
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 6-21-2013

Computer Aided Design of Permutation, Linear, and Computer Aided Design of Permutation, Linear, and

Affine-Linear Reversible Circuits in the General and Affine-Linear Reversible Circuits in the General and

Linear Nearest-Neighbor Models Linear Nearest-Neighbor Models

Ben Schaeffer
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Other Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Schaeffer, Ben, "Computer Aided Design of Permutation, Linear, and Affine-Linear Reversible Circuits in the
General and Linear Nearest-Neighbor Models" (2013). Dissertations and Theses. Paper 986.
https://doi.org/10.15760/etd.986

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/986
https://doi.org/10.15760/etd.986
mailto:pdxscholar@pdx.edu

Computer Aided Design of Permutation, Linear, and Affine-Linear Reversible Circuits

in the General and Linear Nearest-Neighbor Models

by

Ben Schaeffer

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Electrical and Computer Engineering

Thesis Committee:

Marek Perkowski, Chair

Douglas Hall

Xiaoyu Song

Portland State University

2013

© 2013 Ben Schaeffer

i

Abstract

 With the probable end of Moore's Law in the near future, and with advances in

nanotechnology, new forms of computing are likely to become available. Reversible

computing is one of these possible future technologies, and it employs reversible circuits.

Reversible circuits in a classical form have the potential for lower power consumption

than existing technology, and in a quantum form permit new types of encryption and

computation.

 One fundamental challenge in synthesizing the most general type of reversible

circuit is that the storage space for fully specifying input-output descriptions becomes

exponentially large as the number of inputs increases linearly. Certain restricted classes

of reversible circuits, namely affine-linear, linear, and permutation circuits, have much

more compact representations. The synthesis methods which operate on these restricted

classes of reversible circuits are capable of synthesizing circuits with hundreds of inputs.

In this thesis new types of synthesis methods are introduced for affine-linear, linear, and

permutation circuits, as well as a synthesizable HDL design for a scalable, systolic

processor for linear reversible circuit synthesis.

ii

Dedication

 For my mother.

iii

Acknowledgments

 I would like to express my thanks to several people for their support: my advisor

Marek Perkowski for his encouragement to explore new ideas, committee members

Douglas Hall and Xiaoyu Song for their time and attention, Addy Gronquist for his

willingness to tackle a SystemVerilog linear reversible circuit synthesis project with me,

Robin Marshall for his ideas on digital design, and everyone from the Portland Quantum

Logic Group for their feedback.

iv

Table of Contents

Abstract ... i
Dedication .. ii
Acknowledgments .. iii
Table of Contents ... iv
List of Figures .. v
List of Tables ... vii
1 Introduction .. 1
2 Reversible Circuits and Their Mathematical Representation 6

2.1 Overview ... 6
2.2 Classical Reversible Circuits .. 7
2.4 Classical Reversible Gates .. 13
2.5 Classes of Classical Reversible Circuits ... 15

3 Synthesis Methods for Permutation, Linear, and Affine-Linear Reversible

Circuits ... 17
3.1 Discussion ... 17
3.2 Permutation Reversible Circuit Synthesis .. 18
3.3 Linear Reversible Circuit Synthesis ... 20

3.3.1 Discussion .. 20
3.3.2 Gaussian Elimination-based Linear Reversible Circuit Synthesis 22
3.3.3 Convergence of Gaussian Elimination-based Linear Reversible Circuit

Synthesis... 25
3.3.5 Linear Reversible Circuit Synthesis in the General Model 28
3.3.6 Linear Nearest-Neighbor Gaussian Elimination (LNNGE) 31
3.3.7 Linear Nearest-Neighbor Alternating Elimination (LNNAE) 35
3.3.8 Search Methods for LNNGE and LNNAE .. 41
3.3.9 Linear Reversible Circuit Synthesis Tests ... 43
3.3.10 Related Linear Reversible Circuit Synthesis Methods 46

3.4 Affine-Linear Reversible Circuit Synthesis .. 52
3.4.1 Optimal LNN Affine-Linear Reversible Circuit Synthesis Study of the 4×4

Input Reversal Circuit .. 53
4 LNNAE Hardware Design .. 57

4.1 Overview ... 57
4.2 Initial design ... 59
4.3 Hardware Implementation Discussion .. 60
4.4 Systolic Implementation ... 66
4.5 Results ... 71

Conclusion ... 73
References .. 75
Appendix .. 81

Appendix A: Source. ... 81
Appendix B: 16 Fundamental Types of Linear Reversible Circuit Synthesis. 132
Appendix C: Systolic 2D Shift Register LNNAE Data Flow 133
Appendix D: Pseudo-method Test Results .. 153

v

List of Figures

2.1 Relationships between the classical reversible circuit classes 9

2.2 An example of Boolean invertible linear system of equations matrix (a) and a

symbolic matrix representation (b) corresponding to a CNOT gate 10

2.3 An example matrix product representing a cascade of two CNOT gates which

produces the identity matrix.. 10

2.4 Matrix representation of a SWAP gate composition of three CNOT gates. 11

2.5 Permutation matrix representation of a CNOT gate. .. 12

2.6 Schematic and truth table representations for the NOT gate, CONTROLLED-NOT

(CNOT) gate, TOFFOLI gate, and SWAP gate.. .. 13

2.7 Schematic and truth table representation of the FREDKIN gate.. 14

3.1 An example permutation reversible circuit. .. 18

3.2 A comparison of different synthesis methods which perform an input reversal

permutation ... 20

3.3 Employing Gaussian Elimination to synthesize linear reversible circuits 22

3.4 An invertible matrix after the first iteration of Gaussian Elimination 26

3.5 Example “Algorithm 1” search to find identical multibit numbers 29

3.6 A comparison of “Algorithm 1”[21] and “Modified Algorithm 1” 30

3.7 LNNGE synthesis of a "distance 2" CNOT gate .. 35

3.8 Matrix representation of LNNAE algorithm flow .. 36

3.9 LNNAE synthesis of the 3×3 input reversal function ... 38

3.10 LNNAE algorithm flow when synthesizing of the 3×3 input reversal function 39

3.11 Penalty matrix based on quadratic distance from matrix diagonal 47

vi

4.1 Block diagram of proposed LNNAED recursive search system 58

4.2 Block diagram of the initial LNNAE coprocessor design which used dual row and

column matrix access lines ... 59

4.3 Robin Marshall's systolic 2D shift register LNNAE design 62

4.4 Redesigned systolic 2D shift register LNNAE matrix .. 65

4.5 Redesigned systolic 2D shift register LNNAE system. .. 65

4.6 Organization of the LNNAE system testbench (designed by Addy Gronquist) 70

vii

List of Tables

3.1 Comparisons of LNN linear reversible circuit synthesis methods (average adjacent

CNOT gate counts) ... 44

3.2 Iterative deepening synthesis tests on 100 16×16 functions using “Best of Eight”

search (average adjacent CNOT gate counts) ... 44

3.3 Frequency distribution of all optimally synthesized LNN linear reversible functions

up to size 5x5 .. 46

3.4 An example of how optimal linear reversible circuit synthesis of the input reversal

function does not necessarily lead to an optimal affine-linear reversible circuit 56

4.1 Truth table for initial LNNAE coprocessor kernel block ... 60

4.2 Truth table for redesigned systolic LNNAE kernel .. 63

1

1

Introduction

 Digital technology research explores new approaches to increase performance,

reduce materials needed for manufacture, and reduce power consumption. At this time

some people in the field are predicting the end of Moore's law within the next ten years

[1]. With ongoing improvements in nanotechnology, new possibilities may become

available. Reversible computing, either in a classical or quantum form, may become a

future technology for niche digital applications. Other terms for reversible computing in

the literature are reversible logic, adiabatic computing, and information-lossless

computing.

 Classical reversible computing is of interest because of its potential for low power

consumption and implementation on a nanoscale. Unlike digital technology based on

irreversible circuits, a reversible computer composed of reversible circuits can dissipate

energy below the Landauer limit, which has recently been experimentally verified [2].

Introduced formally by Landauer [3] and later defended by Bennett [4], the Landauer

limit is based on the principle that irreversible computing implies a physical irreversible

process, and this process necessitates the dissipation of at least kTln2 energy to erase a bit

of information to avoid an increase in entropy. Permitting an increase in entropy in a

system leads to increasing disorganization from a thermodynamics perspective. In

engineering terms irreversible computing devices have a minimal requirement for heat

dissipation to avoid electrical, material, and chemical changes which would result in

system failure. Therefore ordinary irreversible digital devices will always produce some

waste heat, even if all circuit elements are wired together with superconductive material.

2

 After years of research classical reversible computing technology still has not

become commercially viable. One recent experiment [5] demonstrated how classical

reversible computing can work on a scale significantly larger than nanoscale using

existing electronics technology, and, though successful, the experimental results clarify

why industry has not adopted a classical reversible approach. The experiment

demonstrated a charge-based RC circuit that reversibly stored a low and high value at a

cost of a fraction of the Landauer limit while delivering 100 times the Landauer limit.

Unfortunately this required a clock frequency under 900 Hz and did not demonstrate any

kind of gates with multiple inputs and outputs. Complex Boolean functions typically

require significantly more gates to be implemented in reversible circuits compared to

traditional digital synthesis, so it is difficult to judge how well the experimenter's

approach would fare when high gate counts would significantly reduce both performance

and energy savings. From the time classical reversible computing was postulated digital

technology has improved steadily, and currently there are many inexpensive low-power

competing devices available. While these devices still are far above the Landauer limit in

waste energy, they use a fraction of the energy per bit that high-performance computers

use. Perhaps future advances in optical, molecular, or DNA [6] technology will lead to

practical classical reversible computer implementations.

 Quantum computing is of interest because it permits new forms of computation.

While it could be said that the quantum phenomena employed occur on a small scale and

operations are performed at extremely low power levels, the general consensus is that

quantum computers require some kind of a hybrid system for measurement and

performing algorithms. Reversible quantum computing circuits employ both classical

3

reversible and quantum gates, making it possible to implement algorithms that take

advantage of quantum superposition and entanglement. Using quantum superposition, n

quantum bits, or qubits, can be treated as if they represent 2
n
 binary words of width n.

Once a superposition of qubits is established both quantum and quantum realizations of

classical reversible gates can be applied to increase the probability that a particular word

of interest will be measured. Quantum entanglement makes new forms of encryption

possible which cannot be decrypted without the original encryption key.

 Quantum computing is in its infancy and only a few devices, such as the Quantum

Random Number Generator [7] and the D-Wave One [8] adiabatic quantum computer,

are commercially available. At this time it still is unclear what architecture would be the

best candidate for realizing the full potential of quantum computing. Multiple

architectures have been proposed for this purpose including quantum dot, scalable ion-

trap, nuclear magnetic resonance (NMR), Josephson junction, and linear optical quantum

computing [9, 10].

 In the general model of quantum computing, each qubit can directly interact with

every other qubit. While this model would be ideal, some proposed quantum computing

architectures have arrangements which restrict the gates they permit. Restricted qubit

arrangements require quantum circuits to be synthesized in such a way that all gates

employed are permissible for the target architecture. One restricted qubit arrangement

model which has received attention [11-19] is the linear nearest-neighbor (LNN) model

in which qubits reside in a one-dimensional array and interact only with their nearest

neighbors. The LNN model is applicable to forms of quantum dot, NMR, and

measurement-only optical quantum computers. A complication of using restricted qubit

4

arrangements is that in order to use the output from most reversible circuit synthesis

programs a secondary synthesis step is required. For any significant number of wires the

original synthesis will not be optimal and therefore performing secondary synthesis runs

the risk of getting further away from an optimal synthesis. Currently the most advanced

published work [20] on attempted optimal synthesis is limited to all four-wire LNN

arbitrary reversible circuits.

 Even in the event some quantum computing architecture becomes viable, there is

no consensus on how best to approach synthesis of reversible and quantum circuits for

systems with 100 to 1000 qubits. For reasonable synthesis times, functions need to be

fully specified in RAM. To fully specify a 32×32 arbitrary reversible circuit requires 2
32

32-bit words which amounts to 64MB of RAM, a size which is found in servers today.

Unfortunately increasing the number of qubits by one requires double the amount of

RAM, so fully specifying a 64×64 arbitrary reversible circuit does not appear to be viable

in the foreseeable future. Linear reversible circuits are an important subset of arbitrary

reversible circuits that can be compactly represented and quickly synthesized [21] in the

general model. Unfortunately, to convert these linear reversible circuits to the LNN

model typically requires a significant increase in gate count.

 The main focus of this thesis is the introduction of new scalable synthesis

methods to directly synthesize linear reversible circuits in the LNN model. The

motivation is to answer some basic questions about these reversible circuits in general

and, more specifically, to create synthesis methods for future quantum computer

technologies such as forms of quantum dot, NMR, and measurement-only optical

quantum computers. My new methods are compared with exact optimal synthesis of all

5

five-wire LNN linear reversible circuits and with older linear reversible synthesis

methods for circuits representing 8 to 64 qubits. The LNN development of these new

methods has led to some insights on how general linear reversible circuits can be better

synthesized, as well as considerations for affine-linear reversible circuit synthesis in both

the general and LNN models.

 The secondary focus of the thesis is a synthesizable HDL design for a scalable,

systolic processor that performs LNN linear reversible circuit synthesis. Unlike the

development of new synthesis methods referred to above which are my own design, the

HDL work was done in conjunction with other PSU ECE students. The HDL design was

a redesign of an architecture suggested by Robin Marshall in a discussion I had with him

and Dr. Marek Perkowski. Later the HDL design was implemented with the help of Addy

Gronquist, who created assertions, testbench routines, and demonstrated compilation

using a Mentor Graphics Veloce emulator.

6

2

Reversible Circuits and Their Mathematical Representation

2.1 Overview

 This section will introduce several key underlying concepts: reversible circuits,

matrix representations of interest, classical reversible gates, and classes of reversible

circuits. Later sections will introduce new methods for linear reversible circuit synthesis

in the linear nearest-neighbor (LNN) model and compare them with optimal synthesis for

circuits with five wires.

 In the LNN model data elements are arranged in a one-dimensional array with

interactions limited to adjacent data elements. The LNN model applies to forms of linear

ion trap, quantum dot, NMR, and measurement-only optical quantum computers.

Although there have been several articles [15-18] written about synthesis in the LNN

model, the majority of synthesis methods use the general model. One advantage of

approaching synthesis in the LNN model is that the results can be extended to more

complex models, and the general model may be unrealistic for a scalable quantum

computer [23].

 There is essentially one work [21] which laid down the foundation for efficient

linear reversible circuit synthesis in the general model, and this method will later be

shown to map poorly to the LNN model. An outgrowth of my LNN specific synthesis

methods was the development of approaches to improve on general model synthesis of

linear reversible circuits.

7

2.2 Classical Reversible Circuits

 In the broadest sense a reversible circuit is a physical device which is restricted to

performing invertible operations. All classical reversible circuits can be represented by

permutation matrices of dimension 2
N
×2

N
 as illustrated in Figure 2.5. Because reversible

circuits do not erase information, they can achieve energy loss values below the Landauer

limit kTln2 [2, 3].

 A classical reversible circuit is a device which implements a mapping of inputs to

outputs that uses the same set and has a one-to-one and onto relationship. For

convenience and to maintain common usage, the phrase "Classical Reversible Circuits"

will imply a two-state device which is mapped to Boolean values unless otherwise stated;

i.e. B=(0,1) and f: B
n

→B
n
. A Boolean classical reversible circuit has the following

property: applying output values as stimulus to the output permits recovery of input

values at the input provided the underlying hardware is fully reversible.

 A fundamental difference between reversible circuits and other types of circuits is

that there is no fan-out. Although lacking fan-out may seem to be a significant limitation,

with the additional wires irreversible functions can be mapped to reversible functions of

higher dimensions. Two classes of additional or nonoutput wires can be used for this

mapping: ancilla wires, meaning wires that are used temporarily and later restored to their

original values, and garbage wires, meaning wires that become corrupted through use and

once modified can no longer serve a purpose in later functions. The algorithms for linear

reversible circuit synthesis do not use ancilla or garbage wires, and this is an advantage in

quantum computing where getting something as small as a ten-qubit system to work is a

major challenge.

8

 Both classical reversible circuits and quantum reversible circuits can use the same

schematic representation as illustrated in Figure 2.5. In this representation n-input

variables, or qubits in a quantum computer context, on the far left side of the diagram can

be considered as driving n-signals on a series of n-horizontal lines, called wires. Signal

propagation is strictly horizontal, and after passing through a series of perpendicular

gates which will be defined later, output values are measured on the far right side of the

diagram. Groups of gates can be thought of as a subcircuit which, in the schematic, is

denoted by a rectangular block which spans all locally involved wires. While this

schematic representation may appear to imply a physical layout, in quantum computing

the horizontal lines, gates, and subcircuits denote occurrences in time, not space.

2.3 Matrix Representations

 Two types of Boolean square matrices are of interest in the representation of

reversible circuits, permutation matrices and invertible linear system of equations

matrices. Given an input vector X, the matrix cells of M represent coefficients which

compose equations in the form Y=MX, and this fundamental equation serves as the

mathematical representation for different classes of reversible circuits, illustrated in

Figure 2.1. Permutation matrices have exactly one 1 matrix cell on every row and column

and therefore n-1 matrix cells with 0's on every row and column. Invertible linear system

of equations matrices have a much wider range of configurations, although no rows or

columns will contain all 0's, nor can any row be identical to another row or any column

be identical to another column.

9

 Figure 2.1: Relationships between the classical reversible circuit classes.

Invertible linear system of equations matrices of size n×n can be used to represent

linear reversible circuits with n wires. Operations on this matrix representation form the

basis of linear reversible circuit synthesis methods. In this context Y=MX has a different

treatment mathematically than real and complex matrices, as an XOR operation performs

Boolean addition and an AND operation performs Boolean multiplication. As described

in previous works [21, 22], the aforementioned mathematical treatment is equivalent to

matrix operations in Galois field two, expressed as either GF(2) or F2. A Galois field

representation will not be emphasized here, as the invertible linear system of equations

matrix representation can be extended to any composite number base larger than two and

polynomial representation of finite field variables is not employed in any of the reversible

circuit synthesis methods under consideration in this thesis.

10

Figure 2.2: An example of Boolean invertible linear system of equations matrix (a) and a

symbolic matrix representation (b) corresponding to a CNOT gate.

 Figure 2.2(a) illustrates an example Boolean invertible linear system of equations

matrix where input vector X=[a, b]
T
 and output vector Y=MX=[a, ab]

T
. Figure 2.2(b)

shows the same matrix in a symbolic representation. Introduced in [24], symbolic

representation uses blank cells to represent matrix cells with 0's and sequential lowercase

characters, with a unique character used one or more times in each column, to represent

matrix cells with 1's. This results in a matrix which appears similar to the output vector Y

in the previous figure and makes synthesis output more readable in larger matrices.

Figure 2.3 shows that the same matrix multiplied by its inverse creates the identity

matrix.

Figure 2.3: An example matrix product representing a cascade of two CNOT gates which

produces the identity matrix.

11

 The three elementary row operations form a cornerstone of linear algebra theory:

scaling a row, swapping two rows, and adding or subtracting two rows. For Boolean

matrices, and subsequently for Boolean invertible linear system of equations matrices,

there is no parallel to scaling a row, nor is there any difference between row addition and

subtraction. Therefore for Boolean matrices the elementary row operations are swapping

two rows and the modulo-two addition of one row to another. These elementary row

operations can be performed via matrix multiplication using representative matrices as

shown in Figure 2.3 above, the swap matrix appearing similar to the identity matrix but

with two rows swapped, and the modulo-two addition matrix appearing similar to the

identity diagonal with a single off-diagonal matrix cell with a 1. One property of Boolean

invertible linear system of equations matrices is that a SWAP gate matrix can be

decomposed into a product of three modulo-two addition matrices as illustrated in Figure

2.4. This permits certain implementations of quantum computers to perform swap

operations even though the underlying qubits are effectively fixed in place.

Figure 2.4: Matrix representation of a SWAP gate composition of three CNOT gates.

Lemma 1. If a Boolean matrix is upper or lower triangular it represents an invertible

Boolean linear system of equations. The proof is similar to the proof for invertible

matrices of real values by backward elimination [25]. Proceeding one column at a time,

all off-diagonal 1 matrix cells are converted to 0 by modulo-two addition with the

12

diagonal matrix cells. Once a column has no off-diagonal 1 matrix cells that column

remains unchanged in subsequent modulo-two addition operations used to eliminate off-

diagonal 1 matrix cells in other columns. After all columns are reduced to containing a

single 1 matrix cell on the diagonal, the entire matrix will be equal to the identity matrix.

 Quantum circuits of n wires can be represented mathematically by unitary

matrices of dimension 2
n
×2

n
. (Unitary matrices satisfy the equation I =U

*
U=UU

*
.) If

synthesis is limited to classical reversible gates and functions, then a vector of 2
n
 values

n-bit wide is a sufficient representation for arbitrary reversible circuits.

Figure 2.5: Permutation matrix representation of a CNOT gate.

13

2.4 Classical Reversible Gates

Figure 2.6: Schematic and truth table representations for the NOT gate, CONTROLLED-

NOT (CNOT) gate, TOFFOLI gate, and SWAP gate.

 Truth tables and schematic representations for all classical reversible gates are

shown in Figure 2.6. An important property of these gates is that they are all self-inverse,

and because of this property classical reversible circuit synthesis output can be applied in

reverse order to produce an inverse circuit. In some texts another gate is used which

performs a controlled-swap operation. Known as the FREDKIN gate in quantum

computing, it can be composed of two CNOT gates and a TOFFOLI gate which is shown

in Figure 2.7. Larger gates can be represented as a generalized TOFFOLI k×k gate with

k-1 control lines and one target line.

NOT gate CNOT gate TOFFOLI gate SWAP gate

Input Output Input Output Input Output Input Output

D0 D0 D0 D1 D0 D1 D0 D1 D2 D0 D1 D2 D0 D1 D0 D1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0

1 0 1 1 0 1 0 0 1 0 1 0 0 1

1 1 1 0 0 1 1 0 1 1 1 1 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

14

Figure 2.7: Schematic and truth table representation of the FREDKIN gate.

 Although the synthesis methods in this work focus on matrix representation for an

invertible linear system of equations, all of the classical reversible gates can be mapped

to two-dimensional Hilbert space. Putting aside the SWAP gate and FREDKIN gate, the

classical reversible gates' effect on input vectors in two-dimensional Hilbert space can be

summarized as follows:

 A NOT gate permutes all rows of an input vector.

 A CNOT gate permutes 1/2 of the rows of an input vector.

 A TOFFOLI gate permutes 1/4 of the rows of an input vector.

 A 4×4 TOFFOLI gate permutes 1/8 of the rows of an input vector.

 ...

 An n×n TOFFOLI gate permutes 1/2
n-1

 of the rows of an input vector, i.e. two

 rows.

