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Abstract  

With 1 out of every 59 adolescents diagnosed with autism spectrum disorder (ASD), 

more research interest has been dedicated to studying why ASD individuals experience their 

symptoms of restricted and/or repetitive behaviors, and deficits in social interaction and 

communication. ASD can only be diagnosed by psychiatric evaluation of behavior, and there is a 

lack of reliable biomarkers for ASD to verify the diagnosis. To potentially find a reliable 

biomarker, we compared cortical thickness in 911 ASD subjects and 999 controls from the 

Autism Brain Imaging Data Exchange (ABIDE) dataset. The dataset was processed using the 

Developmental Cognition and Neuroimaging (DCAN) Labs modified version of the Human 

Connectome Project (HCP) pipeline. Permutation Analysis of Linear Models (PALM) was used to 

compare the difference of cortical thickness between ASD and control subjects. An increase of 

cortical thickness was found in the visual and somatomotor cortex of ASD subjects. Specific 

differences were found in the left superior parietal (p = 0.0565; cluster size = 202.75 mm2), left 

occipital lobe (p = 0.0861; cluster size = 175.13 mm2), left temporal lobe (p = 0.0582; cluster size 

= 202.76 mm2), and the right temporal lobe (p = 0.0274; cluster size = 265.5 mm2). Future 

directions to discover reliable biomarkers for ASD will involve exploring the correlation between 

cortical thickness and behavior, improving neuroimaging protocols for acceptable data 

acquisition, and using different datasets to further validate biomarkers. 
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Introduction 

Main characteristics of ASD 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder. The estimated 

prevalence of ASD in the United States is about 1 out of every 59 children (Baio et al., 2018). 

Characteristics of people with ASD include social deficits and communication difficulties, along 

with restricted and/or repetitive behaviors (Ousley & Cermak, 2014). The new edition of the 

DSM, called the DSM-5, has slightly modified criteria to improve clinical practice. Under the 

new revision, for someone to be diagnosed with ASD they must show evidence of difficulties in 

social communication, restricted and/or repetitive behaviors, or unusual sensory-motor 

behaviors. If an individual has one or more other psychological disorders, the symptoms of 

those disorders can overlap with ASD symptoms and it can be difficult to distinguish them at 

times. Diagnosing with ASD based on reliance on symptoms rather than biological diagnostics 

can lead to misdiagnoses (Frazier et al., 2012).   

Symptoms associated with each characteristic 

Communication, social interaction, and restricted, repetitive behaviors are the three 

main contexts for ASD diagnosis. The severity of these symptoms varies from individual to 

individual. The symptoms can be further defined using the DSM-5 (American Psychiatric 

Association, 2013). 

Communication  

Adolescents with ASD have a high likelihood of experiencing receptive, expressive, 

vocabulary, and grammatical language impairments. These impairments include limitations in 
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language pragmatics or the ability to use language in social adaptation. These symptoms and 

experiences make it difficult for those with ASD to communicate in a variety of social contexts 

such as recognizing social cues or interpreting social messages (Tager-Flusberg & Caronna, 

2007). 

Social Interaction 

Social interaction skills are important for developing, maintaining, and understanding 

relationships. ASD individuals may experience symptoms of poor eye contact, and failure to 

initiate social interactions. In social settings, they may experience difficulty in using and 

understanding verbal and nonverbal communication to navigate the social environment 

(Matson, Matson, & Rivet, 2007).  

Restricted, repetitive behaviors  

Patterns of narrow and abnormal interests are often presented in ASD individuals. It is 

common to see highly restricted and fixated interests that are defined as abnormal in intensity 

or focus. An example of this would be a strong attachment to objects or specific activities of 

interest. Patterns of repetitive motor movements can be recognized through the abnormal use 

of objects or speech. This can be shown through an ASD diagnosed individual being more 

interested in spinning the wheels of a car than driving it around like normal play (Johnson et al., 

2007). 

Metrics for diagnosing ASD  

Early diagnosis and detection of ASD are important to provide early intervention and 

improve long-term outcomes; however, neurodevelopmental disorders are difficult to diagnose 

at an early age. This inherent difficulty of early diagnosis is compounded by the fact that there 
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are no reliable biomarkers for ASD. The clinician must be able to diagnose ASD in suspected 

individuals based on their behavior and characteristics. To support the clinician, the diagnosis of 

ASD involves using the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic 

Observation Schedule-General (ADOS-G), two diagnostic metric tools used to analyze and 

assess the diagnosis of ASD based on behavior.  

