
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Spring 1-1-2012 

Distributed Solar Photovoltaic Grid Integration Distributed Solar Photovoltaic Grid Integration 

System : A Case Study for Performance System : A Case Study for Performance 

Ming Shen 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Oil, Gas, and Energy Commons, and the Power and Energy Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Shen, Ming, "Distributed Solar Photovoltaic Grid Integration System : A Case Study for Performance" 
(2012). Dissertations and Theses. Paper 945. 
https://doi.org/10.15760/etd.945 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/171?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/945
https://doi.org/10.15760/etd.945
mailto:pdxscholar@pdx.edu


Distributed Solar Photovoltaic Grid Integration System – A Case Study for Performance 

 
 

 
 

by 

Ming Shen 

 
 

 

 

A thesis submitted in partial fulfillment of the 

requirements for the degree of 

 
 

 

Master of Science 

in 

Electrical and Computer Engineering 

 

 

Thesis Committee: 

Fu Li, Chair 

James E. Morris 

Xiaoyu Song 

 

 

 

 

 

 

 

 

 

 

Portland State University 

©2012



 i 

Abstract 

The need for the sustainable development of electricity, energy efficiency 

improvement, and environment pollution reduction has favored the development of 

distributed generation (DG). But problems come with increasing DG penetration in 

distribution networks. This thesis presents the Solar Energy Grid Integration System 

(SEGIS) Stage III project done by Portland General Electric (PGE), Advanced Energy, 

and Sandia National Lab on a selected distribution feeder of PGE. The feeder has six 

monitored commercial solar PV systems connected. The total power output from the PV 

systems could reach 30% of the feeder load. The author analyzes the performance of the 

solar feeder on both generation and voltage effects. As a project report, it introduced a 

new islanding detection done by other team members to give an islanding solution of 

future high penetration distribution network. Finally, the author describes micro-grid and 

grid support concept in SEGIS concept paper with some examples.
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Chapter 1 Introduction 

1.1 Introduction 

 On August 12, 2008, the U.S. Department of Energy (DOE) announced that it would 

invest up to $24 million in Fiscal Year 2008 and beyond to develop solar energy products 

to significantly accelerate penetration of solar photovoltaic (PV) systems in the U.S. The 

Solar Energy Grid Integration Systems (SEGIS) [7] projects will provide critical research 

and development funding to develop less expensive, higher performing products to 

enhance the value of solar PV systems to homeowners and business owners. DOE awarded 

12 industry teams to participate in cost-shared cooperative agreements focusing on 

conceptual designs of hardware component, and market analysis, through Sandia National 

Laboratories (SNL). As recipients of Solar Program funding, each company completed 

Stage I conceptual designs and market analysis. Each project was then evaluated on its 

likelihood of success, the potential for commercialization, and the ability to accelerate 

integration of solar PV technologies, prior to receiving a second round of funding. In 

2009, five of these companies received additional funding of $11.8 million to step to the 

next stage of SEGIS. In September 2010, four organizations were awarded the final stage 

funding which was $8.5 million dollars [8].  

As one of the four, Advanced Energy (AE) (Bend, OR), which is an innovation 

leader for grid tied PV inverters in the residential, commercial and utility markets, is 

partnering with Portland General Electric (PGE), Northern Plains Power Technologies 

(NPPT), and Schweitzer Engineering Laboratories (SEL) to approach targets for the 

SEGIS Stage III program, including: 1) commercialization of new algorithms to optimize 
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the energy harvest of the inverter and PV system; 2) advanced communications 

technologies that enable distributed PV systems to communicate with power utilities, and 3) 

next-generation controls functionality that will allow utilities to manage networks of 

distributed power sources. 

1.2 Background 

As standards and living increase worldwide, the demand for energy in all forms also 

increases. Today the world faces three energy crises. The first crisis is that there is a high 

dependency on fossil fuels which leads to its exploitation for energy which in turn, can do 

significant damage to the environment at almost all stages of production and use. The 

second crisis is that we have consumed about half of the world’s total recoverable oil 

reserves and deforested significant areas of the world; neither of these practices is 

sustainable. The third crisis is that even with this global exploitation of fossil fuels and 

biomass for energy, large populations of humanity lack the energy access to even boil 

water. Yet we have energy. "Mostly thanks to the Sun, the world also has a renewable 

usable energy flux that exceeds 120 PW (8,000 times 2004 total usage), or 3.8 YJ/yr, 

dwarfing all non-renewable resources." [1] 
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Figure 1-1 Available Renewable Energy Compared to Global Energy Consumption [1] 

 

In Figure 1-1[2], boxes represent different forms of energy on the earth. We see the 

box of solar energy is 86,000 terawatts (1 terawatt = trillion watts), significantly greater 

than wind energy at 870 terawatts, geothermal at 32 terawatts, and human consumption at 

only 15 terawatts. Figure 1-2 represents the distribution of solar energy on the planet [3]. 

Most people on earth live where there is plenty of sun; South and Central America, Africa, 

Middle East, South Asia, and the Mediterranean all receive significant amounts of solar 

energy. The amount of solar energy collected at the blue dots in Figure 1-2 would equal 

18 terawatts if converted at only 9 percent efficiency.  

 

Figure 1-2 Total Primary Energy Supply from Sunlight 

 

An increasing number of countries are starting to deploy development plans for solar 
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power. Some instances are presented below. 

Japan started its residential photovoltaic program implementation “Monitoring 

Program for Residential PV system” from 1994 to 1996, followed by the “Program for 

the Development of the Infrastructure for the Introduction of Residential PV Systems”, 

which has been running since 1997. In June 2006, the Japanese “New National Energy 

Strategy” confirmed the political support for renewable energies. One of the largest 

programs was announced by the Tokyo Metropolitan Government which plans to support 

the installation of 1 GW of PV systems at 40,000 households in 2009 and 2010. The 

federation of Electric Power Companies of Japan (FEPC) announced that they intend to 

install PV plants with a cumulative installed capacity of 10 GW by 2020 [4].  

In China, the solar PV industry grew rapidly during the country’s 11
th

 Five-Year Plan 

(2006-2010). China’s solar wafer capacity in 2011 grew by 81% to reach 35 GWp ( pW  is 

the unit for the power at peak point) and silicon-based solar cell capacity in 2011 grew by 

113% to reach 37.3 GWp [5]. During the 12
th

 Five-Year Plan period (2011-2015), the PV 

installation will grow by tenfold to reach the target of 10 GWp [6].  

In the European Union (EU), the installations of photovoltaic systems increased 

more than ten times between 2001 and 2007 and reached 4.7 GW of cumulative installed 

capacity at the end of 2007. During the 23
rd

 European Photovoltaic Solar Energy 

Conference and Exhibition from 1
st
 to 5

th
, Sept. 2008, the new vision of the European 

Photovoltaic Industry Association for 2020 was presented. The Association aims to 

develop the sector in such a way that 6 to 12% of European electricity should then be 

generated with PV systems. This would correspond to 210 to 420 TWh of electricity or 

175 to 350 GWp installed capacity of PV electricity systems.  
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1.3 Overview 

This paper focuses on performance of a solar feeder with 30% penetration (ideal) and 

concomitant issues for practical solar system operation. Chapter 1 addresses the 

importance of solar energy and current PV development in the US and other countries. 