FREDKIN gate

Input Output

D0 D1 D2 D0 D1 D2

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

15

 In classical reversible circuits the TOFFOLI gate, also known as the

CONTROLLED-CONTROLLED-NOT gate, implements the function C' = C AB. This

gate is universal, so given unlimited TOFFOLI gates and ancilla wires to work with, any

Boolean function can be composed. In quantum reversible circuits the situation is more

complicated, as a set of gates is required to create a universal set. The CNOT gate

combined with all 1×1 quantum gates is one possible universal set [27].

2.5 Classes of Classical Reversible Circuits

1. The Identity Circuit

Formula: Y=X where Y has n elements.

Number of circuits: 1.

This is the identity function represented by n parallel wires.

2. Inverter Networks

Formula: Y=XB where Y has n elements.

Number of circuits: 2
n
.

This reversible circuit is composed solely of NOT gates. The vector entries with

1's in vector B correspond to NOT gates, making these circuits trivial to

synthesize.

3. Permutation Circuits

Y=MX where Y has n elements and the matrix M is an n×n permutation matrix.

Number of circuits: n!.

16

This type of reversible circuit is composed solely of SWAP gates. When SWAP

gates are not available, as is the case in quantum architectures like NMR,

swapping is achieved through linear reversible circuits.

4. Linear Reversible Circuits

Formula: Y=MX where Y has n elements and the matrix M is an n×n invertible

matrix.

Number of circuits: approximately 0.29·2
n²

 [35].

This type of reversible circuit is composed of CNOT gates and, hardware

permitting, SWAP gates. It is a superset of permutation reversible circuits.

5. Affine-Linear Reversible Circuits

Formula: Y=MXB where Y has n elements and the matrix M is an n×n invertible

matrix.

Number of circuits: approximately 0.29·2
n(n+1)

.

This type of reversible circuit is composed of NOT gates, CNOT gates, and,

hardware permitting, SWAP gates. It is a superset of linear reversible circuits.

6. Arbitrary Reversible Circuits

Formula: Y=MX where Y has 2
n
 elements and the matrix M is a 2

n
×2

n

permutation matrix.

Number of circuits: 2
n
!.

This is the most complex set of reversible circuits and is a superset of all

previously introduced reversible circuits; it is an active area of research [15-18,

20, 28, 31, 32].

17

3

Synthesis Methods for Permutation, Linear, and Affine-Linear Reversible Circuits

3.1 Discussion

 Prior works have introduced methods for permutation reversible circuits using

sorting algorithms [28] and linear reversible circuit synthesis in the general model using

Kronrod's method for inverting matrices [21, 28]. This section will introduce new

methods of synthesis of permutation and linear reversible circuits in the LNN model. In

both the general model and the LNN model, synthesis of affine-linear reversible circuits

can be treated as a linear reversible circuit synthesis followed by an inverter network

synthesis. Affine-linear reversible circuit synthesis may be regarded as a less compelling

problem than linear reversible circuit synthesis for two reasons. The first is that the linear

reversible circuit component at worst results in approximately ½n² CNOT gates [21] in

the general model and 2n²-3n+1 CNOT gates (which will be derived later) in the LNN

model, yet the inverter network requires at worst n NOT gates in both models. The

second is that in technologies like NMR and ion trap, the latency of a CNOT gate

operation is approximately three times that of a NOT gate. Consequently methods to

improve linear reversible circuit synthesis will receive the greatest focus.

 All of these methods can be used to specify and synthesize reversible circuits with

hundreds of variables, and their worst-case gate count for large numbers of wires is

significantly lower than arbitrary reversible circuit synthesis methods. One inherent

disadvantage these methods have is the limited number of possible circuits they can

describe as compared with arbitrary reversible circuits. Nonetheless, because

18

decoherence is such a fundamental roadblock for quantum computing, it seems

appropriate to explore all possible ways to improve the class of linear reversible circuits.

3.2 Permutation Reversible Circuit Synthesis

 If the underlying hardware directly supports a SWAP operation, permutation

reversible circuit synthesis can be optimally solved by adapting the selection sort

algorithm for synthesis in the general model and the insertion sort or bubble sort for

synthesis in the LNN model [28]. An informal argument that these sort algorithms

produce optimal SWAP gate counts would be that the algorithms essentially iterate

through a series of cycles, and each cycle of k wires is optimally synthesized with k-1

SWAP gates. For instance, the following cycle of three wires can optimally be

synthesized with two SWAP gates: (abc), which is a mapping of a to b, b to c, and c to a.

Figure 3.1: An example permutation reversible circuit.

 If a SWAP gate is not available in hardware, permutation reversible circuit

synthesis relies on CNOT gates. If the target hardware is the general model, then a

SWAP gate list generated from selection sort synthesis can be converted to a linear

reversible circuit where each SWAP gate corresponds to a triplet of CNOT gates in the

form CNOT(1, 2), CNOT(2, 1), CNOT(1, 2). Consequently a cycle of k wires can be

synthesized with 3k-3 CNOT gates. It warrants mentioning that with the addition of one

19

ancilla line preset to 0 it would be possible to synthesize cycles of k wires optimally with

2k+2 CNOT gates, though synthesis with ancilla lines is beyond the scope of this work.

 Continuing under the condition that a SWAP gate is not available in hardware, if

the target hardware is in the LNN model, then converting output from the insertion sort-

based or bubble sort-based algorithms may or may not generate optimal synthesis. The

situation may also hold if the target hardware supports SWAP gates at a latency cost near

to but under three CNOT gates. Figure 3.2 shows a comparison of three different

realizations of the 4×4 input reversal function. The circuit in Figure 3.2(1) is based on the

selection sort algorithm and has 2 SWAP or 6 CNOT gates which is optimal, but after

LNN conversion has 27 adjacent CNOT gates. The circuit in Figure 3.2(2) is based on the

insertion sort and has ½(n²-n)=6 adjacent SWAP gates or 18 adjacent CNOT gates. The

circuit in Figure 3.2(3) is an optimal linear reversible circuit synthesis which has n²-1=15

adjacent CNOT gates. While it is difficult to compute optimal linear reversible circuits

for slightly larger numbers of wires, the pattern in Figure 3.2(3) can be generated

algorithmically for large circuits using an LNN version of Gaussian Elimination.

20

Figure 3.2: A comparison of different synthesis methods which perform an input reversal

permutation.

3.3 Linear Reversible Circuit Synthesis

3.3.1 Discussion

 Considering real and complex linear systems of equations in the form Y=MX,

there are two fundamental types of computations that are of utility for a broad number of

applications: the computation of vector Y when matrix M and vector X are known, and the

computation of vector X when matrix M and vector Y are known. The former task is

simpler, performed using matrix multiplication, while the latter is more complicated

because it requires a matrix inverse computation. Matrix inverse computation algorithms

and hardware constitute their own area of study.

 A third fundamental type of computation which has similarities to the matrix

inversion computation arises in linear reversible circuit synthesis: the computation of a

minimal (or near minimal) elementary row operation decomposition for an invertible

matrix. Because each elementary row operation corresponds to a CNOT gate in a linear

reversible circuit, this type of computation is useful in minimizing linear reversible

21

circuit cost, which in quantum computing is equivalent to minimizing CNOT gate count.

(For simplicity elementary swap operations will be treated as unavailable primitive

operations in hardware). Since the goal of linear reversible circuit synthesis is a CNOT

gate list, this third fundamental type of problem is not made easier by knowing a matrix's

inverse. As a consequence of this as well as other difficulties, methods for inverting large

matrices like Strassen's algorithm do not seem to be adaptable to linear reversible circuit

synthesis. Gaussian Elimination-based algorithms like Gauss-Jordan, Kronrod's method

for matrix inversion, and the LNN algorithms introduced here do generate elementary

row operations, making these algorithms adaptable to linear reversible circuit synthesis.

 One benefit of adapting Gaussian Elimination-based algorithms for synthesis is

that their maximum number of elementary row operations can be calculated, thus setting

an upper bound on CNOT gate counts, while one undesirable consequence of adapting

these algorithms for synthesis is that their results will typically not be optimal. One

peculiar issue with Gaussian Elimination [29] is that although this algorithm is widely

accepted as convergent, it has not yet been formally proven to be so. For linear reversible

circuit synthesis, Gaussian Elimination-based methods can be viewed in the narrower

context of operations on Boolean linear system of equations, making it simpler to

examine convergence and the reasons why the algorithm works. As part of this

examination, the adaptation of Gaussian Elimination for linear reversible circuit synthesis

will be reviewed, and then a postulate will be proposed which summarizes how all types

Gaussian Elimination-based algorithms treat convergence and perform linear reversible

circuit synthesis. Finally an analysis will follow to illustrate why Gaussian Elimination

appears to be convergent.

22

3.3.2 Gaussian Elimination-based Linear Reversible Circuit Synthesis

Figure 3.3: Employing Gaussian Elimination to synthesize linear reversible circuits.

 Figure 3.3, which will be described in detail later in this section, illustrates how

Gaussian Elimination-based synthesis decomposes a function from output to input.

Specifically Figure 3.3 illustrates algorithmic synthesis of the SWAP gate realized with

CNOT gates. Paraphrasing [24, 30],

...each row of this n×n matrix corresponds to a wire, and the value on this wire is

calculated as the XOR sum of input variables. In such a representation the identity

matrix corresponds to the original inputs on the wires.

 A modulo-2 addition form of Gaussian Elimination serves as the

foundation of both “Algorithm 1” and the methods introduced in this work. Given

some invertible function in matrix A, Gaussian Elimination uses elementary row

operations, each corresponding to a CNOT gate, to compute A
-1

. This inverse

23

matrix is used to solve for the identity matrix, i.e. I=A
-1

A. As long as elementary

row operations are restricted to modulo-2 addition, Gaussian Elimination can be

applied to representations of linear reversible circuits. Gaussian Elimination can

be viewed as an elementary row operation sequence generator. Each elementary

row operation sequence directly maps to a CNOT gate sequence. Applying a

Gaussian Elimination-generated CNOT gate sequence to a reversible circuit in

reverse order realizes the linear reversible function corresponding to the function

matrix. Alternately applying the same CNOT gate sequence to a reversible circuit

in forward order realizes the linear reversible function corresponding to the

inverse of the original problem matrix.

Performing Gaussian Elimination on a transposed version of a problem matrix

usually results in a different number of row operations, which corresponds to a

different number of CNOT gates. Transposed matrix output requires swapping

control and target values for each CNOT gate before it can be used [21] which is a

consequence of the linear algebra property A
T
B

T
=(BA)

T
. After control and target

swapping, the resulting CNOT gate sequence is in the correct order to perform the

corresponding linear reversible function.

Once an elementary row operation sequence for a linear reversible function has

been calculated, it can be used on the identity matrix to compose the inverse of a

problem matrix. Problem matrices usually are not equivalent to their inverses,

even in a sizable portion of low complexity linear reversible functions. In the

typical case where a matrix does not equal its inverse, Gaussian Elimination can

be performed on both the inverse matrix and its transposed version. This

24

generates additional synthesis alternatives which typically result in a different

number of CNOT gates.

 Figure 3.3 uses symbolic Boolean matrix representation which assigns a unique

character to each column and replaces 0's with blanks and 1's with characters. This

Boolean matrix representation was originally developed to increase readability of

synthesis debug output and was not used mathematically. In Figure 3.3(a) the first phase

of Gaussian Elimination begins with operations on the far left column. A forward

substitution is required to establish a value of 1 on the diagonal, so R2 is used to modify

row R1. Next a backward substitution is required to make the column upper triangular, so

R1 is used to change row R2. The middle column is already upper triangular, so no

additional changes are required, and therefore the first phase of Gaussian Elimination is

complete. The second phase of Gaussian Elimination begins with operations on the far

right column, which already is equal to its corresponding column in the identity matrix.

Finally a backward substitution on the middle column is required, changing row R1 and

resulting in the matrix becoming equal to the identity matrix. The entire process

illustrated in Figure 3.3(a) can be summarized as a matrix inverse computation expressed

in Figure 3.3(b), or, in more detail, as a matrix inverse decomposition into the product of

three elementary row matrices in Figure 3.3(c), MCNOT3MCNOT2MCNOT1. In general the

matrix inverse solution Gaussian Elimination produces is a product of a variable number

of elementary row operation matrices in Figure 3.3(d). Using the property that the

Boolean elementary row operations being used here are self-inverse, Figure 3.3(e)

demonstrates that the product of these matrices in reverse order is a decomposition of the

matrix being synthesized. Therefore the linear reversible circuit in Figure 3.3(g) is

25

composed of CNOT gates corresponding to matrices MCNOT3, MCNOT2, and finally MCNOT1

in Figure 3.3(f) .

3.3.3 Convergence of Gaussian Elimination-based Linear Reversible Circuit Synthesis

 Postulate 1: If, using a finite number of elementary row operations, an n×n

linear system of equations matrix can be made upper or lower triangular, then the

original matrix is invertible, Gaussian Elimination will converge, and the

corresponding linear reversible circuit will be synthesizable. Conversely if, using a

finite number of elementary row operations, an n×n linear system of equations

matrix cannot be made upper or lower triangular, then the matrix is singular,

Gaussian Elimination will not converge, and the matrix does not correspond to a

linear reversible circuit.

 An informal analysis of convergence will be discussed next. For simplicity the

common approach for Gaussian Elimination will be examined in which, during the first

phase of the algorithm, an upper triangular matrix is established by operating on columns

from left to right. In the first iteration of the first phase, the left-most, or first, column is

operated on to put it into an upper triangular matrix pattern. If the left-most column

consists entirely of zeros then the matrix cannot have an inverse and therefore is singular.

If the left-most column has one or more ones then through elementary row operations it

can become upper triangular, in which case it is unknown if the matrix is singular or

invertible. This argument for separate treatment of zero-filled columns from other

columns is as follows:

26

 From the point of view of a single column in an n×n Boolean matrix, its

matrix cells can be only one of two unique values, 0 and 1. Assuming a column is

not zero-filled and treating all other matrix cells with 1's as copies of one

particular matrix cell whose value is 1, it can be argued that through forward

substitution and backward elimination any finite-dimensioned column can be

reduced to a single 1 in the top matrix cell with the remainder matrix cells 0. This

pattern is the only possible pattern the first column can have if it is upper

triangular as is illustrated in Figure 3.4. Additionally, after the first column has

been modified to contain a single 1 matrix cell, there are no further eliminations

possible; i.e. by exhaustively searching all 2×2 elementary row operations on the

identity matrix it was verified that no sequence of elementary row operations on

the 2×2 identity matrix result in a zero-filled column.

Figure 3.4: An invertible matrix after the first iteration of Gaussian Elimination.

 Considering the case where the first column is not zero-filled, after the first

iteration of Gaussian Elimination any matrix will be in the pattern in Figure 3.4. Starting

from this pattern, the top matrix row no longer affects the determination of whether or not

the original matrix is singular or invertible. This follows because during the second phase

27

of Gaussian Elimination off-diagonal matrix cells in the top row require only backward

elimination to achieve the identity matrix. Backward elimination on the top row depends

on the submatrix M(2,2)-(n,n) being amenable to becoming upper triangular. If the

subcolumn M(2,2)-(2,n) is zero-filled, then the submatrix M(2,2)-(n,n) is singular and cannot

become upper triangular. Also if the subcolumn M(2,2)-(2,n) is zero-filled, then through

exhaustive search it can be shown that the submatrix M(1,1)-(2,2) is singular and no

sequence of elementary row operations can simultaneously make the first and second

column equal to their identity matrix values simultaneously. This would seem to be a

reasonable argument that M is singular.

 If the subcolumn M(2,2)-(2,n) is not zero-filled, then, using the same treatment as

was used on the first column, the second column can be made upper triangular. Starting

from this pattern, the top two matrix rows no longer affect the determination of whether

or not the original matrix is singular or invertible. The determination now rests on

whether or not the submatrix M(3,3)-(n,n) is amenable to becoming upper triangular. This

process continues until either a subcolumn is discovered to be zero-filled, meaning that

the original matrix was singular, or, after n-1 iterations, the matrix cell M(n,n) is verified to

be a 1, meaning that the matrix has become upper triangular and is therefore invertible.

Thus Gaussian Elimination can be viewed as both a convergent algorithm for invertible

matrices and a validity checking mechanism for singular matrices.

3.3.4 Gaussian Elimination-based Matrix Validity and Synthesis Verification

 Employing Gaussian Elimination for input validity checking is fast and applies to

to all hardware models. A related checking mechanism is output verification, i.e.

28

verifying that the CNOT gate sequence resulting from synthesis composes the desired

circuit. This is performed by representing each CNOT gate as an elementary row

operation, performing the entire sequence of elementary row operations on the identity

matrix, and testing equality with the matrix that was synthesized originally.

 A consequence of the limited arrangements of invertible matrices which represent

Boolean linear system of equations is that Gaussian Elimination-based methods require

only n-1 iterations per phase. In effect the last column is solved indirectly because there

is no invertible matrix that permits the last column's diagonal cell to be zero, and this is

verifiable through exhaustive searching of all 2×2 matrices or using the 5×5 optimal

LNN linear reversible circuit synthesis database which will be introduced later.

3.3.5 Linear Reversible Circuit Synthesis in the General Model

 In the reversible circuit synthesis literature only two linear specific methods, both

for the general model, have been discussed, Gaussian Elimination and Kronrod's method.

"Algorithm 1" [21] is based on Kronrod's method [33] for inverting matrices which is

more commonly known as the "Method of the Four-Russians" inversion (M4RI) [34],

though this name is somewhat inaccurate as one of the four authors was not Russian. A

key idea introduced in [33] was that matrix operations on Boolean matrices are

fundamentally more limited than real matrices. For instance, by treating sub-rows, i.e.

two or more adjacent bits in a row, as a single number of interest, a significant portion of

the elementary row operations that Gaussian Elimination would normally perform

separately on two or more columns can be efficiently combined. Considering the simplest

version of “Algorithm 1” where two bits taken from adjacent columns in a single row are

29

treated as a single multibit number, it follows that the two bits can at most express four

unique two-bit numbers; therefore whenever Boolean matrices are of dimension 5×5 or

greater as is the case in Figure 3.5, any pair of columns will contain at least one repeated

two-bit value. In each iteration of "Algorithm 1" the non-zero repeated numbers

belonging to a set of two or more columns are found and are next eliminated by searching

from the highest row to the second lowest row. Once all multibit repeated values are

eliminated, the first phase of Gaussian Elimination is performed on columns in the set.

After all columns are processed the remainder matrix will be upper triangular and there

will be a corresponding CNOT gate sequence; the matrix is then transposed and the

whole process repeated, which results in the identity matrix and a transposed CNOT gate

sequence.

Figure 3.5: Example “Algorithm 1” search to find identical multibit numbers.

 The larger the Boolean matrix, the greater the number of repeated numbers in

each set of columns and the greater the opportunity for backward elimination to do

approximately two or more Gaussian Elimination column processing iterations in one

iteration. Also, larger Boolean matrix dimensions permit using wider multibit words

which are chosen as a fraction of log2n, thus improving efficiency of repeated number

elimination. "Algorithm 1" in [21] employed this approach not for speed, which was the

30

original motivation in [33], but to reduce the total number of elementary row operations

and hence the number of CNOT gates.

 Improving upon "Algorithm 1" was difficult for this writer, but by using a two-

pass approach approximately two percent lower gate count was achieved. The first pass

employs the original “Algorithm 1” which searches to eliminate repeated multibit values

starting from the top row and proceeding down, and the second pass uses my “Modified

Algorithm 1” which searches to eliminate repeated multibit values starting from the

second lowest row and proceeding upwards. Figure 3.6 compares “Algorithm 1” output

on the left and “Modified Algorithm 1” on the right, demonstrating that these two

methods can produce different synthesis results even in a 4×4 linear reversible circuit.

Figure 3.6: A comparison of “Algorithm 1”[21] and “Modified Algorithm 1”.

 Another small improvement came from recognizing a minor issue in “Algorithm

1” [21] in which an upper triangular matrix was transposed before synthesizing. I

discovered that while this matrix transmission did simplify code it sometimes increased

CNOT gate counts. Even in 8×8 matrices synthesizing both upper triangular matrix

functions and their transposed forms produced realizations which frequently differed by a

small number of CNOT gates. My discovery of the above property combined with the

prior two-pass approach yields a four-pass approach.

31

3.3.6 Linear Nearest-Neighbor Gaussian Elimination (LNNGE)

 In this writer's opinion the work in [21] was insightful, recognizing the potential

for adapting Kronrod's method to linear reversible circuit synthesis and reducing the

worst-case gate count to be O(n²/log2n). Unfortunately applying Kronrod's method to

linear reversible circuit synthesis in the LNN model produces poor results. As was stated

in [24],

the fundamental drawback converting synthesis output to the LNN model is that

the output of both "Algorithm 1" and Gaussian Elimination includes distant

CNOT gates where the control and target are not adjacent. Distant gates result in a

cost increase, as prior work has shown; a CNOT gate with distance d of two or

greater between its target and control requires 4d-4 adjacent CNOT gates [31].

Test results will show how poorly this approach compares to direct LNN

synthesis.

 A new method called LNNGE provides a fast and efficient synthesis

alternative for LNN hardware. LNNGE follows the same form as Gaussian

Elimination but restricts row operations to adjacent rows. Because of this

restriction forward substitution may need to be performed multiple times on the

same column to establish a 1 on its associated diagonal.

 Gaussian Elimination operations can start either with the first column to

achieve an upper triangular matrix or less commonly with the last column to

achieve a lower triangle matrix. In the second phase of Gaussian Elimination the

triangle matrix is reduced to the identity matrix.

32

 To perform an LNNGE using the upper triangular matrix approach, n-1

columns are initially processed from left to right. In this first phase of the

algorithm, each column is searched for the lowest row containing a 1. All 1’s

located in matrix cells not on the identity diagonal represent terms in an XOR sum

which require elimination. At most one CNOT-up gate, which corresponds to

forward substitution, and one CNOT-down gate, which corresponds to backward

elimination, are required to move the lowest 1 in a column up one row. Gates are

applied to repeatedly raise the lowest 1 in the column being processed until it is

on the identity diagonal. After repeating this procedure for n-1 columns, the last

column will have a 1 on its diagonal row and an upper right triangle matrix will

be established, thus ending the first phase of LNNGE. In the second phase,

columns are processed from right to left. Each column is searched to find the

highest row containing a 1. Then all 0‘s between the diagonal row and the highest

row containing a 1 are operated on with CNOT-up gates. The highest 1 in the

column is repeatedly lowered using CNOT-up gates until it is on the identity

diagonal. By using only CNOT-up gates in the second phase of the algorithm, the

upper right triangle matrix is preserved. The pseudocode for LNNGE follows:

FOR col FROM 0 TO N-2

 FOR row FROM N-1 TO col+1 by -1

 IF M[row][col] THEN

 IF NOT M[row-1][col] THEN

 CNOT(M[row]->M[row-1])

 CNOT(M[row-1]->M[row])

33

FOR col FROM N-1 TO 1 by -1

 row = 0

 WHILE row<col AND NOT M[row][col]

 row = row+1

 IF row NOT EQUAL col THEN

 FOR rowh FROM col TO row-1 by -1

 IF NOT M[rowh-1][col] THEN

 CNOT(M[rowh]->M[rowh-1])

 row = row+1

 WHILE row <= col

 CNOT(M[row]->M[row-1])

 row = row+1

 LNNGE's maximum gate count can be calculated through simple analysis.

