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ABSTRACT

Volcanic rocks typically have only low to moderate arsenic concentrations, none-
the-less, elevated levels of arsenic in ground waters have been associated with pyroclastic
and volcaniclastic rocks and sediments in many parts of the world. The potential for
arsenic leaching from these deposits is particularly problematic as they often comprise
important water-bearing units in volcanic terrains. However, the role that chemical and
mineralogical variations play in controlling the occurrence and mobility of arsenic from

pyroclastic rocks is largely unexplored.

This study uses chemical and X-ray diffraction data to characterize and classify
49 samples of ash-flow tuffs, and 11 samples of tuffaceous sediments. The samples
exhibit a range of devitrification and chemical weathering. Total and partial digestion,
and water extractions of samples are used to determine the total, environmentally
available, and readily leachable fractions of arsenic present in all tuff samples. Leaching
experiments were also performed with buffered solutions to determine the influence of

elevated pH levels on arsenic mobility.

The 49 tuff samples have a mean arsenic content of 7.5 mg kg™, a geometric
mean arsenic content of 4.8 mg kg™, a median arsenic content of 5.2 mg kg™, and a
maximum arsenic concentration of 81 mg kg™'. The mean and median values are 2.8 —
4.4x the average crustal abundance of 1.7 mg kg (Wedepohl, 1995), and consistent with
previously reported values for volcanic glasses and felsic volcanic rocks (Onishi and

Sandell, 1955; Wedepohl, 1995), although the maximum arsenic content is higher than



previously reported (e.g., Casentini et al., 2010; Fiantis et al., 2010; Nobel et al., 2004).
In addition, the arsenic concentrations of tuffs were found to be highly heterogenous,

both between and within individual units, and in some cases, individual outcrops.

Results of whole rock and leachate analyses indicate that there is no significant
difference in the total arsenic content of tuffs as a result of devitrification or weathering,
but both devitrified and weathered tuffs contain higher levels of environmentally
available arsenic than unweathered glassy tuffs. Glassy tuffs did not produce any readily
leachable arsenic, while individual devitrified and weathered tuffs both generated
aqueous concentrations that exceeded regulatory limits after 18 hours. Leaching of
weathered tuffs produced higher levels of arsenic at high (~9-11) pH than in tests
conducted at circum-neutral pH. Devitrified and glassy tuffs showed no increase in

leachable arsenic with increasing pH.

The results of this study indicate that devitrification and weathering processes
determine the host phases, degree of adsorption, and overall mobility of arsenic from ash-
flow tuffs. Tuffs that have undergone different types of alteration are likely to have
different host phases of arsenic, and different mechanisms that mobilize arsenic into the
environment. Potential host phases and mobility mechanisms are discussed, and a

conceptual model of arsenic behavior in ash-flow tuffs is proposed.
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CHAPTER 1: INTRODUCTION AND BACKGROUND

INTRODUCTION

The occurrence of groundwater containing elevated arsenic concentrations has
emerged as a major health concern throughout the world. Arsenic is known to cause
cancer of the skin, bladder, and lungs, damage to the circulatory and nervous systems,
hypertension, and diabetes (Brown and Ross, 2002; Ng et al., 2003). Arsenic levels
exceeding the World Health Organization Maximum Contaminant Level (MCL) of 50
pg/L occur in many locations worldwide including Bangladesh, India, Cambodia,
Argentina, the United States, Hungary, and China, among others, and is likely to occur in
additional regions where reliable data regarding drinking water is currently unavailable
(Amini et al., 2008). Within the United States, where approximately half the population
depends on groundwater sources for drinking water, arsenic concentrations exceeding the
Environmental Protection Agency MCL of 10 pg/L are found in 5-11% of groundwater

sourced drinking water systems (Ryker, 2003).

Elevated arsenic concentrations in drinking water supplies in several locations
within the United States, Argentina, Greece, Turkey, Chile and Italy have been associated
with volcanic rocks and ash-flow tuffs (Casentini et al., 2010; Johannesson and Tang,
2009; Welch et al., 2000). Proximity to volcanic rocks has been found to be statistically
predictive of arsenic contamination of water supplies (Amini et al., 2008). Felsic tuffs
have been identified as primary hydrologic units in ~25% of the regions in the United
States known to contain high groundwater arsenic levels and in at least one case,

dissolution of volcanic glass has been identified as the primary geochemical source of



arsenic in groundwater (Johannesson and Tang, 2009; Welch et al., 2000). Several studies
have identified volcanic tuffs or tuffaceous sediments as the source of groundwater
arsenic in the southern Willamette Valley of Oregon (Goldblatt et al., 1963; Hinkle and

Polette, 1999; Nadakavukaren et al., 1984; Whanger et al., 1977).

Despite the widespread association of elevated groundwater arsenic levels with
ash-flow tuffs, the mechanisms of arsenic release and the role that compositional
variations play in the mobility of arsenic is largely unexplored in the literature. Tuffs vary
considerably in composition and can experience both high- and low-temperature
alteration, the degree of which can vary considerably, even within a single unit. The goal
of my study is to quantify the degree to which chemical composition, devitrification, and
low-temperature alteration control the mobility of arsenic and other trace elements from
high-silica (> 70% S10,) ash-flow tuffs under varying environmental conditions.
Developing a better understanding of arsenic-mineral associations in tuffs and identifying
the characteristics and conditions that promote high dissolved arsenic concentrations will
improve the predictive modeling of arsenic behavior in volcanic terrain and aid in the

identification of aquifers that are likely to yield high arsenic groundwaters.



BACKGROUND

Arsenic Geochemistry

Arsenic in groundwater exists primarily as As(III) or As(V). The arsenic species
present is dependent of the pH and redox conditions of the specific water systems in

question (Figure 1).

1200

800

400

Eh (mV)

-400

-800

Figure 1. Eh-pH diagram for aqueous arsenic species at 25°C and 1 bar pressure, from (Smedley and
Kinniburgh, 2002).

Under circum-neutral pH, arsenate occurs primarily as HAsO, or HyAsO4 and is the
dominant form of arsenic in oxidizing environments, while arsenite occurs predominantly
as H3AsO;" and is the dominant form under reducing conditions. Both oxidation states

are commonly found in natural water systems (Cullen and Reimer, 1989; Welch et al.,



2000). The occurrence of arsenate as an oxyanion contributes to its mobility at pH values
typically found in groundwaters. Most toxic trace metals occur as cations which have
limited mobility at circumneutral pH due to the tendency of cations to become more
strongly sorbed as pH increases (Smedley and Kinniburgh, 2002). In contrast, toxic trace

elements that occur as oxyanions become less strongly sorbed as pH increases.

Redox Behavior of Arsenic

The speciation of arsenic is controlled by redox conditions and plays a major role
in arsenic mobility mechanisms. As(III) is thermodynamically unstable in aerobic
conditions, but the oxidation process proceeds slowly, with a half life of one to three
years, unless mediated by microbial action (Rhine et al., 2008; Stollenwerk, 2003). The
rate of oxidation under atmospheric conditions has also been observed to increase at pH >
9 (Manning and Goldberg, 1997). In contrast, the reduction of As(V) to As(III) proceeds

rapidly under both biotic and abiotic conditions (Stollenwerk, 2003).

Redox conditions also influence the mobility of arsenic by affecting arsenic
bearing minerals, and major sorbents of arsenic. Arsenic is frequently hosted in sulfide
minerals, and Fe-oxides and oxyhydroxides are a major sorbent of arsenic. Reduction of
Fe(III) present primarily as oxides and oxyhydroxides to Fe(Il) present primarily as free
cations, and oxidation of sulfide minerals are both processes associated with arsenic
contamination of groundwater systems. Fe(III) reduction occurs after the reduction of O,,
NOs, and MnOs,, at an Eh close to 0 mV, and before the reduction of As(V) and SO42'

(Langmuir, 1997; Smedley and Kinniburgh, 2002).



SORPTION BEHAVIOR OF ARSENIC

Sorption and coprecipitation processes are the primary mechanisms controlling
the mobility of dissolved arsenic in natural waters (Dixit and Hering, 2003; Welch et al.,
2000). Adsorption processes are controlled by aquifer mineralogy, arsenic concentrations
and speciation, pH, and concentrations of competing anions (Stollenwerk, 2003).
Adsorption of arsenic is positively correlated with the Fe- and Al-oxide and clay content
of aquifer solids, and these minerals act as the primary sorbents of arsenic, although solid
organic matter and carbonate minerals may act as sorbents as well (Goldberg, 2002;

Stollenwerk, 2003).

Common Sorbents

Iron, aluminum, and manganese oxides are the most prevalent sorbents for arsenic
in aquifer sediments, occurring both as discrete particles and as coatings on other mineral
surfaces (Stollenwerk, 2003; Welch et al., 2000). Iron oxides and oxyhydroxides are the
most abundant sorbent in aquifer solids, and occur in varying compositions and degrees
of crystallinity including hydrous ferric oxides (HFO), goethite, and magnetite (Dixit and
Hering, 2003; Jang and Dempsey, 2008). Poorly crystalline oxyhydroxides that form by
precipitation of Fe(IIl) from solution have the highest sorption capacity due to the
decrease in surface area and surface complexation sites as the degree of crystallinity
increases (Stollenwerk, 2003). Aluminum oxides and oxyhydroxides are structurally
similar to Fe minerals and display similar sorption capacity and behavior for arsenic but

are generally less abundant in aquifer solids (Stollenwerk, 2003) .



Clay minerals are another potential sorbent of arsenic. Kaolinite, illite, chlorite,
and halloysite have all been observed to sorb both As(IIl) and As(V) (Stollenwerk, 2003).
Overall clay minerals have negative surface charges, but surface metal cations at the
edges of particles, most commonly aluminum, have the capacity to form surface
complexes with arsenic (Davis and Kent, 1990). The dependence of arsenic sorption on
Al-OH sites at clay mineral edges results in some similar responses of clay minerals and
aluminum oxides to geochemical parameters including pH (Stollenwerk, 2003). One
major area where clay minerals differ from each other and aluminum oxide minerals is in
the concentration of sorption sites. Kaolinite has been observed to adsorb greater amounts
of arsenic than equal amounts of illite and montmorillonite with larger surface areas,
indicating that the number of sorption sites of a specific clay mineral plays a larger role

than surface area (Manning and Goldberg, 1996).

pH Dependence

For all potential adsorbents the sorption of arsenic is pH dependent. For Fe oxide
minerals, sorption of As(V) is highest at low pH and begins declining near pH 4 while
sorption of As(III) increases to a maximum at circum-neutral pH conditions (pH 5 to 9),
decreasing under alkaline conditions (Figure 2) (Dixit and Hering, 2003). Both aluminum
oxides and clay minerals display similar sorption patterns with respect to pH, with As(V)
declining with increasing pH and As(III) reaching a maximum at circum-neutral pH
(Goldberg, 2002). When both As(IIl) and As(V) are present in a system, the sorption
behavior of As(V) is largely unchanged, while As(III) increases until it reaches a

maximum at pH 10 for Fe-oxides, and then rapidly decreases (Jang and Dempsey, 2008).
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Figure 2. Adsorption of arsenate and arsenite onto A) amorphous iron oxide and B) goethite as a function
of pH. Arsenic concentrations range from 100 uM (M) to 10 uM (O). From Dixit & Hering (2003).

Competing Anions

Competing anions, chiefly phosphate, can decrease the adsorption of arsenic. The
influence of phosphate on arsenic sorption is well documented, and elevated arsenic
concentrations are correlated with high phosphate concentrations in a number of locations
throughout the world (Dixit and Hering, 2003; Welch et al., 2000). Phosphate will
decrease the adsorption of both As(V) and As(IlI), but a higher degree of similarity
between P(V) and As(V) results in more effective competition with As(V) (Stollenwerk,
2003). Competition with phosphate will decrease the adsorption of As(V) over the full
pH range, while phosphate primarily decreases the adsorption of As(IIl) at pH <9 (Jain

and Loeppert, 2000).



Silicic acid is a less effective competitor than phosphate, but is known to compete
with arsenic for sorption sites at pH values greater than 8 (Dixit and Hering, 2003;
Stollenwerk, 2003). Dissolved organic matter (DOC) may also compete with arsenic for
sorption sites. In sufficient quantities, DOC, chiefly humic and fulvic acids, may cause
oxyhydroxides to which arsenic is adsorbed to dissolve. However, high DOC
concentrations tend to occur in reduced waters so these effects likely would impact only

adsorbed As(II) (Ravenscroft et al., 2009).

Reducing Groundwater Systems

Arsenic contamination of reducing groundwater systems is known to occur in
Bangladesh, Taiwan, Vietnam, and Hungary and Romania (Ravenscroft et al., 2009;
Smedley and Kinniburgh, 2002). In all of these locations the contaminated aquifers are
composed of Quaternary sedimentary deposits containing high proportions of organic
matter, with waters characterized by high Fe, Mn, and NH4 concentrations (Smedley and
Kinniburgh, 2002). The primary geochemical trigger for arsenic mobility in these
reducing environments is reductive dissolution of Fe-oxides that act as a sink for arsenic.
As Fe’* that comprises the oxides and oxyhydroxides is reduced to Fe*" both crystalline
and amorphous forms of Fe oxide minerals dissolve, releasing any adsorbed or
coprecipitated arsenic (Ravenscroft et al., 2009; Welch et al., 2000). During the process
of dissolution arsenic may be released and immediately readsorbed to the residual oxide
surfaces, preventing arsenic contamination until all or most of the Fe-oxides are reduced
(Ravenscroft et al., 2009). In environments with exceptionally high organic matter

concentrations, such as Bangladesh, elevated phosphate concentrations are found as well,
8



which may contribute to the mobilization of arsenic adsorbed to clays or aluminum

oxides.

Oxidizing Groundwater Systems

Arsenic contamination of oxidizing groundwater systems is known to occur in
Italy, Argentina, Chile, Mexico, and the Southwestern United States (Casentini et al.,
2010; Smedley and Kinniburgh, 2002; Welch et al., 2000). These environments are
frequently, but not always, arid, and the groundwater systems are characterized by high
pH, and often high salinity and elevated F or B concentrations (Smedley and Kinniburgh,
2002). The geology of these aquifers is more variable than contaminated aquifers with
reducing groundwater systems, and include volcanic rocks and sediments as well as
alluvial sediments (Smedley and Kinniburgh, 2002). In oxidizing environments the
primary geochemical trigger for mobilizing arsenic is alkali desorption, which describes
the tendency of As(V) to desorb as pH increases in alkaline oxic waters (Ravenscroft et
al., 2009). The occurrence of alkali desorption in arid environments and the presence of
high salinity in many waters contaminated by alkali desorption indicates that it may
operate in conjunction with evaporative concentration of arsenic in some environments,
with evaporation increasing the concentrations of arsenic and the alkalinity of these

waters.

Chemical and Mineralogical Variations in Ash-Flow Tuffs

Although elevated arsenic levels in groundwaters have often been associated with

ash-flow tuffs, there has been little investigation in the role that variations in tuffs may



play in either the occurrence or mobility of arsenic from these units. Compositional
variations in high-silica ash-flow tuffs can be divided into three primary categories:
chemical variations in the source material, high-temperature alteration that occurs
immediately after deposition, and low temperature alteration to zeolites and clays.
Unaltered ash-flow tuffs display the same range of compositional variation found in high-
silica igneous rocks, but for the purposes of this project the primary variation investigated
will be the Al/( Na,O+K,0) ratio. Peralkaline (e.g. low Al/ (Na,O+K,0)) ash-flow tuffs
have been observed to weather at higher rates than tuffs with higher Al/ (Na,0+K,0)
ratios and equal SiO; concentrations (Streck, M., personal communication). Both alkali
and aluminum content are likely to play a role in weathering and arsenic mobility, since
aluminum is necessary for the formation of low temperature alteration products, and the

release of alkalis will influence the pH of groundwaters in peralkaline tuff units.

