
Portland State University Portland State University

PDXScholar PDXScholar

University Honors Theses University Honors College

5-23-2019

Glitch Art as an Expression of Medium Glitch Art as an Expression of Medium

Maxwell Ettel
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Ettel, Maxwell, "Glitch Art as an Expression of Medium" (2019). University Honors Theses. Paper 736.
https://doi.org/10.15760/honors.753

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/736
https://doi.org/10.15760/honors.753
mailto:pdxscholar@pdx.edu

Glitch Art as an Expression of Medium

by Maxwell Ettel

An undergraduate honors thesis submitted In partial fulfillment of the  

requirements for the degree of

Bachelor of Science

In

University Honors

and

Graphic Design

Thesis Advisor:

Stephen Lee, M.F.A.

Portland State University

2019

!1

1. Theory

 To fully understand and effectively utilize something, you have to understand how it

works. The path to comprehension can be paved in many ways, the specific way that this thesis

explores is breakages. Breakages or ‘glitches’ in digital images expose the underlying identity of

digital mediums. A ‘glitch’ is “any error, malfunction, or problem” (dictionary.com) in a

computational system that results from unintended code interaction or damage. Visual glitches

have their own associations in our collective cultural discourse, due to their unique and visually

stark appearance.

 “Perspectives on damage to human artifacts have typically fallen into two categories:

 That of the ideal pristine artifact, in which damage is problematic and to be avoided or

 repaired; and that of the entropic artifact, in which damage acknowledges mortality,

 temporality, and serendipity” (Kilker, 52).

Kilker denotes these distinctions in relation to analog photography, in the context of digital

imagery they also hold merit. Typically the goal of digital imagery is to create an artifice of

reality, where any break in the artifice is undesirable. Counter to this ideal, a break can be viewed

as an acknowledgment of the digital foundation of the image. In all, the identity of the image as a

digital object is revealed through the break in the visual artifice.

 In his work Camera Lucida, Roland Barthes introduces and defines the concepts of

Studium and Punctum. Studium is the fundamental human understanding of an image, while

Punctum is a superseding element that captures an individual viewers attention (Barthes).

Punctum is a fairly fickle thing due to its very subjective nature, whereas studium is involved

more in collective human understanding. In essence, studium is inherently related to the visual

!2

http://dictionary.com

and formal identity of an image. The visual identity exists as the subject of the image, it lies

within our initial understanding of the image as its subject. In essence the surface level studium.

For example, the visual identity of a photo taken of a building would be found in the

understanding of the image as the building itself. The formal identity is found in the fundamental

elements of the medium used, or the subsurface studium of the image. To put this simply, the

formal identity is the medium. These identities are closely tied, however the degree of balance

between the two depends upon both the image itself and its medium.

 A medium is a foundation for the image. In the context of this thesis, a medium is a

specific means of artistic expression. The two main delineations of a medium (in reference to

imagery) are the physical and the digital. While physical mediums such as oil paint, charcoal, or

analog photography are tangible; digital mediums are intangible. Secondarily, examples of

digital mediums can be seen in regards to the technical vs the conceptual. Technical digital

mediums are primarily composed of the distinctions between raster and vector, which are two

fundamentally different ways of producing imagery. Conceptual mediums include: digital

photography, generative art, 3D Rendering, etc. Despite the difference in tangibility, both

physical and digital mediums are a means of representing a subject through the creation of

imagery.

 The relationship between the visual and formal identities is dependent in part on the

medium. This relationship also impacts the studium of the image, through the tangibility of the

image itself. When you can feel the texture of something that changes how you understand it. It

goes from an artifact that exists only to your eyes to something that is truly present within your

world. It is the studium that paves the way for punctum. The punctum comes from how the visual

!3

and formal identities interact in the image. Its basis as a concept comes from the minor details of

an image. When we view the strokes of a brush in a painting or the gritty texture of pencil, we

see the tangibility of the medium. This tangibility sets the stage for punctum, by creating visual

elements that reinforce the physicality of the image. In glitched imagery the entropic elements

call attention to the intangibility of the medium, through their lack of basis in physical imagery.

This exposes the formal identity by displaying the inherent digital structures of the image,

something that isn’t present in physical imagery. The relationship between the visual and formal

identity is impacted by the tangibility of the medium in tandem with the specific imagery

involved. Another factor in this relationship can be found in how damage affects understanding.

 Kilker writes that visual damage can be interpreted in two ways: the ideal and the

entropic. The ideal is expressed through the zeitgeist of modern imagery, focusing on attaining

the highest and clearest image resolution. This can be seen through the ever increasing resolution

of cameras and digital displays. The idea is to create a near perfect artifice, with minimal visual

compression and distortion. All in service of prioritizing the visual identity. Counter to that ideal

is the movement towards the entropic image in the form of Lo-Fi (Low fidelity) and Glitch art.

