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1 Abstract

Spike sorting is the process of converting a recording of the electrical activity
generated by neurons firing in the brain, into a representation of the timings
for each distinct neuron’s firing. This representation of neuronal firings,
when paired with data on the subject’s perceptions or actions during the
recording, can then be used to map patterns of brain activity to specific
stimuli or behaviors. Here we will examine the evolution of mathematical
techniques employed to tackle this problem, as well as examine a few of the
still open questions.

2 Introduction & Background

The goal of generating a transcript of interactions between neurons in the
brain is known as spike sorting. The process involves converting the elec-
trophysiological data recorded from electrodes placed intracellularly, into a
timeline representing the spike times for each neuron, known as a spike train.
Such a transcript would be beneficial to diagnosing abnormal brain activ-
ity, research in brain-computer interfaces and prosthetics, and generally to
researchers and practitioners in the neurological and cognitive sciences. Ap-
plications in prosthetics are of the most demanding targets, as a viable spike
sorting process for use in these devices would need to be real time (referred
to as ’online’ spike sorting); a criteria we will keep in mind when evaluating
the methodologies below.

The mathematical presumption underpinning all spike sorting models is
the black box abstraction of the neuron, most notably that of Hodgkin and
Huxley (Hodgkin et al., 1952). A neuron’s cell membrane may depolarize,
and then re-polarize to a baseline potential as a result of ions being let in
and out through voltage gated channels, this whole phenomenon is known as
an action potential. Hodgkin and Huxley modeled the propagation of action
potentials by representing neural cell membranes as collections of discrete
electrical components. While there is no analytical solution to the model,
it proposes a rational basis for understanding the neuron as a black box
obeying some consistent set of rules: 1) that there exist a limit cycle between
the voltage and the potassium gate in a neuron, that is the cell’s negative
before positive wave is governed by the movement of physical ions in the
cell, so we know there is some refractory period where new potentials may
not be produced; and 2) there is a stochastically predictable ’characteristic
spike’ that each particular neuron will exhibit in it’s action potential upon



firing. From this characterization of the neuron, the simplistic model for
spike sorting would expect a single neuron’s firing pattern to behave as a
Poisson process–a method that charaterizes the structure underlying the
times at which events occur.

The recordings used are generated by placing electrodes in the brain
and recording the voltage generated by neurons during action potentials–
the depolarization of an axon causing a voltage fluctuation. This action
potential is the ’spike’, and the objective is to classify or sort each spike in
order to identify which neuron generated it. Recalling the second principle
of our black box neuron, this is possible as an individual neuron, under most
circumstances, produces a characteristic waveform when it fires. That is, the
shape of the wave when plotting amplitude against time, for the same neuron,
is the same (Rey et al., 2015). This assumption does break down during a
’burst’, or a period of high excitement, when a neuron may fire rapidly in
succession, and the resultant waveform recorded may be unrecognizable when
compared to the non-bursting wave produced by the same cell.

Detecting these waveforms in the noisy extracellular recordings generally
means first filtering out the activity of nearby cells, or local field potential
(LFP), from the signal. This is typically done by using a bandpass filter
between 300Hz and 5-8kHz (ibid.). Once filtered, the most straightforward
detection algorithm simply detects spike peaks as threshold crossings above
some threshold voltage estimated to be above background noise.

Once spikes are detected, the aim is to use the characteristics of the spikes
to sort them into classes according to which neurons produced them. Since
we believe that there is a distinct, prototypical waveform produced by each
neuron during its action potential, if we consider the properties of the wave
(i.e. the maximum amplitude, the inter-spike spacing, the length, etc), by
analyzing these features we should be able to perform the desired sorting. It
is at this stage of feature extraction where modern algorithms start to show
real differences.