In the first phase the maximum number of gates is 2(n-1)+2(n-2)+... = n²-n. In

the second phase the identity diagonal is already established, making the worst-

case gate count for the longest column 2(n-1)-1. Summing up the subsequent rows

leads to a maximum number of gates of (2(n-1)-1)+(2(n-2)-1)+...=n²-n-(n-1)=n²-

2n+1. Thus the maximum number of gates for LNNGE is (n²-n)+(n²-2n+1)=2n²-

3n+1. In comparison "Algorithm 1" has at worst an upper limit of ½n²+14n

distant gates [21].

34

 In Figure 3.7 LNNGE synthesis is illustrated step by step. In each step an input

matrix on the left has an elementary row operation performed, denoted by a

corresponding CNOT gate, which results in the output matrix on the right. Following the

LNNGE algorithm, the first column from the left is examined and found to not be upper

triangular. In step (1) a forward substitution from row 3 to row 2 is performed on the left

matrix which results in the right matrix. In the right matrix modified bits in row 2 are

displayed with a dark background. In step (2) a backward elimination from row 2 to row

3 is performed, modifying all bits in row 3. In step (3) a backward elimination from row

1 to row 2 is performed, modifying one bit in row 2 and resulting in the first column

becoming upper triangular. Next the second column is examined and found to not be

upper triangular. In step (4) a backward substitution from row 2 to row 3 is performed,

modifying two bits in row 3 and resulting in the second column becoming upper

triangular and ending the first phase of LNNGE. In the second phase of LNNGE the third

column is examined and found not to be identical to its corresponding identity matrix

column. In step (5) a backward substitution from row 3 to row 2 is performed, modifying

one bit in row 2 and resulting in the last column becoming identical to its corresponding

identity matrix column. The second column is examined and found to be identical to its

corresponding identity matrix column ending the second phase of LNNGE.

35

Figure 3.7: LNNGE synthesis of a "distance 2" CNOT gate.

3.3.7 Linear Nearest-Neighbor Alternating Elimination (LNNAE)

 Another method I developed for linear reversible circuit synthesis is called

Alternating Elimination. Alternating Elimination uses an approach of calculating an

inverse by processing one diagonal element of a matrix at a time. This diagonal

processing is achieved by adapting an approach used in "Algorithm 1" in which the final

CNOT gate list is created from two separate lists. The first list that "Algorithm 1"

generates corresponds to the first phase of Gaussian Elimination performed on the input

function, and this produces a triangular matrix remainder function and a partial

decomposition synthesis from output towards input. The second list that "Algorithm 1"

generates corresponds to the first phase of Gaussian Elimination performed on the

36

transposed triangular matrix remainder function. This produces an identity matrix

remainder and, after swapping target and control lines, a remainder decomposition

synthesis from input towards output.

 Alternating Elimination employs a similar approach at a more granular scale,

producing up to n-1 lists generated from output to input and n-1 lists generated from

input to output. These smaller lists represent adjacent subcircuits, so as they are generated

they are appended to one of two associated master lists. Upon algorithm completion these

two master lists are combined in the same way that "Algorithm 1" lists are combined.

Figure 3.8: Matrix representation of LNNAE algorithm flow.

 Figure 3.8 illustrates LNNAE's algorithm flow from the point of view of the

outermost iteration when operating on a matrix representation of a 3×3 linear reversible

circuit. The algorithm for LNNAE, which is a form of Alternating Elimination derived

from LNNGE specifically for synthesis in the LNN model, is shown below.

FOR col FROM 0 TO N-2

 FOR row FROM N-1 TO col+1 by -1

 IF M[row][col] THEN

 IF NOT M[row-1][col] THEN

 CNOT(M[row]->M[row-1])

 CNOT(M[row-1]->M[row])

37

 M = Transpose(M)

 FOR row FROM N-1 TO col+1 by -1

 IF M[row][col] THEN

 IF NOT M[row-1][col] THEN

 TRANSPOSEDCNOT(M[row]->M[row-1])

 TRANSPOSEDCNOT(M[row-1]->M[row])

 M = Transpose(M)

38

Figure 3.9: LNNAE synthesis of the 3×3 input reversal function.

39

Figure 3.10: LNNAE algorithm flow when synthesizing of the 3×3 input reversal

function.

 Unless the computing hardware supports column operations on matrices, LNNAE

is slower than LNNGE because of the repeated matrix transpositions. Unlike LNNGE,

LNNAE has only one phase, and as a result both CNOT-up and CNOT-down gates

appear throughout LNNAE synthesized CNOT gate lists. There are similarities between

LNNGE and LNNAE, however. Both methods have a maximum of 2n²-3n+1 CNOT

gates, as well as the ability to begin the algorithm operating on elements either in the first

or the last column of the matrix. LNNAE retains this flexibility at each iteration of its

outermost loop. The general form of Alternating Elimination has significantly more

flexibility, as there are n! different ways to process n diagonal elements.

 In Figure 3.9 LNNAE synthesis of the 3×3 input reversal circuit is illustrated step

by step which results in the linear reversible circuit in Figure 3.10. In each step an input

matrix on the left has an elementary row operation performed, denoted by a

40

corresponding CNOT gate, which results in the output matrix on the right. Following the

LNNAE algorithm, the first column from the left is examined and found to not be upper

triangular. In step (1) a forward substitution from row 3 to row 2 is performed on the left

matrix which results in the right matrix. In the right matrix modified bits in row 2 are

displayed with a dark background. In step (2) a backward elimination from row 2 to row

3 is performed, modifying two bits in row 3. In step (3) a forward substitution from row 2

to row 1 is performed, modifying two bits in row 1. In step (4) a backward elimination

from row 1 to row 2 is performed, modifying three bits in row 2 and resulting in the first

column becoming upper triangular. Steps (1) through (4) correspond to the group of four

CNOT gates from right to left in Figure 3.10 on the "Output" side of the circuit. The

matrix is transposed and the first column is examined and found to not be upper

triangular. In step (5) a backward elimination from row 2 to row 3 is performed,

modifying two bits in row three. In step (6) a backward elimination from row 1 to row 2

is performed, modifying one bit in row 2 and resulting in the first row and column

becoming identical to their corresponding identity matrix row and column. Steps (5) and

(6) correspond to the two CNOT gates from left to right in Figure 3.10 on the "Input" side

of the circuit with their control and target wires swapped. Next the matrix is transposed

back to its original orientation and the second column is examined and found not to be

upper triangular. In step (7) a forward substitution is performed from row 3 to row 2,

modifying two bits in row 2. In step (8) a backward substitution from row 2 to row 3 is

performed, modifying one bit in row 3 and resulting in the second column becoming

upper triangular. Steps (7) and (8) correspond to the two CNOT gates from right to left in

Figure 3.10 in the middle of the circuit. After transposing, examining the second column,

41

and transposing back the matrix is now equivalent to the identity matrix and no further

processing is necessary. The last transpose operation is unnecessary and can be

conditionally skipped to reduce computation time, but better results can be obtained by

performing the last 5×5 portion of LNNAE synthesis by using an optimal LNN linear

reversible circuit synthesis database.

 The input reversal function is notable because it requires n²-1 LNN CNOT gates

to synthesize optimally and is the most costly LNN linear reversible circuit for circuits

with relatively few wires, a result obtained from optimally synthesizing all possible LNN

linear reversible circuits of up to five wires. The SWAP gate is the most well-known

instance of the input reversal function, requiring 2²-1=3 CNOT gates.

3.3.8 Search Methods for LNNGE and LNNAE

 Typically LNNGE and LNNAE do not give optimal results, and in some simple

circuits can even be outperformed by "Algorithm 1" and Gaussian Elimination.

Synthesizing a "distance 2" CNOT, which optimally requires only four adjacent CNOT

gates, will result in five adjacent CNOT gates if the target is below the control line and

the LNNGE "upper triangular matrix" method is used as is illustrated in Figure 3.7.

 Two complementary search strategies were developed to improve performance

for LNNAE and LNNGE. The first search method, called "Best of Eight", performs eight

types of synthesis for the same circuit and uses the result with the lowest gate count.

These eight types are:

42

1. Begin operations on the first column.

2. Begin operations on the last column.

3. Using the transposed matrix, begin operations on the first column.

4. Using the transposed matrix, begin operations on the last column.

5. Using the inverse matrix, begin operations on the first column.

6. Using the inverse matrix, begin operations on the last column.

7. Using the transposed inverse matrix, begin operations on the first column.

8. Using the transposed inverse matrix, begin operations on the last column.

 The second search strategy employs a depth parameter to search for beneficial

gate sequences. It is employed in two synthesis methods, "Linear Nearest-Neighbor

Alternating Elimination with Depth" (LNNAED) and "Linear Nearest-Neighbor Gaussian

Elimination with Depth" (LNNGED). In these methods a value of depth=0 invokes

LNNAE or LNNGE respectively, and depth>0 invokes a recursive call to LNNAED or

LNNGED with a value of depth-1. In LNNGED recursion is limited to the first phase of

Gaussian Elimination when both CNOT-up and CNOT-down gates are available. The

recursive search occurs when synthesizing subcolumns with patterns such as 101, 1001,

10001, ... These patterns, having k zeros, can be optimally synthesized k+1 different

ways to achieve patterns such as 111, 1111, 11111, ... Each of the k+1 matrices is fully

synthesized and the synthesis yielding the minimum gate count determines which of the

k+1 subcolumn syntheses to use. Each recursive search calculates an upper bound of the

total CNOT gates required for synthesis. This upper bound will always be equal to or

lower than the total from the last recursive search. Thus LNNAED and LNNGED always

43

produce equal or lower CNOT gate counts than LNNAE and LNNGE respectively

produce.

3.3.9 Linear Reversible Circuit Synthesis Tests

 A set of tests was performed for circuits with 8 to 64 wires (Table 3.1). Each set

consisted of synthesizing 100 randomized linear reversible circuits with multiple

methods. The synthesis results for Gaussian Elimination and "Algorithm 1" were

converted to adjacent CNOT gate circuits for comparison. The n-wire circuit

randomization function used 2n² operations on the identity matrix, and each of these

operations represented either a random distant CNOT gate or a random distant SWAP

gate.

 When iterative deepening was used with LNNGED the gains decreased quickly

and the computation time generally expanded geometrically. For example, performing a

64-wire "Best of Eight" LNNGED synthesis with depth=1 on an Intel® Celeron®

Processor 450 @2.20 GHz typically took approximately 0.75 seconds, and performing

the same synthesis using depth=2 took approximately 432 seconds and yielded a 2.0%

lower gate count. Iterative deepening used on 16 wires yielded better gains with depth

and faster computation times (Table 3.2).

 On average LNNAE and LNNGE performed similarly, and it appears that the

method producing a lower gate count for any particular function is data-dependent. For

16×16 functions LNNAED performed better than LNNGED as depth increased, and at

depth=4 LNNAED produced lower gate counts for a majority of functions. There was a

similar performance difference between LNNGED and LNNAED when compared with

44

optimal syntheses of all 9999360 linear reversible functions of size 5×5. Using depth=4

LNNGED achieved the optimal gate count 3921893 times whereas LNNAED achieved

the optimal gate count 5300413 times. This performance difference demonstrates the

benefit of the LNNAED approach of searching throughout the entire synthesis, as

opposed to searching only in the first part of the synthesis as is the case with LNNGE.

Table 3.1: Comparisons of linear reversible circuit synthesis methods in the LNN model

(average adjacent CNOT gate counts).

Table 3.2: Iterative deepening synthesis tests on 100 16×16 functions using “Best of

Eight” search (average adjacent CNOT gate counts).

 The optimal LNN linear reversible circuit synthesis databases for two to five

wires were created by using a breadth-first search method explained later in 3.3.10. Using

the frequency distribution of the optimal LNN linear reversible circuit synthesis database

 Wires Algorithm 1 LNNGE LNNAE

8 239.28 175.99 64.81 64.88 57.38 57.54

16 2268.16 1533.33 309.37 310.88 296.59 295.03

24 8169.97 5431.95 754.86 750.78 728.69 729.18

32 20045.8 10673.45 1381.54 1385.72 1356.1 1353.79

40 39608.31 20718.29 2205.94 2208.77 2172.72 2170.05

48 69233.85 36781.09 3226.51 3224.5 3186.12 3184.16

56 111316.22 61496.31 4430.49 4430.15 4387.38 4385.42

64 166681.3 96637.6 5836.04 5836.63 5778.1 5777.75

 Gaussian

Elimination

 LNNGE

Best of 8

 LNNAE

Best of 8

Depth

0 296.59 295.03

1 277.16 268.31

2 268.22 256.37

3 262.62 250.2

4 259.79 246.71

LNNGED (Average

Adjacent CNOT Gates)

LNNAED (Average

Adjacent CNOT Gates)

45

for two to five wires in Table 3.3, an approximate optimal curve fit for average CNOT

gate counts was computed to be 0.75-1.34n+0.86n². A curve fit for LNNAE-based

syntheses from 8 to 64 wires which were at depths which permitted synthesis within two

minutes was computed to be 10-5.9n+1.5n². Because the optimal synthesis curve fit is

limited to five wires it is not expected to strongly correlate for larger n, and consequently

curve fit comparisons could be viewed as weak. Considering that weakness, using n=16

the approximate optimal curve fit predicted an average CNOT gate count to be

approximately 199 which can be compared with the Best of Eight LNNAED at depth=4

result which was approximately 247. The 1.5n² term in the LNNAE curve fit would seem

to follow from having dense matrices require approximately n² operations between rows,

each operation synthesizing a single CNOT gate resulting from a backward elimination

50% of the time and a pair of CNOT gates resulting from a forward substitution and

backward elimination 50% of the time.

46

Table 3.3: Frequency distribution of all optimally synthesized LNN linear reversible

functions up to size 5x5.

3.3.10 Related Linear Reversible Circuit Synthesis Methods

 The initial LNN linear reversible circuit synthesis method created by the author

was abandoned because it produced large gate counts and was slow. It was a heuristic

method, using a penalty matrix like the one illustrated in Figure 3.11 to quantify how

distant from the identity matrix an invertible linear system of equations matrix was. The

0 1 1 1 1

1 2 4 6 8

2 2 10 22 38

3 1 22 69 148

4 0 44 202 526

5 0 44 492 1668

6 0 36 1039 4801

7 0 6 1944 12782

8 0 1 3089 31395

9 0 0 4113 70886

10 0 0 4276 148288

11 0 0 3174 286654

12 0 0 1485 510098

13 0 0 234 823464

14 0 0 13 1197022

15 0 0 1 1540264

16 0 0 0 1722606

17 0 0 0 1617314

18 0 0 0 1194802

19 0 0 0 622562

20 0 0 0 194966

21 0 0 0 18246

22 0 0 0 796

23 0 0 0 24

24 0 0 0 1

Adjacent

CNOT Gates

2x2

Functions

3x3

Functions

4x4

Functions

5x5

Functions

47

penalty was calculated as a sum of n column penalties. Each column penalty was largely

a function of the most distant 1 above the diagonal matrix cell and the most distant 1

below the diagonal matrix cell, and to a lesser degree a function of column sparseness.

Penalty matrices based on linear, exponential, quadratic, and cubic series were used. The

matrices all had diagonal matrix cells with 1s so that a penalty of n indicated the identity

matrix. The quadratic penalty matrix appeared to perform slightly better on average,

though in general which type of penalty matrix would synthesize the best was

unpredictable.

 Gate selection would follow from applying all legal elementary row operations to

a problem matrix and choosing the resulting matrix which produced the lowest penalty.

Whenever a penalty was discovered to reside at a local minimum, LNNGE would be used

until the penalty dropped below the local minimum. This approach was later extended to

select two or three CNOT gate operations at a significant time increase and without

commensurate improvement on gate count.

Figure 3.11: Penalty matrix based on distance from matrix diagonal.

 In 4×4 LNN linear reversible circuit synthesis tests the heuristic penalty matrix

method averaged approximately one less CNOT gate than LNNGE did, but for all cases

8×8 and above the heuristic method performed worse than LNNGE did, ultimately

producing CNOT gate counts in excess of 2n². The penalty matrix approach also became

48

increasingly slower, taking hours per each 64×64 function synthesis. Therefore the

penalty matrix approach was abandoned, as was the attempt to improve synthesis by

aiming for intermediate matrix patterns which indiscriminately clump around the

diagonal.

 I created two related pseudo-methods, Initial Gate Search and Truncated Initial

Gate Search which inherited elements from the heuristic method exploration. Their

approach is to find a lower-bound on CNOT gate count and maintain it while searching

for better alternates. The term pseudo-method denotes reliance on other functions to

actually do synthesis, and therefore they can be applied to the general model or the LNN

model. In its simplest form Initial Gate Search iterates by employing two or more

different syntheses on all matrices within one elementary row operation of a problem

matrix, applying whichever elementary row operation corresponds to the synthesis with

the lowest gate count, and, if the matrix is not the identity matrix, repeating the same

treatment for the resulting matrix. If any of the methods use transposed matrices, as in

“Best of Eight” LNNGED depth=1 for example, a complication can arise whenever the

best result comes from a synthesis method which uses a transposed matrix. In this case

after the respective elementary row operation is applied, the matrix is transposed, the

Initial Gate Search function recursively calls itself, and the resulting CNOT gate list is

reversed and transposed (i.e. targets and controls are swapped). A deeper searching form

of Initial Gate Search involves generating all matrices within two or even three

elementary row operations of the problem matrix and performing two or more different

syntheses on all of those, then choosing the best elementary row operation and repeating.

While this approach is the most time-consuming and may not be practical at dimensions

49

above 16×16, it was the most efficient synthesis method for random 8×8 LNN linear

reversible circuits producing an average adjacent CNOT gate count of 50.375 at a

fraction of a second per synthesis.

 The author observed that the largest improvements on gate count usually

happened early in synthesis, especially during the first three elementary row operations.

This led to a faster but less efficient pseudo-method called Truncated Initial Gate Search.

In a Truncated Initial Gate Search a small number of iterations, typically one to three, of

Initial Gate Search are performed with one set of synthesis methods, and the resulting

remainder problem matrix is synthesized by another set of synthesis methods. A version

of Truncated Initial Gate Search was able to scale up to larger circuits effectively, and on

random 32×32 LNN linear reversible circuits produced an average gate count of 1255.35

taking approximately 24 seconds per synthesis. These and other pseudo-method results

are shown in Appendix D.

 Because both Initial Gate Search and Truncated Initial Gate Search have a large

number of configuration possibilities they do not lend themselves to straightforward

testing. Configurations that work for one size circuit in reasonable durations can become

significantly slower for higher dimension circuits and comparatively less effective for

smaller sized circuits compared to synthesis methods with depth parameters. Nonetheless,

based on testing in Appendix D it would seem that for any particular linear reversible

function pseudo-method synthesis may yield the most efficient synthesis.

 Another related synthesis method which can be used for comparison and post-

processing is retrieving gate sequences from a database. The largest database for LNN

linear reversible circuits is the writer's 5×5 optimal LNN linear reversible circuit

50

synthesis database. This database contains all 33,554,432 5×5 matrices, with the

9,999,360 unique invertible matrices flagged as valid and the remaining 23,555,072

singular matrices flagged as invalid. Matrices are converted to unsigned 25-bit integers

by concatenating matrix rows from top to bottom, and these values serve as pointers into

the database's 33,554,432 bytes. In each byte representing a valid matrix there will be

either a CNOT gate value associated with it, CNOT-up gates denoted as an integer in the

range [1, 4] and CNOT-down gates denoted as an integer in the range [5, 8], or the value

15 which is reserved for the identity matrix. When retrieved, the CNOT gate is applied to

the matrix which generates another matrix and associated pointer; once this pointer points

to the identity matrix the reserved value 15 will be returned and synthesis completes.

 The formula used to verify that there are 9,999,360 unique invertible 5×5

matrices was taken from De Vos [35]. This number is much lower than the total number

of matrices (2
25

= 33,554,432) due to excluding singular matrices, such as matrices with

zero-filled rows and matrices which contain linear combinations of zero-filled rows. The

formula for counting the number of unique invertible 5×5 matrices is as follows:

9,999,360=(2
5
-1)*(2

5
-2)*(2

5
-4)*(2

5
-8)*(2

5
-16)

 My final successful approach to creating the optimal 5×5 LNN linear reversible

circuit synthesis database is similar to that used to create chess endgame tablebases.

Tablebases are commonly used in chess and other similar deterministic games to store

optimal moves in board arrangements with small numbers of remaining pieces; the usual

requirement on number of pieces is that the resulting number of possible arrangements

must be small enough to fit on typical PC computer hard drives. In contrast my previous

51

work, which used a breadth-first search of all possible CNOT gate sequences to

determine optimal LNN synthesis of 4×4 linear reversible circuits, had a worst case time

of approximately 45 minutes. Because the depth of the breadth-first approach was near n²

for the complex circuits and there are 2n-2 possible LNN CNOT gates at each level, the

search time of this method is approximately proportional to 4n
n²

 in the LNN model and

n
2n²

 in the general model. The tablebase approach proved significantly faster, calculating

all 5×5 linear reversible circuits in approximately three seconds. Because the tablebase

approach requires searching through 2
n

matrices n² times, its computation time is

proportional to (2n-2)n
2
2

n
 in the LNN model gates and n

4
2

n
in the general model. The

tablebase algorithm for the optimal 5×5 LNN linear reversible circuit synthesis database

can be summarized as follows:

1. Set all database entries to zero which corresponds to a singular matrix.

2. Set the entry corresponding to the identity matrix to its corresponding reserved

value OR'ed with a flag indicating that the entry requires expansion during phase

“A”.

3. Loop until all expansions have completed.

Phase “A”. Iteratively apply all possible CNOT gates on all matrices

flagged for expansion during phase “A”. On all resulting entries which are

zero assign the CNOT gate which connects it back to the entry being

expanded OR the flag indicating expansion is required during phase “B”.

Upon completion clear all phase “A” expansion flags from all entries.

Phase “B”. Iteratively apply all possible CNOT gates on all matrices

flagged for expansion during phase “B”. On all resulting entries which are

52

zero assign the CNOT gate which connects it back to the entry being

expanded OR the flag indicating expansion is required during phase “A”.

Upon completion clear all phase “B” expansion flags from all entries.

