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ABSTRACT 

Mitochondria are dynamic organelles that harbor their own stream-lined 

genome and generate much of the ATP necessary to sustain eukaryotic life via an 

electron transport chain (ETC). Because of the central role for mitochondria in 

organismal physiology, mitochondrial genetic and phenotypic variation can alter 

organismal fitness and affect population genetic and evolutionary outcomes. Despite 

the far-reaching relevance of mitochondria to evolutionary processes and human 

health, we lack a basic understanding of the evolutionary and cell biological causes and 

consequences of mitochondrial genetic and phenotypic variation. In this thesis, I 

quantified mitochondrial reactive oxygen species (ROS), membrane potential (ΔΨM), 

and mitochondrial morphological traits within Caenorhabditis briggsae natural isolates 

and lines exposed to extreme genetic drift (known as mutation-accumulation or MA 

lines) of both C. briggsae and Caenorhabditis elegans. Many natural isolates of C. 

briggsae are known to harbor mitochondrial DNA (mtDNA) variation in the form of a 

heteroplasmic nad5 gene deletion (nad5Δ) that correlates negatively with organismal 

fitness. The significant mtDNA variation among C. briggsae isolates provided an 

unprecedented opportunity to quantify the amount of mitochondrial phenotypic 

variation within a natural system. In Chapter two, statistically significant natural 

variation was observed for most mitochondrial form and function traits measured 

within a set of C. briggsae isolates. However, the associations between mitochondrial 

phenotypes and clade membership or nad5Δ level generally had very low R2 values, 
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meaning that only a minimal amount of the total variation in most of these traits could 

be attributed to nad5Δ level or phylogeographic clade membership. In only one case 

(ΔΨM), clade membership accounted for nearly 50% of the observed phenotypic 

variation. Both ROS and ΔΨM levels of mitochondrial-nuclear hybrids, strains that 

contain the mitochondrial genome of one isolate on the nuclear background of another, 

were more similar to their mitochondrial parent suggesting that mtDNA variation 

underlies these traits. Hybrid analysis of the other seven important traits suggests both 

mtDNA and nuclear genetic variation as drivers of natural mitochondrial trait variation. 

Given the significant phenotypic variation among C. briggsae isolates observed in 

Chapter two, we next sought to determine whether natural selection might be shaping 

these important mitochondrial traits. In Chapter three, we used a mutation-

accumulation approach to reduce the force of natural selection and found that average 

levels of both ROS and nad5Δ heteroplasmy evolved linearly in lines of C. briggsae 

natural isolates subjected to 20-50 generations of inbreeding. In particular, among C. 

briggsae isolates genetically-predisposed to the nad5Δ deletion, nad5Δ level increased 

to a plateau of ~50% during successive generations of inbreeding. Conversely, 

mitochondrial ROS level increased or declined in a strain-specific fashion, resulting in no 

overall correlation between ROS and nad5Δ. In all cases, the isolate with the highest 

starting level of nad5Δ heteroplasmy went extinct prior to generation 20 of MA 

treatment, suggesting that nad5Δ is detrimental at high heteroplasmy levels. Patterns of 

among-line variance in ROS level were also strain-specific but generally did not conform 
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to the canonical pattern of increasing among-line variance expected for MA 

experiments. While we uncovered significant variation in mitochondrial ROS, we found 

no correlation between ROS and mtDNA heteroplasmy level. Based on the vicious cycle 

hypothesis, it is expected that ROS will increase concomitantly with mutation rate. In 

Chapter four, we used a separate set of MA lines derived from C. elegans and that had 

previously been subjected to whole-genome sequencing to examine the relationship 

between oxidative stress and nuclear base substitution rate. MA lines were found to 

vary significantly in ROS levels but not in 8-oxo-dG content. Despite a significant positive 

correlation between 8-oxo-dG and ROS levels, no relationship between oxidative stress 

measures and base substitution rate or G-to-T transversion rate was revealed. Finding 

no relationship between ROS and mitochondrial or nuclear genetic variation, in Chapter 

four we analyzed a suite of 24 mitochondrial traits measured in C. briggsae natural 

isolates with the aim of identifying other mitochondrial phenotypes important for 

mitochondrial function and integrity. We uncovered several significant correlations 

between traits describing mitochondrial shape, number, and area and identified three 

consistent patterns of correlation: 1) mitochondria became bigger through elongation, 

2) isolates with a more functional mitochondrial population (with relatively high overall 

ΔΨM) contained larger, more elongated mitochondria, and 3) isolates with a less 

functional mitochondrial population (with relatively low overall ΔΨM) contained a more 

heterogeneous mix of organelles. Individual ΔΨM level also correlated positively with 

the overall elongation of functional mitochondria, while ROS level did not correlate 
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significantly to any measured traits. Using these relationships we developed a novel 

model of mitochondrial population dynamics wherein the functionality (relative ΔΨM) 

of the entire mitochondrial population will mediate individual organelle behavior. 

Specifically, individual mitochondria within more functional populations will be more 

likely to continually participate in fusion-fission cycles which will help to maintain a 

healthier population. Conversely, organelles in less functional populations will more 

often undergo autophagy, reducing the number of fusion capable mitochondria and 

creating shape heterogeneity in the entire population. This model could have 

implications for mitochondrial genome integrity. Overall, this work identifies extensive 

natural variation and capacity for evolution in mitochondrial traits within multicellular 

eukaryotic species, highlighting a central role for ΔΨM in mitochondrial dynamics that 

may have implications for evolutionary adaptation to thermal niches.  
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CHAPTER ONE 

Introduction 

 

Mitochondria are highly dynamic cellular organelles responsible for producing a 

majority of the ATP used to fuel eukaryotic life through the process of oxidative 

phosphorylation at the electron transport chain (ETC). Within the ETC, the passage of 

electrons down their energy gradient through a series of functional protein complexes 

acts to pump protons across the inner mitochondrial membrane, generating an electro-

chemical potential known as the mitochondrial membrane potential (ΔΨM). This ΔΨM 

fuels the production of ATP and appears to control mitochondrial dynamics (Twig et al. 

2008a) as well as the rate of production of potentially damaging reactive oxygen species 

(ROS) byproducts by the ETC (Murphy 2009). Mutations affecting ETC genes that impair 

oxidative phosphorylation are associated with a variety of human metabolic and age-

related disorders  (Wallace 2005a; Biskup and Moore 2006) and often result in 

alterations to ROS production (Verkaart et al. 2007; Dingley et al. 2009), ΔΨM (Ventura 

et al. 2006; Gaskova et al. 2007; Dingley et al. 2009; Lemire et al. 2009),  and 

mitochondrial morphology and dynamics (Lee et al. 2003; Pham et al. 2004; Duvezin-

Caubet et al. 2006). Because these functions are deeply interrelated and critical for 

mediating important aspects of organismal physiology, mutations affecting just one of 

these traits may induce pleiotropic effects at the level of the cell, tissue, or whole 

organism. Accordingly, ETC variation has been implicated as a major player in 
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evolutionarily important processes such as aging (Balaban et al. 2005; Lemire et al. 

2009; Kowald and Kirkwood 2011) and speciation (Ballard and Whitlock 2004; Willett 

and Burton 2004; Burton et al. 2006, 2007; Gershoni et al. 2009; Keller and Seehausen 

2012).  Despite the importance of mitochondrial function for such diverse biological 

issues as human disease and evolution, we still lack basic information on the levels of 

standing mitochondrial phenotypic variation and of the complex relationships between 

genetic variation and organelle function and dynamics, as well as the potential causes 

and consequences of natural variation therein. 

In addition to housing the ETC, mitochondria also possess a small, streamlined 

genome (mtDNA) whose gene products cooperate with those encoded in the nucleus to 

maintain proper ETC function. Laboratory mutation-accumulation (MA) experiments – 

which reduce the power of selection by maintaining replicate lineages (MA lines) under 

extreme inbreeding thereby allowing mutations to accrue (Halligan and Keightley 2009) 

– have revealed mtDNA mutation rates ~10x higher than nuclear rates and show 

evidence for variation in the underlying mutational processes among and within species 

(Denver et al. 2000; Haag-Liautard et al. 2008). Many features of mitochondrial biology 

appear to promote high rates of deleterious mutation accumulation in mtDNA 

compared to the nuclear genome, including proximity to damaging oxygen radicals 

(Ballard and Whitlock 2004). When mutated, mitochondrial genomes tend to exist in a 

heteroplasmic state, wherein wild type mitochondrial genomes coexist alongside 

mutant genomes within the same organism, tissue, cell, or organelle (Lightowlers et al. 
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1997; Chinnery et al. 2000). The presence of heteroplasmy provides the opportunity for 

mitochondrial threshold effects wherein a certain fraction of mutant mitochondrial 

genomes must be present for deleterious phenotypes to manifest (Rossignol et al. 2003; 

Ventura et al. 2006). It has been suggested that the smaller size of deletion-bearing 

mitochondrial genomes relative to the intact (wild type) genomes in a heteroplasmic 

organelle may confer a replicative advantage for the mutant genome (Moraes 2001; 

Diaz et al. 2002); recent work supports this idea (Clark et al. 2012). Evidence comparing 

nucleotide polymorphism across taxa with a wide range of population sizes suggests 

that purifying selection is shaping mtDNA (Bazin et al. 2006; Meiklejohn et al. 2007). 

However, we have little information on the contribution of ROS production to 

evolutionarily important mutation accumulation. Conversely, few studies have 

attempted to evaluate the evolutionary forces potentially affecting mtDNA 

heteroplasmy (Denver et al. 2000; Haag-Liautard et al. 2008) and mitochondrial 

phenotypes such as ROS.  

 Mitochondria are a major source of endogenous ROS. As a likely consequence, 

eukaryotic cells have developed various antioxidant defense mechanisms to combat 

ROS accumulation to levels that can damage nucleic acids, proteins, and lipids (Sedensky 

and Morgan 2006; Imlay 2008). However, mitochondrial ETC dysfunction and 

impairment can induce oxidative stress, wherein an increase in ROS production rates 

leads to a disproportionately high oxidant load compared to the cellular antioxidant 

capacity (Grad and Lemire 2004; Halliwell and Gutteridge 2007). Excessive mitochondrial 
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ROS production has been associated with the accumulation of somatic mitochondrial 

and nuclear mutations in several age-related human diseases (Klaunig and Kamendulis 

2004; Wallace 2005a). Such observations are in line with the free radical theory of aging 

proposed by Denham Harman in 1956, which states that the lifetime of exposure to 

unavoidable reactive byproducts (including ROS) of the ETC will damage important 

macromolecules causing age-related deterioration (Harman 1956). The vicious cycle 

theory expands upon this idea, proposing that the oxidative damage incurred by DNA, 

proteins, and lipids will further reduce mitochondrial performance causing an 

exponential increase in mitochondrial ROS production (Bandy and Davison 1990). 

However, mounting evidence suggests that the mutational processes of the soma and 

the germline may be quite different (Drake et al. 1998; Fortune 2000; Martorell et al. 

2000; Shanks et al. 2008; Crabbe and Hill 2010; Lynch 2010; Joyner-Matos et al. 2011), 

and relatively few studies have examined the role of ROS in propagating heritable 

germline mutation (Denver et al. 2006; Stoltzfus 2008; Joyner-Matos et al. 2011).  

 It is becoming clear that factors other than mitochondrial ROS could be vitally 

important to maintaining mtDNA genome integrity. We now understand that 

mitochondria participate in continuous cycles of fusion, fission, and autophagy that link 

organelle shape to mitochondrial function (Chen and Chan 2005; Duvezin-Caubet et al. 

2006), and each mitochondrion to the larger organelle population (Hyde et al. 2010). 

These cycles are essential for maintaining mitochondrial function, as demonstrated by 

the observation that abnormal fusion-fission cycles are characteristic of 
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neurodegenerative disorders including Parkinson’s and Alzheimer’s disease (Trimmer et 

al. 2000; Wang et al. 2008; Irrcher et al. 2010; Su et al. 2010; Winklhofer and Haass 

2010). Further, studies in isolated human cells have revealed a direct relationship 

between ΔΨM and mitochondrial morphology, such that higher ΔΨM induces organellar 

elongation (Legros et al. 2002; Ishihara et al. 2003) and loss of ΔΨM causes severe 

fragmentation of the mitochondrial network (Duvezin-Caubet et al. 2006; Song et al. 

2007). Twig, et al. (2008b) proposed a mitochondrial “quality control axis” governed by 

ΔΨM and carried out via the fusion-fission-apoptosis cycle to maintain mitochondrial 

integrity (Twig et al. 2008b). Their model states that mitochondria with insufficient ΔΨM 

are incapable of fusion and are thereby segregated from the functional mitochondrial 

population (Twig et al. 2008a). Using the “litmus test” of ΔΨM, dysfunctional organelles 

- and perhaps, damaged mitochondrial genomes – are removed from the population 

allowing the persistence of an overall healthier mitochondrial population (Twig et al. 

2008b; Hyde et al. 2010; Kowald and Kirkwood 2011; Bess et al. 2012; Meyer and Bess 

2012).  Despite the recent upsurge of research examining individual mitochondrial 

dynamics, relatively little work has focused on the population-level behaviors of these 

organelles. In particular, we have essentially no understanding of how population-level 

mitochondrial dynamics might influence individual organelles. Further, it is unclear 

whether mitochondrial dynamics research conducted using isolated cells and genetic 

mutants will translate into live animals and natural populations of organisms.  
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 Caenorhabditid nematodes have emerged as an important model system for 

studying the underlying causes of mitochondrial ETC dysfunction and its associated 

biological consequences, from examinations of  the cellular and genetic underpinnings 

of the oxidative stress response (Grad and Lemire 2004; Kayser et al. 2004; An et al. 

2005; Inoue et al. 2005; Lee et al. 2010; Yasuda et al. 2011) to genome-wide rates and 

patterns of spontaneous mutation (Denver et al. 2000, 2006, 2009). The small size, 

highly differentiated tissues and transparent cuticle of nematodes make them ideal for 

live imaging studies. Caenorhabditids have a short life-cycle and high wildtype fecundity 

that make them valuable for multi-generation evolutionary studies (Denver et al. 2000, 

2006; Ajie et al. 2005; Baer et al. 2005; Estes et al. 2005). Also, worms and mammals 

share remarkably similar mitochondrial metabolism and ETC function (Dimmer et al. 

2002; Westermann 2010). Finally, Caenorhabditids exhibit a cosmopolitan distribution 

and C. briggsae harbors a great deal of mitochondrial genetic and phenotypic diversity 

(Howe and Denver 2008; Cutter et al. 2010; Raboin et al. 2010; Estes et al. 2011; Ross et 

al. 2011; Clark et al. 2012; Hicks et al. 2012). Specifically, geographically segregated 

natural isolates of C. briggsae are known to contain a large mitochondrial genome 

deletion (named nad5Δ) of the NADH-dehydrogenase 5 (nad5) gene, which encodes an 

important component of the ETC (Howe and Denver 2008). nad5Δ is thought to result 

from recombination events between nad5 and an upstream pseudogene (Ψnad5-2) 

(Lunt and Hyman 1997), which means that Kenyan isolates without Ψnad5-2 are 

incapable of experiencing the deletion while C. briggsae isolates with Ψnad5-2 
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experience nad5Δ at heteroplasmy levels ranging from zero to over 50%. A good deal of 

work indicates that aspects of nematode health and fitness may suffer when nad5Δ 

heteroplasmy levels exceed ~40% (Howe and Denver 2008; Estes et al. 2011). Further, 

mitochondrial genetic analyses divide C. briggsae isolates into three major 

phylogeographic clades (Cutter et al. 2006; Howe and Denver 2008) that are likely 

adapted to local temperature regimes (Jovelin and Cutter 2011; Prasad et al. 2011). The 

substantial mitochondrial genetic and phenotypic variation within natural isolates of C. 

briggsae and laboratory mutants of Caenorhabditis elegans, combined with their 

amenability to live imaging and experimental evolution make Caenorhabditid 

nematodes an ideal system with which to study the causes and consequences of 

mitochondrial variation.     

 To explore the genetic causes and evolutionary consequences of mitochondrial 

phenotypic variation, I aimed to 1) quantify the amount of mitochondrial phenotypic 

variation within natural populations of eukaryotes, 2) determine the role of natural 

selection in shaping this variation, and 3) identify mitochondrial traits important for 

genetic integrity by assaying mitochondrial ROS, ΔΨM, and a number of traits describing 

mitochondrial morphology and population structure within natural isolates of C. 

briggsae and mutation-accumulation lines of C. elegans and C. briggsae.  In Chapter 

two, I uncovered significant variation in eighteen mitochondrial traits among ten natural 

isolates of C. briggsae, much of which was explained by phylogeographic clade 

membership; this was particularly true for ΔΨM, which was a reliable predictor of clade 
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membership. Phenotypic similarities between two mitochondrial-nuclear hybrid strains 

and their mitochondrial parent strains suggest that mtDNA variation contributes to the 

expression of ΔΨM and ROS levels. Finally, I discuss these findings in light of evidence 

for local thermal adaptation in C. briggsae. In Chapter three, I observed a significant 

evolutionary capacity for mitochondrial ROS and nad5Δ levels in MA lines generated 

from natural isolates and one hybrid strain of C. briggsae. Both ROS and nad5Δ evolved 

in a strain-specific manner during MA treatment, with ROS evolution following a highly 

linear trajectory in the natural isolates, but displaying much more stochasticity in the 

hybrid. Further, among-line variance in ROS level did not follow the expected pattern of 

increase in this experiment. nad5Δ increased linearly with successive generations of 

inbreeding until reaching a plateau when nad5Δ heteroplasmy levels reached ~50%. No 

relationship between the patterns of ROS and nad5Δ evolution were detected. MA lines 

derived from high-nad5Δ isolate HK105 went extinct after ~20 generations of MA, 

lending further support for the idea that high nad5Δ heteroplasmy is detrimental. These 

data suggest a threshold level for deletion-bearing genomes within natural populations 

of C. briggsae, above which detrimental phenotypes emerge. In Chapter four I examined 

the role of ROS and oxidative stress in contributing to heritable nuclear DNA mutation in 

MA lines of C. elegans that had previously been subjected to whole-genome sequencing.  

We found significant variation in ROS levels among C. elegans MA lines, but no variation 

in 8-oxo-dG levels. Despite the strong relationship between steady-state 8-oxo-dG and 

ROS, absolutely no correlation between oxidative stress levels and nuclear genome base 
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substitution rate was revealed. This leaves open the possibility that ROS may induce 

other types of mutations or more substantial damage to the mitochondrial genome. 

Alternatively, ROS may play an indirect role in C. elegans germline mutation processes. 

In Chapter five, I re-analyzed the data from Chapter two to evaluate patterns of 

phenotypic correlation for 24 mitochondrial traits within C. briggsae natural isolates, 

with the aim of identifying traits with the potential to influence mitochondrial stability 

and integrity. While ΔΨM was significantly correlated to several traits describing 

mitochondrial shape, number and area, ROS was not related to any of the measured 

traits. The major patterns of bivariate relationship led to the development of a novel 

model of mitochondrial population dynamics, in which the overall ΔΨM influences 

individual mitochondrial fusion-fission capacities. The model also has broad implications 

for mitochondrial genome integrity and evolution. Chapter six discusses general 

conclusions resulting from this work and areas for possible future work.   
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CHAPTER TWO 

In vivo quantification reveals extensive natural variation in mitochondrial 
form and function in Caenorhabditis briggsae  
 

Background 

Mitochondria are organelles that harbor DNA and produce most of the energy 

(ATP) required to sustain eukaryotic life via an electron transport chain (ETC). Proper 

assembly and operation of the mitochondrial ETC relies upon the coordinated 

functioning of both nuclear and mitochondria-encoded subunits of ETC complexes. 

Hence, mutations affecting ETC genes can have a variety of detrimental consequences 

that manifest at cellular, tissue, and whole organism levels (Wallace 1999; Schon and 

Manfredi 2003), and have been implicated in many complex human diseases (Grad et al. 

2005; Haas 2010; Winklhofer and Haass 2010; Ienco et al. 2011). Proximal effects of ETC 

mutations include altering mitochondrial reactive oxygen species (ROS) production 

(Verkaart et al. 2007; Dingley et al. 2009), membrane potential (ΔΨM) (Ventura et al. 

2006; Gaskova et al. 2007; Dingley et al. 2009; Lemire et al. 2009), and other aspects of 

mitochondrial physiology. ROS are generated by the ETC as a byproduct of oxidative 

phosphorylation and are of particular interest because, when present at high levels, 

they can damage cellular macromolecules including mitochondrial and nuclear DNA and 

the components of the ETC itself (Tuma 2001). Because ETC genetic variation can 

ultimately generate variation in organismal fitness through its effects on physiology, it is 

likely to be a significant target of natural selection. Accordingly, selection on ETC-
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dependent mitochondrial traits has been implicated in the evolution and diversification 

of life-history traits (Dowling and Simmons 2009; Monaghan et al. 2009), thermal 

tolerance (Fangue et al. 2009; Morley et al. 2009), aging (Balaban et al. 2005), 

reinforcement and allopatric speciation (Ballard and Whitlock 2004; Willett and Burton 

2004; Burton et al. 2006, 2007; Gershoni et al. 2009; Keller and Seehausen 2012).  

Despite the broad relevance of mitochondria to evolutionary processes and 

human health, understanding mitochondrial genotype-phenotype relationships has 

proven difficult (Ballard and Melvin 2010). One reason for this is the variable phenotypic 

expression of mitochondrial ETC mutations caused by variation in mitochondrial DNA 

(mtDNA) mutation heteroplasmy (Rossignol et al. 2003; Chen et al. 2010). Heteroplasmy 

occurs when both wildtype and mutant mtDNA genomes coexist within a 

mitochondrion, cell, tissue, or individual, and is a common characteristic of mtDNA 

mutations (Lightowlers et al. 1997). Heteroplasmy is the root cause of mitochondrial 

threshold effects wherein phenotypic consequences of mtDNA mutations only arise 

when heteroplasmy level reaches some threshold (Rossignol et al. 2003; Chen et al. 

2010). For such reasons, we still have a limited understanding of the causes and 

consequences of ETC mutations in vivo, and virtually no such information on naturally 

occurring heteroplasmic ETC mutations. To date, most studies have been conducted on 

isolated mitochondrial fractions, chemically treated cell lines or yeast strains, or on 

those containing experimentally generated mutations (Tuppen et al. 2010).  
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Advances in biological imaging techniques have facilitated recent in vivo studies 

of mitochondria and are permitting unprecedented views into the dynamic structure of 

mitochondria and mitochondrial populations. Regular cycles of fission, fusion, and 

degradation are now known to maintain organellar populations and contribute to 

spatiotemporal variation in mitochondrial morphology (Twig et al. 2008a; Graef and 

Nunnari 2011). Recent studies have identified and characterized genes that control 

mitochondrial fission and fusion (Labrousse et al. 1999; Chen and Chan 2005; Jagasia et 

al. 2005; Okamoto and Shaw 2005; Chan 2006a). In addition to these loci, mutations in a 

number of ETC genes also result in abnormal mitochondrial morphology (Lee et al. 2003; 

Pham et al. 2004; Duvezin-Caubet et al. 2006). It is increasingly apparent that 

mitochondrial shape and function are intimately linked such that changes in morphology 

can affect diverse processes such as free radical signaling, energy metabolism (Dimmer 

et al. 2002; Lee et al. 2003; Okamoto and Shaw 2005; Chan 2006b; Ichishita et al. 2008),  

and cell cycle regulation (Mitra et al. 2009). However, the physiological causes of altered 

mitochondrial shape and the effects of organellar morphology on organellar function 

are poorly known. Further, we have no information regarding standing levels of 

variation in these mitochondrial traits or its evolutionary consequences. 

Recently, geographically diverse isolates of C. briggsae nematodes have been 

studied with the aim of developing a model for natural population genetic and genomic 

studies (Cutter et al. 2006; Estes et al. 2011; Ross et al. 2011; Clark et al. 2012). Like C. 

elegans, C. briggsae is globally distributed and offers many of the same advantages as 
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an experimental system (Gupta et al. 2007), however, C. briggsae exhibits higher rates 

of mutation (Baer et al. 2005; Howe et al. 2010), greater molecular genetic diversity, 

and more extreme population subdivision than C. elegans. Nuclear (Cutter et al. 2006) 

and mitochondrial (Howe and Denver 2008) genetic analyses have identified four major 

phylogeographic clades of C. briggsae (the distal three of which are shown in Fig. 2.1A), 

which may be adapted to local thermal regimes (Jovelin and Cutter 2011; Prasad et al. 

2011) and other conditions. Howe and Denver (2008) discovered that many isolates of 

this species contain varying levels of a large, heteroplasmic mtDNA deletion named 

nad5Δ (Fig. 2.1B and further described in Materials and Methods). The deletion removes 

nearly half of the NADH-dehydrogenase 5 (nad5) gene (Fig. 2.1B), which encodes a 

central subunit of mitochondrial ETC complex I. nad5Δ appears to occur via illegitimate 

recombination events between the nad5 gene and an upstream pseudogene, Ψnad5-2, 

derived from nad5. The “Kenya” (aka Nairobi) C. briggsae clade does not contain the 

pseudogene and therefore does not experience the deletion, while other C. briggsae  

isolates exhibit nad5Δ heteroplasmy levels ranging from zero to over 50%. A number of 

findings suggest that nad5Δ might be detrimental for several aspects of nematode 

health and fitness – especially when heteroplasmy levels exceed ~40% (Howe and 

Denver 2008; Estes et al. 2011) - as expected based on studies of nad5 and other 

complex I mutants (Shigenaga et al. 1994; Kayser et al. 2004; Biskup and Moore 2006; 

Janssen et al. 2006; Sedensky and Morgan 2006; Falk et al. 2008). Together with recent 

work showing that nad5Δ behaves as a selfish genetic element; i.e., experiences a strong 
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transmission bias (Clark et al. 2012), these results indicate that isolate-specific nad5Δ 

levels are probably shaped by a combination of evolutionary forces: recurrent mutation 

and deletion transmission biases, genetic drift due to sampling of mitochondria during 

fertilization, and truncation selection. 