Amplitude-based methods (Sarah Gibson et al., 2008) are fast and straight-
forward to implement, and are used to cluster spikes based on their peak
amplitude. These methods are prone to many shortcomings, as it is not nec-
essarily the case that two neurons’ waveforms have distinct peak amplitudes.
For this reason, amplitude based methods were quickly forsaken for methods
reliant on dimensionality reduction as a first step. In these techniques Prin-
cipal Component Analysis (PCA) or Wavelets are used to decompose either
the filtered signal, or some features obtained from it, into a smaller number
of dimensions, before clustering (ibid.). PCA, among the most frequently
used methods for dimensionality reduction, generates an orthogonal basis of



principal components, ranked by their variance. That is, if x(t) denotes the
spikes amplitude in time, and ci(t) is the principal component weight vector
for the i-th with i ∈ [1, T ], summing over all time samples t ∈ T yeilds the
spike "score", or i-th principal component:

si =
∑
t

ci(t)x(t)

Under this process only the first 3-5 components, i, are generally retained
as they are thought to capture most of the variational information necessary
to sort the spikes into their classes, more specifically 3-5 components gen-
erally capture 45-80% of the variation in the data (Adamos et al., 2008).
Ordering the components by variance, however, does not necessarily imply
the most discriminating components will be selected. Since the high ampli-
tudes are the first components, lower frequency components may not be well
represented by this analysis (Rey et al., 2015).

Instead of PCA, Quiroga et al., proposed using Wavelets for feature ex-
traction, as the wavelet transform produces a time-frequency representation
of the signal, and then sorting using a process referred to as superparamag-
netic clustering. Furthermore, rather than relying on variance, they select
their wavelet coefficients using a Kolmogorov-Smirnov test against a normal
distribution to select their components under the assumption that features
with a multimodal distribution will behave as more informative classifiers–
section 3 explains this approach in further detail. While Quiroga’s super-
paramagnetic clustering process produce good results, and is argued to be
more robust to non-Gaussian LFP (caused by electrode or neuron drift) than
methods using PCA for dimensionality reduction, their work was performed
on a single electrode and the wavelet transform becomes increasingly expen-
sive to calculate online for multi-electrode arrays (MEAs).

Other methods of producing features exist and have included peak ampli-
tude, inter-spike intervals, independent component analysis, the nonlinear-
energy operator, and others. (Sarah Gibson et al., 2008; Rey et al., 2015)

The remainder of work here will focus on the clustering stage, and val-
idation approaches for these algorithms. Beginning in the early 2000s, we
will examine how the state of the art came to be where it is today as a result
of external pressures to sort larger data faster, and more accurately. We
will look at where certain approaches have fallen short, and where they have
been iterated on for improvements. And finally, we examine what strategies
are assailable for accessing the accuracy of models, when there is little to no
ground truth data available for their validation.



3 Clustering

Regardless of how the data has been pre-processed, clustering the detected
spikes by their shape is the ultimate goal of the sorting process. There has
been immense growth in this area, which can largely be characterized into
three generations of research.

3.1 Early Methods

Early methods of clustering were mostly manual. The feature space was
presented graphically to a researcher who would then divide it, but this is
error-prone, infeasible on dense electrode arrays, and obviously impossible
to scale to an online method. Density based methods where the earliest
attempts at an automatic process.

3.1.1 Density based methods

Density based clustering methods arise early and have remained prominent–
in a review from pre-2000 Lewicki (Lewicki, 1998) names 3 approaches em-
ploying k-means clustering. These methods minimize the within-cluster
sum of squares between the features, effectively partitioning the space into
Voronoi cells. That is, first a random collection of data points are taken as
the cell centers, and the other points are sorted based on their distance to
these centers. At each step the centers of each cell are recalculated based on
their members until no further update is possible. Such a partition implies
sorting each spike into a set (the voronoi cell) with a center such that all
points in the set are closer to their set’s center than any other’s. So if ~x is
a feature vector for some spike, k-means iterates over that data in 2 steps.
First, with x as some feature, and K = k1, . . . , kn a set of cluster centers,
x is assigned to a cluster Ki, if its mean mi has the smallest Euclidean dis-
tance to x. Second, once all points have been assigned to a cluster, then the
updated cluster centers are recalculated with:

mi =
1

|Ki|
∑
xj∈Ki

xj

The process repeats until no data points are reassigned to a new cluster
in the first step.

