
Portland State University Portland State University

PDXScholar PDXScholar

Engineering and Technology Management
Student Projects Engineering and Technology Management

Fall 1993

Cost and Benefit Elements of a Tailored Application Cost and Benefit Elements of a Tailored Application

versus an off-the-Shelf Package and the Manager's versus an off-the-Shelf Package and the Manager's

Role. Role.

Fernando E. Rivera
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/etm_studentprojects

 Part of the Technology and Innovation Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Rivera, Fernando E., "Cost and Benefit Elements of a Tailored Application versus an off-the-Shelf Package
and the Manager's Role." (1993). Engineering and Technology Management Student Projects. 899.
https://pdxscholar.library.pdx.edu/etm_studentprojects/899

This Project is brought to you for free and open access. It has been accepted for inclusion in Engineering and
Technology Management Student Projects by an authorized administrator of PDXScholar. Please contact us if we
can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/etm_studentprojects
https://pdxscholar.library.pdx.edu/etm_studentprojects
https://pdxscholar.library.pdx.edu/etm
https://pdxscholar.library.pdx.edu/etm_studentprojects?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/etm_studentprojects/899
https://pdxscholar.library.pdx.edu/etm_studentprojects/899?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F899&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

 ETM OFFICE USE ONLY
Report No.: See Above
Type: Student Project
Note: This project is in the filing cabinet in the ETM department office.

Title: Cost and Benefit Elements of a Tailored Application versus an
off-the-Shelf Package and the Manager's Role.

Course:
Year: 1993
Author(s): F. Rivera

Report No: P93060

Abstract: The author of the paper performs a cost-benefit analysis to
determine whether to make or buy a software package. If a program is
developed in house, whatever the organizational Software Department could
have accomplished during the time it spent developing the system is
determined. However, adoption of an off-the shelf package means that the
benefits of having a "perfect" package will be lost. The opportunity cost
would be an estimate of those benefits lost over the period the software
packaging is to be used, minus the additional expenses involved in
developing a "perfect" package.

Cost and Benefit Elements of a
Tailored Application vs. an Off­

The-Shelf Package and the Manager
Role

F. Rivera
P9360

RESEARCH PAPER

EMGT 535

COST AND BENEFIT ELEMENTS OF A TAILORED APPLICATION VERSUS AN
OFF-THE-SHELF PACKAGE AND THE MANAGER ROLE

PORTLAND STATE UNIVERSITY

NOVEMBER 30, 1993

FERNANDO E. RIVERA

Introduction

Today, there are three ways of meeting. software need: a
package can be purchased, software can be developed in house,
or a hybrid "customized"· off-the-shelf package can be'
developed. Of the three alternatives, off-the-shelf packages
are often the least expensive, the most reliable, and require
the lest time to implement. Their performance and the quality
of ·their documentation ·and training programs can be known
before from vendor information and other package users, so
that there are less likely to be any significant surprises
after implementation. · However, a package that suits
organizational needs well, but cannot be adequately supported,
can be much less useful in the long run that less well
designed package that it is well supported.

In house development may be unavoidable if an application
is unique or uncommon capabilities.or features are required.
I has the advantage of being able to meet all requirements,
but often requires extensive debugging and requires a long
time to implement.

Customization of package software has some of the
advantages and disadvantages of each of the others above. It
is most appropriated in case where input or output formats of
a package program are not appropriated to applications
requirements, or additional reports need to be generated from
data stored. A rule offered bay many people with software
package experience is: if more that 10% - 15% of the package
needs to be modified, it is generally more cost-effective to
develop the system in house(?].

Commercial software packages are copyrighted and firms
often place restrictions on the package they sell or lease,
including restrictions on modification. If a package developer
do not want to release the source code, internal modifications
may be not be possible. 1

A cost~benefit analysis should be performed to determine
whether to make or buy a package. If a program is developed in
house, whatever the organizational Software Department could
have accomplished during the time it spent developing the
~ystem must be given up. However, adoption of a off-the-shelf

1 Sometime hacker or "guru" programmers can made
modifications in packages, changing the assembler code
directly in the executable module, but it could be
considered a copyright violation.

EMGT 535: Research Paper
Nov 1993 1

package means that the benefits of having a "perfect" package
will be lost. The opportunity cost would be an estimate of
those benefits lost over the period the software package is to
be used, minus the additional expenses involved in developing
a "perfect 11 package ..