With the goal of further characterizing global phenotypic variation in C. 

briggsae to include levels of variation in sub-cellular traits, mitochondrial form and 

2. 
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function was analyzed using natural and experimental hybrid populations of nematodes. 

This study provides an assessment of natural levels of physiological and subcellular 

phenotypic variation and takes a first step toward understanding how this species’ 

extensive ETC genetic variation may affect cellular traits in vivo. We identified traits that 

diagnose mitochondrial dysfunction and hypothesized that C. briggsae isolates with 

higher nad5Δ levels would exhibit mitochondrial phenotypes often associated with such 

dysfunction, including increased ROS, decreased ΔΨM, and more fragmented 

mitochondria. However, several mitochondrial phenotypes were non-linearly associated 

with nad5Δ level and much of the among-isolate phenotypic variation was best 

explained by phylogeographic clade membership rather than nad5Δ frequency. Analysis 

of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear 

genetic variation as drivers of natural mitochondrial phenotype variation.  

 

Materials and Methods 

Nematode strains and culture conditions 

For the current study, we used ten natural C. briggsae isolates and two 

experimental hybrid strains derived from three of these isolates, (Fig. 2.1). The ten 

natural isolates represent three of the four major phylogeographic clades of C. briggsae, 

encompass the known range of nad5Δ heteroplasmy level, and were chosen to include 

two isolates that do not experience the deletion and two isolates containing a putative 

compensatory mutation that limits nad5Δ formation (Howe and Denver 2008; Estes et 
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al. 2011). Note that this study includes a different strain of HK104 from that analyzed in 

Estes et al. (2011). This study assayed the natural HK104 isolate, which has low nad5Δ 

(Fig. 2.1A), while Estes et al. (2011) used an inbred HK104 line that had evolved higher 

nad5Δ frequency. Briefly, nad5Δ segregates among natural populations of C. briggsae 

and requires the presence of the Ψnad5Δ-2 pseudogene (Fig. 2.1B). Sequence repeats 

within nad5Δ and Ψnad5Δ-2 promote direct repeat-associated deletion events. 

Isolates in the Kenya clade (Fig. 2.1A) lack the pseudogene and are therefore 

spared nad5Δ. Among-isolate variation in nad5Δ  heterolplasmy level is also contolled 

by the presence of compensatory sequences within the mtDNA of certain isolates As 

described in (Howe and Denver 2008), the Ψnad5Δ-2 pseudogene directly upstream 

of nad5Δ (Fig. 2.1B) is required for the nad5Δ deletions to occur within C. briggsae. 

Directly repeated nucleotide sequences occur within nad5Δ and Ψnad5Δ-2 that 

promote direct repeat-associated deletion events. Isolates in the "Kenya" clade 

(Fig. 2.1A) provide natural outgroup controls because they lack Ψnad5Δ-2 and are thus 

inherently unable to experience the nad5Δ deletions. The among-isolate variability in 

average heteroplasmy level is thought to also be partly accounted for by the presence of 

compensatory sequences within the mtDNA of certain isolates (Estes et al. 2011), which 

appear to place an upper bound on the proportion of nad5-deletion bearing 

genomes able to accrue within individuals (Howe and Denver 2008). nad5Δ was 

recently shown to behave as a selfish genetic element that increases in frequency when 

C. briggsae isolates are maintained by single-individual bottlenecking (Clark et al. 2012); 
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however, nad5Δ heteroplasmy level is relatively stable across generations when isolates 

are maintained in larger population sizes (N ~100) where natural selection is more 

efficient (Estes, Coleman-Hulbert, Howe, and Denver, unpubl. data). Great care was 

taken to ensure that C. briggsae natural isolates did not experience population 

bottlenecks in the lab and nad5Δ heteroplasmy levels were found to remain stable over 

the course of our study (Estes et al. 2011).  

To test the relative contributions of mitochondrial and nuclear genomes to 

among-isolate phenotypic variability, we also studied two mitonuclear hybrid strains 

that contain the mitochondrial genome of one isolate (PB800 or HK105) upon the same 

(AF16) nuclear genetic background (Fig. 2.1C). These strains were generated through 

serial backcrossing of AF16 males to hermaphrodite cross-progeny for 10 generations. 

This process is expected to result in worms with >99.9% of their nuclear genome from 

AF16 and their mitochondrial genome from a separate C. briggsae isolate. We 

confirmed that each hybrid line encoded the expected mtDNA through PCR and direct 

sequencing of a portion of nad5Δ (Howe and Denver 2008) and COII (Denver et al. 

2003a) genes. Each hybrid line was also confirmed to harbor nad5Δ levels similar to that 

of the original hermaphrodite mitochondrial donor parent through agarose gel analysis 

of PCR reactions using primers that flank the deletion region as described in Howe and 

Denver (2008) (Fig. 2.1C).  

Nuclear contributions of hybrid lines were confirmed by evaluating six nuclear 

PCR loci, one for each of the six C. briggsae chromosomes, that contained single 
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nucleotide polymorphism or large-indel variants between the two strains involved in the 

crosses.  SNP variants were evaluated by fluorescent capillary DNA sequencing and 

large-indel variants were evaluated by agarose gel electrophoresis.  The loci used were 

taken from published variants described in (Koboldt et al. 2010; Raboin et al. 2010).  For 

the AF16 x HK105 hybrid lines (expected to contain AF16 nuclear DNA), 6/6 target loci 

contained differences between the strains and 6/6 of the loci were confirmed to contain 

only the AF16 sequence in the hybrid line.  For the AF16 x PB800 cross (also expected to 

contain AF16 nuclear DNA), only 5/6 loci had diagnostic sequence differences between 

the two strains; the chromosome V locus employed was identical between AF16 and 

PB800.  However, 5/5 of the diagnostic nuclear loci confirmed the presence of the AF16 

sequence only in the hybrid strain. 

We note here that we attempted to generate additional sets of mitonuclear 

hybrid strains by crossing other pairs of C. briggsae natural isolates; however, molecular 

genetic assays revealed that bi-parental inheritance of mitochondrial genotypes had 

occurred in these lines. In a similar study involving inter-strain crosses in C. elegans, 

mitochondrial DNA was observed to be strictly maternally inherited (W.K. Thomas and 

K. Morris, unpubl. data). Thus, our result may suggest that favorable mitonuclear 

epistatic interactions specific to individual C. briggsae isolates were disrupted in some 

hybrid strains such that paternal mitochondria were transmitted to hybrid offspring 

(Zouros 1994; Ellison and Burton 2006; Fontaine et al. 2007; Wolff et al. 2008). Such a 

situation might arise if hybridization in some way disrupts the autophagic degradation of 
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paternal mitochondria that normally occurs after fertilization (Sato and Sato 2011; Zhou 

et al. 2011), for example. These strains were therefore omitted from the current 

analysis.  

All nematodes were grown under standard laboratory conditions at 25°C on 15 

mm NGM petri plates seeded with HB101 Escherichia coli. All strains were included in 

each analysis. Prior to each assay, age synchronous worms were obtained through a 

standard bleaching protocol.  

Fluorescence microscopy 

Confocal image analysis was performed on young adult nematodes treated with 

mitochondria-targeted fluorescent dyes. Fluorescent imaging provides the distinct 

advantage of allowing simultaneous localization and relative quantification of 

mitochondrial traits (Fig. 2.2). Additionally, recent work indicates that ROS data 

obtained from fluorescent analysis and electron spin resonance yield similar results 

(Kuznetsov et al. 2011). This dye-based method has received criticism for its potential to 

be influenced by variable feeding rates (Lee et al. 2010). Importantly, we find no 

correlation between pharyngeal pumping rates (Estes et al. 2011) and maximal ROS or 

ΔΨM as measured here (ROS ρ = -0.024, p = 0.955; ΔΨM ρ = 0.167, p = 0.693). Also, 

unlike dye-based methods performed using whole-worm lysate (B. Halliwell, pers. 

comm.), our method does not cause the disruption and release of organellar and 

intracellular contents, which can lead to increased ROS via the release of free iron and 

ensuing Fenton reactions (Halliwell and Gutteridge 2007). Prior to each assay, age 



 
20 

 

synchronous worms were incubated with E. coli labeled with 10μM concentrations of 

the specific fluorescent dye(s) appropriate for each experiment. Concurrently, a second 

age synchronous batch of worms from the same strain was incubated without dye to 

serve as the control. After 24 hours of exposure, young adult stage worms were washed 

and transferred to fresh NGM plates containing unlabeled E.coli. Worms were allowed 

to feed for one hour, which clears the digestive tract of any labeled E. coli that could 

interfere with accurate fluorescence measurements. Immediately prior to imaging, 

Figure 2.2. Localization of mitochondria-targeted dyes in C. briggsae nematodes. A Z-projection 
image of MitoTracker Red CMXRos (red objects) and MitoTracker Green FM (green objects) specific 
staining, and colocalization of these probes (yellow objects) within an individual (after processing to 
find edges of objects). Green objects are relatively depolarized mitochondria that have taken up 
primarily MitoTracker Green FM probe; red objects are more polarized mitochondria that have taken 
up mostly MitoTracker Red probe. Yellow objects likely have intermediate polarization and have taken 
up equivalent amounts of each probe. Scale bar = 10 µm. 
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worms were paralyzed following the methods of Dingley et al. (2009) with a single drop 

of 5M levamisole (Vector Technologies, Inc., Burlingame, CA), which immobilizes worms 

by preventing depolarization of skeletal muscle (Lewis et al. 1980).  

For each dye-based assay, images of the pharynx of each nematode were 

collected. The pharynx is a neuromuscular organ that nematodes use to ingest bacteria 

(Albertson and Thomson 1976). We chose to analyze pharyngeal bulbs for two reasons: 

1) they are easily visualized and have high levels of dye uptake, which serves to reduce 

technical variation, and 2) they are mitochondria-rich but contain few lipid droplets, 

which are highly autofluorescent and thus interfere with accurate measurement of 

mitochondrial fluorescence. Images were acquired using a high resolution wide field 

Core DV system (Applied Precision™, Issaquah, WA) equipped with an Olympus IX71 

inverted microscope mounted with a Nikon Coolsnap ES2 HQ camera (Advanced Light 

Microscopy Core Facility, Oregon Health and Science University, Portland, OR). 

Fluorescent z-stack images of the pharyngeal bulb of individual worms were captured at 

60X magnification using a short arc 250W Xenon lamp. All images were captured 

immediately following paralysis. Images were optimized by deconvolving, and relative 

fluorescence values were obtained using ImageJ software (NIH, Bethesda, MD). 

Relative mitochondrial oxidant levels 

ROS levels were assessed in vivo for all C. briggsae isolates following the basic 

approach of (Dingley et al. 2009) and described further in Estes et al. (2011). Briefly, 

age-synchronized worms were incubated for 24 hours in 10 uM MitoSOX Red (Molecular 
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Probes; Grand Island, NY) before imaging as outlined above. MitoSOX Red was recently 

shown to quantify total levels of mitochondrial oxidants, rather than superoxide 

specifically, when used with confocal microscopy (Zielonka and Kalyanaraman 2010). 

Images were acquired using a high resolution wide field Core DV system (Applied 

Precision™), equipped with an Olympus IX71 inverted microscope mounted with a Nikon 

Coolsnap ES2 HQ camera (Advanced Light Microscopy Core Facility, Oregon Health and 

Science University, Portland, OR). Fluorescent, z-stack images of the mitochondrial-rich 

pharynx with a 1.0 second exposure time were captured at 60X magnification. Images 

were deconvolved prior to analysis. Terminal pharyngeal bulbs were manually circled to 

quantify maximum fluorescence intensity of the area in exposed and unexposed 

(control) animals for each strain using ImageJ software (NIH). The final pharyngeal bulb 

intensity values were calculated as the difference between intensity values for exposed 

and control worms. 

 The efficacy of a second mitochondrial ROS detecting dye, MitoTracker Red CM-

H2XRos (Molecular Probes Inc., Eugene, OR), was assessed using the same protocol as 

above. We initially believed that this dye would be preferable over MitoSOX Red 

because of its greater sensitivity to ROS (Kuznetsov et al. 2011). However, although the 

fluorescent signal from MitoTracker Red CM-H2XRos-treated mitochondria was distinct, 

the background fluorescence generated from non-specific lipid uptake of the dye 

decreased the precision of the fluorescence measurement (Waters 2009). MitoSOX Red 
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generated less background fluorescence and produced more precise images, and was 

therefore used for mitochondrial ROS detection.  

Although the use of mitochondria-specific dyes has become a widely used and 

accepted method for measuring a variety of mitochondrial traits in vivo, a caveat is that 

differential dye uptake between samples could lead to inaccurate interpretation of 

fluorescence differences. There is currently no means of determining the extent to 

which this occurs (Dingley et al. 2009). However, great care was taken to minimize all 

other sources of error. For example, we exposed only one sample at a time to the 

microscope light source and used the shortest exposure time possible to avoid 

introducing variation due to breakdown of the dye. 

Relative mitochondrial ΔΨM 

Relative ΔΨM was assessed using MitoTracker Red CMXRos, the uptake of which 

is dependent upon mitochondrial ΔΨM. We utilized the ROS assessment protocol 

(above), except that a shorter, 0.08 seconds, exposure time was used for imaging; these 

assays were performed concurrently with those for mitochondrial morphology (below).  

Mitochondrial morphology 

Quantification of differences in mitochondrial morphology was achieved by co-

labeling worms with MitoTracker Green FM, which is not ΔΨM-specific, and MitoTracker 

Red CMXRos, which accumulates exclusively within actively respiring mitochondria (Fig.  

2.2). This allowed us to distinguish between polarized and depolarized mitochondria. 
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Worms were prepared for imaging as above, this time with exposures of 0.08 seconds 

for MitoTracker Red and 0.02 seconds for MitoTracker Green.  

 We also confirmed that altered ΔΨM would produce the expected effects on 

mitochondrial morphology (Okamoto and Shaw 2005) by depleting ΔΨM with 10µM 

carbonylcyanide-3-chlorophenylhydrazone (CCCP, Sigma-Aldrich, St. Louis, MO) in 15 

individuals from mid-deletion isolate, ED3034 (Fig. 2.1A). Beginning at the L1 stage, 

worms were transferred daily to fresh CCCP-treated plates until they reached young 

adulthood. Compared to an equal number of untreated ED3034 individuals, we found 

that CCCP treatment reduced the size of both the total and the functional (polarized) 

mitochondrial population (ATP: F = 6.185, p = 0.0202, AFP: F=7.607, p = 0.0134), the size 

of individual functional mitochondria (AF: F = 4.591, p = 0.0425), and the variance in 

circularity of functional mitochondria (CFV: F = 7.136, p = 0.0134) – as expected if 

organelles are becoming increasingly fragmented. (See below and Table 2.1 for further 

explanation.) 

Mitochondrial localization of fluorescent dyes and effect of levamisole 

We observed extensive localization of MitoTracker Green FM and Red CMXRos 

(Fig. 2.2), which points to mitochondria-specific staining by fluorescent dyes. This 

specificity was further confirmed by depleting ΔΨM using CCCP (as above) and directly 

visualizing reductions in the fluorescence intensity of all probes used, especially the 

membrane-potential dependent dyes (data not shown). We also tested the effect of 

levamisole, the drug used to paralyze worms prior to imaging, on dye fluorescence using  
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Label Trait Description 
Grand 
mean 

F 

df 

Measures of Organismal Physiology 

ATP Total ATP content 
Steady-state ATP levels normalized by 
protein content (nM/mg protein) 

4.499 
25.09*** 

84, 8 

PR 
Paraquat 
Resistance 

Total time alive in minutes in 300mM 
paraquat 

61.03 
7.139*** 

126, 8 

Measures of Mitochondrial Physiology 

ΔΨM 
Mean 

Membrane 
potential 

Average of mean relative MitoTracker 
Red CMXRos fluorescence 

836.8 
90.99*** 

182, 9 

ΔΨM 
Max 

Average of max relative MitoTracker 
Red CMXRos fluorescence 

2331 
75.20*** 

182, 9 

ROS 
Mean Reactive Oxygen 

Species 

Average of mean relative MitoSOX 
Red fluorescence 

298 
9.269*** 

201,9 

ROS 
Max 

Average of max relative MitoSOX Red 
fluorescence 

1643 
12.18*** 

201, 9 

Measures of the Mitochondrial Population 

AFP 

Area of 
mitochondrial 
population 

Area of functional, non-functional or 
total (both functional and non-
functional) mitochondrial populations 

2870 
4.923*** 

169, 9 

ANP 3152 
2.012* 

169, 9 

ATP 6022 
3.349*** 

169, 9 

AFP/NP 
Ratio of functional 
to non-functional 
mitochondrial area 

Area of the functional mitochondrial 
population/area of the non-functional 
population 

1.151 

3.703*** 

169, 9 

AFP/TP % functional area 
Area of the functional mitochondrial 
population/area of the total 
population 

0.443 
3.434*** 

169, 9 

NF 
Number of 
mitochondria 

Number of functional, non-functional, 
or total individual mitochondria 

67.91 
6.247*** 

169, 9 

NN 58.85 
2.143* 

169, 9 
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NT 124.7 
3.977*** 

169, 9 

NF/N 
Ratio of functional 
to non-functional 
mitochondria 

Number of functional 
mitochondria/number of non-
functional mitochondria 

1.331 
3.451*** 

169, 9 

NF/T 
% functional 
mitochondria 

Number of functional 
mitochondria/number of total 
mitochondria 

0.505 
3.983*** 

169, 9 

Measures of Individual Mitochondrial Shape 

AF 
Area of individual 
mitochondria 

Average area of individual functional 
or non-functional mitochondria 

40.74 
1.504 

169, 9 

AN 55.7 
2.284* 

169, 9 

ARF 

Aspect ratio 

Average of the ratio between the 
major and minor axis of the ellipse 
equivalent to each functional or non-
functional mitochondrion 

1.669 
1.499 

169, 9 

ARN 1.865 
5.232*** 

169, 9 

ARFV 
Aspect ratio 
variance 

Average within-individual variance in 
aspect ratio of functional or non-
functional mitochondria 

0.655 
1.875 

163, 9 

ARNV 1.271 
1.348 

166, 9 

CF 

Circularity 
4π (area/perimeter2) for functional or 
non-functional mitochondria 

0.8619 
1.771 

169, 9 

CN 0.825 
3.494*** 

169, 9 

CFV 

Circularity variance 
Within-individual variance in 
circularity of functional or non-
functional mitochondria 

0.037 
1.891 

163,9 

CNV 0.052 
2.049* 

166, 9 

Table 2.1 Assigned labels and descriptions of all mitochondrial traits measured for C. briggsae 
natural isolates. The grand mean, F-ratio and degrees of freedom for one-way ANOVA testing for 
phenotypic differences among C. briggsae isolates. Bold font identifies the nine traits retained in the 
classification tree analysis when using categories based on isolate-specific nad5Δ % (see Table 2.3). *, 
**, and *** denote p < 0.05, 0.01, 0.001, respectively. Subscripts N, F, and T indicate whether the 
measure refers to Non-functional, Functional, or Total mitochondria. Subscript P and V denote that 
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the measure refers to the entire mitochondrial population (not individual mitochondria), or the 
average individual variance in that trait, respectively. 

five age synchronous individuals from isolates PB800 and HK105 (Fig. 2.1A). There was 

no significant effect of levamisole on the mean or maximum fluorescence values of 

MitoTracker Red CMXRos or MitoTracker Green FM, nor was there a levamisole-by-

isolate interaction. Similarly, levamisole had no effect on the maximum values of 

MitoSOX fluorescence (t-tests, p > 0.291); however, there were significant effects of 

levamisole (t = -2.29, p = 0.038) and the interaction of levamisole and isolate (t = -2.13, p 

= 0.051) on mean MitoSOX fluorescence. Maximum fluorescence values were therefore 

used for all statistical analyses so that any isolate-by-probe interactions generated by 

levamisole were unlikely to influence our among-isolate comparisons. Furthermore, 

maximum measures are more consistent in fluorescence image analysis because they 

are unaffected by variation in pixel size and mitochondrial number or area between 

images. 

 We also attempted to co-label nematodes treated as above with either DAPI or 

Hoechst 33342 (Sigma-Aldrich, St. Louis, MO) in order to visualize cell nuclei, which 

would have allowed us to assess the intracellular distribution of mitochondria. 

(Appropriate GFP fusions are not yet available for C. briggsae.) Unfortunately, both DAPI 

and Hoechst noticeably interfered with the fluorescence of the above MitoTracker dyes 

in C. briggsae (Hicks, pers. obs.). Our study therefore focuses on properties of individual 

mitochondria and mitochondrial populations within the pharyngeal tissue.  

Image analysis 
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All image analyses were performed in ImageJ (NIH, ver. 1.43u). Quantification of 

relative ROS and ΔΨM levels was achieved by manually enclosing the terminal 

pharyngeal bulb of each image to find the average intensity of the area as described in 

(Dingley et al. 2009). Mitochondrial morphology traits were quantified by processing 

images following (Koopman et al. 2006). Briefly, visibility of MitoTracker stained 

structures was improved by applying a linear stretch of the pixel intensity histogram 

corresponding to each slice in the z stack. This process enhances the contrast of an 

image by adjusting the number of low and high intensity pixels in the image based on 

the lowest and highest pixel values in the current image (Russ 2002). The image was 

then converted into a z-projection, a process that effectively removes the spaces 

between each slice of the z-stack creating a composite image from all slices. A 7x7 top-

hat filter was then applied, followed by a median filter and a thresholding step 

(Koopman et al. 2006). The thresholded image was then converted to a binary image, 

which results in white mitochondria on a black background that can be analyzed in 

ImageJ. 

 To quantify among-isolate differences in mitochondrial form and function, we 

defined and measured 24 traits (Table 2.1). We evaluated functionality of mitochondria 

based on relative membrane potential (ΔΨM mean, ΔΨM max) and reactive oxygen 

species (ROS mean, ROS max). We also quantified various features of the mitochondrial 

population: the combined area of the mitochondrial population (AFP, ANP, ATP), the ratio 

of the area of functional to non-functional mitochondria (AFP/NP), and the percentage of 
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the total mitochondrial area that is functional (AFP/TP), the number of organelles (NF, NN, 

NT), the ratio of functional to non-functional organelles (NF/N), and the percentage of 

functional mitochondria (NF/T), as defined by uptake of MitoTracker Red CMXRos. To 

describe organellar shape differences we quantified the area (AF, AN), aspect ratio (ARF, 

ARN), and circularity (CF, CN) of individual mitochondria. Aspect ratio measures the ratio 

between the long and short axes of an ellipse fit to the object in question (Russ 2002). It 

has a minimal value of 1, which corresponds to a perfect circle. Circularity (sometimes 

referred to as formfactor in the literature) is calculated as 4Π(area/perimeter2), and will 

also equal 1 when the measured object is a perfect circle. As the object becomes more 

elongated and/or branched, circularity approaches 0 (Russ 2002). Because circularity 

cannot accurately be measured for extremely small objects (ImageJ website), we 

omitted from all analyses mitochondria smaller than 2 pixels (or 0.129 microns). The 

number of such objects removed from analyses was small (ranging from 0-20 with most 

<10) and did not differ among isolates (F < 1.618, p > 0.094); this procedure likely had no 

impact on our phenotypic comparisons among isolates. Finally, to examine 

heterogeneity in mitochondrial form we estimated within-individual variance in aspect 

ratio (ARFV, ARNV) and circularity (CFV, CNV) of mitochondria for all strains. 

Statistical analysis 

Classification trees were used to determine which mitochondrial characteristics 

most accurately grouped C. briggsae isolates into categories corresponding to nad5Δ 

heteroplasmy level or to phylogeographic clades. A classification or decision tree is a 
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data reduction technique that predicts the membership of data points within classes of 

a categorical “dependent” variable (Gotelli and Ellison 2004). We chose the classification 

tree method over PCA or discriminant analysis because the latter techniques assume 

linearity and equal variance among groups, which our data violated. We first performed 

one-way analyses of variance (ANOVA) for each of the 24 mitochondrial traits to 

determine which of them varied significantly among the natural isolates. (Non-

parametric analyses gave the same results and are not presented.) Eighteen of 24 traits 

exhibited significant among-isolate variation (Table 2.1) and were retained as descriptor 

variables in the classification tree analyses. For the first analysis, the ten natural isolates 

were grouped into four categories corresponding to their relative levels of nad5Δ 

frequency as before (Estes et al. 2011). Classification trees were run five times for both 

analyses. For each run, traits that were retained in the tree were recorded along with 

the misclassification rate and R2 value. We considered any trait retained in 4 of 5 runs to 

be important under that scheme. 

Analysis of among-isolate or hybrid strain variation was performed using 

separate one-way analyses of variance (ANOVA) for each phenotype measured (above). 

