
Portland State University Portland State University

PDXScholar PDXScholar

University Honors Theses University Honors College

5-24-2019

Facial Image Characterization and Reconstruction Facial Image Characterization and Reconstruction

Using Singular Value Decomposition Using Singular Value Decomposition

Jessica R. Robinson
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Robinson, Jessica R., "Facial Image Characterization and Reconstruction Using Singular Value
Decomposition" (2019). University Honors Theses. Paper 723.
https://doi.org/10.15760/honors.740

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/723
https://doi.org/10.15760/honors.740
mailto:pdxscholar@pdx.edu

2 FACIAL IMAGE RECONSTRUCTION BY SVD

1. Introduction

From the lens of a microscope to the aerial view of a satellite, images give us
access to a plethora of visual information that human eyes could never process in
its entirety. The use of algorithms and computation to process, manipulate, and
even produce images has become exceedingly popular in the field of mathematics
and computer science due to the wide range of practical applications to which it
can be used. This can be seen in advancements of facial recognition, environmental
monitoring, and medical imaging technology, to name a few.

Image processing through numerical techniques often requires a large amount
of computational resources and memory storage. Due to this fact, one of the
preliminary issues addressed in many image processing algorithms is that of low-
dimensional characterization of the image collection in question. Once this is com-
plete, the effort to carry out processes like principal component analysis or image
reconstruction is done much easier and in more reasonable time.

My goal for this academic project is to investigate the implementation and effec-
tiveness of an image characterization and reconstruction algorithm formulated by
Lawrence Sirovich and Robert M. Kirby of Brown University (3) by applying it to
a collection of facial images. In the process, I will demonstrate a theoretical frame-
work of Singular Value Decomposition- a fundamental tool used in the algorithm.

2. Experimental Setup

2.1. The Images. The experimental database for this project consists of 750 facial
images collected from “Labeled Faces in the Wild” (2), a database of facial images
conglomerated at the University of Massachusetts, Amherst in the Computer Sci-
ence department. The images are in grayscale and depict the faces of men and
women in fairly consistent position, as shown in Figure 1. Each person featured in
the database can be found in up to 14 photos. To facilitate the data analysis in this
project, each image has been appropriately cropped and is numerically represented
as a matrix of dimension 200× 150. Each entry in a given matrix is representative
of a pixel in the image and is indicative of that pixel’s deviation from the mean
grayscale of the entire image.

Figure 1. Sample photos from database

FACIAL IMAGE RECONSTRUCTION BY SVD 3

2.2. Notation. Let M denote the total number of images in the ensemble (M =
750). Additionally, let n and m represent the row and column dimension of a given
image matrix, respectively. Lastly, for ease later, let N denote the total number of
elements in a given image matrix. Note: N = 30, 000 for a given 200 x 150 image.

Let an image be denoted by ϕ ∈ Rn×m where ϕ =

x11 x12 . . . x1m
x21 x22 . . . x2m
x31 x32 . . . x3m

...
...

. . .
...

.

2.3. The Average Image. The first step to characterizing this ensemble of im-
ages is to acquire an average image. This average will be used for later computation
in the algorithm. Denoted ϕ, the average image for the ensemble is defined as

ϕ =
1

M

M∑
i=1

ϕi.

As Python is the language used in implementing the pieces of the algorithm, the
construction of this average facial image would be computed by the following:

Figure 2. Average image displayed

Note: For the purposes of computation in later steps, from this point forward,
image matrices will be concatenated into stacked N x 1 vectors via a column-major

4 FACIAL IMAGE RECONSTRUCTION BY SVD

flattening procedure.

2.4. The Perturbation Matrix. From this average image, the perturbation ma-
trix can be constructed. This matrix will provide a value for each individual image’s
deviation from this database average. Denoted P , the perturbation matrix is

P = [φ1, φ2, φ3, . . . , φM] ε RN×M where φi = ϕi − ϕ
And is constructed in Python as follows:

It is worth noting at this point that the dimension of the perturbation matrix is
already significantly larger than that of the individual images due to the fact that
a characterization of all 750 images is represented here.