An introduction to the SEGIS project is also presented. Chapter 2 gives an introduction of 

PGE’s current commercial solar sites and a brief overview on PGE’s achievements on the 

SEGIS project. Chapter 3 represents the performance study of the solar feeder on power 

generation; feeder voltage and on-load tap changer (OLTC) under various conditions. A 

new method of islanding detection for distributed generation (DG) is also introduced with 

comparison with conventional methods in Chapter 4 and this is applied to a distributed 

PGE PV grid integrated site for a real case study. Chapter 5 presents more functions of a 

PV system at a high penetration level. Conclusions of the study are summarized in 

Chapter 6 followed by discussion of some ideas on future work.  

1.4 Statement 

This paper was required by PGE as a project report for the SEGIS program. I cited 

part III-V of the paper “Interconnection Control of Distributed Generation With 

Time-Synchronized Phasors” by Michael Mills-Price and Michael Ropp, etc. to introduce 

the synchrophasor technology in islanding detection application in the Appendix. To give 

a complete picture of the project, I listed the Appendix as Chapter 4 in the Table of the 

Contents. My contributions to the project are described in Chapter 3 and Chapter 5, 

which focus on solar feeder performance analysis, solar sites issues, and opinions on 

future high-penetration PV network. 
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Chapter 2 Solar Projects in PGE 

2.1 Introduction 

PGE is a fully integrated electric utility that was established in 1889. Today PGE has 

4,000 square mile service territory with a population of some 1,663,000 people and more 

than 818,000 residential, commercial and industrial customers. It is Oregon’s largest 

electric utility. Because Oregon is a very environmentally conscientious state, it should 

come as no surprise that PGE generates over 10% of its electricity with renewable 

resources. Such an aggressive posture puts the utility well on its way to meeting the 

Oregon Department of Energy’s Renewable Portfolio Standard (RPS) of 25% by 2025. 

[9] 

2.2 Achievements on Solar Energy 

As a pioneer in distributed solar energy resources, PGE has been working on solar 

projects for years. In 2003, PGE helped Kettle Foods, Inc., Oregon’s homegrown 

producer of KettleTM brand Potato Chips, to install a 114-kilowatt PV system on the roof 

of its Salem facility. The array – the largest in the Pacific Northwest when it was installed 

– produces clean, renewable energy in a state best know for its raining weather. It saves 

the firm $8,400 in energy costs each year and will avoid 2,500 tons of CO2 emission over 

the life of the system. [10] 
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Figure 2-1 Roof-top PV arrays at Kettle Foods building, Salem, OR 

 

In 2008, PGE was recognized by the Solar Electric Power Association (SEPA) as a 

utility leader in the integration of solar into its generation portfolio. PGE ranked eighth of 

the “2008 Top Ten Utility Solar Integration Rankings”, and fourth in the West in total 

solar megawatts. The annual rankings are based on the amount of solar electricity 

installed during the 2008 calendar year. PGE integrated more than 3.5 megawatts AC of 

solar power into its system, more than tripling the amount of solar resources connected to 

its system. Among the total solar capacity installed that year, there were two major solar 

installations in Oregon: the nation’s first solar highway project at the I-5/I-205 

interchange in Tualatin and the Northwest’s largest rooftop installation in Portland. 

The solar highway demonstration project, a collaboration by PGE, US Bank and the 

Oregon Department of Transportation, began supplying renewable power in December 

2008 to help light the way for drivers at the I-5 and I-205 interchange in Tualatin. The 

104-kilowatt photovoltaic system covers about 8,000 square feet — roughly the area of 

two footballs fields — and produces about 112,000 kilowatt hours a year, or 28 percent 

of the 400,000 kilowatt hours used to light the interchange; actual performance has been 
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better than predicted. [36] 

 

Figure 2-2 ODOT Solar High Way Project at the I-5/I-205 Interchange 

 

The largest rooftop solar project in the Pacific Northwest is a component of the 

SEGIS project. As introduced in Chapter 1, PGE is part of a team – led by Advanced 

Energy, and including industry experts Schweitzer Engineering Laboratories (SEL) and 

Northern Plains Power Technologies – that is working on a subset of issues linked to high 

penetration of a PV system that is integrated into the utility grid. 

The project managed by PGE and co-funded by U.S. Bank and ProLogis is also 

named the “ProLogis project”. As the world’s largest owner, manager and developer of 

distribution facilities, ProLogis, also owns the most roof space in the Portland region. It 

covers 10 ProLogis distribution warehouses in the Portland area with thin-film solar 

panels. The whole project is composed of three stages. 

The first stage of the project comprised three buildings in the industrial zone along the 

Columbia River near Portland International Airport. The combined solar footprint of this 
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installation is more than 464,000 sq ft (43,107 sq m), with a generation capacity of 1.1 

MW. 

Completed in December 2008, the installation took only three months from agreement 

to production ready. The PV panels use thin-film amorphous silicon technology and are 

integrated into the building roofs. Such panels are lighter than crystalline solar panels, do 

not require separate racking for support and allow for rapid installation. 

The second stage of the project included seven more buildings in three different 

ProLogis parks. This second-stage installation covered more than 906,000 sq ft (84,170 sq 

m) and added another 2.4 MW of generation capacity. Stage two began construction in 

March 2010 and came on-line in July 2010, using the same thin-film technology as the 

previous stage. 

Table 1-1 Distributed Commercial/Industrial PV Project of PGE 

Name of PV 

System 
Capacity Location 

Land 

Area 

 

In Service since 

Kettle Foods 114 kW Salem --- 2003 

ODOT Highway 104 kW 
I-5/I-205 

Interchange 
8,000 sq ft 2008 

Portland 

Habilitation 

Center
* 

858 kW Portland 

72,000 

sq ft 

Rooftop 

2008 

Prologis E1
*
, 

E2
*
 & P4

* 
1.1MW Portland 

464,000 sq ft 

Rooftop 
2008 

ProLogis P1
*
, 

P2
*
, J1, J2, J3, 

SSA, SSC 

500kW 

Portland, 

Clackamas & 

Gresham 

906,000 sq ft 

Rooftop 
2010 

 

In October 2009, the Solar Electric Power Association (SEPA) selected the first stage 

of this project as the winner of the SEPA Solar Business Achievement Award in the 

                                                           
* Distributed solar system on SEGIS project research feeder 
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category “Partnering for Success.” [11] 

 
Figure 2-3 ProLogis rooftop PV arrays (a) ProLogis buildings in Gresham (b) ProLogis buildings along the 

Columbia River 

 

2.3 Current Tasks 

As presented in Chapter 1, the SEGIS project has entered on its third stage. Also, 

PGE is involved in this third stage development with Advanced Energy. Overall, PGE 

continue to work through issues and other concerns relating to smart grid infrastructure. 

For example, some of the developments are necessary to support a fundamental shift in the 

nation's power infrastructure from a relatively small set of centralized generating resources 

to a highly distributed network of power sources of different types. These new topologies 

require grid support for capabilities such as low-voltage ride-through (LVRT), maintaining 

grid voltage and economical island detection [12]. For the SEGIS project, PGE and 

Advanced Energy selected a feeder that features 30% PV penetration. The project will 

investigate feeder performance monitoring and island detection testing. The feeder has 6 

of the monitored PV sites mentioned above with 2.5 MW interconnected to the grid. The 

total load on the feeder is 7.5 MW in summer and 8.5 MW in winter. Figure 2-4 is the 

one-line diagram of the feeder. 
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Figure 2-4 One-line diagram of the solar feeder 
 

2.4 Summary 

This chapter summarized PGE’s commercial distributed PV generations and presented 

the SEGIS project task on PGE side. The selected project feeder diagram was illustrated 

to show the feeder’s configuration. 
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Chapter 3 Performance of the Selected Feeder 

As the selected distribution feeder for the SEGIS project is the one with most number 

of commercial grid-integrated PV systems in Oregon, there is great interest regarding the 

power generation and voltage behavior at the feeder under high PV power output 

conditions. A system of supervisory control and data acquisition (SCADA), called 

GenOnSys, is used to monitor distributed generation system and collect system data. 