The ADI-R is a standardized, semi-structured, clinical review for caregivers of children 

and adults who may have a possible ASD diagnosis (Lord, Rutter, & Couteur, 1994). This 

diagnostic tool is used to assess the abilities of social interactions, communication and language 

capabilities, and for the analysis of restricted and repetitive actions or interests. The ADI-R is an 

effective tool to give the clinician the developmental history of the individual, but it is not the 

best tool to diagnose a suspected individual at a current time point. 

The ADOS-G is also a semi-structured, standardized assessment much like the ADI-R, but 

it is much more rigorous and time-consuming. The suspected individual 

undergoes an assessment through different testing sections of social interaction, 

communication, play, and imaginative use of materials. The reason why the ADOS-G is the most 

accurate metric is due to its reliability, consistency, ability to classify ASD or non-ASD disorders, 

analysis of ASD severity, and its test-retest ability (Lord, C., Rutter, M., DiLavore, P., Risi, S., & 

Gotham, 2012). This three-hour-long metric is great for measuring the individual at a single 

time point, but it does not give the clinician developmental history.  

Field trials of the DSM-5 were conducted to validate its diagnostic capabilities for ASD. 

The trials underwent two phases with a test-retest design to ensure accuracy. Phase I of the 

trials showed that clinical ASD diagnosis is not as reliable as semi-structured diagnostic tools 
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such as the ADI-R or the ADOS-G. As many as 12% of ASD individuals, a large portion of them 

being females, were undiagnosed. This is due to the algorithm used to assess an ASD diagnosis. 

Compared to the DSM-4, the DSM-5 had higher specificity (DSM-5 = 0.97, DSM-4 = 0.86) but 

lower sensitivity (DSM-5 = 0.81, DSM-4 = 0.95). Adjusting the algorithm by removing one 

symptom criterion increased sensitivity (Original = 0.81, Adjusted =0.93) while maintaining a 

similar specificity (Original = 0.97, Adjusted = 0.95). Improvements to the sensitivity will allow a 

more consistent ASD diagnosis for clinicians. The DSM field trials showed that the DSM-5 has 

limitations in the proper identification of ASD (Frazier et al., 2012).  

Despite the use of the DSM-5, ADI-R, and the ADOS-G as diagnostic metrics, the clinician 

can still be susceptible to misdiagnosis of ASD from combined characteristics of other mental 

disorders.  

Difficulty defining a disorder due to symptom overlap 

The symptoms and characteristics of ASD overlap with other mental disorders, and 

comparative studies between multiple mental disorders are rare. Individuals with ASD have an 

increased risk of experiencing one or more co-occurring psychiatric conditions (Rosen, 

Mazefsky, Vasa, & Lerner, 2018). Attention-deficit/hyperactivity disorder (ADHD) is another 

neurodevelopmental disorder that is characterized by attention difficulties, hyperactivity, and 

impulsivity. Children with ASD have a high co-occurrence of ADHD, and a study group of 

individuals diagnosed with ASD and ADHD reveals similarities between characteristics of both 

disorders (Craig et al., 2015). Anxiety and depression are also represented at elevated rates 

among individuals diagnosed with ASD (Strang et al., 2012). The prevalence and overlap of ASD 
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with other mental disorders make it difficult to accurately diagnose ASD based on a clinical 

review of an individual’s characteristics alone.  

What are Biomarkers? 

Biomarkers are used to measure and evaluate substances, structures, or processes 

within the body to determine the incidence and outcome of disease (Strimbu & Tavel, 2010). 

Once a biomarker is properly assessed it can be used to verify a diagnosis of a disease or 

disorder. Neuroimaging biomarkers and genetic or molecular profiling are the two types of 

biomarkers that can be used to validate an ASD diagnosis.  