Opportunity costs are hard to quantify precisely, but can
be among the most important factors in software selections.
Wherever a significant benefit can be estimated, it should be
done. They may still be some degree of uncertain, but careful
thought and analysis can help in the identification of
significant opportunity cost.

EMGT 535: Research Paper
Nov 1993 2

Chapter 1 Software Development

1.1 Life Cycle

1. Requirement

The first phase of the Software Development Life
Cycle, is initiated by a statement of need. This need can
be expressed by a user under the form of a 'Requirements
Definition' or can be a result of business objectives. A
preliminary analysis of the concept can also be carried
out to enable a sizing up of the cost of software
development.

A detailed analysis of users requirements is carried
out by a product team, a Functional Specification is
prepared and a Product Plan is set up. This product Plan
must include an estimate of the time and cost of the
software to be developed.

2. Software Design

The project is in accordance with the Product Plan.
The project then proceeds in two steps.. Firstly, the
system architecture is established: this determines the
hardware and software trade-offs. Then, each subsystem is
specified to satisfy the Functional Specifications. As a
results, the subsystem specifications are produced which
allow the Product Plan to be redefined. The software cost
and time estimates play an important role here as it can
influence the hardware and software trade-offs.

3. Program Construction

During the construction phase, the software modules
are coded and tested. The construction costs and time of
a system will vary widely, depending upon such factors as
the type of applications, the product complexity,
language level, personnel attributes, use of software
tools, etc.

4. Documentation

Software project by nature generate an enormous
quantity and diversity of paperwork, documents, diagrams
and tables. The cost associated to the time devoted to
this activity might represent a significant percentage of
the entire cost of the development.

EMGT 535: Research Paper
Nov 1993 3

5. Program Test

The tested modules during construction phase are
integrated into subfunctions, which are then tested;
subsystem are integrated and tested in their target
processors and th~ the system is integrated and tested.

6. Maintenance

During this phase the product is update and adapted
to match changing organizational need. The maintenance
costs of a system will vary widely, depending upon such
factors as the applications, the complexity of the
system, and the need for periodic updates.

1.2 Estimations

Success in software engineering depends primarily on
managerial considerations, which are in turn contingent on an
accurate and reliable cost-estimations procedure. One of the
first challenges lies in finding an estimating method to
insure that everything that need to be included in the
estimate of software development costs are identified. Among
the many software cost-estimation procedures available today,
COCOM0[3] stand out by its concern for accuracy and the
thoroughness of its procedures.

The software estimating process requires a basic
understanding of the fact that software development is not a
'mechanic' process, like that which occurs in building
constructions. There, task are concrete, visible,·measurable
by simple means and of finite quantity. By contrast, software
development is a probabilistic process, consisting of a large
number of task of undetermined complexity[lO].

In a survey[9] was found that the majority of the
technical staff estimating software costs use informal analogy
and high-level partitioning of requirements, and that no
formal procedure exists for incorporating risk and
uncertainty. The technical staff is significantly better at
estimating effort than size.

To get a reliable software cost estimate, we need to do
much more that just put numbers into formulas and accept the
results. A seven-step process for software cost estimation is
provide by Boehm[3], which show that a software cost
estimation activity is a miniproject and should be planned,
reviewed and followed up. The seven steps are:

EMGT 535: Research Paper
Nov 1993 4

1. Establish Objectives
2. Plan for Required Data and Resources
3. Pin Down Software Requirements
4. Work Out as Much Detail as Feasible
5. Use Several Independents Techniques and Sources
6. Compare and Iterate Estimates
7. Followup

The more detail we provide as input to a software cost
estimate, the more accurate our resulting estimate is likely
to be. A tentative cost driver attributes list is provided as
input to a software cost estimate.

1. Product Attributes
- Required software reliability
- Data base size
- Product complexity
- Type of application

2. Computer Attributes
- Execution time constraint
- Main storage constraint
- Computer turnaround time
- Hardware configuration
- Language level

3. Personnel Attribute
- Analyst capability

Applications experience
Programmer capability
Programming language experience
Personnel continuity
Personnel morale
Management quality

4. Project Attribute
- Modern programming practices
- Use of software tools
- Required development schedule

5. User Attribute
- User interface quality
- Amount of documentation
- Requirement volatility

Estimating size is already a dif.f icul t task in
organizations where a software metrics activity exists, but it
is made particularly hard when there is no measurement
baseline of previous project.