2.5. The Covariance Matrix. The next necessary components for the represen-
tation and reconstruction procedure are the eigenvectors of the covariance matrix
for the image ensemble. The covariance matrix can be found by taking the dyadic
product of each element of the perturbation with respect to one another. This is
also equivalent to multiplying the matrix by itself in transpose. Denoted C, the
covariance matrix is created by

C =

(
1

M − 1

)
PPT =

(
1

M − 1

) M∑
i=1

φiφ
T
i

A covariance matrix holds information about elements’ relationship to all other
elements within it as well as the elements’ variance treated as a random variable
on the diagonal. The operation carried out above is that of a matrix with 30, 000×
750 dimension multiplied by one of 750 × 30, 000 dimension. Based on this, the
covariance matrix in question would be of 30, 000× 30, 000 dimension. It is worth
noting that the storage of a matrix this large in double precision arithmetic would
require seven gigabytes of memory.

Because the storage and resources for this project are not of the capacity nec-
essary to compute, store, or manipulate this matrix, a computationally efficient
method will be taken to obtain the eigenvectors needed for the next step in the
reconstructive algorithm. This method relies heavily on the mathematical theory
of singular value decomposition.

3. Singular Value Decomposition

3.1. The Mathematical Framework. Singular Value Decomposition, or SVD,
is the representation of any n×m matrix by three distinct matrices representing a
three step transformation. It is a method used frequently in situations where data
to be manipulated is large and complex yet only certain components or behavior
need to be known to carry out the process in question.

FACIAL IMAGE RECONSTRUCTION BY SVD 5

To demonstrate the transformation that SVD represents when used on a given
n × m matrix, consider the following geometrical interpretation borrowed from a
set of lectures by L. Trefethen and D. Bau (4).

Let A be a 2 × 2 matrix with arbitrary elements. Let S be a unit circle in R2.
The transformation of A to the unit circle S results in a hyper-ellipse, which will
be denoted AS.

Figure 3. Unit circle S transformed by 2 x 2 matrix A

With this transformation in mind, the framework for singular value decomposi-
tion is very nicely demonstrated.

Consider the scenario where the unit circle S were expressed via a set of two
vectors (matching the number of columns in A). Note: these vectors are denoted v1
and v2 in Figure 3 above. Now, consider the computations denoted {Avi : i ∈ [1,m]}
where m is the number of columns of A (in this case, m = 2). The vectors which
result from this will be denoted {σiui : i ∈ [1,m]}. Therefore, for a given vector vi,

Avi = σiui

By this, it can be seen that the right hand term in this equivalence represents the
vectors which express the hyper-ellipse as a result of the transformation A. Now,
consider the following:

Aviv
T
i = σiuiv

T
i =⇒ A =

m∑
i=1

σiuiv
T
i

At this point, the singular value decomposition of the matrix A has been de-
fined. Let U , Σ, and V denote the matrices containing the ui, σi, and vi vectors,
respectively (where i = 1, 2, ..., n).

U =

u11 u12 . . . u1m
u21 u22 . . . u2m

...
...

. . .
...

...
...

. . .
...

.

 ∈ Rnxm, V =

v11 v12 . . . v1m
v21 v22 . . . v2m
...

...
. . .

...
...

...
. . .

...
.

 ∈ Rmxm,

6 FACIAL IMAGE RECONSTRUCTION BY SVD

Σ =

σ11 0 0 . . .
0 σ22 0 . . .

0 0 σ33
...

.
. . .

 ∈ Rmxm

To reiterate the above demonstration, performing a singular value decomposition
on a matrix A is the representation of this matrix via three multiplied matrices (U ,
Σ, and V in transpose).