4. Verify that the number of invertible matrices is correct.

3.4 Affine-Linear Reversible Circuit Synthesis

 As was mentioned previously, affine-linear reversible circuits can be represented

by the equation Y=MXB using Boolean multiplication and addition. A practical,

scalable approach to affine-linear reversible circuit synthesis is to separately perform a

linear reversible circuit synthesis on M, the invertible linear system of equations portion

of the function to be synthesized, followed by an inverter network synthesis on B, the

affine portion. This inverter network synthesis could be treated trivially as a subcircuit

following the linear reversible circuit which contains at most n gates. A more efficient

synthesis for both the general model and LNN model can be made by starting with an

efficient linear reversible circuit and then performing an inverter network synthesis by

searching all relevant NOT gate placements; relevant placements are on wires preceding

CNOT gate controls or following the linear reversible circuit. Considering there may be

O(n²) placements which must be propagated through O(n²) CNOT gates, searching all

single NOT placements takes O(n
4
) time. To search all placements of two NOT gates

would take O(n
6
) time, three NOT gates would take O(n

8
) time, etc. If this search is

performed using two or more NOT gates and the search fails to fully synthesize the

desired affine-linear function, an iterative approach would be to examine the remainder

circuit which resulted in the closest approximation to the desired function and choose the

53

corresponding NOT gate placement that individually was closest to the desired function.

In this context the NOT gate placements can be represented by a Boolean vector B', the

desired function can be represented by B, and the closeness to the desired function is a

count of 0s in the vector B'B.

 One property discovered in LNN model synthesis that may also apply to the

general model synthesis is that two different, functionally equivalent linear reversible

circuit syntheses with equal gate counts may result in slightly different affine-linear

reversible circuit NOT gate counts. This applies to optimal LNN linear reversible circuits

and was discovered in the study that follows.

3.4.1 Optimal LNN Affine-Linear Reversible Circuit Synthesis Study of the 4×4 Input

Reversal Circuit

 The goal of this study was to determine how many different optimal syntheses of

the 4×4 input reversal function there were and how they differed from one another when

serving as the foundation for an LNN affine-linear reversible circuit synthesis. The

results have bearing on memory requirements for storing optimal LNN affine-linear

reversible circuit synthesis databases. If it could have been proven that any optimal LNN

linear reversible circuit can serve as a foundation for an optimal LNN affine-linear

reversible circuit, then computing and storing all 6×6 optimal LNN affine-linear

reversible circuits would require 2
6×6

=64GB of memory. Since this study disproves the

relation, it appears that storing all 6×6 optimal LNN affine-linear reversible circuits

would require 2
6×7

=4TB of memory to account for the six rows of affine vector B. Using

the computation times from the hard drive-based and RAM-based versions of the optimal

54

5×5 LNN linear reversible circuit synthesis database project as a guide, if the

aforementioned 4TB memory is a hard drive, then computation can be expected to run

700 times slower than if it were RAM, putting it in the realm of several years.

 The approach was to first determine every possible optimal LNN gate sequence

for the input reversal circuit. This required first creating an optimal database and then

using it to perform a depth-first search working backwards from the input reversal

function to all neighboring functions which corresponded to circuits that, when optimally

synthesized, required one less CNOT gate. Each successful search which resulted in a 15

CNOT gate count was stored in a synthesis list. For each of these syntheses, a collection

of derivative circuits was created by testing all possible placements of a single NOT gate.

Given that there are four wires, and knowing that an affine-linear reversible circuit will

propagate at least one NOT gate to its output, the resulting output pattern of inverters will

be one of 2
4
-1=15 possible derivative affine-linear reversible circuits. The informal proof

for the property that adding a NOT gate to a linear reversible circuit results in an output

with at least one NOT gate propagating through to the output can be made through

exhaustive search of all 2×2 affine-linear reversible circuits. Each synthesis will then be

associated with a particular 15-bit pattern, and statistics on the frequency of all 15-bit

patterns will be tallied.

 To test the functionality of the code a preliminary 2x2 input reversal function test

was performed, meaning two wires were arranged to swap with each other and two

remaining wires were arranged as straight-through. The SWAP gate is well known to

have two optimal syntheses of three CNOT gates. It is fairly simple to calculate the

different affine possibilities resulting from the addition of a single NOT gate to the

55

circuit, four obvious ones from placing an inverter on each output and another which

results in inverted output on both wires which swap. The computational results were as

expected, finding two optimal syntheses of the function with each synthesis being a

single NOT gate away from the expected five affine-linear reversible circuits. Four of

these patterns were the trivial case of placement of a NOT gate on each of the four wires

following the linear reversible circuit, and one of these patterns corresponded to inserting

a single NOT gate prior to the last CNOT gate's control line.

 Next I tested the 4×4 input reversal circuit. With four lines and four NOT gates it

follows that any linear reversible circuit can form the basis of 2
4
 = 16 different affine-

linear reversible circuits, and because one of these is the trivial case which uses zero

NOT gates only 15 affine-linear reversible circuits are of interest. The 4×4 input reversal

circuit test results indicated that there were 122,256 unique optimal LNN syntheses. By

adding a single NOT gate in all locations of each of the 122,256 unique circuits I

discovered that each linear circuit was capable of becoming 10 out of the possible 15

affine-linear reversible circuits. Furthermore these 10 out of 15 affine-linear reversible

circuit were in four different categories. These categories are shown in Table 3.4 where

10 columns appear with dark backgrounds which represent each category's reachable

equivalent affine-linear circuits. These categories covered all possible configurations.

Therefore using a set of four unique circuit syntheses, with one representative synthesis

from each of the four categories, all 15 affine-linear reversible circuits can be synthesized

with one NOT gate.

56

Table 3.4 An example of how optimal linear reversible circuit synthesis of the input

reversal function does not necessarily lead to an optimal affine-linear reversible circuit.

3440 input reversal circuits can become these 10 affine reversible circuits using one NOT gate:

Wire Affine Vector

D0

D1

D2

D3

26516 input reversal circuits can become these 10 affine reversible circuits using one NOT gate:

Wire Affine Vector

D0

D1

D2

D3

26516 input reversal circuits can become these 10 affine reversible circuits using one NOT gate:

Wire Affine Vector

D0

D1

D2

D3

65784 input reversal circuits can become these 10 affine reversible circuits using one NOT gate:

Wire Affine Vector

D0

D1

D2

D3

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

57

4

LNNAE Hardware Design

4.1 Overview

 This section discusses the development of a scalable RTL SystemVerilog

description of an LNNAE computer. The testing methodology was to use both directed

tests and randomized tests comparing LNNAE as a C function, a behavioral

SystemVerilog implementation, and an RTL SystemVerilog implementation.

 The LNNAE synthesis algorithm was chosen for hardware implementation

because synthesis tests of randomized 32×32 matrices showed that at equal depths

LNNAED gate counts were smaller than LNNGED gate counts 80-90% of the time.

Examining the software implementation revealed that the majority of the processing time

in LNNAED was spent performing recursive calls to LNNAE to compare CNOT gate

counts. Also, LNNAE employs 2n-2 matrix transpositions each of which take O(n²) time.

LNNGE uses bit tests and 64-bit XOR operations, making it O(n²); LNNAE similarly has

bit tests and 64-bit XOR operations but also one matrix transpose operation per each row

and each column, making it O(n³).

 A custom hardware implementation of LNNAE would yield improved

performance if the transpose operation was either eliminated or performed in a single

clock cycle, thus achieving O(n²). Also, a portion of LNNAE computation time was

dedicated to creating CNOT gate sequences which LNNAED discarded. Therefore the

hardware LNNAE units were simplified to return only a CNOT gate count. For simplicity

of debugging and testing, the LNNAE units were limited to synthesizing LNN linear

reversible circuits of dimension 4×4.

58

Figure 4.1: Block diagram of proposed LNNAED recursive search system.

 A future goal is to make multiple LNNAE blocks run in parallel as coprocessors

of a recursive LNNAED search system shown in Figure 4.1. The main LNNAED

controller would run the recursive parts of the LNNAED for depth>0, produce matrices

for depth=0, and manage LNNAE coprocessor scheduling. The LNNAE coprocessors

would compute the depth=0 LNN CNOT gate counts.

59

4.2 Initial design

Figure 4.2: Block diagram of the author's initial LNNAE coprocessor design using dual

row and column matrix access lines.

 The block diagram of the initial O(n²) LNNAE coprocessor design is shown in

Figure 4.2. The primary goal of this design was to minimize the number of clock cycles

required for processing a matrix. To achieve this, matrix data was stored in a two-

dimensional array which had dual row and column access. In each cycle of computation a

pair of rows or columns would be fetched, modified, and stored. Modification occurred in

the kernel which permitted a maximum of two CNOT gates to be synthesized in one

cycle, as is shown in Table 4.1. In the table input registers REG1 and REG2 represent an

n-bit value which could come from either a matrix row or column. The variable

Row_Column_Index held the index of the control bits in each fetched row and column,

and these control bits were used to determine if forward substitution or backward

elimination was required.

60

Table 4.1: Truth table for initial LNNAE coprocessor kernel block.

 Using this approach an n×n LNNAE unit could establish the first column and row

in 2n-2 cycles, the second column and row in 2n-4 cycles, the next in 2n-6 cycles, etc.

Specifically the 4×4 LNNAE unit took 6+4+2=12 clock cycles.

4.3 Hardware Implementation Discussion

 After a working proof-of-concept of the dual row and column LNNAE unit was

made in VHDL, a scaling issue became evident. It appeared that the area required for a

sizable LNNAE unit, one that could synthesize reversible circuits of 64 wires and above,

would depend mainly on the size of the n×n matrix block. In the dual row and column

LNNAE unit design each row and column used n parallel routing channels, and assuming

a target FPGA with k routing channels both vertically and horizontally adjacent to each

logic element (LE), the FPGA area that would be required for large LNNAE units would

be over n
4
/k

2
 LEs. This includes two horizontal and two vertical routing channels used for

control and data-in. In several class discussions Robin Marshall, Dr. Marek Perkowski,

and the author discussed alternative designs. Dr. Perkowski suggested using a wired-OR

to combine n parallel routing channels, but from researching FPGAs it appeared that only

some FPGAs supported wired-OR but exclusively on external pins. A compact

alternative to using a wired-OR would be to employ a chain of n-1 two-input OR gates,

REG1[Row_Column_Index] REG2[Row_Column_Index] REG1* REG2*

0 0 REG1 REG2 0

0 1 REG1 xor REG2 REG1 2

1 0 REG1 REG2 0

1 1 REG1 REG1 xor REG2 1

TotalGates

Increment

61

but for LNNAE units of n=64 or larger this would lead to a significant propagation delay.

While it was never implemented, a reasonable compromise seemed to be use of a

multilevel k×1 OR network which would be fast and use only k·logkn routing channels

per column and per row. Using n=64 and k=4 (vertical and horizontal routing channels

per LE) in a three level OR-OR-OR network of 4×1 OR gates, 12×12 routing channels

per matrix cell would suffice at a cost of only three combinational logic delays. Provided

five combinational logic delays would be acceptable, this could be reduced to 10×10

routing channels, leaving enough for the data-in and control and still fit into an overall

area of 3×3 LEs per matrix cell.

 Robin Marshall suggested a mixture of a systolic approach and a two-dimensional

shift register approach shown in Figure 4.3. In this approach there are two ancillary

columns stored in an adjacent two n-bit word block to the right of the matrix and two

ancillary rows stored in an adjacent two word block below the matrix. Pairs of matrix

columns or rows are shifted through their respective adjacent blocks. This process acts

similarly to the kernel in the dual row and column design, performing the required logic

which represents forward substitution and backward elimination. Combinational logic

inside these adjacent blocks drives a shared two-bit CNOTs gate count line which must

indicate zero CNOTs gates during matrix alignment (no-operation) cycles. For a complete

iteration through a row or column, n+2 clock cycles are necessary to align the matrix,

and subsequently an entire synthesis requires 2(n+2)(n-1)=2n²+2n-4 cycles.

62

Figure 4.3: Systolic two-dimensional shift register LNNAE design (suggested by Robin

Marshall).

 Comparing the two designs led to some interesting conclusions. The dual row and

column approach had a running time of approximately n²-n cycles and an approximate

implementation area proportional to 9n²+12n+4 LEs, ignoring nonmatrix blocks. The

systolic two-dimensional shift register approach had a running time of approximately

2n²+2n-4 cycles and required an approximate implementation area of n²+4n+4 LEs,

making it roughly double the running time and roughly one-ninth the area. Considering

that nine systolic two-dimensional shift register units running in parallel occupy

approximately the same area as one dual row and column unit does, for n=64 wires the

systolic two-dimensional shift register throughput is over four times the dual row and

column throughput. Furthermore the systolic two-dimensional shift register approach

63

could be employed on FPGAs with fewer routing channels per LE than the the dual row

and column approach could.

 Because the systolic two-dimensional shift register approach to LNNAE synthesis

had better throughput and scaling potential, it was chosen as a starting point for research.

The author redesigned the systolic two-dimensional shift register to shorten computation

time and simplify control. The first change came from an observation that the logic could

be simplified if the next-state version of the upper row or column H* was made to be a

function of the next-state version of the lower row or column L* shown in Table 4.2.

Table 4.2: Truth table for redesigned systolic LNNAE kernel.

The second and more significant change was the redesign of the systolic two-dimensional

shift register with fewer flip-flops to achieve a faster runtime. The key to this design was

fixing the location of the control bits responsible for determining elementary row

operations on the outside edge of the matrix; specifically for matrix M(1,1)-(n,n), cells M(n-

1,1) and M(n,1) would now be fixed elementary row operation control bits and M(n,n-1) and

M(n,n) would now be fixed elementary column operation control bits. By fixing the

location of the control bits and shifting the matrix up once and left once on each LNNAE

iteration, two dummy cycles previously required for matrix alignment could be

eliminated. This created a complicated dataflow and hardware redesign. In the new

design L* would be computed by n combinational logic blocks (combL) operating in

L[0] input H[0] input L* H* TotalGates Increment

0 0 L H 0

0 1 L XOR H L* XOR H 2

1 0 L H 0

1 1 L L* XOR H 1

64

parallel and located inside the matrix. The L* outputs would now drive the inputs of the

last row and column LEs. Similarly H* would be computed by n combinational logic

blocks (combH) operating in parallel which would now drive the inputs of the first row

and column LEs.

 Once the new dataflow and hardware design was created and passed rudimentary

tests, it was integrated into a larger test which was done chiefly by Addy Gronquist with

some assistance from the author. The larger design implemented a behavioral

SystemVerilog module, an RTL SystemVerilog module, and, using DPI calls to the

original C code version of LNNAE, a "Golden model" SystemVerilog module. A

testbench was created to compare these three approaches which employed a few directed

tests and many randomized tests.

 Figure 4.4 shows the internal matrix structure, and how shifting can occur in

either the vertical or the horizontal direction. Figure 4.5 shows a simplified block

diagram describing the logic surrounding the matrix. An n-bit wide 2×1 multiplexer bank

permits switching between loading new matrix values and computation of elementary

row operations by connecting the output of the combH bank to the input of the top row of

the matrix. The CNOTs block outputs a two-bit value which ranges between zero and

two, per Table 4.2, and is accumulated in the totalCNOT block. Also shown are the

control lines enable, loading, shiftdirection, and loadValue which are currently driven

externally from the testbench.

 Figure 4.6 illustrates the block diagram of the testbench. The testbench output was

a scoreboard which aggregated the directed and randomized test results which is shown

in Section 4.5. All tests passed without errors.

65

Figure 4.4: Redesigned systolic two-dimensional shift register LNNAE matrix.

Figure 4.5: Redesigned systolic two-dimensional shift register LNNAE system.

loading

loadValue

N

N

shiftdirection

enable

CNOTs

totalCNOTs

66

4.4 Systolic Implementation

 The full source code for the redesigned systolic two-dimensional shift register

LNNAE coprocessor and its test suite is available in the Appendix. The test suite which

was organized and implemented chiefly by Addy Gronquist tested my behavioral, RTL,

and C language LNNAE implementations against one other. The following code is from

the behavioral SystemVerilog implementation of the systolic two-dimensional shift

register LNNAE computer and shows the redesigned dataflow:

// outer loop, iterate N-1 times

for (i = N; i > 1; i--) begin

 //row processing phase, iterate N-1 times

 for(row = N; row > 1; row--) begin

 if (m[N-1][0]) begin

 count++;

 if (!m[N-2][0])

 count++;

 end

 // first assign combinational logic for L and H

 if (!m[N-2][0] && m[N-1][0])

 L = m[N-2]^m[N-1];

 else

 L = m[N-2];

 if (m[N-1][0])

 H = L^m[N-1];

67

 else

 H = m[N-1];

 //perform new assignments

 m[N-1] = L;

 for(j = N - 2; j > 0; j--) begin

 m[j] = m[j-1];

 end

 m[0] = H;

 end

 for(column = N; column > 1; column--) begin

 //column processing phase, iterate N-1 times

 if (m[N-1][N-1]) begin

 count++;

 if (!m[N-1][N-2])

 count++;

 end

 if (!m[N-1][N-2] && m[N-1][N-1])

 L = {m[0][2]^m[0][3], m[1][2]^m[1][3],

 m[2][2]^m[2][3], m[3][2]^m[3][3]};

 else

 //4x4 matrix specific code

 L = {m[0][2], m[1][2], m[2][2], m[3][2]};

68

 if (m[N-1][N-1])

 H = L^{m[0][3], m[1][3], m[2][3], m[3][3]};

 else

 H = {m[0][3], m[1][3], m[2][3], m[3][3]};

 //perform new assignments

 for(k = 0; k < N; k++) m[k][N-1] = L[k];

 for(j = N - 2; j > 0; j--) begin

 for(k = 0; k < N; k++)

 m[k][j] =m[k][j-1];

 end

 for(k = 0; k < N; k++) m[k][0] = H[k];

 end

end

The following code is from the RTL SystemVerilog implementation of the systolic two-

dimensional shift register LNNAE computer and defines the matrix in Figure 4.4:

generate //instantiate N-1 by N-1 section and ends

 for (i = 0; i < N-1; i++) begin: rowvar

 for (j = 0; j < N-1; j++) begin: colvar

 TwoDShiftCell1 a(h[i][j], v[i][j], shiftdirection,

 clock, h[i][j+1], v[i+1][j]);

 end

69

 //vertical wire glue

 combL cvlow(v[N-1][i], v[N][i], rowcombLcontrol,

 vCombLout[i]);

 TwoDShiftCell1 abottom(h[N-1][i], vCombLout[i],

 shiftdirection, clock, h[N-1][i+1], v[N][i]);

 combH cvhigh(vCombLout[i], v[N][i], rowcombHcontrol,

 vCombHout[i]);

 mux2to1 m21(vCombHout[i], datain[i], loading,

 v[N+1][i]);

 assign v[0][i] = v[N+1][i];

 //horizontal wire glue

 combL chlow (h[i][N-1], h[i][N], columncombLcontrol,

 hCombLout[i]);

 TwoDShiftCell0 aend(hCombLout[i], v[i][N-1],

 shiftdirection, clock, h[i][N], v[i+1][N-1]);

 combH chhigh(hCombLout[i], h[i][N], columncombHcontrol,

 hCombHout[i]);

 assign h[i][0] = hCombHout[i];

 end

endgenerate

70

Figure 4.6: Organization of the LNNAE system testbench (designed by Addy Gronquist).

The following code is from the testbench for systolic two-dimensional shift register

LNNAE system:

//SystemVerilog side:

import "DPI-C" function shortint unsigned random4by4();

import "DPI-C" function shortint unsigned run4by4(shortint

unsigned array);

import "DPI-C" function void seedRNG();

// C side:

unsigned short run4by4(unsigned short array);

unsigned short random4by4(void);

void seedRNG(void);

71

// C Code LNNAE Golden Model

unsigned short run4by4(unsigned short array)

{

 LRCSInitialize();

 uint64_t inputreversal[4];

 int N = 4, list[64];

 int numGates = 0;

 unsigned short temp = array;

 for (int i = 0; i < 4 ; i++)

 {

 temp = array;

 temp = (temp & (0xf << 4*i)) >> 4*i;

 inputreversal[3-i] = temp;

 }

 numGates = LNNRGE_U(4, inputreversal,list);

 return numGates;

}

4.5 Results

Error Count:

0

gateCount Coverage

72

gateCount = 0 covered 9 times

gateCount = 1 covered 24 times

gateCount = 2 covered 94 times

gateCount = 3 covered 265 times

gateCount = 4 covered 633 times

gateCount = 5 covered 1276 times

gateCount = 6 covered 2422 times

gateCount = 7 covered 3858 times

gateCount = 8 covered 5650 times

gateCount = 9 covered 7636 times

gateCount = 10 covered 9287 times

gateCount = 11 covered 10334 times

gateCount = 12 covered 10397 times

gateCount = 13 covered 9444 times

gateCount = 14 covered 7451 times

gateCount = 15 covered 5428 times

gateCount = 16 covered 3189 times

gateCount = 17 covered 1665 times

gateCount = 18 covered 703 times

gateCount = 19 covered 199 times

gateCount = 20 covered 35 times

gateCount = 21 covered 5 times

73

4

Conclusion

 In this thesis my linear reversible circuit synthesis algorithms LNNGE and

LNNAE were presented, as well as “Best of Eight” and depth search methods. These

algorithms can synthesize LNN linear reversible circuits with hundreds of wires

generating no more than 2n²-3n+1 adjacent CNOT gates, as well as serve as a foundation

for LNN affine-linear and permutation syntheses. The LNNAE algorithm stems from a

more general algorithm called Alternating Elimination which I developed in order to

expand the search space for minimizing the total number of elementary row operations

needed to compute an inverse. Alternating Elimination employs the matrix transposition

approach introduced in “Algorithm 1” [21] in order to solve for one diagonal matrix cell

at a time, and the resulting elementary row operation sequence creates a bidirectional

linear reversible circuit synthesis. Furthermore Alternating Elimination has no second

phase of backward elimination operations as is the case with Gaussian Elimination, and

as a result LNNAED has a larger search space and tends to outperform LNNGED as

depth increases. When a deeper search is desired the methods Initial Gate Search and

Truncated Initial Gate Search may further reduce CNOT gate counts. Future work in this

area would be to investigate the adaptation my LNN-based synthesis methods to improve

general linear reversible circuit synthesis.

 Through LNN linear reversible circuit synthesis tests of randomized linear

functions for up to 64 wires it was discovered that my methods had an average adjacent

CNOT gate count that was asymptotic to 1.5n². The tests indicated that for LNN linear

reversible circuits up to 16 wires an adjacent CNOT gate count of approximately n² is

74

usually possible. I created a 5×5 optimal LNN linear reversible circuit synthesis database,

and studying the results indicated that for 5 wires and below the exact upper bound is n²-

1 adjacent CNOT gates.

 A redesign of Robin Marshall's systolic two-dimensional shift register LNNAE

system was presented which used 2n-2 fewer cycles per synthesis. Future work in this

area would be to employ multiple LNNAE systems in parallel as part of a larger

LNNAED system.

75

References

1. Michio Kaku. "Michio Kaku: Tweaking Moore's Law and the Computers of the Post-

Silicon Era." Internet:

http://www.youtube.com/watch?feature=player_embedded&v=bm6ScvNygUU, April 13,

2012 [Jan. 23, 2013].

2. Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul

Dillenschneider, Eric Lutz. (Mar. 7 2012). "Experimental Verification of Landauer’s

Principle Linking Information and Thermodynamics." Nature. Vol 483, pp. 187-190,

2012. Available http://www.nature.com/nature/journal/v483/n7388/full/nature10872.html

[Jan. 26, 2013].

3. Rolf Landauer. "Irreversibility and Heat Generation in the Computing Process." IBM

Journal of Research and Development. Vol. 5, pp. 183-191, 1961.

4. Charles H. Bennett. "Notes on Landauer's principle, Reversible Computation and

Maxwell's Demon." Studies in History and Philosophy of Modern Physics. Vol. 34, pp.

501-510, 2003.

5. Graham P. Boechler, Jean M. Whitney, Craig S. Lent, Alexei O. Orlov, and Gregory L.

Sniderb. (Sept. 7, 2010)."Fundamental limits of energy dissipation in charge-based

computing." Applied Physics Letters. Vol. 97, 103502, 2010. Available:

http://apl.aip.org/resource/1/applab/v97/i10/p103502_s1?isAuthorized=no [Dec. 11,

2012].

6. Dmitri Maslov. "Reversible Logic Synthesis." Phd. thesis, The University of New

Brunswick, Canada, 2003.

76

7. Anonymous. "Quantum Random Number Generator." Internet: http://qrbg.irb.hr/, 2007

[Jan. 26, 2013].

8. Anonymous. "D-Wave, The Quantum Computing Company." Internet:

http://www.dwavesys.com/en/dw_homepage.html, 2012 [Jan. 26, 2013].

9. Rodney Van Meter, Mark Oskin. "Architectural implications of quantum computing."

ACM Journal on Emerging Technologies in Computing Systems. Volume 2 Issue 1, pp.

31-63, Jan. 2006.

10. Richard Hughes et al. "A Quantum Information Science and Technology Roadmap."

Internet: http://qist.lanl.gov/, Apr. 2, 2004. [Jan. 26, 2013]

11. Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, David Petrie Moulton. "A

new quantum ripple-carry addition circuit." Internet: http://arxiv.org/pdf/quant-

ph/0410184.pdf, Oct. 22, 2004 [Jan. 26, 2013]

12. Yuichi Hirata, Masaki Nakanishi, Shigeru Yamashita, Yasuhiko Nakashima. "An

Efficient Method to Convert Arbitrary Quantum Circuits to Ones on a Linear Nearest

Neighbor Architecture." Third International Conference on Quantum, Nano and Micro

Technologies. pp. 26-33, 2009. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4782917 [Jan. 26, 2013]

13. Austin G. Fowler, Simon J. Devitt and Lloyd C. L. Hollenberg. "Implementation of

Shor’s Algorithm on a Linear Nearest Neighbour Qubit Array." Quantum Information &

Computation. Volume 4, Issue 4, pp. 237-251, July 2004.

14. Mozammel H. A. Khan. "Cost Reduction in Nearest Neighbour Based Synthesis of

Quantum Boolean Circuits." Engineering Letters. Vol.16, issue 1. Available:

77

http://www.engineeringletters.com/issues_v16/issue_1/EL_16_1_01.pdf, 2008 [Jan. 26,

2013].

15. Amlan Chakrabarti, Susmita Sur-Kolay, Ayan Chaudhury. "Linear Nearest Neighbor

Synthesis of Reversible Circuits by Graph Partitioning." Internet:

http://arxiv.org/pdf/1112.0564.pdf, Dec. 27, 2012 [Jan. 27, 2013].

16. Amlan Chakrabarti, Susmita Sur-Kolay. "Nearest Neighbour based Synthesis of

Quantum Boolean Circuits." Engineering Letters. Vol.15, issue 2. Available:

http://www.engineeringletters.com/issues_v15/issue_2/EL_15_2_26.pdf, 2007 [Jan. 27,

2013].

17. Marek Perkowski, Martin Lukac, Dipal Shah, Michitaka Kameyama. "Synthesis of

quantum circuits in Linear Nearest neighbor Model using Positive Davio Lattices." Facta

universitatis - series: Electronics and Energetics. Vol. 24, br. 1, pp. 71-87, Apr. 2011.

18. Mehdi Saeedi, Robert Wille, Rolf Drechsler. "Synthesis of Quantum Circuits for

Linear Nearest Neighbor Architectures." Quantum Information Processing. Vol. 10, No.

3, pp. 355-377, 2011. Available: http://arxiv.org/pdf/1110.6412v2 [Jan. 27, 2013].

19. Donny Cheung, Dmitri Maslov, Simone Severini. "Translation Techniques Between

Quantum Circuit Architectures." Workshop on Quantum Information Processing,

December 2007. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.7479&rep=rep1&type=pdf

[Jan. 27, 2013].

20. Oleg Golubitsky, Dmitri Maslov. "A Study of Optimal 4-Bit Reversible Toffoli

Circuits and Their Synthesis." IEEE Transactions on Computers. Vol. 61, no. 9, pp.

78

1341-1353, Sept. 2012. Available:

http://www.computer.org/csdl/trans/tc/2012/09/ttc2012091341-abs.html [Jan. 26, 2013].

21. K. N. Patel, I. L. Markov, J. P. Hayes, “Optimal Synthesis of Linear Reversible

Circuits”, Quantum Information & Computation. Vol. 8, no. 3, pp. 282-94, March 2008.

Available: http://arxiv.org/abs/quant-ph/0302002 [Nov. 8, 2011]

22. A. Bogdanov, M.C. Mertens, C. Paar, J. Pelzl, A. Rupp. "A Parallel Hardware

Architecture for Fast Gaussian Elimination Over GF(2)." 14th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, pp.237-248, Apr. 24-26, 2006.

Available: http://cs.ucsb.edu/~koc/docs/j14.pdf [Jan. 27, 2013].

23. Richard Graham. Lecture, "Ion-trap Quantum Computing." Electrical and Computer

Engineering Department, Fourth Avenue Building, Portland State University, Portland,

Oregon. February 24, 2012.

24. Ben Schaeffer, Marek Perkowski. "Linear Reversible Circuit Synthesis in the Linear

Nearest-Neighbor Model." 2012 42nd IEEE International Symposium on Multiple-Valued

Logic, pp. 157-160, May 14-16, 2012. Available:

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6214801&url=http%3A%2F%2Fi

eeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6214801 [Jan. 27, 2013].

25. Paul Dawkins. "Paul's Online Math Notes." Internet:

http://tutorial.math.lamar.edu/Classes/LinAlg/SpecialMatrices.aspx, 2003 [Jan. 26, 2013].

26. M. Nielsen, I. Chuang. "Quantum Computation and Quantum Information."

Cambridge, United Kingdom. Cambridge University Press, 2000.

27. Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman

Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.

79

“Elementary gates for quantum computation.” Phys. Rev. A 52, pp. 3457–3467, 1995.

Available: http://pra.aps.org/pdf/PRA/v52/i5/p3457_1 [Jan. 27, 2013].

28. Mehdi Saeedi, Igor L. Markov. "Synthesis and Optimization of Reversible Circuits -

A Survey." Internet: http://arxiv.org/pdf/1110.2574v1, Oct. 12, 2011 [Jan. 27, 2013].

29. Lloyd N. Trefethen. “Three Mysteries of Gaussian Elimination.” ACM SIGNUM

Newsletter. 1985. Available:

http://www.cse.illinois.edu/courses/cs591mh/trefethen/Three_Mysteries.pdf [Jan. 27,

2013].

30. Ben Schaeffer, Marek Perkowski. "Linear Reversible Circuit Synthesis Methods for

the Linear Nearest-Neighbor Model." Unpublished manuscript, Jan. 11 2013.

31. I. L. Shende, S. S. Bullock, I. L. Markov. “Synthesis of Quantum Logic Circuits.”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

Vol.25, no. 6, pp. 1000-1010, June 2006. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1629135 [Jan. 27, 2013].

32. D.M. Miller, D. Maslov, G.W. Dueck. "A Transformation Based Algorithm for

Reversible Logic Synthesis." Design Automation Conference Proceedings 2003, pp. 318-

323, June 2-6, 2003. Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1219016&contentType=

Conference+Publications&queryText%3DA+Transformation+Based+Algorithm+for+Re

versible+Logic+Synthesis [Jan. 27, 2013].

33. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. "On Economical

Construction of the Transitive Closure of an Oriented Graph." Soviet Mathematics

Doklady, 1970, pp. 1209-1210.

80

34. Martin Albrecht, Gregory Bard, William Hart. "Efficient Multiplication of Dense

Matrices over GF(2)." Internet: http://arxiv.org/pdf/0811.1714v1 Nov. 11, 2008. [Jan. 27,

2013].

35. Alexis De Vos. "Reversible Computing: Fundamentals, Quantum Computing, and

Applications." Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi:

10.1002/9783527633999.ch3 Available:

http://onlinelibrary.wiley.com/doi/10.1002/9783527633999.ch3/pdf [Jan. 27, 2013].

36. H. T. Kung, W. M. Gentleman. "Matrix triangularization by systolic arrays."

Computer Science Department, Paper 1603, 1982. Available:

http://repository.cmu.edu/compsci/1603 [Jan. 27, 2013].

81

Appendix

Appendix A: Source.

LNNLinearReversibleSynthesisComparisons.c

// Comparisons of LNN Linear Reversible Circuit Synthesis Methods

// Copyright 2011, 2012 Ben Schaeffer

// Permission to copy this file is granted under the terms of the

// GNU Lesser General Public License. See COPYING.LESSER.txt for details.

// Date: October 24, 2012

// Version: 0.4

//

// This program is free software: you can redistribute it and/or modify

// it under the terms of the GNU Lesser General Public License as published by

// the Free Software Foundation, either version 3 of the License, or

// (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this program. If not, see <http://www.gnu.org/licenses/>.

//

// Abstract: This program compares nearest neighbor linear reversible circuit

// synthesis methods with long range methods. The long range approaches

// were described in the article "Optimal Synthesis of Linear Reversal

// Circuits" by Patel, Markov, Hayes. The results represent average total

// nearest neighbor CNOT gates per synthesis of heavily randomized circuits.

//

// Can synthesize up to 64 wire circuits.

//

// Gate Encoding is based on the control wire and is described below:

// Format is CNOT(control, target)

// CNOT(0, 1) is encoded as 0, CNOT(1, 2) is encoded as 1, etc.

// CNOT(1, 0) is encoded as -1, CNOT(2, 1) is encoded as -2, etc.

//

// The synthesis output is an array of encoded gates and is

// INVALID-terminated. Applying the output gate sequence to the

// problem (i.e. input) circuit will change the circuit to the

// identity matrix.

//

// To solve the transposed circuit using LNN synthesis methods first

// convert the problem circuit with "TransposeCircuit", call the

// desired synthesis function, and then process the output by using

// "TransposeCNotList". After following these states the output gate

// order will be the same as the non-transposed approach, i.e.

// applying the output gate sequence to the problem (i.e. input)

// circuit will change the circuit to the identity matrix.

#include <stdio.h>

82

#include <stdlib.h>

#include <stdint.h>

#define FALSE (0)

#define TRUE (1)

#define TESTS_TO_RUN (100)

//This macro performs a nearest neighbor CNOT operation on circuit "a"

#define ApplyCNOT(a, c) if (c < 0) a[-c-1] ^= a[-c]; else a[c+1] ^= a[c]

//#define ApplyCNot(circuit, gate) if (gate < 0) circuit[-gate - 1] ^= circuit[-gate]; else circuit[gate + 1] ^=

circuit[gate]

#define INVALID (128) //end of gate sequence marker

#define NSTART (8)

#define NEND (64)

#define NINCREMENT (8)

#define INVALID (128)

#define NMAX (64)

#define CNOTLISTSIZE (4*NMAX*NMAX)

typedef int bool;

static uint64_t identity[NMAX];

void Display(int N, uint64_t * circuit, uint64_t cost, int gates, int depth, int cnot);

void TransposeCircuit(int N, uint64_t * source, uint64_t * destination);

void ReverseandTransposeCNOTList(int * source, int * destination); //Transposes a INVALID-terminated

gate list

void Randomize(int N, uint64_t * circuit); //performs 2*N*N operations on solved matrix

void CopyCircuit(int N, uint64_t * source, uint64_t * destination);

void Initialize(void);

void DisplayAlgorithm1Progress(int N, uint64_t * circuit, int gatecount, int controlrow,

int targetrow);

// The following two functions modify the input circuit. Counts nearest neighbor gates.

int Algorithm_1_by_Patel_Markov_Hayes(int N, uint64_t * circuit, bool displayprogress); //returns gate

count

int Long_Range_Gaussian_CNOT_Synthesis(int N, uint64_t * circuit, bool displayprogress); //returns gate

count

// All subsequent functions make copies of the variable inputcircuit

// Linear Nearest Neighbor Gaussian Elimination using the "upper triangle matrix" approach

int LNNGE_UTM(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Gaussian Elimination using the "lower triangle matrix" approach

int LNNGE_LTM(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Gaussian Elimination with Depth using the "upper triangle matrix" approach

int LNNGED_UTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

// Linear Nearest Neighbor Gaussian Elimination with Depth using the "lower triangle matrix" approach

int LNNGED_LTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

// Linear Nearest Neighbor Alternating Elimination, solve for upper diagonal first

int LNNAE_U(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Alternating Elimination, solve for lower diagonal first

int LNNAE_L(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for upper diagonal first

int LNNAED_U(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for lower diagonal first

int LNNAED_L(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

83

int main(void)

{

 uint64_t inputcircuit[NMAX], circuit[NMAX], transposedcircuit[NMAX],

 inversecircuit[NMAX], inversetransposedcircuit[NMAX];

 int i, lowestcandidate, temp, cnotlist[CNOTLISTSIZE], gates;

 double algorithm1total;

 double GaussianEliminationtotal;

 double LNNGEtotal;

 double LNNGEBestOf8total;

 double LNNAEtotal;

 double LNNAEBestOf8total;

 double LNNGEDN16BestOf8total[5];

 double LNNAEDN16BestOf8total[5];

 bool displaysynthesis = FALSE;

 int N = NMAX;//Valid between 4 and 64

 Initialize();

 //Output in ".csv" format, compatible with spreadsheet programs

 printf("Comparisons of LNN Linear Reversible Circuit Synthesis"

 "Methods (Average Adjacent CNOT Gate Counts):\n, Gaussian Elimination,"

 " Algorithm 1, LNNGE, LNNAE, LNNGE Best of 8, LNNAED Best of 8\n");

 for (N = NSTART; N <= NEND; N += NINCREMENT){

 algorithm1total = 0;

 GaussianEliminationtotal = 0;

 LNNGEtotal = 0;

 LNNGEBestOf8total = 0;

 LNNAEtotal = 0;

 LNNAEBestOf8total = 0;

 //printf("Random linear reversible circuit synthesis of %d wires\n", N);

 for (i = 0;i < TESTS_TO_RUN; i++){

 Randomize(N, circuit);

 CopyCircuit(N, circuit, inputcircuit);

 gates = Long_Range_Gaussian_CNOT_Synthesis(N, inputcircuit,

displaysynthesis);

 GaussianEliminationtotal += gates;

 //printf("%d,", gates);

 CopyCircuit(N, circuit, inputcircuit);

 gates = Algorithm_1_by_Patel_Markov_Hayes(N, inputcircuit,

displaysynthesis);

 TransposeCircuit(N, inputcircuit, transposedcircuit);

 gates += Algorithm_1_by_Patel_Markov_Hayes(N, transposedcircuit,

displaysynthesis);

 //printf("%d,", gates);

 algorithm1total += gates;

 //Prepare transposed matrix for future function calls

 TransposeCircuit(N, circuit, transposedcircuit);

 //LNNGE best of 8 approaches

 lowestcandidate = LNNGE_UTM(N, circuit, cnotlist);

 LNNGEtotal += lowestcandidate;

 //printf("%d,", lowestcandidate);

84

 //Use result to compute matrix inverse

 CopyCircuit(N, identity, inversecircuit);

 for(temp = 0; cnotlist[temp] != INVALID; temp++)

 ApplyCNOT(inversecircuit, cnotlist[temp]);

 TransposeCircuit(N, inversecircuit, inversetransposedcircuit);

 temp = LNNGE_LTM(N, circuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGE_UTM(N, transposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNGE_LTM(N, transposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGE_UTM(N, inversecircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGE_LTM(N, inversecircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGE_UTM(N, inversetransposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNGE_LTM(N, inversetransposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 LNNGEBestOf8total += lowestcandidate;

 //LNNAE best of 8 approaches

 lowestcandidate = LNNAE_U(N, circuit, cnotlist);

 LNNAEtotal += lowestcandidate;

 //printf("%d,", lowestcandidate);

 temp = LNNAE_L(N, circuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNAE_U(N, transposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNAE_L(N, transposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNAE_U(N, inversecircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

85

 temp = LNNAE_L(N, inversecircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNAE_U(N, inversetransposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNAE_L(N, inversetransposedcircuit, cnotlist);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 LNNAEBestOf8total += lowestcandidate;

 //printf("%f,", LNNAEBestOf8total);

 //Iterative deepening test for LNNGED and LNNAED

 if (N == 16)

 {

 for (int d = 0; d < 5; d++)

 {

 //LNNGED best of 8 approaches

 lowestcandidate = LNNGED_UTM(N, circuit, cnotlist, d);

 //printf("%d,", lowestcandidate);

 temp = LNNGED_LTM(N, circuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGED_UTM(N, transposedcircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNGED_LTM(N, transposedcircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGED_UTM(N, inversecircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGED_LTM(N, inversecircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNGED_UTM(N, inversetransposedcircuit, cnotlist,

d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNGED_LTM(N, inversetransposedcircuit, cnotlist,

d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 LNNGEDN16BestOf8total[d] += lowestcandidate;

 //LNNAED best of 8 approaches

 lowestcandidate = LNNAED_U(N, circuit, cnotlist, d);

86

 //printf("%d,", lowestcandidate);

 temp = LNNAED_L(N, circuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNAED_U(N, transposedcircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNAED_L(N, transposedcircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNAED_U(N, inversecircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNAED_L(N, inversecircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 temp = LNNAED_U(N, inversetransposedcircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 temp = LNNAED_L(N, inversetransposedcircuit, cnotlist, d);

 if (lowestcandidate > temp)

 lowestcandidate = temp;

 //printf("%d,", lowestcandidate);

 LNNAEDN16BestOf8total[d] += lowestcandidate;

 }

 }

 }

 printf("%d, %f, %f, %f, %f, %f, %f\n", N,

 GaussianEliminationtotal/TESTS_TO_RUN,

 algorithm1total/TESTS_TO_RUN,

 LNNGEtotal/TESTS_TO_RUN,

 LNNAEtotal/TESTS_TO_RUN,

 LNNGEBestOf8total/TESTS_TO_RUN,

 LNNAEBestOf8total/TESTS_TO_RUN);

 }

 printf("Iterative deepening comparison of LNNGED and LNNAED for n=16\n");

 printf("Depth, Average CNOT gate count");

 for (int d = 0; d < 5; d++)

 printf("\n%f, %f", LNNGEDN16BestOf8total[d]/TESTS_TO_RUN,

 LNNAEDN16BestOf8total[d]/TESTS_TO_RUN);

 return 0;

}

void TransposeCircuit(int N, uint64_t * source, uint64_t * destination){

 uint64_t destinationflag = 1, sourceflag;

 for (int i=0; i < N; i++)

 destination[i] = 0;

 for (int destinationcolumn = 0; destinationcolumn < N; destinationcolumn++)

 {

87

 sourceflag = 1;

 for (int sourcecolumn = 0; sourcecolumn < N; sourcecolumn++)

 {

 if (source[destinationcolumn] & sourceflag)

 destination[sourcecolumn] |= destinationflag;

 sourceflag<<=1;

 }

 destinationflag<<=1;

 }

}

void ReverseandTransposeCNOTList(int * source, int * destination){

 int lower = 0, higher = 0;

 while(source[higher] != INVALID)

 higher++;

 destination[higher] = INVALID;

 while(source[lower] != INVALID)

 destination[--higher] = -(source[lower++]+1);

}

void Initialize(void){

 uint64_t one = 1;

 for (int i = 0; i < NMAX; i++){

 identity[i] = one<<i;

 }

}

void Randomize(int N, uint64_t * circuit){ //performs 2*N ^ 2 operations on solved matrix

 int count = 2*N*N, x1, x2;

 for (int i = 0; i < N; i++)

 circuit[i] = identity[i];

 for (; count > 0; count--)

 {

 x1 = rand()%N;// get a number between 0 and N

 x2 = (x1 + rand()%(N-1) + 1)%N;// get a different number between 0 and N

 if(rand()%2)

 {//randomly use a cnot

 circuit[x1] ^= circuit[x2];

 }

 else

 {//randomly swap wires

 circuit[x1] ^= circuit[x2];

 circuit[x2] ^= circuit[x1];

 circuit[x1] ^= circuit[x2];

 }

 }

}

// "Algorithm 1" by Patel, Markov, Hayes, uses long-range gates

int Algorithm_1_by_Patel_Markov_Hayes(int N, uint64_t * circuit, bool displayprogress) //returns gate

count

{

88

 uint64_t rowmask, one = 1;//handles section grouping

 int m, col, maxcol, row, targetrow, sub_row_pattern;

 int count, diagonal_one;

 count = 0;

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, 0, 0, 0);

 //first calculate m and row mask

 if (N < 32)

 {

 m = 2;

 rowmask = 0xFFFFFFFFFFFFFFFC;

 }

 else

 {

 m = 3;

 rowmask = 0xFFFFFFFFFFFFFFF8;

 }

 col = 0;

 while (col < N - 1) {

 maxcol = col + m; //variable to mark width of section

 if (maxcol > N - 1)

 maxcol = N - 1;

 //Step A

 for (row = col; row < N - 1; row++){

 sub_row_pattern = circuit[row] & ~rowmask;

 if (sub_row_pattern){//only search nonzero sub rows

 for (targetrow = row + 1; targetrow < N; targetrow++){

 if (sub_row_pattern == (circuit[targetrow] & ~rowmask)){

 circuit[targetrow] ^= circuit[row];

 if (targetrow == row + 1)

 count++;

 else

 count += ((targetrow - row) << 2) - 4;// cost of

nearest neighbor conversion

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, count, row,

targetrow);

 }

 }

 }

 }

 for (; col < maxcol; col++){//Step B

 if (circuit[col] & one)

 diagonal_one = TRUE;

 else

 diagonal_one = FALSE;

 for (targetrow = col + 1; targetrow < N; targetrow++){

 if (circuit[targetrow] & one){

 if (!diagonal_one) {

 diagonal_one = TRUE;

 circuit[col] ^= circuit[targetrow];

 if (targetrow == col + 1)

 count++;

89

 else

 count += ((targetrow - col) << 2) - 4;// cost of nearest

neighbor conversion

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, count,

targetrow, col);