  

3.1 PGE Developed SCADA System – GenOnSys 

GenOnsys is a SCADA system developed by the PGE Dispatchable Standby 

Generation Department (DSGD). It is based on the Wonderware System Platform and 

InTouch human-machine interface (HMI) environment for its DGs. The system displays 

DG sites information and data from the server of the Energy Management System (EMS) 

which collects data from each distributed resource onto the screens in the command center 

in the form of numbers, graphics, and electrical schematics. Figure 3-1 shows the HMI of 

GenOnSys through WindowView application: Figure 3-1a is the PV site under monitoring, 

Figure 3-1b is the overview map of all distributed resources. In addition to PV systems, 

PGE is monitoring other DGs such as diesel/turbine backup generators (Figure 3-1c), wind 

turbines (Figure 3-1d), hydro power generators (Figure 3-1e), and a bio fuel power 

system(Figure 3-2f) as well. Another two tools of applications, Quary and Trend, support 

all data and parts of the graphics provided in this thesis (Figure 3-2). Query is a tool which 

Wonderware provides to find data of query conditions. Trend shows the graphic curve for 
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the chosen data tags in a time period selected by the user. 

    

(a)           (b) 

    

(c)           (d) 

  

Figure 3-1 PGE SCADA system – GenOnSys (a) PV System in GenOnSys (b) Overview of current DG of 

PGE (c) Diesel turbine generator (d) Wind turbines (e) Hydro power generators (f) Bio fuel power 
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generation system. 

 

(a) 

 

(b) 
Figure 3-2 Interface of Query and Trend (a) Query (b) Trend 
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3.2 Feeder Performance in PV Generation 

3.2.1 Feeder Location and Radian Characteristics 

 

Figure 3-3 The selected feeder location 

 

The feeder selected for the PGE SEGIS project is located along the Columbia River 

in North Portland (Oregon), which is close to Portland International Airport (Figure 3-3). 

When compared to the southern U.S., Portland’s higher latitude and high annual rain fall 

yield lower solar radiation. Figure 3-4 shows the solar energy potential map across U.S. 

Portland is in the area of approximate 336-362 watt hours/ft
2
 per day. 
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Figure 3-4 Solar energy potential in U.S. [38] 

The summer season in Portland is pleasant not only with a comfortable temperature 

but a whole season of nice sunny days. Figure 3-5 is the amount of power generation 

(kWh) of the PV system on the feeder for 2010. As expected, power generated in the 

summer season (Jun.-Aug.) acquired approximately 50% of the whole year’s generation 

profile.  

2010 Yearly Power Generation

0

50

100

150

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

M
W
h

 

Figure 3-5 PV generation amount of the feeder for Jul, 2010-Jun,2011 
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3.2.2 PV Generation Performance on the Feeder 

 The previous section presents a whole year’s electricity generation on the feeder 

according to the radiation flux. In this section, we discuss performance of the PV day 

generation based on various load conditions. 

 Since the loads on the selected feeder are mainly commercial, as illustrated in Figure 

3-6a, the peak period of a workday is 8 am to 4 pm. There is no peak period during 

weekend or holidays. Thus feeder load is close to flat (Figure 3-6b). As described in the 

last section, power generation in different seasons will have various effects on the feeder 

load. 

  

Figure 3-6 (a) Weekday load profile of the studied feeder (b) Weekend load profile of the studied feeder 

 

It is forward straight to assess that the penetration rate is in the range of 10%-60% 

depending on the time. In particular, the electricity generated by PV systems met the 

entire feeder load demand for a brief period on a Sunday afternoon, which means the 

whole feeder was energized by pure PV power (Figure 3-7). Although this period is less 

than 2 minutes, we are able to predict that PV generation will definitely be an option for 

the replacements of traditional fossil energy resource and play as a significant role in 
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renewable energy era. 

 

Figure 3-7 Load profile and PV generation on the maximum PV production day 

 

3.3 Voltage Impact of PV Generation of the Feeder 

The literature indicates clearly that integrated DG could impact the voltage of the 

distribution grid [13]-[18]. For the selected feeder, however, the voltage measured at the 

substation end is stable even in the condition where the whole feeder was supported by 

PV generation as described above. The fluctuation range is ±1%, as shown in Figure 3-8. 

Reference [19] pointed out that in the event that the DG produces more power than the 

local demand, the net power will flow upstream (towards the substation). If this reverse 

flow is sufficiently large, it will overcome the voltage drop caused by the reactive power 

flow and may result in an over voltage at the energy connection point (ECP). Since all PV 

systems on the studied feeder first energize the local load with very small surplus power; 

the continuous time is short, and the impact to the grid voltage can be neglected in this 
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case (Figure 3-9). Nevertheless, the voltage could be affected if the 30% PV penetration 

feeder was in an area with high solar energy potential such as south California, Arizona, 

or New Mexico as shown in Figure 3-5. In this case, utilities may have to consider the 

effect that PV generation causes to the feeder. Those effects could impact the feeder 

voltage so that it could go over or under the bounds, which is not accepted by utilities. As 

a result, they could meet a bottle neck to approach their RPS. Utilities in Portland, on the 

other side, even in Oregon, can develop their PV sites on any feeder up to 30% 

penetration without worries. It will not only benefit utilities but also benefits the public 

with more job offering and more financial incentives from federal, state, and utility 

sources etc. (Figure 3-10) 

 

Figure 3-8 Feeder voltage profile 
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Figure 3-9 PV system structure for SEGIS 

 

 

Figure 3-10 Financial incentives for renewable energy from Federal and Oregon 

 

 On the other side, an on-load tap changer (OLTC) at the 115 kV/13 kV bus 

transformer (Figure 2-4) in the substation also regulates the feeder voltage. A transformer 

tap is a connection point along a transformer winding that allows a certain number of 

turns to be selected [37]. Thus, a transformer with a variable turns ratio is produced, 

enabling voltage regulation of the output. Figure 3-11 shows the OLTC with reactive 

power profile on the substation primary wire for five work days. The 115kV/13kV bus 

transformer in the substation has ±7 turns of taps to be selected. The LTC changes the 

selector to respond the changing VAR consumed on the feeder. However, there is a limit 

of the voltage range that an OLTC can tune in the case of DGs interconnection. Plus, with 

the expected growth proportion of PV penetration, the power from DGs also impacts the 

voltage of a distribution grid, especially in rapid radiation changing days due to cloud 

movement, so that the OLTC may not respond in a timely manner. Currently, according to 

IEEE 1547, all DGs are expected to operate at a power factor of at least 85% (lead or lag) 
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[20]. IEC 61850-7-420 specifies that VAR control mode is an essential function for the 

coming new generation of smart inverters [21]. In another word, if the reactive power can 

be controlled and adjusted intentionally, the feeder voltage can be stabilized by VAR 

controlling. More details about power factor control and grid support function will be 

introduced in Chapter 5. 