High-temperature alteration processes that occur immediately after deposition of
an ash-flow tuff include devitrification and vapor phase alteration. Devitrification occurs
during slow cooling within the interior of thick tuffs deposited at high temperatures,
resulting in the glassy ash and pumice particles crystallizing into fine-grained feldspars,
primarily sanidine, and other silica minerals including cristobalite, quartz and tridymite
(Ross and Smith, 1980; Vaniman, 2006). Vapor-phase alteration is distinguished from
devitrification in that it occurs primarily in pore spaces rather than within individual glass
particles and will often result in larger crystals (Ross and Smith, 1980). Vapor-phase
alteration produces the same primary minerals as devitrification, but can also include a

wide variety of minor minerals that can incorporate elements expelled from glass

10



particles during devitrification (Vaniman, 2006). High temperature alteration processes
typically occur in the interior of individual cooling units, and produce distinct zonation
within the body of the tuff (Figure 3). Element mobility during high-temperature
alteration of peralkaline silicic lavas occurs during crystallization and is attributed to both
expulsion of the vapor phase and groundwater leaching (Weaver et al., 1990). Na, F, Cl,
Cs, Y, and rare earth elements (REE) have been observed to be depleted during

crystallization (Weaver et al., 1990).
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Figure 3. Conceptual model of cooling ash-flow unit showing zonation and vertical porosity variation
(Istok et al., 1994).
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Low-temperature alteration processes occur over longer time periods than high
temperature alteration. As ash-flow tuffs are exposed to low-temperature waters, the
unstable volcanic glasses are altered first to clay minerals, often smectites (Vaniman,
2006). As alteration progresses the relative abundance of illites and chlorites increases
(Fisher and Schmincke, 1984). At high pH and ionic strength large quantities of zeolites
are also formed during low temperature alteration of tuffs (Vaniman, 2006). Clinoptilolite
is the most common zeolite produced outside of saline lake environments, but mordenite,
chabazite and phillipsite are also common and the specific minerals formed will be
influenced by the Si/Al ratio of the tuff (Vaniman, 2006). During low-temperature
alteration, elements can be depleted by groundwater leaching or enriched by structural

incorporation in minerals, ion exchange, and adsorption (Zielinski, 1982).

Arsenic in Tuffs

Surprisingly little information is available regarding the range of arsenic
concentrations in volcanic glass. The most oft-cited source, even today, is Onishi and
Sandell (1955), who report an average arsenic concentration of 5.9 mg/kg based on 12
volcanic glass samples. Nicolli et al. (1989) found arsenic concentrations ranged between
6.8 and 10.4 mg/kg with a geometric mean of 8.7 mg/kg in 10 samples of volcanic glass
isolated from volcanically derived loess. These mean values are approximately four times
the average crustal abundance of 1.7 mg/kg (Wedepohl, 1995). There are some
indications that arsenic concentrations increase with silica content in volcanic rocks,
although it is unclear if this holds true for volcanic glasses (Onishi and Sandell, 1955).

The upper limit of arsenic in volcanic glass appears be ~20 mg/kg (Casentini et al., 2010;
12



Fiantis et al., 2010), although Noble at al. (2004) reported arsenic concentrations of up to

65 mg/kg in glassy calc-alkalic volcanic rocks from Peru.

The concentrations of arsenic in ash-flow tuffs is relatively modest in comparison
to shales, which often have mean arsenic contents in excess of 10 mg/kg (Onishi and
Sandell, 1955), but which are not typically sources of groundwater arsenic. Thus, the
association of tuffs with elevated groundwater arsenic levels must be due to one or more
processes that allow for mobilization, not simply elevated arsenic concentrations.
Possible mechanisms include: 1) the relatively rapid dissolution of reactive glasses
(Nadakavukaren et al., 1984; Nicolli et al., 1989); 2) dissolution of other readily soluble
arsenic-bearing phases, possibly vapor phase alteration products or lithic fragments; 3)
alkali desorption wherein weathering of volcanic glass causes an increase in solution pH
which promotes release of arsenic from mineral surfaces (Smedley and Kinniburgh,
2002); and or 4) the dissolution of minerals containing competing anions that promote

desorption of arsenic via anion exchange (Casentini et al., 2010).
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Arsenic K-edge XANES Spectra of Natural Tuff Samples
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Figure 4. Arsenic K-edge XANES spectra of selected tuff samples from preliminary As leaching study. The
less altered tuff contained primarily As(III) while the highly altered tuff contained primarily As(V).

Preliminary data suggest that arsenic in unaltered glassy tuffs is present
predominantly as As(IIT) while arsenic in altered tuffs is predominantly As(V) (Figure 4).
Results of a preliminary arsenic leaching study suggest that arsenic is more easily leached
from altered tuffs that unaltered tuffs (Table 1, Figure 5). Altered tuffs present far more
complications in terms of identifying the residence of oxidized arsenic because a variety

of new hosts are possible, including secondary silica, secondary iron/manganese oxides
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or aluminum hydroxides, and various clays and zeolites. The host phase plays an

important role in terms of sorption characteristics and stability under varying conditions.

Table 1. Total and environmentally available arsenic concentrations of select tuff samples used in
preliminary As leaching study. Available arsenic refers to arsenic present in phases other than glasses and
silicate mineral phases such as feldspars and quartz. Note: total As concentrations from previous INAA
analysis. Errors = 1 ~ from replicate analysis.

” ] ”
Total 1? s Avallab!f As Available/Total Degree of Alteration
(ngg) (ngg)
Little Butte ~49 2.18+0.07 0.55 Highly Altered
LST ~4? 1.85+0.03 0.46 Highly Altered
San Luis (NM) 1.9+0.5 0.64 £0.04 0.34 Intermediate
San Luis (RC) 23+£04 0.39+0.03 0.17 Intermediate
NMT 42+03 0.48 £0.01 0.11 Hydrated Glass
RST 41+04 0.26 +£0.03 0.06 Fresh Glass
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Figure 5. XRD analysis of six tuff samples used in preliminary As leaching study displaying increasing
degrees of low-temperature alteration. More altered tuffs contain a larger number of mineral phases, which
increases the number of potential host phases of arsenic in altered tuffs relative to unweathered glassy
samples.
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CHAPTER 2: ARSENIC OCCURRENCE IN ASH-FLOW TUFFS AND ASSOCIATED

SEDIMENTS

INTRODUCTION

Despite the widespread association between ash-flow tuffs and arsenic
contamination, surprisingly little is known about arsenic occurrence in these units.
Previously reported values for mean arsenic concentrations are based on only 10-12
samples of volcanic glasses, and there has been little effort to identify arsenic host phases
or to correlate arsenic with other elements in these rocks (Onishi and Sandell, 1955;
Nicolli et al., 1989). Ash-flow tuffs are complex geologic units that can display multiple
types and degrees of alteration, but most research involving arsenic and tuffs focuses on

glassy tuffs, and does not consider devitrification and weathering.

In this study, 49 tuff samples spanning a range of chemical and mineralogical
compositions, as well as 11 samples of tuffaceous sediments were used to investigate the
behavior of arsenic in ash-flow tuffs. Specific objectives of the study are 1) to better
quantify the levels of arsenic found in tuffs, 2) to determine if bulk chemical
composition, particularly alumina-alkali ratios, influence levels of arsenic found in tuffs,
and 3) to determine if devitrification and weathering influence arsenic concentrations in

tuffs.

17



METHODS

Sample Collection and Preparation

For this study, 42 hand samples of tuffs and tuffaceous sediments were collected
from various locations throughout Oregon. Eight samples were collected from the
Southern Willamette Valley, and 23 samples were collected from Central and Eastern
Oregon. As both tuffs and tuffaceous sediments have been suggested as sources of
groundwater arsenic, 11 samples of tuffaceous sediments were collected from Eastern
Oregon. Wherever possible, samples displaying different alteration states were obtained
from the same unit, and in some cases the same location. Full sections of unweathered
samples were collected from single outcrops for two units, the Dinner Creek Tuff and the
Rattlesnake Tuff. An additional 18 samples obtained from the existing collection of Dr.

Martin Streck collection were also analyzed. Sample locations can be found in Table 2.

To prepare samples for analysis, visibly altered exteriors were chipped away with
a rock hammer, and approximately fist-sized or smaller chunks of sample were fed
through a Braun jaw-crusher until the largest pieces were between ~2 cm and ~5 mm.
Early samples were hand split, and one quarter of the sample was then run through a disc
grinder, until the largest pieces were ~5 mm. For later samples this step was eliminated in
favor of using a finer setting on the crusher to achieve a smaller grain size. (~5 mm). In

all cases, the equipment was thoroughly cleaned between samples.

Crushed samples were hand split and ~ 5-15 g portions were sent to either the

Washington State University Geoanalytical Lab, in Pullman, WA, or Activation
18



Laboratories Ltd., in Ontario, Canada for bulk chemical analysis. The remainder of each
crushed sample was split up to four times using a small (Jones-type) riffle splitter, and
split portions (~5 — 10 g) ground to a fine powder using a Fisher alumina ceramic mortar
grinder. Samples were ground for 20 — 30 minutes. If grains larger than ~0.5 mm
remained after 30 minutes, grinding was finished by hand with a ceramic mortar and

pestle.

X-ray Diffraction (XRD)

To characterize the mineralogy of the tuffs samples were analyzed using a Phillips
(now PANalytical) Theta-Theta PW3040 X-ray diffractometer equipped with a standard
scintillation counter and copper anode X-ray lamp. Samples were further ground by hand
using an agate mortar and pestle until they passed through a 65 pum sieve. A random
powder mount was prepared using a side-pack aluminum sample holder. Diffraction
patterns were obtained in continuous mode using a step size of 0.020 degrees two theta

(°20) and scan step times of 1.00 second from 5 to 75 °260.
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Diffraction patterns were analyzed using PANalytical X’Pert Highscore Plus
software package, to obtain semi-quantitative mineral compositions. When possible
AutoQuan software was used to perform non-standardized Reitveld analysis and obtain
more accurate semi-quantitative compositional percentages. In some cases the software
database was missing one or more of the mineral phases present in the samples, and
Reitveld analysis was not performed. Amorphous phases were not included in these
results, and the proportion of amorphous phases (glass) was estimated based on
deviations in the background of XRD patterns from a straight line, particularly between
approximately 10 and 40 °20, where the presence of amorphous phases produces a wide

curved deviation of the background pattern from a straight line.

The XRD used produces wide low-intensity peaks at approximately 4-5 °20 and
8-9 °20 that are consistently present in XRD patterns. These peaks were determined to be
instrument artifacts, possibly due to misaligned slits and peaks at these positions were

excluded from analysis unless significantly larger than that measured on a blank holder.
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Optical Microscopy

Thin sections of selected samples were examined in order to confirm the XRD
results and identify any potential minor mineral phases that were not identified in the
XRD patterns. In addition, particular textures were considered to be indicative of

different alteration processes (

Figure 6).

Figure 6. Sample PG2, under plane light at 5x magnification, displaying axilotic texture produced during
devitrification, where minerals crystallized perpendicular to the boundaries of glass shards.
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Figure 7. Sample PG1 under plane light at 5x magnification, displaying both axiolitic texture and alteration
to green and brown clay minerals.

Bulk Chemistry

Crushed samples were hand split, and ~ 5-10 g portions were sent to either the
Washington State University Geoanalytical Lab, in Pullman, WA, or Activation
Laboratories Ltd., in Ontario, Canada for bulk chemical analysis. At both labs, values for
major elements were obtained via X-ray fluorescence (XRF). For samples sent to WSU,
selected trace elements (Ni, Cr, V, Ba, Rb, Sr, Ga, Cu, Zn, Pb, La, Ce, Th, and Nd) were
obtained via XRF. For samples sent to Activation Laboratories trace elements were
determined via ICP-MS (Cu, Cd, Mo, Pb, Ni, Zn, S, Be, Li, Sr, V, Y) or Instrumental
Neutron Activation Analysis (INAA) (As, Ba, Co, Cr, Cs, Eu, Rb, Sb, Sc, Se, Th, La, Ce,

Nd, Sm, Sn, Yb, Lu).
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Total Arsenic

For samples where arsenic values were not obtained via INAA at Activation
Laboratories, samples were digested following US EPA Method 3052 (US
Environmental Protection Agency, 1996b). Sample aliquots were weighed to 0.250 +
0.001 g and placed in Teflon vessels that had been cleaned with concentrated nitric acid
and repeatedly rinsed with deionized water (18.2 MQ cm). Subsequently, 1.5 mL trace-
metal grade HF, 4.5 mL trace-metal grade HNO;", and 1 mL trace-metal grade HCI were
added to the vessels. Samples were digested using a Milestone Ethos EZ microwave
digester for 40 minutes reaching a final temperature of 240°C for 20 minutes. Method
blanks and certified reference materials (JR1 from the Japanese Geological Survey, and
SRM 1633a from the National Bureau of Standards) were run every 20 samples, and
duplicate digests were carried out on three samples. After digestion samples were poured
into 50 mL plastic centrifuge tubes. Vessels were rinsed three times with 18.2 MQ cm
distilled water, and the water was added to the samples. Centrifuge tubes were filled with

water to 25 mL.

Samples were further diluted to a total of 50.0 mL in test tubes (1:1 dilution) and
analyzed using an Agilent 700 Series ICP-OES with an inert sample introduction system
(a V-groove nebulizer with Sturman—Masters spray chamber and alumina injector).

Detailed operating conditions for the analysis are listed in Appendix A.
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RESULTS: BULK ROCK CHARACTERIZATION

Major Mineralogy

The major mineralogy of all samples was determined based of the results of XRD
analysis in concert with examination of thin sections and hand samples. The percentage
of glass present in all samples was estimated based upon deviations in background levels
of the XRD patterns from a straight line, particularly between approximately 10 and 40
°20 (Figure 8), coupled with examination of thin sections and hand samples to confirm

the XRD results.
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Figure 8. XRD patterns for unweathered glassy (RST9) and devitrified samples (RST13). Glass content of
samples was estimated based upon the deviation of background levels from a straight line between
approximately 10 and 40 °20, coupled with visual examination of hand samples and thin sections.
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The majority of minerals identified in XRD patterns fell into four categories;
feldspars, low pressure silica polymorphs, zeolites, and clay minerals (Table 3). Sanidine
was the most common feldspar identified followed by albite, but anorthoclase,
microcline, and labradorite were all identified in at least one sample. In many cases
multiple feldspars were acceptable matches to the XRD patterns, and especially in
devitrified samples with very small crystals, the specific alkali feldspar present could not
be identified in thin section. In these cases, the feldspar that best matched the XRD

pattern was selected.

Quartz, cristobalite, and tridymite were all identified in multiple samples, and
many samples contained more than one silica phase. Quartz can occur as a phenocryst in
glassy samples, while cristobalite and tridymite occur exclusively as devitrification
products. The presence of multiple silica polymorphs in a single sample may indicate
either devitrification of a glassy rock that contains quartz phenocrysts, or multiple phases

forming as the temperature decreases during the devitrification process.