These methods are generally quite fast, however they require a priori
knowledge of the number of classes, and have been shown to be insufficient
as they can produce false neurons, or classes, when the noise is non-Gaussian.



This can lead to cells whose ’centers’, under the desire that they represent
the most prototypical spike for the class, should technically lie outside the
cell. Intuitively, k-means expects clusters to have a spherical shape since
the distance metric used to calculate cluster centers is Euclidean. If there
is electrode drift, non-Gaussian randomness in the local field potential, or
non-white noise in the data, these methods will struggle (S. Gibson et al.,
2012). Furthermore, any method reliant on a k-means step will necessarily
require the whole dataset and cannot be performed online.

3.1.2 Bayesian methods

The first Bayesian approaches to spike sorting also appear in the 1970s, as
cited in Rey et al., 2015. They start by assuming cluster are Gaussian and
that they only vary from one another by additive and background noise,
both themselves Gaussian (ibid.). From these assumptions the likelihood of
some spike event ~x = [xt1, . . . , xtn] given a particular neuron, or class ck is:

p(~x|ck, µk,Σk)

with µk, and Σk representing the mean and covariance for the class ck
respectively. Then, if θ1:K is the set of all (µk,Σk) class parameters, using
Bayes Rule the probability of the data points in ~x belonging to any class is
given by (Takekawa et al., 2010):

p(ck|x, θ1:K) =
p(~x|cu, θu)p(cu)∑K
j=1 p(x|cj , θj)p(cj)

.
The two initial challenge with this method is that the value of K, the

number of clusters or neurons present in the recording is not known a priori.
Schwarz attempted solving this issue by introducing a penalty function on
the creation of new classes (ibid.), and software packages like AutoClass, and
others, implemented this sort of approach in the late 1990s.

3.2 2000-2015

Motivated by a need for faster and more accurate methods, as well has
large multielectrode arrays (MEAs) with 16-256 electrodes coming into more
common use, a new generation of algorithms started gaining prominence in
the early 2000s. As a point of reference, if a 256 electrode array generates
30,000 values for amplitude per second, a 1 minute recording would comprise



14MB. Today arrays exist with over 4,000 electrodes, and a typical recording
is 30-90 minutes.

3.2.1 Density Based Methods

Multiple novel approaches were considered to account for the problems in
early density based methods. Super-paramagnetic clustering (SPC) was in-
troduced by (Quiroga et al., 2004), which enhanced the nearest neighbors
approach by computing the ’interaction strength’, or the tendency of fea-
tures to change states together when recalculating cluster scores. For a spike
i, represented as the feature vector xi, it’s interaction strength to a nearest
neighbor xj is given by:

Jij =

{
1
N exp

(
− ||xi−xj ||2

2a2

)
if xi is a nearest neighbor of xj

0 o.w.
(1)

Here xi is a feature vector representing the ith spike in m -dimensions,
a is the average nearest-neighbor distance, and N is the number of nearest
neighbors.

In a second step, each point in ~xi is give a random ’state’ between 1 and
some predefined q (chosen by Quiroga to be 1-20 by experiment), Monte
Carlo simulations are then run over a range of temperatures T, where the
state of a randomly chosen ~xi is changed. In this configuration the proba-
bility that the neighbors of ~xi will also change states is given by:

pij = 1− exp(−Jij
T
δsi,sj )

Points that change values in an iteration are called the "frontier" and
at each cycle the equation above is applied to the frontier to update it and
this repeats as in standard k-means until no points change. To form a repre-
sentative statistic, the researchers then repeated this process from multiple
different points. Spikes are then assigned to clusters when their point to
point interaction, measured by 〈δsi,sj ≥ θ〉, is greater than some predefined
θ.