 

Figure 3-11 OLTC reaction with VAR changing 

 

3.4 Summary 

This chapter introduced the SCADA system developed by PGE for monitoring and 

analyzing DGs status and performance. It summarized one year of PV generation on the 

SEGIS project selected feeder, which shows the best production season in Portland. It is 

also verified that the selected feeder has the potential to be a high-penetration feeder 

during sunny summer weekends with a load plot produced by MATLAB. Then the feeder 

voltage on that day was analyzed and a result that the feeder voltage was not impacted by 

PV generation was shown. Therefore, it is verified that the 30% PV penetration is safe for 

feeder voltage in the weather condition of Portland. 
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Chapter 4 Island Detection with Synchrophasor (See Appendix) 

This chapter is presented in the Appendix, since the author did not contribute to the 

technical content. It discusses about a new islanding detection method based on 

synchrophasor. It first gives the definition of an island and then introduces intentional and 

unintentional islanding. Second, it presents the conventional islanding detection method 

such as passive and active methods, communication methods and compares them to the 

synchrophasor method. It then explains the theory, followed by the simulation with 

EMTP and RTDS. Finally, a live demonstration is presented to show how well the 

method works. 
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Chapter 5 SEGIS Project for Grid Support and Micro-grid Operation 

High penetration of PV comes with more critical requirements for smart control of 

the distribution grid. The uncertainty and fluctuating output of a PV system due to the 

weather will impact the distribution grid significantly, and could even cause a blackout. 

An added energy storage system, which may reduce the impact of these conditions, is 

currently too costly to implement in a large scale manner. The SEGIS project has been 

developing technology to deal with these events which include, micro-grid operation, 

over-voltage and under voltage control.  

 

5.1 Micro-grid Operation 

The synchrophasor-based islanding detection method described in Chapter 4 is one 

of the major subjects of SEGIS. The purpose of this method is not only to avoid an island 

under current standard, but also to run the intentional island in a high-penetration DG 

network. The significance of the term “micro-grid” which was proposed in the “SEGIS 

Program Concept Paper” [7]is that in the condition of an outage or blackout, DGs in the 

micro-grid can still energize all loads in it. The operation of the micro-grid is an 

intentional islanding. A micro-grid can increase grid reliability and energy security by 

providing utilities with local power generation (e.g. distributed PV system) and backup 

storage. Enabling a portion of the distribution grid and critical facilities to operate 

independently from the larger grid necessarily reduces power outages and improves 

power reliability for customers. Smart micro-grids allow utilities to increase the overall 
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electricity supply quickly and efficiently through distributed generators. An example of 

PV smart micro-grid system operation is described as follows. 

In a neighborhood of some homes connected to a smart-micro grid, all of these 

homes have installed distributed PV systems and are generating electricity to the 

distribution grid. Suddenly, a power outage happens. The smart micro grid 

instantaneously disconnects from the grid and powers the homes connected to it. If the 

total output power is higher than the total load, the surplus power will energize a backup 

storage system or be curtailed by smart control. On the other side, the storage system will 

be initialized to support the load of the micro-grid. However, the load could increase even 

with the storage support, thus the micro-grid cannot support the full load. In this case, 

certain loads automatically get turned off in a pre-planned priority order, to prioritize 

some critical loads such as a hospital. When the power on the grid is restored, the smart 

micro-grid will automatically sync back the distribution grid and reconnect. This process 

can be achieved by PMU equipments which take advantage of synchrophasor technology 

to facilitate the smooth detection and transitions back to the grid of the islanded section. 

   

5.2 Grid support Function 

Because of the high penetration DG generation in an micro-grid, the DGs should be 

capable of supporting the voltage of the distribution network in either islanding 

operation or grid-tied operation. In another word, DGs should have the function of 

voltage stabilization. As presented at the beginning of this chapter，this function is more 

important in a high penetration PV micro-grid. It is regulates that the new generation 
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inverter must be capable of controlling the VAR output and curtailing the power output. 

In this section, two examples will be shown to explain how the two functions regulate 

the voltage in a high penetration PV distribution network. 

 

5.2.1 Over-voltage Mitigation 

All PV owners like sunny days, which means their PV system can generate more 

power for them to make benefits of energy sales. In a high PV penetration distribution 

feeder, however, this could cause adverse conditions which could negatively impact both 

utilities and customers. 

On a very high solar PV penetration feeder, the load on the feeder is low and when 

the sun suddenly comes up and becomes bright, the solar output rises significantly and 

quickly. The distribution feeder experiences a quick over-voltage. Traditional utility 

equipment often does not have time to react to such a quick and unexpected increase in 

voltage. Electrical equipment such as air conditioners, appliances and lighting will run in 

an inefficient level and their useful life will be shortened due to high voltage. An electric 

bill or increased maintenance cost could be high for a business or a home that regularly 

experiences higher voltage level. (Figure 5-1) In the case of a severe over-voltage, 

voltage exceeds the equipment ratings, instantaneous equipment failure can occur. Over 

time, if such conditions persist, the local utility may feel the need to limit the amount of 

renewable solar power that could be tied to a distribution feeder in order to prevent these 

voltage fluctuations, due to high penetrations of solar PV.  
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Figure 5-1 Overvoltage due to high penetration of PV 

 

By the developing an over-voltage control scheme, the over-voltage can be limited by 

utilizing the VAR mode of the inverter. When the voltage increases on the feeder, the 

VAR mode control scheme could dynamically respond by tuning the power factor to sink 

reactive power as needed to mitigate the voltage above the desired level. (Figure 5-2) 

 

Figure 5-2 VAR mode control to mitigate over-voltage 

 

In some instances, unfortunately, the voltage is not sufficiently lowered by sinking 

VAR only. In that case, the power generated by PV systems will be automatically cut 

back. Power curtailment is another feature that helps maintain grid stability. (Figure 5-3) 
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Figure 5-3 VAR mode control and Power Curtailment to mitigate over-voltage 

 

5.2.2 Under-voltage Mitigation 

On the other hand, an under-voltage condition on a feeder due to high penetration is 

not expected either. 

On the same high penetration feeder as we assumed in the last section, the load is 

high due to a hot day. At the beginning, the day is sunny and the PV output is high. A 

cloud rolls in quickly and the solar output drops as quickly and significantly. When the 

solar drops, the load on the feeder jumps to a high level，thus the feeder experiences a 

quick under-voltage. Traditional utility equipment often does not have time to react to 

such a sudden unexpected drop in voltage. Low voltage condition can lead to voltage 

sags or power outages. Outages cost utilities money (Figure 5-4) with the same 

consequences as an over-voltage. Over time, if the condition persists, the local utility may 

feel the need to the need to limit the amount of solar power that could be tied to their 

electric grid in order to prevent this voltage fluctuation due to high-penetration of solar 

PV. 
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Figure 5-4 Under-voltage due to high penetration of PV 

 

With the developing under-voltage control scheme, the inverters of a PV system can 

dynamically respond by sourcing reactive power as needed to mitigate sags of voltage 

below the desired level. The result is that households do not experience outages and the 

utility is not forced to limit solar power on its grid. (Figure 5-5) 

 

Figure 5-5 VAR mode control to mitigate under-voltage 

 

5.3 Summary 

 This chapter presented micro-grid operation in a high penetration PV condition and 

the grid support function of next generation inverters. It described the micro-grid concept 

and grid support function in the SEGIS concept paper [7] with examples to show how the 

future high-penetration PV reaches these requirements. Certainly, to realize these 
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functions, these technologies must be combined with other systems such as 

communication systems, energy management system and SCADA system as described in 

that paper.  
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Chapter 6 Concluding Remarks 

The SEGIS Phase III project was completed successfully with PGE, Advanced 

Energy, SEL, NPPT and SNL. This thesis discusses the main achievements that PGE 

obtained as one of the partners.  