Least-squares contrasts (Tukey’s HSD for all pairwise comparisons) were used to test for 

differences between pairs of isolates. Additionally, we tested the effect of phylogenetic 

clade and assessed within-clade variation using nested ANOVA for each trait. To test for 

associations between traits and nad5Δ levels in C. briggsae, each trait was regressed 



 
31 

 

onto isolate-specific nad5Δ percentages. All analyses were performed in JMP 9 (SAS 

Institute, Cary, NC). 

 

Results 

Natural variation in mitochondrial phenotypes  

We quantified natural variation in 24 phenotypes that describe mitochondrial 

function and shape (Table 2.1) among ten distinct C. briggsae isolates (Fig. 2.1A). A 

majority (18 of 24) of the measured traits exhibited significant among-isolate variation. 

Mitochondrial ΔΨM showed the greatest among-isolate diversity, followed by 

mitochondrial ROS levels (Table 2.1; Fig. 2.3). Notably, mitochondria that we considered 

to be functional (i.e., polarized) by virtue of their having sufficient ΔΨM to permit 

uptake of MitoTracker Red CMXRos (Fig. 2.2; Materials and Methods) did not vary 

significantly among isolates in shape or heterogeneity in shape (Table 2.1). In contrast, 

characteristics of shape and heterogeneity in non-functional (depolarized) mitochondria 

often differed significantly among isolates. Traits that describe features of mitochondrial 

populations (i.e., all ten traits that describe the combined area or number of 

mitochondria), however, differed among isolates for both functional and non-functional 

mitochondria (Table 2.1).  

Striking variation was found among phylogeographic clades of C. briggsae (Fig.  

2.3; Table 2.2). Of the nine traits that best distinguished isolates with different nad5Δ  
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levels (see below), all but NF/N – the ratio of the number of functional to non-functional 

organelles – varied significantly among C. briggsae clades, consistent with a 

phylogenetic effect on many mitochondrial traits. In all of these cases, among-clade 

variation exceeded the variation observed within clades (Table 2.2). To further explore 

among-clade phenotypic differences, we used classification tree analysis to identify  

Figure 2.3. Associations between mitochondrial function and morphology traits and isolate-
specific nad5Δ level. Natural variation among C. briggsae isolates in (A) the total area of 
functional mitochondria, (B) the average area of individual non-functional mitochondria, (C) the 
total area of non-functional mitochondria, the (D) aspect ratio, (E) circularity, (F) circularity 
variance of non-functional mitochondria, in (G) relative ΔΨM, (I) the ratio of functional to non-
functional organelles, and (H) relative ROS levels. Column colors corresponding to phylogenetic 
clade (orange = Kenya, white = Temperate, blue = Tropical), and isolates are ordered by deletion 
frequency along the x-axis. ED3101 and ED3092 do not experience the deletion and were 
assigned arbitrary x-values of -7 and -5, respectively, for this figure. Averages of maximum 
pharyngeal bulb fluorescence in C. briggsae natural isolates are plotted in relative fluorescence 
units (RFU). Bars represent one SEM for 15-20 independent samples. 
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Label Trait Source F 

AN 
Area of individual non-
functional mitochondria 

Clade 4.593** 

Isolate(Clade) 1.706 

ANP 
Area of the non-
functional mitochondrial 
population 

Clade 3.365* 

Isolate(Clade) 1.624 

AFP 
Area of the functional 
population 

Clade 8.678*** 

Isolate(Clade) 3.639*** 

ARN 
Aspect ratio of non-
functional mitochondria 

Clade 7.135*** 

Isolate(Clade) 4.644*** 

CN 
Circularity of individual 
non-functional 
mitochondria 

Clade 8.125*** 

Isolate(Clade) 2.218* 

CNV 
Variance in circularity of 
non-functional 
mitochondria 

Clade 3.574* 

Isolate(Clade) 1.549 

ΔΨM 
Max 

Mitochondrial membrane 
potential 

Clade 187.4*** 

Isolate(Clade) 43.02*** 

NF/N 
The ratio of functional to 
non-functional 
mitochondria 

Clade 2.226 

Isolate(Clade) 3.748*** 

ROS 
Max 

Reactive Oxygen Species 
(Average of max relative 
MitoSOX Red 
fluorescence) 

Clade 18.48*** 

Isolate(Clade) 10.21*** 

Table 2.2. Effect of phylogenetic clade (df = 2) and strain nested within 
clade (df = 7) for mitochondrial form and function traits. The F-ratio 
and degrees of freedom for nested analyses of variance for each trait 
are shown with *, **, and *** denoting p < 0.05, 0.01, 0.001, 
respectively. Subscripts N and F indicate whether the measure refers to 
Non-functional or Functional mitochondria. Subscript P denotes that 
the measure refers to the entire mitochondrial population, rather than 
individual mitochondria. Subscript V denotes measures of average 
individual variance in that trait. 
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which of the 24 measured mitochondrial traits best distinguished three major 

phylogeographic clades of C. briggsae (Table 2.3). Classification trees invariably retained 

only ΔΨM in the analysis. Misclassification rates were somewhat high (34%); isolate-

specific ΔΨM nonetheless accounted for 20% of the total variation among clades. 

Further, if we allowed classification trees to continue splitting beyond the optimal 

number of splits (i.e., when further partitioning failed to account for a significant 

fraction of the total variation), analyses again used ΔΨM to further classify groups of 

isolates. 

Misclassification 
rate 

0.3427 

R2 0.2055 

Traits Used ΔΨM 

Misclassification 
rate 

0.3305 

R2 0.4518 

Traits Used ROS, ΔΨM, AN, ANP, AFP, ARN, CN, CNV, NF/N 

Table 2.3. Results of classification tree analysis. ROS and ΔΨM traits reflect 
average maximum fluorescence values. Misclassification rate and R

2
 are the 

mean values from five separate runs of the classification tree using identical 
parameters (see text). (Top) The three phylogenetic clades of C. briggsae 
(Fig. 2.1A) were used as grouping variables during tree construction. 
(Bottom) Four categories based on isolate-specific nad5Δ heteroplasmy 
level (Fig. 2.1A) were used as grouping variables.  

Possible relationships between nad5Δ and phenotypes  

Classification trees were used to determine whether mitochondrial traits 

distinguished groups of C. briggsae isolates with different nad5Δ heteroplasmy levels 

(Fig. 2.1A). Classification trees invariably used ROS and ΔΨM to classify nad5Δ  
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frequency groups (Table 2.3). In addition to ROS and ΔΨM levels, the phenotypes most 

often used to classify nad5Δ categories were the area of non-functional and functional 

mitochondrial populations (ANP, AFP), descriptors of non-functional mitochondrial shape 

(AN, ARN, CN, CNV), and the ratio of functional to non-functional mitochondria (NF/N) 

(Table 2.3). About 45% of the total phenotypic variation was accounted for, but 

misclassification rates were again fairly high (33% on average), meaning that these traits 

were imperfect predictors of nad5Δ category.  

As a second means of testing for any association between mitochondrial 

phenotypes and nad5Δ frequency in C. briggsae, individual relationships between all  

measured traits and isolate-specific nad5Δ level were examined. A second order 

quadratic provided the best fit of many traits to nad5Δ percentage (Fig. 2.3; Table 2.4); 

however, only a minimal amount of the total variation in these traits could be attributed 

to nad5Δ level (low R2 values in Table 2.4).  For instance, zero- and high-nad5Δ isolates 

exhibited the highest values for mitochondrial ROS and ΔΨM; however, the relationship  

between these traits and nad5Δ is weak (Fig. 2.3; Table 2.4). All mitochondrial traits 

describing non-functional organelle shape (ARN, CN, CNV) exhibited stronger non-linear 

(quadratic) relationships with nad5Δ level, as did both measures describing the 

functional mitochondrial population (AFP, NF/N) (Fig. 2.3; Table 2.4). Neither the mean 

area of individual non-functional mitochondria (AN) nor the combined area of these 

mitochondria (ANP) was significantly associated with nad5Δ percentage in this analysis. 

However, non-functional mitochondria (AN) were larger on average than functional  
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Label Trait 
Regression 

Equation 
r2 

Measures of Mitochondrial Physiology 

ΔΨM 
Mean 

Membrane potential 

1.825 ΔΨM mean = 907.9 - 13.12*nad5Δ + 
0.362*( nad5Δ -13.96)2 0.02 

ΔΨM 
Max 

9.423*** ΔΨM max = 2240 – 38.24*nad5Δ + 
2.019*(nad5Δ-13.96)2 0.09 

ROS 
Mean 

Reactive Oxygen Species 

9.629*** ROS mean = 282.8 - 6.289*nad5Δ + 
0.330*(nad5Δ-14.08)2 0.09 

ROS 
Max 

13.43*** ROS max = 1409 - 34.62*nad5Δ + 
2.293*(nad5Δ-14.08)2 0.12 

Measures of the Mitochondrial Population 

AFP 

Area of mitochondrial 
population 

4.096* AFP = 2766- 41.44*nad5Δ + 2.170* 
(nad5Δ-14.27)2 0.047 

ANP 
2.299 

ANP = 3306- 10.77*nad5Δ 
0.014 

ATP 
1.689 ATP = 6083- 46.25*nad5Δ + 1.870* 

(nad5Δ-14.27)2 0.02 

AFP/NP 
Ratio of functional to non-
functional mitochondrial 
area 

5.049** 
AFP/NP = 0.974 - 0.009*nad5Δ + 
9.431E-4*(nad5Δ-14.27)2 0.057 

AFP/TP % functional area 
4.447* AFP/TP = 0.421 - 0.003*nad5Δ + 

1.928E-4*(nad5Δ-14.27)2 0.051 

NF 

Number of mitochondria 

5.671** NF = 63.50 - 0.890*nad5Δ + 
0.047*(nad5Δ-14.27)2 0.064 

NN 
1.416 NN = 60.86 + 0.201*nad5Δ - 

0.015*(nad5Δ-14.27)2 0.017 

NT 
1.28 NT = 124.4 - 0.689*nad5Δ + 

0.032*(nad5Δ-14.27)2 0.015 
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NF/N 
Ratio of functional to non-
functional mitochondria 

5.545** NF/N = 1.183 - 0.013*nad5Δ + 
0.001*(nad5Δ-14.27)2 0.062 

NF/T % functional mitochondria 
8.445*** NF/T = 0.492 - 0.005*nad5Δ + 2.457E-

4*(nad5Δ-14.27)2 0.092 

Measures of Individual Mitochondrial Shape 

AF 
Area of individual 
mitochondria 

0.006 AF = 40.70 + 0.014*nad5Δ – 5.115E-
4*(nad5Δ-14.27)2 7.20E-05 

AN 
1.931 AN = 56.90 - 0.342*nad5Δ + 

0.012*(nad5Δ-14.27)2 0.02 

ARF 

Aspect ratio 

1.489 ARF = 1.689 + 1.005E-3*nad5Δ - 
1.093E-4*(nad5Δ-14.27)2 0.018 

ARN 
7.174*** ARN = 1.824 - 0.003*nad5Δ + 2.864E-

4*(nad5Δ-14.27)2 0.079 

ARFV 

Aspect ratio variance 

1.552 
ARFV = 0.732 - 0.006*nad5Δ 

0.009 

ARNV 
1.216 ARNV = 1.086 - 0.009*nad5Δ + 9.472E-

4*(nad5Δ-14.46)2 0.015 

CF 

Circularity 

2.387 CF = 0.872 - 5.033E-5*nad5Δ - 
2.916E-5*(nad5Δ-14.27)2 0.028 

CN 
4.314* CN = 0.827 + 9.483E-4*nad5Δ - 

4.894E-5*(nad5Δ-14.27)2 0.049 

CFV 

Circularity variance 

0.888 CFV = 0.038 + 1.829E-4*nad5Δ - 
1.096E-5*(nad5Δ-14.01)2 0.011 

CNV 
5.208** CNV = 0.050 – 3.02E-5*nad5Δ + 

2.874E-5*(nad5Δ-14.46)2 0.06 

Table 2.4. Assigned labels of all mitochondrial traits measured for C. briggsae natural isolates. The 
test statistic and adjusted r

2
 values for the best fit regression of each phenotype to nad5Δ frequency 

are given for each trait. Bold font identifies the nine traits retained in the classification tree analysis 
when using categories based on isolate-specific nad5Δ % (see Table 2.3). Italicized values indicate 
that a linear regression provided the best fit to nad5Δ%, while standard text denotes a quadratic 
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relationship to nad5Δ %. *, **, and *** denote p < 0.05, 0.01, 0.001, respectively. Subscripts N, F, 
and T indicate whether the measure refers to Non-functional, Functional, or Total mitochondria. 
Subscript P and V denote that the measure refers to the entire mitochondrial population (not 
individual mitochondria), or the average individual variance in that trait, respectively. 

mitochondria (AF) (Table 2.1). Overall, nad5Δ load was more strongly associated with 

descriptors of the shape of non-functional mitochondria and traits describing the total 

population of functional mitochondria than with those describing any aspect of 

functional mitochondrial shape. 

Insights from mitochondrial-nuclear hybrid lines 

To directly test whether the observed differences among C. briggsae isolates 

were due to mtDNA variation, we examined the nine phenotypes retained in 

classification tree analyses for two mitochondrial-nuclear hybrid strains (e.g., Fig. 2.4). If 

among-isolate variation in mitochondrial phenotypes is primarily due to an additive 

mtDNA genetic contribution, a correspondence between mitochondrial-nuclear hybrid 

strain phenotypes and their respective mitochondrial parental strain is predicted. 

 

Figure 2.4. ROS and ΔΨM in 
mitonuclear hybrid strains. 
Mitonuclear hybrid strains more often 
resemble their mitochondrial parental 
isolate. Averages of maximum 
pharyngeal bulb fluorescence for 
mitochondrial (PB800 and HK105) and 
nuclear (AF16) parent isolates are on 
either side of the two hybrid strains 
(AFPB800 and AFHK105) (Fig. 2.1). 
Letters denote significantly different 
groups as determined by Tukey HSD 
analysis. Bars show one SEM for 15-20 
independent samples.  
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Consistent with this idea, hybrid strains were more similar to their mitochondrial parent 

strains than to their nuclear parent strains (Table 2.5). Considering ROS and ΔΨM only, 

the hybrid strains were more similar to their mitochondrial parent in each case (Fig.  

2.4). Note that in the AF16 and PB800 pairing, the hybrid is not significantly different 

from the nuclear parent, but is still more similar to the mitochondrial parent. The 

diversity in ROS and ΔΨM phenotypes seen in the three strains studied therefore 

appears to be due to variation in mtDNA as opposed to among-strain nuclear variation. 

However, the relative contribution of each genome was less clear for measures of the 

mitochondrial population and mitochondrial shape. These traits rarely differed 

significantly among parent and hybrid strains studied here (Table 2.5), although a larger 

study may have revealed small differences. A visual inspection of these data suggested 

that mitochondrial morphology traits may be more affected by the nuclear genome 

(hybrids are more similar to the paternal isolate) or by mitochondrial-nuclear epistasis 

(hybrids differ from both parental isolates), than were ROS and ΔΨM (not shown). 

Hybrid and 
Mitochondrial 

Parent 
Difference Trait Difference 

Hybrid and 
Nuclear 
Parent 

AF-PB and PB 

207.7 ROS Max 612.1 

AF-PB and AF 

1333* ΔΨM Max 3543*** 

1.34 
Area of non-functional 
mitochondria 

5.791 

-1113 
Area of the non-
functional mitochondrial 
population 

-450.2 

-1894 
Area of the functional 
mitochondrial population  

653.5 
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-0.008 
Aspect Ratio of non-
functional mitochondria 

0.06 

-0.015 
Circularity of non-
functional mitochondria 

-0.032 

0.141** 
Variance in circularity of 
non-functional 
mitochondria 

0.142** 

0.512 
The ratio of functional to 
non-functional 
mitochondria 

0.768 

AF-HK and HK 

-619.3 ROS Max 2387*** 

AF-HK and AF 

639.6 ΔΨM Max 2601*** 

-4.538 
Area of non-functional 
mitochondria 

-0.646 

0.076 
Area of the non-
functional mitochondrial 
population 

-503.6 

-1683 
Area of the functional 
mitochondrial population  

818.9 

-0.144 
Aspect Ratio of non-
functional mitochondria 

0.139 

7.95E-04 
Circularity of non-
functional mitochondria 

-0.032 

-0.015 
Variance in circularity of 
non-functional 
mitochondriaV 

0.001 

-1.177 
The ratio of functional to 
non-functional 
mitochondria 

0.146 

Table 2.5. Comparison of mitonuclear hybrid strains to parent strains. The difference between the 
means of each pair of mitonuclear hybrids and their parental isolates are shown. Bolded traits exhibit 
significant differences among hybrid and parent strains. *,**, and *** denote p < 0.05, 0.01, and 0.001 
respectively (Tukey HSD, α = 0.05). AF = AF16, PB = PB800, HK = HK105.  

Discussion 

Evolutionary implications 

We have used in vivo techniques with C. briggsae nematodes to conduct the first 

analysis of naturally-occurring variation in mitochondrial function, morphology, and 
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properties of mitochondrial populations. We discovered considerable variation among 

natural C. briggsae isolates for most of the measured traits. In fact, we find more 

variation among natural isolates of C. briggsae for both ROS and ΔΨM than has been 

measured among ETC mutant strains of C. elegans (Dingley et al. 2009; Lemire et al. 

2009). This result is partly explained by the greater phenotypic variation observed within 

C. elegans mutant strains (e.g., see among-replicate variation in Figs. 2 and 3 in Dingley 

et al., 2009) than within C. briggsae isolates; the source of this species difference is 

unclear. Our findings also mirror those of previous studies revealing extensive variation 

in life-history and metabolic traits among the same isolates (Howe and Denver 2008; 

Estes et al. 2011). A good deal of this variation was related to the phylogeographic clade 

membership of particular isolates (Fig. 2.3; Table 2.2); this was especially true for ΔΨM 

(Fig. 2.3G; Table 2.3). C. briggsae is globally distributed (Sudhaus and Kiontke 2007) and 

both mitochondrial and nuclear genetic analyses consistently reveal the existence of 

distinct phylogeographic clades that are separated by latitude (Howe and Denver 2008; 

Cutter et al. 2010). These clades have experienced different population genetic histories 

(Cutter et al. 2006, 2010; Howe and Denver 2008) and show some evidence for local 

adaptation to temperature; e.g., Tropical clade isolates appear to have higher thermal 

maxima (Prasad et al. 2011). Consequently, divergence in mitochondrial phenotypes 

measured here may reflect clade-specific phylogenetic or selective histories. It is 

impossible to say without further study whether the among-clade differences in 

mitochondrial function measured here have an adaptive significance or are a non- or 
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maladaptive consequence of genetic drift (Howe and Denver 2008); however, it is 

conceivable that Tropical C. briggsae isolates adaptively maintain low ΔΨM. Because C. 

briggsae is ectothermic, its biology will be driven strongly by environmental 

temperature. At higher temperatures, biological reactions such as those controlling 

electron transport and the subsequent production of ROS occur at higher rates 

(Hochachka and Somero 2002). The higher temperatures experienced by Tropical clade 

isolates may have thus subjected them to higher ROS levels during their evolutionary 

history. Reducing ROS production, especially from complex I, may be achieved by 

lowering ΔΨM by uncoupling oxidative phosphorylation (Brand 2000; Murphy 2009). 

We may therefore hypothesize that Tropical C. briggsae have adaptively reduced their 

ΔΨM to counter increased ROS levels brought on by higher temperatures and perhaps 

exacerbated by nad5Δ-induced complex I inefficiency.  

Although other traits appear to be influenced by both nuclear and mitochondrial 

genetic contributions, our data are consistent with the interpretation that much of the 

among-isolate variation in mitochondrial ROS and ΔΨM can be attributed to 

mitochondrial genome content rather than to nuclear divergence among isolates (Fig.  

2.4; Table 2.5). In agreement with this finding, ROS level and ΔΨM were shown to be 

the best predictors among those tested of nad5Δ category in classification analyses 

(Table 2.3). Because mitochondrial electron transport relies upon the coordinated 

functioning of both mitochondrial and nuclear encoded ETC components, there is ample 

opportunity for epistatic interactions between mtDNA and nuclear genomes (Ellison and 
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Burton 2006, 2010; Ellison et al. 2008; Arnqvist et al. 2010). A recent analysis of 

recombinant inbred lines generated from reciprocal crosses between C. briggsae 

isolates AF16 and HK104 provides indirect evidence for such mitochondrial-nuclear 

incompatibilities (Ross et al. 2011). In agreement with this result, we observed extensive 

paternal transmission of mitochondria in other sets of C. briggsae mitonuclear hybrid 

strains (Materials and Methods). It could therefore have easily been the case that C. 

briggsae hybrids studied here bore no similarity to either parental isolate as a result of 

interpopulation hybrid breakdown. This is particularly true for our hybrid strains, both of 

which resulted from crosses between a Tropical and a Temperate isolate (Fig. 2.1). That 

the results of our hybrid strain analyses for ROS and ΔΨM are consistent with an 

additive effect of the mitochondrial genome suggests that the natural isolates used to 

generate the hybrids have either not experienced functional divergence for the relevant 

ETC gene products or have purged variants that generate deleterious epistatic 

interactions before they had the opportunity to create fixed polymorphisms between 

isolates (c.f. Montooth et al., 2010). An analysis of nucleotide diversity at non-

synonymous versus synonymous codon positions (πa/πs) in ten mtDNA-encoded ETC 

genes among 22 C. briggsae natural isolates suggested that these genes are under 

purifying selection (πa/πs <1 for all genes) and have not likely experienced functional 

divergence (Howe and Denver 2008). Patterns of diversity and divergence at nuclear-

encoded ETC genes have not been analyzed in C. briggsae natural isolates. In either 
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case, our results suggest that these particular hybrid strains will be valuable for future 

studies of mitochondrial function. 

While results of the hybrid analyses showed that ROS and ΔΨM were influenced 

by mtDNA content, analyses of the natural C. briggsae isolates suggested that at least a 

portion of the among-isolate phenotypic variation may be associated with nad5Δ 

heteroplasmy level or other factors in linkage disequilibrium with nad5Δ (Fig. 2.3; Table 

2.4). In particular, several traits exhibited non-linear relationships with isolate-specific 

nad5Δ level, a pattern in agreement with previous findings for these isolates (Estes et al. 

2011); however, the patterns are in most cases quite weak (Table 2.4; Fig. 2.3). Our 

results for highest-deletion isolate HK105 are of special note, however, since this isolate 

exhibits the highest ROS levels (Figs. 2.3 and 2.4) and the lowest reproductive fitness 

(See Figure 2A in Estes et al. 2011), it may be that HK105 (>50% deletion bearing 

genomes) has reached a threshold beyond which nad5Δ elicits deleterious effects; i.e., 

high ROS levels associated with extreme ETC dysfunction (Rossignol et al. 2003). 

Congruent with this idea, HK105 also had the largest ratio of functional to non-

functional organelles (Fig. 2.3H) and the smallest area of depolarized mitochondria (Fig. 

2.3B) compared to other isolates. One interpretation of these data is that mitochondria 

with nad5Δ loads beyond ~50% are unable to rescue functionality through 

mitochondrial fusion (Chen et al. 2007; Schon et al. 2010) and the ensuing mitophagic 

degradation of highly impaired organelles increases the ratio of functional to non-
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functional organelles. A direct test of this hypothesis awaits development of techniques 

for simultaneously genotyping and phenotyping individual mitochondria.  

It has been proposed that lowering mitochondrial ΔΨM may slow the rate of 

ROS production and help to alleviate oxidative stress – and perhaps extend lifespan 

(Brand 2000; Lemire et al. 2009; Murphy 2009). Based on such studies and on the fact 

that ROS and ΔΨM were most important for classifying our C. briggsae natural isolates 

into nad5Δ categories (Table 2.3), we expected that a statistical relationship between 

these traits might emerge, but observed no such correlation (Figs. 2.3G, 2.3I). A caveat 

that prohibits further interpretation of this result is that ROS and ΔΨM levels were 

necessarily measured on different individual nematodes; estimates of each trait were 

therefore obtained from different sets of mitochondria (Materials and Methods). 

(Conversely, ΔΨM and morphology assays were conducted on the same individuals.) 

Unfortunately, to our knowledge, all ROS and ΔΨM probes utilize nearly identical 

fluorescent spectra, making simultaneous in vivo quantification of both traits 

impossible. It is noteworthy, however, that the results of our studies differ from those 

of Lemire et al. (2009), which showed that reduced ΔΨM was associated with increased 

lifespan across four classes of C. elegans longevity mutants. We find no obvious 

relationship between isolate-specific ΔΨM and lifespan measured in a previous study 

[47]. In particular, the long-lived PB800 isolate (Estes et al. 2011) was observed here to 

have a high ΔΨM (Fig. 2.2G). Further study would be required to understand why this 

isolate deviates from the strong pattern seen in C. elegans experimental strains. A 



 
46 

 

possible explanation may lie in the nuclear genetic differences among the C. briggsae 

isolates used here; in contrast, Lemire (2009) studied C. elegans mutants on an 

otherwise common nuclear background.  