Clays and zeolites are both common alteration products found in weathered tuffs.
The most common clays identified in XRD patterns were smectites, particularly saponite
and montmorillonite. Illite, kaolinite, and sepiolite were also identified in multiple
samples. The clay mineral tosudite, a 1:1 interstratified chlorite-smectite mineral known
to be a product of alteration of tuffs and tuffaceous sediments (Shimoda, 1969), was
identified in a number of tuffaceous sediment samples. The zeolite minerals most

commonly identified were heulandite, mordenite, and clinoptilolite.
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Table 3. Major mineralogy and categorization of tuff samples, based on semi-quantitative XRD results,
optical microscopy, and examination of hand samples. Percentages of amorphous material (glass) was not
included in semi-quantitative XRD results, and was instead estimated solely from examination of XRD
patterns, thin sections, hand samples

Sample  Primary Minerals / Secondary Minor Minerals  Devitrification = Weathering
ID Glass (>30%) Minerals (30% - (<10%) Classification  Classification
10%)
BCl1 Saponite Glassy Weathered
Anorthoclase
BC2  Cristobalite Tridymite Sanidine Sediment Sediment
Kaolinite
BC3  Montmorillonite Sanidine Quartz Sediment Sediment
DC1  Glass Quartz Sepiolite Glassy Unweathered
Anorthoclase Montmorillonite
DC4  Glass Labradorite Glassy Unweathered
DC5  Cristobalite Devitrified Unweathered
Sanidine
Albite
DC6  Cristobalite Albite Tridymite Devitrified Unweathered
Sanidine
DC7  Cristobalite Sanidine Tridymite Devitrified Unweathered
Albite
DC8  Glass Glassy Weathered
Saponite
Labradorite
DC9  Sanidine Albite Devitrified Unweathered
Tridymite
DS1  Saponite Albite Tridymite Sediment Sediment
Cristobalite
Quartz
DS2  Tosudite Kaolinite Calcite Sediment Sediment
Tridymite Quartz
Cristobalite
DS3  Tridymite Kaolinite Sediment Sediment
Cristobalite
DT1  Albite Cristobalite Glassy Unweathered
Glass
DT2  Glass Illite Glassy Unweathered
Albite
DT3  Sanidine Pigeonite Devitrified Unweathered
Cristobalite Quartz
Cordierite
DVC1 Sanidine Cristobalite Devitrified Unweathered
Quartz
DVC2 Sanidine Quartz Cristobalite Devitrified Weathered
Saponite
DVC4 Glass Albite Glassy Unweathered
Quartz
FD1  Heulandite Quartz Montmorillonite ~ Glassy Weathered
Mordenite
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Sample  Primary Minerals / Secondary Minor Minerals  Devitrification = Weathering
ID Glass (>30%) Minerals (30% - (<10%) Classification  Classification
10%)
FD2  Heulandite Mordenite Montmorillonite ~ Glassy Weathered
Quartz
FD3 Heulandite Mordenite Montmorillonite ~ Glassy Weathered
Quartz
FD4  Heulandite Mordenite Glassy Weathered
Quartz
LB1 Illite Quartz Kaolinite Glassy Weathered
Sanidine Zeolite ZSM-11
LGl  Heulandite Quartz Glassy Weathered
Mordenite
LG2  Sanidine Quartz Cristobalite Devitrified Weathered
Pyrite
LG3  Quartz Palygorskite Devitrified Weathered
Microcline Cristobalite
LG4  Quartz Albite Calcite Devitrified Weathered
LST1  Clinoptilolite Albite Calcite Glassy Weathered
Montomorillonite Glass
MA1  Saponite Cristobalite Devitrified Weathered
Sanidine Illite
MKI1  Albite Quartz Devitrified Unweathered
Montmorillonite
MK2  Albite Montmorillonite  Devitrified Unweathered
Quartz
MTA1l Glass Illite Glassy Weathered
Anorthoclase
PGl  Quartz Sanidine Devitrified Weathered
Illite
Cristobalite
PG2  Cristobalite Albite Devitrified Unweathered
Sanidine
PG3 Glass Sanidine Glassy Unweathered
Saponite
RST1  Glass Montmorillonite  Glassy Unweathered
Quartz
RST3 Glass Glassy Unweathered
RST4  Sanidine Biotite Devitrified Unweathered
Cristobalite
RST5  Sanidine Tridymite Devitrified Unweathered
Quartz
Cristobalite
Albite
RST6  Glass Sanidine Glassy Unweathered
Quartz
RST7  Sanidine Devitrified Unweathered
Cristobalite
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Sample  Primary Minerals / Secondary Minor Minerals  Devitrification = Weathering
ID Glass (>30%) Minerals (30% - (<10%) Classification  Classification
10%)
RST8  Glass Sanidine Glassy Unweathered
Quartz
RST9 Glass Albite Glassy Unweathered
Quartz
RST10 Glass Albite Glassy Unweathered
Quartz
RST11 Sanidine Cristobalite Helvite Devitrified Unweathered
Tridymite
RST13 Sanidine Devitrified Unweathered
Cristobalite
RU1  Clinoptilolite Glass Quartz Glassy Weathered
Montmorillonite
SLNM Albite Illite Devitrified Weathered
Montmorillonite Cristobalite
Quartz
SLRC Illite Saponite Anorthite Glassy Weathered
Glass Albite
SR1  Clinoptilolite Quartz Glassy Weathered
Albite
Mordenite
SR2 Quartz Albite Devitrified Unweathered
Orthoclase
TS1 Tosudite Sanidine Cristobalite Sediment Sediment
Quartz
TS3 Tosudite Cristobalite Sediment Sediment
TS4  Tosudite Sediment Sediment
Montmorillonite
TSD1  Anorthite Sediment Sediment
Tosudite
TSD2 Albite Quartz Sediment Sediment
Tosudite
TW1  Albite Quartz Cristobalite Devitrified Unweathered
Illite
Montmorillonite
TW2  Heulandite Albite Illite Sediment Sediment
Stilbite Chlorite
Quartz
WUl  Anorthoclase Cristobalite Devitrified Unweathered
Quartz
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Sample Categorization

Major mineralogy and bulk chemical analysis were used to categorize each
sample. Each sample was placed into a category for two different compositional
variables: degree of devitrification (devitrified or glassy), and degree of weathering

(unweathered or weathered) (Table 3).

Samples were categorized as devitrified or glassy based on XRD results and
optical microscopy. Samples containing glass were categorized as glassy, while samples
lacking glass and containing cristobalite, tridymite, or quartz were categorized as
devitrified. For highly weathered samples containing neither glass nor cristobalite,
alteration products were used to distinguish between the categories. Both clays and
zeolites are common alteration products found in tuffs, with zeolites forming specifically
from the alteration of glass (Vaniman, 2006). Samples containing both clays and zeolites
were categorized as originally glassy, and samples containing clays but lacking zeolites
were categorized as originally devitrified. Although weathered samples were given a
categorization of either glassy or devitrified, they were mineralogically distinct enough
that they were excluded from the Devitrified and Glassy categories for the purposes of
data analysis, and all subsequent references to those categories include only unweathered

samples.

The degree of weathering was determined using the semi-quantitative XRD
results, and was based on the proportion of alteration products (clays + zeolites) in each

sample. When compared to observation of both hand samples and thin sections the
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proportions of clays and zeolites determined via AutoQuan software appeared to greatly
exceed the actual amount of alteration products present, and the categories defined reflect
that. Therefore, samples for which the estimated content of clays + zeolites was < 30%
were categorized as “Unweathered” while samples with estimated clay + zeolite contents
> 31% were categorized as “Weathered.” A few exceptions to these categories were
made, particularly for highly glassy rocks. Since the amount of glass present was not
included in the semi-quantitative XRD results, samples composed primarily of glass
produced results that contained very high percentages (>90%) of clays, despite the rocks
themselves obviously not being clay-rich. In these cases, the weathering categorization
was determined primarily based on observation of hand samples, and thin sections if

available.

Categorizations were compared to major element chemistry, particularly Loss on
Ignition (LOI) values (Table 8). Samples classified as Unweathered that contained LOI
values higher than 5% were re-examined, since high LOI values are a potential indicator
of the presence of hydrated alteration products. Two samples with semi-quantitative clay
percentages near the classification limit of 30% were reclassified as Weathered based on

LOI values exceeding 5%.
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RESULTS: BULK ROCK CHEMISTRIES

QA/QC Results

For samples digested via EPA Method 3052 and analyzed via ICP-OES

recoveries of As from certified reference standards ranged from 82.7% to 94.6%, but

were inconsistent for a number of other trace elements (Table 4).

Table 4. Recoveries for certified reference materials analyzed via ICP-OES. Arsenic recoveries ranged
from 82.7% to 94.6%. S had recovery percentages within + 5%, but other elements were more variable.

JR-1 SRM 1633a
Measured Certified Recovery Measured Certified Recovery
Element Value Value o Value Value o
0 0
(ppm) (ppm) (ppm) (ppm)
As 13.48 16.30 82.7 137.13 145.00 94.6
Be* 2.64 3.34 78.9 11.72 12.00 97.7
Mo* 2.57 3.25 79.1 24.93 29.00 86.0
Sb 1.64 1.19 138.2 11.42 6.80 167.9
Sm <0.70 6.03 <11 <0.70 NA

* Values for SRM 1633a are not certified values.

Three samples were prepared and analyzed in duplicate. Relative percent

differences (RPDs) between arsenic concentrations in the duplicate samples ranged from

1.4 to 12% (Table 5).

Table 5. Relative percent differences for duplicate samples analyzed via EPA Method 3052.

Element MAla MAIb  RPD  RST4a RST4b RPD  MK2a MK2b  RPD
(ng/L) (gh) (%) (hgh) (gh) ()  (gl) (wgl) (%)
As 4169 3699 1195 1970 1819 796  46.17 4553 1.38
Be 13.67 1405 274 1258 1228 242 6.04 6.02 0.25
Mo 383 331 14.41 6.84 693  -132  1.98 2.58 -26.03
Sm 1996 1574 2359 1838 1829  0.50 ND ND NA
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Check standards were run during ICP-OES analysis as a check on instrumental
accuracy. All elements reported produced values that were within + 5% of the standard

value (Table 6).

Table 6. Recoveries from Method Blank and check standards analyzed via ICP-OES. Check standard QCl1
had a concentration of 100 ug/L for all elements except Sb and Sn, and check standard QC2 had a
concentration of 50 ug/L for all elements except Sb and Sn.

QCBlankl QCla QC2a QCBlank2 QClb QC2b Method Blank

Element (gL (gl (gl)  (ugl)  (@ugl) (ugl)  (ugl)
As ND 103.3 49.6 ND 103.9 50.2 ND
Be ND 98.6 48.6 ND 95.4 47.1 ND
Mo ND 92.5 46.9 ND 91.0 45.1 ND
Sm ND 100.6 54.7 ND 95.8 49.6 ND

One sample, DT3, was analyzed at both the WSU Geoanalytical Lab and
Activation Laboratories. The RPDs for the two analyses reached a maximum of 35% for

major elements (P,0s), and 106% for trace elements (Cu) (Table 7).
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Table 7. Relative percent differences for sample DT3, analyzed at the WSU Geoanalytical Lab (WSU) and
Activation Laboratories (AL). Major elements are reported in weight percent, and trace elements are
reported in mg/kg.

Element DT3 WSU DT3 AL RPD
Si02 75.00 75.21 -0.28
Al203 12.19 12.45 2.11
FeO 1.13 1.25 -10.26
MnO 0.010 0.011 9.52
MgO 0.29 0.35 -18.75
CaO 0.46 0.49 -6.32
Na20 2.97 3.04 2.33
K20 4.61 4.62 -0.22
TiO2 0.07 0.08 -10.53
P205 0.014 0.02 -35.29
Ni! 2 3.00 -30.77
Cr? 2.80 <2 NA
V! 6.00 5.00 18.18
Ba’ 602.80 460.00 26.87
Rb’ 103.90 95.00 8.95
Sr! 31.40 35.00 -10.84
Y! 18.50 16.00 14.49
Cu' 3.70 12.00 -105.73
Zn' 23.20 31.00 -28.78
Pb' 16.30 14.00 15.18
La’ 33.00 32.90 0.30
Ce? 57.20 55.00 3.92
Th? 11.20 8.30 29.74
Nd? 20.20 22.00 -8.53

'Analyzed via ICP-MS at Activation Laboratories, and XRF at WSU.
*Analyzed via INAA at Activation Laboratories and XRF at WSU.

Bulk Chemistry

Major element chemistry for all samples is provided in Table 8. Among tuff
samples, Si0; values ranged from a low of 52.8% in a weathered sample to a high of
81.8% in a devitrified sample. Total weight percents including Loss on Ignition (LOI)

values ranged from a low of 97.7% to a high of 100.2%.
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The majority of samples had alumina/alkali ratios >1, which is likely a result of
loss of alkalis during alteration, rather than being representative of original magmatic
composition. There was no correlation between alumina/alkali ratios and arsenic in any

category of ash-flow tuffs (Figure 9).
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Figure 9. Arsenic as a function of alumina/alkali ratios of tuff samples. The majority of the samples have
ratios > 1, and there is no correlation between alumina/alkali ratios and arsenic concentrations.
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Trace element concentrations of tuff and tuffaceous sediment samples are located
in Table 9. For samples analyzed via INAA at Activation Laboratories, five samples
produced arsenic levels below the MDL of 0.5 mg kg™'. For samples analyzed via ICP-

OES, only one sample was below the MDL of 1.2 mg kg™
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Total Arsenic Concentrations

The 49 tuff samples have a mean arsenic content of 7.5 mg kg™, a geometric
mean arsenic content of 4.8 mg kg™, a median arsenic content of 5.2 mg kg™, and a
maximum arsenic content of 81 mg kg™ (Table 10). The mean and median values are 2.8
— 4.4x the average crustal abundance of arsenic of 1.7 mg kg™ (Wedepohl, 1995), and
consistent with previously reported mean values for both felsic volcanic rocks (3.5 mg

kg) and volcanic glasses (5.9 mg kg™") (Onishi and Sandell, 1955; Wedepohl, 1995).

Table 10. Total arsenic contents of tuffs and tuffaceous sediments. Numbers in parentheses indicate values
that include samples identified as outliers.

. Median

Mean Geometric Median Star}da}rd Absolute
(mg/kg) (rl:l/le/in ) (mg/kg) D(z;/l?l?o)n Deviation

g/kg g/kg (mg/kg)

All Tuffs n=45 (49) 5.2 (7.5) 4.2 (4.8) 5.0(5.2) 34(11) 2.5(2.8)
Weathered Tuffs n = 18 (20) 6.0 (10.0) 5.2(6.2) 6.0 (5.6) 3.3(16) 3.2(3.8)
Unweathered Tuffs n =28 (29) 4.7 (5.7) 3.4 (3.7) 4.6 (4.9) 2.6 (5.8) 1.9 (2.2)
Devitrified n =15 (16) 4.3 (9.6) 2.4(2.9) 4.3 @4.7) 2.6 (17) 2.1 (2.3)

Glassy n=13 6.1 4.9 6.0 3.1 2.8

Tuffaceous Sedimentsn=10(11)  4.5(63) 2025 43(5.6) 49(1.7)  4.8(13)

Arsenic values were normalized to 100% on an anhydrous basis. Four samples
(LG4, LG2, SR2, and DS1) were identified as outliers using Grubbs test for outliers.
Arsenic concentrations in tuffs were positively skewed, and appeared to be lognormally
distributed, so the data were log transformed, and Shapiro-Wilk tests of normality were
performed on arsenic concentrations for tuffs, tuffaceous sediments, and the different
categories of tuff samples. At a significance level of o = 0.05, unweathered tuffs, glassy

tuffs, and tuffaceous sediments were still found to be non-normally distributed after log
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transformation and removal of outliers (Table 11). Details of statistical methods can be

found in Appendix B.

Table 11. Test statistics (W) and p-values for Shapiro-Wilk tests of normality.