A = UΣV T

U and V are orthonormal matrices while Σ contains the singular values in an
ordered fashion such that

σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0

Note that the term σiuiv
T
i is switched around a bit to UΣV T in matrix form.

This is due to a property regarding the multiplication of a diagonal matrix (in this
case, Σ).

Property: Let A and D be matrices where A is of n x m dimension, and D is a
square diagonal matrix of m x m dimension with zeros in the non-diagonal entries.

A = [(:, 1), (:, 2), . . . , (:,m)], D =

d11 0 0 . . .
0 d22 0 . . .

0 0 d33
...

.
. . .

Then the product of AD, by result of matrix multiplication properties, gives the

following:

AD = [d1A(:, 1), d2A(:, 2), . . . , dmA(:,m)]

Each matrix, U , Σ, and V , and their respective vectors have significance in
relation to the geometric transformation outlined previously. They also each hold
important properties and details about the matrix A which they represent.

The V matrix is the collection of unit vectors which create the axes of the unit
circle transformed by A- classified as the right singular vectors of A.

The U matrix is the collection of directional unit vectors which represent the
orientation of the hyper-ellipse as a result of the A transformation- classified as the
left singular vectors of A.

The Σ matrix is a diagonal matrix holding the values which attach to the left
singular vectors as magnitudes and represent the stretching of the hyper-ellipse.
Following this logic, a given unit vector vi, under A, will be transformed to be σiui,
a new vector with stretched magnitude and direction.

FACIAL IMAGE RECONSTRUCTION BY SVD 7

Figure 4. Unit circle S transformed by 2 x 2 matrix A

An interesting note about some of the functionality of SVD, the values that the
singular value decomposition of a given matrix are made up of are actually providing
useful information about patterns and structures that were found in the original
matrix. For example, in the context of this project, consider the result when the
left singular vectors are reshaped into the correct sized matrices (200 × 150) and
displayed as images themselves (Figure 5).

Figure 5. Left singular vectors displayed as images

What can be seen here is that the left singular vectors, as they provide an
orthonormal basis for the matrix A (to which SVD was performed), are providing
some of the principal components of that matrix. SVD is useful in this way as it
relies on the fact that the data being manipulated is not truly random; there are
natural patterns and common structures lying within the data.

In this case, see that the left singular vectors are preserving the overall structure
of the faces in the database as principal components. It is also worth noting that
primary singular vectors (i.e. u1, u2, u3, etc.) will preserve this structure much
better than that of the latter vectors (um−1, um) due to the accumulation of skewing
features from the database as it transcends through the images. These primary
vectors provide very good low-dimensional representations of the matrix which has
been decomposed by this process.

3.2. Full vs. Reduced or Economy SVD. In the framework drawn up so far,
the dimensions of the U , Σ, and V matrices are as follows: U ∈ Rnxm, Σ ∈
Rmxm, V ∈ Rmxm. This is considered a thin, economy, or reduced singular value
decomposition due to the fact that in many cases with an n×m matrix, U is not

8 FACIAL IMAGE RECONSTRUCTION BY SVD

a square matrix. In the case of a full singular value decomposition of A, n − m
orthogonal columns (so as to hold necessary properties) would be appended to the
U matrix. Additionally, to hold the multiplication stable, n −m additional rows
would be appended to the Σ matrix. In most scenarios, these rows of Σ consist
of all zeros so as to induce cancellation when multiplied with the corresponding
columns of U .

In this case, a full singular value decomposition would not provide any additional
useful information to the efforts of the project and would cause a much slower and
lengthier computation. Due to this, a reduced or thin singular value decomposition
will be used.

3.3. Useful Properties. It is a proven property that given any n × m matrix,
there exists a singular value decomposition for it. So, for any A, there exists a
UΣV T set of multiplied matrices to represent it. Due to this fact, SVD and its
related properties have many practical applications. The most applicable theorem
in the context of this project in image processing is stated as follows:

Theorem 3.1. Let A be an n × m matrix. Then the left singular vectors of A,
within its singular value decomposition, are the eigenvectors of AAT .