Where the idea is to actively find or otherwise generate what Kilker calls “entropic artifacts,”

which are items / images that have been altered through entropic processes (52). In physical

mediums the type of wear is that of age: physical damage / deformations, dirt, fading, etc

(Kilker, 53). While in digital mediums the entropic artifacts can come as a result of compression

and corruption, two opposing methods that each have their own distinct visual language. The

nature of these changes is intrinsically tied to the lack of physicality in the medium.

!4

 The movement of artists and creatives towards entropic visuals doesn’t come without

controversy. As with most countercultural movements glitch art and glitch aesthetics have been

adopted into situations wherein their inclusion would otherwise be unwelcome. As Carolyn Kane

writes:

 “A glitch or technical error can be used to pose questions and open up critical spaces in

 new and unforeseen ways. Herein lies the appeal of glitch to numerous artists past and

 present … glitches have also been quickly appropriated back into dominant fashions and

 styles, moving from political or social critique to commodity, glitch aesthetics bear a

 fundamentally antagonistic relation even to themselves” (1).

An example that Kane points to is Kanye West’s video “Welcome to Heartbreak,” which

appropriated compression aesthetics from Paul B. Davis’ glitch art, while providing none of the

greater artistic elements associated with the original work (Kane 2). The idea that glitch art is

inherently antagonistic to itself due to its wide commodification and appropriation is valid, and

this validity adds new layers to its formal identity in the form of the understanding of this self-

antagonism.

 In terms of creating digital entropic artifacts the two main visually distinct and attainable

means are compression and corruption. Compression at its very basis is a process of removing

redundancies, which are pieces of information that aren't necessary for viewing and

understanding the image (Arrora et al. 185). In “Review of Image Compression Techniques” by

Aurora et al, they detail three types of visual redundancies: “Psycho-Visual Redundancies,

Interpixel redundancy (Spatial & Temporal), and Coding Redundancy” (185). These different

redundancies all factor into the methods used in a wide variety of image compression methods.

!5

These inform the codec which compress digital images. However, compression in concept is not

limited to digital visuals.

 Compression, from an art oriented point of view, has its roots in the introduction of

photography.

 “Photography could achieve in a fraction of a second what took hours to paint or draw,

 and thus painters sought new directions for their practice, beyond and away from

 classical realism, and into the domain of tonality, abstraction, color, frame, format, and

 medium…The Impressionist and Post-Impressionist painters in particular followed

 cutting edge research into optics and argued that all one ever perceived was a series of

 light and abstract color patches” (Kane 3).

These optics are very similar to compression methods of today, with both being processes of

removing information redundant to the human eye. The art photographer Thomas Ruff has a

series of photographs (called “Jpegs” quite plainly), wherein he takes easily recognizable

photographs and distorts them using jpeg compression methods. Ruff takes then takes these

photographs and prints them out at a large size, calling attention to the digital formal identity

through the excessive jpeg artifacting on the image.

Fig 1. Thomas Ruff, Work Name Unknown (possibly wf02), Cropped.  

Accessed: https://davidcampany.com/thomas-ruff-the-aesthetics-of-the-pixel/

!6

 Corruption is a lot more varied in terms of the methods of creation. Corruption occurs

when something goes wrong, the specifics of which can vary in many ways. Corruption can not

only occur on the digital level, but also the physical. Equipment failure is a great example of this,

examples include: storage device failure, weak connection / connection failures in cables, capture

device failure, etc. This contrasts compression, which works by intended design, whereas

corruption exists counter to intended design. Methods utilized to create corrupted images vary

from simple code deletion(see Fig. 2), to specialized software that can process images in a

specific way (e.g. Photoshop, Processing, etc.).

Fig 2. A Jpeg corrupted through code deletion. Max Ettel (self), 2014.

 Corruption can also be carried out by using software in new ways. An example of this is

Audio Based Image Manipulation, a process in which a bitmap (bmp), image is imported as raw

data into an audio editor (such as Audacity), where it can be modified with audio filter, or cut

and pasted into new configurations (see Fig. 3). Audio-based manipulation works similarly to

editing image code, albeit through a means not intended for image manipulation. Overall images

!7

can be manipulated in a variety of different ways, though compressing and corrupting are the

primary means by which an image can be glitched.

Fig 3. An image corrupted using Audio-based manipulation. Max Ettel (self), 2018.