MRI can be used to noninvasively study the brain 

Magnetic resonance imaging (MRI) is an instrument that allows researchers to 

noninvasively study the structural and functional characteristics of the brain. This is done with 

the use of advanced neuroimaging analysis techniques that can perform segmentation to 

detect and analyze specific tissue types, and further parcellation can be performed to study 

specific regions of interest (ROI) of the brain (Giedd et al., 2009). Segmentation is used to study 

the separation of gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF).   

fMRI   

Functional MRI (fMRI) is a technique used to measure brain activity. The technique 

utilizes the fact that neural activity increases blood flow without an associated increase in 

oxygen metabolism. Any difference between the ratio of blood flow and oxygen metabolism 

can be detected via MRI. This signal is called blood oxygen level dependence (BOLD) (Raichle & 

Mintun, 2006). An increase in the BOLD signal is correlated with cortical activation because 

more oxygenated blood is supplied to the brain for immediate metabolic activity. 
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The complexity of MRI studies 

MRI machines are expensive and require extensive technical skills to operate. When 

considering the challenges in subject recruitment and retention, it is difficult and expensive to 

have many subjects for neuroimaging studies. Low subject turnout results in a low sample size 

which reduces the statistical power, reliability, and the replicability of neuroimaging findings 

(Turner, Paul, Miller, & Barbey, 2018). fMRI has become a popular tool to study the human 

brain. However, the statistical methods used in fMRI studies are rarely validated using real data. 

This, in turn, can cause the possibility of reporting false positives or false negatives in 

neuroimaging studies (Eklund, Nichols, & Knutsson, 2016).  

Noise in Neuroimaging  

The MRI signal is susceptible to various sources of noise such as motion within the 

scanner, respiration of the participant, and background noise. All these factors can disrupt the 

signal to noise ratio (SNR). Motion contaminated, or “noisy”, MRI scans have a low SNR which 

leads to poor data quality and limited usage for research. Patient head movement within the 

scanner can cause shifts between signals. If the shifts are excessive then they can disrupt the 

MRI machine’s ability to collect proper frame acquisition, and image intensity thus lowering the 

SNR. “Noisy” scans can lead to inaccurate brain size estimates, poor anatomical 

characterization, and skewed measurements of white and gray matter delineation (Savalia et 

al., 2017). For fMRI scans, oxygenated blood measurements are corrupted and can generate 

skewed results for neurophysiological related scans. The only correction is to realign the head-

in-space position along the xyz-axes and their respective rotational displacements (Siegel et al., 
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2014). This requires precise realignment which can be very technical and difficult to perform 

but must be done to salvage “noisy” scans.  

If the motion is too excessive then this leads to the formation of motion artifacts which 

renders the subject’s scan unusable. MRI scanners obtain images of the brain by acquiring 

multiple frames or slices. If there is too much distance between the acquisition of one frame to 

the next, this results in distance-dependent motion artifacts (Ciric et al., 2017). This drastically 

affects brain structure and functional connectivity outputs. Examples of motion artifacts are 

shown in the methods section.  

Processing is extremely technical 

In our study, the MRI scans we obtained are processed with the latest state of the art 

human connectomes project (HCP) minimal preprocessing pipeline (Glasser et al., 2013). High-

resolution T1w and T2w scans are required by the pipeline to perform surface reconstruction 

and generate surface images. This adds another barrier in proper data acquisition since high-

resolution scans require a stronger MRI machine, such as a 3T scanner, for improved data 

quality before they can be processed with the HCP pipeline. 

The Developmental Cognition and Neuroimaging (DCAN) labs developed a modified HCP 

pipeline to solve the issue of noisy MRI data. In order to make the HCP pipeline more usable for 

a wide variety of MRI scans from different scanners, the HCP pipeline was modified using the 

advanced normalization tools (ANTS) algorithm to improve scan quality (Avants, Tustison, & 

Song, 2009). More details will be presented in the methods section. These modifications 

provide an avenue to increase the signal to noise ratio (SNR) in MRI and to allow the technique 

to detect biomarkers in neurodevelopmental disorders, such as ASD.  
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No clear agreement on brain biomarkers associated with ASD 

The longitudinal neurodevelopment of ASD is not very well understood. ASD may 

manifest itself differently in people of different ages, which can result in conflicting accuracy for 

diagnostic results. Our area of focus will be to assess cortical thickness differences between 

ASD and typically developing (TD) subjects in adolescents and adults.  

Cortical Thickness  

Cortical thickness is a brain morphometric that measures the thickness or volume of the 

cerebral cortex. The cerebral cortex is an important part of the brain that plays a critical role in 

consciousness. Studies have shown that there is a difference in cortical shape between children 

with simplex ASD and TD children. Bilateral differences were discovered in sulcal depth in the 

restricted portions of the anterior-insula and frontal-operculum and the 

temporoparietal junction has been identified (Dierker et al., 2015).  