 }

 //Step C

 circuit[targetrow] ^= circuit[col];

 if (targetrow == col + 1)

 count++;

 else

 count += ((targetrow - col) << 2) - 4;// cost of nearest

neighbor conversion

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, count, col, targetrow);

 }

 }

 //shift test flag for next iteration

 one <<= 1;

 }

 rowmask <<= m;

 }

 return count;

}

void DisplayAlgorithm1Progress(int N, uint64_t * circuit, int gatecount, int controlrow,

int targetrow){

 uint64_t one = 1;

 int i = 0, j;

 char A='A', chr;

 if (!gatecount)

 printf ("Initial Circuit\n");

 else

 printf ("After CNOT(%d -> %d), Nearest Neighbor Gate Count = %d\n",

 controlrow, targetrow, gatecount);

 for (i = 0; i < N; ++i) {

 for(j=0; j < N; j++){

 if (circuit[i] & (one<<j))

 chr = (char)j + A;

 else

 chr = ' ';

 printf("%c ", chr);//Output appropriate variable

 }

 printf("\n");//end of row

 }

 printf("\n");//end with an extra blank line

}

void CopyCircuit(int N, uint64_t * source, uint64_t * destination){

 for (int i = 0; i < N; i++)

90

 destination[i] = source[i];

}

int Long_Range_Gaussian_CNOT_Synthesis(int N, uint64_t * circuit, bool displayprogress){ //returns gate

count

 uint64_t one = 1;//handles section grouping

 int col, targetrow;

 int count, diagonal_one;

 count = 0;

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, 0, 0, 0);

 //first calculate m and row mask

 col = 0;

 while (col < N - 1) {

 if (circuit[col] & one)

 diagonal_one = TRUE;

 else

 diagonal_one = FALSE;

 for (targetrow = col + 1; targetrow < N; targetrow++){

 if (circuit[targetrow] & one){

 if (!diagonal_one) {

 diagonal_one = TRUE;

 circuit[col] ^= circuit[targetrow];

 if (targetrow == col + 1)

 count++;

 else

 count += ((targetrow - col) << 2) - 4;// cost of nearest

neighbor conversion

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, count, targetrow, col);

 }

 circuit[targetrow] ^= circuit[col];

 if (targetrow == col + 1)

 count++;

 else

 count += ((targetrow - col) << 2) - 4;// cost of nearest neighbor

conversion

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, count, col, targetrow);

 }

 }

 col++;

 one <<= 1;

 }

 while (col > 0) {

 for (targetrow = col - 1; targetrow >= 0; targetrow--){

 if (circuit[targetrow] & one){

 circuit[targetrow] ^= circuit[col];

 if (targetrow == col - 1)

 count++;

 else

91

 count += ((-targetrow + col) << 2) - 4;// cost of nearest neighbor

conversion

 if (displayprogress)

 DisplayAlgorithm1Progress(N, circuit, count, col, targetrow);

 }

 }

 col--;

 one >>= 1;

 }

 return count;

}

int LNNGE_UTM(int N, uint64_t * inputcircuit, int *cnotlist)

{ //returns gate count

 int totalgates = 0, column = 0, row;

 uint64_t circuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (; column < N - 1; column++) //first phase of Gaussian Elimination

 {

 flag = (uint64_t)1 << column;

 for (row = N - 1; row > column; row--)

 if (circuit[row] & flag)

 {

 if (circuit[row - 1] & flag)

 {

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 else

 {

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 circuit[row] ^= circuit[row - 1];

 }

 }

 }

 for (; column > 0; column--)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = 0; row < column && !(circuit[row] & flag); row++)

 ; //search for top instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s up

 for (int rowhelper = column; rowhelper - 1 > row; rowhelper--)

 {

 if (!(circuit[rowhelper - 1] & flag))

92

 {

 cnotlist[totalgates] = -(rowhelper); //CNOT up gate

 totalgates++;

 circuit[rowhelper - 1] ^= circuit[rowhelper];

 }

 }

 for (; ++row <= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 }

 }

 }

 cnotlist[totalgates] = INVALID;

 return totalgates;

}

int LNNGE_LTM(int N, uint64_t * inputcircuit, int * cnotlist){//returns gate count

 int totalgates = 0, column, row;

 uint64_t circuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (column = N-1; column > 0; column--) //first phase of Gaussian Elimination

 {

 flag = (uint64_t)1 << column;

 for (row = 0; row < column; row++)

 if(circuit[row] & flag)

 {

 if(!(circuit[row + 1] & flag))

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 circuit[row + 1] ^= circuit[row];

 }

 cnotlist[totalgates] = -(row + 1); //CNOT up gate

 totalgates++;

 circuit[row] ^= circuit[row + 1];

 // Display(circuit, lastpenalty, totalgates, 0, row);

 }

 }

 for (;column < N-1; column++)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = N-1; row > column && !(circuit[row] & flag); row--)

 ; //search for lowest instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s down

 for (int rowhelper = column; rowhelper + 1 < row; rowhelper++)

 {

 if (!(circuit[rowhelper + 1] & flag))

 {

 cnotlist[totalgates] = rowhelper; //CNOT down gate

93

 totalgates++;

 circuit[rowhelper + 1] ^= circuit[rowhelper];

 }

 }

 for (;--row >= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 circuit[row + 1] ^= circuit[row];

 }

 }

 }

 cnotlist[totalgates] = INVALID;

 return totalgates;

}

int LNNGED_UTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth){//returns gate count

 int totalgates = 0, column = 0, row;

 uint64_t circuit[N], flag;

 if (depth == 0)

 return LNNGE_UTM(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (;column < N-1; column++)

 { //first phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = N-1; row > column; row--)

 if(circuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT down gate

 if(circuit[row - 1] & flag)

 {

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 else

 {

 //Check for higher instance of variable in the same column

 //i.e. row[0] represents a wire that physically is higher

 //than row[1]

 int rowabove = row - 2, instancefound = FALSE;

 while (!instancefound && rowabove >= column)

 if (circuit[rowabove] & flag)

 instancefound = TRUE;

 else

 rowabove--;

 if (!instancefound)

 {

94

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 circuit[row] ^= circuit[row - 1];

 }

 else

 {//choose best heuristic and adjust row

 int minimumheuristic, mincnotdown = 0, cnotdown = 0, rown,

cd, temp;

 //first set minimumheuristic to all CNOT up

 for (rown = row; rown - 1> rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown];

 minimumheuristic = LNNGED_UTM(N, circuit,

cnotlist+totalgates, depth - 1);

 //compare against rest

 for (cnotdown = 1; cnotdown < row - rowabove;

cnotdown++)

 { // compute deltas, find cost, and ultimately restore

 circuit[rowabove + cnotdown] ^= circuit[rowabove +

cnotdown + 1];

 circuit[rowabove + cnotdown] ^= circuit[rowabove +

cnotdown - 1];

 temp = LNNGED_UTM(N, circuit,

cnotlist+totalgates, depth - 1);

 if (temp < minimumheuristic){

 minimumheuristic = temp;

 mincnotdown = cnotdown;

 }

 }//restore circuit

 for (rown = row; rown - 1 > rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown - 2];

 //choose best

 cnotdown = mincnotdown;

 for (cd = 0; cd < cnotdown; cd++)

 {

 cnotlist[totalgates] = (rowabove + cd); //CNOT down

gate

 totalgates++;

 circuit[rowabove + 1 + cd] ^= circuit[rowabove +

cd];

 }

 for (rown = row; rown - 1> rowabove+cnotdown; rown--)

 {

 cnotlist[totalgates] = -(rown); //CNOT up gate

 totalgates++;

 circuit[rown - 1] ^= circuit[rown];

 }

 row++; //adjustment so row calculation starts over

 }

95

 }

 }

 }

 for (; column > 0; column--)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = 0; row < column && !(circuit[row] & flag); row++)

 ; //search for top instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s up

 for (int rowhelper = column; rowhelper - 1 > row; rowhelper--)

 {

 if (!(circuit[rowhelper - 1] & flag))

 {

 cnotlist[totalgates] = -(rowhelper); //CNOT up gate

 totalgates++;

 circuit[rowhelper - 1] ^= circuit[rowhelper];

 }

 }

 for (; ++row <= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 }

 }

 }

 cnotlist[totalgates] = INVALID;

 return totalgates;

}

int LNNGED_LTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth){//returns gate count

 int totalgates = 0, column, row;

 uint64_t circuit[N], flag;

 if (depth == 0)

 return LNNGE_LTM(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (column = N-1; column > 0; column--)

 { //first phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = 0; row < column; row++)

 if(circuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT up gate

 if(circuit[row+1] & flag)

 {

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

 circuit[row] ^= circuit[row+1];

 }

96

 else

 {

 //Check for lower instance of variable in the same column

 int rowbelow = row + 2, instancefound = FALSE;

 while (!instancefound && rowbelow <= column)

 if (circuit[rowbelow] & flag)

 instancefound = TRUE;

 else

 rowbelow++;

 if (!instancefound)

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

 circuit[row+1] ^= circuit[row];

 circuit[row] ^= circuit[row+1];

 }

 else

 {//choose best heuristic and adjust row

 int minimumheuristic, mincnotup = 0, cnotup = 0, rown, cu,

temp;

 //first set minimumheuristic to all CNOT down

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown];

 minimumheuristic = LNNGED_LTM(N, circuit,

cnotlist+totalgates, depth - 1);

 //compare against rest

 for (cnotup = 1; cnotup < rowbelow - row; cnotup++)

 {

 // compute deltas, find cost, and eventually restore

circuit

 circuit[rowbelow - cnotup] ^= circuit[rowbelow -

cnotup + 1];

 circuit[rowbelow - cnotup] ^= circuit[rowbelow -

cnotup - 1];

 temp = LNNGED_LTM(N, circuit,

cnotlist+totalgates, depth - 1);

 if (temp < minimumheuristic)

 {

 minimumheuristic = temp;

 mincnotup = cnotup;

 }

 }

 //restore circuit

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown + 2];

 //choose best

 cnotup = mincnotup;

 for (cu = 0; cu < cnotup; cu++)

97

 {

 cnotlist[totalgates] = -(rowbelow - cu); //CNOT up

gate

 totalgates++;

 circuit[rowbelow - 1 - cu] ^= circuit[rowbelow - cu];

 }

 for (rown = row; rown + 1 < rowbelow - cnotup; rown++)

 {

 cnotlist[totalgates] = rown; //CNOT down gate

 totalgates++;

 circuit[rown+1] ^= circuit[rown];

 }

 row--;//adjustment so row calculation starts over

 }

 }

 }

 }

 for (;column < N-1; column++)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = N-1; row > column && !(circuit[row] & flag); row--)

 ; //search for lowest instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s down

 for (int rowhelper = column; rowhelper + 1 < row; rowhelper++)

 {

 if (!(circuit[rowhelper + 1] & flag))

 {

 cnotlist[totalgates] = rowhelper; //CNOT down gate

 totalgates++;

 circuit[rowhelper + 1] ^= circuit[rowhelper];

 }

 }

 for (;--row >= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 circuit[row + 1] ^= circuit[row];

 }

 }

 }

 cnotlist[totalgates] = INVALID;

 return totalgates;

}

void Display(int N, uint64_t * circuit, uint64_t cost, int gates, int depth, int cnot) {

 uint64_t one = 1;

 int i=0, j, cnotcontrol, cnottarget;

 char A='A', chr;

 //return;

98

 if (cnot != INVALID)

 {

 if (cnot>=0)

 {

 cnotcontrol=cnot;

 cnottarget=cnot+1;

 }

 else

 {

 cnotcontrol=-cnot;

 cnottarget=-cnot-1;

 }

 printf ("After CNOT(%d -> %d): ",cnotcontrol,cnottarget);

 }

 printf("Cost %lld, Total Gates %d, Depth %d\n", cost, gates, depth);

 for (;i<N;++i) {

 for(j=0;j<depth;j++)

 printf(" ");//indentation based on depth

 for(j=0;j<N;j++){

 if (circuit[i]&(one<<j))

 chr = (char)j+A;

 else

 chr = ' ';

 printf("%c ",chr);//Output appropriate variable

 }

 printf("\n");//end of row

 }

 printf("\n");//end with extra blank line

 ;

}

// Linear Nearest Neighbor Alternating Elimination, solve for upper diagonal first

int LNNAE_U(int N, uint64_t * inputcircuit, int * cnotlist) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = 1, column = 0; column < N - 1; column++, flag <<= 1) //first phase of Gaussian

Elimination

 {

 for (row = N - 1; row > column; row--)

 {

 if (circuit[row] & flag)

 {

 if (!(circuit[row - 1] & flag))

 {

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 }

 cnotlist[totalgates] = (row - 1); //CNOT down gate

99

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 }

 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = N - 1; row > column; row--)

 {

 if (transposedcircuit[row] & flag)

 {

 if (!(transposedcircuit[row - 1] & flag))

 {

 transposedcnotlist[transposedtotalgates] = -(row); //CNOT up

gate

 transposedtotalgates++;

 transposedcircuit[row - 1] ^= transposedcircuit[row];

 }

 transposedcnotlist[transposedtotalgates] = (row - 1); //CNOT down

gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row - 1];

 }

 }

 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

// Linear Nearest Neighbor Alternating Elimination, solve for lower diagonal first

int LNNAE_L(int N, uint64_t * inputcircuit, int * cnotlist) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = (uint64_t)1 << (N - 1), column = N - 1; column > 0; column--, flag >>= 1) //first

phase of Gaussian Elimination

 {

 for (row = 0; row < column; row++)

 {

 if(circuit[row] & flag)

 {

 if(!(circuit[row + 1] & flag))

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

100

 circuit[row + 1] ^= circuit[row];

 }

 cnotlist[totalgates] = -(row + 1); //CNOT up gate

 totalgates++;

 circuit[row] ^= circuit[row + 1];

 }

 }
 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = 0; row < column; row++)

 {

 if(transposedcircuit[row] & flag)

 {

 if(!(transposedcircuit[row + 1] & flag))

 {

 transposedcnotlist[transposedtotalgates] = row; //CNOT down

gate

 transposedtotalgates++;

 transposedcircuit[row + 1] ^= transposedcircuit[row];

 }

 transposedcnotlist[transposedtotalgates] = -(row + 1); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row + 1];

 }

 }
 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for upper diagonal first

int LNNAED_U(int N, uint64_t * inputcircuit, int * cnotlist, int depth) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 if (depth == 0)

 return LNNAE_U(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = 1, column = 0; column < N - 1; column++, flag <<= 1) //first phase of Gaussian

Elimination

 {

 for (row = N-1; row > column; row--)

 if(circuit[row] & flag)

 {

101

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT down gate

 if(circuit[row - 1] & flag)

 {

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 else

 {

 //Check for higher instance of variable in the same column

 //i.e. row[0] represents a wire that physically is higher

 //than row[1]

 int rowabove = row - 2, instancefound = FALSE;

 while (!instancefound && rowabove >= column)

 if (circuit[rowabove] & flag)

 instancefound = TRUE;

 else

 rowabove--;

 if (!instancefound)

 {

 do

 {

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 circuit[row] ^= circuit[row - 1];

 }

 while (--row > column);

 }

 else

 {//choose best heuristic and adjust row

 int minimumheuristic, mincnotdown = 0, cnotdown = 0, rown,

cd, temp;

 //first set minimumheuristic to all CNOT up

 for (rown = row; rown - 1> rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown];

 minimumheuristic = LNNAED_U(N, circuit, cnotlist +

totalgates, depth - 1);

 //compare against rest

 for (cnotdown = 1; cnotdown < row - rowabove;

cnotdown++)

 { // compute deltas, find cost, and ultimately restore

 circuit[rowabove + cnotdown] ^= circuit[rowabove +

cnotdown + 1];

 circuit[rowabove + cnotdown] ^= circuit[rowabove +

cnotdown - 1];

 temp = LNNAED_U(N, circuit, cnotlist + totalgates,

depth - 1);

102

 if (temp < minimumheuristic){

 minimumheuristic = temp;

 mincnotdown = cnotdown;

 }

 }//restore circuit

 for (rown = row; rown - 1 > rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown - 2];

 //choose best

 cnotdown = mincnotdown;

 for (cd = 0; cd < cnotdown; cd++)

 {

 cnotlist[totalgates] = (rowabove + cd); //CNOT down

gate

 totalgates++;

 circuit[rowabove + 1 + cd] ^= circuit[rowabove +

cd];

 }

 for (rown = row; rown - 1> rowabove+cnotdown; rown--)

 {

 cnotlist[totalgates] = -(rown); //CNOT up gate

 totalgates++;

 circuit[rown - 1] ^= circuit[rown];

 }

 row++; //adjustment so row calculation starts over

 }

 }

 }
 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = N-1; row > column; row--)

 if(transposedcircuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT down gate

 if(transposedcircuit[row - 1] & flag)

 {

 transposedcnotlist[transposedtotalgates] = (row - 1); //CNOT down

gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row - 1];

 }

 else

 {

 //Check for higher instance of variable in the same column

 //i.e. row[0] represents a wire that physically is higher

 //than row[1]

 int rowabove = row - 2, instancefound = FALSE;

 while (!instancefound && rowabove >= column)

103

 if (transposedcircuit[rowabove] & flag)

 instancefound = TRUE;

 else

 rowabove--;

 if (!instancefound)

 {

 do

 {

 transposedcnotlist[transposedtotalgates] = -(row);

//CNOT up gate

 transposedtotalgates++;

 transposedcnotlist[transposedtotalgates] = (row - 1);

//CNOT down gate

 transposedtotalgates++;

 transposedcircuit[row - 1] ^= transposedcircuit[row];

 transposedcircuit[row] ^= transposedcircuit[row - 1];

 }

 while (--row > column);

 }

 else

 {//choose best heuristic and adjust row

 int minimumheuristic, mincnotdown = 0, cnotdown = 0, rown,

cd, temp;

 //first set minimumheuristic to all CNOT up

 for (rown = row; rown - 1> rowabove; rown--)

 transposedcircuit[rown - 1] ^= transposedcircuit[rown];

 //In order to keep all operations consistent recursive function

 //calls need to use the non-transposed circuit

 TransposeCircuit(N, transposedcircuit, circuit);

 minimumheuristic = LNNAED_U(N, circuit, cnotlist +

totalgates, depth - 1);

 //compare against rest

 for (cnotdown = 1; cnotdown < row - rowabove;

cnotdown++)

 { // compute deltas, find cost, and ultimately restore

 transposedcircuit[rowabove + cnotdown] ^=

transposedcircuit[rowabove + cnotdown + 1];

 transposedcircuit[rowabove + cnotdown] ^=

transposedcircuit[rowabove + cnotdown - 1];

 TransposeCircuit(N, transposedcircuit, circuit);

 temp = LNNAED_U(N, circuit, cnotlist + totalgates,

depth - 1);

 if (temp < minimumheuristic){

 minimumheuristic = temp;

 mincnotdown = cnotdown;

 }

 }//restore transposedcircuit

 for (rown = row; rown - 1 > rowabove; rown--)

 transposedcircuit[rown - 1] ^= transposedcircuit[rown - 2];

 //choose best

 cnotdown = mincnotdown;

104

 for (cd = 0; cd < cnotdown; cd++)

 {

 transposedcnotlist[transposedtotalgates] = (rowabove

+ cd); //CNOT down gate

 transposedtotalgates++;

 transposedcircuit[rowabove + 1 + cd] ^=

transposedcircuit[rowabove + cd];

 }

 for (rown = row; rown - 1> rowabove+cnotdown; rown--)

 {

 transposedcnotlist[transposedtotalgates] = -(rown);

//CNOT up gate

 transposedtotalgates++;

 transposedcircuit[rown - 1] ^=

transposedcircuit[rown];

 }

 row++; //adjustment so row calculation starts over

 }

 }

 }
 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for lower diagonal first

int LNNAED_L(int N, uint64_t * inputcircuit, int * cnotlist, int depth) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 if (depth == 0)

 return LNNAE_L(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = (uint64_t)1 << (N - 1), column = N - 1; column > 0; column--, flag >>= 1) //first

phase of Gaussian Elimination

 {

 for (row = 0; row < column; row++)

 if(circuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT up gate

 if(circuit[row+1] & flag)

 {

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

105

 circuit[row] ^= circuit[row+1];

 }

 else

 {

 //Check for lower instance of variable in the same column

 int rowbelow = row + 2, instancefound = FALSE;

 while (!instancefound && rowbelow <= column)

 if (circuit[rowbelow] & flag)

 instancefound = TRUE;

 else

 rowbelow++;

 if (!instancefound)

 {

 do

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

 circuit[row+1] ^= circuit[row];

 circuit[row] ^= circuit[row+1];

 }

 while (++row < column);

 }

 else

 {//choose best heuristic and adjust row

 int minimumheuristic, mincnotup = 0, cnotup = 0, rown, cu,

temp;

 //first set minimumheuristic to all CNOT down

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown];

 minimumheuristic = LNNAED_L(N, circuit, cnotlist +

totalgates, depth - 1);

 //compare against rest

 for (cnotup = 1; cnotup < rowbelow - row; cnotup++)

 {

 // compute deltas, find cost, and eventually restore

circuit

 circuit[rowbelow - cnotup] ^= circuit[rowbelow -

cnotup + 1];

 circuit[rowbelow - cnotup] ^= circuit[rowbelow -

cnotup - 1];

 temp = LNNAED_L(N, circuit, cnotlist + totalgates,

depth - 1);

 if (temp < minimumheuristic)

 {

 minimumheuristic = temp;

 mincnotup = cnotup;

 }

 }

106

 //restore circuit

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown + 2];

 //choose best

 cnotup = mincnotup;

 for (cu = 0; cu < cnotup; cu++)

 {

 cnotlist[totalgates] = -(rowbelow - cu); //CNOT up

gate

 totalgates++;

 circuit[rowbelow - 1 - cu] ^= circuit[rowbelow - cu];

 }

 for (rown = row; rown + 1 < rowbelow - cnotup; rown++)

 {

 cnotlist[totalgates] = rown; //CNOT down gate

 totalgates++;

 circuit[rown+1] ^= circuit[rown];

 }

 row--;//adjustment so row calculation starts over

 }

 }

 }
 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = 0; row < column; row++)

 if(transposedcircuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT up gate

 if(transposedcircuit[row+1] & flag)

 {

 transposedcnotlist[transposedtotalgates] = -(row+1); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row+1];

 }

 else

 {

 //Check for lower instance of variable in the same column

 int rowbelow = row + 2, instancefound = FALSE;

 while (!instancefound && rowbelow <= column)

 if (transposedcircuit[rowbelow] & flag)

 instancefound = TRUE;

 else

 rowbelow++;

 if (!instancefound)

 {

 do

 {

107

 transposedcnotlist[transposedtotalgates] = row;

//CNOT down gate

 transposedtotalgates++;

 transposedcnotlist[transposedtotalgates] = -(row+1);