The key idea here is to determine the optimum number of clusters by
progressively adjusting the the temperature parameter, thus controlling the
scale of the underlying probability distribution representing the likelihood
of points to change state together. This class of algorithm is known as sim-
ulated annealing, and is modeled after the process of heating and cooling



metal to control the energy in the material and reduce defects. The ’energy’,
or interaction strength here, is scaled by T such that at higher values the
algorithm will have a higher probability of moving uphill, and likewise, as
the temperature is decreased over the iterations of the Monte Carlo simula-
tion, the probability of uphill moves decreases. This allows Quiroga to avoid
problems other optimization algorithms encounter where they get stuck in
local maxima. It also allows them to automatically determine the number of
needed classes as at some continuous set of temperatures, the algorithm sta-
bilizes and produces a consistent number of classes. This approach removed
the need for supervision, or a prior knowledge of the number of neurons
present in the recording. It also performed quite well against data with non-
Gaussian noise (e.g. where a cluster’s centroid falls outside it’s boundary).

3.2.2 Bayesian

While early Bayesian methods solved their supervision problem by setting
a penalty on the creation of classes, Wood et al., 2008 proposed one of
the most robust models for single channel data by modeling the problem
non-parametrically. Wood suggests a recording R = [~t1, . . . , ~tN ] with N
waveforms detected on a single channel, and where ~ti = [t1i , . . . , t

n
i ]T are

n = 40 voltage samples for the ith waveform. PCA is applied, yielding the
representation:

~ti ≈ µ+
D∑
d=1

ydi ~ud

where µ is the mean waveform in Rn, ydi the linear coefficients, and ~ud the
dth PCA basis. Wood then deals with the low dimensional representation
Y = [~y1, . . . , ~yN ] of the data, with ~yi = [y1i , . . . , y

D
i ]. Representing the spike

as it’s mean waveform and the statistics about how it varies between spikes
does better to capture the effects of variances like electrode drift as averaging
the results of this model over successive runs provides evidence in support
of a class partition. (ibid.).

Starting from a simplified version of the model, Wood defines

P (~yi) =

K∑
k=1

P (ci = k)P (~yi|θk)

as the discrete probability of a waveform belonging to a particular class,
i.e. that the wave was generated by particular neuron k ∈ K, P (ci = k),



times a multivariate normal P (~yi|θk). A fixed K version of the joint prob-
ability for this model, that is, assuming they number of neurons K in the
recording is known, is given by:

P (Y,Θ, C, ~π, α,H =
( K∏

P (θj ,H)
)( N∏

P (~yi|ci, θci)(P (ci|~π)
)
P (~π|α)P (α)

With C as the class indicators for each neuron in class K, Θ = ~µk,Σk as
the class parameters for each k, ~π as the prior probabilities that a a waveform
was generated by a neuron k, and α and H are hyperparameters.

For the hyperparameters, Wood and Black choose ~π|α ∼ Dirichlet(·| αK , . . .
α
K )

and Θ ∼ Inverse Wishart ·Gaussian.

While these updates do more effectively solve the supervision problem,
this method doesn’t account for multiple channels, and there is a stopping
problem as the number of classes K is not known a priori. To solve for this
Wood and Black extend the model above to an infinite Gaussian mixture
model by integrating ~π out of the mixture model as K → ∞. The limiting
expression for the total probability of an arbitrary partition is given as:

P (C|α) = αK+

( K+∏
k=1

(mk − 1)!
) Γ(α)

Γ(N + α)

Where K+ is the number of classes with at least one observation, and
mk the number of observations in class k. This together with the likelihood
obtainable from the joint given above, provides the necessary information to
formulate a Gibbs sampler.

The intuition is captured by:

P (ci = k|Ci) =

{
mk

i−1+α k ≤ K+

α
i−1+α k > K+

(2)

Which explains that if the number of neurons in a given class mk is large,
then the likelihood for a new neuron to be added to that class is also high.