There are many conflicting studies when it comes to the analysis of cortical thickness 

differences between the two subgroups (Amaral, Schumann, & Nordahl, 2008). There is 

evidence to support the case of increased cortical thickness throughout the entire brain 

(Hardan, Muddasani, Vemulapalli, Keshavan, & Minshew, 2005), and other studies instead 

show cortical thinning in multiple brain regions (Hadjikhani, Joseph, Snyder, & Tager-Flusberg, 

2006). Age is another variable that can skew the results of ASD neuroimaging studies. Studies 

using younger subjects reported increases in brain volume in ASD individuals, but others that 

use an older cohort report no changes in brain volume (Pagnozzi, Conti, Calderoni, Fripp, & 

Rose, 2018). 
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Abnormal early brain volume overgrowth has been detected when comparing the 

average of 131 ASD to 50 TD subjects that are within the ages of 2-5 years old (Nordahl et al., 

2013). This promising finding can support the case of using abnormal cortical thickness 

measurements as a potential biomarker for ASD. The reason why cortical thickness is not 

normally used as a biomarker is because of evidence that goes against its usability. The 

conflicting results have been reported by studies using 89 men with ASD and 89 TD men 

between the ages of 18-43 (Ecker, 2012), and in another study where they had 51 ASD men and 

49 TD men between the ages 30-75 (Koolschijn & Geurts, 2016). To answer this, we require a 

large dataset to avoid results being affected by underpowered statistical analysis from low 

sample sizes common in neuroimaging studies.  

International consortium 

To address the issue of low sample sizes in neuroimaging studies, Dr. Di Martino and 

her colleagues came together to form the Autism Brain Imaging Data Exchange (ABIDE) (Di 

Martino et al., 2014). ABIDE contains MRI and fMRI neuroimaging scans of 2226 TD and ASD 

diagnosed subjects. These scans were obtained and shared by 25 international labs, and they 

have been uploaded to a publicly available open-access online repository. The age range for all 

participants is 5-64 years old.  

Pros of ABIDE 

ABIDE provides metadata for a large number of subjects with reasonable accessibility. 

This means that researchers interested in using the ABIDE dataset acquire it directly from the 

source for their analysis. This international consortium can grow by accepting new labs and thus 

increasing the total number of ASD and TD subjects.  
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ABIDE dataset is noisy  

As mentioned previously, the HCP pipeline has a certain set of criteria for neuroimaging 

scans to be processed through the pipeline and generate usable neuroimaging scans. If an input 

scan turns out to be “noisy,” then the scan cannot be processed or it will generate an 

inaccurate brain map depending on the SNR. The cause for some “noisy” scans stems from the 

fact that many different scans come from many different sites. Each site may use MRI scanners 

from different manufacturers along with different scanner protocols. This will affect how the 

metadata is collected at each site, resulting in batch effects or differences between data caused 

by a disruption in control variables. When the subject’s metadata is processed through the 

computing pipeline there is a possibility that false positives and false negatives may arise 

affecting analysis of brain ROI because of poor scan quality. A reliable dataset needs to be used 

to accurately map out the brain and to note differences between ASD and TD subjects. Without 

a consistent database, the results will be skewed.  

Inconsistencies of the ABIDE dataset for cortical thickness analysis  

The ABIDE dataset still suffers from inconsistent brain differences of ASD individuals. In 

a study using this dataset, individuals with ASD showed no apparent brain abnormalities 

despite having ASD behavioral characteristics. Anatomical insight of the amygdala, 

hippocampus, cerebellum, and corpus callosum as ROIs show no apparent differences. The 

accuracy of a multivariate classification using volumetric, thickness, and surface area yielded an 

accuracy of <60% (Haar, Berman, Behrmann, & Dinstein, 2016).  
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Study overview 

The large MRI dataset provided by the ABIDE initiative was processed with the DCAN 

modified HCP pipeline to generate more accurate and precise outputs with ANTS. This dataset 

was split into two groups: ASD and TD (controls). All other subcategories were ignored. To 

detect the brain differences between ASD and TD individuals, the Permutation Analysis of 

Linear Models (PALM) will be used to analyze the reprocessed ABIDE dataset. PALM is 

experimental software that allows inferences using permutation methods (Winkler, Ridgway, 

Webster, Smith, & Nichols, 2014). PALM can carry out multiple testing and comparisons, which 

makes it possible to do multi-group analysis for a large dataset like ABIDE for multi-group 

analysis. This is similar to the multi-group analysis used to compare fMRI task data (Eklund, 

Nichols, & Knutsson, 2016).   