W p-Value
All Tuffs n=45 0.782 7.93E-07
Weathered Tuffs n= 18 0.985 0.974
Unweathered Tuffs n =28 0.711 1.41E-05
Devitrified n = 16 0.971 0.917
Glassy n= 13 0.699 0.0008
Tuffaceous Sediments n= 10 0.844 0.050

Brown-Forsythe tests for equality of variances were performed on log
transformed arsenic concentrations for all groups of samples with outliers removed
(Table 12). At a significance level of o = 0.05, the variance of all tuffs was found to be
different than the variance of tuffaceous sediments. Both devitrified and glassy and
weathered and unweathered tuffs were found to have statistically indistinguishable

variances.

Table 12. Test statistics, number of samples, and p-values for Brown-Forsythe tests of equal variances.

Test Stat nl n2 p-Value
Tuffs v. Tuffaceous Sediments 8.12 46 10 0.006
Weathered v. Unweathered Tuffs 0.800 18 28 0.380
Devitrified v. Glassy 2.30 15 13 0.143

Non-parametric Mann-Whitney-Wilcoxon tests were performed on log
transformed arsenic values, and the arsenic concentrations were not found to be

significantly different between the different categories of samples (Table 13).
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Table 13. Test statistic (U), number of samples, and p-values for Man-Whitney-Wilcoxon tests of equality

performed on sample categories.

U nl n2 p-Value
Tuffs v. Tuffaceous Sediments 273 46 10 0.367
Weathered v. Unweathered Tuffs 213 18 28 0.270
Devitrified v. Glassy 59 15 13 0.478

Although the categories are not statistically distinguishable, devitrified and weathered

samples contain a larger range of arsenic concentrations than glassy samples, and higher

maximum arsenic concentrations (Figure 10). Although 10% of all samples have arsenic

concentrations in excess of 10 mg kg'1 no fresh glassy samples contain arsenic at those

levels.
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Figure 10. Log transformed distributions of total arsenic concentrations for samples divided by category. A:
without outlying values. B: with outlying values. Yellow squares indicate mean values.
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Variability Within Units

Total arsenic concentrations can vary substantially within individual units (Figure
11). The most extreme example is the Tuff of Leslie Gulch, which has a maximum
arsenic concentration or 81 mg kg™, about 30 times greater than its minimum arsenic

concentration of 2.6 mg kg™
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Figure 11. Ranges of arsenic found in individual geologic units. DC = Dinner Creek Tuff, DT = Dale Tuff,
DVC = Devine Canyon Tuff, FD = Tuff of Foster Dam, LG = Tuff of Leslie Gulch, MK = Tuff of
Mohawk, PG = Picture Gorge Tuff, RST = Rattlesnake Tuff, SR = Tuff of Smith Rock.
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Arsenic concentrations varied within individual outcrops as well as individual

units. Complete sections from unwelded bases through devitrified tops were collected

from single outcrops of the Rattlesnake Tuff and the Dinner Creek Tuff (Figure 12). Both

sections contained ranges of arsenic concentrations >5 mg kg™

Rattlesnake Tuff Dinner Creek Tuff
RST13 DC7
Fine grained , Lithophysal
devitrified ' devitrified =
tuff tuff
RST11 DC6
Lithophysal —a Fine grained A
devitrified \ devitrified
tuff \ red tuff
RST10 \ DC5 /
Densely \ Fine grained
welded devitrified
glassy tuff tan tuff
RST9 DC4
Partially Densely
welded \ welded
glassy tuff \ glassy tuff
RST8 \ DCs
Incipiently Weathered
welded e unwelded -
glassy base glassy base
I 1 I 1 1 I 1 I 1 I 1 I 1 1 I 1 I 1
1 2 3 4 5 6 7 & 8 0o 1 2 3 4 5 B 7 8
As (mg/kg) As (mgikg)

Figure 12. Stratigraphy and corresponding arsenic concentrations for two sections of individual tuff units.
The type section of the Rattlesnake tuff shows higher arsenic levels upsection in the less porous sections of
the unit. The Dinner Creek section shows arsenic concentrations ranging from <0.5 mg kg™ (non-detect

value plotted as 0 mg kg™) to 6.8 mg kg, with no apparent relationship between arsenic concentration and
position within the section. Error bars are based on INAA recovery percents from certified reference
materials from Activation Laboratories, Ltd.

In the Rattlesnake Tuff arsenic concentrations generally increased upsection, with lower

arsenic levels in the incipiently and partially welded glassy samples at the base, and
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higher values in both the densely welded glassy sample and devitrified samples. In
contrast, the Dinner Creek Tuff did not display any apparent relationship between arsenic

concentration and vertical position within the section.

Elemental Correlations

Tests of correlation between arsenic and other elements were performed on log
transformed data with outliers excluded using the non-parametric Spearman’s rank
correlation coefficient, which was chosen over Pearson’s product moment correlation
coefficient due to both the non-normal distribution of the data and the comparative
robustness of Spearman’s rank correlation coefficient when dealing with outliers. Details
of statistical calculations can be found in Appendix B. Arsenic displayed statistically
significant (p < 0.05) correlations with a few of the elements in the samples used in this

study (Table 14).

Table 14. Statistically significant (p < 0.05) elemental correlations with arsenic. Italicized
items showed a negative correlation with arsenic, while un-italicized items showed a positive

correlation.
Significant Correlations with Arsenic
All Tuffs (df = 44) Al,0;, FeO, Sb
Weathered Tuffs (df = 16) K50, Mo
All Unweathered Tuffs (df = 26) Al,O0;3, Cu, FeO, Sm
Devitrified Tuffs (df = 13) MnO, Sm
Glassy Tuffs (df=11) Cr, FeO
Tuffaceous Sediments (df = 8) None
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Arsenic in all tuff samples was negatively correlated with Al,O3, and positively
correlated with FeO and Sb. Different categories of tuffs displayed different correlations
between arsenic and other elements, although a positive correlation with FeO was present
in multiple categories. The majority of the statistically significant correlations, including
the correlation with FeO, were not reflective of strong linear relationships between

elements, with R? values < 0.15 (Figure 13).
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Figure 13. Log transformed Arsenic and FeO concentrations in tuffs and tuffaceous sediments. Although
statistically significant positive correlations were found between arsenic and FeO, there is not a strong
linear relationship between the elements
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DISCUSSION

Arsenic concentrations in ash-flow tuffs are higher than previously reported
values, and highly heterogenous between and within individual units. Although the
median arsenic concentrations do not differ between categories of tuffs, the range of
arsenic, particularly the maximum arsenic concentrations, is different between both
weathered and unweathered tuffs and devitrified and glassy tuffs. Although 10% of the
samples in this study had arsenic concentrations exceeding 10 mg kg™ none of those
samples were unweathered glassy samples. Together, these results suggest three distinct
mechanisms that determine the arsenic concentrations of individual tuff samples: arsenic
content of the original source magma, mobility of arsenic during deposition of the unit,
and mobility of arsenic during post-depositional alteration processes, both devitrification

and weathering.

Composition of Source Magma

The first factor in determining arsenic levels in a tuff sample is the arsenic content
of the original source magma. Although no correlation was found between alumina/alkali
ratios and arsenic, previous research has suggested that the arsenic content of volcanic
rocks increases with silica content, and less felsic volcanic rocks have lower mean arsenic
concentrations than ash-flow tuffs (Onishi and Sandell, 1955). Fractional crystallization
of feldspars, other anhydrous silicates, and oxides produces melts enriched in volatiles
and incompatible metals, including arsenic (Borisova, 2010). Enrichment driven by

fractional crystallization is a likely mechanism for producing arsenic concentrations in
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high-silica tuffs that exceed both the average value of the continental crust, and values

found in less silicic volcanic rocks.

Arsenic concentrations can also vary between different silicic magmas. Along
with boron, arsenic has been suggested as an indicator of contributions from sedimentary
materials and slab-derived fluids in subduction zone magmas (Noll, 1996). Magmas
produced by melting of high arsenic sedimentary materials and magmas incorporating a
high proportion of slab-derived fluids can contain higher arsenic concentrations than

magmas produced in other tectonic settings.

Although the arsenic concentrations of tuff samples in this study displayed a high
degree of heterogeneity within individual units it seems likely that the magmatic source
plays some role in determining the final arsenic concentrations of individual samples. All
of the units in this study that contained at least one sample with arsenic levels exceeding
10 mg kg also contained samples with lower arsenic levels. However, the lower arsenic
levels for these units still exceeded the median value of 5.0 mg kg™ for all tuffs, which
suggests that the original source magmas for these units were potentially more arsenic

rich than units lacking high arsenic (>10 mg kg™") samples.

Depositional Processes

Pyroclastic volcanic eruptions that produce ash-flow tuffs involve substantial and
rapid degassing of silicic magmas. Arsenic is known to preferentially partition into the
vapor phase, and has been found to be enriched by factors of 10> — 10° relative to the melt

in studies of andesitic magma systems (Symonds, 1987). Unlike more effusive eruption
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mechanisms pyroclastic flows entrain both solid and vapor phase portions of a magma
during deposition. The presence of arsenic in the vapor phase during deposition of ash-
flow tuffs is likely to result in loss of some portion of arsenic from the system as well as

heterogeneity of arsenic levels within the unit itself (Borisova, 2010).

While substantial heterogeneity was observed within units the results of this study
do not provide definitive conclusions about spatial patterns of arsenic distribution that
occur as a result of movement of the vapor phase. The arsenic concentrations in the type
section of the Rattlesnake Tuff suggest one possible pattern of spatial distribution. Within
a single outcrop samples taken higher in the section, representing the denser, less
permeable interior of the unit, display higher arsenic concentrations than un- or partially
welded samples from the base of the unit (Figure 12). This suggests that volatile arsenic
entrained in the flow may have migrated from the permeable lower portions of the unit
during deposition and cooling, and been trapped in the overlying less permeable interior.

This same pattern is not seen in the Dinner Creek Tuff.

An additional hypothesis regarding the spatial distribution of arsenic within
individual tuffs is that arsenic may decrease with increasing distance from the eruptive
center, as a higher proportion of the volatiles are lost as the flow travels further from its

source. Distance from the eruptive center is a variable worth exploring in further studies.

Post-Depositional Alteration Processes

Although the median values were not statistically different between categories of

tuffs only weathered and devitrified tuffs included samples with arsenic concentrations
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that exceeded 10 mg kg™, and unweathered glassy samples contained a much smaller
range of arsenic levels than the other categories of tuffs. This suggests that both
devitrification and weathering have the potential to concentrate arsenic relative to

unaltered tuffs.

The most likely mechanism to explain the potential for arsenic enrichment in
devitrified tuffs relative to glassy tuffs is vapor phase mineralization. Vapor phase
mineralization occurs primarily in the interiors of thick (>10 m) ash-flow tuffs, and can
be driven by the degassing of H,O, CO,, S, and other volatile components from
pyroclastic glasses during the process of devitrification (Vaniman, 2006). As a result of
the wide variety of constituents that are excluded from the structure of feldspars and
silicates that form during devitrification, vapor phase mineralogy can be very complex,
and can differ substantially between tuffs. Vapor phase minerals include a variety of
silicate minerals (alkali feldspar, tridymite, cristobalite, quartz, amphibole, biotite, zircon,
monazite, and garnet have all been observed), as well as oxides, carbonates, phosphates,
chlorides, and sulfides (Stimac, 1996; Vaniman, 2006). Oxides, phosphates, and sulfide
minerals are all likely candidates for arsenic host phases. In addition, the fact that vapor
phase mineralization occurs in some, but not all, tuffs may explain why only a portion of

the devitrified samples in this study were enriched in arsenic relative to glassy samples.

Unfortunately, identification of vapor phase minerals is difficult, because they
tend to be small (< 1-10 um), present at low concentrations (< 1% by volume), fragile,

and located on grain surfaces and boundaries between larger crystals (Stimac, 1996). The
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complexity of vapor phase mineralogy and difficulty of identifying individual vapor
phase minerals makes the characterization of vapor phase minerals beyond the scope of

the solid phase characterization performed in this study.
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CHAPTER 3: ARSENIC MOBILITY IN ASH-FLOW TUFFS AND ASSOCIATED

SEDIMENTS

INTRODUCTION

Despite the widespread association between ash-flow tuffs and elevated
groundwater arsenic concentrations, surprisingly little is known about arsenic mobility
from these units. Multiple mechanisms have been proposed to explain the mobilization of
arsenic from tuffs, including dissolution of volcanic glasses (Nicolli et al., 1989;
Johannesson and Tang, 2009), and alkali desorption of arsenic from mineral grain
surfaces (Smedley and Kinniburgh, 2002). Although tuffs are typically highly
heterogenous and include both glassy and devitrified sections as well as varying degrees
of weathering, most research has focused solely on volcanic glasses, and has not
considered the alteration processes of devitrification and weathering, or what role those

processes may play in mobilizing arsenic.

This study uses 49 tuff samples spanning a range of chemical and mineralogical
compositions, as well as 11 samples of tuffaceous sediments to investigate the mobility of
arsenic in ash-flow tuffs. Specific objectives of the study are 1) to quantify the amount of
arsenic present in tuffs that can be mobilized into the environment by determining total
environmentally available arsenic levels and readily leachable arsenic levels and 2) to
determine if and how devitrification and weathering influence the amounts of mobile

arsenic present in tuffs.
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METHODS

To investigate the relative mobility of arsenic in tuffs of varying compositions
two fractions of arsenic were identified. Both environmentally available and readily
leachable fractions were operationally defined. The environmentally available fraction
refers to the portion of arsenic mobilized by microwave digestion with concentrated
HNOj', following USEPA Method 3051A, which results in the dissolution of solid phases
that are susceptible to chemical alteration under a range of surface geochemical
conditions. This method does not recover metals hosted in silicate phases (feldspars,
silica polymorphs, or glass), and is frequently referred to a “total recoverable” analytical
method, in contrast to USEPA Method 3052 using HF + HNOj3;™ + HCI, which is a “total

total” method (Chen, 1998; US Environmental Protection Agency, 1996a).

The readily leachable fraction refers to the fraction of arsenic (and other elements)
mobilized by simple mixing with reagent-grade water for a relatively short period of time
(18 hours), following ASTM D3987-85. This method is designed to produce a water
extract that simulates conditions where the solid phase is the dominant factor in

determining the final pH of the extract (Das, 2007).

Environmentally Available Arsenic

To determine the environmentally available fraction of elements, samples were
digested following USEPA Method 3051A (US Environmental Protection Agency,
1996a). A subsample of crushed and powdered sample was weighed to 1.000 £0.001 g
and placed in a Teflon microwave vessel to which 10 mL of 17 M trace-metal grade
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HNO;™ was subsequently added. Samples were digested using a Milestone Ethos EZ
microwave digester for 40 minutes, reaching a maximum temperature of 240°C for 20
minutes. Method blanks and standard JR1 from the Japanese Geological Survey were run
every 20 samples. Samples were decanted into 50-mL plastic centrifuge tubes and vessels
were rinsed three times with 18.2 MQ cm distilled water. The rinse was added to the
digested samples, and the centrifuge tubes were filled to 40 mL with water. Samples were
centrifuged at 3000 rpm for 10 minutes. Samples were further diluted (1:1 with water) in
plastic test tubes immediately prior to analysis, and mixed by pouring the diluted sample
into a second plastic test tube. Samples were analyzed using an Agilent 700 Series ICP-

OES. Operating conditions for the analysis are listed in Appendix A.