//CNOT up gate

 transposedtotalgates++;

 transposedcircuit[row+1] ^= transposedcircuit[row];

 transposedcircuit[row] ^= transposedcircuit[row+1];

 }

 while (++row < column);

 }

 else

 {//choose best heuristic and adjust row

 int minimumheuristic, mincnotup = 0, cnotup = 0, rown, cu,

temp;

 //first set minimumheuristic to all CNOT down

 for (rown = row; rown + 1 < rowbelow; rown++)

 transposedcircuit[rown + 1] ^= transposedcircuit[rown];

 TransposeCircuit(N, transposedcircuit, circuit);

 minimumheuristic = LNNAED_L(N, circuit, cnotlist +

totalgates, depth - 1);

 //compare against rest

 for (cnotup = 1; cnotup < rowbelow - row; cnotup++)

 {

 // compute deltas, find cost, and eventually restore

transposedcircuit

 transposedcircuit[rowbelow - cnotup] ^=

transposedcircuit[rowbelow - cnotup + 1];

 transposedcircuit[rowbelow - cnotup] ^=

transposedcircuit[rowbelow - cnotup - 1];

 TransposeCircuit(N, transposedcircuit, circuit);

 temp = LNNAED_L(N, circuit, cnotlist + totalgates,

depth - 1);

 if (temp < minimumheuristic)

 {

 minimumheuristic = temp;

 mincnotup = cnotup;

 }

 }

 //restore transposedcircuit

 for (rown = row; rown + 1 < rowbelow; rown++)

 transposedcircuit[rown + 1] ^= transposedcircuit[rown + 2];

 //choose best

 cnotup = mincnotup;

 for (cu = 0; cu < cnotup; cu++)

 {

 transposedcnotlist[transposedtotalgates] = -

(rowbelow - cu); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[rowbelow - 1 - cu] ^=

transposedcircuit[rowbelow - cu];

108

 }

 for (rown = row; rown + 1 < rowbelow - cnotup; rown++)

 {

 transposedcnotlist[transposedtotalgates] = rown;

//CNOT down gate

 transposedtotalgates++;

 transposedcircuit[rown+1] ^=

transposedcircuit[rown];

 }

 row--;//adjustment so row calculation starts over

 }

 }

 }
 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

LinearReversibleCircuitDatabase5x5.c

//LinearReversibleCircuitDatabase5x5.c

//Notes: minimum maximum marker write_count smart

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <stdbool.h>

//work on 5x5 proof of concept

#define INCOMPLETE_A (64) //marker to indicate this circuit needs to be searched

#define INCOMPLETE_B (128) //marker to indicate this circuit needs to be searched

#define IDENTITY_CIRCUIT (0xf) //special value for terminal circuit in database searches

#define LOWEST_GATE (-4)

#define HIGHEST_GATE (3)

#define GATE_OFFSET (5) //gates are saved to the database with GATE_OFFSET added

#define NMAX (64)

#define INVALID (128)

#define ApplyCNOT(a, c) if (c < 0) a[-c-1] ^= a[-c]; else a[c+1] ^= a[c]

#define FALSE (0)

#define TRUE (1)

#define CNOTLISTSIZE (4*NMAX*NMAX)

static unsigned int LNNGED4optimaltotal = 0;

static unsigned int LNNAED4optimaltotal = 0;

static unsigned char *buffer;

static unsigned char *counts;

static unsigned control_mask[5] = {0x1f, 0x3e0, 0x7c00, 0xf8000, 0x1f00000};

static uint64_t identity64[64];

static unsigned int verification_counter = 0;

void Initialize64(void);

109

bool CircuitsAreEquivalent(int N, uint64_t * circuitA, uint64_t * circuitB);

//Returns a count of equivalent optimal circuits given problem "circuit"

//Returns 0 if circuit is not reversible

unsigned long long CountEquivalentOptimalCircuits5x5(unsigned circuit);

//Do not call this function directly as it is only used as a helper

//function by the public function

unsigned long long PrivateCountEquivalentOptimalCircuits5x5(unsigned circuit);

void _5x5_verify(int i);

void _5x5_comparisons(int i);

void TransposeCircuit(int N, uint64_t * source, uint64_t * destination);

void ReverseandTransposeCNOTList(int * source, int * destination); //Transposes a INVALID-terminated

gate list

// Linear Nearest Neighbor Gaussian Elimination using the "upper triangle matrix" approach

int LNNGE_UTM(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Gaussian Elimination using the "lower triangle matrix" approach

int LNNGE_LTM(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Gaussian Elimination with Depth using the "upper triangle matrix" approach

int LNNGED_UTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

// Linear Nearest Neighbor Gaussian Elimination with Depth using the "lower triangle matrix" approach

int LNNGED_LTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

// Linear Nearest Neighbor Alternating Elimination, solve for upper diagonal first

int LNNAE_U(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Alternating Elimination, solve for lower diagonal first

int LNNAE_L(int N, uint64_t * inputcircuit, int * cnotlist); //returns gate count

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for upper diagonal first

int LNNAED_U(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for lower diagonal first

int LNNAED_L(int N, uint64_t * inputcircuit, int * cnotlist, int depth); //returns gate count

void CopyCircuit(int N, uint64_t * source, uint64_t * destination);

int main (void)

{

 unsigned long write_count, minimum_a, maximum_a, minimum_b, maximum_b;

 unsigned long identity, circuit, next_circuit, control;

 int gate; //follows CNOT gate encoding where negative values indicate

 //CNOT up and positive values indicate CNOT down

 int iteration = 1;

 //identity is a function of N, and in this case N=4

 // 5=(N+1) 10=2(N+1) 15=3(N+1)

 identity = (1<<0) + (1<<6) + (1<<12) + (1<<18) + (1<<24);

 buffer = malloc(1<<25);

 counts = malloc(1<<25);

 if (!buffer || !counts)

 {

 puts("memory allocation failure");

 return 0;

 }

 //mark the identity matrix so it gets searched

 buffer[identity] = IDENTITY_CIRCUIT | INCOMPLETE_A;

 counts[identity] = 0;

110

 //Set starting minimum and maximum to index of identity matrix

 minimum_a = identity;

 maximum_a = identity;

 do

 {

 write_count = 0;

 minimum_b = identity;//Reset minimum and maximum for recalculation

 maximum_b = identity;

 for (circuit = minimum_a; circuit <= maximum_a; circuit++)

 {

 if (buffer[circuit] & INCOMPLETE_A)//if circuit has not been searched

 {

 buffer[circuit] ^= INCOMPLETE_A;//clear incomplete flag

 //Search all nearby circuits except predecessor circuit

 for (gate = LOWEST_GATE; gate <= HIGHEST_GATE; gate++)

 if (gate != (int)buffer[circuit] - GATE_OFFSET)

 {

 if (gate >= 0)

 {

 control = circuit & control_mask[gate];

 next_circuit = circuit ^ control << 5;

 }

 else

 {

 control = circuit & control_mask[-gate];

 next_circuit = circuit ^ control >> 5;

 }

 if (buffer[next_circuit] == 0)//if circuit is unknown

 {

 //Now that it is known that this circuit is reversible and needs to be marked as incomplete

 buffer[next_circuit] = (gate + GATE_OFFSET) | INCOMPLETE_B;

 counts[next_circuit] = iteration;

 write_count++;

 //adjust minimum and maximum if necessary

 if (minimum_b > next_circuit)

 minimum_b = next_circuit;

 else if (maximum_b < next_circuit)

 maximum_b = next_circuit;

 }

 }

 }

 }

 if (write_count == 0)//Break if search is complete

 break;

 printf ("iteration = %2d, write_count = %ld\n", iteration++, write_count);

 write_count=0;

 //Second iteration

 minimum_a = identity;//Reset minimum and maximum for recalculation

 maximum_a = identity;

 for (circuit = minimum_b; circuit <= maximum_b; circuit++)

 {

 if (buffer[circuit] & INCOMPLETE_B)//if circuit has not been searched

 {

111

 buffer[circuit] ^= INCOMPLETE_B;//clear incomplete flag

 //Search all nearby circuits except predecessor circuit

 for (gate = LOWEST_GATE; gate <= HIGHEST_GATE; gate++)

 if (gate != (int)buffer[circuit] - GATE_OFFSET)

 {

 if (gate >= 0)

 {

 control = circuit & control_mask[gate];

 next_circuit = circuit ^ control << 5;

 }

 else

 {

 control = circuit & control_mask[-gate];

 next_circuit = circuit ^ control >> 5;

 }

 if (buffer[next_circuit] == 0)//if circuit is unknown

 {

 //Now that it is known that this circuit is reversible and needs to be marked as incomplete

 buffer[next_circuit] = (gate + GATE_OFFSET) | INCOMPLETE_A;

 write_count++;

 counts[next_circuit] = iteration;

 //adjust minimum and maximum if necessary

 if (minimum_a > next_circuit)

 minimum_a = next_circuit;

 else if (maximum_a < next_circuit)

 maximum_a = next_circuit;

 }

 }

 }

 }

 printf ("iteration = %2d, write_count = %ld\n", iteration++, write_count);

 }

 while (write_count > 0);

 for (int i = 0; i< 1<<25; i++)

 if (buffer[i])

 _5x5_verify(i);

 if (verification_counter == 9999360)//expected value from equation

 //(2^5-1)*(2^5-2)*(2^5-4)*(2^5-8)*(2^5-16)

 {

 puts("Database Verified.");

 //FILE * f = fopen("5x5LNN_LRC.dat","wb");

 //fwrite(buffer, 1<<25, 1, f);

 //fclose(f);

 int temp = 0;

 for (int i = 0; i< 1<<25; i++)

 {

 if (buffer[i])

 {

 _5x5_comparisons(i);

 }

 }

 printf("LNNGED depth = 4 optimal total: %lld\n", LNNGED4optimaltotal);

112

 printf("LNNAED depth = 4 optimal total: %lld\n", LNNAED4optimaltotal);

 printf("Optimal total 9999360\n");

 }

 else

 printf("%lld errors in database detected", 9999360 -

 verification_counter);

 return 0;

}

unsigned long long CountEquivalentOptimalCircuits5x5(unsigned circuit)

//Returns a count of equivalent optimal circuits given problem "circuit"

//Returns 0 if circuit is not reversible

{

 if (buffer[circuit] == 0)

 return 0;

 return PrivateCountEquivalentOptimalCircuits5x5(circuit);

}

unsigned long long PrivateCountEquivalentOptimalCircuits5x5(unsigned circuit)

{

 unsigned long long count = 0;

 unsigned control, next_circuit;

 int gate;

 if (buffer[circuit] == IDENTITY_CIRCUIT)

 return 1;

 //Recursively add up all counts of equivalent circuits

 for (gate = LOWEST_GATE; gate <= HIGHEST_GATE; gate++)

 {

 if (gate >= 0)

 {

 control = circuit & control_mask[gate];

 next_circuit = circuit ^ control << 5;

 }

 else

 {

 control = circuit & control_mask[-gate];

 next_circuit = circuit ^ control >> 5;

 }

 if (counts[circuit] - 1 == counts[next_circuit])

 count += PrivateCountEquivalentOptimalCircuits5x5(next_circuit);

 }

 return count;

}

void Initialize64(void) {

 uint64_t one = 1;

 for (int i = 0; i < NMAX; i++) {

 identity64[i] = one << i;

 }

}

int VerifyCNOTList(int N, uint64_t * inputcircuit, int * cnotlist) //true return means verified, false fails

{

 int i;

113

 uint64_t circuit[NMAX];

 Initialize64();

 for (i = 0; i < N; i++) //use copy of circuit

 circuit[i] = identity64[i];

 for (i = 0; cnotlist[i] != INVALID; i++)

 ApplyCNOT(circuit, cnotlist[i]);

 return CircuitsAreEquivalent(N, circuit, inputcircuit);

}

bool CircuitsAreEquivalent(int N, uint64_t * circuitA, uint64_t * circuitB)

{

 for (int i = 0; i < N; i++)

 if (circuitA[i] != circuitB[i])

 return false;

 return true;

}

void _5x5_verify(int i)

{

 int caution = 25;//maximum optimal CNOT list length

 while(buffer[i] != IDENTITY_CIRCUIT)

 {

 if (!buffer[i])//not reversible

 {

 printf("Encountered database error... exiting");

 exit(1);

 }

 if (caution-- == 0)//check for CNOT list getting longer than maximum for 5x5

 return;//this circuit will not be counted but subsequent tests can continue

 if (buffer[i] - GATE_OFFSET>= 0)

 {

 i ^= (i & control_mask[buffer[i] - GATE_OFFSET]) << 5;

 }

 else

 {

 i ^= (i & control_mask[-(buffer[i] - GATE_OFFSET)]) >> 5;

 }

 }

 verification_counter++;

}

void _5x5_comparisons(int i)

{

 int optimalcount = 0;//maximum optimal CNOT list length

 int LNNGEDcount = 0;

 int LNNAEDcount = 0;

 uint64_t circuit[5], transposedcircuit[5], inversetransposedcircuit[5];

 uint64_t inversecircuit[5] = {1, 2, 4, 8, 16};

 int cnotlist [100];

 int temp;

 circuit[0] = i & 0x1f;

 circuit[1] = (i >> 5) & 0x1f;

 circuit[2] = (i >> 10) & 0x1f;

114

 circuit[3] = (i >> 15) & 0x1f;

 circuit[4] = (i >> 20) & 0x1f;

 while(buffer[i] != IDENTITY_CIRCUIT)

 {

 optimalcount++;

 if (buffer[i] - GATE_OFFSET>= 0)

 {

 i ^= (i & control_mask[buffer[i] - GATE_OFFSET]) << 5;

 }

 else

 {

 i ^= (i & control_mask[-(buffer[i] - GATE_OFFSET)]) >> 5;

 }

 }

 //Prepare transposed matrix for future function calls

 TransposeCircuit(5, circuit, transposedcircuit);

 LNNGE_UTM(5, circuit, cnotlist);

 for(temp = 0; cnotlist[temp] != INVALID; temp++)

 ApplyCNOT(inversecircuit, cnotlist[temp]);

 TransposeCircuit(5, inversecircuit, inversetransposedcircuit);

 //LNNGED best of 8 approaches

 LNNGEDcount = LNNGED_UTM(5,circuit, cnotlist, 4);

 temp = LNNGED_LTM(5,circuit, cnotlist, 4);

 if (LNNGEDcount > temp)

 LNNGEDcount = temp;

 temp = LNNGED_UTM(5,transposedcircuit, cnotlist, 4);

 if (LNNGEDcount > temp)

 LNNGEDcount = temp;

 temp = LNNGED_LTM(5,transposedcircuit, cnotlist, 4);

 if (LNNGEDcount > temp)

 LNNGEDcount = temp;

 temp = LNNGED_UTM(5,inversecircuit, cnotlist, 4);

 if (LNNGEDcount > temp)

 LNNGEDcount = temp;

 temp = LNNGED_LTM(5,inversecircuit, cnotlist, 4);

 if (LNNGEDcount > temp)

 LNNGEDcount = temp;

 temp = LNNGED_UTM(5,inversetransposedcircuit, cnotlist, 4);

 if (LNNGEDcount > temp)

 LNNGEDcount = temp;

 temp = LNNGED_LTM(5,inversetransposedcircuit, cnotlist, 4);

 if (LNNGEDcount > temp)

 LNNGEDcount = temp;

 if (LNNGEDcount == optimalcount)

 LNNGED4optimaltotal++;

 //LNNAED best of 8 approaches

 LNNAEDcount = LNNAED_U(5,circuit, cnotlist, 4);

 //printf("%d,", LNNAEDcount);

 temp = LNNAED_L(5,circuit, cnotlist, 4);

 if (LNNAEDcount > temp)

115

 LNNAEDcount = temp;

 //printf("%d,", LNNAEDcount);

 temp = LNNAED_U(5,transposedcircuit, cnotlist, 4);

 if (LNNAEDcount > temp)

 LNNAEDcount = temp;

 temp = LNNAED_L(5,transposedcircuit, cnotlist, 4);

 if (LNNAEDcount > temp)

 LNNAEDcount = temp;

 //printf("%d,", LNNAEDcount);

 temp = LNNAED_U(5,inversecircuit, cnotlist, 4);

 if (LNNAEDcount > temp)

 LNNAEDcount = temp;

 //printf("%d,", LNNAEDcount);

 temp = LNNAED_L(5,inversecircuit, cnotlist, 4);

 if (LNNAEDcount > temp)

 LNNAEDcount = temp;

 //printf("%d,", LNNAEDcount);

 temp = LNNAED_U(5,inversetransposedcircuit, cnotlist, 4);

 if (LNNAEDcount > temp)

 LNNAEDcount = temp;

 temp = LNNAED_L(5,inversetransposedcircuit, cnotlist, 4);

 if (LNNAEDcount > temp)

 LNNAEDcount = temp;

 if (LNNAEDcount == optimalcount)

 LNNAED4optimaltotal++;

}

void TransposeCircuit(int N, uint64_t * source, uint64_t * destination) {

 uint64_t destinationflag = 1, sourceflag;

 for (int i=0; i < N; i++)

 destination[i] = 0;

 for (int destinationcolumn = 0; destinationcolumn < N; destinationcolumn++)

 {

 sourceflag = 1;

 for (int sourcecolumn = 0; sourcecolumn < N; sourcecolumn++)

 {

 if (source[destinationcolumn] & sourceflag)

 destination[sourcecolumn] |= destinationflag;

 sourceflag<<=1;

 }

 destinationflag<<=1;

 }

}

void ReverseandTransposeCNOTList(int * source, int * destination) {

 int lower = 0, higher = 0;

 while(source[higher] != INVALID)

 higher++;

 destination[higher] = INVALID;

 while(source[lower] != INVALID)

 destination[--higher] = -(source[lower++]+1);

}

int LNNGE_UTM(int N, uint64_t * inputcircuit, int *cnotlist)

116

{ //returns gate count

 int totalgates = 0, column = 0, row;

 uint64_t circuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (; column < N - 1; column++) //first phase of Gaussian Elimination

 {

 flag = (uint64_t)1 << column;

 for (row = N - 1; row > column; row--)

 if (circuit[row] & flag)

 {

 if (circuit[row - 1] & flag)

 {

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 else

 {

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 circuit[row] ^= circuit[row - 1];

 }

 }

 }

 for (; column > 0; column--)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = 0; row < column && !(circuit[row] & flag); row++)

 ; //search for top instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s up

 for (int rowhelper = column; rowhelper - 1 > row; rowhelper--)

 {

 if (!(circuit[rowhelper - 1] & flag))

 {

 cnotlist[totalgates] = -(rowhelper); //CNOT up gate

 totalgates++;

 circuit[rowhelper - 1] ^= circuit[rowhelper];

 }

 }

 for (; ++row <= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 }

 }

 }

117

 cnotlist[totalgates] = INVALID;

 return totalgates;

}

int LNNGE_LTM(int N, uint64_t * inputcircuit, int * cnotlist) { //returns gate count

 int totalgates = 0, column, row;

 uint64_t circuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (column = N-1; column > 0; column--) //first phase of Gaussian Elimination

 {

 flag = (uint64_t)1 << column;

 for (row = 0; row < column; row++)

 if(circuit[row] & flag)

 {

 if(!(circuit[row + 1] & flag))

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 circuit[row + 1] ^= circuit[row];

 }

 cnotlist[totalgates] = -(row + 1); //CNOT up gate

 totalgates++;

 circuit[row] ^= circuit[row + 1];

 // Display(circuit, lastpenalty, totalgates, 0, row);

 }

 }

 for (; column < N-1; column++)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = N-1; row > column && !(circuit[row] & flag); row--)

 ; //search for lowest instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s down

 for (int rowhelper = column; rowhelper + 1 < row; rowhelper++)

 {

 if (!(circuit[rowhelper + 1] & flag))

 {

 cnotlist[totalgates] = rowhelper; //CNOT down gate

 totalgates++;

 circuit[rowhelper + 1] ^= circuit[rowhelper];

 }

 }

 for (; --row >= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 circuit[row + 1] ^= circuit[row];

 }

 }

 }

 cnotlist[totalgates] = INVALID;

118

 return totalgates;

}

int LNNGED_UTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth) { //returns gate count

 int totalgates = 0, column = 0, row;

 uint64_t circuit[N], flag;

 if (depth == 0)

 return LNNGE_UTM(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (; column < N-1; column++)

 { //first phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = N-1; row > column; row--)

 if(circuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT down gate

 if(circuit[row - 1] & flag)

 {

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 else

 {

 //Check for higher instance of variable in the same column

 //i.e. row[0] represents a wire that physically is higher

 //than row[1]

 int rowabove = row - 2, instancefound = FALSE;

 while (!instancefound && rowabove >= column)

 if (circuit[rowabove] & flag)

 instancefound = TRUE;

 else

 rowabove--;

 if (!instancefound)

 {

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 circuit[row] ^= circuit[row - 1];

 }

 else

 { //choose best heuristic and adjust row

 int minimumheuristic, mincnotdown = 0, cnotdown = 0, rown, cd, temp;

 //first set minimumheuristic to all CNOT up

 for (rown = row; rown - 1> rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown];

 minimumheuristic = LNNGED_UTM(N, circuit, cnotlist+totalgates, depth - 1);

 //compare against rest

119

 for (cnotdown = 1; cnotdown < row - rowabove; cnotdown++)

 { // compute deltas, find cost, and ultimately restore

 circuit[rowabove + cnotdown] ^= circuit[rowabove + cnotdown + 1];

 circuit[rowabove + cnotdown] ^= circuit[rowabove + cnotdown - 1];

 temp = LNNGED_UTM(N, circuit, cnotlist+totalgates, depth - 1);

 if (temp < minimumheuristic) {

 minimumheuristic = temp;

 mincnotdown = cnotdown;

 }

 }//restore circuit

 for (rown = row; rown - 1 > rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown - 2];

 //choose best

 cnotdown = mincnotdown;

 for (cd = 0; cd < cnotdown; cd++)

 {

 cnotlist[totalgates] = (rowabove + cd); //CNOT down gate

 totalgates++;

 circuit[rowabove + 1 + cd] ^= circuit[rowabove + cd];

 }

 for (rown = row; rown - 1> rowabove+cnotdown; rown--)

 {

 cnotlist[totalgates] = -(rown); //CNOT up gate

 totalgates++;

 circuit[rown - 1] ^= circuit[rown];

 }

 row++; //adjustment so row calculation starts over

 }

 }

 }

 }

 for (; column > 0; column--)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = 0; row < column && !(circuit[row] & flag); row++)

 ; //search for top instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s up

 for (int rowhelper = column; rowhelper - 1 > row; rowhelper--)

 {

 if (!(circuit[rowhelper - 1] & flag))

 {

 cnotlist[totalgates] = -(rowhelper); //CNOT up gate

 totalgates++;

 circuit[rowhelper - 1] ^= circuit[rowhelper];

 }

 }

 for (; ++row <= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

120

 }

 }

 }

 cnotlist[totalgates] = INVALID;

 return totalgates;