2. The Project in Code

 My goal for this project was to take the concepts and ideas I established and create image

processing scripts in p5js that uses them as a creative basis. My approach was primarily to take

inspiration from preexisting examples of compression and corruption, and write image

processing code that either approximates or takes inspiration from those processes. This led me

down several different avenues, the specifics of which will be detailed in section 3.

 The foundation of this project is in code. While the results of this will be visual, at the

heart of things this project was an exercise in writing p5js code. For the readers who may not be

familiar with code (primarily p5js and Processing) the following section will cover the very

basics of coding concepts and image processing within p5js.

2.1 Basic Concepts

!8

 The primary building blocks of the code are: variables, arrays, conditionals, and for

loops. These elements are universal between every script that I wrote, and an understanding of

how they operate will be essential for understanding the code. Variables: a variable is at its very

basis a value that can be changed (launchschool.com). The specifics of the value can depend on

the context in which it is defined. For example in javascript variables can store a variety of

datatypes. These include: numbers, booleans, and strings. A boolean is primarily a binary value,

it can either be true or false (dictionary.com). They are useful if you need to check for a

condition that only has two possible states. A string is a sequence of characters that will be stored

not as units, but as text more often than not (techterms.com). In all, a variable can be just about

anything that can be singularly stored for use.

 Arrays are essentially a list. The list can encompass just about anything, it is primarily a

means to store larger blocks of data without using a large amount of separate variables. This

project is built off the back of pixel arrays, long lists that contain all the pixel values of an

image. The index of arrays (the number associated with a values location in the array) begins at

0, something which needs to be accounted for when pulling values out of array. Arrays can also

be a way to store objects within the space of object oriented programming (OOP), however that

is beyond the scope of this project.

 Conditionals are logic oriented lines of code that check for conditions. In this project the

if conditional was used quite a bit to ensure that the correct action occurred when the required

conditions became true. The formatting for an if statement looks like so:

If (check == true){
 run this code
}

!9

http://dictionary.com

There are also while Statements, which instead of running code when something becomes true,

runs it while something is true.

While (check==true){
 run this code
}

These can be useful for ensuring that certain things are running congruently with another

element. Similar to while statements are for Loops. The effect of a for loop can be achieved with

a while loop, however for loops have built in shorthand that makes them more efficient and

easier to code. They are formatted as:

for(var variable = 0; variable < maxval; variable++){
 run this code
}

The structure of a for loops is best summarized by three phases: initialization, condition,

incrementation. It begins by initializing a variable and giving it a value, then a while check is run

against the variable, and if that while check is true, it will increment the variables value by the

specified amount. The specified incrementation is dependent on what is notated, in the example

above ‘++’ indicates an incrementation by 1. This can be used to run code many times within the

same frame. Nested (set within each other) for loops are used in this project to create the pixel

grid for the image.

2.2 p5js script structure

 In this section I will be discussing the basic script structure of p5js. No matter the nature

of the code, these elements will be ever present in the code. To begin let’s discuss the setup and

draw functions. These functions are the primary environment where elements are initialized and

run. It is important to note that setup is only run once, while draw is run on every frame. This

means that any code that is constantly updated such as movement or incrementation should be

!10

run in draw. While code that only needs to be run once can be written within setup.

createCanvas() will be defined within setup, this sets the size of the window for the p5js script.

Within draw the framerate can also be set. This essentially caps the framerate, which is how

often draw is run. pixelDensity can also be set for users of high density displays. This ensures

that the resolution of the image matches that of the users display. Within draw is where

constantly updated code will be written. The primary element to note in p5js is that setup and

draw are essential to any script, if they are omitted the script itself will be useless.

 Outside of these primary functions global variables can be defined (usually prior to

setup), so that they can be accessed by both functions and any extraneous custom functions that

may be defined for the script.

2.3 Loading & Accessing Image Data

 The process for loading and accessing image data within p5js takes several steps. To

summarize they are: initialize, access, modify, and update.

var img;
var finalimg;

To begin, before getting into the primary functions a variable named for the loaded image will be

initialized, as well as a variable for the final image.

function preload(){
 img = loadImage('dog200x250.jpg');
 finalimg=createImage(200,250);
}

Next a new primary function will be called, named preload. This function is used to ensure that

the images are loaded before setup and draw are run. Within preload the image variables are

redefined as images. The first initial image variable is set to a p5.image, which is a special

datatype that p5js uses for images (p5js.org). This doesn't create a new image, instead it pulls

!11

http://p5js.org

pixel values and sets them within a pixel array. After the information for the initial image is

loaded, the second image variable is set to a new blank p5.image.