Methods  

Processing ABIDE dataset  

Figure 1 displays how the ABIDE dataset was processed. The ABIDE dataset comes from 

this online repository (http://fcon_1000.projects.nitrc.org/indi/abide/). Out of the total 2226 

subjects available, 1910 were reprocessed successfully. Only the subjects that were successfully 

reprocessed were used in this analysis. 

Pipeline function overview  

Subject data is first processed through the structural pipelines in the order of 

PreFreeSurfer, FreeSurfer, and finally PostFreeSurfer. fMRI data is processed through the HCP 

http://fcon_1000.projects.nitrc.org/indi/abide/
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Functional Pipelines through the fMRI Volume and surface pipelines. fMRI data wasn’t analyzed 

for this study, but it is available in the processed outputs.  

PreFreeSurfer generates structural brain volume from the T1 image and matches that 

data to a standard brain template, specifically the Montreal Neurological Institute (MNI) 

template (Evans, Janke, Collins, & Baillet, 2012) to ensure that brain structure is as consistent as 

possible. Brainmask calculations are formulated and used to fit the T1 scan with the MNI atlas 

to generate an atlas registration. Denoising and bias field corrections through ANTS are 

implemented during PreFreeSurfer to improve data quality. More details will be provided later.     

Brain segmentation of gray and white matter along with predefined structures 

(Surfer.nmr.mgh.harvard.edu/fswiki/) is performed during the FreeSurfer step after atlas 

registration. This is done by using the cortical surfaces of the brain. They are reconstructed to 

match the predefined structures noted, and the cortical surfaces are registered to the surface 

template.  

The resulting data from brain segmentation is stored as Connectivity Informatics 

Technology Initiative File Format (CIFTI) files. This is generated in the PostFreeSurfer step. CIFTI 

files are the standard file format for neuroimaging scans as they contain surface and volumetric 

data (https://www.nitrc.org/projects/cifti/). CIFTI files contain “grayordinate” space 

information used to define the spatial dimensions of the brain. This is done by using cortical 

surface vertices or subcortical voxels to model grayordinate space (Glasser et al., 2013).  

 

https://www.nitrc.org/projects/cifti/
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Once CIFTI files are generated, the functional pipelines register fMRI data during the 

fMRIVolume and fMRISurface stages. The fMRIVolume stage removes spatial distortions, 

realigns volumes to adjust for subject movement, and reduces bias field, before registering 

fMRI data to the structural pipeline outputs. Then the fMRISurface pipeline maps the 

normalized fMRI data to the spatial dimensions of grayordinate space in CIFTI files for proper 

alignment.  
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ANTS adjustments 

The purpose of implementing the ANTS algorithm is to improve MRI scan quality 

processed through the HCP pipeline by reducing the amount of noise to improve the SNR. Noise 

can be influenced by background interference or by subject motion within the scanner. An 

excessive amount of noise can lead to motion artifacts that render the scan useless. ANTS 

correction 1 is implemented prior to the HCP’s PreFreeSurfer, and FreeSurfer pipeline. The 

algorithm increases the SNR ratio through a process called denoising which filters out the 

amount of background noise. MRI and fMRI scans are also susceptible to bias field signals, and 

ANTS correction 1 denoising is able to remove that as well. This smooth, low-frequency signal is 

also called intensity inhomogeneity. Bias field errors occur due to the spatial inhomogeneity 

between the subject and the magnetic field (Despotović, Goossens, & Philips, 2015). Motion, 

vibrations, and external noise affect the segmentation of gray and white matter due to the 

intensities of their respective voxels being distorted, leading to improper delineation. The 

denoising process decreases the impact of noise affecting the SNR, and potentially decrease or 

remove artifact errors caused by a bias field signal.  

A more accurate pairing between T1 images to the MNI atlas is performed in ANTS 

correction 2. The nonlinear registration of ANTS correction 2 is performed after FreeSurfer and 

before the HCP’s PostFreeSurfer processing. This is done by using a tight brain mask to increase 

the precision and accuracy of aligning a T1 scan to the MNI atlas. The tight brainmask is 

calculated from the pial surfaces recorded in the FreeSurfer step. This better pairing between 

the T1 scans with the MNI atlas will standardize all subject metadata to ensure that all 

neurological landmarks and surfaces match up accordingly. ANTS then generates study-specific 



Page | 19  
 

templates. These templates are then skull stripped to remove all bone and leave only brain 

matter. Delineation of gray and white matter is identified once the segmentations are mapped 

to the ANTS generated templates. Once the scans are successfully processed, they then 

undergo a quality control assessment protocol to determine the usability of the dataset.  