Readily Leachable Arsenic

An additional aliquot of powdered sample was weighed to 1.000 +0.001, placed
in a 50-mL centrifuge tube and combined with 20.0 mL of 18.2 MQ cm deionized water.
Samples were mixed at 20 rpm for 18 hours. After mixing, samples were centrifuged at
3000 rpm for 15 minutes and ~15 mL of each solution was decanted into a fresh 50-mL
centrifuge tube. Samples were acidified using 0.300 mL of trace-element grade HNOs" in
order to preserve the solution for analysis. Samples were analyzed using an Agilent 700
Series ICP-OES. Operating conditions for the analysis are listed in Appendix A. For
selected samples the pH of the resulting solution was determined from the unacidified

sample.
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pH Dependent Extractions

To determine how pH influences the leachability of arsenic from tuffs, the
procedure for determining readily leachable arsenic was repeated with varying pH levels
on selected samples. Five tuff samples with the highest total arsenic concentrations were
selected from the glassy (BC1, DVC4, PG3, RST6, RST10), devitrified (DC6, MK2,
RST11, RST13, SR2), and weathered (FD3, FD4, LG1, LG2, LG4) categories. Leaching
experiments were performed at pH 3, 5, and 9 using Fisher Scientific buffer solutions,
and at pH 11 using a buffer solution prepared in the lab using reagent grade NaOH and
NaHCO; (Table 15). Specific buffers were selected primarily to avoid the use of
potassium phosphate, a common component of buffer solutions, in order to avoid
introducing phosphate anions into solution, as phosphate can behave as a competing

anion and decrease the sorption of arsenic.

Table 15. Buffer solutions used to control pH levels in pH specific leaching experiments.

Name Composition pH

Potassium Acid Phthalate

Fisher Chemical SB97-500 Buffer Solution Hydrochloric Acid 3
Potassium Acid Phthalate

Fisher Chemical SB102-1 Buffer Solution Sodium Hydroxide 5
Boric Acid
Potassium Chloride

Fisher Chemical SB114-1 Buffer Solution Sodium Hydroxide 9
Sodium Hydroxide
Sodium Bicarbonate 11

One gram of powdered sample was placed in a 50-mL centrifuge tube and

combined with 20.0 mL of buffer solution. Samples were mixed at 20 rpm for 18 hours.
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After mixing, samples were centrifuged at 3000 rpm for 15 minutes. Following
centrifuging ~15 mL of solution was decanted into fresh 50-mL centrifuge tubes.
Samples were acidified using 0.300 mL of trace element grade HNO; to preserve the
solution for analysis. Unfortunately, rectangular euhedral crystals were observed forming
on the wall of the centrifuge tubes holding the pH 3 and pH 5 solutions, potentially the
result of oxidation of the potassium acid phthalate in the buffer solutions by HNOs", and
the low pH extracts were not analyzed. The high pH solutions were analyzed using an
Agilent 700 Series ICP-OES. Operating conditions for the analysis are listed in Appendix

A.
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RESULTS

QC Results

Check standards were run during ICP-OES analysis as a check on instrumental
accuracy, and results are listed in Appendix A. For environmentally available arsenic
samples, three analytical sessions were conducted, and results for individual elements
varied slightly between sessions. Most elements consistently produced values that were
within + 10% of the standard value, with the exception Na and Si. Na was measured at
values up to 118% of the check standard value during the first run, but was consistently
within = 10% of the standard value during subsequent runs. Si was not measured during
the first run, but was measured at values exceeding the check standard value by up to
400% during subsequent sessions. Si values increased over the course of both runs, and
values in excess of check standard values were likely the result of insufficient rinsing of
the element between analyses of different samples. For the second and third sessions
neither S and P were present in the check standard, but were still measured at low levels

(up to 30 ppb for S) in check standard and blanks.

For readily leachable arsenic samples two analytical sessions were conducted. For
both sessions the check standard results were similar to those for the environmentally
available samples. Na and Si were consistently measured with values exceeding those of
the check standards, and P and S were measured at low levels in check standards and

blanks, despite not being present in those standards.
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Three samples analyzed for environmentally available arsenic were analyzed in

duplicate. Relative percent differences for arsenic in the samples range from 2.5 to 7.6%.

Table 16. Relative percent differences for duplicate samples analyzed

via EPA Method 3051a.
WUl RPD MKI1 RPD MK2 RPD

(%) (%) (%)
Al 0.24 1.18 0.37
As 7.64 3.53 2.49
Ba 0.06 0.83 0.45
Ca 0.41 1.62 0.38
Cd 4.07 1.72 5.17
Ce 0.03 0.94 0.91
Co 0.40 0.56 1.50
Cr 0.50 1.46 0.12
Cu 0.00 0.58 0.32
Fe 0.05 0.98 0.11
La 0.12 1.23 0.82
Mg 0.06 0.72 0.44
Mn 0.04 1.00 0.38
Na 0.61 1.10 0.01
Ni 0.45 0.79 2.00
P 0.03 0.36 0.42
Pb 1.31 4.04 1.66
S 0.92 2.54 0.41
Sm 2.01 0.54 0.00
Sr 0.05 1.11 0.49
A% 0.18 1.09 0.46
Zn 0.20 0.74 0.62

All water extractions were performed in duplicate, and selected sample RPDs are
displayed in Table 17, full RPD results can be found in Appendix A. Relative percent
differences for arsenic ranged from 1.32% to 6.65%. The low levels of elements present
in the water extracts produced many non-detections, as well as higher RPDs for many

elements than occurred for other experiments.
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Table 17. Relative percent differences for water extractions
analyzed in duplicate.

LG1 RPD RST10 RPD DST2 RPD

(%) (%) (%)
Al 26.2 21 40.6
As 1.32 NA 6.65
Ba 32.1 13.5 18.1
Ca 20.5 12.5 0.59
Cu 1.18 8.16 4.36
Fe 7.29 19.6 46.9
La 16.5 NA 40.2
Mg 13.5 12.7 19.8
Mn NA NA 39.4
Mo NA NA NA
Na 1.87 0.31 3.28
P 1.02 0.18 19.5
S 5.92 1.22 3.14
Si 1.65 10.6 9.03
Sr 30.6 15.7 14.4
Ti 0.46 18.4 35.9
\% 18.5 0.29 1.70
Zn 6.99 13.0 43.9

Environmentally Available Arsenic

Complete results for the environmentally available fraction are listed in Appendix
C. Two samples (LG4 and SR2) were identified as outliers using Grubbs test for outliers.
Arsenic concentrations in tuffs were positively skewed and appeared to be lognormally
distributed, so the data was log transformed, The mean environmentally available arsenic
concentration present in all tuff samples, excluding the two outliers, is 2.2 mg kg™, the
median environmentally available arsenic concentration is 1.8 mg kg™, and the geometric
mean of arsenic present in the environmentally available fraction is 1.2 mg kg™ (Table

18).
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Table 18. Environmentally available fraction of arsenic present in ash-flow tuffs and tuffaceous sediments.
Numbers in parentheses indicate values that include samples identified as outliers.

. Median
Mean Geometric Median Staqdqrd Average
(mg/kg) (II:I/I(;T(H ) (mg/kg) D(z;/l?l?o)n Deviation
g/kg g/kg (mg/ke)
All Tuffs n=47 (49) 2.2 (4.1) 1.2 (1.4) 1.8 (1.8) 2.1(9.9) 2.3(2.4)
Weathered Tuffs n =19 (20) 3.3(5.8) 2.4 (2.8) 2.9 (3.0) 2.3 (12.7) 2.4 (2.4)
Unweathered Tuffs n =28 (29) 1.2(2.3) 0.63(0.74) 0.43(0.57) 1.4(5.7) 0.34(0.54)
Devitrified n = 15 (16) 2.8 (6.6) 1.9 (2.4) 23124 2.1(13.8) 0.71(0.78)
Glassyn=13 1.8 0.23 0.7 2.1 0
Tuffaceous Sediments n= 11 2.4 1.1 1.4 3.1 1.7

Shapiro-Wilk tests of normality were performed on log transformed arsenic
concentrations for all tuffs, tuffaceous sediments, and the different categories of tuff
samples. At a significance level of ¢ = 0.05, all tuffs, unweathered tuffs, and glassy tuffs
were found to be non-normally distributed (Table 19). Details of statistical methods can

be found in Appendix B.

Table 19. Test statistics (W) and p-values for Shapiro-Wilk tests of

normality.
w p-Value
All Tuffs n =46 0.883 2.40E-04
Weathered Tuffs n=18 0.935 0.137
Unweathered Tuffs n =29 0.804 4.39E-04
Devitrified n= 16 0.935 0.467
Glassy n=13 0.327 1.21E-06
Tuffaceous Sediments n =10 0918 0.306

Brown-Forsythe tests for equality of variances were performed on log
transformed arsenic concentrations for all groups of samples (Table 12). At a significance
level of o« = 0.05, both devitrified and glassy and weathered and unweathered tuffs were

found to have unequal variances.
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Table 20. Test statistics, number of samples, and p-values for Brown-Forsythe tests of equal variances.

Test Stat nl n2 p-Value
Tuffs v. Tuffaceous Sediments 0.0471 47 11 0.829
Weathered v. Unweathered Tuffs 6.038 19 28 0.018
Devitrified v. Glassy Tuffs 5.282 15 13 0.051

Non-parametric Mann-Whitney-Wilcoxon tests were performed on the log
transformed solid arsenic concentrations in the environmentally available fraction.
Environmentally available arsenic was found to be significantly different between both
weathered and unweathered tuffs and glassy and devitrified tuffs (Table 21).
Unweathered tuffs have significantly less arsenic in the environmentally available
fraction than weathered tuffs, and glassy tuffs have significantly less arsenic in the

environmentally available fraction than devitrified tuffs.

Table 21. Test statistic (U), number of samples, and p-values for Man-Whitney-Wilcoxon tests of
equality performed on sample categories.

U nl n2 p-Value
Tuffs v. Tuffaceous Sediments 236 47 11 0.736
Weathered v. Unweathered Tuffs 101.5 19 28 3.15E-04
Devitrified v. Glassy 131 15 13 2.61E-05

Although unweathered tuffs are significantly different than weathered tuffs it appears that
difference is driven primarily by the very low levels of environmentally available arsenic
found in unweathered glassy tuffs in comparison to the other categories, rather than
differences produced by weathering in both glassy and devitrified tuffs. When compared
directly there is no significant difference between weathered tuffs and unweathered

devitrified tuffs (Figure 14).
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Figure 14. Environmentally available fraction of arsenic present in tuffs and tuffaceous sediments. Yellow
squares indicate mean values. In unweathered glassy tuffs significantly less of the total arsenic is present in
the environmentally available fraction than is found in devitrified or weathered tuffs, or tuffaceous
sediments.

When the weathered tuff category is broken into originally glassy and originally
devitrified samples the difference between glassy and devitrified samples is more
apparent. Weathering does not produce a higher proportion of environmentally available
arsenic in devitrified tuffs, but does produce a significantly higher proportion of

environmentally available arsenic in glassy tuffs (Figure 15).
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Figure 15. Environmentally available fraction of arsenic present in devitrified and glassy tuffs, by degree of
weathering. Yellow squares indicate mean values. Weathering produces substantial differences in the
environmentally available fraction of arsenic in glassy tuffs, but the difference between weathered and
unweathered devitrified tuffs is not significant.

There are statistically significant positive correlations between environmentally
available arsenic and total arsenic in all categories of samples except unweathered glassy
tuffs (Figure 16). For devitrified and weathered tuffs, as well as tuffaceous sediments,
regressions between total and available arsenic remain statistically significant (p < 0.05)

even when samples identified as outliers are removed.
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Figure 16. Environmentally available arsenic as a function of total arsenic concentrations. There is a direct
relationship between total and available arsenic in all categories except glassy tuffs.

Readily Leachable Arsenic

The majority of tuff samples, including all unweathered glassy samples, produced
levels of readily leachable arsenic below the method detection limit (MDL) of 102 ng
kg'. Among the samples that produced detectable levels of arsenic, the geometric mean

concentration was 236 pg kg, and the median concentration was 219 pg kg™ (Table 22).
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Table 22. Readily leachable fraction of arsenic present in ash-flow tuffs and tuffaceous sediments.
Values in parentheses indicate values that include samples below the MDL of 102 pg/kg.

. Median
Mean Geometric Median Stangrd Absolute
(ng/kg) M(jlin (ng/kg) Dev1/a£10n Deviation
(ng/kg) (ng/kg) (ng/ke)
All Tuffsn=9 (49) 266 (90.5) 236 (67.6) 219 (51.1) 131 (99.6) 159 (0)
Weathered Tuffs n =5 (20) 282 (109) 258 (76.5) 219 (51.1) 135 (120) 111 (0)

Unweathered Tuffs n = 4 (29) 245(77.9) 212(62.1) 248 (51.1) 143(82.7) 178 (0)
Devitrifiedn=4 (16)  245(96.8) 212(71.3) 248(51.1) 143 (105) 178 (0)

Glassy n =13 ND ND ND ND ND
. _ 1232 1330
Tuffaceous Sediments n =7 (11) (1907) 1134 (367) 2174 (192) (1392) 1270 (208)

For statistical purposes non-detect values were replaced with a value of 0.5 x
MDL (Antweiler, 2008; Clark, 1998). Arsenic levels in the leachable fraction were
positively skewed, and appeared to be lognormally distributed, so values were log
transformed and Shapiro-Wilk tests of normality were performed on arsenic
concentrations for tuffs, tuffaceous sediments, and the different categories of tuff
samples. At a significance level of ¢ = 0.05, all categories of tuffs and tuffaceous
sediments were found to be normally distributed, with the exception of glassy tuffs where
all samples had identical values (Table 23). Details of statistical methods can be found in

Appendix B.

Table 23. Test statistics (W) and p-values for Shapiro-Wilk tests of normality.

W p-Value
All Tuffsn= 46 0.498 1.03E-11
Weathered Tuffs n= 18 0.596 2.68E-06
Unweathered Tuffs n =29 0.412 1.07E-09
Devitrified n =16 0.554 3.84E-06
Glassy n =13 NA NA
Tuffaceous Sediments n= 10 0.787 0.006
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Parametric F tests for equality of variances were performed on log transformed
readily leachable arsenic values. At a significance level of o = 0.05, tuffs and tuffaceous
sediments, as well as devitrified and glassy tuffs, were found to have unequal variances.
The variances of weathered and unweathered tuffs were not found to be statistically

distinct (Table 24).

Table 24. Test statistics (F), numerator and denominator degrees of freedom, and p-values for F
tests of eqaulity of variances.

F dfl df2 p-Value
Tuffs v. Tuffaceous Sediments 8.9 10 48 9.38E-08
Weathered v. Unweathered Tuffs 0.52 28 19 0.113
Devitrified v. Glassy Inf 16 11 <2.2e-16

Two sample students t-tests were performed on log transformed arsenic levels in
the different categories of samples. At a significance level of o = 0.05, the means of
glassy and devitrified tuffs were found to be unequal, while weathered and unweathered

tuffs were not found to be statistically distinguishable (Table 25).

Table 25. Test statistic (t), number of samples, and p-values for two sample
students t-tests of equality performed on sample categories.

t nl n2 p-Value
Tuffs v. Tuffaceous Sediments 2.92 49 11 0.015
Weathered v. Unweathered Tuffs -1.07 20 29 0.295
Devitrified v. Glassy 2.02 16 13 0.060

Unlike the total or environmentally available fractions, the readily leachable
fraction did show a significant difference between tuffs and tuffaceous sediments (Figure
17, Table 25). Tuffaceous sediments contain both much higher arsenic concentrations and

a much larger range of readily leachable arsenic concentrations than all categories of tuff
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samples. Both weathered and devitrified samples display a wider range of readily

leachable arsenic levels than glassy tuffs (Figure 17).
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Figure 17. Readily leachable arsenic contents of ash-flow tuffs and tuffaceous sediments. Yellow boxes
represent mean values. Tuffaceous sediments contained significantly more readily leachable arsenic than all
categories of tuffs. Devitrified and weathered tuffs showed a greater range of readily leachable arsenic
values than unweathered glassy tuffs.