function setup(){
 createCanvas(200,250);
 colorMode(RGB);
 frameRate(30);
}

 After the image initialization is run within preload, setup is run. There are no image

specific elements within setup beside setting the canvas size, framerate, and pixel density. These

have little bearing on the final image besides how it’s displayed on the webpage.

img.loadPixels();
finalimg.loadPixels();
 for (var y=0; y<height; y+=cellsize){
 for (var x=0; x<width; x+=cellsize){
 var index = (x+y*width)*4;
 var r = img.pixels[index+0];
 var g = img.pixels[index+1];
 var b = img.pixels[index+2];
 var c = color(r,g,b);
 finalimg.set(x,y,c);
 }
}
img.updatePixels();
finalimg.updatePixels();
image(finalimg,0,0);

 Within draw is where the data itself is accessed. Prior to the for loops that go through the

pixel grid, the pixels for both the initial and final images are made readable and editable. This is

done by calling the .loadPixels() function. This allows the pixel data to be accessed using

name.pixels[index value]. Within the for loops an index value is initialized and calculated. The

index takes the current x and y position as defined by the loops, as well as the image width to

calculate pixel positions within the pixels array. p5js does have some quirks with this, within

pixel arrays each pixel is comprised of four entries. These values are the red, green, blue, and

alpha values of the associated pixel. To correctly calculate the index for the current pixel the

!12

index calculation must be multiplied by four to correctly read the values. The final index

calculation looks like this:

index = (x+y*width)*4.

 After the index is calculated the RGB values are then pulled into their own variables,

which is done using the pixels array. The specific R, G or B value is defined as a variable, and

then calculated by reading the images pixel array using the index. After this is completed, any

extraneous calculations can be made to modify the image values within the for loop. When those

are finished, the variable C is defined. C is declared as a color data type, and is then set to the

final RGB values. Then .set must be called to write the values to the final images pixel array.

This is simply done by using dot syntax finalimg.set(x,y,c). The x and y are the current pixel

location as defined by the loops, while c contains the final RGB values. Directly after all the

work in the for loops has finished the arrays are then fully updated using .updatePixels() for both

the initial image and the final image. This ensures that the values are fully set within the pixel

arrays. After that has been completed the final image is displayed within the canvas using

image(finalimage, 0,0). This is the basic process for loading and displaying an editable image

within p5js.

2.4 Processing Vs. p5js

 Initially I was planning on using both p5js and Processing; developing the code in

Processing and then porting it into p5js. At the behest of my advisor, I chose to work only in

p5js. This proved to be a great idea, due to the intrinsically different ways in which p5js handles

image processing vs how Processing handles it.

!13

 Both Processing and p5js have marginally different ways of handling pixel data.

Processing requires you first define a PImage, which is a specific datatype used to store image

data within processing (processing.org). After defining a PImage, you then point to a local file,

whose values are then loaded into the PImage. After this has been done the pixel values can be

accessed using dot syntax and an index. The pixels array in Processing is also fairly

straightforward, every entry into this array contains the the RGB values. This simplifies the

means by which you index these values. You only have to think in a very linear manner.

 p5js handles pixels differently. As detailed in the previous subsection, p5js does not have

PImage, instead it uses a variable to store the image values. That variable is then set to a

p5.image within the library itself, and not within the script. The pixel arrays also behave

differently, with individual pixels having 4 entries for the RGBA values. Despite the sheer length

of the pixel arrays, it poses little issue in terms of performance. The methodology of displaying

the pixels also differs based on method (which we be detailed in the next subsection), and the

final result can change performance drastically based on the method employed.

 Overall I found the intrinsic differences between how Processing and p5js handle images

initially disorienting. Experience with the nuances of p5js’ system proved helpful, and now I find

it a bit more intuitive than how Processing handles images.

2.5 .get() vs .pixels[];

 In my work on this thesis I have found two different methods for loading and modifying

images within p5js, One grossly inefficient, and one fairly efficient. The first of these methods

uses the .get() function. This function works by accessing the targeted images array, indexing for

the pixel data at the given coordinates, and then saving that out to a short array. I would then use

!14

http://processing.org

this to get the color values, save them out to a separate array, and then use the values that it

contains in the image processing. The main issue with using this method is it is not only creating

a new array on a per pixel basis, but it is essentially doing that twice (alongside any other

internal operations that .get() conducts). As could be reasonably assumed, this slows the code

down by a lot, loading a basic 200x250 image in about 17 seconds.

