ AND Op.

¬ Negation

XN: XNOR

Array Chi

A(3,2) ¬A(3,2)

Fig. 9. Implementation of the Chi operation.

 9

state array A, and save the outcomes in the respec-
tive 2-input XNOR gates.

4. Initialize plane y=i.
5. Store the outputs of the XNOR gates in plane y=i.

 }

 End

4.5 Implementation of Operation Iota

This implementation requires establishing a connection be-
tween the Iota and Chi arrays. Specifically, the Iota array is
associated with plane y=0 of the Chi array, and only the
XOR gates linked to this plane are utilized for the execu-
tion of the Iota operation. Fig. 10 illustrates the circuit sche-
matic implementing the Iota operation, along with all pre-
ceding operations in the Keccak-f function. Within the Iota
array, there are 24 constants denoted as RC[i], each consist-
ing of 64 bits. These constants are employed in the bitwise
XOR operation RC[i] ⊕ A[0, 0] during each round of the
Keccak-f function. This particular step is carried out over a
period of five clock cycles per round.

4.6 Input Mapping into the State Array

The computation of Xi ⊕ r is essential before executing θ,
ρ, π, χ and ι (Fig. 3). This computation involves applying
Xi and r, signified as A[x, y], to the horizontal and vertical
wires of the Chi array, respectively. XOR gates perform the
computation and save the results. Subsequently, these re-
sults are transferred to the planes of the state array A. This
programming procedure requires four clock cycles per
plane, with the initial cycle dedicated to bitwise XOR op-
erations, the second cycle for plane initialization, the third
cycle for storing the output values of the XOR gates in the
plane, and the fourth cycle for initializing the XOR gates.

XOR

XOR
XOR

¬A(4,2)ΛA(0,2)

¬A(0,2)ΛA(1,2)

¬A(1,2)ΛA(2,2)

¬A(2,2)ΛA(3,2)

¬A(3,2)ΛA(4,2)

Array Iota

State Array

(64 parallel Slices each of 11×11)

XOR

A ¬A

Rho Array

(5 Stacked Planes each of 5×64)

Z

1
2

63

64

...

 3 4 0 1 2 3 4 0 1 2

2

1

0

4

3

 3 4 0 1 2

1

2
63

64

Array Chi
0

1

2

4

3

x

XOR

XOR

0
0

0

1
1

1

Message Xi

1 2 24

XOR

XOR

XOR

...
...

...

Fig. 10. Proposed accelerator for performing the SHA3 standard. Input voltages (message Xi) are applied to the horizontal wires of the Chi

array, and the outputs are the final states of state array A.

 TABLE 2

VOLTAGE LEVELS APPLIED TO CROSSBAR ARRAYS

Arrays Voltage Levels
A, ¬A 0, v+, 2v+
Rho 0, v+, 2v+
Chi 0, v+
Iota 0, v+

In our simulations, v+ =0.6V, VSET =1.2V, and VCLEAR =-
1.2V.

10

At the beginning, the values in the state array A (repre-
sented as r) are initialized to logic 0. This indicates that the
expression Xi ⊕ r, which simplifies to Xi, represents the
process of mapping Xi into the state array A. Once the input
Xi is mapped into the state array, the operations θ, ρ, π, χ
and ι will be carried out as explained.

4.7 CMOS Drivers

In this study, we implemented a basic design for the CMOS
drivers, aiming to illustrate how structuring the crossbar
arrays can impact logic and circular bit rotation operations.
A wire in a crossbar array connects to a defined voltage
level through a transmission gate, with a control bit stored
externally. As a result, a wire that needs connections to var-
ious voltage levels (e.g., 0, v+, and 2v+) in different clock cy-
cles is attached to parallel transmission gates, each corre-
sponding to a specific voltage level. It is important to note
that the data organized within the crossbars yields a
CMOS peripheral circuitry of minimal size. Every set of
crossbar arrays, like the state arrays, functions concur-
rently and performs identical operations in each clock cy-
cle. Consequently, identical rows or columns within the
state arrays and other arrays must receive the same voltage
levels, given their execution of identical operations. As a
result, a single CMOS driver is employed to control identi-
cal rows or columns within the arrays. The arrangement of
the crossbar arrays, as employed, is clearly effective in
minimizing the CMOS periphery.