6.1 Summary and Conclusion 

First, this thesis introduces all commercial distributed solar PV system that PGE has 

built between 2003 and 2010. These systems helped PGE to have the largest rooftop 

distributed PV systems in Oregon. Because of this success, PGE was picked as a partner 

of SEGIS project based on its initial success with PV system to help solve a series of 

problems in distributed solar PV systems. This led to the current task was proposed to 

enhance the ability of high penetration PV feeders for on low-voltage ride through, 

accurate and economical islanding detection, and voltage stabilization was proposed. 

Second, the thesis introduced the self-developed SCADA system, GenOnSys, as the 

main tool for system observation and monitoring, and data collection for the SEGIS 

project. With this SCADA system, the thesis analyzed the yearly performance of the 

feeder which was selected for the SEGIS project and verified that the feeder has the 

potential to support the whole feeder’s load. It compared the voltage profile on the full 

load support day and analyzed the reason for how the voltage was kept stable. As a result, 

it concluded that the VAR control is an essential function in future high PV penetration 

system. 

Third, the thesis described different traditional islanding detection methods and 
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proposed the one with synchrophasor-based technology for additional study. The 

synchronphasor-based islanding detection method has the low-voltage ride through 

ability depending on its restrain region and a time “buffer” before an island is captured. A 

laboratory test
*
 and a live demonstration were performed at a PGE site was performed 

and discussed in the thesis. Both of them obtain results close to the consequences, as 

expected outcomes. 

Last but not least, the thesis envisioned the characteristics of future smart micro-grid 

operations and applications. It also described how the VAR control mode supports the 

grid to stabilize the voltage in a high PV penetration distribution network. 

6.2 Future Research 

As described in the Appendix, research in a more accurate restrain region is required 

for diverse distributed renewable generation. To stabilize the voltage dynamically, a 

corresponding algorithm is also needed to control sinking or sourcing reactive power 

from or to the grid. For future smart micro-grid and smart grid operation, an economical 

and reliable storage system is absolutely necessary in the SEGIS or any other distributed 

renewable generation to ensure backup storage. As described in the SEGIS concept paper 

[7], a more advanced energy management system is required for the intermittent solar 

resource. Certainly, the development of control and secure communication for internal 

and external data transfer are essential and need to be developed for future SEGIS. 

PV generation is a fairly mature renewable generation technologies but has much 

opportunity to improve in efficiencies and cost reduction. We believe that humans should 

                                                           
*
 The lab simulation result of synchrophasor are performed by Advance Energy and NPPT in SEGIS team, 

which is described in the Appendix 
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be able to use light, which was first created by God, to not only brighten our lives, but to 

power our future. 
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Appendix Island Detection with Synchrophasor 

Islanding detection is one of the essential issues to consider in distributed generation 

systems. This Appendix provides a brief introduction on island definition, current 

standards and conventional islanding detection methods. Compared to the proposed 

islanding detection method, which is based on synchrophasor technology, conventional 

detection methods, which are based on the voltage, frequency, and phase at the ECP, have 

disadvantages. These conventional methods can meet current requirements of islanding 

detection, but the detection speed and accuracy for islanding detection is becoming more 

critical as the distributed systems connected to the grid increases. The SEGIS project 

demonstrated the synchrophasor detection method and showed its outstanding advantages 

on accuracy and ride-through ability. 

 

1 Islanding 

1.1 Island and Islanding Effect  

Islanding is “A condition in which a portion of the utility system that contains both load 

and distributed resources remains energized while isolated from the remainder of the 

utility system” [22]. In the power system, an island means a self-powered distribution 

network with DG and loads which is independent from the utility grid. Zone 1, Zone 2, 

Zone 3 in Figure A-1 are islands in different areas due to break tripping positions. Islands 

may be caused by feeder faults, frequency/voltage over limitation and oscillation. 

According to the mismatch between the load and power from DGs in an island, it could 
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either run below stable or experience an outage after being disconnected from the utility. 

Generally, the power sourcing and sinking in an island will lose balance as soon as it is 

disconnected from the distribution grid if the total power from DGs is less than the total 

loads in the island. On the another hand, however, an island is able to operate steadily if 

total power offering is equal to or larger than total load in the island, island effect or 

“islanding”. 

 

Figure A-1 Islanding illustration 

1.2 Intentional Islanding and Unintentional Islanding 

1) Intentional Islanding [23] 

In intentional islanding, an island operating section is planned in advance according 

to the DG size, system status before faults, and total local loads so the isolated system is 

able to run steadily after disconnecting from grid. Intentional islanding can improve the 

quality of supply indices and reliability [24] [25]. Aside from that, additional revenue to 

DG owners can be achieved due to the increased power supplied during network outage. 
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Their DGs are able to support the neighborhood according to their capacities and owners 

receive payment from the utility. Customer satisfaction can also increase due to the 

reduction of the frequency and duration of interruptions from outages in the distribution 

network [26].  

 

2) Unintentional Islanding 

Unintentional islanding occurs when a portion of the distribution system becomes 

electrically isolated from the remainder of the power system, yet continues to be 

energized by the DG connection to the isolated subsystem [27]. Unintentional islanding is 

unpredictable, happens occasionally, is unplanned, and may operate under uncertain 

range. All of which will lead to a series of safety problems to power system: 

a) It can not be determined whether DG continue to supply power to feeders since 

unintentional islanding is unpredictable and the territory is uncertain. The safety of 

the utility linemen is threatened because of power being supplied to the load side of 

disconnects and downed power lines. 

b) If the power mismatch between DG and load exists in the island, it will cause 

voltage or frequency fluctuation or over/under limitation, reduced power quality and 

damage utility to and customers devices. 

c) The changing of the current through protection systems could bring unexpected 

action of the protection device. 

d) Impact on reconnection: Utility protection relays are designed to detect a fault. 

Reclosers briefly disconnect power from the area around fault to allow the fault to 

clear, and then reconnect to provide continuing service. If islanding detection failed 
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and DGs remain on-line, the reconnection could fail and damage could happen to 

relay and DG equipment. 

To avoid danger and damage caused by unintentional islanding, most grid-connected 

DGs are required to have anti-islanding mechanism to protect the system when 

unintentional islanding happens. The current solution is to shut the DG off and disconnect 

it from grid in a short period. According to IEEE Std.1547-2003, the anti-islanding 

strategy should be executed within 2 seconds. 

 

1.3 Anti-islanding Strategy and Utilizing Islanding [28] 

Because of the damage unintentional islanding may cause to power system, there are 

two points of view for dealing with islanding: anti-islanding and utilizing islanding. 

Anti-islanding is a strategy made to forbid an island. This is important since 

islanding can lead to a series of negative impacts to the power system, and the danger is 

increasing with the growth of DG penetration in the grid. Therefore, IEEE Std. 999-2000 

and UL171, the first constituted standards, regulate such that DG equipment must adapt 

anti-islanding strategies to prevent islanding. According to the standard, all ECP of DG 

units on the feeder where a fault happens must trip under any fault condition. If some 

DGs still remain connected to the grid and form islands with certain reasons, islanding 

detection equipment should detect and trip offline those DGs. However, the disadvantage 

of this strategy is reduced reliability. Also, DG generation ability can not be fully utilized. 