The analyses of mitochondrial phenotypes presented here also identified traits 

that diagnose mitochondrial functionality. Apart from ROS, ΔΨM, and AFP (combined 

area of the functional mitochondrial population), traits retained in classification trees all 

described some aspect of depolarized mitochondria (Table 2.3). In other words, 

descriptors of depolarized mitochondria provided more information about the nad5Δ 

frequency class to which natural isolates belonged than did descriptors of functional 

mitochondria. For example, although isolates did not differ in any aspect of functional 

mitochondrial shape (Table 2.1), traits describing non-functional mitochondrial shape 

(ARN, CN, and CNV) were retained in classification trees; these traits also showed 

especially obvious non-linear relationships to nad5Δ frequency (Fig. 2.3D-F). In 

particular, depolarized mitochondria tended to be larger (Fig. 2.3D) and more variable 

with respect to circularity (Fig. 2.3F) (and consequently less circular, Fig. 2.3E) in zero- 

and high-nad5Δ strains. Furthermore, although some traits describing the average 

number and combined area of the functional mitochondrial population were found to 

be (mostly non-linearly) related to nad5Δ frequency in our regression analyses (Table 

2.4), traits describing individual functional mitochondria were never found to be 

associated with nad5Δ level in any analysis. Taken together, our results suggest that 

isolates with different nad5Δ levels are more variable with respect to their depolarized 
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mitochondrial populations than to their polarized mitochondrial populations. 

Furthermore, we found that functionality (based on ΔΨM) is strongly associated with 

elongated organelles, whereas non-functionality is associated with circular (i.e., 

fragmented) organelles. This result is in agreement with previous findings (Chan 

2006a,b; Duvezin-Caubet et al. 2006; Schon et al. 2010) and with the idea that damaged 

mitochondria lose ΔΨM and undergo fragmentation early in the cellular apoptosis 

process (Okamoto and Shaw 2005). 

Conclusions and outlook 

We have reported a novel analysis of subcellular processes in C. briggsae that, to 

our knowledge, provides the first explicit treatment of within-species natural variation 

in form and function of an organelle. Through the use of mitochondrial-nuclear hybrid 

lines, we demonstrated that mtDNA genotype is a strong driver of a portion of this 

natural variation. We also found evidence for complex associations between 

mitochondrial nad5Δ frequency and mitochondrial functioning (ROS and ΔΨM) and 

morphology traits. Although our study represents a major step forward in 

understanding natural variation in subcellular processes in vivo, additional work is 

required to move beyond correlative associations between mitochondrial genotypes 

and phenotypes to a direct determination of the genetic underpinnings of subcellular 

variation. Achieving this goal in our system would necessitate the simultaneous 

genotyping (e.g., through mitochondrial mRNA or DNA labeling) and phenotyping of 

individual mitochondria, which is not possible currently.  
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More generally, our study indicates that evolutionary approaches hold promise 

for advancing our knowledge of mitochondrial population dynamics and other cell-level 

processes. Although there is a long history of evolutionary analysis providing key 

insights into DNA-level genetic processes and organismal phenotypes, phenomena at 

more intermediate levels of biological organization (e.g., cellular, subcellular) have 

largely been overlooked by evolutionary biologists during the last century. Likewise, cell 

biology research rarely considers natural within-species variation. Evolutionary cell 

biology is an emerging and essentially untapped research area in need of both 

theoretical and empirical work. With regard to mitochondria, outstanding questions in 

this discipline include: what is the role of mitochondrial fission and fusion in purging 

deleterious heteroplasmic mtDNA mutations, how do epistatic interactions between 

nuclear and mtDNA subunits of ETC genes affect mitochondrial form and function and 

organismal fitness, and how do we analyze the mode and strength of selection on 

mitochondrial form and function? Together with the many other advantages to the C. 

briggsae system, its amenability to in vivo physiological studies and abundant among-

isolate mtDNA variation suggest that this species will be a valuable natural model 

system for addressing such questions.  
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CHAPTER THREE 

Evolution of mitochondrial heteroplasmy and ROS levels under genetic drift in 
experimental lines of Caenorhabditis briggsae 
 

Introduction 

Mutation is a fundamental evolutionary process that underlies genetic change in 

all populations. It is the ultimate source of all molecular and quantitative genetic 

variation and plays a fundamental role in the susceptibility and generation of human 

disease. Accurate measures of the rates, molecular mechanisms, and distributions of 

fitness effects of mutations are critical for many applications of evolutionary theory 

including: inferring evolutionary relationships, testing for selection on molecular 

sequence, estimating effective population size from standing levels of neutral genetic 

variation, parameterizing many population genetic models (Lynch et al. 1999) and 

predicting long-term patterns of phenotypic evolution (Jones et al. 2007). Accordingly, 

much effort has been devoted to studying the rates and molecular underpinnings of 

spontaneous mutation in a variety of organisms (Lynch et al. 1999; Halligan and 

Keightley 2009; Kondrashov and Kondrashov 2010). Much of this work has been 

achieved using laboratory mutation-accumulation (MA) experiments – first envisioned 

by Hermann Muller (Muller 1928) and employed by Terumi Mukai (Mukai 1964) – that 

seek to distinguish the impact of mutation from that of other evolutionary forces 

affecting rates of molecular evolution. These experiments allow mutations to accrue 

free from selection in the genomes of replicate lineages (MA lines) maintained by 
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extreme inbreeding across many generations (Halligan and Keightley 2009). Because 

different numbers and types of mutations will accumulate in such lines, and because 

most new mutations with phenotypic consequences are deleterious for organismal 

fitness, it is expected that mean fitness and related phenotypes will decline linearly with 

successive generations of MA and that the phenotypic variance among MA lines will 

increase simultaneously (e.g., Fig. 5 in Mukai 1964). The changes in mean phenotypes 

and among-line variance in MA lines compared to their progenitors can be used to make 

indirect estimates of deleterious rates and mutational effects; i.e., the Bateman-Mukai 

approach (Lynch et al. 1999; Halligan and Keightley 2009). 

 A few MA experiments have now been combined with DNA sequencing to 

provide direct estimates of the average per-generation rate of single-nucleotide 

substitutions arising in nuclear (nDNA) and mitochondrial (mtDNA) genomes(Denver et 

al. 2000, 2009, 2012; Lynch et al. 2008; Keightley et al. 2009; Ossowski et al. 2010). 

Direct estimates from mitochondrial (mtDNA) genomes have yielded mutation rates 

~10x higher than nuclear rates and show evidence for variation in the underlying 

mutational processes among and within species (Montooth and Rand 2008). 

Importantly, few studies (Haag-Liautard et al. 2008; Howe et al. 2010; Clark et al. 2012) 

have attempted to evaluate mtDNA heteroplasmy (multiple mtDNA haplotypes 

coexisting within an individual), but have described fixed (i.e., homoplasmic) or nearly-

homoplasmic mutations that have already navigated the poorly understood intracellular 

adaptive landscape to achieve high frequency. Recent work demonstrates that mutant 
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mtDNA molecules have the capacity to act as selfish elements (Clark et al. 2012), 

perhaps driven by a replicative advantage for deletion mutations due to their small size. 

Such a phenomenon will directly affect the evolution of mtDNA heteroplasmy levels. 

Clark, et al. (2012) found a consistent increase in the heteroplasmy level of deletion-

bearing genomes within lines of Caenorhabditis briggsae subjected to ten generations of 

MA treatment. Furthermore, many features of mitochondrial biology are likely to have 

consequences for mtDNA mutation dynamics distinct from those affecting nDNA 

mutations. These include: maternal inheritance of mtDNA (small effective population 

size), the organelle bottleneck that occurs during fertilization (Stewart et al. 2008), and 

the complex mitochondrial life cycle involving organelle fission, fusion and autophagy 

that may act to purge damaged mtDNA genomes (Twig et al. 2008b; Kuznetsov and 

Margreiter 2009; Kowald and Kirkwood 2011; Bess et al. 2012; Meyer and Bess 2012). 

The complexity of mitochondrial population dynamics and our incomplete 

understanding of the relative influence of evolutionary forces acting on mtDNA 

genomes and traits imply that MA studies have the potential to provide significant 

insight into these processes.  

 Although MA studies have provided some information on the rates and 

molecular consequences of mtDNA mutation, the consequences of MA on cell- or 

organelle-level phenotypes have not been addressed. Knowing how such phenotypes 

evolve in the absence of natural selection can improve our understanding of the role of 

natural selection in maintaining wildtype phenotypes in natural populations. Proper 
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mitochondrial functioning is essential for organismal health and survival since the 

majority of the energy needed for most eukaryotic life is produced by the mitochondrial 

electron transport chain (ETC). However, the ETC also creates ROS as a byproduct of 

oxidative phosphorylation (Raha and Robinson 2000). If permitted to accumulate, ROS 

can damage important cellular macromolecules including proteins and nucleic acids 

(Wanagat et al. 2001; Yang et al. 2007), a situation often induced by the impairment of 

the ETC (Grad and Lemire 2004; Verkaart et al. 2007; Dingley et al. 2009).  One could 

therefore hypothesize that ROS levels will increase monotonically with generations of 

MA. This prediction is supported by the “vicious cycle theory,” which is an extension of 

mitochondrial free radical theory of aging (Harman 1956). The free radical theory of 

aging states that the reactive byproducts (including ROS) of mitochondrial oxidative 

phosphorylation will damage biological macromolecules over the lifetime of organism, 

resulting in age-related deterioration (Harman 1956). The vicious cycle theory further 

hypothesizes that the oxidative damage to DNA, lipids, and proteins will in turn reduce 

the stability or efficiency of mitochondria leading to exponentially more ROS production 

(Bandy and Davison 1990). A plausible alternative is that ROS levels would exhibit an 

eventual decline if the mitochondrial ETC becomes too damaged to function. These 

ideas are intensely debated in the aging biology literature (Jacobs 2003; Pak et al. 2003; 

Trifunovic et al. 2005; Gruber et al. 2008; Selman et al. 2012) and have stimulated 

considerable research on the relationships between ROS and somatic mutation 

(Hartman et al. 2001; Wei and Lee 2002; Trifunovic et al. 2005; Hiona and 
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Leeuwenburgh 2008; Khrapko and Vijg 2009). However, few cross-generational studies 

have been conducted; we therefore have almost no information on the relationships 

between ROS and heritable germline mutation rates or dynamics. 

 Caenorhabditid nematodes have become popular models for studying a variety 

of questions in evolutionary biology including the genome-wide rates and patterns of 

spontaneous mutation and for separate investigations of the effects of mitochondrial 

ETC mutations and organelle dysfunction. Here, we take advantage of the well-studied 

C. briggsae nematode system to integrate these approaches and examine how 

mitochondrial ROS and nad5Δ heteroplasmy levels evolve during MA. A previous MA 

study of three rhabditid species revealed a faster rate of fitness degradation in C. 

briggsae compared to other nematode species (Baer et al. 2005). The C. briggsae MA 

lines were later observed to acquire mitochondrial genome deletions at a much higher 

rate than in C. elegans (Howe et al. 2010). Additionally, a large mtDNA deletion, nad5Δ, 

was discovered to persist in natural populations of C. briggsae, including the two 

isolates studied by Baer, et al. (2005) (Howe and Denver 2008). Levels of nad5Δ 

heteroplasmy – the average fraction of nad5Δ-bearing genomes within an individual – 

ranges from 0 to over 50% among natural isolates of C. briggsae (Howe and Denver 

2008; Estes et al. 2011). Although nad5Δ appears to have negative consequences for 

nematode health and fitness at high (>~40%) heteroplasmy levels (Howe and Denver 

2008; Estes et al. 2011), its presence appears unrelated to isolate-specific variation in 

net ROS level or other aspects of mitochondrial functioning (Hicks et al. 2012).  
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 We conducted a mutation-accumulation experiment using experimental lines 

generated from geographically distinct isolates and one mitochondrial-nuclear hybrid 

strain of Caenorhabditis briggsae to examine the effects of extreme genetic drift on the 

levels of mitochondrial ROS and nad5Δ heteroplasmy levels. We observed substantial 

evolution of both characters across ≤ 50 generations of MA. Mean mitochondrial ROS 

evolved in a remarkably linear fashion among MA lines generated from the C. briggsae 

natural isolates, but non-linearly among lines of the mitonuclear hybrid strain. However, 

the patterns of ROS evolution, as well as the patterns of among-line variance in ROS 

level, were isolate-specific and did not support the hypothesis that ROS levels will 

necessarily increase with mutational load. Additionally, we observed a tendency for 

nad5Δ levels to increase with MA in agreement with the idea that nad5Δ-bearing 

mitochondrial genomes are transmitted as selfish elements (Clark et al. 2012), but we 

also find compelling evidence for mitochondrial threshold effects acting on nad5Δ 

heteroplasmy levels. Finally, we found no relationship between the patterns of 

evolution in ROS and nad5Δ levels. We discuss our results in light of the unique biology 

of mitochondria and the implications of this study for mitochondrial mutation biology. 

 

Materials and Methods 

Nematode strains 

For all assays, we used three well-studied natural C. briggsae isolates (Howe and 

Denver 2008; Estes et al. 2011; Clark et al. 2012; Hicks et al. 2012) and one experimental 
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mitochondrial-nuclear hybrid strain. The three natural isolates (ED3101, AF16, and 

HK105) were chosen to represent three of the major C. briggsae phylogeographic clades 

(Cutter et al. 2006, 2010), to encompass much of the known phenotypic variation in life-

history and metabolic traits (Estes et al. 2011; Hicks et al. 2012) and to span the known 

range of nad5Δ genotypic diversity for this species (Howe and Denver 2008; Clark et al. 

2012) (Figs. 2.1, 3.1). The formation of nad5Δ requires an upstream pseudogene called 

Ψnad5Δ-2. Homology between nad5 and Ψnad5Δ-2 induces direct repeat-associated 

deletion events that generate nad5Δ-bearing genome (See Figure 1 in Howe and 

Denver, 2008). Thus, isolates without the Ψnad5Δ-2 pseudogene (e.g., ED3101) harbor 

only intact mitochondrial genomes, while isolates containing Ψnad5Δ-2 have nad5Δ 

heteroplasmy levels ranging from zero to over 50% (Fig. 3.1). For further details 

regarding the C. briggsae natural isolates and the transmission genetics of nad5Δ please 

see (Howe and Denver 2008; Estes et al. 2011).  

The experimentally generated hybrid strain (“ED-AF”) contains the mitochondrial 

genome of ED3101 (lacking both Ψnad5Δ-2 and nad5Δ) on the nuclear genetic 

background of AF16 (whose mitochondrial genome contains both elements). These 

hybrid strains were generated through serial backcrossing of AF16 males to 

hermaphrodite cross-progeny for 10 generations. This process is expected to result in 

worms with >99.9% of their nuclear genome from AF16 and their mitochondrial genome 

from ED3101. The nuclear contribution was confirmed using isolate-specific amplicon 

size differences of the third intron of the Cbr-polh-1 gene and agarose gel 
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electrophoresis (Raboin et al. 2010). A combination of PCR with gel analysis and direct 

sequencing of a portion of the nad5 (Howe and Denver 2008) and COII (Denver et al. 

2003a) genes confirmed that hybrid worms contained the expected mtDNA (Howe and 

Denver 2008; Raboin et al. 2010; Hicks et al. 2012). Further, hybrid animals were found 

to share similar nad5Δ levels with the original mitochondrial parent through PCR and 

agarose gel methods described in (Howe and Denver 2008). 

Propagation and maintenance of MA lines 

MA lines were generated from the C. briggsae progenitor strains described 

above and indicated in Figure 3.1. The MA lines generated from the three natural C. 

briggsae isolates were a subset of those studied by Clark, et al (2012) who provides a 

detailed description of the conditions and procedures for the mutation-accumulation 

Figure 3.1. C. briggsae natural isolates and description of the nad5Δ mtDNA deletion. A. Evolutionary 
relationships and average line-specific nad5Δ heteroplasmy level for the three C. briggsae natural 
isolates studied here. KE = Kenya clade; TE and TR = temperate and tropical clades. Gray boxes indicate 
origin of C. briggsae and the Ψnad5Δ-2 pseudogene required for nad5Δ formation. The mitochondrial-
nuclear hybrid (ED-AF) contains the mitochondrial contribution from ED3101 on the AF16 nuclear 
background, and thus should not experience the deletion. B. Positions of the nad5Δ deletion (dashed 
line at top) and Ψnad5Δ-2 elements within the C. briggsae mitochondrial genome. Arrows indicate 
primers (adapted from Howe and Denver, 2008).  
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experiment. MA lines of the ED-AF hybrid strain were propagated concurrently with 

those from the natural strains (not reported in Clark, et al 2012). Briefly, for each of four 

progenitor strains, a single hermaphrodite nematode was allowed to self-reproduce, 

after which 24 F1 hermaphrodite progeny were individually plated to generate the MA 

generation zero (G0) for a total of 96 MA lines (24 per strain). As described in Clark, et al 

(2012), the natural strain MA progenitors were not inbred for multiple generations prior 

to establishment of MA lines; this was done in order to capture any diversity that may 

have existed in individual nad5Δ mtDNA levels and to avoid inflating deletion levels by 

bottlenecking. Each line was propagated for 50 generations or until extinction via single-

nematode bottlenecking as previously described (Clark et al. 2012). All lines were 

maintained at 20°C with Escherichia coli OP50 as a food source. Following each transfer, 

nematode populations from the previous generation were retained as backups to 

reinitiate any MA lines that failed to reproduce. Lines were declared extinct if they failed 

to reproduce after three such attempts. F2 progeny of each MA line were cryogenically 

preserved using standard protocols (Stiernagle 2006) at ten-generation intervals and/or 

at the final MA generation prior to line extinction (GF). Assays for nad5Δ and ROS levels 

(below) were performed on nematode populations recovered from these frozen stocks. 

For the current study, a total of 20 MA lines (5 from each C. briggsae strain) were 

selected at random for these analyses. 

PCR analysis of nad5Δ level 
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We assessed the relative levels of intact and nad5Δ-bearing mtDNA genomes in 

C. briggsae MA lines using a previously described PCR-based assay (Howe & Denver, 

2008). PCR reaction products were electrophoresed on standard 1.5% agarose gels and 

digitally recorded as *.TIF files. Gel images were scored based on the three deletion-

product categories described in Clark, et al (2012). PCR products from individuals lacking 

nad5Δ will yield a single, large amplicon. Lines generated from the Temperate and 

Tropical clade isolates (Fig. 2.1) can potentially generate two discrete amplicons: a 

larger, intact mtDNA product, and a smaller, deletion-bearing amplicon. Thus, this PCR 

assay can yield three ordinal results describing relative nad5Δ level: 1) intact = large 

band only, 2) intermediate = both small and large bands, 3) deletion = small band only. 

Howe and Denver (2008) found that these three ordinal PCR results correspond to an 

average nad5Δ deletion frequency of 4%, 30% and 60% respectively, when assayed 

using qPCR. The ordinal band-type results reported here were generated from assays 

conducted on mixed-age populations of thousands of individuals, with one replicate per 

line for MA generations G0, G10 and GF. Two lines (ED3101 line 2 and HK105 line 4) were 

unable to be assayed at GF and were therefore excluded from all analyses involving the 

GF nad5Δ level.   

In vivo ROS assays  

We used established confocal microscopy techniques for the in vivo 

quantification of net mitochondrial ROS levels in C. briggsae experimental lines (Dingley 

et al. 2009; Estes et al. 2011; Hicks et al. 2012) . These assays began with a standard 
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bleaching protocol to recover age synchronous worms from cryogenic stocks of each MA 

line. Worms were incubated for 24 hours prior to imaging in 10uM MitoSOX Red 

(Molecular Probes Inc., Eugene, OR), a mitochondria-targeted fluorescent dye that 

measures total levels of mitochondrial oxidants in vivo (Zielonka and Kalyanaraman 

2010). Concurrently, a second set of worms from each MA line was incubated under 

identical conditions without MitoSOX probe to serve as an internal control. In addition, 

we acquired 4-6 images of a single line, AF16 (G0 MA line 2), during each round of image 

acquisition. This set of images allowed us to compare relative fluorescence values for 

one line throughout the entire experiment and to account for any fluctuation in the 

performance of the imaging system or fluorescent probe. 

For each strain, fluorescent z-stack images of the pharyngeal bulb of 40 young-

adult stage treatment worms and 9 control worms were acquired at 60X magnification 

using a high resolution wide field Core DV system (Applied Precision™, Issaquah, WA) 

equipped with an Olympus IX71 inverted microscope mounted with a Nikon Coolsnap 

ES2 HQ camera and a short arc 250W Xenon lamp (Advanced Light Microscopy Core 

Facility, Oregon Health and Science University, Portland, OR). Worms were immobilized 

immediately prior to imaging with a single drop of 5M levamisole (Vector Laboratories 

Inc., Burlingame, CA), a cholinergic agonist that prevents depolarization of muscle (Lewis 

et al. 1980). Images were optimized by deconvolving and relative ROS levels were 

quantified by manually enclosing the terminal pharyngeal bulb within each worm image 

to find the average intensity of the area using ImageJ software (NIH, Bethesda, MD). 
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Working fluorescence measures were calculated as the difference between each stained 

sample and the mean non-stained controls of the same line imaged on the same day. 

Maximum values of MitoSOX fluorescence were used in all analyses because we 

previously determined that levamisole treatment had a significant effect on mean but 

not maximal MitoSOX fluorescence values (Hicks et al. 2012), and because maximum 

fluorescence measures offer greater consistency since they do not depend upon pixel 

size and/or the number/area of fluorescent signals within an image (Russ 2002). All 

images were acquired by the same person, and image analysis was performed in equal 

blocks by three researchers. 

Statistical analyses  

To assess the effects of strain and generation on line-specific nad5Δ level, we 

carried out an ordinal logistic regression including the terms strain, generation, and the 

interaction strain x generation. We also used chi-square tests to identify significant 

differences in nad5Δ level between generational time points for individual strains. 

Because the number of MA lines per strain at GF varied between four and five (see 

above), randomly chosen MA lines from all strains were removed from analyses in order 

to balance the number of lines per strain at each generation (i.e., four lines per strain 

per generation). Comparisons involving G0 and G10 data and those involving only AF16 

and ED-AF did not require the removal of lines. To assess the evolution of nad5Δ over 

the course of the experiment, the percent of nad5Δ-containing mtDNA was calculated 
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for each line as in Clark, et al (2012). These line-specific values were then used to 

calculate the average nad5Δ percentage for each strain at each generation.  

ROS measures were log transformed to achieve normality for the complete data 

set prior to analysis, but individual strains still displayed non-normal distribution and 

unequal variances following transformation. Non-parametric and parametric analyses 

produced the same results; we therefore report the parametric test results here. Also, 

we discovered statistically significant fluctuation across days of the assay in relative ROS 

level for the AF16 control line described above (F=32.04, p<0.0001). We therefore 

subtracted the day-specific G0 AF16 line 2 fluorescence measures (see above) from the 

scores for each sample prior to analysis. We analyzed ROS level data using a two-way 

ANOVA including the terms strain, generation, and the interaction strain x generation. 

Separate ANOVAs were also performed to quantify variation in relative ROS levels 

among strains and among lines at each generational time point.  Least-squares contrasts 

(Tukey’s HSD for all pairwise comparisons) were used to test for differences between 

generational time points for every strain. We also calculated within- and among-line 

variance for each strain at G0, G10 and GF. 

To test for associations between ROS and nad5Δ deletion levels in C. briggsae, 

we conducted an ANOVA with nad5Δ as the independent variable to determine if net 

ROS varied significantly according to line-specific nad5Δ levels. We also calculated 

Spearman’s rank correlation coefficients between line-specific measures of ROS and 
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nad5Δ for individual strains at each generational time point. All statistical analysis was 

performed in JMP 9 (SAS Institute, Cary, NC). 

 

Results 

 Rates of MA line extinction 

 The C. briggsae strains studied here varied significantly in their measures of 

extinction risk under MA (ANOVA: F = 9085, p <0.0001). As expected based on previous 

findings of low reproductive fitness in the high-deletion HK105 progenitor (Baer et al. 

2005), MA lines initiated from this strain exhibited the fastest extinction times with all 

lines having gone extinct by generation 20. This was also true of the remaining HK105 

MA lines that were not part of the current study (D. Denver, pers. comm.). MA lines of 

the hybrid ED-AF strain had the second-fastest extinction rates, followed by those 

generated from the remaining natural strains (Table 3.1). Although HK105 MA lines had 

the highest “rates of backup”, the number of times a line was re-established from its  

Strain Time to Extinction (G) SD Backup Rate (#/GF) SD 

ED3101 48.80 1.643 0.0213 0.0301 
AF16 46.95 3.162 0.0458 0.0604 
HK105 17.51 2.510 0.1097 0.1555 
Hyb ED-AF 38.39 1.817 0.0322 0.0307 
Total 37.91 12.98 0.0522 0.0865 
Table 3.1. Time to extinction and backup rates of C. elegans MA lines. The strain mean (n=5 
lines/strain) and grand mean (n=20 lines) of time to extinction and backup rate. Time to extinction is 
defined as the number of MA generations undergone prior to declaring a line extinct. Backup rate 
was calculated as the ratio of the number of times a line was re-established from its backup 
population and the total number of MA generations the line experienced. SD is the standard 
deviation of each measure.  
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backup population did not differ significantly among strains.  