 The .pixels[] method is a much faster and more efficient way to access this data. In lieu

of using a predefined function to pull the values out of the image, this method directly accesses

the images through the .loadImage() function followed by the .loadPixels() function. Instead of

loading small select sections of the image data into an array, these functions produce a large

array containing all values for the image. These values can then be accessed through the .pixels[]

array. A caveat of this method is that .set must be used, which throws current values back into

either the original array, or a new image. After all of the image has been

processed .updatePixels() must be called, which essentially glues down all the values that .set()

threw into the array. After all this processing has been completed the image will have to be

displayed, which is done by a simple image(); function. Overall, despite the few extra priming

and finishing steps, this method is significantly faster than the .get() method. It loads images in a

little over a second.

 The main reason why I know of these two different methods is because .get() was a

necessary evil for my work for a long while. Which was due to the lack of documentation in the

specific ways that I wanted to process and display an image. While now I have a better

understanding of it, initially I had little idea of how to get it to work in the way that I wanted it

!15

to. It was only after I had developed the majority of the image processing code that I worked out

the .pixels[] method.

3. The Scripts

The following section will go over the p5js scripts that I wrote for this project. I will be going

into the specifics of how they work in regards to how they modify image data.

3.1 Distortion

Fig 4. An image before and after being run through the distortion code.

 This code began with a simple question, how can I take the data from one image, and use

it to modify another. The visual result of this question came in the form of distortion. This

distortion took varying forms based upon the image referenced. My initial tests of this code were

using basic gradient images to displace the pixels, however I soon found the best results came

from using more complex photos. My focus in this code was to unravel the barrier between

formal and visual, using not gross approximations of physical distortion methods, but by using

pure raster data to create the visual result.

 The code itself is a rather simple modification on the basic image processing code. The

main difference in its initialization is that a second image is loaded in the script. For the sake of

!16

brevity I am going to nickname the shift data image the shiftmap, and the modified image img.

Also within the variable declaration is the dist_limit variable, this defines the maximum distance

that a pixel can be shifted. There is also shift_direction, which determines the overall direction in

which pixels are moved. This adds a few extra lines of code to the variable declaration, preload,

and draw functions.

for (var y=0; y<height; y+=cellsize){
for (var x=0; x<width; x+=cellsize){
 var index = (x+y*width)*4;
 var shiftval = (shiftmap.pixels[index]);
 var shift = ceil(map(shiftval,0,255,0,dist_limit));

Here we see the initialization and calculation of the index variable. Which takes the current x and

y position and converts it into a single value that pulls the correct data from the pixels array.

Following this we see the initialization and calculation of shiftval and shift. Shiftval calculates a

value from the shiftmap image, by averaging the RGB values of the corresponding pixel. This is

then fed into shift, which then maps that value from the standard RGB color scale (0-255), to a

scale of 0 - distlimit.

var sX;
var sY;

These variables are then declared. They will store the x and y values of the shifted pixel once

calculated.

if (shift_direction == 1){
 sX=x-shift;
 sY=y-shift;
 if (x<shift){
 sX = (width-x)-shift;
 }
 if (y<shift){
 sY = (height-y)-shift;
 }
}

This conditional (of which there are two to check for direction), then runs a check to see what

value shift_direction has, the one shown here checks for 1 and then runs accordingly. sX and sY

!17

are set to the current x or y minus shift. This is then followed by another set of conditionals, these

then check to see if the shifted values will be outside the bounds of the pixel array. If they are, it

will reflect the pixel across the image.

var shiftindex = (sX+sY*width)*4;
var r = dog.pixels[shiftindex+0];
var g = dog.pixels[shiftindex+1];
var b = dog.pixels[shiftindex+2];
var c = color(r,g,b);
finalimg.set(x,y,c);

Then sX and sY are then taken, and a new index is calculated. This index (shiftindex), takes the

same calculations from the normal index, and instead uses the shifted x and y values. This index

is then used to pull the RGB values for the shifted pixel, and then sets them to the current pixel

location. Finally the arrays are updated, and the image is then displayed.

 In terms of the theory and ideas that this code represents, my intent was to create an

image whose digital identity is displayed through computer originated distortion. While semi-

realistic distortion could be produced under the right circumstances, the vast majority of images

produced with this code will take on an inherently digital appearance. This digital appearance

primarily takes the form of the ghosting that appears when a photographic image is used as a

shiftmap. When the limit is set to the right amount this ghosting will appear. At one point I felt

that it could be a good way to depict a ghost in video, however that has yet to be seen. In all, my

intent with this code was to create computer originated distortion, of which displays its digital

identity at the forefront.

!18

3.2 Aberration

Fig 5. An image before and after being run through the aberration code.