EMGT 535: Research Paper
Nov 1993 5

An equation for estimating the number of man-months (MM)
required to develop the most common type of software product,
in terms of the numbers of thousands of delivered source
instructions (KSs) in the software product, according Boehm[3].
is:

MM = 2.4(KSsf~.os

He also presents an equation for estimating the development
schedule (DS) in month:

DS = 2.S(MM)o.?.B

A metric assistance to size estimating was proposed by
Albrecht[l]. He analyzed the statement of requirements of 24
data processing programs in term of the following:

- Inputs
- Outputs
- Inquiries
- Files
- Interfaces

Albrecht then adjusted these numbers according to three levels
of complexity -simple, average and complex - to within a range
of -25% - +25%. Next, he.carried out a statistical analysis on
these numbers in relation to the size of the programs and the
effort they required for development. During the course of
this work, he discovered a high degree of correlation between
the size of data processing type of programs his company (IBM)
and a measure called the Function Points. This measure is
defined as the linear combination of the five adjusted terms
such that:

Fp = a.inputs + b.outputs + c.inquires + .d.files = e.interfaces

where a,b,c,d and e are constant as determined by his
statistics.

Albrecht also determined a series of simple equations,
using the Function Points, that enable the calculation of the
estimated size and cost for some languages used in his
organization. As an example, here is the formula used to
estimate the size of a Cobol program when its Function Points
is known:

s = 118.7Fp - 6490

In practice, once a software requirements is known, a top­
level analysis can provide the Function Points count. Then, by
using the appropriate formula - the size formula in this case

EMGT 535: Research Paper
Nov 1993 6

- the size estimate can be obtained.

To convert the estimate of size S into estimate of time,
effort and cost, organization must look at past project.

Another metric assistance to size estimating was proposed
by Putnam[lS]. For each module, the size is given by a set of
three values: So (optimistic size), Sm (most likely size) and
Sp (pessimistic size). From these values, the expected module
size, Smd, can be deduced by the formula:

Smd = (So + 4Sm + Sp)/6

To convert the estimate of size into estimate of time,
effort and cost, Putnam considers that there is a fundamental
relationship in software development between the number of ·
source statements in the system and the effort, development
time and the state of the technology being applied to the
project. The equation that describes this relationship is:

Ss = Ck Kt#. /J3
, where

Ss is the numbers of end product source lines of code
delivered

K is the life cycle effort in man-years
t is the development time
Ck is a state of technology constant

Ck is determined by the use of modern programming practices,
the language used and the development environment among other
factors. While Ck is difficult to determine from its
individual components, this value can be calib:i;-ated for an
organization by looking at past project.

EMGT 535: Research Paper
Nov 1993 7

-·---~---

Chapter 2 Software Package

2.1 Selection Process

Before intensive analysis and comparison of candidate
packages can begin, the number of packages should be narrowed
down to manageable number: no more that three to five
candidates[?], which will then be closely analyzed. The first
step is to verify that each package fulfills the essentials
requirements.

An straightforward nine steps approach is presented to
help in the package selection process.

1. Requirement
- Formation of the requirements analysis team
- Definitions of current procedures
- Identifications of restriction
- Estimations of package life

2. Documentation
- Development of functional specifications
- Documentation of requirements

3. Identification of candidate

4. Assessment of support needs
- Documentation review
- Modification support review
- Installation support review
- Training support review
- Maintenance support review

5. Selection
- Solicitation of proposals

Proposal evaluation
Package quality evaluation
Vendor evaluation
Support evaluation
Cost-benefit analysis .
Final package selection

6. Contract negotiation
- Package contract negotiation
- Support services contract negotiation
- Specifications of performance guarantees
- Determination of compensation arrangements

EMGT 535: Research Paper
Nov 1993 .8

7 .. Installation
- Formation of the installation team
- Identification of installation matters

Package customization
- Employee training

8. Testing
- Identification of test goals

9. Acceptance
- Identification of acceptance parameters

.2.2 Cost Accounting

In order to determine whether the purchase of a software
package is the most cost-effective option, the following cost
should be taken into consideration:

1. Negotiation

Negotiation cost are those expenses incurred by an
organization through expenditure of employee time during
the package selection process (see 2.1).

2. Purchasing

If a package is bought or leased, the purchasing
cost is simply the price of the software, documentation,
training, and modifications to the program._ Vendors may
offer all these services together or separate
documentation and training from the software and sell
services separately. If multiple copies of the package
are needed, the vendor may offer site licenses as an
alternative.