Evolution of mitochondrial heteroplasmy 

To examine the effects of extreme bottlenecking on the evolution of nad5Δ 

heteroplasmy levels within C. briggsae, we quantified nad5Δ level in all MA lines at 

three generational time points: G0, G10, and GF. At G0, HK105 had the highest nad5Δ 

levels at followed by AF16 (Fig. 3.2, Fig. 3.3A). As expected, neither ED3101 nor the ED-

AF hybrid   (containing ED3101 mitochondria) acquired nad5Δ over the course of the 

 

Figure 3.2 Evolution of nad5Δ mtDNA levels under mutation accumulation treatment.  Percentage of 
lines within each strain harboring either 1) all intact mitochondrial genomes (white portions), 2) some 
nad5Δ-bearing genomes and some intact genomes (gray portions), or 3) exclusively nad5Δ-bearing 
genomes as determined by a PCR-based method (black portions; see Materials and Methods and 
Howe & Denver, 2008) at each generational time point. Note that the “Final” time point varied among 
strains; ED3101 and AF16 lines experienced 50 generations, ED-AF hybrid 40, and HK105 only 20. N=5 
lines except where noted.  
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Figure 3.3. Evolution of average nad5Δ level, relative ROS level, and the correlation between ROS 
and nad5Δ levels over MA. A. Change in the average percentage of nad5Δ-bearing genomes. 
Asterisks indicates a significant difference from G0 in AF16 and HK105 (as determined by Tukey’s 
HSD analysis). All measures of ED-AF hybrid were significantly different from each other.   
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experiment, while AF16 and HK105 showed a general trend of increasing nad5Δ level 

with MA (Fig. 3.2, Fig. 3.3A). Accordingly, we observed a significant effect of strain on 

nad5Δ heteroplasmy (Table 3.2), but no effect of generation on nad5Δ level (Table 3.2).  

 Removing both ED3101 and ED-AF – which lack the Ψnad5Δ-2 pseudogene and are 

unable to develop nad5Δ – from analysis resulted in a complete lack of fit for the model 

(data not shown). Additionally, we observed no significant changes in nad5Δ level over 

the course of MA for either AF16 or HK105 individually (Table 3.3), although both AF16 

and HK105 did experience statistically insignificant increases in nad5Δ load (Figs. 3.2, 

3.3A).  Interestingly, the average percentage of nad5Δ-bearing mtDNA genomes within 

each of these strains increased to approximately 50% and then plateaued. Specifically, 

the (non-significant) increase in average percentage of nad5Δ genomes from G0 to G10 

was 110% in AF16 and 33% in HK105, with no comparable changes occurring from G10 to 

GF (AF16 increased 12% and HK105 decreased 6%, Fig. 3.3A). Genotyping a larger 

number of lines may have revealed stronger effects of MA generation on nad5Δ. 

Evolution of mitochondrial ROS 

 To measure the evolution of 

mitochondrial functioning in C. briggsae 

lineages experiencing relaxed natural 

selection, we evaluated relative ROS 

level for all MA lines at the same three generational time points. First, we found no 

evidence for an effect of researcher (F=0.1338, p=0.7152) or for a researcher-by-strain  

Source of 
Variation 

DF Χ2 p 

Strain 3 49.65 <0.0001 

Generation 2 7.784E-09 1 

Interaction 
(Strain x Gen.) 

6 1.534 0.9572 

Whole Model 11 52.69 <0.0001 
Table 3.2. Logistic model results for nad5Δ deletion 
level variation among strains and generations. 
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interaction 

effect (F=0.0446, 

p=0.9564) on final ROS 

measurements. Initial 

(G0) ROS levels for the 

three natural isolates 

studied here (Fig. 3.3B) 

aligned well with those reported in Chapter 2 (Fig. 2.3I). We observed no overall change 

in ROS level between G0 and GF when analyzing the full dataset (Tukey HSD: Difference: - 

0.0472, p = 0.6060); however, there was considerable among-strain variation in the 

response of this trait to MA (Fig. 3.3B, Table 3.4). Along these lines, strain was the only 

variable to display significant effects on ROS variation (Table 3.4), although the model 

only described a minute amount of the total variation (adjusted R2 = 0.1398). 

Remarkably, the evolution of strain-specific ROS level across generations of MA was 

highly linear for all C. briggsae natural isolates assayed here, a pattern often observed in 

traits related to fitness. By contrast, the hybrid ED-AF strain exhibited significant 

fluctuation in ROS levels across MA generations (Fig. 3.3B). The pattern of ROS evolution 

was, however, highly specific to each natural isolate: AF16 experienced significantly 

elevated ROS over MA, HK105 experienced a significant decline, and ED3101 exhibited 

no change in this trait throughout the entire 50-generation experiment. We also 

examined how variance in net ROS evolved over the course of MA. Based on standard  

Strain Gen N DF Χ2 p 

AF16 

All gens 15 4 6.083 0.1931 

G0-G10 10 2 2.093 0.3512 

G10-GF 10 2 1.726 0.4219 

G0-GF 10 2 5.545 0.0625 

HK105 

All gens 12 2 0.712 0.7006 

G0-G10 10 1 1.726 0.1889 

G10-GF 8 1 0 1 

G0-GF 8 1 0.541 0.462 
Table 3.3. Chi-square results for strain-specific nad5Δ differences 
between generational time points. 
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Source of 
Variation DF 

Sum of 
Squares 

Mean 
Square F Ratio Prob > F 

STRAIN 3 3.147 1.049 4.366 0.0101 

GEN 2 0.4192 0.2096 0.8723 0.4266 

GEN*STRAIN 6 0.9118 0.1520 0.6325 0.7033 

Model 11 4.478 0.4071 1.694 0.1145 

Within 36 8.650 0.2403 
  Total 47 13.13 

   Table 3.4. Two-way ANOVA results for ROS variation among strains and 
generations. Effects of nad5Δ and line(strain) decreased the model fit to the 
data (R2 decreased to 0.1081 and 0.0961, respectively), and so were not 
included in the model. 

expectations from MA experimental theory, we expected to observe increasing among-

line variance in ROS levels with successive generations of MA. We observed significant 

among-line variation in ROS for all strains at nearly every generational time point (Table 

3.5); however, AF16 was the only strain that followed the expected trend. Among-line 

variance in ROS for ED3101 declined while that for HK105 and ED-AF oscillated across 

generational time points (Fig. 3.4, Table 3.5).  

Possible relationships between nad5Δ and ROS level  

As in previous studies (Estes et al. 2011; Hicks et al. 2012), we observed no 

relationship between line-specific ROS means and relative nad5Δ level when considering 

the complete dataset (Spearman ρ=0.1467, p=0.2718); however, the association neared 

significance when comparing ROS and nad5Δ from G0 and G10 only (Spearman ρ=0.3082, 

p=0.0530). Plotting these correlations at each generational time point revealed the 

strain-specific nature of the association between ROS and nad5Δ levels (Fig. 3.3C). The 

ROS-nad5Δ correlation became consistently weaker over MA in HK105, while that for 

AF16 exhibited extreme fluctuation. Because the Spearman correlation assigns ranks to  
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Strain Generation Source of Variation df SS MS F p-value 

ED3101 

G0 
Line 4 78.309 19.577 13.120 <.0001 

Within 201 299.93 1.4922 
  Total 205 378.24 

   
G10 

Line 4 14.152 3.5381 5.8525 0.0002 
Within 197 119.09 0.6045     
Total 201 133.25       

GF 
Line 4 38.510 9.6276 9.9108 <.0001 

Within 192 186.51 0.9714 
  Total 196 225.02       

AF16 

G0 
Line 4 10.907 2.7268 2.8710 0.0237 

Within 241 228.90 0.9498 
  Total 245 239.80 

   
G10 

Line 4 61.405 15.351 33.324 <.0001 
Within 195 89.829 0.4607     
Total 199 151.23       

GF 
Line 4 107.46 26.865 27.211 <.0001 

Within 193 190.55 0.9873 
  Total 197 298.01       

HK105 

G0 
Line 4 28.018 7.0045 11.393 <.0001 

Within 188 115.58 0.6148 
  Total 192 143.60 

   
G10 

Line 4 6.4830 1.6208 2.0118 0.0942 
Within 199 160.32 0.8056     
Total 203 166.80       

GF 
Line 4 29.841 7.4603 16.641 <.0001 

Within 192 86.074 0.4483 
  Total 196 115.92       

ED-AF 

G0 
Line 4 16.810 4.2024 10.606 <.0001 

Within 192 76.078 0.3962 
  Total 196 92.888 

   
G10 

Line 4 14.949 3.7372 4.1826 0.0029 
Within 185 165.30 0.8935     
Total 189 180.25       

GF 
Line 4 24.890 6.2225 20.303 <.0001 

Within 192 58.845 0.3065 
  Total 196 83.735       

Table 3.5. One-way ANOVA results describing among-line variation in ROS level at each time point. 

each data point based on the measured values, it was impossible to calculate for the  
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ED3101 and the ED-AF hybrid lines due to their invariable nad5Δ levels. These strains 

were therefore excluded from the individual strain analysis. Further, an ANOVA analysis 

of the entire data set using line-specific nad5Δ level as the independent variable  

Figure 3.4. Variance in net ROS levels before and after 20-50 generations of extreme inbreeding. 0 
indicates G0 variance measures, while Final indicates the last generation reached by each line prior to 
extinction (GF). GF varied among strains and was ~50 generations for ED3101 and AF16 lines, ~20 
generations for HK105 lines, and ~40 generations for ED-AF lines. Bars indicate one standard error.  A. 
Variance among all individuals (within-lines) of each strain (N=193-246). B. Variance among lines of 
each strain (N=4-5).   
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revealed that essentially none of the total variation in ROS level could be attributed to 

nad5Δ level (ANOVA F=2.456, p=0.0952, R2=0.0820). Although we observed no 

relationship between ROS and nad5Δ level, we observed a slight, non-significant 

increase in ROS in heteroplasmic lines (i.e., those that contained both intact and nad5Δ-

bearing genomes) (Tukey’s HSD p=0.2040) – a trend that reached significance when the 

mitonuclear hybrid strain ED-AF was removed from analysis (Tukey’s HSD p=0.0426). 

However, because we obtained only one measure of nad5Δ for each line, this data must 

be interpreted with caution. 

 

Discussion 

We have used experimental evolution techniques with C. briggsae nematodes to 

conduct the first analysis of mitochondrial phenotypic and genotypic evolution under 

extreme genetic drift. Our study revealed a significant capacity for mitochondrial ROS 

evolution within C. briggsae maintained under standard laboratory mutation-

accumulation treatment. Specifically, ROS levels in MA lines derived from C. briggsae 

natural isolates exhibited strikingly linear evolutionary trajectories, though the direction 

(increase or decrease) of evolution varied depending on strain (Fig. 3.3B). The 

mitonuclear hybrid strain displayed much more stochastic variation in ROS level over 

MA (Fig. 3.3B). The patterns of among-line variance in ROS level were also isolate-

specific and did not support the hypotheses that ROS levels and among-line variance will 

consistently increase with successive generations of MA (Fig. 3.4, Table 3.5). Our data do 
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support the idea that nad5Δ-bearing mitochondrial genomes act as selfish elements 

(Clark et al. 2012), demonstrated by the tendency for nad5Δ levels to increase with 

consecutive generations of MA (Figs. 3.2, 3.3A). We also found evidence suggesting that 

mitochondrial threshold effects may act on nad5Δ heteroplasmy levels. Along these 

lines, our findings on population stability agree with previous studies indicating that 

high proportions of nad5Δ seem to carry negative consequences for nematode health 

and survival, while lower levels seem relatively benign (Howe and Denver 2008; Estes et 

al. 2011; Hicks et al. 2012). Therefore, the ability to maintain a reproductive population 

may be negatively associated with nad5Δ. Lastly, we observed no association between 

the patterns of evolution in ROS and nad5Δ levels.  

Evolution of mitochondrial phenotypes under genetic drift 

MA studies consistently reveal a pattern of declining mean fitness and increasing 

among-line phenotypic variance (e.g. Mukai, 1964). Since elevated ROS levels are 

associated with mitochondrial dysfunction (Senoo-Matsuda et al. 2001; Wang et al. 

2012), mean ROS levels might be expected to increase as a result of drift decay and in 

agreement with the vicious cycle theory (Bandy and Davison 1990). Contrary to this 

expectation, net ROS levels showed no general tendency to increase in response to 

mutation-accumulation treatment in C. briggsae (Fig. 3.3B). The highly linear evolution 

of mean ROS for the natural isolate lines mirrors patterns of evolution for fitness 

phenotypes (e.g., Baer et al. 2005); however, the direction of ROS evolution under MA 

was highly strain-specific and therefore in opposition to standard MA experimental 
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predictions (Fig. 3.3B). A possible interpretation of this result is that net ROS level is 

differentially related to organismal fitness in these C. briggsae strains, although we 

believe a more plausible explanation is that patterns of ROS evolution will depend on 

the physiological state of the ancestral strain (see below). The hybrid ED-AF lines began 

the experiment with higher mean ROS levels than either of its parental lineages (ED3101 

and AF16) (Fig. 3.3B). Because proper ETC function requires cooperation between the 

mitochondrial and nuclear genomes, this pattern may be symptomatic of disrupted 

mitonuclear epistases – expected if natural isolates ED3101 and AF16 have experienced 

functional divergence for ETC gene products. Unlike MA lines generated from the 

natural isolates, ED-AF exhibited a nonlinear pattern of change in ROS level across MA 

generations (Fig. 3.3B). Although further study is required to understand the basis for 

this difference, the nonlinear pattern of ROS evolution in ED-AF may be consistent with 

the further disruption of mitonuclear epistases by additional mutations presumed to 

have accumulated in these lines.  

Similarly, we failed to detect a strong pattern of increase in among-line variance 

for mitochondrial ROS levels in C. briggsae, with only AF16 lines conforming to standard 

expectations for MA experiments (Fig. 3.4B). These results may owe themselves to the 

relatively short period of MA (i.e., small number of accumulated mutations) experienced 

by the lines in this study and/or to the unique biology of mitochondria. For instance, it is 

possible that we sampled HK105 and AF16 lines in different heteroplasmic states, and 

that this distinction underlies some of the ROS variation observed. However, we would 
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expect to observe less within- and among-line variance for strains lacking the deletion if 

nad5Δ level is related to ROS (ED3101); this is not the case (Fig. 3.4). Further, it is 

unlikely that the accumulation of mutations within these lines is driving the strain-

dependent patterns of ROS evolution. Rather, the unique physiology of each line, as 

determined by mitochondrial function and the genetic environment among other 

factors, likely underlies these strain-specific differences.  

nad5Δ evolution and mitochondrial threshold effects 

Despite the apparent negative consequences of nad5Δ suggested by our results 

(Table 3.1) and others (Howe and Denver 2008; Estes et al. 2011), nad5Δ is known to 

persist in natural C. briggsae populations (Howe and Denver 2008) and in laboratory 

populations maintained at population sizes of ~100 or more (Estes, Coleman-Hulbert, 

Howe, and Denver, unpubl. data). Recent work indicating that nad5Δ-containing 

mitochondrial genomes act as a selfish element (Clark et al. 2012) may help to explain 

such findings. Our findings that nad5Δ increased (albeit insignificantly) in both AF16 and 

HK105 lines maintained in the absence of selection (Figs. 3.2, 3.3A) supports this idea. 

Although sampling is limited, natural frequencies of nad5Δ levels have never been 

observed to accumulate to more than 60% of the total mtDNA population (Howe and 

Denver 2008). Similarly, Clark, et al. (2012) (which included more strains subjected to 

fewer generations of MA than the current study) also never witnessed nad5Δ levels 

above 60% in bottlenecked lines. Finally, we observed an apparent plateau in the 

percentage of nad5Δ genomes making up the total mtDNA population once they reach 
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~50%, a finding in line with previous work involving the heteroplasmic mtDNA deletion 

uaDf5 (Tsang and Lemire 2002). It is plausible that mitochondrial threshold effects may 

help to explain these patterns. 

It has been proposed that a mitochondrial threshold effect, wherein a certain 

fraction of mutant mitochondrial genomes is required to generate deleterious 

phenotypes (Rossignol et al. 2003), may partially explain many counterintuitive results 

comparing mitochondrial ROS, mutation rates, and genetic damage (Ventura et al. 2006; 

Gruber et al. 2011). Based on the idea of a “vicious cycle” between ROS levels and 

mutation rates (Bandy and Davison 1990; Kowald and Kirkwood 1996), we expected to 

observe a statistical association between ROS and generation of MA; no such 

relationship emerged (Fig. 3.3B). Previous work reporting elevated ROS levels (Estes et 

al. 2011; Hicks et al. 2012), reduced fecundity (Howe and Denver 2008; Estes et al. 

2011), and altered mitochondrial morphology (Hicks et al. 2012) in HK105 relative to 

other C. briggsae isolates suggests that HK105 may have reached a threshold for nad5Δ-

bearing genomes, such that it suffers the deleterious consequences of mitochondrial 

dysfunction. Along these lines, we also observed an apparent threshold for nad5Δ level 

within HK105 and AF16 (the two lines able to accumulate the deletion). Competing 

influences of a replicative advantage for nad5Δ genomes and selection against them at 

high levels may establish an upper-bound for nad5Δ heteroplasmy level within C. 

briggsae, above which severe dysfunction ensues. The accumulation of mutations 

during the course of our study may have further reduced HK105 mitochondrial function, 
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resulting in declining ROS levels due to diminished overall mitochondrial capacity. This 

threshold idea is further bolstered by the observation that ROS levels were greatest in 

lines with the highest incidence of heteroplasmy, i.e., when the mitochondrial 

population harbored both nad5Δ-bearing and intact genomes. Work in human cybrid 

cells carrying a frameshift mutation in ND5 revealed a similar trend, with the 

heteroplasmic cell line experiencing slightly elevated ROS compared to both the 

homoplasmic wild-type and the nearly-homoplasmic mutant cell lines (Park et al. 2009), 

that was attributed to severely reduced mitochondrial function in the nearly-

homoplasmic mutant cell lines (Park et al. 2009). Overall, the strain-specific 

relationships between ROS, MA generation and nad5Δ level suggest a role for 

mitochondrial threshold effects in C. briggsae and are consistent with other work 

showing that ROS levels will not necessarily correlate to mutation accumulation (Joyner-

Matos et al. 2011) or other types of genetic damage (Ventura et al. 2006). However, our 

small sample size for the genotyping portion of this assay and the lack of mutation rate 

estimates limits further interpretation of this data.  

Conclusions and outlook 

We have reported the first application of experimental mutation-accumulation 

to examine a mitochondrial phenotypic response to extreme genetic drift, as well as an 

analysis of the evolution of heteroplasmy of a large mitochondrial deletion (nad5Δ) in C. 

briggsae. We found that average levels of both ROS and nad5Δ heteroplasmy evolved in 

a highly linear fashion in MA lines generated from three natural isolates. nad5Δ 
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heteroplasmy level was found to plateau after reaching ~50% in isolates vulnerable to 

the deletion. However, the direction of mitochondrial ROS evolution was found to be 

strain-specific, leading to strain-specific relationships between ROS and nad5Δ, and ROS 

and generation of MA. Our results align well with a detrimental effect of nad5Δ at high 

levels, demonstrated by the extinction of all lines generated from the high-deletion 

isolate HK105 prior to the twentieth generation of MA. Finally, the well-established 

pattern of increasing among-line variance expected for mutation accumulation 

experiments was not generally supported by our data. Although our work represents a 

step forward in our comprehension of the evolutionary forces potentially influencing 

mitochondrial ROS and heteroplasmy levels, additional work is required to fully 

understand the genetic and developmental mechanisms governing the relative 

strengths of these evolutionary forces on mtDNA and its associated traits. Further 

advancement toward this end will require more thorough genotyping, including whole-

genome sequencing combined with assessments of fitness and other important 

phenotypes across several generations.  

While our study highlights the potential for MA experiments to advance our 

understanding of mitochondrial evolution, several fundamental questions remain 

unanswered. We have yet to determine how and why certain mtDNA molecules are 

inherited. Further, experimental methods for manipulating the size of the mitochondrial 

bottleneck or the strength of selection on mtDNA have yet to be developed. We now 

know that a complex mitochondrial life cycle involving organelle fission, fusion and 
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autophagy may act to purge damaged mtDNA genomes (Twig et al. 2008b; Kuznetsov 

and Margreiter 2009; Kowald and Kirkwood 2011; Bess et al. 2012; Meyer and Bess 

2012), yet we know essentially nothing about the evolutionary or cell-biological factors 

that may influence its efficacy. Because C. briggsae is amenable to experimental 

evolution and cell biological study, and harbors significant mitochondrial genetic and 

phenotypic variability, it will be a valuable tool for future research in this arena.  
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CHAPTER FOUR 

 

Reactive oxygen species level is related to 8-oxo-dG content but not germline base 
substitution rate in Caenorhbaditis elegans 
 

Kiley A. Hicks, Joanna Joyner-Matos 

 

Introduction 

Although reactive oxygen species (ROS) are important for cell signaling and the 

regulation of apoptosis (Tuma 2001), excessive levels of ROS within eukaryotic cells have 

been linked to the accumulation of somatic nuclear mutations in several human 

diseases (Klaunig and Kamendulis 2004; Wallace 2005a). However, whether ROS play a 

major role in generating heritable germline mutations is less clear (Stoltzfus 2008; 

Joyner-Matos et al. 2011). Within eukaryotes, mitochondria are the primary source of 

endogenous ROS, which are generated as a byproduct of oxidative phosphorylation at 

the electron transport chain (ETC). Healthy mitochondria produce ROS in sufficiently 

small amounts that excess ROS may be quenched by cellular antioxidants before 

damaging nucleic acids, proteins or lipids (Sedensky and Morgan 2006; Imlay 2008). 

However, ETC dysfunction and impairment can increase ROS generation (Verkaart et al. 

2007; Chen et al. 2008; Dingley et al. 2009) and lead to imbalances between the oxidant 

load and antioxidant capacity within a cell (Grad and Lemire 2004) - a condition known 

as oxidative stress (Halliwell and Gutteridge 2007). Oxidative DNA damage has been 
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implicated as a main contributor to decreased cellular function in sperm cells following 

oxidative stress (Aitken 1995; Lewis and Aitken 2005; Aitken et al. 2009), and both 

oxidative stress and germline DNA damage is implicated in the evolution of aging 

(Medawar 1952; Kirkwood 2005) and life-history traits (Velando et al. 2008; Dowling and 

Simmons 2009).  

Given the importance of genetic fidelity to organismal health and fitness, 

eukaryotic cells rely upon various repair mechanisms to prevent permanent DNA 

damage (Croteau 1997; Lu et al. 2001; Pascucci et al. 2011; Berquist and Wilson 2012). 

In particular, a great deal of research effort has focused on the oxidized guanine product 

8-oxo-dG because its  unique biochemistry makes it pro-mutagenic (David et al. 2007; 

Valavanidis et al. 2009). 8-oxo-dG mimics thymine biochemically making replicative DNA 

polymerases less effective at recognizing these lesions as damaged bases (Shibutani et 

al. 1991; Hsu et al. 2004). If replication proceeds without repair, the oxidized base is 

converted into thymine, ultimately resulting in a G-to-T transversion mutation at the site 

of the lesion (Cheng et al. 1992; Kasai 2002; David et al. 2007). Thus, the presence of 8-

oxo-dG and G-to-T mutations has been considered a hallmark of oxidative stress 

(Busuttil et al. 2005). While some evidence supports the idea that oxidative stress leads 

to an increased frequency of G-to-T mutations (Hussain et al. 2000; Busuttil et al. 2003), 

other work suggests a more complicated relationship between oxidative stress and 

genetic damage. For example, G-to-T base substitutions have been linked to oxidative 

stress in liver but not in brain tissues in the mouse (Busuttil et al. 2005). Much of this 
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work has been conducted on somatic tissues in flies, mice, and cell culture (Dolle et al. 

2000; Vijg 2000; Garcia et al. 2007). Because the mutational processes of the soma and 

germline may be distinct, additional studies of germline mutation are needed (Drake et 

al. 1998; Fortune 2000; Martorell et al. 2000; Shanks et al. 2008; Crabbe and Hill 2010; 

Lynch 2010; Joyner-Matos et al. 2011). 

Because the study of heritable mutation requires multi-generation experiments, 

there have been more examinations of the relationship between oxidative stress and 

somatic mutation as opposed to heritable germline mutation. Caenorhabditid 

nematodes have become an important model system for studying the cellular and 

genetic underpinnings of the oxidative stress response (Grad and Lemire 2004; Kayser et 

al. 2004; An et al. 2005; Inoue et al. 2005; Lee et al. 2010; Yasuda et al. 2011) and have 

proven to be valuable for multi-generation evolutionary studies (Denver et al. 2000, 

2006; Ajie et al. 2005; Baer et al. 2005; Estes et al. 2005). Joyner-Matos, et al. (2011) 

examined fitness degradation as a proxy for germline mutation accumulation in two sets 

of long-term mutation-accumulation (MA) lines: one set derived from canonical C. 

elegans lab strain (N2), and the other from an ETC Complex II mutant (mev-1) which is 

predicted to experience elevated ROS levels (Senoo-Matsuda et al. 2001). Worms were 

maintained in population sizes of one to allow mutations to accumulate under relaxed 

selection for ~125 generations. Because the majority of new mutations causing 

phenotypic effects have negative consequences for organismal fitness, mean fitness is 

expected to experience an approximately linear decline over successive generations of 
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this treatment (e.g., Fig. 5 in Mukai 1964). Because they observed no difference in the 

mutational decline in fitness between the two sets of MA lines, Joyner-Matos, et al. 