This not only causes economic loss to DGs owners and customers but departs from the 

initial intent of DG, which is to improve power supply reliability. 
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To maximize the benefit of DG and enhance the capability of sourcing power, IEEE 

proposed a new standard – IEEE std.1547.2-2008, which provides technical background 

and application to support understanding IEEE std.1547-2003. It propagates rules to 

protect the electrical power system (EPS) from unintentional islanding and provides rules 

for testing the aggregate DG system. However, unlike the previous version, the new 

standard does not forbid all islanding but utilizes islanding operation as a new scheme to 

improve system reliability. Islanding utilization means forming an island based on a 

preset the control scheme. The DG system continues sourcing power to surrounding loads 

it can carry when an outage happens due to a fault or system maintenance, which could 

help to reduce the loss of outage, improve the quality of power supplying and reliability. 

 

2 Islanding Detection Methods 

Whether anti-islanding or utilizing islanding, islanding detection methods are always 

required for a PV integrated system. This section describes the current most popular 

international islanding detection standards, i.e. IEEE Std. 1547, and its main detection 

methods. 

 

2.1 Islanding Detection Standards [29] 

The IEEE Std. 1547 is applicable to a DG-unit with a rated power of less than 

10MVA and connected to the primary or secondary distribution system. As the world’s 

dominant standard for islanding detection, it is adopted by many of power utilities and 

inverter manufacturers. The IEEE Std. 1547-2003 states that an island shall be detected 
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and de-energized within two seconds from the island formation. Table A-1 lists detail 

requirements on various conditions of voltage and frequency. 

 

 

 

 

 

Table A-1 IEEE Std. 1547 Requirement for Islanding Detection 

Condition Voltage(V) Frequency(Hz) Cycles Time(s) 

A V<0.5
1

NV  
2

Nf  6 0.1 

B 0.5 0.88N NV V V   
Nf  120 2 

C 0.88 1.10N NV V V   
Nf  No cessation No cessation 

D 1.10 1.37N NV V V   
Nf  120 2 

E 1.37 NV V  
Nf  2 2/60 

F NV  0.7Nf f Hz   6 0.1 

G NV  0.5Nf f Hz   6 0.1 

1. NV  is the nominal phase voltage (line to neutral) 

2. Nf  is the nominal frequency of 60Hz 

 

2.2 Standalone Detection Methods 

The standalone detection method means an inverter based detection method, which 

includes passive detection methods and active detection methods. 

Passive methods use locally available quantities such as voltage or frequency. When 

islanding occurs the utility loses control of voltage magnitude and frequency (VMF). The 



 41 

export/import of active power ( utilityP ) and reactive power ( utilityQ ) from the utility 

makes it possible to detect islanding for passive detection methods, due to excursions in 

VMF. The passive methods do not affect the waveform of the high voltage. This is 

beneficial since it does not give rise to power quality issues such as voltage sags. Another 

benefit is that there is no need to install more equipment except the inverter itself for 

detection so that there is cost-swing. 

Nevertheless, in the case where load and generation are balanced, which includes no 

export/import of active and reactive power from the utility, the dependability of passive 

detection methods are not sufficient [30]. The so-called non-detection zone (NDZ) is 

much larger for passive than for active islanding detection methods (Figure A-2). Another 

problem for the passive detection method is the threshold value setting. The threshold 

must be beyond the VMF of normal operation and beneath the VMF of islanding. Since 

DG output power and the VMF of the grid may fluctuate when loads connect or 

disconnect, passive detection could trip the DG with the grid connected. Therefore, the 

methods are usually combined with active detection methods in today’s islanding 

detection methods. 

 
Figure A-2 NDZ in Over/Under Voltage and Frequency Detection Methods 
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Active islanding detection methods inject a small disturbance signal on voltage, 

frequency or phase to inverter control signal to cause the measured parameters to be out 

of the normal operation range at the ECP in the islanding condition. Since the inverter is 

current controlled when parallel operating, the output current is: 

sin( )inv invi I t         Eq.A-1 

There are three variables we can control to make the disturbance. Changing 
invI  would 

disturb voltage; control   effects frequency; manipulation of current and   impacts 

active and reactive power output. The disturbance is not obvious and will not trigger the 

islanding detection response when connected to the grid but it is very easy to observe as 

soon as islanding occurs. 

However, the problem with the active detection methods is its negative effect on 

power quality due to perturbation. Typically, in multiple-inverter systems or high PV 

penetration distribution networks, these disturbances can lead to false islanding detection. 

Active detection methods may have less NDZ than passive ones but the problem that 

exists is to detect islanding in a timely manner and this is still difficult if the power (real 

and reactive) mismatch between the source and the local load is close. 

 

2.3 Communication Detection Methods 

Communication methods utilize breaker status communication, open-phase detectors, and 

trip commands to detect islanding and isolate the source. This transfer trip scheme is 

simple in concept but must be adapted to topology changes in the power system. As more 

PVs are connected to the system, reliability suffers because of the additional 
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communications links. With this method, the only information available on the state of 

the distribution line between the inverter and the source is its connectivity, not signal 

magnitude and angle. Therefore, this method does not provide the information for future 

improvements where the inverter provides grid support functions. 

Based on the above, existing standalone detection methods may have: 1) have power 

quality issues, 2) negative impact on system stability or 3) loss of effectiveness under 

high penetration and 4) very high cost. The current communication approach is costly and 

destabilizing at a high penetration level. Table A-2 compares alternative islanding 

detection methods, including the proposed synchrophasor method. Although the cost is 

currently higher than standalone detection methods, the advantage of the synchrophasor 

method is not limited to islanding detection but other control features such as dynamic 

adaptive VAR support, micro-grid, synchronized reclosing, and low- voltage ride through, 

which are essential features for a future high penetration inverter-based grid integration 

system.  

 

Table A-2 Islanding Detection Alternative 

Technique Safety 
Power 

Quality 
Advanced Feature 

Infrastructur

e Needs 
Cost 

Standalone 
Methods 

Good Poor Static VAR support None $ 

Power Line 

Carrier 
Very Good No effect VAR support,  LVRT 

Power line 

carrier signal    

Modeling of 

system 

impedance 

$$$ 

Transfer-Trip Very good  No effect VAR support,  LVRT 

Fiber comm, 

Relay/breaker 

for 

disconnect , 

Known feeder 

config 

$$$$ 

Synchrophas-or 

based detection 
Very good 

Improves/ver

y good 

Dynamic adaptive VAR 

support, microgrid, 

synchronized reclosure, 

PMU data 

comm. channel      

Local PMU 

$$ 
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LVRT, Enables smart 

feeder operation 

device 

 

3 Synchrophasor-based Islanding Detection [32] 

The waveforms of alternating electricity were simplified with mathematical 

description by Charles Proteus Steinmetz’s paper presented in 1893. He called his 

presentation a phasor. A phasor is a complex number that represents both the magnitude 

and the phase angle of the sine waves found in electricity. Phasor measurements that 

occur at the same time are called “synchrophasors”, as are the phasor measurement unit 

(PMU) devices that allow their measurement. In typical application phasor measurement 

units are sampled from widely dispersed locations in the power system network and 

synchronized from the common time source of a global positioning system (GPS) radio 

clock. Synchrophasor technology provides a tool for system operators and planners to 

measure the state of the electrical system and manage power quality. Synchrophasors 

measure voltages and currents at diverse locations on a power grid and can output 

accurately time-stamped voltage and current phasors. Because these phasors are truly 

synchronized, synchronized comparison of two quantities is possible, in near real time. 