 In the field of photography, chromatic aberration is color fringing that occurs when light

rays that pass through a camera lens focus at different points (Nikon). It is an inherently physical

artifact of the way that we capture photographs. It carries analog connotations due to its lack of

reliance on electronics as an effect. In my previous work I’ve found that this effect can be

emulated fairly easily within digital software. In Adobe Photoshop you can adjust the location of

the individual color channels to get sharp fringing (blurring will soften it and give it a more

authentic look). My goal with the following code was to take this inherently physical and analog

visual artifact, and use it to reinforce the digital elements of the image. This was done through a

means that only digital mediums provide, per pixel adjustments.

 To begin, the basic image code is initialized as previously described. However new

variables are initialized, for the individual RGB values lim, mode, and amt are set. Lim acts as a

limit for the amount of per pixel movement. Mode determines if x or y is used in shifting

calculations. Amt is set as the maximum value for a random number generator (RNG), which

determines how exactly the values are shifted.

!19

for (var y=0; y<height; y+=cellsize){
 var r_rng = random(r_amt);
 var g_rng = random(g_amt);
 var b_rng = random(b_amt);
 for (var x=0; x<width; x+=cellsize){

Here we can see where the random values are generated. As you can see, as opposed to running

on a per pixel level, they are instead run only when y increments. This lends consistency to the

shifting in the final product.

var r_shift;
 if (r_mode ==1){
 if (r_rng<1){
 r_shift = ceil(sin(x)*r_lim);
 }
 else if (r_rng>1 && r_rng<2){
 r_shift = ceil(cos(x)*r_lim);
 }
 else if(r_rng>2 && r_rng<3){
 r_shift = ceil(tan(x)*r_lim);
 }
 else{
 r_shift = 0;
 }

 Here we can see the conditionals that calculate how much the pixel is shifted. Please note

that I am only showing the first set of conditionals, they are all repeated twice for the RGB

values. The first if statement checks for the mode, if passed it will then check for the value

generated by the RNG. Here we can see, depending on the value generated, the shift value is

calculated with either sine, cosine, or tangent. However, if the RNG generates a value that is not

any of them, it will then set shift to zero.

 var rX = x-r_shift;
 var rY = y-r_shift;

After shift is calculated, rX and rY are then initialized and calculated. R, G, and B all have

different ways they apply shift. R subtracts its shift, g adds its shift, and b subtracts its x shift,

and adds its y shift.

!20

var index = (x+y*width)*4;
var r_index = (rX+rY*width)*4;
var g_index = (gX+gY*width)*4;
var b_index = (bX+bY*width)*4;
var r = dog.pixels[r_index+0];
var g = dog.pixels[g_index+1];
var b = dog.pixels[b_index+2];
var c = color(r,g,b);
finalimg.set(x,y,c);

After all the shift calculations are completed. The indexes are then set. First the normal index

variable is calculated. Then indexes for R, G, and B are calculated using the shifted RGB values.

Then RGB is then pulled from the pixels array, and set for the current pixel. After that has

completed, the arrays are updated and the final image is shown.

 The idea in this was to take something that results from a physical process, and make it

digital. To display the underlying structures of a digital image by taking both the ways it

composes imagery both structurally and chromatically. All digital imagery is inherently

composed of color channels. If they work as intended they aren’t noticeable. However, if you

shift them, either by a little or by a lot, it will begin to expose the digital nature of the image.

3.3 Cell

Fig 6. An image before and after being run through the cell code

!21

 The inspiration for this code came from the way in which most digital compression

methods operate. Instead of only processing on a per pixel basis, the code delineates cells that

contain the pixels. This allows for changes to be made above the pixel level and below the global

level. This method of image processing allows for a multitude of different applications. I had

ideas that ranged from adaptive resolution, to code that would merge the images in cells.

However, the specifics of those evaded my capabilities (though with time I may be able to pull

them off). Instead in this section I will go over how the cell shifting code operates. Cell shifting

takes the base cell processing code, and shifts the cells over by a random amount, this takes the

image and exposes the underlying structure in the form of the cells.

 After the basic image processing code, the for loops are run.

for (var j=0; j<height; j+=cellsize){
 prevCellsX = 0;
 for (var i=0; i<width; i+=cellsize){

 Between the j (y) and i (x) loops, prevCellsX is set to zero. This variable stores how many

previous cells there have been before the current loop. Setting the number of previous horizontal

cells to zero ensures that it calculates them out correctly before the X cells for that particular row

are run.

var xShift = ceil(random(move));
var yShift = ceil(random(move));

While we are in the first layer of for loops, xShift and yShift are calculated using a random value.