5 IMPLEMENTATION ANALYSIS

In this section, we analyzed the performance and area
overhead of the circuit shown in Fig. 10. Additionally, we
evaluated the functionality and energy efficiency of the cir-
cuit through simulation.
Simulation setup: The simulations were carried out using
the LTspice simulator, employing a rectifying memristor
model [39] and utilizing voltage pulses with a pulse width
of 1 ns and amplitudes specified in TABLE 2. The switching
delay, which is the time taken to program a memristor
from a HRS or ROFF to a LRS or RON, was considered to be
1ns. This estimation takes into account the conservatively
scaled characteristics of memristors achievable for fabrica-
tion in the near future [5], [40], [41]. An analogous assump-
tion was applied in the state-of-the-art designs outlined in
TABLE 4 for the purpose of comparison. Additional
memristor parameters, like RON and ROFF, were set at 500KΩ
and 500MΩ, respectively, in accordance with [30].
Performance Analysis: Fig. 11 provides an overview of the
circuit analysis for a single round of the Keccak-f function,
including the computational delay at each step. The inputs
to the circuit are message blocks Xi, which are applied to
the XOR gates of the Chi array. The outputs of the circuit
correspond to the final states of the memristors in the
crossbar array A. The hashing of a 1088-bit message block
incurs a computational delay of 6326 clock cycles. This in-
cludes the 24 rounds, each requiring 263 clock cycles, along
with an additional 14 clock cycles. The additional cycles
are allocated for input mapping, specifically for computing

Xi ⊕ r, and subsequently storing the results in array A. Fig.
11 shows the number of clock cycles per operation, with
the total sum of clock cycles for all operations being 263 per
round. The voltage levels applied to each crossbar array
are detailed in TABLE 2. These values are chosen to satisfy
the condition specified in equation (6).

2

2

CLEAR

SET

CLEAR

v v V

V v

V v

 (6)

Area Overhead: The proposed architecture consists of
crossbar arrays, MUXs, and CMOS peripheral circuits. The
size of the CMOS peripheral circuitry in our design is kept
to a minimum. Each set of crossbar arrays (such as the state
arrays, Rho arrays, etc.) operates in parallel and executes
the same operation in every clock cycle. Consequently,
identical rows or columns in the state arrays, as well as
other arrays, must be subjected to the same voltage levels
since they carry out identical operations. Therefore, a sin-
gle CMOS driver is utilized to drive identical rows or col-
umns in the arrays. As an example, a single CMOS driver
is employed to drive identical columns across all 64 slices
within the state array, effectively reducing the size of the
peripheral circuitry.
The CMOS drivers utilize 140.754 KB of control bits, stored
in an external memory. For example, 2314 control bits are
allocated for mapping a 1088-bit message block into the
state array. This allocation is calculated by multiplying the

0. Initialize the state array and the Rho array

(2 clock cycles)

1. i = 0;

2. while (i <= t-1)

3.

Apply Xi to array Chi for calculating 𝑋𝑖 ⊕ 𝑟 and store the

results in array A

(3 clock cycles per block size r ≤320)†

4. for j = 1 to 24,

5.
 Implement Theta and store the output in array ¬A,

(175 clock cycles)

6. Initialize the Rho array, (1 clock cycle)

7.
 Implement Rho operation and store the outputs in the

Rho array, (5 clock cycles)

8.
 Initialize arrays A and ¬A,

(2 clock cycle)

9.
Implement Pi operation and store the results in array

¬A, (25 clock cycles)

10.
 Compute complement of ¬A and store the results in A,

(5 clock cycles)

11.
 Implement Chi operation and update the values of A,

(45 clock cycles)

12.
 Implement Iota operation and update values of A[0, 0],

(5 clock cycles)

13. end

14. i++;

15. end while

Fig. 11. Steps for Implementing the Keccak-f function. t is the number

of message blocks. †When r = 1088 or r = 576, the mapping delay is

12 or 6 clock cycles, respectively.