(2011) concluded that oxidative stress did not contribute significantly to germline 

mutation accumulation. However, this was not confirmed directly through genetic 

analysis (Joyner-Matos et al. 2011).  Denver, et al. (2006) used four sets of MA lines 

generated from repair-deficient mutants (two mismatch repair mutants, one base 

excision repair mutant and one nucleotide excision repair mutant) combined with an 

identical experimental approach to directly estimate germline  mutation rates in C. 

elegans. MA lines derived from the repair-deficient mutants experienced significantly 

elevated base-substitution rates and, in most cases, elevated rates of insertion-deletion 

mutations as compared to those generated from N2 (Denver et al. 2006). Importantly, 

all three of the repair pathways tested have been implicated in the repair of oxidative 

damage (Denver et al. 2006; Fensgård et al. 2010), suggesting that oxidative stress may 

elevate germline mutation rates. A separate study by Denver, et al. (2009) revealed high 

rates of G-to-T mutations within the nuclear genome of a set of long-term (~250 

generations) MA lines of C. elegans generated by (Baer et al. 2005). This finding, 

together with recent evidence for significant variation in relative mitochondrial ROS 

levels among natural and experimental strains of Caenorhabditids (Dingley, et al., 2009; 

Estes, et al., 2011; and see Figs. 2.3I, 3.3B), suggests that oxidative stress may contribute 

to heritable mutation accumulation in C. elegans. These results highlight a need for a 

direct comparison of ROS, oxidative DNA damage and germline mutation rates. 
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We assayed ROS levels and 8-oxo-dG content in five long-term mutation 

accumulation lines and their wildtype progenitor line from the study by Baer et al. 

(2005), all of which had been previously subjected to whole-genome sequencing 

(Denver et al. 2009), in order to study the relationship between relative ROS, oxidative 

DNA damage and germline mutation rates in C. elegans. Based on theory and previous 

work (Cheng et al. 1992; Hussain et al. 2000; Busuttil et al. 2003, 2005; David et al. 

2007), we expected MA lines to score higher in indicators of oxidative stress - higher 

ROS and 8-oxo-dG content – and to experience elevated rates of G-to-T base 

substitutions relative to the N2 progenitor, resulting in linear relationships between our 

oxidative stress measures and previously reported nuclear mutation rates. Our 

expectations were only partially borne out by the data. While the N2 progenitor line 

consistently displayed relatively low levels of ROS and 8-oxo-dG compared to the MA 

lines, only two MA lines exhibited significantly elevated ROS levels, and no significant 

differences among lines in 8-oxo-dG content were revealed. Despite this inconsistency, 

we observed a strong, positive correlation between steady-state ROS levels and total 8-

oxo-dG content. Contrarily, no obvious relationships between both oxidative stress 

measures and the G-to-T mutation rate data emerged. Our results support the 

contention that G-to-T mutations may not reliably manifest the extent of heritable 

oxidative damage to nuclear DNA in C. elegans.  

 

Materials and Methods 
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Nematode strains and culture conditions 

For this study, we used a set of five C. elegans mutation-accumulation lines and 

their common ancestral strain that were previously subjected to whole-genome 

sequence analysis (Denver et al. 2009). The MA lines were part of a larger group of 100 

long-term MA lines that were generated from the self-progeny of an inbred Bristol N2 

nematode and maintained as described in Baer et al. (2005). Assays were performed 

using worm stocks that were cryogenically preserved using standard freezing protocols 

(Stiernagle 2006) following 250 generations of MA. Prior to ROS level assays, frozen 

stocks for each MA line and the N2 progenitor were thawed and worms were allowed to 

recover for one week under standard laboratory conditions at 20°C with regular 

population transfers to fresh 15 mm NGM Petri plates seeded with OP50 Escherichia 

coli. 

Two separate bleaching protocols (Stiernagle 2006) were then performed to 

yield two independent, age-synchronous populations of each line; half of each 

population was reserved to create line-specific internal control groups. Each 

experimental population was then analyzed for ROS level as outlined below. For analysis 

of 8-oxo-dG levels, five individuals from each line were carried through three 

generations of single-individual descent at four day intervals. Each replicate was 

subsequently allowed to generate a large population which was age-synchronized. Upon 

reaching the L4 larval stage, each age-synchronous population was transferred to plates 

containing 40 μM 5-fluoro-2’-deoxyuridine (FudR, which prevents progeny production). 
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Because oxidative damage is more successfully detected in older nematodes (Adachi et 

al. 1998; Yasuda et al. 1999) assays were performed on 12-day-old nematodes that had 

been washed in M9, flash-frozen with liquid N2 and stored at -80°C until analysis. 

Fluorescence microscopy 

To study the evolution of mitochondrial ROS levels under MA, we performed 

confocal image analysis on live young adult nematodes as described previously (Dingley 

et al. 2009; Estes et al. 2011; Hicks et al. 2012).  In brief, worms were incubated for 24 

hours at 20C in the presence of 10uM MitoSOX Red (Molecular Probes Inc., Eugene, OR) 

– a mitochondria-targeted fluorescent dye that measures total levels of mitochondrial 

oxidants (Zielonka and Kalyanaraman 2010). Control worms were incubated 

concurrently under identical conditions, replacing MitoSOX with water. 

For each MA line, fluorescent z-stack images of the pharyngeal bulb of 15-20 

treatment and 5 control worms were photographed at 60X magnification. Images were 

acquired using an Olympus IX71 inverted microscope mounted with a Nikon Coolsnap 

ES2 HQ camera and a short arc 250W Xenon lamp, all part of a high resolution wide field 

Core DV system (Applied Precision™, Issaquah, WA) (Oregon Health and Sciences 

University Advanced Light Microscopy Core Facility, Portland, OR). Worms were exposed 

to a cholinergic agonist that prevents depolarization of body-wall muscle (Lewis et al. 

1980) immediately prior to imaging, and abracadabra, immobilized. Deconvolution-

optimized images were used to quantify relative ROS levels by manually enclosing the 

terminal pharyngeal bulb within each image and obtaining the average intensity of the 
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area using ImageJ software (NIH, Bethesda, MD) as described in (Dingley et al. 2009). All 

images were acquired and analyzed by KAH. 

Previous work with fluorescence microscopy has demonstrated that maximum 

fluorescence measures offer greater consistency as they do not depend upon pixel size 

or on the number/area of fluorescent signals within an image (Russ 2002).  Additionally, 

we previously determined that levamisole treatment does not affect maximum MitoSOX 

fluorescence but does significantly alter mean MitoSOX fluorescence values (Hicks et al. 

2012). Thus, maximum values of MitoSOX fluorescence were used for all statistical 

analyses.  

DNA extraction for 8-oxo-dG assays  

To minimize oxidation during sample preparation (Helbock et al. 1998) we used 

the chaotropic sodium iodide method of DNA extraction (Ishizawa et al. 1991) using a 

Wako DNA Extractor TIS kit (Wako, Osaka, Japan) and following the manufacturer’s 

protocol, but with an overnight incubation at -80°C (in 70% ethanol) and a lengthened 

RNase step. A Qubit Fluorometer (Life Technologies, Grand Island, NY) combined with 

RNA Assay, dsDNA HS Assay and Protein Assay kits (Life Technologies, Grand Island, NY) 

were used to quantify RNA, DNA, and protein content. RNA and protein were 

undetectable in all but one sample, which had slightly elevated RNA levels and was 

discarded due to the specificity of the assay for both 8-oxodG and 8-oxoG. Samples 

were diluted to a range of 0.05 to 0.2 ng/μL of DNA prior to ELISA analysis. A standard 

curve was generated by diluting an oligonucleotide stock solution containing 8-oxo-dG 
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(Trevigen, Gaithersburg, MD) to 1:500, 1:750, and 1:1000 in TE/oxidation inhibitor 

buffer. 

8-oxodG Enzyme-Linked ImmunoSorbent Assay (ELISA)  

 To quantify 8-oxodG content, samples, standards and a negative control 

(TE/oxidation inhibitor buffer) were incubated with intermittent vortexing  for 10 

minutes with an equal volume of Reacti-Bind (Pierce DNA coating solution, Thermo 

Scientific, Rockford, IL). 100 μL of each sample was loaded into triplicate wells arranged 

randomly across three Nunc MaxiSorp 96-well plates, leaving one set of wells on all four 

sides of each plate empty to minimize sample dehydration. Plates were incubated 

overnight at room temperature on an orbital shaker. 

The next day, wells were washed three times with phosphate buffered saline 

with 0.05% (v/v) Tween-20 (PBS-t). Wells were then subjected to three sequential 

incubation steps at 37°C with shaking and PBS-t washes between each step: 1) one hour 

in blocking solution (200 μL of 0.5% (v/v) fetal calf serum in PBS-t), 2) two hours with the 

primary antibody (anti-8-oxodG, Clone 2E2, Trevigen), and 3) two hours with of 

secondary antibody (goat anti-mouse IgG, alkaline phosphatase conjugated). Wells were 

then washed before the addition of the p-Nitrophenylphosphate Alkaline Phosphatase 

Substrate solution (Vector Laboratories, Burlingame, CA) and incubation in the dark at 

room temperature for up to three hours. Absorbance was measured every 30 minutes 

for three hours at 405 nm wavelength. The signal increased in intensity until 2.5 hours, 
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and then did not change between 2.5 and 3 hours. The data from the 2.5 hour read are 

presented here. 

Data for each sample and standard was corrected by subtracting the average 

optical density of three blank wells specific to each plate. The corrected optical densities 

for the 8-oxo-dG standard curves on each plate were modeled by the one-site 

saturation, ligand-binding curve fit in SigmaPlot 11 (Systat Software, Inc., San Jose, CA) 

and the resulting regression equation was used to calculate the nanograms of DNA 

equivalents per well. Finally, we used the copy number template from the URI Genomics 

and Sequencing Center (http://www.uri.edu/research/gsc/resources/cndna.html) to 

calculate the number of damaged bases per well, and we report the data x 106  damaged 

bases per nanogram of DNA. 

Calculation of Mutation Rate 

The per generation rate of base substitution mutations (µBS) was calculated for 

each line following (Denver et al. 2009) by dividing the number of new base 

substitutions that arose during MA by the product of the total number of nucleotides 

sequenced (reported in Denver et al., 2009) and the approximate number of 

generations experienced by each MA line (D. Denver, pers. communication). The per 

generation rate of G-to-T transversions (µG-to-T) was calculated by dividing the number of 

G-to-T mutations by the product of the number of G·C sites considered and the 

estimated number of generations experienced by each MA line.  

Statistical analyses 
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Because our ROS and 8-oxo-dG data violated the assumptions of equal variance 

and normal distribution, we used the Kruskal-Wallis rank sums test to examine among-

strain differences in ROS and oxidative damage and a Wilcoxon method to evaluate 

differences among pairs of lines. We also calculated Spearman’s rank correlation 

coefficients to evaluate the relationships between ROS levels and 8-oxo-dG content, as 

well as between these traits and the overall rate of nuclear base-substitutions and G-to-

T transversions. Because ROS level, 8-oxo-dG content and base substitution rates were 

measured on different sets of worms, correlation analyses were conducted using line-

specific averages for each character.  All analyses were performed using JMP 9 (SAS 

Institute, Cary, NC).  

 

Results 

We analyzed net ROS and 8-oxo-dG levels with the aim of quantifying variation in 

the amount of oxidative stress experienced by C. elegans MA lines. First, all MA lines 

assayed had higher in vivo ROS levels compared to their N2 ancestral strain (see 

Materials and Methods), but the increase was statistically significant for only two lines 

(523 and 574) (Fig. 4.1). Interestingly, the line with the highest ROS level (523) also  

exhibited the highest within-line variance (as determined by calculations of standard 

error) for ROS (Table 4.1). Second, mean 8-oxo-dG content did not differ significantly 
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among MA lines (Kruskal-Wallis H=8.396, p=0.136); however, these data exhibited a 

 

 

similar trend as those for ROS with the N2 progenitor line exhibiting the lowest levels 

relative to all MA lines (Table 4.1).   

We next analyzed the relationships between the two measured oxidative stress 

phenotypes, and between these characters and previously reported per-generation 

base substitution rates for the same C. elegans lines (Denver et al. 2009). First, line-

specific ROS levels were highly positively correlated with line-specific 8-oxo-dG content  

Figure 4.1 – Quantification of relative in vivo ROS levels in C. elegans terminal 
pharyngeal bulbs. Net oxidant levels in young adult nematodes were assessed 
using the average maximum pharyngeal bulb fluorescence for 15-20 worms for 
each mutation-accumulation line. Relative ROS levels differed significantly 
among lines (Kruskal-Wallis: Χ

2
=13.35, p=0.0203), but only 523 and 574 

exhibited increased ROS levels relative to N2 (Wilcoxon each pair: 523 p=0.0009; 
574 p=0.0028). Box length represents 25th–75th percentile inter-quartile range, 
interior horizontal line represents median, vertical lines issuing from the box 
extend to minimum and maximum values, orange dash identifies the mean. 
Letters above capped lines denote significantly different groups as determined 
by Wilcoxon each pair test.  
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Line Relative ROS SE of ROS 8-oxo-dG 
SE of 8-
oxo-dG 

µBS µG-TO-T 

523 471.36 75.800 54921 7400.3 3.163E-09 3.987E-05 
526 269.19 57.333 35950 4648.9 2.446E-09 1.417E-05 
529 282.78 49.182 33720 1111.9 1.845E-09 2.080E-05 
553 261.52 48.611 26435 7769.7 2.890E-09 3.687E-05 
574 350.39 38.381 50792 10438 1.757E-09 1.982E-05 

N2 progenitor 192.97 29.577 23971 8736.2 - - 
Table 4.1. Variation in Oxidative Stress-Related Traits. Means and standard errors (SE) of net in vivo 
ROS levels (n=15-20) and 8-oxo-dG content (n=3) in five C. elegans mutation-accumulation lines and their 
progenitor strain. The per generation rate of base substitution mutations (µBS ) and G-to-T transversion 
mutations (µG-TO-T) per site was calculated following Denver, et al. (2009) and further described in 
Materials and Methods. The N2 progenitor line was not included in the Denver et al., (2009) study, thus 
estimates of mutation rates could not be made  

(Spearman’s ρ=0.943, p<0.05; Fig. 4.2). However, we detected no relationship between 

ROS level and either the overall base substitution rate (Spearman’s ρ = 0.000, p = 1.000) 

or the G-to-T transversion rate (Spearman’s ρ = 0.300, p = 0.624) reported in Denver, et 

al (2009). Similarly, we found no association between 8-oxo-dG levels and either 

measure of mutation rate (µBS: Spearman’s ρ = 0.100, p = 0.873; µG-to-T Spearman’s ρ 

=0.100, p = 0.873) for the lines assayed.  
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Discussion 

We quantified total 8-oxo-dG content and in vivo mitochondrial ROS levels in 

mutation-accumulation lines of C. elegans that had previously undergone whole-

genome sequencing with the aim of clarifying the relationships between oxidative stress 

and heritable base substitution mutations in C. elegans. Our results revealed significant 

variation in net ROS levels among lines that had undergone approximately 250 

generations of mutation-accumulation (Fig. 4.1), but no such variation in 8-oxo-dG 

content. Still, a robust, positive relationship between steady-state ROS levels and total 

Figure 4.2. Bivariate relationship of MA line means for net in vivo ROS level 
and 8-oxo-dG content. Spearman’s ρ=0.943, p<0.05. Bars represent one 
standard error. 
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8-oxo-dG content emerged (Fig. 4.2). Finally, we observed no obvious correlations 

between both oxidative stress measures and either µBS or µG-to-T in the same MA lines.  

Several recent studies have revealed significant variation among natural isolates 

and laboratory mutants of Caenorhabditid worms in steady-state ROS levels (Dingley et 

al. 2009; Estes et al. 2011; Hicks et al. 2012). Thus, our finding that relative ROS levels 

were significantly elevated above the progenitor line in two MA lines are not 

unexpected. It is noteworthy that C. elegans displays greater variance in ROS among the 

MA lines assayed here than among laboratory mutants with defects of the 

mitochondrial ETC (Fig. 4.1, and see Fig. 2 in Dingley et al., 2009). This distinction may be 

partially explained by differences in experimental procedure that arbitrarily inflated the 

observed within-strain variation in the ETC mutants (i.e., ROS measures made on 

separate days in the ETC mutant assay). Further, we uncovered no significant among-

line variation in 8-oxo-dG level, a finding that agrees with results from the Denver, et al. 

(2009) study revealing a no significant variation in base substitution rates in these lines.  

A remarkably strong correlation emerged between relative ROS levels and 8-oxo-

dG content as measured here (Fig. 4.2). This result is aligns well with previous 

experiments (Kasai and Nishimura 1984, 1986; Floyd et al. 1988; Beehler et al. 1992) but 

is particularly meaningful given our small sample size. Conversely, our findings failed to 

identify any relationship between the two oxidative stress phenotypes assayed and 

previously determined nuclear genome base substitution rates (Denver et al. 2009). A 

good deal of theoretical and experimental research predicts a statistical association 
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between G-to-T mutation rates and measures of oxidative stress (Cheng et al. 1992; 

Hussain et al. 2000; Busuttil et al. 2003, 2005; David et al. 2007).  C. elegans might be 

particularly susceptible to oxidatively induced G-to-T substitutions because they possess 

a very limited base excision repair system, lacking any DNA glycosylases specific for 

oxoguanine, formamidopyrimidine, and methyladenine (Denver et al. 2003b, 2006). 

Thus, an oxidized guanine base should more often result in a G-to-T transversion. 

However, recent work suggests that the accumulation of G-to-T mutations may not 

consistently relate to ROS levels, but that large genomic rearrangements could be 

important signals of oxidative stress, especially in ectotherms (Dolle et al. 2000; Vijg and 

Dollé 2002; Hasty et al. 2003; Busuttil et al. 2007; Crabbe and Hill 2010; Garcia et al. 

2010; Joyner-Matos et al. 2011). Using a lacZ reporter gene assay, Garcia, et al. (2010) 

observed a higher mutation frequency in the somatic tissue of flies compared to mice, 

with a much larger fraction being genome rearrangements. Culturing the flies at warmer 

temperatures further increased the rates of genome rearrangements within highly 

oxidative somatic tissues, leading the researchers to propose that increased respiration 

and ROS production rates induced by elevated temperatures may explain the observed 

trend (Garcia et al. 2010).  Busuttil, et al. (2007) showed that although G-to-T mutations 

were prevalent in mitotically-active tissues, genome rearrangements were more 

common in quiescent cells. These results combined with the distinct mutational 

processes of the soma and germline (Drake et al. 1998; Fortune 2000; Martorell et al. 

2000; Shanks et al. 2008; Crabbe and Hill 2010; Lynch 2010; Joyner-Matos et al. 2011), 
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and the fact that both base substitutions and large genome rearrangements may be 

attributable to ROS damage, suggest that different mutational types may associate with 

oxidative stress depending on the tissue or organism in question. Alternatively, 

redundancy in repair mechanisms (Barnes and Lindahl 2004; Arczewska et al. 2008; 

Fensgård et al. 2010) may prevent the accumulation of oxidative genetic damage 

precluding a direct association between oxidative stress measures and heritable 

mutation.   

One caveat that prevents further interpretation of the above correlations is that 

the mutation rate data used in our comparisons was derived from the nuclear genome. 

While theoretical and empirical evidence suggests that mitochondrial ROS can damage 

cytoplasmic and nuclear components including nuclear DNA (Richter et al. 1988; 

Winterbourn 2008), there is evidence that the mitochondrial genome sustains much 

more oxidation-induced damage (Richter et al. 1988; Yakes and Van Houten 1997; 

Shokolenko et al. 2009), and thus may more accurately describe the relationship 

between heritable mutation and oxidative stress. Additionally, mounting evidence 

implies that the relationship between mitochondrial ROS and nuclear genetic damage 

may be indirect.  For example, mitochondrial impairment may reduce repair efficiency in 

the nuclear genome (Delsite et al. 2003). Further, recent work has uncovered a ROS 

response to genetic damage (Rowe et al. 2008), which in turn may act to regulate base 

excision repair (Swartzlander et al. 2010) and the Yap1 transcription factor (Rowe et al. 

2012) to maintain genetic fidelity in Saccharomyces cerevisiae. Thus, while it is 
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reasonable to expect excessive mitochondrial ROS production to impact the nuclear 

genome and whole-cell function, it may do so more often as a signaling molecule than 

through direct damage. Indeed, mitochondrial ETC function appears to affect such 

diverse processes as a cell-non-autonomous pathway of organismal longevity (Durieux 

et al. 2011) and nuclear gene expression (Droge 2002).  

Conclusions and outlook 

Our study provides a direct comparison of net ROS levels, 8-oxo-dG content and 

per-generation base substitution rate within long-term mutation-accumulation lines of 

C. elegans. Only two MA lines were observed to suffer significantly elevated relative ROS 

levels; though all MA lines consistently exhibited insignificant increases in both ROS and 

8-oxo-dG content above the levels of the N2 progenitor line.  Further, while we 

uncovered a strong, positive correlation between mitochondrial ROS and 8-oxo-dG 

levels, we found no such relationship between these two measures of oxidative stress 

and previously reported rates of heritable nuclear mutation. These findings are 

consistent with the notion that G-to-T transversions may not represent the most 

important signature of oxidative damage within the germline, though a larger study may 

have revealed weak associations.  

Though the current study represents a step forward in our understanding of the 

relationship between oxidative stress and heritable mutation accumulation, several 

outstanding questions remain. Additional work will be necessary to determine whether 

large genome rearrangements more accurately reflect heritable oxidative damage than 
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base substitution rates. Investigation into the potential causes of tissue-specificity in 

mutational processes could help to reveal the relative importance of oxidative damage 

and repair efficiency in preventing heritable mutation. Further work is also needed to 

describe the relationship between germline mtDNA mutations and steady-state ROS 

levels in C. elegans and other eukaryotes. Previous work indicates that C. briggsae, a 

sister species to C. elegans, experiences high rates of large mtDNA deletions (Howe et 

al. 2010) and decreased fitness compared to N2 (Baer et al. 2005). This, along with data 

showing significant variation in relative ROS levels among strains of C. briggsae (Estes et 

al., 2011; Hicks et al., 2012) suggest that large genomic perturbations of the 

mitochondrial genome may relate to oxidative stress in this species. Along with results 

such as these, the current study highlights the potential utility of C. elegans and related 

species as models for future work in this area.  
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CHAPTER FIVE 

Natural variation in Caenorhabditis briggsae mitochondrial form and function suggests a 
novel model of organelle dynamics 
 

Background 

Mitochondria are dynamic organelles that participate in continuous cycles of 

fusion, fission and autophagy within the cells of nearly all eukaryotic organisms. These 

cycles serve to link mitochondrial shape to organelle function (Chen and Chan 2005; 

Duvezin-Caubet et al. 2006) as well as each mitochondrion to the larger mitochondrial 

population (Hyde et al. 2010). Mitochondria perform several functions vital to 

eukaryotic life, including bioenergy (ATP) production and regulation of calcium 

homeostasis and apoptosis, nearly all of which depend upon the process of oxidative 

phosphorylation at the mitochondrial electron transport chain (ETC). Electron transfer 

through functional protein complexes of the ETC is coupled to the pumping of protons 

across the mitochondrial inner membrane, which establishes a mitochondrial 

membrane potential (ΔΨM). This ΔΨM provides the potential energy to generate ATP 

and serves to control fusion-fission cycles (Twig et al. 2008a), both of which are 

necessary for mitosis, fuel sensing, autophagy and other processes (Mitra et al. 2009; 

Molina et al. 2009; Graef and Nunnari 2011). A natural consequence of ETC function is 

the occasional leakage of electrons onto molecular oxygen to generate reactive oxygen 

species (ROS) (Raha and Robinson 2000). Under normal circumstances, excess ROS are 

scavenged by various antioxidants before they can damage important macromolecules 
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(Sedensky and Morgan 2006; Imlay 2008); however, impairment of the ETC often results 

in elevated ROS production (Grad and Lemire 2004; Verkaart et al. 2007; Dingley et al. 

2009) and oxidative damage of proteins and nucleic acids (Wanagat et al. 2001; Yang et 

al. 2007), along with depressed ΔΨM (Ventura et al. 2006; Gaskova et al. 2007; Lemire 

et al. 2009) and altered mitochondrial dynamics (Ichishita et al. 2008).  

Findings like those above highlight the integration between mitochondrial 

function, morphology and the fusion-fission cycle, and many recent studies have aimed 

to reveal the mechanistic bases of these relationships (Pham et al. 2004; Chen and Chan 

2005; Palermo et al. 2007; Wikstrom et al. 2009; Westermann 2010; Yasuda et al. 2011). 