Which is then set to an integer (whole number) using ceil. Ceil is a function that takes the value

given and rounds it up to the nearest whole number.

for (var cY=(prevCellsY*cellsize); cY<(prevCellsY*cellsize)+cellsize; cY+=px){
for (var cX=(prevCellsX*cellsize); cX<(prevCellsX*cellsize)+cellsize; cX+=px){

!22

These loops encompass the second layer of the for loops. These loops take the information from

the cell loop, and uses it to calculate exact pixel position.

if (mode==1){
 iX = cX+xShift;
 iY = cY+yShift;
 if(iX > width){
 iX = iX-xShift;
 }
 if(iY > height){
 iY = iY-yShift;
 }
 index = (iX+iY*width)*4; }

 This conditional takes the xShift and yShift values and moves them either by adding them

or subtracting them (only mode 1 is shown here, mode 2 subtracts them). There are additional if

statements within the main one to ensure that no cells will have pixels that index outside of the

pixels array.

var r = dog.pixels[index+0];
var g =dog.pixels[index+1];
var b = dog.pixels[index+2];
var c = color(r,g,b);
img.set(cX,cY,c);

Here we see the application of the indexes, and the setting of color values to the current pixel.

 prevCellsX+=1;
 }
 prevCellsY+=1;
}

Finally, prevCellsX and prevCellsY are updated at the end of the cell level for loops. After all of

the image processing has completed, the arrays are then updated and the final image is

displayed.

 Despite not being able to create more advanced image modification from this concept, I

found that the simple shifting of cells creates a compelling effect. The idea is to take this method

of processing imagery and display its underlying structure. The relative simplicity of the changes

!23

made point to the very thin line between a perfect and imperfect artifice. Perhaps in the future

more advanced methods can be employed to communicate the same message.

3.4 Pseudo Compression

Fig 7. An image before and after being run through the pseudo compression code

 This is perhaps some of the most complicated code of this project. The goal was to create

a form of compression whose goal is not to remove optical redundancies, but to obscure the

original imagery. The initial form of this code simply compressed pixel values either horizontally

of vertically. After some development a process to run it both ways became possible, primarily to

new methods in how the image data was accessed.

 To begin, the image processing was initialized in the standard fashion. New variables are

initialized globally, these are thresholds of various kinds. Depending on the specific version run,

it can either use just a basic threshold, an x and y threshold, or individual R,G,and B thresholds.

A boolean called copied is also initialized and set to false. This boolean ensures that the code

knows if it has set the current pixel to the stored color values.

var r_prev=0;
var g_prev=0;
var b_prev=0;

!24

These variables are initialized and set to zero at the beginning of draw. They are initialized in

draw to ensure that the stored values don’t carry over when draw is run again.

var index = (x+y*width)*4;
var r = dog.pixels[index+0];
var g = dog.pixels[index+1];
var b = dog.pixels[index+2];

Within the for loop: index, R, G, and B are initialized and calculated as normal.

var r_visual;
var g_visual;
var b_visual;

These variables are then initialized. They will be used to store the R,G,B values that will be

displayed for the current pixel after all the checks have been completed.

var r_diff = abs(r_prev-r);
var g_diff = abs(g_prev-g);
var b_diff = abs(b_prev-b);
var avg_diff = (r_diff + g_diff + b_diff)/3;

Here difference values are calculated. These take the stored prev values, and subtract the current

RGB from it. They are then calculated as an absolute. This is done so that a positive value is

always returned from the calculation. These are then averaged to get an average amount of

difference in the RGB values.

if (avg_diff < threshold){
 r_visual = r_prev;
 g_visual = g_prev;
 b_visual = b_prev;
 copied = true;
}
else {
 r_visual = r;
 g_visual = g;
 b_visual = b;
 copied = false;
}

Following the calculation of avg_diff. A conditional is run where it checks to see if the difference

is less than the threshold. If it is less than threshold, the visual RGB variables are set to the

!25

stored value, and copy is set to true. If it is greater than the threshold, the visual RGB variables

are set to the original RGB values for the current pixel.

if (x==0 && y==0){
 r_visual = r;
 g_visual = g;
 b_visual = b;
 copied = false;
}

This conditional checks to see if x and y are equal to zero, which ensures that the initial pixel of

the image retains its own value, and that its values are saved to the prev RGB values.

var c = color(r_visual,g_visual,b_visual);
finalimg.set(x,y,c);

Here the current pixel is set to the color values stored in the visual RGB variables.

if (copied == false){
 r_prev = r;
 g_prev = g;
 b_prev = b;
}

This final conditional then checks if copied is false. If it is false, the stored prev values are set to

the value of the current pixel. The arrays are then set. If the version only runs the compression

once it will display the image. Otherwise it will load the array of the final image and then run it

through again with differently oriented for loops.