 11

number of control bits linked to the CMOS periphery by
the necessary number of clock cycles for the mapping pro-
cess. In our design, the CMOS drivers for the state array,
Rho array, Chi array, and Iota array use 51, 61, 5, and 25
control bits, respectively. Furthermore, an additional 36
control bits are utilized for other CMOS switches, includ-
ing those that connect the crossbar arrays and control se-
lect bits of the MUXs. As a result, the calculation of the 2314
bits is determined by multiplying the total of 178 control
bits (covering all previously mentioned control bits) by 13
clock cycles required for the mapping of the message block
(Fig. 11).
The crossbar arrays, comprising arrays A, ¬A, Rho, Chi,
and Iota, have a combined size of 1.192 KB. Additionally,
the total size of the XOR/XNOR gates and routing sheets is
determined to be 0.304 KB. Consequently, the overall size
of the memristor circuit is 1.496KB.
Energy: The energy consumption in the first round was
calculated using the LTspice simulator, encompassing the
initialization of memristors, the mapping of inputs, and the
execution of round operations. The simulated sequence of
operations and their corresponding energy consumptions
are presented in TABLE 3. Additionally, the components of

the circuit engaged in each operation are outlined below
for clarity.
The initialization of the crossbar arrays includes setting

the state array (both A and ¬A) to the LRS and resetting the
Rho array to the HRS. The state array is programmed to
the LRS by first resetting the crossbars to the HRS or ROFF

Fig. 12. Energy consumption. Energy consumption in memristor

arrays and XOR gates is about 65 pJ per hashing a message block.

1.12%
12.25%

87%

Energy Consumption

Initialization

Input Mapping

Calculation

TABLE 3

ENERGY CONSUMPTION IN THE FIRST ROUND OF HASHING THE PLAIN MESSAGE (PJ)

Operations Simulated Sequence of Operations
Energy Con-

sumption

Initialization

1. Programming the state array (A and ¬A) to HRS and subse-
quently to LRS

0.716

2. Programming the Rho array to HRS 0.004

Mapping the message block
(Sec 4.6)

1. Calculating the XOR gates

7.659 2. Mapping the message block in the state array A

3. Initializing the XOR gates

Performing the Theta oper-
ation (Sec 4.2)

1. Performing (A[],1) 0.24

2. Computing 10-input XORs

46.002 3. Computing XA[x, y] lane by lane

4. Mapping the outputs in A[x, y] lane by lane

Performing the Rho opera-
tion
(Sec. 4.1)

1. Programming the Rho array to HRS 0.004

2. Performing Rho 0.024

Performing the Pi operation
(Sec 4.3)

1. Programming the state array (A and A) to HRS and subse-
quently to LRS 0.736
2. Performing Pi

Performing the Chi opera-
tion
(Sec 4.4)

1. Computing the negation of A 0.031

2. Initializing 2-input XOR gates

8.731
3. Computing 5 {AND-XOR} logic functions

4. Programming the state array to HRS and subsequently to LRS

5. Mapping the output results in A
6. Initializing the XOR gates

Performing the Iota opera-
tion
(Sec 4.5)

1. Calculating the XOR gates

0.034 2. Initializing A[0, 0] to HRS and subsequently to LRS

3. Mapping the resulting XORs to A[0, 0]

Overall energy consumption in crossbar memristors and XOR gates 64.181

12

and then setting them to the LRS or RON. This additional
step in the programing of the state array aims to signif-
icantly reduce energy consumption in memristors. The
initialization step involves energy consumption confined
to the state array and the Rho array, with the remainder of
the circuit remaining inactive.
In the input mapping step, an arbitrary message block is

mapped into the state array A[x, y]. This process, detailed
in Section 4.6, involves energy consumption limited to the
state array, the Chi array, and the 2-input XOR gates con-
nected to the Chi array. At the same time, the remaining
part of the circuit remains in an idle (or power-gated)
mode.
In the final step, the round operations are executed in the

specified order of θ, ρ, π, χ, and ι. The simulated sequence
of operations for each round is outlined in TABLE 3. De-
pending on the specific round operation, only the relevant
components of the circuit are active, while the rest of the
circuit remains idle. The components that are active for
each operation are specified below:

 Theta operation: State array, MUXs, Rho array, and

multi-input XOR gates

 Rho operation: State array, MUXs, and Rho array

 Pi operation: Rho array and state array

 Chi operation: State array, Chi array, and 2-input XOR

gates

 Iota operation: state array, Chi array, corresponding 2-

input XOR gates, and Iota array

The total energy consumption for memristor arrays and

XOR gates in the first round is about 65 pJ. Detailed energy
breakdown for each step is provided in TABLE 3. Fig. 12
shows the energy consumption in crossbar arrays and
XOR/XNOR gates across various stages: the initialization
of the state array and the Rho array, the mapping of the
message block Xi in crossbar A, and computations, which
represent the most energy-intensive operation. It's note-
worthy that 62% of the energy expended during computa-
tions is attributed to the initialization of memristors.