Unlike the environmentally available fraction of arsenic, the readily leachable

fraction shows no correlation with total arsenic for any category of sample (Figure 18).
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Figure 18. Readily leachable arsenic as a function of total arsenic present in samples. There is no
correlation between the total amount of arsenic present in tuffs and sediments and the amount present in the
readily leachable fraction.

Although the majority of tuff samples did not produce detectable levels of arsenic
during water leaching experiments, individual samples of both devitrified and weathered
tuffs and tuffaceous sediments did produce relatively high aqueous arsenic concentrations

(Table 26).
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Table 26. Aqueous arsenic concentrations produced by water leaching
experiments. Descriptive statistical values only include samples that
exceeded method detection limits.

Mean Median [S)te(i Min Max

(wgl)  (gl) O (gl) ()
Tuffs (n=18) 8.1 5.3 7.1 1.7* 24.0
Weathered (n = 8) 9.7 8.9 8.0 2.0 24.0
Devitrified (n = 10) 6.8 4.4 6.3 1.7 18.7
Sediments (n = 7) 954 108.7 66.5 6.2 171.9

* Value is equivalent to the instrument detection limit of 1.7 ug/L, and
should be considered semi-quantitative.

Overall, 12% of tuff samples and 45% of tuffaceous sediments produced aqueous
arsenic concentrations exceeding EPA MCLs in only 18 hours, with some sediment

samples approaching 20x the MCL of 10 ppb (Figure 19).
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Figure 19. Aqueous arsenic concentrations produced by water leaching experiments. Weathered and
devitrified tuffs and tuffaceous sediments all produced aqueous arsenic concentrations exceeding regulatory
limits.

pH-Dependent Arsenic Mobility

Mean arsenic values increased as solution pH was increased between pH 9 and
pH 11 for both devitrified and weathered tuffs, while glassy tuffs produced no arsenic
concentrations above detection limits at either pH (consistent with the results from the
unbuffered solutions). The increase in arsenic was minor for devitrified tuffs (92 to 124

ug kg™) but substantial for weathered tuffs (197 to 1068 pg kg™).

Patterns of arsenic mobility become clearer when the results of the controlled pH
leaching experiments are compared with the readily leachable fraction of arsenic for the

same samples. Unfortunately, the final pH of the readily leachable solutions was not
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measured for all samples. Of the solutions that were measured, pH levels varied between
6.2 and 8.9 with a mean value of 8.0. Arsenic concentrations of weathered tuffs at the
circum-neutral pH conditions of the readily leachable extractions were slightly lower than
arsenic concentrations at pH 9, and arsenic concentrations appear to increase at varying
rates with increases in pH (Figure 20). In contrast, arsenic concentrations in devitrified
tuffs actually decrease slightly between circum-neutral conditions and pH 9, and then
increase slightly at pH 11, producing no clear relationship between pH and leachable
arsenic in devitrified samples (Figure 20). Although the standard error bars for the
devitrified and weathered samples overlap, a Mann-Whitney-Wilcoxon test confirms that

the arsenic concentrations are significantly different (p = 0.03).
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Figure 20. Arsenic concentrations from leaching experiments with uncontrolled pH compared with
concentrations produced at pH 9 and 11. In weathered tuffs arsenic concentrations increased slightly from
the circum-neutral conditions of the uncontrolled leachate experiments to pH 9, while arsenic
concentrations decreased slightly between circum-neutral conditions and pH 9.

Elemental Correlations

For both fractions of mobile arsenic tests of correlation between arsenic and other
elements were performed on log transformed data with outliers excluded using the non-
parametric Spearman’s rank correlation coefficient. In both the environmentally available
fraction and the readily leachable fraction arsenic displayed statistically significant (p <

0.05) correlations with a variety of elements (Table 27).
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Table 27. Statistically significant (p < 0.05) elemental correlations with arsenic. Italicized
elements showed a negative correlation with arsenic, while un-italicized elements showed a
positive correlation.

Environmentally Readily Leachable
Available Fraction Fraction

Al Ca, Cd, Ce, Co, 4} 5 (. Fe, Si, Ti, V.,

All Tuffs (n=47) Cu, Fe, La, Pb, Sm, Sr, 7n
Ti, V,Zn
Weathered Tuffs (n = 19) Ce,Co,La, P, S, V Al Fe, Si, Ti, Zn
Ba, Cd, Ce, Co, Cu,
Unweathered Tuffs (n = 28) Fe, La, Mn, Mo, Na, Mo, V
Ni, P, Pb, Sm, V, Zn
Devitrified Tuffs (n = 15) Mn, S,V Mo
Glassy Tuffs (n=13) None None
Tuffaceous Sediments (n = 11) Ce, S Ca, Mo, S, Sr

In the environmentally available fraction, arsenic is positively correlated with a variety of
elements including Al, Ca, Fe, Sr, and Zn. In the readily leachable fraction arsenic is
positively correlated with Al, Fe, Si and Zn, among others. Tuffaceous sediments were
positively correlated with S in both the environmentally available and readily leachable
fractions. Although the correlation coefficients were statistically significant (p < 0.05),
linear regression analysis determined that few of the correlations were reflective of strong
linear relationships between arsenic and other elements (R? < 0.60). The two exceptions
to this were the correlations between readily leachable arsenic and Fe in weathered

samples, and readily leachable arsenic and Mo in devitrified samples (Figure 21).
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Figure 21. Linear relationship between readily leachable arsenic and iron in weathered tuff samples, p =
1.8e-07.

DISCUSSION

Potential Host Phases of Arsenic

The behavior of arsenic in both mobile fractions provides a number of indications
that different host phases of arsenic exist in different categories of tuffs. My results
indicate that in glassy tuffs arsenic is hosted in the glass phase. No glassy tuffs produced
leachable arsenic under any pH conditions, indicating that arsenic is neither sorbed to

mineral surfaces nor hosted in an easily soluble mineral phase. In addition, glassy tuffs
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contain significantly less environmentally available arsenic than other categories of tuffs,
and are the only category of sample that does not show a positive correlation between
total arsenic and environmentally available arsenic. This indicates that the bulk of the
arsenic in glassy samples in bound in a silicate phase that is not dissolved in the partial
digestions used to identify the environmentally available fraction. In glassy tuffs the most
abundant silicate phase is the glass itself, which makes up the majority of the volume of
glassy tuffs. Glass is also the most likely silicate phase to host arsenic since it is produced
by quenching of lavas which can retain relatively high proportions of volatiles in

comparison to silicate minerals.

In devitrified tuffs the most likely host phase of arsenic is a non-silicate mineral
phase. Devitrified tuffs contain a relatively high percentage of their arsenic in the
environmentally available fraction (median = 57%, max = 90%), and there is a strong
positive correlation between total and environmentally available arsenic, which indicates
that the bulk of the arsenic in these samples is not hosted in a silicate phase, because
silicates are resistant to HNOj5™ treatment. The correlation between total and mobile
arsenic is not seen in the readily leachable fraction, indicating that arsenic is not hosted in
a highly soluble phase. Finally, leachable arsenic levels in devitrified tuffs do not
increase with increasing pH, ruling out sorption to mineral surfaces as a potential host

phase of arsenic in these samples.

While these results show that a non-silicate mineral phase is the most likely host

of arsenic in devitrified tuffs it is not clear what specific mineral or minerals this might

79



be. Vapor phase alteration that occurs during devitrification has the potential to produce a
variety of minerals that would be likely host phases (particularly sulfides and
phosphates), but as a result of their typical small size and low abundance, these minerals
were not identified in the solid phase characterization performed during this study. Vapor
phase mineralization is also highly variable, so it is possible that devitrified tuffs could
contain multiple mineral phases enriched in arsenic and that these phases could differ

between different tuffs.

In weathered tuffs the most likely host phase of arsenic is Fe-oxides and
oxyhydroxides, as well as other alteration products including clay surfaces. Similarly to
devitrified tuffs, weathered tuffs both contain a high percentage of their total arsenic in
the environmentally available fraction and show a strong positive correlation between
total and environmentally available arsenic, indicating a non-silicate host phase. In
contrast to devitrified tuffs, weathered tuffs do show an increase in leachable arsenic with
increasing pH, which indicates that sorption to grain surfaces likely plays a role in the
behavior of arsenic. Weathering produces a range of alteration products that are potential
sorbents for arsenic, including Fe-oxides and oxyhydroxides, kaolinite and illite clay
minerals, and some zeolites, including clinoptilolite (Manning and Goldberg, 1996;
Stollenwerk, 2003). Fe-oxides and oxyhydroxides are generally considered the most
likely sorbent of arsenic, due to both their ubiquity and high concentration of surface
sites. A positive correlation between Fe and arsenic was found in the readily leachable
fraction, although the same relationship was not observed in the environmentally

available fraction.
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In glassy tuffs the weathering process produces higher levels of environmentally
available arsenic than is present in unweathered tuffs, but this is not the case for
devitrified tuffs. In glassy tuffs the relationship between weathered and unweathered
samples is relatively straightforward. The differences between environmentally available
arsenic in unweathered vs. weathered glassy tuffs, combined with the pH dependence of
arsenic leachability from weathered samples suggests that during weathering arsenic is

released from the glass phase and subsequently sorbs to alteration products.

The fate of arsenic during the weathering of devitrified tuffs is much less clear.
One possible scenario is that arsenic behaves largely as it does in glassy tuffs, and is
released from its non-silicate mineral phase and subsequently sorbs to alteration products.
Another potential scenario is that only portions of the arsenic present in the non-silicate
mineral host phase(s) is released and subsequently sorbed, producing weathered tuffs that
contain both sorbed arsenic and arsenic hosted in minerals, resulting in two distinct

arsenic host phases that both produce environmentally available arsenic.

In tuffaceous sediments the potential host phase or phases of arsenic remains
more enigmatic than in tuffs themselves. Tuffaceous sediments display the same behavior
of arsenic in the environmentally available fraction as weathered and devitrified tuffs (a
high percentage of arsenic present in the environmentally available fraction and a strong
correlation between total and environmentally available arsenic concentrations) that
indicate a non-silicate host phase. In tuffaceous sediments the question of what that phase

might be is more difficult to answer. The correlation between arsenic and S in both
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mobile fractions of the samples suggests that sulfide minerals are a likely host. However,
tuffaceous sediments contain a high percentage (mean = 27%, max = 77%) of their total
arsenic in the readily leachable fraction, and sulfide minerals are not highly soluble and
would not be expected to produce high levels of leachable arsenic over short time periods
in circum-neutral waters. Although contact with oxygenated waters would be expected to
result in redox-driven dissolution of sulfide minerals, the 18 hour time period was likely

insufficient for those reactions to fully occur.

One factor that is important to note is that with the exception of TW2, a
volcaniclastic conglomerate from the Willamette Valley, all of the sediment samples in
this study come from the Owyhee Upland physiographic province of Oregon and were
formed in a similar arid climate. It is possible that environmental conditions and
depositional processes played a significant role in determining both the overall arsenic
concentrations and the host phase of arsenic in these samples. For example, evaporative
concentration of arsenic during reworking of the tuffaceous material may have
contributed to high levels of arsenic in some sediments. It may not be appropriate to use
these samples to draw conclusions about arsenic in tuffaceous sediments from other

regions, particularly if those regions have significantly different climates.

Potential Mechanisms of Arsenic Mobilization

Based on the different host phases tentatively identified for different categories of
tuff, the mechanisms by which arsenic is mobilized from those categories will differ as

well. In glassy tuffs the most likely mechanism of arsenic mobilization is the relatively
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slow dissolution of the glass phase. This is consistent with previous research that
identified dissolution of volcanic glass as a primary geochemical control on arsenic levels
in one groundwater system in the American Southwest (Johannesson and Tang, 2009).
The fact that dissolution of glass is a relatively slow process, combined with the lack of
arsenic concentrations exceeding 10 mg kg ' in glassy tuff samples, suggests that
unweathered glassy tuffs present a lower risk of producing aqueous arsenic

concentrations exceeding regulatory limits than other categories of tuff.

The most likely mechanism of mobilizing arsenic from devitrified tuffs is the
dissolution of the non-silicate mineral host phase. Two of the unweathered devitrified
samples in this study produced aqueous arsenic concentrations exceeding 10 pg L™ in the
water extraction experiment, indicating that at least some of the potential minerals
hosting arsenic may be relatively soluble. Without a better understanding of what those
minerals may be it is unclear what geochemical conditions might present greater risks of

arsenic contamination sourced from devitrified tuffs.

In weathered tuffs the most likely mechanism of arsenic mobilization is
desorption from mineral grain surfaces. The presence of sorbed arsenic in weathered tuffs
means that a variety of geochemical conditions present increased risk of tuff-sourced
arsenic contamination. Groundwaters with high pH, reducing conditions, and high
concentrations of competing anions, particularly phosphate, can all result in desorption of

arsenic from mineral grains and its release into solution.
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CHAPTER 4: CONCLUSIONS

Conclusions and Conceptual Model

Arsenic concentrations in high silica ash-flow tuffs have a geometric mean value
of 4.8 mg kg™, which is consistent with previously reported values and approximately 2.8
times the mean crustal abundance of 1.7 mg kg'1 (Onishi and Sandell, 1955; Wedepohl,
1995). Arsenic levels in tuffs are highly heterogenous both between and within units, and
can reach levels exceeding 80 mg kg™'. Additionally, 12% of ash-flow tuffs and 45% of
tuffaceous sediments are capable of producing aqueous arsenic concentrations that

exceed regulatory limits over a short period of time.

In addition to confirming the widespread idea that high silica ash-flow tuffs and
tuffaceous sediments are a potential source of geogenic arsenic contamination, the results
of this study indicate that the host phases and potential mechanisms of arsenic
mobilization differ between categories of tuffs, and suggest a conceptual model for the
behavior of arsenic in tuffs. The conceptual model suggested by these results includes
factors influencing the total concentrations of arsenic in tuffs, changes in arsenic host
phases during both devitrification and weathering, and potential mechanisms for the

mobilization of arsenic into the environment (Figure 22).
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Future Work

Further identification of specific host phases should be pursued, particularly in
devitrified tuffs and tuffaceous sediments. While the results of this study indicate that one
or more non-silicate mineral phases are the most likely host phase of arsenic in devitrified
tuffs it is still unclear what those mineral phases may be. The process of vapor phase
mineralization provides a wide range of options, but identification of specific minerals
would be valuable in determining what geochemical conditions present an increased risk
of arsenic mobilization from devitrified tuffs. In the tuffaceous sediments investigated in
this study it is still largely unclear what the host phase of arsenic may be, and how much

that may be influenced by environmental conditions during the formation of these units.

Additional exploration into the role of solution chemistry in arsenic mobility
should be continued as well. Investigating the leaching behavior of arsenic over a full
range of pH values would provide additional insight into sorption processes in weathered
tuffs, and potentially identify additional geochemical conditions that facilitate
mobilization of arsenic from other categories of tuffs. Other variables that would be

valuable to explore are redox state and concentration of competing anions.

Finally, further investigations into possible patterns of spatial distribution of
arsenic within individual tuff units should be pursued. Spatial patterns of arsenic
distribution, whether vertical patterns within the interior of the tuff, or lateral patterns
varying with distance from the eruptive center, could potentially be of great use in

assessing the risk of arsenic contamination at specific geographic locations. This study
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did not investigate possible lateral patterns of arsenic distribution, and provided

inconclusive results with regard to vertical patterns of arsenic distribution.
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APPENDIX A: ANALYTICAL OPERATING CONDITIONS AND QUALITY

CONTROL

Table Al. Operating conditions for ICP-OES analysis of total digests.