Proof: Consider the calculation

AAT = (UΣV T)(UΣV T)T = (UΣ)(V TV)(ΣTUT) = U(ΣΣT)UT

Note that V is orthonormal implying that V −1 = V T . Hence V TV = I. Because
U is orthonormal, this holds for UUT as well. Multiplying by U on the right hand
side gives:

AATU = UΣΣT

Considering AAT multiplied by a single vector of U gives:

AATui = σ2
i ui

Note that the diagonal entries of Σ multiplied in this way are what result in the
σ2
i term.

The above line, which depicts a matrix multiplied by a vector equivalent to
a scalar multiple of a vector, emulates the definition of an eigenvector of AAT .
Therefore, the left singular vectors, or columns of U , are the eigenvectors of AAT

�.
Another important theorem related to the singular value decomposition of a

matrix that is useful for this project is in regards to low-rank approximations of a
given matrix (or image, in this case.) But first, a definition is necessary.

Definition: Let the Frobenius norm of an n x m matrix be defined by

||A||F =

(n∑
i=1

m∑
j=1

|aij |2
)1/2

Now, this definition can be used in the following proposition regarding approxi-
mations of a matrix A.

Theorem 3.2. Define Av =
∑v

j=1 σjujv
T
j . Then

||A−Av||F =
√
σ2
v+1 + · · ·+ σ2

m

FACIAL IMAGE RECONSTRUCTION BY SVD 9

This theorem shows that a given matrix, when represented by a sum of v rank
one singular value decompositions, has an error determined by the remaining m−v
singular values.

4. Implementation and Results

4.1. The Algorithm. By performing singular value decomposition on the matrix
P (recall that PPT gives the covariance matrix for the image database), and uti-
lizing Theorem 3.1 from above, the last necessary values for the algorithm can be
found- the eigenvectors of, what would be, the covariance matrix.

Let a reconstructed/characterized image be denoted ϕ̂ and built in the following
way:

ϕ̂ = ϕ+

M∑
i=1

aiui

where the coefficients ai are evaluated as

ai = (ui, ϕi − ϕ)

Note: an is the Euclidian product of the corresponding two vectors.

In order to test this algorithm in its ability to reconstruct a photo, a test image
will be removed from the database (M = 749 now) and a new average image,
perturbation matrix, and singular value decomposition will be found. By means of
these elements, the algorithm will build a reconstructed image. Some results are
shown in Figures 6 and 7 below:

10 FACIAL IMAGE RECONSTRUCTION BY SVD

Figure 6. Left: Original image. Right: Reconstruction based on
the remaining images in the database.

Figure 7. Left: Original image. Right: Reconstruction based on
the remaining images in the database.

4.2. SVD Applied. In creating these reconstructions, the algorithm is using the
entire 749 image database (the given image removed). This is a relatively small
and easily computable process given the resources at hand. Though, consider a

FACIAL IMAGE RECONSTRUCTION BY SVD 11

scenario where the database used to reconstruct an image is of thousands, possibly
millions of images. How many processed images are necessary to produce a decent
reconstruction of an image? This evaluation of error is something that can be shown
visually via a guess-and-check procedure given the figures above, but it can also be
represented numerically. Because our algorithm is representing an image based on
a linear combination of singular left singular values, this can be done by means of
Theorem 3.2 stated in the previous section. By that, the following holds:

||ϕ− ϕ̂i||F =
√
σ2
i+1 + · · ·+ σ2

m

By this, if a given image is reconstructed by means of i database images, the
error of this image in comparison to the original (due to the use of singular value
decomposition) is given by the square rooted sum of the singular values of the
images in the range from i+ 1 to m.