Comparisons: An extensive comparison of different archi-
tectures is beyond the scope of our paper. However, to get
some level of comparison, here are some published num-
bers for other implementations of SHA3 using both
memristive and CMOS technologies. The direct compari-
son between CMOS and non-volatile memory (NVM) im-
plementations is detailed in TABLE 4, covering energy,
throughput, and area. Throughput is computed based on
equation (7), and the size of a message block in all imple-
mentations is consistent at 1088 bits.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐵𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
× 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (7)

In TABLE 4, the first three rows present examples of SHA3
implementations utilizing 65nm, 90nm, and 130nm CMOS
technologies [42], [43], [44]. Subsequent rows display
NVM-based implementations of SHA3. Concerning area,
our accelerator exhibits a small area overhead compared to
NVM-based implementations.
In the context of energy consumption, our accelerator, en-
compassing crossbar arrays, volistor XOR gates, and

TABLE 4

HARDWARE IMPLEMENTATION RESULTS OF SHA3

Implementation Freq
(MHz)

Size Latency
(Cycles)

Throughput
(Gbps)

Energy
(J)

Memristor1 (KB)

CMOS
(KGE2)

Instruction Computing

65nm ASIC [42] 1K - - 105 12 48 -
90nm ASIC [43] 455 - - 10.5 25 19.32 -

130nm ASIC [44] 0.1 - - 47.63 24 4.533×10-2 -
HashPIM [7]3 333 - 1048 - 3.494K 39.2 0.29×10-3
ReVAMP [8]4 1K 80 0.336 - 27.92K 3.897×10-2 1.53
VG-MTJ [10]5

(Single message)
402 - - 147.74 10.993K 3.975×10-2 0.39

SHINE-1 [11] 2K - 50.944 25.4 264 33.4 4.13×10-3
This Work 1K 140.754 1.496 5.6 6.326K 17.27×10-2 0.072×10-3

These data were obtained for hashing one message block (i.e. 24 rounds of function f in Fig. 5).

1 Instruction memristors are used as ROM.

2 The area is given in terms of gate equivalent (GE). 1 GE is the area of a minimum-sized NAND gate.

3 The design consists of 378 computational units where the amount of energy consumption per unit is 0.765nJ.

4 The energy was calculated by the authors of [10] for comparison reasons.

5 The authors of [10] used crossbar arrays of voltage-gated Spin Half Effect (SHE) Driven magnetic tunnel junction

(MTJ) for computing SHA3 where the size of the proposed circuit is 0.361 mm2 (or equivalently 147.74KGE in 65nm

technology node). The authors also designed a Multiple Message Hash that holds 5 block messages simultaneously.

 13

MUXs, surpasses NVM-based implementations by con-
suming 72 pJ. It's important to note that MUXs are active
for only 6 out of 6326 clock cycles. Their implementation
utilizes a 65nm standard cell library and incurs a consump-
tion of 7.6 pJ. In comparison to recent CMOS technology,
our accelerator exhibits lower energy consumption. Specif-
ically, the energy consumed in the datapath for accessing
a single message block (1088 bits) from an HBM2 (High
Bandwidth Memory) implemented in a 22nm technology
node is measured at 3.786 nJ (equivalent to 3.45 pJ/bit [45]).
Notably, this energy usage is nearly two orders of magni-
tude higher than the overall energy consumption in our ac-
celerator. The energy savings in our implementation are at-
tributed to in-memory computations, rendering the men-
tioned energy unnecessary.
In terms of delay and throughput, our accelerator sur-
passes both VG-MTJ and ReVAMP. However, it's im-
portant to note that SHINE and HashPIM exhibit higher
performance than our accelerator, albeit at the expense of
larger areas and increased energy consumption. As such,
our design is tailored for optimal area utilization and en-
ergy efficiency. In summary,
1. The primary difference between our design and previ-
ous ones, centers around architectural considerations. This
encompasses factors like the size and structure of crossbar
arrays, as well as specific attributes of memristors (e.g., rec-
tifying vs. non-rectifying) in the respective designs.
2. In our approach, the Rho operation employs CMOS
MUXs connecting perpendicular crossbar arrays. This dif-
fers from other methods, where CMOS technology was
used for the Rho operation. Notably, [7] handles this oper-
ation within the crossbar arrays themselves.
3. Our methodology implements logic functions using
both non-stateful and stateful logic gates—programmable
diode gates and volistors within crossbar arrays of rectify-
ing memristors. Conversely, alternative techniques em-
ploy various logic implementations, including stateful
logic gates such as MAGIC [46].
4. Our architecture is tailored to optimize both area and en-
ergy concurrently, emphasizing parallel computations. In
contrast, alternative approaches, like [7], prioritize perfor-
mance over area, while [8] prioritizes area optimization at
the expense of performance degradation.