Condition Value
Power (kW) 1.4
Replicate Read Time (s) 45
Instrument Stabilization Delay (s) 25
Sample Uptake Delay (s) 25
Max Rinse Time (s) 90
Number of Replicates 3
PolyBoost On

Table A2. Operating conditions for ICP-OES analysis of partial digests.

Condition Value
Power (kW) 1.4
Replicate Read Time (s) 45
Instrument Stabilization Delay (s) 25
Sample Uptake Delay (s) 20
Max Rinse Time (s) 30
Number of Replicates 3
PolyBoost On

Table A3. Operating conditions for ICP-OES analysis of water
extracts and pH leaching experiments.

Condition Value
Power (kW) 1.3
Replicate Read Time (s) 45
Instrument Stabilization Delay (s) 25
Sample Uptake Delay (s) 20
Max Rinse Time (s) 60
Number of Replicates 3

PolyBoost On




Table A4. Check standard and blank results from analytical session of 3/2/2012.
QCI1 contains 100 ppb, and QC2 contains 50 ppb, of all elements except Ga, P, S,

and Sn.

Element and Wavelength QC Blanka QCla QC2a Method Blank QCl1b
Al1237.312 2.40 104.84 58.71 6.41 107.33
As 188.980 ND 102.83  50.78 ND 102.23
Ba 455.403 ND 107.51  50.90 ND 109.04
Ca317.933 ND 105.89 56.10 4.07 106.63
Cd 214.439 ND 104.19 55.09 ND 102.59
Ce 407.347 ND 105.34  4.32 ND 107.99
Co 228.615 ND 105.25 51.04 ND 105.61
Cr267.716 1.50 105.58  63.90 1.59 105.24
Cu 327.395 1.12 106.00 44.16 1.46 106.99
Fe 238.204 ND 103.69 144.61 3.89 103.56
La 398.852 ND 10594  0.02 ND 106.91
Mg 279.078 ND 103.90 53.01 1.49 105.00
Mn 260.568 ND 104.83  50.82 ND 103.57
Na 588.995 ND 118.04 66.08 3.66 114.47
Nd 399.467 1.86 103.99  0.29 1.37 104.57
Ni 231.604 ND 103.30 52.56 ND 102.08
P 177.434 4.41 116.39  5.95 6.24 135.93
Pb 220.353 ND 105.17 50.47 ND 104.26
S 181.972 4.03 109.39 12.37 ND 103.21
Sm 356.827 39.54 104.24 39.21 39.22 106.84
Sr407.771 ND 106.11 51.36 ND 107.64
V 311.837 ND 103.47 43.60 ND 104.39
Zn 202.548 ND 132.89 43.31 ND 133.43
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Table AS. Check standard and blank results from analytical session of 10/25/2012. QC1 contains 100 ppb,
and QC2 contains 50 ppb, of all elements except P and S.

Element and

Wavelength QCBlanka QCla QC2a Method Blank QCBlankb QClb QC2b
Al 237.312 3.81 108.93 53.81 22.49 5.93 112.60 57.07
As 188.980 ND 97.51 43.66 ND ND 98.13 45.24
Ba 455.403 ND 101.92 50.67 ND ND 96.64 47.30
Ca317.933 6.82 129.77 64.26 9.60 8.02 132.26  66.69
Cd 214.439 ND 102.90 49.51 ND ND 107.28 52.63
Ce 407.347 1.57 100.21 49.79 2.23 1.58 92.64 46.66
Co 228.615 ND 101.78 49.76 ND ND 104.93 51.68
Cr267.716 ND 101.23  49.50 ND ND 103.04 50.49
Cu 327.395 ND 103.22  49.60 ND ND 100.03 47.50
Fe 238.204 ND 104.22 50.08 14.17 1.67 107.12  52.50
La 398.852 ND 104.09 52.28 ND ND 98.90 48.31
Mg 279.078 ND 103.20 48.93 3.90 ND 108.21 52.37
Mn 260.568 ND 101.01 49.79 ND ND 102.52  50.50
Mo 202.032 ND 96.82 45.31 ND ND 96.12 44.83
Na 588.995 3.73 103.99 4543 12.49 7.94 106.29 50.87
Nd 399.467 1.48 101.15 52.23 1.53 1.66 9291 45.18
Ni 231.604 ND 101.04 49.78 ND ND 104.27 51.61
P 177.434 3.92 1.20 1.80 3.15 2.77 ND ND
Pb 220.353 ND 102.56 50.30 ND ND 103.25 51.01
S 181.972 ND 3.25 -1.97 31.96 24.68 29.71  26.38
Si 185.005 ND 134.45 63.17 99.47 ND 125.17 46.87
Sm 356.827 14.73 90.94 41.71 14.73 14.68 7993 33.29
Sr407.771 ND 101.06 51.29 ND ND 94.47 47.09
Ti334.941 ND 100.51 50.10 ND ND 96.42 47.70
V 311.837 ND 100.69 50.11 1.04 ND 99.54 48.97
Zn 202.548 ND 118.21 51.40 ND ND 126.22 57.10
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APPENDIX B: DETAILS OF STATISTICAL METHODS

All statistical analysis performed in R Version 2.11.1

# All analysis!

rm(list = 1s())

4.
1

# Investigating Alk/Alumina ratios and As

I+

I+

load(""~/Documents/Thesis/Analysis/AllData.Rdata")

# Calculate Alumina/Alkali ratios in molar percents (not wt %)
molmajors$ AlkAl <- molmajors$ Al/(molmajors$Na20 + molmajors$K20)

# Look for correlations with As
cor.test(molmajors$AlkAl, totaldata$As)

# Use AllPlots.R script to plot here.

4. 4
# #
# Basic Comparisons Between Groups

4. 4
# #

rm(list = 1s())
# Total fraction

# Load workspace that includes data frames of data for all three fractions (total, env.
available, and readily leachable)
load(""~/Documents/Thesis/Analysis/AllData.Rdata")

# Create data frame excluding sediment samples

tuffs <- subset(totaldata, totaldata$Devitrification != "Sediment")
tuffs$Devitrification <- factor(tuffs§ Devitrification)
tuffs$Weathering <- factor(tuffs$ Weathering)

# Create data frame of only sediment samples
sed <- subset(totaldata, totaldata$§Devitrification == "Sediment")
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# Create data frame of unweathered samples only
unweathered <- subset(tuffs, Weathering == "Unweathered")

# Create data frame of weathered samples only
weathered <- subset(tuffs, Weathering == "Weathered")

# Create data frame of devitrified samples only
devit <- subset(unweathered, Devitrification == "Devitrified")

# Create data frame of glassy samples only
glassy <- subset(unweathered, Devitrification == "Glassy")

# Compare tuffs and sediments
wilcox.test(tuffs$As, sed$ As)
kruskal.test(tuffs$As, sed$As)
boxplot(tuffs$As, sed$ As)

# Compare weathered and unweathered samples

wilcox.test(As ~ Weathering, tuffs)

kruskal.test(As ~ Weathering, tuffs)

boxplot(As ~ Weathering, tuffs, ylab = "As (mg/kg)", main = "Total As")

# Compare glassy and devitrified samples

wilcox.test(As ~ Devitrification, unweathered)

kruskal.test(As ~ Devitrification, unweathered)

boxplot(As ~ Devitrification, unweathered, ylab = "As (mg/kg)", main = "Total As")

# Calculate mean/median/SD values for categories
mean(tuffs$As)

median(tuffs$As)

sd(tuffs$As)

mean(sed$As)
median(sed$As)
sd(sed$As)

mean(unweathered$As)
median(unweathered$ As)
sd(unweathered$As)

mean(weathered$As)
median(weathered$As)
sd(weathered$As)



mean(devit$As)
median(devit$As)
sd(devit$As)

mean(glassy$As)
median(glassy$As)
sd(glassy$As)

# Environmentally available fraction
totaldatatest <- subset(totaldata, Sample !="DVC1")

# Calculate Percentage As "Environmentally Available"
envavail <- data.frame(Sample = totaldatatest§Sample,
Devitrification = totaldatatest$Devitrification,
Weathering = totaldatatest$ Weathering,
Partial As = partialdata$As,
TotalAs = totaldatatest$As,
percent =(partialdata$§As/totaldatatest$As *100))

rm(totaldatatest)

# The partial digest method had lower detection limits than Actlabs total As limits.
# As a result some samples had percentages > 100%

# Replace values over 100% with NA values

num <- nrow(envavail)

for (i in 1: num){
if(is.na(envavail$percent[i]) == FALSE){
if(envavail$percent[i] >100){
envavail$percent[i] <- NA
}
h
}

# Create Tuffs Only data frame

envavailtuffs <- subset(envavail, Devitrification !="Sediment")
envavailtuffs§Devitrification <- factor(envavailtuffs$ Devitrification)
envavailtuffs§ Weathering <- factor(envavailtuffs$ Weathering)

# Create Sediments only data frame
envavailsed <- subset(envavail, Devitrification == "Sediment")
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envavailsed$Devitrification <- factor(envavailsed$Devitrification)
envavailsed$Weathering <- factor(envavailsed$Weathering)

# Create data frame of unweathered samples only
envavailunw <- subset(envavailtuffs, Weathering == "Unweathered")

# Create data frame of weathered samples only
envavailw <- subset(envavailtuffs, Weathering == "Weathered")

# Create data frame of devitrified samples only
envavaildevit <- subset(envavailunw, Devitrification == "Devitrified")

# Create data frame of glassy samples only
envavailglassy <- subset(envavailunw, Devitrification == "Glassy")

# Test for normality

shapiro.test(envavailtuffs$Partial As)
shapiro.test(envavailsed$Partial As)
shapiro.test(envavailunw$Partial As)
shapiro.test(envavailw$Partial As)
shapiro.test(envavaildevit$Partial As)
shapiro.test(envavailglassy$Partial As)

# Compare tuffs and sediments
wilcox.test(envavailtuffs$percent, envavailsed$percent)
wilcox.test(envavailtuffs$Partial As, envavailsed$ Partial As)

# Compare weathered and unweathered samples
wilcox.test(percent ~ Weathering, envavailtuffs)
wilcox.test(Partial As ~ Weathering, envavailtufts)
kruskal.test(percent ~ Weathering, envavailtuffs)
kruskal.test(PartialAs ~ Weathering, envavailtuffs)
boxplot(percent ~ Weathering, envavailtuffs,

ylab ="As (%)", main = "Available As")
boxplot(PartialAs ~ Weathering, envavailtuffs,

ylab = "As (mg/kg)", main = "Available As")

# Compare divitrified and glassy samples.
wilcox.test(percent ~ Devitrification, envavailunw)
wilcox.test(Partial As ~ Devitrification, envavailunw)
kruskal.test(percent ~ Devitrification, envavailunw)
kruskal.test(PartialAs ~ Devitrification, envavailunw)
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boxplot(percent ~ Devitrification, envavailunw,
ylab ="As (%)", main = "Available As")

boxplot(Partial As ~ Devitrification, envavailunw,
ylab = "As (mg/kg)", main = "Available As")

# Calculate descriptive statistics
mean(envavailtuffs$Partial As, na.rm = TRUE)
median(envavailtuffs§Partial As, na.rm= TRUE)
sd(envavailtuffs$Partial As, na.rm = TRUE)

mean(envavailtuffs$percent, na.rm = TRUE)
median(envavailtuffs§percent, na.rm = TRUE)
sd(envavailtuffs$percent, na.rm = TRUE)

mean(envavailsed$PartialAs, na.rm = TRUE)
median(envavailsed$PartialAs, na.rm = TRUE)
sd(envavailsed$PartialAs, na.rm = TRUE)

mean(envavailsed$percent, na.rm = TRUE)
median(envavailsed$percent, na.rm = TRUE)
sd(envavailsed$percent, na.rm = TRUE)

mean(envavailunw$PartialAs, na.rm = TRUE)
median(envavailunw$PartialAs, na.rm = TRUE)
sd(envavailunw$PartialAs, na.rm = TRUE)

mean(envavailunw$percent, na.rm = TRUE)
median(envavailunwS$percent, na.rm = TRUE)
sd(envavailunw$percent, na.rm = TRUE)

mean(envavailw$Partial As, na.rm = TRUE)
median(envavailw$PartialAs, na.rm = TRUE)
sd(envavailw$PartialAs, na.rm = TRUE)

mean(envavailw$percent, na.rm = TRUE)
median(envavailw$percent, na.rm = TRUE)
sd(envavailw$percent, na.rm = TRUE)

mean(envavaildevit$Partial As, na.rm = TRUE)
median(envavaildevit§PartialAs, na.rm = T)
sd(envavaildevit$PartialAs, na.rm = T)

mean(envavaildevit$percent, na.rm = TRUE)
median(envavaildevit$percent, na.rm = TRUE)
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sd(envavailunw$percent, na.rm = TRUE)

mean(envavailglassy$PartialAs, na.rm = T)
median(envavailglassy$PartialAs, na.rm = T)
sd(envavailglassy$PartialAs, na.rm = T)

mean(envavailglassy$percent, na.rm = TRUE)
median(envavailglassy$percent, na.rm = TRUE)
sd(envavailglassy$percent, na.rm = TRUE)

# Leachable Fraction

# Calculate Percentage As "Readily Leachable"

leachable <- data.frame(Sample = leachdata$Sample,
Devitrification = leachdata$Devitrification,
Weathering = leachdata§ Weathering,
LeachableAs = leachdata$As,
TotalAs = totaldata$As,
percent =((leachdata$As/10"3)/totaldata$ As *100))

# Create tuffs only data frame

leachtuffs <- subset(leachable, Devitrification != "Sediment")
leachtuffs$Devitrification <- factor(leachtuffs§ Devitrification)
leachtuffs§ Weathering <- factor(leachtuffs$ Weathering)

# Create sediments only data frame

leachsed <- subset(leachable, Devitrification == "Sediment")
leachsed$Devitrification <- factor(leachsed$ Devitrification)
leachsed$ Weathering <- factor(leachsed$ Weathering)

# Create data fram of unweathered tuffs only
leachunw <- subset(leachtuffs, Weathering == "Unweathered")

# Create data frame of weathered tuffs only
leachw <- subset(leachtuffs, Weathering == "Weathered")

# Create data frame of devitrified tuffs only
leachdevit <- subset(leachunw, Devitrification == "Devitrified")

# Create data frame of glassy tuffs only
leachglassy <- subset(leachunw, Devitrification == "Glassy")

# Compare sediments and tuffs
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wilcox.test(leachtuffs$percent, leachsed$percent)
wilcox.test(leachtuffs$ LeachableAs, leachsed$LeachableAs)
boxplot(leachtuffs$percent, leachsed$percent)
boxplot(leachtuffs§LeachableAs, leachsed$LeachableAs)

# Compare weathered and unweathered tuffs
wilcox.test(percent ~ Weathering, leachtuffs)
wilcox.test(LeachableAs ~ Weathering, leachtuffs)
kruskal.test(percent ~ Weathering, leachtuffs)
kruskal.test(LeachableAs ~ Weathering, leachtufts)
boxplot(percent ~ Weathering, leachtuffs)
boxplot(LeachableAs ~ Weathering, leachtuffs)

# Compare devitrified and glassy tuffs
wilcox.test(percent ~ Devitrification, leachunw)
wilcox.test(LeachableAs ~ Devitrification, leachunw)
kruskal.test(percent ~ Devitrification, leachunw)
kruskal.test(LeachableAs ~ Devitrification, leachunw)
boxplot(percent ~ Devitrification, leachunw)
boxplot(LeachableAs ~ Devitrification, leachunw)