3. Implementation

Implementation cost are those expenses incurred when
installing the new software. They include the time an
organization's computer must be inoperative while the new
software is being installed, the cost associated with
testing and parallel operations until the reliability of
the new system is assured and training employees to use
the system.

Another major implementation cost if data
conversion, which involves incorporating old record into

EMGT 5~5: Research Paper
Nov 1993 9

the new system's format. If current data if not
computerized, this requires manually entering records
into the new system. If current data are already
computerized, they will have to be converted into the new
system's record format. This usually· requires development
of a special software, or program, to convert old files
to the new ones.

4. Training

The training cost is the cost associated td the time
it takes to train employees to use a new package.

5. Software errors

This are the costs of errors discovered after the
initial integration of a system. Software errors
discovered after integration are usually expensive[l4].
The principal cost may not be correcting the programming
error, but rather undoing the damage that the error
caused. For example, a software error may result in a
large number of records containing incorrect information.
The impact of this errors can be quite significant.

If software is purchased, the maintenance provider
will often correct software errors for a specific period
of warranty without additional charges.

6. Maintenance

These are the costs to update and adapt software to
match changing organizational need. As an example, a
payroll program might have to be modified to reflect a
change in tax rates. The maintenance costs of a system
will vary widely, depending upon such factors as the
applications, the complexity of the system, and the need
for periodic updates. Maintenance costs for packaged
software might be included in a maintenance contract.

EMGT 535: Research Paper
Nov 1993 10

Chapter 3 Software Acceptance and Management

3.1 Software Acceptance Plan

Software acceptance is a process of approving or
rejecting software system during development, maintenance or
purchase, according to how well the software satisfies pre­
defined criteria. The final acceptance decision occurs with
verification that the delivered documentation is adequate and
consistent with the executable system and that the complete
software system meet all buyer or user requirements. This
decision is usually based on software acceptance testing [16].
It consists of tests to determine whether the developed or
package system meets predetermined functionally, performance,
quality, and interface criteria.

Software acceptance is specified in a formal plan. The
software acceptance plan identifies products for acceptance,
the specific acceptance criteria2

, acceptance reviews, and
acceptance testing.

Examples of information which should be included in a
software acceptance plan are:

2

- Project
Descriptions

- Management
Responsibilities

- Administrative
Procedures

- Acceptance
Testing

. .

:

Type of system, major task
system must satisfy; external
interfaces; expected norman
usage; standards. •

Responsibilities for acceptance
activities; resources and
schedule requirements;
standards.

Anomaly reports; . record
keeping; communications.

Test plan
criteria;
procedures;

and acceptance
test cases and
test results and

According to the Webster's New World Dictionary, a
criteria is a standard, rule, or test by which something
can be judged.

EMGT 535: Research Paper
Nov 1993 11

analyses .

. 3. 2 Manager Responsibility

Managers responsible for software acceptance must ensure
that the results of software acceptance activities demonstrate
whether contractual requirements meet buyer needs, and whether
the delivered software system meets the contractual
requirements.

Software acceptance managers apply elements of
traditional management (e.g., planning, organizing,
controlling, monitoring, providing support, performing cost­
benefit and risk 'analyses) to managing the contractual process
of develop or acquiring software. managers must use their
technical knowledge of the proposed software system, of risk
associated with its development and maintenance, and of its
expected use to establish the criteria for acceptance.

EMGT 535: Research Paper
Nov 1993 12

· Conclusions

If no package can be found that satisfy the essential
requirements, custom development may be necessary. If a
package will be acceptable only after some degree of
customizations, the cost of any required package modifications
should be determined. It a package is sold with out.source
code, tailoring may be impossible.

On the other hand, if one or more software packages have
be·en found that are suitable ~or the applications and conform
closely to requirements, and off-the-shelf package is
appropriate. ·

Table 1 provides a synopsis of the re la ti ve costs of
packaged versus developed software and Appendix I a list of
cost-benefit impact elements.

Software acceptance is a contractual process with buyers
or users and vendors or developers, respectively, identifying
products and criteria for the acceptance of software systems.

EMGT 535: Research Paper
Nov 1993 13

	Cost and Benefit Elements of a Tailored Application versus an off-the-Shelf Package and the Manager's Role.
	Let us know how access to this document benefits you.
	Citation Details

	1993-F-535-04-1