6 CONCLUSION

Our paper introduces a compact 3D architecture for in-
memory computing with SHA3. Using CMOS-memristor
technology, our design implements data representation in
SHA3 directly. Leveraging memristor characteristics, our
design addresses the memory access bottleneck and elimi-
nates standby power in conventional computers. Addition-
ally, our optimized design minimizes both area and energy
consumption, highlighting the potential of hybrid CMOS-
memristor technology for security implementations with
reduced size and energy requirements.

REFERENCES

[1] I. San and N. At, “Compact Keccak hardware architecture for

data integrity and authentication on FPGAs,” Information Secu-

rity Journal: A Global Perspective, vol. 21, pp. 231-242, 2012.

[2] F. Kahri, H. Mestiri, B. Bouallegue, M. Machhout, “High speed

FPGA implementation of cryptographic KECCAK hash function

crypto-processor,” Journal of Circuits, Systems and Computers,

vol. 25, pp. 1650026, 2016.

[3] S. Bayat-Sarmadi, M. Mozaffari-Kermani and A. Reyhani-

Masoleh, "Efficient and Concurrent Reliable Realization of the

Secure Cryptographic SHA3 Algorithm," in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,

vol. 33, no. 7, pp. 1105-1109, July 2014.

[4] G.S. Athanasiou, G. Makkas, G. Theodoridis, “High throughput

pipelined FPGA implementation of the new SHA3 crypto-

graphic hash algorithm,” 2014 6th International Symposium on

Communications, Control and Signal Processing (ISCCSP), pp.

538-541, 2014.

[5] M. S. Q. Truong, E. Chen, D. Su, L. Shen, A. Glass, L. R. Carley, J.

A. Bain, S. Ghose, “RACER: Bit-pipelined processing using resis-

tive memory,” in MICRO, 2021.

[6] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui and K. Bertels,

"A Mapping Methodology of Boolean Logic Circuits on Memris-

tor Crossbar," in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 37, no. 2, pp. 311-323,

Feb. 2018.

[7] B. Oved, O. Leitersdorf, R. Ronen, and S. Kvatinsky, "HashPIM:

High-Throughput SHA-3 via Memristive Digital Processing-in-

Memory," arXiv preprint arXiv:2205.13559 (2022).

[8] D. Bhattacharjee, R. Devadoss, A. Chattopadhyay, “ReVAMP:

ReRAM based VLIW architecture for in-memory compu-

ting,” Design, Automation & Test in Europe Conference & Exhi-

bition (DATE), pp. 782-787, 2017.

[9] X. Xue, C. Wang, W. Liu, H. Lv, M. Wang, X. Zeng, “A RISC-V

Processor with Area-Efficient Memristor-Based In-Memory

Computing for Hash Algorithm in Blockchain Applica-

tions,” Micromachines, vol. 10, pp. 541, 2019.

[10] C. Yang, Z. Chen, “A Processing-In-Memory Implementation of

SHA3 Using a Voltage-Gated Spin Hall-Effect Driven MTJ-based

Crossbar,” Proceedings of the 2019 on Great Lakes Symposium

on VLSI, pp. 195-200, 2019.

[11] K. Nagarajan, S. S. Ensan, M. Nasim Imtiaz Khan, S. Ghosh and

A. Chattopadhyay, "SHINE: A Novel SHA3 Implementation Us-

ing ReRAM-based In-Memory Computing," 2019 IEEE/ACM In-

ternational Symposium on Low Power Electronics and Design

(ISLPED), 2019, pp. 1-6.

[12] J. Y. Seok, S. J. Song, J. H. Yoon, K. J. Yoon, T. H. Park, D. Eun

Kwon, H. Lim, G. H. Kim, D. S. Jeong, C. S. Hwang, "A review

of three-dimensional resistive switching cross-bar array memo-

ries from the integration and materials property points of

view," Advanced Functional Materials, vol. 24, pp. 5316-5339, 2014.