 With this code I set out to take a process that works to optimize both file sizes and optical

clarity, and warp it. The final result creates imagery that, depending on threshold, will create

drastically different results. From discussions with my advisor I found that it is similar to pixel

sorting, which is a well known glitch art process that sorts pixels into specific orientations.

Where that code sorts values, this code abbreviates. It takes the original values and destroys them

in the name of pseudo optical refinement. In the end I found this to be my favorite of the scripts,

and I hope that in the future that I can continue to iterate on it.

!26

4. Design Rationale

 In terms of the website home of this project, I tried to use a design vernacular that

avoided the conventional glitch visual language. My approach is to emphasize the imagery, while

also employing a style that is both stark and unique. Color is extremely limited, with only black

and white being employed. This very limited palette is in place so that the color of the imagery

will stand out against the sites design. The typographic style is similarly simple, but with some

uniqueness in the header typeface. For the body I used Freight Sans Light, which is a sans serif

with moderate x-heights as well as mildly humanist forms. The header text uses the typeface

Neplus. This typeface has incredibly strong geometric forms, that are reinforced by tiny spaces

and counters in the letterforms. The strong forms of this typeface have a boldness that serves to

reinforce the equally bold nature of the imagery of the site.

 The layout of the site is also fairly simple. Content is arranged into rows separated by

dotted lines. The lines are dotted to give it a feel that a solid line won’t. Primarily it serves to

reinforce the impermanent nature of the imagery. Content is arranged simply into rows based on

what it contains, this is done to ensure that the flow of content is paced well for the user in the

face of otherwise chaotic content.

4.1 The Images

 Before I close I shall address the images I used in the examples for this thesis. All of the

photos you saw above were taken by myself. I have a decent back catalog of photos that have

been sitting on my external drive. I went through and chose the ones that I thought would best

exemplify what the code does. In the sense that the forms of the imagery will work well with the

!27

changes made by the code. Throughout the development process I did use a different test image,

however that will not be displayed here.

5. Conclusion

 I began this work with one question: Why do I find glitch art compelling? I don’t know if

I’ve fully answered that question, but I definitely have come closer to understanding it. Glitch art

is counter to the ideal, it is viewed as exotic in the field of perfect imagery. It is, in essence,

countercultural. However, as mentioned in the theory section, glitch aesthetics have become

widely commodified. There is something that commodified glitched imagery doesn’t have,

authenticity. There’s something about truly glitched imagery that you can’t replicate, even with

the methods I developed. In them we peer into pure entropy that exists within our electronic

systems. That subconscious acknowledgment of entropy is what makes it so compelling. That is

the formal identity of glitched imagery.  

!28

Works Cited

Arora, Sunny & Kumar, Guarav. “Review of Image Compression” International Journal of

 Recent Research Aspects. Vol. 5, Issue 1, March 2018, pp 185-188.

Barthes, Roland. Camera Lucida. Translated by Richard Howard, Hill and Wang, 1988.

Berkenfeld, Diane. “Chromatic Aberration.” Nikon, www.nikonusa.com/en/learn-and-explore/a/

 products-and-innovation/chromatic-aberration.html, Accessed 20 May 2019.

“Boolean” Dictionary. https://www.dictionary.com/browse/boolean

Christensson, Per. "String Definition." TechTerms. Sharpened Productions, 2006.

 https://techterms.com/definition/string Accessed 19 May 2019.

“Glitch” Dictionary. https://www.dictionary.com/browse/glitch

Kane, Carolyn L. “Photo Noise.” History of Photography, Vol 40, Issue 2, 2016, 129-145.

Kane, Carolyn L. “Compression Aesthetics: Glitch from the Avante-Garde to Kanye West”

 InVisible Culture. Issue 21, 2014.

Kilker, Julian. “Digital Dirt and the Entropic Artifact: Exploring Damage in Visual Media.”

 Visual Communication Quarterly, Vol 16, No. 1, 2009, 50-63.

“Reference: loadImage()” p5js. https://p5js.org/reference/#/p5/loadImage. Accessed 19 May

 2019

“Variables” LaunchSchool, https://launchschool.com/books/ruby/read/variables, Accessed 19

 May 2019.

!29

https://www.dictionary.com/browse/boolean
https://techterms.com/definition/string
https://p5js.org/reference/#/p5/loadImage
https://launchschool.com/books/ruby/read/variables

	Glitch Art as an Expression of Medium
	Let us know how access to this document benefits you.
	Recommended Citation

	theory_draft 3