These comparisons can be used to assess system conditions. [31] The 

synchrophasor-based islanding detection method takes advantage of this technology to 

detect an islanding in distributed grid integration system. 

The synchrophasor-based islanding detection method overcomes the limitations of 

conventional methods presented above. The approach is not complicated to understand. 

Figure A-3 gives a brief concept of this synchrophasor-based detection for an 
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inverter-based DG. The relays in Figure A-3 collect voltage phasor measurements from 

utility power system reference source (e.g. substation) and at local generators system 

respectively and send them to a synchrophasor vector processor (SVP) at a specific rate 

(e.g. 60 messages per second). The SVP calculates the difference between the local and 

remote synchrophasor angle values, which is defined as 
k  in (1): 

(1) (2)

k k kV V                        (1) 

 where: 

  (1)

kV  and (2)

kV  are the positive-sequence voltage angles of Relay 1 and 

Relay 2, at the k processing interval. 

 

Figure A-3 Synchrophasor-based islanding detection system layout 

The change of k , with respect to time, defines the slip frequency, kS , and the 

change of slip frequency with respect to time defines the acceleration between the two 

terminals, kA , are defined as follows: 

1( )
360

k k k

MRATE
S                             (2) 

1( )k k kA S S MRATE                           (3) 

 where: 
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kS  is the slip frequency at the k processing interval. 

   
kA  is the acceleration at the k processing interval. 

   MRATE is the synchrophasor message rate. 

The islanding detection first compares the angle difference (1) to a threshold. For the 

islanded system, any slip between the local and remote systems results in a growing angle 

difference. In a short time, this steadily increasing change causes the angle to exceed the 

threshold. When the threshold is crossed for a preset time, an islanded condition is 

declared.  

The second component combines slip and acceleration in a linear relationship. Figure 

A-4 shows the islanding detection characteristic. In steady state, slip and acceleration 

between the measured points are zero. When DG separates from the bulk power system, 

generally, there is both slip and acceleration. Either can push the operating quantity into 

the operate region of the characteristic. The linear relationship between the slip and 

acceleration characteristics results in an algorithm that operates for values below the 

individual thresholds when both are changing simultaneously. For example, if the 

acceleration and slip change by the same amount, the operate region enters along a 

diagonal path.  
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Figure A-4 Slip-acceleration islanding detection 

 

4 Simulation Result for Synchrophasor-based Islanding Detection [32] 

To verify the synchrophasor-based detection algorithm, our SEGIS team took 

advantage of Electromagnetic Transients Program (EMTP) and Real Time Digital 

Simulator (RTDS
®

) simulators for a variety of system configurations and an inverter 

based DG model, respectively.  

 

4.1 EMTP Simulation 

As discussed previously, one disadvantage in traditional islanding detection methods 

is the condition where the VMF is affected by system disturbance such as load changing. 

Some traditional islanding detection methods will trip the connection incorrectly. In this 

case, we simulated different cases including multi-inverter, multi-inverter case with 

engine-generator set, system-wide frequency event and large, local load-switching event. 

(Table A-3) The purpose of the simulation was to provide guidelines on the constraint 

regions which determine whether an islanding happens or not. As a model, the IEEE 
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34-bus radial distribution feeder was used. 

Table A-3 Cases Simulated in EMTP 

Case No. Condition Desired Result 

1 Multi-inverter case Detect and trip 

2 Multi-inverter case with engine-generator set Detect and trip 

3 System-wide frequency event Ride through 

4 Large, local load-switching event Ride through 

 

Case 1 involved 18 PV inverters—one at each three-phase load bus in the 34-bus 

feeder. Case 2 involved 12 PV inverters and a 1 MVA engine-generator set using a 

synchronous generator. This is a difficult case for islanding detection because the slow 

dynamics of the engine-generator set resemble those of the grid from a synchrophasor 

standpoint. In Case 1 and Case 2, the real and reactive power were kept closely matched 

(to within about 0.2 percent), and the effective quality factor of the load was kept at or 

above 1.0. A higher quality factor makes it more difficult for the traditional frequency 

shift approach to detect an island because it takes more energy to move an islanded 

frequency away from the resonant frequency of the load. In Case 3, the frequency 

trajectory observed in the Italian blackout of 2003 was scaled to 60 Hz and used to 

simulate a wide-area frequency event in which a ride through is desired [33]. Finally, in 

Case 4, a large motor was placed distally on the feeder and switched on during the 

simulation. Case 4 was another instance in which it was desired that the local system not 

trip. 

Figure A-5 aggregates the results, showing a scatter plot of the peak slip and 

acceleration values obtained in these cases. The red squares in Figure A-5 illustrate the 

slip and acceleration points that should be outside of the connected region and, therefore, 

result in a trip for Cases 1 and 2. The green asterisks represent the slip and acceleration 
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values from Case 3 and Case 4 that must lie inside the connected region. The scatter plot 

provides guidance in selecting the connected versus islanded regions, which are shown in 

Figure A-4.  

 

Figure A-5 Plot of the result of EMTP modeling and the recommended slip and acceleration boundaries 

 

Most of the ride-through cases (green asterisks) lie close to the origin as would be 

expected; however, there is an outlier. One of the large motor-switching cases shows a 

large negative slip with no acceleration. Also, although one set of the detect-and-trip 

cases (red squares) is located in the upper-right portion of the plot, there are also a few 

detect-and-trip cases that are quite close in proximity to the ride-through cases on the slip 

horizontal axis point, near 1 Hz. These points, which represent the engine-generator set 

case, present difficulties in designing appropriate constraint regions. The generator 

dynamics resemble those of the grid closely enough that islanding threshold selection is 

more challenging. These results indicate that when an engine-generator set is present, 

different thresholds are necessary. This detection challenge could be overcome with 

additional signal processing, statistical analysis, or pattern recognition. Based on the 

results of this section, the typical setting of the restraint region is a maximum acceleration 

of 5 Hz per second and a maximum slip of 3 Hz. 
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4.2 RTDS Simulation 

After the restraint region is set, an inverter based DG model was developed and 

tested using the RTDS. As shown in Figure A-6, the inverter source on the left drives the 

distribution portion of the system through the point of common coupling at Bus B1. The 

main power system is to the right of Circuit Breaker CB1 and Bus B2. During an islanded 

condition, CB1 is open.  

 
Figure A-6 Inverter-based system model for RTDS 

 

In order to check for the most difficult case, the local load is closely matched to the 

DG. The grid is modeled as an infinite source behind small impedance. Under normal 

conditions in this case, no power is imported from the grid. 

When connected to the grid, the voltage and frequency are maintained by the grid 

and the DG will supply constant current and inject maximum power. Presently, most DGs 

inject maximum real power, and the reactive power is driven to zero by the inverter [34]. 

When disconnected from the grid, the inverter operates in an islanded condition. In this 

case, the frequency is determined by the load resonating frequency [35]. In the RTDS 

islanding simulations presented in this thesis, the ratio of generation power to load power 

is in the range of 0.95 to 1.05. Such cases are hard for traditional systems to detect 
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because of the small mismatch in frequency. 