[13] C. Li, L. Han, H. Jiang, M.-H. Jang, P. Lin, Q. Wu, M. Barnell, J. J.

Yang, H. L. Xin, Q. Xia, “Three-dimensional crossbar arrays of

self-rectifying Si/SiO2/Si memristors,” Nat Commun, vol. 8, pp.

15666, 2017.

[14] H. S. Yoon, In-Gyu Baek, J. Zhao, H. Sim, M. Y. Park, H. Lee, G.-

H. Oh, J. C. Shin, In-Seok Yeo, U-In Chung, "Vertical cross-point

resistance change memory for ultra-high density non-volatile

memory applications," 2009 Symposium on VLSI Technology,

2009, pp. 26-27

[15] W.C. Chien, F.M. Lee, Y.Y. Lin, M.H. Lee, S.H. Chen, C.C.

Hsieh, E.K. Lai, H.H. Hui, Y.K. Huang, C.C. Yu, C.F. Chen, H.L.

14

Lung, K.Y. Hsieh, Chih-Yuan Lu, "Multi-layer sidewall WOX re-

sistive memory suitable for 3D ReRAM," 2012 Symposium on

VLSIT, 2012, pp. 153-154.

[16] I. G. Baek, C. J. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M.

K. Yang, S. H. Song, E. M. Kim, S. O. Park, C. H. Park, C. W. Song,

G. T. Jeong, S. Choi, H. K. Kang, C. Chung, "Realization of verti-

cal resistive memory (VRRAM) using cost effective 3D process,"

2011 International Electron Devices Meeting, 2011, pp. 31.8.1-31.8.4.

[17] S. Yu, H-Y. Chen, Y. Deng, B. Gao, Z. Jiang, J. Kang, H. –S. Philip

Wong, "3D vertical RRAM - Scaling limit analysis and demon-

stration of 3D array operation," 2013 Symposium on VLSI Tech-

nology, 2013, pp. T158-T159.

[18] R. Joshi and J. M. Acken, “Utilizing sneak paths for memristor

test time improvement,” IETE Journal of Research, pp. 1-10,

2021.

[19] S. Kannan, N. Karimi, R. Karri and O. Sinanoglu, "Detection, di-

agnosis, and repair of faults in memristor-based memories," 2014

IEEE 32nd VLSI Test Symposium (VTS), 2014, pp. 1-6.

[20] G. S. Rose, N. McDonald, L. Yan and B. Wysocki, "A write-time

based memristive PUF for hardware security applications," 2013

IEEE/ACM International Conference on Computer-Aided De-

sign (ICCAD), 2013, pp. 830-833.

[21] M. J. Aljafar and J. M. Acken, “Survey on the benefits of using

memristors for PUFs,” International Journal of Parallel, Emergent

and Distributed Systems, pp. 1-28, 2021.

[22] H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, M. Bar-

nell, “A novel true random number generator based on a sto-

chastic diffusive memristor,” Nature Communications, vol. 8,

pp. 1-9, 2017.

[23] L. Chua, "Memristor-The missing circuit element," in IEEE

Transactions on Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep-

tember 1971.

[24] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The

missing memristor found,” Nature, vol. 453, no. 7191, pp. 80,

2008.

[25] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, R.

S. Williams “Memristive’ switches enable ‘stateful’ logic opera-

tions via material implication,” Nature, vol. 464, no. 7290, pp.

873, 2010.

[26] M. Aljafar, M. Perkowski and J. M. Acken, “Volistor Logic Gates

in Crossbar Arrays of Rectifying Memristors,” International

Journal of Unconventional Computing, vol. 14, pp. 319-348, 2019.

[27] A. G. Ruotolo, M. Ottavi, S. Pontarelli and F. Lombardi, "A novel

write-scheme for data integrity in memristor-based crossbar

memories," 2012 IEEE/ACM International Symposium on Na-

noscale Architectures (NANOARCH), 2012, pp. 168-173.

[28] M. A. Zidan, A. M. Eltawil, F. Kurdahi, H. A. H. Fahmy and K.

N. Salama, "Memristor Multiport Readout: A Closed-Form Solu-

tion for Sneak Paths," in IEEE Transactions on Nanotechnology,

vol. 13, no. 2, pp. 274-282, March 2014.