3.2.3 Templates

Early template-based approaches relied on the similarity of spikes to those
in a dictionary, and were prone to false positives when collided spikes pro-
duced large amplitudes or abnormal shapes (Wouters et al., 2018). More



recent efforts like Kilosort (Pachitariu et al., 2016), SpikeDetekt (Kadir et
al., 2013), and Spyking circus (Yger et al., 2018) have used some combination
of methods to attempt to surmount these problems.

3.3 2016-On

MEAs are challenging to tackle for the early algorithms, and even more so
recently, since electrode arrays with 20µm pitch and 1000s of electrodes are
now coming into use. These further exacerbated the problems with the curse
of dimensionality that the density based methods have always struggled with.
i.e. that the methods that work on low dimensional spaces tend to fail in
high dimensions as the data points become sparse as the space grows.

The most modern incarnations of algorithms take hybrid approaches to
this. They apply ideas from all past concepts like density based, Bayesian,
and template approaches, as well as new methods like neural nets and dic-
tionary learning. Most of these most recent algorithms are real-time, in the
sense that they take about as long as the recording takes to process rely on
having the entire dataset present at processing time, thereby rendering them
incapable of being used online.

Yger’s Spyking Circus algorithm (ibid.) from 2018 claims to be able to
process data generated on up to 4225 electrodes, and is what we will test
with ground truth data in the next section. Yger’s updates to the 2000’s
on methods for spike sorting, namely their approach combining multiple of
techniques explored above in their algorithm, is prototypical of this upcom-
ing wave of research. Their key addition is a "Whitening" step where the
dimensionality of the problem is reduced by taking the waveform as heard
only on the strongest channel of the MEA.

The Spyking Circus algorithm comprises three main steps. First the
spikes are detected as threshold crossings, clusters are built, and finally tem-
plates are learned from those clusters. Since the algorithm is designed with
MEAs in mind, for the initial ’pre-clustering’ step, Yger takes only a sample
of spikes, and only the waveform on the electrode with the strongest am-
plitude. This initial set of peaks are clustered according to the procedure
defined in Rodriguez and Laio (Rodriguez et al., 2014). Once similar clusters
are merged, templates are estimated and represented by two components wm

and vm, where wm is the point-wise median of waveforms in cluster m:

wm = medls(tml )

And the second component vm is calculated by first projecting the wave-
forms s(t) into a space orthogonal to wm, i.e.



ql = s(tml )−
s(tml c) ·wm

||wm||
wm; ∀l

and then taking the first principal component of ql.
From this, Yger’s fundamental claim is that a signal is decomposable into

a spatio-temporal sum of kernels, called "templates", such that:

s(t) =
∑
ij

aijwj(t− ti) + bijvj(t− ti) + e(t)

where s(t) is the signal voltage at time t, w and v are the two components
of the template and e is noise from the LFP. Template matching then is the
computation of (aij , bij) for each time step t such that they reconstruct the
original signal s(t).

Yger’s methodology enables the online processing of massive amounts of
data, as once the templates are calculated (from a small subset of data)
the only information necessary for classification are the estimated templates
(w,v) and the sparse coefficients (aij , bij). Their methods however do not
necessarily handle electrode drift and spike collisions well, as they share
problems with the rest of the PCA based methods.

4 Validation

4.1 General Practice

A consistent method for validation of spike sorting algorithms has not been
established. The majority of authors compare results on an algorithm to
algorithm basis. In effect, with little ground truth data for use, studies
compare the success of the clustering stage of their new algorithm to a ’hybrid
ground truth’ (C. Rossant et al., 2015) comprised of the results of a known
good algorithm, and human curation. In (Pachitariu et al., 2016), pseudo-
ground truth data was generated via the software KlustaKwik (Kadir et al.,
2013), and curated with a human expert’s review. In a best case scenario the
authors claim to identify 69% of matches, compared to KlustaKwik’s 60%.