Figure A-7 shows the simulation setup. The RTDS enables use of relays and controls 

coupled to a software model of the inverter and electric power system. Figure it shows 

the software model of the inverter and electric power system. In Figure A-8, the PV 

panels (left) are modeled with a constant source. The dc signal is modulated by the 

switch-mode inverter, consisting of six gate turn-off thyristor-diodes (GTO-diodes). 

There are two GTO-diodes for each phase. Each GTO-diode switch is controlled by a dc 

signal to either a conducting or non-conducting state. The right portion of Figure A-8 

shows the local distribution load and the breaker connecting to the grid. The breaker in 

Figure 8 is the same as CB1 in Figure A-6.  

 

Figure A-7 RTDS simulation setup 

 

 
Figure A-8 System Diagram from RTDS 
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Because of their electronic control, inverter-based generation sources respond 

quickly to changes in the power system, as compared with a synchronous machine. The 

frequency of a synchronous machine is constrained by the machine inertia and the 

dynamics of the generator mechanical controls. In contrast, the inverter has no 

mechanical constraints. When the distribution system islands, the PV inverter slows its 

frequency in response to the reference signal control algorithm. These control algorithms 

are not limited by mechanical constraints. 

For this test, closed-loop simulation was performed by connecting the PMUs to the 

RTDS and generating the required time-synchronized measurements with the inverter and 

power system numerical models. The measurements from the PMUs were sent to the 

control device, where the synchrophasor-based islanding detection algorithm was 

implemented. Once the algorithm detected an island and output a trip signal, the signal 

was wired back into the RTDS to open the breaker, thus isolating the inverter from the 

local island. Two cases were considered—closed and open CB1. 

 

A. Closed CB1 

Figure A-9 shows the positive-sequence voltage angle difference between the local 

and remote sites when CB1 is closed. The display screen shows the bus voltage of both 

the local and remote locations, along with the reference frequency of the grid. 
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Figure A-9 Synchroscope display for connected system 

 

B. Open CB1 

Figure A-10 shows the angle difference and the slip frequency between the local and 

remote sites when CB1 is open and local load is closely matched with the DG output. 

During the disconnected state, the angle difference changes as the two systems slip in 

frequency with respect to each other. Because the two PMU locations are electrically 

close to each other, a threshold of 10 degrees is selected for the angle difference. A 

system study may be necessary to properly set this threshold to avoid a false island 

declaration.  
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Figure A-10 Synchroscope display for disconnected state 

 

Figure A-11 shows the plot of slip versus acceleration, which is obtained from the 

PMUs in the RTDS simulation. The slip threshold is set to 3 Hz, and the acceleration 

threshold is set to 5 Hz per second, according to the EMTP-RV simulation results. Setting 

larger thresholds makes the system more secure; the system is less likely to false trip. 

Setting smaller thresholds makes the system more reliable because it is more likely to trip 

for an islanded case. Given the distribution bus location of many PV systems and the 

nature of the inverter, it is expected that slip and acceleration can have wide swings with 

very short time duration. In Figure A-11, Points 1, 2, 4, 5, and 6 are in the islanded region 

and can be used to disconnect the inverter from the local island. The time increment 

between each point is equal to the synchrophasor message period of 16.67 milliseconds 
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(60 messages per second). Although the signals swing into the islanding characteristic, it 

is for a very short time. For example, even if Point 3 were in the islanded region, the total 

time spent outside of the connected constraint region is only 80 milliseconds. This is 

different than a synchronous-machine DG system. For synchronous machines, the slip 

and acceleration sustain beyond the thresholds for longer times [34]. This is because of 

the system inertia and rotating characteristics of the synchronous machines. For 

inverter-based DG with power electronic control, the slip and acceleration change much 

faster. 

 

Figure A-11 Plot of slip and acceleration values 

 

For this simulation case, the angle difference output detects the island, demonstrating 

the system provides a reliable islanding detection method for inverter-based islanding 

detection. When generation power is close to load power, the island is eventually 
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detected, because some slip persists between the systems. 

The behavioral characteristics and response times of the inverter-based DG are 

significantly different from traditional synchronous-machine DG because of the power 

electronics involved. Figure A-12 shows the combined angle difference, slip, and 

acceleration results from the RTDS. Notice the fast nature of slip and acceleration 

transients. They settle within 200 milliseconds. For security, a pickup timer on the 

slipacceleration islanded indication is set to greater than 200 milliseconds. For this case, 

the slip-acceleration condition does not result in the declaration of an islanded condition. 

 

Figure 12 Angle difference, slip, and acceleration results from the RTDS 

 

The slip settles to a non-zero value; therefore, the angle integrates until it reaches the 

10-degree threshold and declares an islanded condition. Fig. 10 represents settling to a 

0.02 Hz mismatch. In this case, the angle reaches a 10-degree threshold, and an island is 

declared at 700 milliseconds. This is well within the IEEE 1547 limit of 2 seconds. 
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5 SEGIS Demonstration 

The SEGIS live demonstration took place at one of the Prologis sites described in 

Chapter 3. Our SEGIS team selected a 260kW inverter and built a mobile 

resistive-inductive-capacitive (RLC) test load rig which could island the inverter at full 

power output without disconnecting real customer loads. Relays that include PMU 

function were installed at the picked inverter, as well as at the governing substation. The 

islanding detection device (i.e. SVP) was also integrated into the inverter which will 

instantly and stably receive PMU data from endpoint to determine if the PV system was 

connected to the grid. Figure A-13 shows the system configuration. The PMU relay in the 

substation communicates to local SPV through 900 MHz radio. The PMU reference used 

is from a remote substation which works as a clock. The total latency is about 50 ms. 

 
Figure A-13 Live demonstration system configuration 

 

At the beginning of the demonstration, the anti-islanding device was disabled to set 

the rig load appropriately. The mobile RLC load test rig was tuned to 60 Hz at the 

representative available output power level of the PV system. During this time, the PV 

and tuned RLC load were connected directly to the grid. The grid-side currents were 



 58 

monitored and verified to be zero to ensure the system was properly tuned. Then the 

anti-islanding was enabled and the island was formed with opening the switch. The 

switch status was set to logic 1 to an oscilloscope and the islanding event was detected by 

disrupting the output of the inverter when the anti-islanding logic determined that the slip 

or acceleration passed the thresholds developed for islanding.  

 

Figure A-14 Live anti-islanding demonstration results 

 

Figure A-14 shows the islanding 

event. The blue trace shows the start 

of the islanding event. The green 

band was the output power of the 

inverter and was controlled by the 

relay when an island event was 

detected. The time required to recognize and respond to the islanding event for this case 

was about 1.3 seconds. The result was slower than the lab testing. This could be due to 

the system parameters setting and the threshold setting. The team believes that the further 

improvement on restrain region threshold will bring more accurate and much faster on 

event detection than what was demonstrated at the Prologis site. 

6 Conclusion 

Synchrophasor-based islanding detection is one of the most efficient methods for 

anti-islanding. In this project, it was shown that it has good low-voltage ride through 

ability for system disturbance or unexpected fault. There is also low impact to the utility 
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system in comparison with active detection methods. However, a better wide-area control 

algorithm and a more accurate restrain region threshold need to be developed in order to 

enhance this potential technology for use within future high-penetration networks. 
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