[29] K. Kim, K.-H. Kim, S. H. Jo, S. Gaba, and W. Lu, “Nanoscale re-

sistive memory with intrinsic diode characteristics and long en-

durance,” Applied Physics Letters, vol. 96, no. 5, pp. 053106,

2010.

[30] K. H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain,

N. Srinivasa and W. Lu, “A functional hybrid memristor cross-

bar-array/CMOS system for data storage and neuromorphic ap-

plications,” Nano letters, vol. 12, no. 1, pp. 389-395, 2012.

[31] K. Kim, J. Zhang, C. Graves, J. J. Yang, B. J. Choi, C. S. Hwang, Z.

Li, and R. S. Williams, “Low-power, self-rectifying, and forming-

free memristor with an asymmetric programing voltage for a

high-density crossbar application,” Nano letters, vol. 16, no. 11,

pp. 6724-6732, 2016.

[32] M. J. Aljafar, M. A. Perkowski, J. M. Acken and R. Tan, "A Time-

Efficient CMOS-Memristive Programmable Circuit Realizing

Logic Functions in Generalized AND–XOR Structures," in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 26, no. 1, pp. 23-36, Jan. 2018.

[33] M. J. Aljafar, M. A. Perkowski, J. M. Acken, “Multi-input Volistor

Logic Gates,” International Journal of Parallel, Emergent and

Distributed Systems, vol. 35, no. 4, pp. 423-432, Jul. 2019.

[34] M. J. Aljafar and J. M. Acken, "A 3-D Crossbar Architecture for

Both Pipeline and Parallel Computations," in IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 68, no. 11, pp.

4456-4469, Nov. 2021.

[35] B. Guido, D. Joan, P. Michaël, V. A. Gilles, “Cryptographic

sponge functions,” Team Keccak. https://keccak.team/files/CSF-

0.1.pdf. Accessed 29 Dec, 2021.

[36] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, “The Keccak ref-

erence,” Team Keccak, 2011. https://keccak.team/files/Keccak-

reference-3.0.pdf. Accessed 29 Dec 2021.

[37] C. Paar C, J. Pelzl, “Understanding cryptography: a textbook for

students and practitioners,” Springer Science & Business Media,

2009. http://www.crypto-textbook.com/. Accessed 29 Dec 2021.

[38] M. J. Dworkin, “SHA3 standard: Permutation-based hash and

extendable-output functions,” No. Federal Inf. Process. Stds

(NIST FIPS)-202.

[39] E. Lehtonen, J. Tissari, J. Poikonen, M. Laiho, L. Koskinen, “A

cellular computing architecture for parallel memristive stateful

logic,” Microelectronics Journal, vol. 45, no. 11, pp. 1438-1449,

2014.

[40] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, R. S. Wil-

liams, “Sub-nanosecond switching of a tantalum oxide memris-

tor,” Nanotechnology, vol. 22, no. 48, pp. 485203, 2011.

[41] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M.

Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin,

C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, M.-J. Tsai “Evidence

and solution of over-RESET problem for HfOX based resistive

memory with sub-ns switching speed and high endurance,” 2010

International Electron Devices Meeting, 2010, pp. 19.7.1-19.7.4.

[42] M. M. Wong, J. Haj-Yahya, S. Sau and A. Chattopadhyay, "A

New High Throughput and Area Efficient SHA3 Implementa-

tion," 2018 IEEE International Symposium on Circuits and Sys-

tems, 2018, pp. 1-5.A.

[43] Akin, A. Aysu, O. C. Ulusel, E. Savas, “Efficient hardware imple-

mentations of high throughput SHA3 candidates keccak, luffa

and blue midnight wish for single-and multi-message hashing,”

In Proceedings of the 3rd International Conference on Security

of Information and Networks, pp. 168–177, 2010.

[44] E. B. Kavun, T. Yalcin, “A lightweight implementation of keccak

hash function for radio-frequency identification applications,”

International Workshop on Radio Frequency Identification: Se-

curity and Privacy Issues, pp. 258-269, 2010

[45] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.

Keckler, W. J. Dally, "Fine-Grained DRAM: Energy-Efficient

DRAM for Extreme Bandwidth Systems," 2017 50th Annual

IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), 2017, pp. 41-54.

[46] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” in IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,

pp. 895-899, Nov. 2014.

	A 3D Memristor Architecture for In-Memory Computing Demonstrated with SHA3
	Let us know how access to this document benefits you.
	Citation Details

	Transaction / Regular Paper Title