Figure 8. Error values for reconstruction depicted in Figure 5

The figure above features the behavior of the relative error of a reconstructed
image as more images are used in its creation. When very little images are used,
the error is extremely high and results in a poor image. As more images are used,
the error gets closer to zero. This is because the algorithm has more information
about the faces in the database to use in its construction of the new image.

Figure 9. As less images are used, reconstruction is worse in quality

12 FACIAL IMAGE RECONSTRUCTION BY SVD

Seen above, as the algorithm uses less information in the database to create the
reconstructed photo, the product is of a lesser quality. It is also noticeable that the
reconstruction resembles the average image accrued earlier on as fewer images are
used.

5. Future Work

Based on the work done in this project, it is evident that there are a plethora of
routes to take with this image processing algorithm.

An interesting scenario to test and implement would be to, instead of feeding the
algorithm a whole and unaltered photo (which are hard to come by in practice),
feed it an image which is damaged or masked in some way and see how well the
reconstruction fares. This would be a useful tool in many applications of image
processing (medical imaging, environmental monitoring, facial recognition, etc.).

For example, a masked face in the case of the database for this project would
look something like the photo in Figure 10.

Figure 10. Example of a masked face

In addition, the database used in implementation was relatively small in the
field of image processing. It would be interesting to see how this algorithm fares
with a much larger and varying database. The increase in faces could increase the
algorithm’s ability to reconstruct smaller details in faces but would also require
more storage and computing power to implement.

FACIAL IMAGE RECONSTRUCTION BY SVD 13

6. References

1. Everson, R., and L. Sirovich. “Karhunen–Loève Procedure for Gappy Data.”
Journal of the Optical Society of America A, 12.8, (Aug. 1995), pgs. 1657–1664.

Everson and Sirovich, in this article, discuss a least-squares procedure for restor-
ing a faulty image with missing data. A main problem addressed in the article
is determining the minimal amount of image data necessary to accomplish a rea-
sonable or complete restoration. Based on its diction and location, article lies in
the niche of numerical optimization within the field of mathematics and is directed
towards an audience who is at least at the undergraduate level of mathematics if
not at a graduate or doctorate level. In the context of this project, this source
has aspects which I would like to aim for in the furthering of my research in image
restoration. The techniques used here will be helpful to reference as I take on more
difficult reconstructions using the algorithm I have developed.

2. Huang, Gary B, et al. “Labeled Faces in the Wild: A Database for Studying
Face Recognition in Unconstrained Environments.” University of Massachusetts,
Amherst, Oct. 2007, people.cs.umass.edu/ elm/papers/lfw.pdf.

This source is a collection of over 13,000 images for the furthering of research in
facial image optimization. It is designated by the contributors that the photos have
been harvested from various parts of the internet and the name of the individuals
are included with the photos. It is safe to assume that the intension for this source
is deliberate as only those with familiarity with optimization of image data are
going to be able to use this database for its intended use. As a result, the audience
for the attached articles are going to be those in the mathematical optimization
field. This source is where my test images have been taken from. Because I need
images of similar size, dimension, color, and scale in order for my algorithm to work
properly, this database is the optimal source to pull from.

3. Sirovich, L., and M. Kirby. “Low-Dimensional Procedure for the Character-
ization of Human Faces.” Journal of the Optical Society of America A, 4.3, (Mar.
1987), pgs. 519–524.

Sirovich and Kirby, in this article, present a method for the representation of
facial images in a low-dimensional space. They use principal component analysis
that allows for the characterization of a large ensemble of images with a relatively
low amount of computation power and time. I would say that this article falls
in the category of an undergraduate or graduate level understanding of numerical
optimization and linear algebra based on the diction and notation. This source is
the one I have referenced the most in the beginning of my project research. It has
functioned very well as a base for furthering my algorithm to restore more difficult
images.