QC of Neuroimaging data  

Quality control (QC) is a review process to determine the usability of the dataset. The 

guidelines are derived from the “Standard Operating Procedure for Quality Assessment,” a 

process developed by the Developmental Cognition and Neuroimaging (DCAN) labs at Oregon 

Health and Science University (OHSU). The grading criteria uses a three-point system of 1, 2, 

and 3 to determine the usability of scans. A score of 1 represents usable data, meaning that the 

scan can be confidently used for analysis. A 2 is given to scans that are probable in terms of 

data quality because a moderate amount of errors was presented during the QC assessment. If 

a scan contains too many errors, it is given a 3. Scans graded with a 3 are not suitable for 

analysis and should be removed. Once the data has been processed, the quality control 

guidelines are used to assess the subject’s atlas registration, structural data, and functional 

data. 

QC of atlas registration  

Atlas registration is an attempt to map the subject's T1 image to an atlas, specifically the 

MNI atlas as mentioned previously. The quality of the scan is determined by how well the two 

images overlap. Figure 2 shows an example of a properly matched T1 and atlas. Both images 

show the matching of the T1 and the atlas. The first image on the left shows the atlas outlines 

in red on top of the T1 image; the second shows the T1 outlines on top of the atlas. This is done 
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to see two different perspectives to accurately grade the images. Proper atlas registration is the 

first important QC criteria since any errors present in the atlas registration will appear 

downstream in both the structural and functional scans. 

A common error that occurs is protrusions, shown with arrows in figure 3. A protrusion 

is a misalignment between the T1 and the MNI atlas. This can cause improper brain morphology 

within the structural and functional scans. This can also affect gray and white matter 

segmentation which may lower the QC grade when assessing the structural scans. Protrusions 

can go inward or outward, but any signs of protrusions can affect the overall quality of a 

subject’s data.  

 

Figure 2: Example of a usable atlas registration (QC score = 1).  Atlas in T1 (Left). Panel B: 
T1 in Atlas (Right)  
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QC of segmentation in structural data  

QC of structural data is more complex than atlas registration. It requires an assessment 

of delineation or separation of gray and white matter within the brain, ensuring that the 

volumetric shape of the brain is consistent and not affected by motion artifacts. White matter is 

located in the more inner parts of the brain, while gray matter surrounds white matter and is 

found in the outer layers of the brain.  

The structural data can be opened using BrainSprite Viewer as displayed in figure 4 

(https://github.com/SIMEXP/brainsprite.js/). This allows the quality controller to examine the 

Figure 3: Protrusions present in superior parietal (blue arrow), and in temporal lobes 
(orange arrows) 

https://github.com/SIMEXP/brainsprite.js/
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brain in three dimensions on the x, y, and z-axis. White matter is delineated using black lines 

while the gray matter is delineated using red lines (figure 4).  

 

The advantage of using BrainSprite Viewer is the ability to look through multiple slices of 

the scan, to see if it improves when an error appears. For minor errors, the subject is given a 

10-frame window to improve the error. For example, if an error occurs at x=83, then the 

subject has until frame x=93 or x=73 to allow the error to go away. This may save subjects with 

Figure 4: Example of Structural Data in BrainSprite Viewer. Gray matter delineated with 
red lines (red arrow), and white matter delineated with black lines (black arrow) 

WM 

GM 
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usable data from being deemed unusable. Subjects that experience more severe errors such as 

motion artifacts cannot be given the 10-frame grace.  

Motion artifacts are more common errors that can affect delineation that is caused due 

to movement by the subject within the scanner during data acquisition. Ringing is shown as 

ripple waves throughout the brain, making delineation more difficult (figure 5).  

A more serious motion artifact is warping which is seen in figure 6. Warping can “pull” 

the brain and the skull causing this deformed look. Any presence of warping results in a failed 

Figure 5: Example of ringing, shown as blue arrows. This can disrupt delineation in areas 
pointed out by the red arrow 
 
 



Page | 24  
 

QC score, meaning that this subject’s data is unsuitable for analysis. All the errors mentioned 

here would not be given the 10-frame grace.  