Simulated data is another common practice. Here spikes are generally
copied from known templates, or online template banks, and overlayed with
noise that attempts to mimic the LFP signal, again usually by simulation of
data or background noise. This is by far the most common methodology we
encountered, and can be found in: Quiroga et al., 2004, Chung et al., 2017,
Lee et al., 2017, and Yger et al., 2018.



The ideal validation would be done on ’Ground truth data’, and such a
recording would comprise: 1) a known number of neurons, 2) the identity,
ideally by position, of each of those neurons known and recognizable by some
prototypical wave, and 3) the times at which least one of those neurons
fired. Unfortunately such a dataset does not currently exist, and even close
approximations still rare.

4.2 Attempts at Ground Truth Validation

The study by Yger, responsible for the Spyking circus library, attempted a
ground truth validation of their data using the hybrid data approach. First, a
known "good" data set was processed using the Kilosort package for Matlab,
and then curated by an expert. Against their testing, Yger found a 10% error
when comparing Spyking Circus to an optimal classifier (which accounts for
amplitude dropoff for neurons farther than 60µm.

In 2016 Kampff-lab released several datasets where 32 and 128 channel
MEA extracellular recordings paired with time aligned juxtacellular record-
ings (Neto et al., 2016). To create these, MEAs were surgically implanted
into the motor, sensory, or parietal cortex of anesthetized rodents (ibid.).
Adjacently, via a microscope, a second electrode was aligned until in contact
with a cell membrane. This was detected by resistance on the electrode,
and spikes, at which point suction was applied to affix the probe to the site.
The juxtacellular recording then gives a time aligned data set to the MEA
recording, where the juxtacellular probe’s position is known to be within
30-150µm of a specific electrode on the polytrode array.

Kampff details their internal comparison, using the algorithm SpikeDe-
tekt (ibid.), and found widely varying results. In one recording SpikeDetekt
found 386 spikes compared to 348 on the juxtacellular channel; and in an-
other recording 35 were detected to the 150 juxtacellular. In general, Kampff
also questions the reliability of the MEAs at distances. In their experiments
a 50µV voltage differential was only perceptible for some probes inside of
approximately 90µm diameter ball around the recording site.

4.3 Replicating that effort

Given the limited amount of ground truth data available, and thus the lim-
ited number of studies using such data to verify modern spike sorting algo-
rithms, we performed a similar analysis as to the one explained in Kampff
(ibid.). We apply similar techniques to the same data set Kampff used to
validate KlustaKwik, but against a different sorting algorithm, allowing us to



compare Kampff’s findings across two spike sorting techniques. With these
results we are able to substantiate Kampff’s concerns about the true sensi-
tivity of MEAs to voltage differentials, and give explicit examples of where
the challenges explained in the previous sections appear when confronted
with real world data.

the First the data was sorted via the Spyking Circus algorithm, a com-
petitor to KlustaKwik–used at this step by Kampff. Then the juxtacellular
data was sorted and compared.

Since the juxtacellular channel has been confirmed to be generating spikes
at the recording, and since we can isolate the juxtacellular channel from
the MEA data, and we know it represents the electrode suctioned to the
cell membrane nearest to one specific channel on the extracellular array, we
will treat it as a ground truth of spike times. From that we are able to
compare the spikes detected on those two channels as an evaluation of the
accuracy of a 3rd party algorithm for sorting. In an effort to validate the
algorithm, we would ideally find a coincidence of all occurrences of spikes
on the juxtacellular channel and their corresponding event on the closest
extracellular channel (by proximity).

Figure 1: 1000 samples (30ms) of the filtered extracellular signal, containing
a bust of spikes.



To test this we used the recording 2014_11_25_Pair3.0 from the Kampff
dataset, and first read the data for the juxtacellular channel into a python
numpy array, as per the procedure laid out by Kampff. The signal was band-
pass filtered using a butterworth filter between 500Hz-15kHz, as suggested in
(Neto et al., 2016), and then converted from its digitized form to a timeseries
in volts. From this timeseries, spikes were detected as threshold crossings
above a noise floor (LFP).