}

int LNNGED_LTM(int N, uint64_t * inputcircuit, int * cnotlist, int depth) { //returns gate count

 int totalgates = 0, column, row;

 uint64_t circuit[N], flag;

 if (depth == 0)

 return LNNGE_LTM(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (column = N-1; column > 0; column--)

 { //first phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = 0; row < column; row++)

 if(circuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT up gate

 if(circuit[row+1] & flag)

 {

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

 circuit[row] ^= circuit[row+1];

 }

 else

 {

 //Check for lower instance of variable in the same column

 int rowbelow = row + 2, instancefound = FALSE;

 while (!instancefound && rowbelow <= column)

 if (circuit[rowbelow] & flag)

 instancefound = TRUE;

 else

 rowbelow++;

 if (!instancefound)

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

 circuit[row+1] ^= circuit[row];

 circuit[row] ^= circuit[row+1];

 }

 else

 { //choose best heuristic and adjust row

 int minimumheuristic, mincnotup = 0, cnotup = 0, rown, cu, temp;

 //first set minimumheuristic to all CNOT down

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown];

 minimumheuristic = LNNGED_LTM(N, circuit, cnotlist+totalgates, depth - 1);

121

 //compare against rest

 for (cnotup = 1; cnotup < rowbelow - row; cnotup++)

 {

 // compute deltas, find cost, and eventually restore circuit

 circuit[rowbelow - cnotup] ^= circuit[rowbelow - cnotup + 1];

 circuit[rowbelow - cnotup] ^= circuit[rowbelow - cnotup - 1];

 temp = LNNGED_LTM(N, circuit, cnotlist+totalgates, depth - 1);

 if (temp < minimumheuristic)

 {

 minimumheuristic = temp;

 mincnotup = cnotup;

 }

 }

 //restore circuit

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown + 2];

 //choose best

 cnotup = mincnotup;

 for (cu = 0; cu < cnotup; cu++)

 {

 cnotlist[totalgates] = -(rowbelow - cu); //CNOT up gate

 totalgates++;

 circuit[rowbelow - 1 - cu] ^= circuit[rowbelow - cu];

 }

 for (rown = row; rown + 1 < rowbelow - cnotup; rown++)

 {

 cnotlist[totalgates] = rown; //CNOT down gate

 totalgates++;

 circuit[rown+1] ^= circuit[rown];

 }

 row--;//adjustment so row calculation starts over

 }

 }

 }

 }

 for (; column < N-1; column++)

 { //second phase of Gaussian Elimination

 flag = (uint64_t)1 << column;

 for (row = N-1; row > column && !(circuit[row] & flag); row--)

 ; //search for lowest instance of variable associated with the column

 if (row != column)

 { //First extend "1"'s down

 for (int rowhelper = column; rowhelper + 1 < row; rowhelper++)

 {

 if (!(circuit[rowhelper + 1] & flag))

 {

 cnotlist[totalgates] = rowhelper; //CNOT down gate

 totalgates++;

 circuit[rowhelper + 1] ^= circuit[rowhelper];

 }

122

 }

 for (; --row >= column;)

 { //Next eliminate "1"'s

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 circuit[row + 1] ^= circuit[row];

 }

 }

 }

 cnotlist[totalgates] = INVALID;

 return totalgates;

}

void Display(int N, uint64_t * circuit, uint64_t cost, int gates, int depth, int cnot) {

 uint64_t one = 1;

 int i=0, j, cnotcontrol, cnottarget;

 char A='A', chr;

 //return;

 if (cnot != INVALID)

 {

 if (cnot>=0)

 {

 cnotcontrol=cnot;

 cnottarget=cnot+1;

 }

 else

 {

 cnotcontrol=-cnot;

 cnottarget=-cnot-1;

 }

 printf ("After CNOT(%d -> %d): ",cnotcontrol,cnottarget);

 }

 printf("Cost %lld, Total Gates %d, Depth %d\n", cost, gates, depth);

 for (; i<N; ++i) {

 for(j=0; j<depth; j++)

 printf(" ");//indentation based on depth

 for(j=0; j<N; j++) {

 if (circuit[i]&(one<<j))

 chr = (char)j+A;

 else

 chr = ' ';

 printf("%c ",chr);//Output appropriate variable

 }

 printf("\n");//end of row

 }

 printf("\n");//end with extra blank line

 ;

}

// Linear Nearest Neighbor Alternating Elimination, solve for upper diagonal first

123

int LNNAE_U(int N, uint64_t * inputcircuit, int * cnotlist) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = 1, column = 0; column < N - 1; column++, flag <<= 1) //first phase of Gaussian

Elimination

 {

 for (row = N - 1; row > column; row--)

 {

 if (circuit[row] & flag)

 {

 if (!(circuit[row - 1] & flag))

 {

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 }

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 }

 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = N - 1; row > column; row--)

 {

 if (transposedcircuit[row] & flag)

 {

 if (!(transposedcircuit[row - 1] & flag))

 {

 transposedcnotlist[transposedtotalgates] = -(row); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[row - 1] ^= transposedcircuit[row];

 }

 transposedcnotlist[transposedtotalgates] = (row - 1); //CNOT down gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row - 1];

 }

 }

 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

124

// Linear Nearest Neighbor Alternating Elimination, solve for lower diagonal first

int LNNAE_L(int N, uint64_t * inputcircuit, int * cnotlist) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = (uint64_t)1 << (N - 1), column = N - 1; column > 0; column--, flag >>= 1) //first phase of

Gaussian Elimination

 {

 for (row = 0; row < column; row++)

 {

 if(circuit[row] & flag)

 {

 if(!(circuit[row + 1] & flag))

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 circuit[row + 1] ^= circuit[row];

 }

 cnotlist[totalgates] = -(row + 1); //CNOT up gate

 totalgates++;

 circuit[row] ^= circuit[row + 1];

 }

 }

 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = 0; row < column; row++)

 {

 if(transposedcircuit[row] & flag)

 {

 if(!(transposedcircuit[row + 1] & flag))

 {

 transposedcnotlist[transposedtotalgates] = row; //CNOT down gate

 transposedtotalgates++;

 transposedcircuit[row + 1] ^= transposedcircuit[row];

 }

 transposedcnotlist[transposedtotalgates] = -(row + 1); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row + 1];

 }

 }

 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

125

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for upper diagonal first

int LNNAED_U(int N, uint64_t * inputcircuit, int * cnotlist, int depth) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 if (depth == 0)

 return LNNAE_U(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = 1, column = 0; column < N - 1; column++, flag <<= 1) //first phase of Gaussian

Elimination

 {

 for (row = N-1; row > column; row--)

 if(circuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT down gate

 if(circuit[row - 1] & flag)

 {

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row] ^= circuit[row - 1];

 }

 else

 {

 //Check for higher instance of variable in the same column

 //i.e. row[0] represents a wire that physically is higher

 //than row[1]

 int rowabove = row - 2, instancefound = FALSE;

 while (!instancefound && rowabove >= column)

 if (circuit[rowabove] & flag)

 instancefound = TRUE;

 else

 rowabove--;

 if (!instancefound)

 {

 do

 {

 cnotlist[totalgates] = -(row); //CNOT up gate

 totalgates++;

 cnotlist[totalgates] = (row - 1); //CNOT down gate

 totalgates++;

 circuit[row - 1] ^= circuit[row];

 circuit[row] ^= circuit[row - 1];

 }

 while (--row > column);

 }

 else

 { //choose best heuristic and adjust row

 int minimumheuristic, mincnotdown = 0, cnotdown = 0, rown, cd, temp;

 //first set minimumheuristic to all CNOT up

126

 for (rown = row; rown - 1> rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown];

 minimumheuristic = LNNAED_U(N, circuit, cnotlist + totalgates, depth - 1);

 //compare against rest

 for (cnotdown = 1; cnotdown < row - rowabove; cnotdown++)

 { // compute deltas, find cost, and ultimately restore

 circuit[rowabove + cnotdown] ^= circuit[rowabove + cnotdown + 1];

 circuit[rowabove + cnotdown] ^= circuit[rowabove + cnotdown - 1];

 temp = LNNAED_U(N, circuit, cnotlist + totalgates, depth - 1);

 if (temp < minimumheuristic) {

 minimumheuristic = temp;

 mincnotdown = cnotdown;

 }

 }//restore circuit

 for (rown = row; rown - 1 > rowabove; rown--)

 circuit[rown - 1] ^= circuit[rown - 2];

 //choose best

 cnotdown = mincnotdown;

 for (cd = 0; cd < cnotdown; cd++)

 {

 cnotlist[totalgates] = (rowabove + cd); //CNOT down gate

 totalgates++;

 circuit[rowabove + 1 + cd] ^= circuit[rowabove + cd];

 }

 for (rown = row; rown - 1> rowabove+cnotdown; rown--)

 {

 cnotlist[totalgates] = -(rown); //CNOT up gate

 totalgates++;

 circuit[rown - 1] ^= circuit[rown];

 }

 row++; //adjustment so row calculation starts over

 }

 }

 }

 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = N-1; row > column; row--)

 if(transposedcircuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT down gate

 if(transposedcircuit[row - 1] & flag)

 {

 transposedcnotlist[transposedtotalgates] = (row - 1); //CNOT down gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row - 1];

 }

 else

127

 {

 //Check for higher instance of variable in the same column

 //i.e. row[0] represents a wire that physically is higher

 //than row[1]

 int rowabove = row - 2, instancefound = FALSE;

 while (!instancefound && rowabove >= column)

 if (transposedcircuit[rowabove] & flag)

 instancefound = TRUE;

 else

 rowabove--;

 if (!instancefound)

 {

 do

 {

 transposedcnotlist[transposedtotalgates] = -(row); //CNOT up gate

 transposedtotalgates++;

 transposedcnotlist[transposedtotalgates] = (row - 1); //CNOT down gate

 transposedtotalgates++;

 transposedcircuit[row - 1] ^= transposedcircuit[row];

 transposedcircuit[row] ^= transposedcircuit[row - 1];

 }

 while (--row > column);

 }

 else

 { //choose best heuristic and adjust row

 int minimumheuristic, mincnotdown = 0, cnotdown = 0, rown, cd, temp;

 //first set minimumheuristic to all CNOT up

 for (rown = row; rown - 1> rowabove; rown--)

 transposedcircuit[rown - 1] ^= transposedcircuit[rown];

 //In order to keep all operations consistent recursive function

 //calls need to use the non-transposed circuit

 TransposeCircuit(N, transposedcircuit, circuit);

 minimumheuristic = LNNAED_U(N, circuit, cnotlist + totalgates, depth - 1);

 //compare against rest

 for (cnotdown = 1; cnotdown < row - rowabove; cnotdown++)

 { // compute deltas, find cost, and ultimately restore

 transposedcircuit[rowabove + cnotdown] ^= transposedcircuit[rowabove + cnotdown +

1];

 transposedcircuit[rowabove + cnotdown] ^= transposedcircuit[rowabove + cnotdown -

1];

 TransposeCircuit(N, transposedcircuit, circuit);

 temp = LNNAED_U(N, circuit, cnotlist + totalgates, depth - 1);

 if (temp < minimumheuristic) {

 minimumheuristic = temp;

 mincnotdown = cnotdown;

 }

 }//restore transposedcircuit

 for (rown = row; rown - 1 > rowabove; rown--)

 transposedcircuit[rown - 1] ^= transposedcircuit[rown - 2];

 //choose best

 cnotdown = mincnotdown;

 for (cd = 0; cd < cnotdown; cd++)

128

 {

 transposedcnotlist[transposedtotalgates] = (rowabove + cd); //CNOT down gate

 transposedtotalgates++;

 transposedcircuit[rowabove + 1 + cd] ^= transposedcircuit[rowabove + cd];

 }

 for (rown = row; rown - 1> rowabove+cnotdown; rown--)

 {

 transposedcnotlist[transposedtotalgates] = -(rown); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[rown - 1] ^= transposedcircuit[rown];

 }

 row++; //adjustment so row calculation starts over

 }

 }

 }

 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

// Linear Nearest Neighbor Alternating Elimination with Depth, solve for lower diagonal first

int LNNAED_L(int N, uint64_t * inputcircuit, int * cnotlist, int depth) //returns gate count

{

 int totalgates = 0, transposedtotalgates = 0, column, row, transposedcnotlist[CNOTLISTSIZE];

 uint64_t circuit[N], transposedcircuit[N], flag;

 if (depth == 0)

 return LNNAE_L(N, inputcircuit, cnotlist);

 for (int i = 0; i < N; i++) //use copy of circuit

 circuit[i] = inputcircuit[i];

 for (flag = (uint64_t)1 << (N - 1), column = N - 1; column > 0; column--, flag >>= 1) //first phase of

Gaussian Elimination

 {

 for (row = 0; row < column; row++)

 if(circuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT up gate

 if(circuit[row+1] & flag)

 {

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

 circuit[row] ^= circuit[row+1];

 }

 else

 {

 //Check for lower instance of variable in the same column

 int rowbelow = row + 2, instancefound = FALSE;

129

 while (!instancefound && rowbelow <= column)

 if (circuit[rowbelow] & flag)

 instancefound = TRUE;

 else

 rowbelow++;

 if (!instancefound)

 {

 do

 {

 cnotlist[totalgates] = row; //CNOT down gate

 totalgates++;

 cnotlist[totalgates] = -(row+1); //CNOT up gate

 totalgates++;

 circuit[row+1] ^= circuit[row];

 circuit[row] ^= circuit[row+1];

 }

 while (++row < column);

 }

 else

 { //choose best heuristic and adjust row

 int minimumheuristic, mincnotup = 0, cnotup = 0, rown, cu, temp;

 //first set minimumheuristic to all CNOT down

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown];

 minimumheuristic = LNNAED_L(N, circuit, cnotlist + totalgates, depth - 1);

 //compare against rest

 for (cnotup = 1; cnotup < rowbelow - row; cnotup++)

 {

 // compute deltas, find cost, and eventually restore circuit

 circuit[rowbelow - cnotup] ^= circuit[rowbelow - cnotup + 1];

 circuit[rowbelow - cnotup] ^= circuit[rowbelow - cnotup - 1];

 temp = LNNAED_L(N, circuit, cnotlist + totalgates, depth - 1);

 if (temp < minimumheuristic)

 {

 minimumheuristic = temp;

 mincnotup = cnotup;

 }

 }

 //restore circuit

 for (rown = row; rown + 1 < rowbelow; rown++)

 circuit[rown + 1] ^= circuit[rown + 2];

 //choose best

 cnotup = mincnotup;

 for (cu = 0; cu < cnotup; cu++)

 {

 cnotlist[totalgates] = -(rowbelow - cu); //CNOT up gate

 totalgates++;

 circuit[rowbelow - 1 - cu] ^= circuit[rowbelow - cu];

 }

 for (rown = row; rown + 1 < rowbelow - cnotup; rown++)

 {

130

 cnotlist[totalgates] = rown; //CNOT down gate

 totalgates++;

 circuit[rown+1] ^= circuit[rown];

 }

 row--;//adjustment so row calculation starts over

 }

 }

 }

 //1. Transpose circuit

 //2. Use forward substitution and backwards elimination on column

 //3. Transpose back

 TransposeCircuit(N, circuit, transposedcircuit);

 for (row = 0; row < column; row++)

 if(transposedcircuit[row] & flag)

 {

 //now check if for another instance of this variable

 //on the row above, necessitating a CNOT up gate

 if(transposedcircuit[row+1] & flag)

 {

 transposedcnotlist[transposedtotalgates] = -(row+1); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[row] ^= transposedcircuit[row+1];

 }

 else

 {

 //Check for lower instance of variable in the same column

 int rowbelow = row + 2, instancefound = FALSE;

 while (!instancefound && rowbelow <= column)

 if (transposedcircuit[rowbelow] & flag)

 instancefound = TRUE;

 else

 rowbelow++;

 if (!instancefound)

 {

 do

 {

 transposedcnotlist[transposedtotalgates] = row; //CNOT down gate

 transposedtotalgates++;

 transposedcnotlist[transposedtotalgates] = -(row+1); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[row+1] ^= transposedcircuit[row];

 transposedcircuit[row] ^= transposedcircuit[row+1];

 }

 while (++row < column);

 }

 else

 { //choose best heuristic and adjust row

 int minimumheuristic, mincnotup = 0, cnotup = 0, rown, cu, temp;

 //first set minimumheuristic to all CNOT down

 for (rown = row; rown + 1 < rowbelow; rown++)

 transposedcircuit[rown + 1] ^= transposedcircuit[rown];

 TransposeCircuit(N, transposedcircuit, circuit);

 minimumheuristic = LNNAED_L(N, circuit, cnotlist + totalgates, depth - 1);

131

 //compare against rest

 for (cnotup = 1; cnotup < rowbelow - row; cnotup++)

 {

 // compute deltas, find cost, and eventually restore transposedcircuit

 transposedcircuit[rowbelow - cnotup] ^= transposedcircuit[rowbelow - cnotup + 1];

 transposedcircuit[rowbelow - cnotup] ^= transposedcircuit[rowbelow - cnotup - 1];

 TransposeCircuit(N, transposedcircuit, circuit);

 temp = LNNAED_L(N, circuit, cnotlist + totalgates, depth - 1);

 if (temp < minimumheuristic)

 {

 minimumheuristic = temp;

 mincnotup = cnotup;

 }

 }

 //restore transposedcircuit

 for (rown = row; rown + 1 < rowbelow; rown++)

 transposedcircuit[rown + 1] ^= transposedcircuit[rown + 2];

 //choose best

 cnotup = mincnotup;

 for (cu = 0; cu < cnotup; cu++)

 {

 transposedcnotlist[transposedtotalgates] = -(rowbelow - cu); //CNOT up gate

 transposedtotalgates++;

 transposedcircuit[rowbelow - 1 - cu] ^= transposedcircuit[rowbelow - cu];

 }

 for (rown = row; rown + 1 < rowbelow - cnotup; rown++)

 {

 transposedcnotlist[transposedtotalgates] = rown; //CNOT down gate

 transposedtotalgates++;

 transposedcircuit[rown+1] ^= transposedcircuit[rown];

 }

 row--;//adjustment so row calculation starts over

 }

 }

 }

 TransposeCircuit(N, transposedcircuit, circuit);

 }

 //Terminate both gate lists and combine

 cnotlist[totalgates] = INVALID;

 transposedcnotlist[transposedtotalgates] = INVALID;

 ReverseandTransposeCNOTList(transposedcnotlist, cnotlist + totalgates);

 return totalgates + transposedtotalgates;

}

void CopyCircuit(int N, uint64_t * source, uint64_t * destination) {

 for (int i = 0; i < N; i++)

 destination[i] = source[i];

}

132

Appendix B: 16 Fundamental Types of Linear Reversible Circuit Synthesis.

Elimination Type Sub-type Input Gate Output Sequence

Gaussian

Upper Triangle Matrix

Matrix Reversed

Transposed Matrix Transposed

Inverse Matrix Normal

Transposed Inverse Matrix Reversed and Transposed

Lower Triangle Matrix

Matrix Reversed

Transposed Matrix Transposed

Inverse Matrix Normal

Transposed Inverse Matrix Reversed and Transposed

Alternating

Upper Diagonal

Matrix Reversed

Transposed Matrix Transposed

Inverse Matrix Normal

Transposed Inverse Matrix Reversed and Transposed

Lower Diagonal

Matrix Reversed

Transposed Matrix Transposed

Inverse Matrix Normal

Transposed Inverse Matrix Reversed and Transposed

133

Appendix C: Systolic 2D Shift Register LNNAE Data Flow

 The following 19 figures illustrate flow of data in the author's systolic 2D shift

register LNNAE system. When intermediate values change along the edges of the matrix

they appear with a brown background, and values achieve their identity matrix value they

appear with a green background.

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Appendix D: Pseudo-method Test Results

Testing linear reversible circuit

synthesis on 8 wires
Average Number of CNOT gates Time (s)

Initial Gate Search (1) 50.375 0.1785

Truncated Initial Gate Search (2) 50.5 0.9515

Best of 8 LNNAED at depth=4 51.175 0.519

Truncated Initial Gate Search (3) 52.225 0.01375

Best of 8 LNNAED at depth=1 and

Best of 8 LNNAED at depth=1
52.475 0.0015

Best of 8 LNNGED at depth=4 53.275 0.00275

Testing linear reversible circuit

synthesis on 16 wires
Average Number of CNOT gates Time (s)

Truncated Initial Gate Search (4) 255.6 11.5055

Best of 8 LNNAED at depth=2 257.2 3.75825

Initial Gate Search (5) 257.425 24.0875

Truncated Initial Gate Search (6) 258.925 18.8175

Best of 8 LNNGED at depth=4 259.05 13.524

Best of 8 LNNAED at depth=1 and

Best of 8 LNNAED at depth=1
267.7 0.07825

Testing linear reversible circuit

synthesis on 32 wires
Average Number of CNOT gates Time (s)

Truncated Initial Gate Search (7) 1255.35 24.082

Best of 8 LNNGED at depth 2 1258.925 5.02275

Initial Gate Search (8) 1259.025 85.83775

Best of 8 LNNAED at depth=1 and

Best of 8 LNNAED at depth=1
1268.75 2.41675

Truncated Initial Gate Search (9) 1271.1 4.5465

Testing linear reversible circuit

synthesis on 64 wires
Average Number of CNOT gates Time (s)

Best of 8 LNNAED at depth=1 and

Best of 8 LNNAED at depth=1
5566.125 84.25575

LNNGED depth 2 5570.575 50.4915

Initial Gate Search (10) 5611.025 33.95075

(1) Each iteration searching all functions within two CNOT gates using Best of 2

LNNGED at depth=2.

154

(2) Two iterations searching all functions within two CNOT gates using Best of 2

LNNAED at depth=2, then Best of 2 LNNAED at Depth=4.

(3) Two iterations searching all functions within two CNOT gates using Best of 2

LNNGED at depth=2, then Best of 2 LNNGED at Depth=4.

(4) Two iterations searching all functions within two CNOT gates using Best of 2

LNNAED at depth=1, then Best of 2 LNNAED at Depth=2.

(5) Each iteration searching all functions within two CNOT gates using Best of 2

LNNGED at depth=2.

(6) Two iterations searching all functions within two CNOT gates using Best of 2

LNNGED at depth=2, then Best of 2 LNNGED at Depth=4.

(7) Two iterations searching all functions within two CNOT gates using Best of 2

LNNGED at depth=1, then Best of 2 LNNGED at Depth=2.

(8) Each iteration searching all functions within one CNOT gate using LNNGED at

depth=1.

(9) Two iterations searching all functions within two CNOT gates using Best of 2

LNNAED at depth=0, then Best of 2 LNNAED at Depth=1.

(10) Each iteration searching all functions within one CNOT gate using LNNGE.

	Computer Aided Design of Permutation, Linear, and Affine-Linear Reversible Circuits in the General and Linear Nearest-Neighbor Models
	Let us know how access to this document benefits you.
	Recommended Citation

	Introduction/Background/Preliminary