Mitochondrial ROS level does not appear to be related consistently to mitochondrial 

morphology or dynamics. For example, elevated mitochondrial ROS levels have been 

associated with both increased (Koopman et al. 2005) and decreased mitochondrial 

branching (Pletjushkina et al. 2006; Grünewald et al. 2010). Conversely, studies 

examining mitochondrial form and function in isolated cells and/or mutant organisms 

reveal a direct link between ΔΨM and mitochondrial morphology, such that higher ΔΨM 

induces organellar elongation (Legros et al. 2002; Ishihara et al. 2003) and loss of ΔΨM 

causes severe fragmentation of the mitochondrial network (Duvezin-Caubet et al. 2006; 

Song et al. 2007). Many of these mitochondrial shape changes are mediated by an 

altered balance between mitochondrial fusion and fission (Chen et al. 2005; Okamoto 

and Shaw 2005), which is increasingly appreciated to have a role in human disease. For 

instance, abnormal fusion-fission cycles are characteristic of neurodegenerative 
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disorders including Parkinson’s and Alzheimer’s disease (Trimmer et al. 2000; Bossy-

Wetzel et al. 2003; Knott and Bossy-Wetzel 2008; Wang et al. 2008; Irrcher et al. 2010; 

Su et al. 2010; Winklhofer and Haass 2010). Many of the genes and cellular 

intermediates involved in mitochondrial dynamics (and its imbalance) have now been 

identified and characterized (Dimmer et al. 2002; Ishihara et al. 2003; Lee et al. 2004; 

Meeusen et al. 2004; Scorrano 2005; Griffin and Chan 2006). Based on such work, Twig 

and colleagues proposed that the fusion-fission-apoptosis cycle creates a “quality 

control axis” that acts to maintain mitochondrial integrity (Twig et al. 2008b). In their 

model, persistently depolarized mitochondria (those with low ΔΨM) are segregated 

from the functional group by their inability to fuse. In this way low-functioning 

mitochondria – and perhaps, damaged mitochondrial genomes – are weeded out and an 

overall healthier organelle population is thus maintained (Twig et al. 2008b; Hyde et al. 

2010; Kowald and Kirkwood 2011; Bess et al. 2012; Meyer and Bess 2012).  

Despite the abundance of research focused on the dynamics of individual 

mitochondria (i.e., fusion and fission cycles), less attention has been devoted to the 

population-level behaviors of these organelles. A recent review highlights various 

“global” (cellular) and “local” (individual mitochondrion) controls thought to influence 

mitochondrial fusion and fission, suggesting that the collective mitochondrial population 

can indeed respond to cellular cues (Hyde et al. 2010). For example, mitochondria have 

been observed to undergo concerted hyper-fusion during G1-S phase of the cell cycle, 

and subsequent hyper-fragmentation as the cell progresses into S phase (Hyde et al. 
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2010). Still, we have a limited understanding of the biological roles of mitochondrial 

fission-fusion cycling and its organism-level consequences, and little information 

regarding the features and dynamics of mitochondrial populations and how these might 

influence individual mitochondrial form and function. Further, although we have some 

information about the patterns of relationship between certain mitochondrial 

phenotypes (e.g., ΔΨM and organelle elongation), no comprehensive survey of such 

phenotypes has been conducted within live organisms. Finally, the extent to which 

research on cell lines and genetic fusion-fission mutants will apply to natural 

populations of organisms remains unknown.  

Caenorhabditid nematodes have emerged as important models for studying the 

underlying causes of mitochondrial ETC dysfunction and its associated biological 

consequences. Mitochondrial metabolism and ETC function are known to be extremely 

similar in worms and mammals (reviewed in Dimmer et al., 2002; Westermann, 2010). 

Also, nematodes have highly differentiated tissues and a transparent cuticle that make 

them amenable to live imaging studies. Caenorhabditis briggsae in particular offers 

many advantages for mitochondrial biology research including its substantial 

mitochondrial genetic (Howe and Denver 2008) and phenotypic (Cutter et al. 2010; 

Raboin et al. 2010; Estes et al. 2011; Ross et al. 2011; Clark et al. 2012; Hicks et al. 2012) 

diversity. C. briggsae exhibit a cosmopolitan distribution and mitochondrial genetic 

analyses group its known natural isolates into three major phylogeographic clades 

corresponding to latitude of origin (Howe and Denver 2008) (Fig. 5.1). Recent work 



 
101 

 

indicates that isolates within these clades are likely adapted to local thermal regimes 

(Jovelin and Cutter 2011; Prasad et al. 2011). We found that phylogenetic membership 

also accounts for among-isolate variation in several mitochondrial form and function 

traits; this was particularly true for ΔΨM, which was an extremely reliable predictor of 

 

clade membership (see Chapter two, Table 2.2).  Further, C. briggsae appear especially 

prone to acquiring mitochondrial deletion mutations (Howe et al. 2010), a process that 

has likely contributed to its high levels of standing mitochondrial genetic diversity. 

Indeed, many natural populations of C. briggsae harbor a large deletion (nad5Δ) within 

their mitochondrial genomes that removes half of the NADH-dehydrogenase 5 (nad5) 

gene (see Figure 1 in Howe & Denver, 2008), which encodes an integral subunit of ETC 

complex I. nad5Δ-bearing genomes were recently shown to behave as selfish genetic 

elements (Clark et al. 2012) and levels of nad5Δ heteroplasmy (the average number of 

deletion-bearing genomes per individual) are known to vary from zero to over 50% 

Figure 5.1. C. briggsae natural 
isolates.  Phylogenetic relationship, 
geographic origin and nad5Δ 
heteroplasmy level (numbers above 
branches) of C. briggsae isolates 
included in this study. GL = global 
superclade; KE = Kenya clade; TE and 
TR = temperate and tropical subclades 
of GL; C(+) = isolates bearing the 
compensatory Ψnad5Δ-2 allele. Note 
that we assayed the natural HK104 
isolate here rather than the inbred line 
reported in Estes et al. (2011), which 
evolved high nad5Δ levels in the lab 
(see Materials and Methods). 
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among geographically-segregated isolates of C. briggsae (Howe and Denver 2008; Estes 

et al. 2011). Recent work showed that nad5Δ level was unrelated to isolate-specific 

variation in ΔΨM, ROS, and aspects of mitochondrial morphology (Hicks et al. 2012), but 

that it is likely to be detrimental to nematode health and fitness at high (< ~40%) 

heteroplasmy levels (Howe and Denver 2008; Estes et al. 2011). In summary, its 

extensive genetic and subcellular phenotypic variation makes C. briggsae a promising 

natural system in which to investigate individual- and population-level mitochondrial 

behavior. 

The present study is a reanalysis of data from our recent study of variation in C. 

briggsae mitochondrial form and function (Chapter two, Hicks et al. 2011), which 

quantified 24 mitochondrial phenotypes including ROS level, ΔΨM and aspects of 

organelle morphology in replicate live worms from 10 natural isolates of C. briggsae (Fig.  

5.1) and reported the standing levels of phenotypic variation among clades and isolates. 

Here, the bivariate relationships of all mitochondrial phenotypes from the combined 

dataset were analyzed to examine the connections between mitochondrial physiology 

and dynamics within a natural system. Our findings support a major role for ΔΨM in 

shaping mitochondrial dynamics. Based on previous studies and current models of 

mitochondrial dynamics, we expected to observe more punctate morphologies among 

low-ΔΨM mitochondria due to their reduced rates of fusion. Conversely, we expected 

that mitochondria with high ΔΨM would maintain the canonical elongated shape. Our 

findings were in agreement with both of these expectations and provide general 
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support for Twig’s model (Twig et al. 2008b) of mitochondrial dynamics. Furthermore, 

our results suggest an addition to this model in which individual organelles respond to 

their functional environment; i.e., the average ΔΨM of the surrounding mitochondrial 

population. 

 

Materials and Methods 

Nematode strains 

We used data from Chapter two in which an array of mitochondrial phenotypes 

were measured for ten natural isolates of Caenorhabditis briggsae nematodes (Fig.  5.1). 

These isolates represent three major phylogeographic clades of C. briggsae and 

encompass the full range of known nad5Δ heteroplasmy level – from zero to ~50% 

deletion-bearing genomes. Briefly, the appearance of nad5Δ depends upon the 

presence of a mitochondrial pseudogene - Ψnad5-2 (see Fig. 2.1 and Figure 1 from 

Howe & Denver, 2008). The two Temperate clade isolates (PB800 and EG4181) harbor a 

compensatory Ψnad5-2 allele that limits the recurrent formation of nad5Δ; the two 

Kenyan clade isolates (ED3101 and ED3092) completely lack Ψnad5-2, which precludes 

formation of nad5Δ (Howe and Denver 2008). C. briggsae strains and the evolutionary 

genetics of nad5Δ have been described in further detail elsewhere (Howe and Denver 

2008; Estes et al. 2011; Hicks et al. 2012).  

Sample preparation and image analysis 



 
104 

 

For more detailed methods regarding nematode sample preparation, image 

acquisition and analysis, please refer to (Chapter two Material and Methods; Dingley et 

al., 2009; Estes et al., 2011; Hicks et al., 2012). Briefly, data for all mitochondrial traits 

were obtained by analyzing confocal images of the pharyngeal bulb region of young 

adult nematodes. Worms were incubated with 10 µm concentrations of the 

mitochondria-targeted fluorescent dye(s) appropriate for each experiment (below). 

After 24 hours, worms were washed free of dye, paralyzed using levamisole, and imaged 

using a high-resolution wide-field confocal microscope (Advanced Light Microscopy 

Core, Oregon Health and Science University). All images were deconvolved prior to 

analysis and all image analysis was performed using ImageJ software (NIH).  

The relative intensity of MitoSox Red (Molecular Probes, Eugene, OR) 

fluorescence from the terminal pharyngeal bulb of each worm was used to quantify 

relative ROS levels. Zielonka and Kalyanaraman (2010) determined that MitoSOX Red 

quantifies total levels of mitochondrial oxidants when used in conjunction with 

microscopic analysis (Zielonka and Kalyanaraman 2010). Final ROS levels for each isolate 

were calculated as the difference between pharyngeal bulb intensity in labeled and 

unlabeled control worms from each isolate. Dye-based ROS measurements reflect both 

the rates of ROS generation and ROS scavenging by antioxidant enzymes or small 

molecules, and thus give a comprehensive view of the level of oxidative stress 

experienced by an organism. Supporting this claim, a comparison of our ROS 

measurements with a survey of oxidative DNA damage (frequency of 8-oxo-dG lesions) 
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conducted on a set of C. elegans mutation-accumulation lines (Denver et al. 2009, 2012) 

was highly positively correlated (Spearman’s ρ=0.943, P<=0.05) (Fig. 4.2). Finally, we find 

no relationship between pharyngeal pumping rates and ROS or ΔΨM (Estes et al. 2011; 

Hicks et al. 2012) indicating that our measures are not biased by variation in the rates of 

dye uptake by feeding. 

Relative ΔΨM levels were quantified using MitoTracker Red CMXRos (Molecular 

Probes), a dye that localizes exclusively to polarized organelles (Pendergrass et al. 2004). 

The ΔΨM assays were performed concurrently with those of mitochondrial morphology 

by co-labeling worms with the ΔΨM-dependent probe MitoTracker Red CMXRos, and 

with MitoTracker Green FM (Molecular Probes), which accumulates within all 

mitochondria regardless of their respiration state (Pendergrass et al. 2004). This 

experimental setup allowed us to detect state-specific mitochondrial traits, such as 

shape changes occurring only in depolarized mitochondria, and to directly correlate 

mitochondrial ΔΨM and morphology traits. Unfortunately, the spectral similarities 

between the ROS and ΔΨM probes make it necessary to use separate images for ROS 

analysis. Thus, associations between ROS and all other mitochondrial traits should be 

interpreted with caution.  

Finally, as previously discussed (Chapter two Materials and Methods), we failed 

to co-label nematodes treated as above with either DAPI or Hoechst 33342 (Sigma), 

which would have allowed us to visualize cell nuclei and thereby assess the intracellular 

distributions of mitochondria. (Appropriate GFP fusions are not yet available for C. 
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briggsae.) Both dyes noticeably interfered with the fluorescence of the above 

MitoTracker dyes in C. briggsae (Hicks, pers. obs.). Our study therefore focuses on 

properties of individual mitochondria and mitochondrial populations within the 

pharyngeal bulb organ. 

Trait descriptions and statistical analysis  

A total of 24 mitochondrial form and function traits were analyzed (Table 5.1). 

Briefly, relative mitochondrial membrane potential (ΔΨM max) served as an indicator of 

mitochondrial functionality (see below). Relative reactive oxygen species (ROS max) 

further characterized mitochondrial activity. Maximum rather than mean ΔΨM and ROS  

Label Trait Description 

Measures of Mitochondrial Physiology 

ΔΨM 
Max 

Membrane potential 
Average of max relative MitoTracker Red CMXRos 
fluorescence 

ROS 
Max 

Reactive Oxygen Species Average of max relative MitoSOX Red fluorescence 

Measures of the Mitochondrial Population 

AFP 

Area of mitochondrial 
population 

Area of functional, non-functional or total (both 
functional and non-functional) mitochondrial 
populations 

ANP 

ATP 

AFP/NP 
Ratio of functional to non-
functional mitochondrial 
area 

Area of the functional mitochondrial population/area of 
the non-functional population 

AFP/TP % functional area Area of the functional mitochondrial population/area of 
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the total population 

NF 

Number of mitochondria 
Number of functional, non-functional, or total individual 
mitochondria 

NN 

NT 

NF/N 
Ratio of functional to non-
functional mitochondria 

Number of functional mitochondria/number of non-
functional mitochondria 

NF/T % functional mitochondria 
Number of functional mitochondria/number of total 
mitochondria 

Measures of Individual Mitochondrial Shape 

AF Area of individual 
mitochondria 

Average area of individual functional or non-functional 
mitochondria AN 

ARF 
Aspect ratio 

Average of the ratio between the major and minor axis 
of the ellipse equivalent to each functional or non-
functional mitochondrion ARN 

ARFV 
Aspect ratio variance 

Average within-individual variance in aspect ratio of 
functional or non-functional mitochondria 

ARNV 

CF 
Circularity 

4∏(area/perimeter2) for functional or non-functional 
mitochondria CN 

CFV 
Circularity variance 

Within-individual variance in circularity of functional or 
non-functional mitochondria 

CNV 

Table 5.1. Description of mitochondrial traits measured in C. briggsae. 

 

levels were used because we previously found a significant effect of levamisole (the 

cholinergic agonist used to paralyze nematodes for image acquisition) on mean but not 

maximum ROS levels (Chapter two Materials and Methods). Additionally, we scored ten 

traits that describe aspects of the pharyngeal mitochondrial population: the combined 
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area of the mitochondrial population (AFP, ANP, ATP), the ratio of the area of functional to 

nonfunctional mitochondria (AFP/NP), and the percentage of the total mitochondrial area 

that is functional (AFP/TP), the number of organelles (NF, NN, NT), the ratio of functional to 

nonfunctional organelles (NF/N), and the percentage of functional mitochondria (NF/T). 

Functional mitochondria were distinguished by their quantifiable uptake of MitoTracker 

Red CMXRos. Differences in mitochondrial morphology were measured using the area 

(AF, AN), aspect ratio (ARF, ARN), and circularity (CF, CN) of individual mitochondria. 

Aspect ratio quantifies elongation and has a minimal value of 1, which corresponds to a 

perfect circle (Russ 2002). Circularity will also equal 1 when the measured object is a 

perfect circle, but decreases to 0 as the object becomes more branched (Russ 2002). 

Finally, the variance in circularity (CFV, CNV) and aspect ratio (ARFV, ARNV) measured the 

degree of heterogeneity within the mitochondrial population of each nematode.  

Because our data often violated assumptions of the Pearson product-moment 

correlation (e.g., normally distributed data, monotonic bivariate relationships), we 

characterized correlations among mitochondrial form and function characters by 

calculating Spearman rank-order correlation coefficients between each pair of traits as 

in Huang et al. (2004). Because ROS levels were measured on different sets of 

nematodes than all other traits, we measured isolate-mean correlations for these pairs 

of traits. All statistical analysis was performed in JMP 9 (SAS Institute, Cary, NC).  

 

Results 
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Mitochondrial trait associations 

We analyzed the relationships between pairs of mitochondrial traits (Table 5.1) 

originally obtained in Chapter two for all natural isolates following (Estes et al. 2011). 

First, no significant correlations between ROS and any other mitochondrial trait were 

revealed (data not shown). Maximum ΔΨM was, however, statistically related to a 

number of other characters. ΔΨM was positively related to aspect ratio of functional 

mitochondria (ARF) (ρ= 0.208, P<=0.01), meaning that isolates with higher maximum 

ΔΨM tended to have more elongated mitochondria. Similarly, maximum ΔΨM was also 

weakly negatively correlated to the circularity of functional mitochondria (CF) (ρ= -0.248, 

P<=0.01), suggesting that worms with higher maximum ΔΨM fluorescence also tended 

to have less circular – or more branched – organelles. It is important to note that 

maximum ΔΨM was necessarily positively correlated to traits related to functional 

mitochondrial area (AF , AFP, and ATP) since individuals with higher scores for these traits 

had necessarily taken up more membrane-potential dependent dye and thus had higher 

values for ΔΨM.  

A number of the other correlations were expected due to the nature of the 

measurements (e.g., between traits describing the number of mitochondria and those 

describing the combined area of mitochondria populations); however, a systematic 

survey of the remaining (statistically significant) correlations revealed consistent 

patterns of relationship between the major classes of mitochondrial traits (shape, area, 

and number), which can be summarized as follows: 
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  (1) As expected, circularity (CN and CF) demonstrated a strong negative 

correlation with aspect ratio (ARN and ARF) for both nonfunctional and functional 

mitochondria (ρ=-0.811, P<=0.001 and ρ=-0.801, P<=0.001, respectively). Figure 5.2A 

shows the relationship between these two traits for functional mitochondria. Circularity 

responds to changes in surface irregularities (or the amount of branching) of each 

mitochondrion whereas aspect ratio responds to the elongation of organelles (Russ 

2002; Koopman et al. 2005). This negative relationship must certainly owe itself largely 

to the fact that more circular mitochondria are less elongate; however, it also implies 

that mitochondrial branching was rare and that deviations from perfect circularity were 

most often achieved by elongation rather than by branching for all organelles regardless 

of their functional status.  

(2) In isolates containing a higher ratio of polarized mitochondria (higher scores 

for NF/N or NF/T), all mitochondria were larger and less circular (e.g., Fig. 5.2B shows this 

pattern for functional mitochondria) and more elongate regardless of their functional 

state. However, only the depolarized mitochondria in these isolates were significantly 

more variable with regard to circularity (higher scores for CNV). Similarly, as the area of 

individual functional mitochondria (AF) or the combined area of the functional 
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mitochondrial population (higher scores for AFP) increased, all mitochondria became less 

circular and more elongate.  

 (3) In isolates with more nonfunctional/depolarized mitochondria (higher scores 

for NN), the nonfunctional mitochondria in these isolates become less elongate and 

Figure 5.2. Examples of bivariate relationships of mitochondrial phenotypes. Patterns of relationship 
between traits describing mitochondrial size, morphology, and within-individual variance are shown. All 
measurements were made on the same set of confocal images (see Materials and Methods) and each 
point represents the bivariate phenotype for an individual nematode (N=167-170). A) Aspect ratio is 
negatively related to circularity within the functional mitochondria of individual worms (ρ=-0.806, 
P<=0.0001). Removing one outlier (black symbol) decreases the correlation slightly (ρ=-0.797, 
P<=0.0001). B) As the two-dimensional area of the total functional mitochondrial population increases, 
functional mitochondria become less circular (ρ=-0.509, P<=0.0001). C) As the two-dimensional area of 
individual nonfunctional mitochondria increases, these mitochondria become less circular (ρ=-0.698, 
P<=0.0001). D) As the two-dimensional area of the total functional mitochondrial population increases, 
the nonfunctional organelles within each worm become variable with respect to circularity. When two 
outliers (black symbols) are removed, the correlation remains unchanged (ρ=0.409, P<=0.0001). 
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more uniform with respect this trait (lower scores for ARN and ARNV, respectively). 

Conversely, the polarized mitochondria in these isolates were more variable with regard 

to elongation (higher scores for ARFV). As the area of individual nonfunctional 

mitochondria (AN) or the area of the nonfunctional mitochondrial population (ANP) 

increased, nonfunctional mitochondria responded by deviating from circularity (lower 

scores for CN, indicative of elongation or branching, Fig. 5.2C) (c.f., Koopman et al., 2005) 

and by becoming more variable with respect to circularity (higher scores for CNV, Fig. 

5.2D). Because we omitted mitochondria smaller than 2 pixels from all analyses (Hicks et 

al., 2012), the strength of these correlations and the fact that they apply only to 

depolarized mitochondria suggest that they should not be influenced by any size-related 

bias.  

Finally, we note that regressions of average mitochondrial trait correlations for 

each isolate on isolate-specific nad5Δ heteroplasmy revealed no evidence that any of 

the mitochondrial phenotypic associations were related to nad5Δ level; however, 

because we had estimates only of average nad5Δ for each C. briggsae isolate obtained 

from a different set of worms than those phenotyped (Hicks et al. 2012), the biological 

meaning of these tests is questionable.   

 

Discussion 

Implications for mitochondrial dynamics 
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We performed a systematic evaluation of phenotypic correlations among 

mitochondrial traits originally reported in (Hicks et al., 2012) with the aim of uncovering 

patterns that describe the relationships between mitochondrial physiology and 

morphology. While some studies have indicated that ROS production can be associated 

with dramatic ultra-structural transformations in mitochondria (Koopman et al. 2005; 

Wang et al. 2008; Liot et al. 2009), our analyses failed to clearly relate net ROS levels 

with any alterations in mitochondrial shape or population structure. Again, a caveat 

prohibiting further interpretation of this result is that ROS was necessarily measured on 

different individual nematodes than all other mitochondrial traits (see Materials and 

Methods). Thus, estimates of ROS were obtained from different sets of mitochondria 

than those describing ΔΨM and morphology traits.  

In agreement with previous studies (Ishihara et al. 2003; Mattenberger et al. 

2003; Twig et al. 2008a), our findings suggest a central role for ΔΨM in shaping 

mitochondrial morphology, manifested in its relationship with several aspects of 

mitochondrial shape and population structure (Table 5.2). In particular, our analysis of 

mitochondrial trait associations revealed that mitochondria appear to respond 

differently depending on their functional neighborhood; i.e., whether they are 

surrounded by other organelles that are mainly polarized or depolarized. The 

morphology and physiological state of individual mitochondria is dependent on ΔΨM 

(Ishihara et al. 2003; Miceli et al. 2011; Twig and Shirihai 2011). This makes sense as 

several critical organellar functions are contingent upon ΔΨM, including mitochondrial 
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NT

NN

NF/T

NF/N

NF

ΔΨM max

CNV

CN

CFV

CF

ATP

ARNV

ARN

ARFV

ARF

ANP

AN

AFP/TP

AFP/NP

AFP

AF

0.724***

0.265***

0.268***

0.805***

0.414***

-0.078

-0.096

0.107

-0.211**

0.898***

-0.135

-0.055

0.069

0.039

0.649***

0.027

0.297***

0.297***

0.739***

0.220**

NT

-0.413***

-0.413***

0.273***

0.147

-0.223**

0.062

0.120

-0.007

0.604***

-0.241**

-0.200**

0.154*

-0.091

0.821***

-0.086

-0.277***

-0.277***

0.210**

0.018

NN

1***

0.6884***

0.311***

0.190*

-0.196**

0.012

-0.276***

0.310***

0.151

0.188*

-0.107

0.183**

-0.269***

0.168*

0.828***

0.828***

0.684***

0.317***

NF/T

0.688***

0.311***

0.190*

-0.196**

0.012

-0.276***

0.310***

0.151

0.188*

-0.107

0.183*

-0.269***

0.168*

0.828***

0.828***

0.684***

0.3217***

NF/N

0.465***

0.088

-0.189*

0.105

-0.273***

0.759***

-0.002

0.109

0.004

0.12

0.294***

0.112

0.638***

0.638***

0.892***

0.306***

NF

0.024

0.051

0.113

-0.248***

0.334***

-0.033

-0.110

0.080

0.208*

0.083

-0.124

0.312***

0.312***

0.422***

0.121

ΔΨM max

-0.522***

-0.036

-0.031

0.049

0.677***

0.478***

-0.043

0.051

0.018

0.409***

-0.006

-0.006

0.045

-0.042

CNV
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NT

NN

NF/T

NF/N

NF

ΔΨM max

CNV

CN

CFV

CF

ATP

ARNV

ARN

ARFV

ARF

ANP

AN

AFP/TP

AFP/NP

AFP

AF

-0.045

0.131

-0.334***

-0.420***

-0.811***

0.006

-0.064

-0.316***

-0.698***

0.019

0.019

-0.216**

-0.171*

CN

-0.452***

0.179*

-0.048

-0.009

0.698***

0.352***

0.106

0.035

0.145

0.145

0.206*

0.369***

CFV

-0.325***

0.059

-0.103

-0.313***

-0.801***

0.048

0.05

-0.531***

-0.531***

-0.509***

-0.709***

CF

-0.031

0.149

0.100

0.097

0.716***

0.323***

0.329***

0.319***

0.813***

0.447***

ATP

0.544***

-0.075

-0.027

-0.038

0.315***

-0.005

-0.005

-0.017

-0.051

ARNV

-0.020

0.085

0.092

0.510***

0.058

0.058

0.159*

0.188*

ARN

0.342***

0.119

-0.008

-0.004

-0.004

0.055

0.195*

ARFV
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fusion and ATP and ROS production rates (Ishihara et al. 2003; Gaskova et al. 2007; 

Murphy 2009). Recent work has shown that mitochondrial fusion is brief and 

accompanied by fission (Twig et al. 2008a; Wikstrom et al. 2009) and that normal cycles 

of fusion and fission are necessary to maintain the canonical ovoid mitochondrial shape 

(Chen and Chan 2005; Kageyama et al. 2011). The model of mitochondrial life cycles 

NT

NN

NF/T

NF/N

NF

ΔΨM max

CNV

CN

CFV

CF

ATP

ARNV

ARN

ARFV

ARF

ANP

AN

AFP/TP

AFP/NP

AFP

AF

-0.131

-0.067

0.352***

0.352***

0.256***

0.428***

ARF

0.449***

-0.362***

-0.362***

0.228**

0.028

ANP

-0.181*

-0.181*

0.107

0.066

AN

1***

0.782***

0.632***

AFP/TP

0.782***

0.632***

AFP/NP

0.645***

AFP

    Table 5.2. Among-trait correlations in C. briggsae natural isolates 
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proposed by Twig, et al. (2008b) connects mitochondrial morphology and function by 

suggesting that, following a fusion-fission cycle, one daughter mitochondrion remains 

polarized while the other is transiently depolarized. The transiently depolarized 

daughter will either regain ΔΨM (if it contains a sufficient number of functional ETC 

components) and resume its participation in the fusion-fission cycle, or it will remain 

depolarized and undergo fission and eventual mitophagic degradation (See Figure 1 in 

Twig, et al., 2008b). Our data suggest that such fusion-fission cycling occurs within the 

context of a larger mitochondrial population that is itself either more or less polarized 

(Fig. 5.3). Specifically, we find that both polarized and depolarized mitochondria are 

more elongate (less fragmented) in C. briggsae isolates containing more mitochondria 

with high ΔΨM (higher values for NF/N and AFP), although depolarized organelles are 

slightly more variable in shape than polarized organelles. Conversely, when they inhabit 

less functional isolates (those with more mitochondria with low ΔΨM), both polarized 

and depolarized mitochondria become increasingly heterogeneous in shape, but 

depolarized mitochondria become overall more fragmented (Table 5.2). Placing these 

data within the context of Twig et al.’s (2008b) model, we propose that a majority of the 

mitochondria in isolates with higher average ΔΨM will exhibit the “typical” ovoid shape 

by maintaining normal rates of fusion-fission cycles. Transiently depolarized 

mitochondria in this environment will be more likely to recover membrane polarization 

after fission, helping to maintain a large polarized mitochondrial population. Conversely, 

isolates with lower ΔΨM will suffer a reduced frequency of fusion-fission cycling and 
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display increased shape heterogeneity in the entire mitochondrial population. 