The polytrode, or extracellular, data was processed via Spyking Circus’s
python library, which utilizes a hybrid clustered-template match approach
to sorting, as described above. After sorting the software outputs a HDF5
file which was used to extract the spike times as see by Spiking Circus.
These data were plotted as time series using phy (Rossant, 2019), a small
visualization library for manual sorting of electrophysiological data (Fig. 2).

Figure 2: An approximately one second sample of the full 32-channel MEA
data. Spikes detected by Spyking Circus are highlighted. The red colored
segments demark any segment of signal Spyking circus classifies as a spike,
whereas the blue indicates a spike found at the juxtacellular pipette. The
channel nearest the juxtacellular probe, number 23, is boxed in a white
boundary.

The timings of the spikes detected on the MEA electrode nearest the
juxtacellular pipette were extracted from Spyking Circus, and ignoring the
cluster, there were a total of 1,576 spikes found on that channel. Based on
our threshold crossings analysis, we detected 395 spikes on the juxtacellular
channel, compared to the 348 Kampff noted as having detected. Irrespective
of our slight over counting of spikes on the channel, there still seems to



be a bias in Spyking Circus towards the over detection of spikes. This is
graphically depicted in Fig 3 which shows a 1 minute section of the raw data
from the recording, with spikes detected both on the juxtacellular channel
and those recognized by Spyking Circus overlayed.

There are several possibilities to evaluate in understanding this discrep-
ancy of spike counts. Before assuming fault on the part of the sorting soft-
ware, the potential for overlapping spikes and poor readings from the physical
MEA device should be considered as potential sources of inaccuracy. Mul-
tiple authors, including Kampff and Yger have also noted concerns about
the salient detection distance of MEAs. Unfortunately these theories would,
however, primarily account for an under count of spikes on the channel, and
not an over count, whereas we have both.

A more robust examination of this current generation of models would
compare the results of multiple modern approaches when tested against mul-
tiple of these ground truth datasets. Henning’s 2018 review provides an
overview of those systems, and future work would consider a more fully au-
tomated process by which this analysis could be repeated over large numbers
of algorithms and datasets. Furthermore, controlling for electrode distances
in the final analysis might also shed more light on the problem of how sen-
sitive the signal reported by the MEAs can be believed to be.
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5 Conclusion

The problem of spike sorting is the trade-off between accuracy and compu-
tational complexity. As the current generation of MEAs grow in the number
of simultaneous recording sites, the data sizes continue to grow too. This
makes it physically difficult to move and compute on the data, but also fur-
ther increase the dimensionality of the problem. The most recent generation
of solution seem well equipped to tackle these weaknesses, being particu-
larly tuned to account for massive data, online processing, and corrections
for electrode drift. Nonetheless the results from Yger, Kampff, etc. are still
relatively unevaluated against ground truth data, and the few evaluations
which have been completed suggest there still multiple open problems in
spike sorting.

Discrepancies between the juxtacellular and MEA recordings seem to
suggest one of three basic problems: 1) a signal spike being detected as
the results of two waveforms colliding at the electrode (Lee et al., 2017),
2) electrodes (or cells) drifting and distorting the waveform received at the
recording site (Yger et al., 2018), and 3) lack of understanding of how the
sampling fidelity of MEAs decays as a function of distance and neural tissue
type (Neto et al., 2016). In order to get a better understanding of the true
number of neurons likely detectable in a given recording, and continue to
improve on the gaps between what is detected via loose path juxtacellular
recordings and large MEAs, each of these issues should be addressed.

Inaccurate spike detection leads to problems in all downstream process
relying on spike sorting. With more high quality ground truth data coming
available, effort should be made to develop new, robust evaluation procedures
for the comparison of the accuracy between algorithms. These procedures
could also be leveraged to aid in the development of newer AI assisted sorting
models as some authors have suggested moving towards (Clark, 2013), as
ground truth datasets and training will become even more imperative.
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