14 FACIAL IMAGE RECONSTRUCTION BY SVD

4. Trefethen, Lloyd N., and David Bau. Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, 1997.

This source is a set of lectures/textbook chapters covering a foundation of linear
algebra as well as a theoretical framework of singular value decomposition. This
source is aimed towards students, most likely those of a graduate level or those in
upper-level linear algebra courses.

Honors Project Implementation

June 13, 2019

In [1]: import numpy as np
import skimage
from skimage.io import imread_collection
import matplotlib
import matplotlib.pyplot as plt
from skimage import img_as_ubyte, img_as_float

number of images in database
M = 749
read in database
all_faces = imread_collection("DATABASE/*.jpg", conserve_memory=True)
initialize face matrix
face = np.zeros((200, 150))
error_vals = np.zeros(M)

loop through collection of faces, add to mean face
def get_mean_face():

mean_face = np.zeros((200, 150))
for i in range(0, M):

face = all_faces[i]
mean_face += face

return (1/M)*mean_face

In [2]: skimage.io.imshow(get_mean_face(), cmap='gray')

C:\Users\jessi\Anaconda3\lib\site-packages\skimage\io_plugins\matplotlib_plugin.py:80: UserWarning: Float image out of standard range; displaying image with stretched contrast.
warn("Float image out of standard range; displaying "

Out[2]: <matplotlib.image.AxesImage at 0x1b74c1adef0>

1

In [3]: # Perturbation Matrix

concatenate average face
mean_face_v = np.matrix.flatten(get_mean_face(), order='F')
P_Matrix = np.zeros((30000, M))

for i in range (0, M):
face = all_faces[i]
face_v = np.matrix.flatten(face, order='F')
P_Matrix[:,i] = face_v - mean_face_v

thin SVD on perturbation marix
u, s, v = np.linalg.svd(P_Matrix, full_matrices=False)

In [4]: def reconstruct(test_face):
'''
Function which builds a reconstructed image matrix by means of the algorithm using
the columns of u and the average face
'''
#concatenation
test_face_v = np.matrix.flatten(test_face, order='F')

#initialize reconstructed image as average image to be added to
reconstructed = mean_face_v

2

for i in range(0, M):
reconstructed += ((np.inner(u[:,i], (test_face_v - mean_face_v)))*u[:,i])
error_vals[i] = np.linalg.norm(test_face_v - reconstructed)/np.linalg.norm(test_face_v)

scaling values for displaying purposes
reconstructed = np.reshape(reconstructed, (200, 150), order='F')
reconstructed = np.round(reconstructed, decimals=0)
reconstructed = reconstructed.astype(int)
reconstructed = img_as_ubyte(reconstructed)

print("Displaying reconstructed image: ")
skimage.io.imshow(reconstructed, cmap='gray')

return

print("Displaying true image: ")
skimage.io.imshow(skimage.io.imread("s01_01.jpg"))

Displaying true image:

Out[4]: <matplotlib.image.AxesImage at 0x1b74c2ba198>

3

In [5]: reconstruct(skimage.io.imread("s01_01.jpg"))

C:\Users\jessi\Anaconda3\lib\site-packages\skimage\util\dtype.py:126: UserWarning: Possible sign loss when converting negative image of type int32 to positive image of type uint8.
.format(dtypeobj_in, dtypeobj_out))

C:\Users\jessi\Anaconda3\lib\site-packages\skimage\util\dtype.py:179: UserWarning: Downcasting int32 to uint8 without scaling because max value 232 fits in uint8
"value {} fits in {}".format(a.dtype, dtype, a.max(), dtype))

Displaying reconstructed image:

In [6]: # Displaying error values
plt.axis([-20, 750, .05, .350])
plt.plot(error_vals, "-")

Out[6]: [<matplotlib.lines.Line2D at 0x1b761e88b70>]

4

In []:

In []:

5

	Facial Image Characterization and Reconstruction Using Singular Value Decomposition
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1560541159.pdf.MclHP