Transiently depolarized mitochondria in this environment will be less likely to harbor 

functional ETC products and will more often join the persistently depolarized 

population, which is unable to undergo fusion. Polarized mitochondria in these isolates 

will then experience reduced numbers of fusion “mates” – in essence, an intracellular 

Allee effect (Allee 1931), which will contribute to further reduced rates of fusion-fission 

cycling and lead to increased shape heterogeneity of all mitochondrial morphs (Fig.  

5.3). 
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Implications for mitochondrial genome integrity and evolution 

It has been suggested that damaged mitochondrial genomes may be 

preferentially shunted to the depolarized daughter organelle – the one more often 

destined for degradation (Twig et al. 2008b; Kowald and Kirkwood 2011). If this is the 

case, mitochondrial fusion-fission cycling may have a critical role to play in maintaining 

mtDNA genome stability and could conceivably contribute to intra- and interspecific 

differences in mtDNA mutation rates and heteroplasmy levels. Recent work shows that 

the removal of damaged mtDNA in C. elegans requires mitochondrial fusion (Bess et al. 

2012; Meyer and Bess 2012). Because the fusion-fission cycle relies on ΔΨM, alterations 

to ΔΨM that are unrelated to mtDNA quality (i.e., that weaken the link between 

mitochondrial genotype and phenotype) could reduce the efficacy of the selective 

process (Twig et al. 2008b). In Chapter two, we determined that much of the measured 

variation in mitochondrial phenotypes – and especially that of ΔΨM - related to the 

phylogeographic clade membership of particular C. briggsae isolates, rather than to 

Figure 5.3. A context-dependent model of mitochondrial dynamics in which mitochondria respond 
to the functional state of their intracellular environment. An organism has three types of 
mitochondrial populations, polarized, transiently depolarized, and persistently depolarized. The 
polarized population is capable of undergoing fusion (white arrows) while the persistently 
depolarized population is not (white blunted arrow). The transiently depolarized mitochondria are 
produced after a fusion-fission cycle and will either regain sufficient ΔψM and join the 
polarized/fusing population (gray arrow) or, if they are unable to regain ΔψM, join the persistently 
depolarized population (black arrow) (Twig et al., 2008b). We propose that mitochondria in a more 
functional environment (higher ΔψM, at left) are more likely to regain ΔψM and join the 
polarized/fusing population. Normal fusion-fission cycles will maintain a majority of mitochondria in 
the canonical ovoid morph. Here, many depolarized mitochondria are destined to recover ΔψM and 
rejoin the fusing population. Conversely, mitochondria in a less functional environment (lower ΔψM, 
at right) are less likely to regain ΔψM and will therefore join the persistently depolarized/non-fusing 
population resulting in fewer polarized mitochondria. Here, lower than normal rates of fusion and 
fission will increase the shape heterogeneity of all mitochondria. 
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nad5Δ level (Tables 2.2 and 2.3). Specifically, Tropical isolates tended to have the lowest 

values for ΔΨM followed by Kenyan isolates, and Temperate isolates exhibited the 

highest ΔΨM (Figure 2.3G). This led to the hypothesis that Tropical C. briggsae isolates 

may have adaptively reduced their ΔΨM in order to counter increased ROS levels 

brought on by high temperatures (Brand 2000; Hicks et al. 2012). Because C. briggsae 

are ectotherms, the external temperature can directly influence their physiology; higher 

temperatures can increase nematode metabolism and ROS generation. Additionally, 

Tropical clade worms contain fewer total mitochondria (NT and NF) within the focal area 

(pharyngeal bulb) compared to both the Temperate and Kenyan clades (Tukey’s HSD, α 

= 0.05; (Figure 2.3H)). Since cold-adapted ectotherms often exhibit increased 

mitochondrial density (Morley et al. 2009), the reduction in mitochondrial number 

within Tropical clade isolates is also consistent with an adaptive response to heat. If it is 

indeed the case that Tropical C. briggsae isolates have adaptively reduced their ΔΨM, 

they may experience a reduced efficiency of selection allowing the amplification of 

damaged mtDNA molecules – such as those bearing nad5Δ. Such a dynamic could help 

to explain the counter-intuitive finding that Tropical C. briggsae isolates display higher 

average nad5Δ heteroplasmy levels despite having larger effective population sizes (and 

presumably more efficient natural selection) than Temperate clade isolates that have 

fixed compensatory mutations preventing nad5Δ accumulation (Howe and Denver 

2008). In other words, the Tropical isolate’s adaptive reduction of ΔΨM in response to 

high temperature may interfere with the selective removal of nad5Δ by the 
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mitochondrial fusion-fission cycle. Alternatively, because nad5Δ affects a component of 

mitochondrial ETC complex I that is putatively involved in H+ pumping (Janssen et al. 

2006; Lenaz et al. 2006), the deletion may itself reduce ΔΨM and provide a ROS 

avoidance mechanism that does not directly produce heat (unlike mitochondrial 

uncoupling) - thus conferring a direct benefit to Tropical C. briggsae isolates (Brand 

2000; Iser et al. 2005). Either scenario implies that different evolutionary pressures may 

be shaping the subcellular phenotypes of different C. briggsae populations and suggests 

fruitful avenues for experimental work. 

Conclusions 

Our analysis suggests that ΔΨM, but not mitochondrial ROS level, has a major 

role in shaping mitochondrial dynamics within natural populations of C. briggsae 

nematodes. We also identified a set of correlations that may describe a global control 

mechanism for mitochondrial dynamics. In particular, our findings suggest a model of 

mitochondrial population dynamics in which cellular environmental context dependency 

– and in particular, whether the mitochondrial population is mainly polarized or 

depolarized – is a key feature. To our knowledge, ours is the first study to connect 

natural variation in subcellular phenotypes to a model of mitochondrial dynamics. The 

model is also congruent with recent work highlighting the importance of both organellar 

and cellular influence on mitochondrial fusion-fission processes (Hyde et al. 2010; 

Kowald and Kirkwood 2011), but robust tests will require experimental confirmation of 

several assumptions, including whether ΔΨM correlates linearly to fission-fusion ability. 
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The natural phenotypic and genetic variation within the C. briggsae system will be 

advantageous for further study in this area (e.g., partitioning of the genetic and cellular 

environmental components of observed mitochondrial phenotypic variation). With 

particular regard to C. briggsae evolution, our findings highlight the need for future 

work to understand what if any role mitochondrial fission-fusion dynamics play in 

mediating transmission of nad5Δ-bearing genomes and adaptation to local thermal and 

other conditions. 
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CHAPTER SIX 

Broad Conclusions 

 

Evolutionary Implications 

Together, these studies provide important, novel advancements in our 

understanding of the potential cell biological and evolutionary causes and consequences 

of mitochondrial genotypic and phenotypic variation. While a great deal of evolutionary 

study has focused on variation in organismal phenotypes such as fitness, we have very 

little knowledge of the amount of natural variation that exists in sub-cellular 

phenotypes. Thus, we lack a basic understanding of the importance of sub-cellular 

variation in organismal evolution. In the current study, we uncovered significant among-

isolate variation in 18 of the 24 mitochondrial form and function traits assayed, showing 

that natural variation in important sub-cellular phenotypes does exist. Because mtDNA 

is known to experience purifying selection (Mishmar et al. 2003, 2006; Meiklejohn et al. 

2007), the variation observed here has the potential to be adaptive. ΔΨM displayed the 

greatest among-isolate variation within C. briggsae natural isolates, much of which was 

related to phylogeographic clade membership (Fig 2.3G, Table 2.2). It is possible that the 

depressed ΔΨM observed within Tropical clade isolates is an adaptive response to 

reduce ROS production from the mitochondria. However, confirmation of lowered ΔΨM 

and ROS at higher temperatures within Tropical isolates will be necessary to determine 

if this is the case.  An assay examining the effect of mitochondrial uncouplers on ROS 



 
124 

 

production rates and fitness at high temperatures will also be telling. Further, ΔΨM is 

important for several processes besides ROS production, including the transport of fatty 

acid components and ATP/ADP molecules (Vander Heiden et al. 2000), both of which 

are likely important for thermal adaptation. Thus, while the existence of substantial 

variation in mitochondrial ΔΨM is suggestive of adaptive evolution, further work will be 

necessary to identify the primary drivers of the adaptive evolution (reducing ROS 

production as opposed to altering ATP/ADP transport, for example), if it indeed has 

occurred.  

Based on previous work in C. briggsae showing that high nad5Δ deletion levels  

are related to decreased fitness (Howe and Denver 2008; Estes et al. 2011), we expected 

to see a correlation between ROS and ΔΨM and isolate-specific nad5Δ heteroplasmy 

level. While we found some evidence for complex associations between mitochondrial 

nad5Δ frequency and mitochondrial phenotypes, the combined results are consistent 

with the mitochondrial threshold effect theory, with phenotypic consequences arising 

only at high (~50%) nad5Δ levels. High-deletion level isolate HK105 (Fig. 2.1) consistently 

displayed phenotypes associated with mitochondrial dysfunction, including elevated 

ROS levels (Fig 2.3I, Fig 3.3B), distinct patterns of mitochondrial morphology (Fig 2.3), 

and rapid extinction rates during MA (Table 3.1). These results agree with previous work 

in C. briggsae that uncovered a trade-off between early fecundity and lifespan only 

when nad5Δ frequency exceeded ~40% (see Figure 3 Estes et al. 2011). Our results 

showing an increase in average nad5Δ percentage up to a heteroplasmy level of ~50% 
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(Fig. 3.3A) also support the threshold effect theory, as well as recent findings suggesting 

that nad5Δ behaves as a selfish element (Clark et al. 2012). Taken together, these 

results suggest that the maintenance of nad5Δ heteroplasmy level within C. briggsae 

natural isolates appears to be under the control of at least two competing forces: a 

replicative advantage that promotes the accumulation of nad5Δ-bearing genomes up to 

the threshold level, at which point purifying selection against depressed mitochondrial 

function prevents further propagation. Confirmation of this hypothesis will require the 

simultaneous genotyping (e.g., through mitochondrial mRNA or DNA labeling) and 

phenotyping of individual mitochondria within the C. briggsae system. Additionally, we 

still lack a basic understanding of the mode(s) by which selection on individual 

mitochondria might act, including how and why particular mtDNA molecules are 

inherited. Such work will require the development of experimental methods for 

manipulating the size of the mitochondrial bottleneck or the strength of selection on 

mtDNA molecules. Together, such work would allow us to begin to understand the 

genetic and developmental mechanisms governing mitochondrial genotypic and 

phenotypic evolution, and would shed light on the forces controlling nad5Δ 

heteroplasmy level. 

After uncovering significant natural variation in mitochondrial phenotypes, we 

aimed to determine whether natural selection might be shaping the observed 

phenotypic variation. By reducing the power of natural selection and observing the 

evolution of traits, one is able to infer the strength of natural selection that is acting on 
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these traits in nature. To reduce the effect of natural selection in the current study, we 

subjected lines of C. briggsae to extreme genetic drift for 20-50 generations and assayed 

ROS and heteroplasmy levels at three generational time points. Our work revealed a 

notable capacity for mitochondrial ROS evolution under extreme genetic drift, 

manifested in the significant change in ROS levels after only ten generations of 

inbreeding in three of the four isolates assayed. The pattern of evolution, however, was 

highly variable and strain-specific. ROS is often cited as a major destructive agent 

threatening genomic integrity and thereby wielding serious evolutionary implications. 

However, the results presented in Chapter five provide no evidence in support of a 

direct role for ROS in contributing to mitochondrial shape or population structure (Table 

5.2) based on the lack of any correlation between ROS and other mitochondrial 

phenotypes. We also found no evidence for a vicious cycle of oxidative damage (Figs. 

3.3B, 4.1), since ROS was not correlated at all to measures of nuclear base substitution 

rate in Chapter four. Previous work also failed to identify a consistent relationship 

between ROS and aspects of mitochondrial shape and population structure (Koopman et 

al. 2005; Pletjushkina et al. 2006; Grünewald et al. 2010). However, the role of ROS in 

mutation accumulation is highly contentious, with a great deal of evidence supporting 

(Wei and Lee 2002; Busuttil et al. 2003, 2005; Wallace 2005b; Hiona and Leeuwenburgh 

2008) and refuting (Jacobs 2003; Crabbe and Hill 2010) such an association.  The above 

data suggest that ROS is not a major factor driving the accumulation of nuclear genomic 

base substitution mutations within the germline of Caenorhabditid nematodes. It is 
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possible that the effects of oxidative stress will be more apparent in mtDNA mutational 

processes, or that ROS causes the accumulation of distinct mutational types in a tissue-

specific manner; the examination of separate tissues and genomic rearrangements has 

proven fruitful (Dolle et al. 2000; Busuttil et al. 2005, 2007). However, the potential 

indirect mechanisms by which ROS may influence genomic stability and mutation 

accumulation represent numerous opportunities for future study. For example, recent 

work implicates ROS in mediating nuclear genome repair efficiency (Delsite et al. 2003; 

Rowe et al. 2008; Swartzlander et al. 2010).  Further study examining which reactive 

species performs specific signaling functions, how signals are propagated from organelle 

to organismal levels, and what processes are affected will all need to be addressed to 

create a complete picture describing the role of ROS in mitochondrial and nuclear 

mutation accumulation.      

It is becoming increasingly apparent that traits other than ROS are important for 

mitochondrial function. The findings reported in this thesis support a central role of 

ΔΨM in governing mitochondrial shape and population structure and highlight the 

potential implications of ΔΨM variation in evolutionary adaptation and mitochondrial 

genome integrity. ΔΨM not only displayed the greatest amount of among-isolate 

variation (Fig. 2.3), but also correlated significantly with several aspects of mitochondrial 

shape and population structure (Table 5.2). In Chapter Five, we identified the following 

three major patterns of relationship among mitochondrial form and function traits 

assayed here 1) mitochondria became bigger through elongation, 2) isolates with a 
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more functional mitochondrial population (with relatively high overall ΔΨM) contained 

larger, more elongated mitochondria, and 3) isolates with a less functional 

mitochondrial population (with relatively low overall ΔΨM) contained a more 

heterogeneous mix of organelles. Using these bivariate relationships we developed a 

model in which overall ΔΨM of the entire mitochondrial population influences organelle 

population structure and fusion-fission capacity (Fig 5.3). These results align well with 

previous results indicating that ΔΨM plays an important role in mediating cycles of 

fusion-fission-apoptosis undergone by individual mitochondria (Ishihara et al. 2003; 

Mattenberger et al. 2003; Twig et al. 2008a,b), but adds a population-level perspective. 

Based on the model presented here, we would expect mitochondrial populations with 

lower ΔΨM to have fewer mitochondria overall, a more heterogeneous population of 

organelles, and to participate in fewer fusion-fission cycles. Because ΔΨM and 

mitochondrial fusion-fission cycles may aid in mtDNA maintenance and integrity (Twig 

et al. 2008b; Kowald and Kirkwood 2011), such ΔΨM variation could also potentially 

contribute to intra- and interspecific differences in mtDNA mutation rates, 

heteroplasmy levels, and the ability to purge damaged genomes. Indeed, recent work 

shows that mitochondrial fusion is necessary for the removal of damaged mtDNA in C. 

elegans (Bess et al. 2012; Meyer and Bess 2012). These results present exciting new 

avenues for research into the potentially far-reaching and pleiotropic effects of ΔΨM 

variation. In C. briggsae in particular, determining the role of mitochondrial ΔΨM and 
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fusion-fission dynamics in controlling adaptation to varying thermal and oxygen 

conditions and the transmission of nad5Δ-bearing genomes will be enlightening.  

The population level predictions of the model above are based on work done by 

Twig, et al. (2008) that shows that individual mitochondria undergo continuous cycles of 

fusion and fission. Twig and colleagues observed the spread of mitochondria-targeted 

photoactivatable GFP (mtPA-GFP) to all but a small subset of the mitochondrial 

population, estimating the ~20 individual mitochondria per cell do not undergo fusion 

events. Using TMRE (the uptake of which is dependent on ΔΨM), they determined that 

these non-fusing mitochondria were less polarized than the rest of the mitochondrial 

population, and by following individual mitochondria after fusion, they were able to 

observe that fission events followed fusion events. By double-labeling mitochondria 

with TMRE and mtPA-GFP they observed that the two daughter mitochondria that result 

from a fission event have opposite deflections in ΔΨM in 85% of fusion-fission events, 

with one daughter organelle experiencing increased ΔΨM and the other experiencing 

decreased ΔΨM. After tracking the fate of individual mitochondria, they observed that 

the depolarized daughter mitochondrion was less likely to undergo subsequent fusion 

events. The researchers also performed immunoreactivity assays on fixed cells to 

quantify the relative amount of the fusion protein OPA1 present within individual 

mitochondria. They found that non-fusing mitochondria contained less OPA1 than 

fusion-capable mitochondria. Finally, following inhibition of proteolytic activity to 

prevent degradation of mitochondria within autophagosomes, Twig, et al. observed that 
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the mitochondria within autophagosomes contained reduced OPA1 compared to 

mitochondria outside autophagosomes. Taken together, this work is highly suggestive 

that mitochondria undergo paired fusion-fission cycles that result in two daughter 

organelles with distinct ΔΨM. The depolarized mitochondrion is less likely to undergo 

subsequent fusion and more likely to undergo autophagy. While this work has yet to be 

thoroughly tested, our data showing that isolates with lower ΔΨM have smaller, more 

heterogeneous mitochondrial populations are in line with the work presented in Twig et 

al. (2008). 

The Future of Mitochondrial Study 

 The current study represents a first step toward developing our understanding of 

mitochondria as a population of individuals, rather than describing the behavior of 

individual mitochondrion. Given the recent work suggesting that mitochondria 

constantly undergo cycles of fusion and fission (Twig et al. 2008a), potentially mixing 

metabolites and even genomes, it is becoming increasingly apparent that treating 

mitochondria as distinct units is inappropriate. Rather, significant effort should be put 

into describing the dynamics and genetics of mitochondrial populations. It has been 

proposed that the observed heterogeneity of mitochondrial function, shape, and 

distribution may determine what role a mitochondrion will play within the greater 

population (Kuznetsov and Margreiter 2009). It seems likely that understanding such 

population level relationships will further explain the substantial differences in 

cellular/tissue responses to mtDNA mutation heteroplasmy. The existence of such 
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heterogeneity, though nearly completely overlooked, will almost certainly influence the 

conclusions and implications of a great deal of the mitochondrial studies completed to 

this date. For instance, if different functional populations of mitochondria exist that 

maintain distinct characteristics (such as ΔΨM levels or ROS production rates) based on 

their activity within the cell, the entire nature of the model presented in Chapter five 

will be altered. Despite the potential importance of such basic knowledge of 

mitochondrial behavior, we have basically no experimental information describing such 

features of the mitochondrial population, and no work suggesting a path forward to 

assay or describe the different roles mitochondria may play. One reason that such little 

progress has been made in terms of understanding mitochondrial population-level traits 

is the difficulty in quantifying mitochondrial phenotypes. Even for relatively simple to 

measure traits such as ROS and ΔΨM there are substantial and undeniable issues with 

quantification, including comparing values across experiments and especially from 

different labs, even when using very similar practices. Mitochondria are highly 

responsive to the environment and have evolved to maintain energetic homeostasis 

despite significant alterations to a many environmental variables (Hochachka and 

Somero 2002). Thus, even small changes in humidity, light availability, oxygen tension, 

and other factors may induce shifts in mitochondrial function that will be difficult to 

control for between studies. All of these shortcomings highlight the fact that 

mitochondrial research is still in need of basic work.  
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 Recent advancements in microscopic imaging and fluorescent probes have 

significantly improved our ability to monitor mitochondrial in vivo. However, several 

aspects still require further development. For instance, the extent to which fluorescent 

probes interfere with normal mitochondrial function and form are relatively untested 

and should be understood. Additionally, the way in which mitochondrial morphology is 

assayed varies substantially among different studies. For instance, the current study was 

only able to examine the 2D structure of individual mitochondria. This means that 

mitochondria occupying a different plane than the plane being assayed may appear as a 

series of punctate organelles, while in actuality it might exist as an elongated tube. 

Further, this study was only able to differentiate between mitochondria stained with 

mainly MitoTracker Red CMXRos or MitoTracker Green FM as determined by images 

taken with red and green filters. We could not, however, look at the relative 

fluorescence of each individual functional mitochondrion because of the processing 

steps involved in the morphological analysis. Work similar in scope to the current study 

will benefit greatly from the use of state-of-the-art image analysis software that creates 

accurate 3D renderings of images while retaining all of the fluorescent and 

morphological information for each mitochondrion. This software, combined with 

fluorescent in situ hybridization of heteroplasmic genomes within mitochondria have 

the potential to provide unprecedented information about how heteroplasmy levels 

influence individual mitochondrial function and shape, directly testing the idea of 

threshold effects in individual organelles.   
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 More generally, the work presented in this thesis indicates that experimental 

evolutionary approaches combined with fluorescent microscopy holds promise for 

developing our understanding of important mitochondrial phenotypes and other cell-

level processes. While evolutionary and cellular biology have provided important 

insights into genetic and cellular processes respectively, these two realms of biology 

rarely overlap. Evolutionary cell biology has historically been overlooked and is only now 

emerging as a focused area of research in need of both theoretical and empirical work. 

Three of the four studies presented above represent the first of their kind, combining 

assays of subcellular phenotypes and evolutionary biology. Because mitochondria are 

essential for organismal health and survival mitochondrial genotypic and phenotypic 

variation can ultimately produce variation in organismal fitness. Thus, mitochondrial 

research is uniquely suited for work focused on evolutionary cell biology. In addition to 

the future avenues for experimentation listed above, further work in this discipline 

specific to mitochondria include: describing the role of mitochondrial fission-fusion-

apoptosis cycles in maintaining mtDNA genome integrity, determining what 

evolutionary and cell-biological factors influence the efficacy of such a system, 

examining the relative strengths of evolutionary forces acting upon mitochondria, and 

investigating the extent to which epistasis between nuclear and mtDNA genes influence 

mitochondrial function and organismal fitness. Its amenability to evolutionary 

experimentation and in vivo cell biological studies suggest that Caenorhabditid 
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nematodes will prove an invaluable model system for advancing the field of 

evolutionary cell biology.  
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APPENDIX 

Description of mitochondrial morphology analysis 

 

Figure A.1 - Depiction of mitochondrial morphology analysis process. A. One slice of representative image 
of a nematode labeled with MitoTracker Red CMXRos and MitoTracker Green FM B. Conflated image 
wherein each pixel represents the maximum fluorescence intensity of all slices. C. 7x7 tophat filtered 
image of B. D. Median filter applied to image C. E. Thresholded image of green channel of mitochondria 
(red channel not shown, but A-D show both red and green together). F. Binary image of E. Image J was 
used to enclose each object in the pharyngeal bulb area of the binary image (F) for both the red and green 
channels, and subsequently used to calculate the shape descriptors outlined in Table 2.1 and page 28. 
Shape descriptors pertaining to objects from the red channel were denoted as functional mitochondrial 
traits, and those from the green channel were denoted as non-functional. For each sample, the average of 
each shape descriptor was used for subsequent analysis (i.e., the average 2-dimensional area of each non-
functional object within one sample was used to calculate that sample’s measure of AN). 
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