Other errors include blurriness and sawtooth lines. Blurriness is a way to describe an 

image with low pixel clarity. This won’t affect most scans, but if excessive enough can affect 

delineation and make QC difficult. The lines used to delineate gray and white matter should be 

as straight and/or as curved as possible. At times there can be errors with the line themselves, 

making these jagged lines called sawtooth lines.  

Figure 6: Warping shown in superior parietal portion of subject (red arrow) 
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QC of functional data 

The last set of data to QC is functional data where the quality of fMRI data is assessed. 

The main purpose of this QC section is to ensure that the functional scans and the structural 

scans are properly registered to one another. Figure 8 shows an example of a usable scan when 

the functional and structural scans register correctly (figure 8).  

Figure 7: An unusable scan (QC score = 3) of a blurry subject with improper delineation 
(blue arrows). Sawtooth denoted with red arrow   
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Many types of errors can be presented. Field of view (FOV) errors describe portions of 

the brain where there are large areas of BOLD signal dropout or missing outlined regions of the 

brain (figure 9). Any FOV error that misses more than 10% of the brain drops the scan’s QC 

score from usable (1) to questionable (2). If more than 50% of the brain is missing, the scan is 

automatically given a QC score of unusable (3).  Motion artifacts are shown as horizontal lines 

(figure 10). The presence of motion artifacts can affect the QC grade. A couple of these lines 

can be present in a scan and can still be graded as usable (1). If a handful of these horizontal 
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lines are presented in many sections of the brain, then the scan is graded as questionable (2). 

An excessive amount of these horizontal lines presented throughout the scan will result in a QC 

grade of unusable (3). The more motion artifact presented within the scan, the lower the 

overall quality. Figure 10 shows an example of a moderate amount of these horizontal lines, 

and the scan displayed is graded as probable (2). These horizontal lines are secluded in only 

specific areas of the brain. While this amount of horizontal lines is not ideal, it is not enough to 

deem the scan as unusable (3).  
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PALM from CIFTI files  

The formulated CIFTI files will be used to generate cortical thickness outputs with the 

use of the Permutation Analysis of Linear Models (PALM) software (figure 11; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM). This tool can work with volumetric and surface-

based formats provided by the CIFTI files. PALM can undergo multiple testing and comparisons 

which work effectively for a large dataset like ABIDE for multi-group analysis. PALM can shuffle 

image observations with the use of complex, tree-like covariance structure for permutations.  

 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM
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MATLAB, a high-performance computing platform, was used to execute PALM. The 

models are generated using the spatial information provided by grayordinates in the subject’s 

CIFTI files. Cluster detection of cortical thickness differences between ASD and TD groups is 

done by converting p-values to log-transformed p-values in Eq. 1 to ignore any insignificant 

results.  

 

Figure 11: The surface can be 
separated using different 
vertices called “grayordinates” 
(right image). Here, each 
grayordinate contains 
information about how thick the 
cortex is at that location (image 
above) 



Page | 30  
 

[Eq. 1]  −𝐿𝑜𝑔 (𝑝 − 𝑣𝑎𝑙𝑢𝑒) = Log  𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑝 − 𝑣𝑎𝑙𝑢𝑒  

Using a p-value of 0.027 will result in a log-transformed p-value of 1.56: -Log (0.027) = 

1.56. A threshold can be set to identify and calculate cluster size. Once all the parameters are 

set, permutation tests can be performed to determine any surface area or volumetric 

differences within different brain regions.  

Reprocessed subjects were separated into ASD and TD groups. Subject files along with 

directories were created using MATLAB. Once files are generated, the PALM software can be 

activated with MATLAB from within the software itself, from a shell, or scripts. Once activated it 

will perform permutation tests on both subject groups. The generated cortical thickness scans 

can be viewed using workbench (https://dev.mysql.com/doc/workbench/en/).    

A parcellation scheme devised by Gordon et al. was used to distinguish certain 

functional brain systems of the brain (Gordon et al., 2016). Statistic maps will be present within 

the cortical thickness scans to denote any differences in cortical thickness between the ASD and 

TD subgroups.   

Results 

The following figures are cortical thickness images generated with PALM using the 

reprocessed ABIDE dataset. The PALM results are presented in Figures 12-14. These are all 

images of a representative brain, showing statistical differences between groups but in 

different orientations. The brain outputs are also color-coded to include functional network 

https://dev.mysql.com/doc/workbench/en/
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markings (based on the Gordon Parcellation) to highlight the functional brain systems where 

these differences lie. Refer to Table 1 for all functional network labels.  

  

The heat map on the bottom left of Figures 12-14 shows the log-transformed inverse p-

value to signify any differences of cortical thickness between ASD and TD subjects provided by 

the ABIDE dataset. All the ASD data underwent PALM analysis, and the same was done for the 

TD subjects. PALM was able to generate an average of ASD and TD brains so we can measure 

the cortical thickness differences between both subgroups.  
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The sagittal, coronal, and transversal views are shown in Figures 12, 13, and 14 

respectively. Each figure contains ROIs that are orange or yellow which show statistical 

differences between ASD and TD brains. All statistical differences are scaled as an inverse log p-

value (see arrows). Table 2 contains information about the anatomical, and functional region of 

each ROI as well as their p-values and cluster sizes.  

 

ROI “A” is located in the left superior parietal involved in somatomotor hand 

movements (p = 0.0565; cluster size = 202.75 mm2). The left visual cortex contains two ROIs. In 

the left occipital lobe you see region “B” (p = 0.0861; cluster size = 175.13 mm2), and in the left 

temporal lobe you see region “C” (p = 0.0582; cluster size = 202.76 mm2). The final ROI, region 

“D” (p = 0.0274; cluster size = 265.5 mm2), is the largest and most statistically significant ROI 

found in the right temporal lobe. Part of region “D” is within the visual cortex and an undefined 

functional network of the brain. All these regions show an increase in overall cortical thickness.  
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Discussion 

The diagnosis and symptoms of ASD have been well researched and documented, but 

the biomarkers to verify an ASD diagnosis has not been well established. The purpose of this 

research was to show the differences in brain structure between ASD and TD subjects using 

measurements of cortical thickness. Cluster regions show cortical thickness differences in the 

left superior parietal (p = 0.0565; cluster size = 202.75 mm2), left occipital lobe (p = 0.0861; 

cluster size = 175.13 mm2), left temporal lobe (p = 0.0582; cluster size = 202.76 mm2), and the 

right temporal lobe (p = 0.0274; cluster size = 265.5 mm2). All these results showcase an 

increase in cortical thickness in ASD subjects.  

These results are consistent with other research findings that show the unique 

characteristics of ASD involved in motor and sensory areas. Visual processing is different in ASD 

than TD individuals and the difference in cortical thickness in the visual and motor cortex can 

explain the enhanced detail processing in ASD (Vandenbroucke, Steven Scholte, Engeland, 

Lamme, & Kemner, 2009). The temporal and occipital regions of the brain are involved in face 

processing and mental state attributions, and the results showcase cortical thickness increases 

in both temporal lobes (ROI “C” and “D”) along with the left occipital lobe (ROI “B”). The motor 

cortex abnormalities are supported by ROI “A” in the left superior parietal which affects the 

somatomotor hand movements. The combination of visual and motor cortex thickness 

differences could explain the poor integration of visual input and motor output of ASD 

individuals (Nebel et al., 2016).  

The reason(s) for an increase in cortical thickness in the identified ROIs are unknown. 

The increase could be due to an increase in the number of glial cells in these areas, or an 



Page | 37  
 

increase in the amount of gray and white matter. The future direction for this project is to 

incorporate the reprocessed ABIDE dataset with different software to further validate these 

results, and to test the correlation between symptoms of ASD with cortical thickness. The PALM 

software can show the cortical thickness difference, but this software is still experimental and 

requires further refinement. PALM and other software packages still rely on having clean usable 

data to generate accurate and reproducible results. To address these issues using MRI machines 

with stronger magnets such as a 3T or 7T machines, while performing a standardized protocol 

to ensure proper data acquisition, can improve the number of usable scans available. Motion is 

a strong variable that can cause neuroimaging artifacts that can affect the subject’s scan 

quality. Reducing the amount of motion by the subject within the scanner will help increase the 

likely-hood of proper data acquisition. Further improvements to the DCAN modified HCP 

pipeline to account for denoising, bias field correction, and motion correction can be done to 

remove any possible artifacts within the subject’s scans. The next goal for this reprocessed 

ABIDE dataset is to release it in a publicly available open-source repository to ensure reliable 

data is made available to neuroscientists everywhere, so that they may use it for ASD research.  
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