# Calculate descriptive statistics, excluding samples that were non-detects
ND <- 51.05875

mean(leachtuffs$LeachableAs[which(leachtuffs$LeachableAs > ND)])
median(leachtuffs$LeachableAs[which(leachtuffs$LeachableAs > ND)])
sd(leachtuffs$LeachableAs[which(leachtuffs$LeachableAs > ND)])

mean(leachsed$LeachableAs[which(leachsed$LeachableAs > ND)])
median(leachsed$LeachableAs[which(leachsed$LeachableAs > ND)])
sd(leachsed$LeachableAs[which(leachsed$LeachableAs > ND)])

mean(leachunw$LeachableAs[which(leachunw$LeachableAs > ND)])
median(leachunw$LeachableAs[which(leachunw$LeachableAs > ND)])
sd(leachunw$Leachable As[which(leachunw$LeachableAs > ND)])

mean(leachw$LeachableAs[which(leachw$LeachableAs > ND)])
median(leachw$LeachableAs[which(leachw$LeachableAs > ND)])
sd(leachw$LeachableAs[which(leachw$LeachableAs > ND)])

mean(leachdevit$LeachableAs[which(leachdevit$LeachableAs > ND)])
median(leachdevit$LeachableAs[which(leachdevit$LeachableAs > ND)])
sd(leachdevit$LeachableAs[which(leachdevit$LeachableAs > ND)])
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mean(leachglassy$LeachableAs[which(leachglassy$LeachableAs > ND)])
median(leachglassy$LeachableAs[which(leachglassy$LeachableAs > ND)])
sd(leachglassy$LeachableAs[which(leachglassy$LeachableAs > ND)])

4.
1

# Look for statistically significant correlations between As and other elements

4.
1

I+

I+

# Create variable for correlation coefficent to use
cormeth = "spearman"

# Define function for doing what I want, rather than typing it over and over again

myCorrelations <- function(data, cormeth){
numelements <- ncol(data) - 3

cortable <- vector(mode = "numeric", length = numelements)
ptable <- vector(mode = "numeric", length = numelements)
elements <- vector(mode = "character", length = numelements)

for (i in 4:(ncol(data)))

{test <- print(cor.test(data$As,data[,i], method = cormeth))
elements[i] <- colnames(data[i])

cortable[i] <- test$estimate

ptable[i] <- test$p.value}

# Create data frame of all correlation coefficients and p values

correlations <- data.frame(Element = elements, Correlation = cortable, pValue = ptable)
# Find all elements with p <= 0.05

sigcor <- subset(correlations, pValue <=0.05)

return(sigcor)

}

# Find correlations for total fraction
tufftotalsigcor <- myCorrelations(tuffs, cormeth) # Tuffs

# Exclude extreme values
tuffs2 <- subset(tuffs, As <25)
tuff2totalsigcor <- myCorrelations(tuffs2, cormeth)

sed2 <- subset(sed, select = ¢(-Ga, -Ho, -Tm))
sedtotalsigcor <- myCorrelations(sed2, cormeth) # Sediments

103



weathtotalsigcor <- myCorrelations(weathered, cormeth) # Weathered
unweathtotalsigcor <- myCorrelations(unweathered, cormeth) # Unweathered
devittotalsigcor <- myCorrelations(devit, cormeth) # Devitrified
glassytotalsigcor <- myCorrelations(glassy, cormeth) # Glassy

rm(sed2)
# Correlations for the environmentally available fraction

tuffpartial <- subset(partialdata, Devitrification != "Sediment")
unweatheredpartial <- subset(partialdata, Weathering == "Unweathered")
weatheredpartial <- subset(partialdata, Weathering == "Weathered")
devitpartial <- subset(unweatheredpartial, Devitrification == "Devitrified")
glassypartial <- subset(unweatheredpartial, Devitrification == "Glassy")
sedpartial <- subset(partialdata, Weathering == "Sediment")

tuffpartialsigcor <- myCorrelations(tuffpartial, cormeth)
weathpartialsigcor <- myCorrelations(weatheredpartial, cormeth)
unweathpartialsigcor <- myCorrelations(unweatheredpartial, cormeth)
devitpartialsigcor <- myCorrelations(devitpartial, cormeth)
glassypartialsigcor <- myCorrelations(glassypartial, cormeth)
sedpartialsigcor <- myCorrelations(sedpartial, cormeth)

# Correlations for the readily leachable fraction

tuffleach <- subset(leachdata, Devitrification !="Sediment")
weatheredleach <- subset(leachdata, Weathering == "Weathered")

unweatheredleach <- subset(leachdata, Weathering == "Unweathered")
devitleach <- subset(unweatheredleach, Devitrification == "Devitrified")
glassyleach <- subset(unweatheredleach, Devitrification == "Glassy")

sedleach <- subset(leachdata, Weathering == "Sediment")

tuffleachsigcor <- myCorrelations(tuffleach, cormeth)
weathleachsigcor <- myCorrelations(weatheredleach, cormeth)
unweathleachsigcor <- myCorrelations(unweatheredleach, cormeth)
devitleachsigcor <- myCorrelations(devitleach, cormeth)
glassyleachsigcor <- myCorrelations(glassyleach, cormeth)
sedleachsigcor <- myCorrelations(sedleach, cormeth)

# Analysis of pH extractions
load("~/Documents/Thesis/Analysis/pH.Rdata")

pHO9 <- subset(pHed, pH == 9)
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pH11 <- subset(pHed, pH ==11)

plot(pH11$pH, pH11$As)
points(pH9$pH, pHI$As)

pHall < ¢(8, 9, 11)

FD3 <- ¢(34, 34, 279)
FD4 <- (143, 164, 564)
LG1 <- ¢(355, 181, 415)
LG2 <- ¢(218, 83, 154)
LG4 <- ¢(34, 525, 3928)

plot(pHall, LG4, type = "b", col = "dodgerblue4", pch = 15, ylim = c¢(0, 600))
points(pHall, FD3, type ="b", col = "gold", pch = 15)

points(pHall, FD4, type ="b", col = "gold", pch = 15)

points(pHall, LG1, type = "b", col ="gold", pch = 15)

points(pHall, LG2, type = "b", col = "dodgerblue4", pch = 15)

DC6 <- ¢(133, 134, 185)
DC6pH <-¢(7.35,9, 11)
MK2 <-¢(103, 137, 198)
RST11 <-¢(373, 85, 97)
RST11pH <-¢(8.74,9, 11)
RST13 <-¢(113, 70, 91)
RST13pH <-¢(8.25,9, 11)
SR2 <- ¢(34, 34, 48)

devitall <- data.frame(rbind(DC6, MK2, RST11, RST13, SR2))
weatheredall <- data.frame(rbind(FD3, FD4, LG1, LG2, LG4))

stderrw <- sd(weatheredall)/sqrt(length(weatheredall))
stderrd <- sd(devitall)/sqrt(length(weatheredall))

plot(pHall, mean(weatheredall),
type ="b",
pch =15,
col = "chartreuse4",
ylim = ¢(0,2000),
ylab = expression(paste("Leachable As (",mu,"g/kg)")),
xlab ="pH",
xaxt="n")
axis(1, at=¢(9, 10, 11),
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labels = c("9", "10", "11"))

axis(1, at = 8, labels = "pH not\ncontrolled", cex.axis = 0.65)
errbar(pHall, mean(devitall),

(mean(devitall)+stderrd), (mean(devitall)-stderrd),

add = TRUE, col = "dodgerblue4", pch = 20)
errbar(pHall, mean(weatheredall),

(mean(weatheredall)+stderrw), (mean(weatheredall)-stderrw),

add = TRUE, col = "chartreuse4", pch = 20)
points(pHall, mean(weatheredall), pch = 15, col = "chartreuse4", cex = 1.5)
points(pHall, mean(devitall), type ="b", pch =16, col = "dodgerblue4", cex = 1.5)
points(pHall, ¢(34, 34, 34), type ="b", pch = 17, col = "gold", cex = 1.5)

legendtext <- c("Weathered Tuffs", "Devitrified Tuffs", "Glassy Tuffs")

legendcol <- c¢("chartreuse4", "dodgerblue4", "gold")

legendpch <- ¢(15,16,17)

legend(x = "topleft", legend = legendtext, col = legendcol, pch = legendpch, cex = 1.2,
bty — unn)

plot(DC6pH, DC6, type ="b", col = "dodgerblue4", ylim = c¢(0,600))
points(pH, FD3, type = "b", col = "chartreuse4")

points(pH, FD4, type = "b", col = "chartreuse4")

points(pH, LG1, type ="b", col = "chartreuse4")

points(pH, LG2, type = "b", col = "chartreuse4")

points(pH, MK2, type = "b", col = "dodgerblue4")

points(RST11pH, RST11, type ="b", col = "dodgerblue4")
points(RST13pH, RST13, type ="b", col = "dodgerblue4")
points(pH, SR2, type ="b", col = "dodgerblue4")

allpH <- ¢(6.36, 6.81, 8.40, 8.28, 7.35, 8.94, 8.37, 8.48,
8.29, 8.65, 7.99, 8.05, 8.74, 6.16, 6.93,
8.43,8.44,7.05, 8.65, 7.46, 8.30, 8.23, 7.90,
8.90, 7.92, 8.64, 8.70, 8.90, 8.25, 8.19,

6.94, 6.52, 7.03, 8.84, 8.88, 7.91, 8.01,

8.56)
mean(allpH)
# Look at aqueous values

# Convert back to aqueous concentrations
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convert <- function(x) {x/(10"3 * 0.02)}

water <- sapply(leachdata[,4:45], convert)

water <- as.data.frame(water)

water§Sample <- leachdata§Sample
water$Devitrification <- leachdata$Devitrification
water§ Weathering <- leachdata$Weathering

mean(water$As)
mean(water$ As[which(water$As > 0.851)])

# Remove non-detect values

water2 <- subset(water, As > 0.851)

waterunw <- subset(water2, Weathering == "Unweathered")
waterw <- subset(water2, Weathering == "Weathered")
waterdevit <- subset(waterunw, Devitrification == "Devitrified")
waterglassy <- subset(waterunw, Devitrification == "Glassy")
watersed <- subset(water2, Devitrification == "Sediment")
watertuff <- subset(water2, Devitrification != "Sediment")

mean(watertuff$ As)
median(watertuff$ As)
sd(watertuff$ As)
max(watertuff$As)
min(watertuff$As)

mean(waterw$As)
median(waterw$As)
sd(waterw$As)
max(waterw$As)
min(waterw$As)

mean(waterunw$As)
median(waterunw$As)
sd(waterunw$As)
max(waterunw$As)
min(waterunw$As)

mean(waterdevit$As)
median(waterdevit$ As)
sd(waterdevit$As)
max(waterdevit$As)
min(waterdevit$ As)
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mean(waterglassy$As)
median(waterglassy$As)
sd(waterglassy$As)
max(waterglassy$As)
min(waterglassy$As)

mean(watersed$As)
median(watersed$As)
sd(watersed$As)
max(watersed$As)
min(watersed$As)

4.
1

I+

T

# Log transforming the data

;n(list = 15())

# Load workspace that includes data frames of data for all three fractions (total, env.

available, and readily leachable)
load("~/Documents/Thesis/Analysis/AllData.Rdata")

# Use Grubb method to exclude outliers

grubb <- function(totaldata) {
# Calculate g stat
g <- abs(totaldata$As - mean(totaldata$As))
g2 <- max(g)/sd(totaldata$As)

# Calculate gerit

n <- length(totaldata$ As)

terit <- abs(qt(0.05/(2*n), n-2))

gerit <- (n - 1)/sqrt(n) * sqrt(tcrit*2/(n - 2 + terit"2))

print(totaldata$Sample[ which.max(g)])
samp <- (totaldata$Sample[which.max(g)])

print(max(g))
print(gcrit)

if (g2 > gerit){
temptot <- subset(totaldata, totaldata$Sample != samp)

I+
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return(temptot)

}

if (g2 <= gerit){
print("No more outliers!")
return(totaldata)

}

}

test <- grubb(totaldata)
test <- grubb(test) # Repeat until no more outliers are found.

totaldata2 <- test

# Replace missing LOI values with 100 - Total, rather than NA
MajorChemUnNorm$LOI[which(is.na(MajorChemUnNorm$LOI))] <- 100 -
MajorChemUnNorm$Total[which(is.na(MajorChemUnNorm$LOTI))]

# Remove outliers from this data frame also

MajorChem <- subset(MajorChemUnNorm, Sample !="LG4")
MajorChem <- subset(MajorChem, Sample !="SR2")
MajorChem <- subset(MajorChem, Sample !="LG2")
MajorChem <- subset(MajorChem, Sample !="DS1")

# Correct for LOI values
temp <- totaldata2$As/(100 - MajorChem$LOI) * 100
totaldata2$As <- temp

temp <- totaldata$As/(100 - MajorChemUnNorm$LOI) * 100
totaldataLOI <- totaldata

totaldataLOI$ As <- temp

# Log transform data

logtotaldata <- log(totaldata2[,4:36])

logtotaldata <- cbind(totaldata2[,1:3], logtotaldata)

totaldata3 <- logtotaldata

logtotaldata <- log(totaldatalLOI[,4:36])
logtotaldata <- cbind(totaldatalL.OI[,1:3], logtotaldata)
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totaldatalLOI2 <- logtotaldata

# Create data frame excluding sediment samples

tuffs <- subset(totaldata3, totaldata3$Devitrification != "Sediment")
tuffs$Devitrification <- factor(tuffs§ Devitrification)

tuffs$ Weathering <- factor(tuffs$ Weathering)

tuffsO <- subset(totaldatalO12, totaldataLOI2$Devitrification != "Sediment")
tuffsO$Devitrification <- factor(tuffsO$Devitrification)
tuffsO$Weathering <- factor(tuffsO$Weathering)

# Create data frame of only sediment samples
sed <- subset(totaldata3, totaldata3$Devitrification == "Sediment")
sedO <- subset(totaldatalLOI2, totaldatalLOI2$Devitrification == "Sediment")

# Create data frame where tuff v sed is a factor

testtuff <- tuffs

testtuff$ Weathering <- "Tuff"

testtuff <- rbind(testtuft, sed)

testtuff§ Weathering <- factor(testtuff$ Weathering)

testtuffO <- tuffsO

testtuffO$Weathering <- "Tuff"

testtuffO <- rbind(testtuffO, sedO)

testtuffO$ Weathering <- factor(testtuffO$ Weathering)

# Create data frame of unweathered samples only
unweathered <- subset(tuffs, Weathering == "Unweathered")
unweatheredO <- subset(tuffsO, Weathering == "Unweathered")

# Create data frame of weathered samples only
weathered <- subset(tuffs, Weathering == "Weathered")
weatheredO <- subset(tuffsO, Weathering == "Weathered")

# Create data frame of devitrified samples only
devit <- subset(unweathered, Devitrification == "Devitrified")
devitO <- subset(unweatheredO, Devitrification == "Devitrified")

# Create data frame of glassy samples only
glassy <- subset(unweathered, Devitrification == "Glassy")
glassyO <- subset(unweatheredO, Devitrification == "Glassy")

# Calculate descriptive statistics
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# Geometric mean and SD
exp(mean(tuffs$As))
exp(mean(tuffsO$As))
exp(sd(tuffs$As))
exp(sd(tuffsO$As))

exp(mean(unweathered$As))
exp(mean(unweatheredO$As))
exp(mean(weathered$As))
exp(mean(weatheredO$As))
exp(sd(unweathered$As))
exp(sd(unweatheredO$As))
exp(sd(weathered$ As))
exp(sd(weatheredO$As))

exp(mean(devit$As))
exp(mean(devitO$As))
exp(mean(glassy$As))
exp(mean(glassyO$As))
exp(sd(devit$As))
exp(sd(devitO$As))
exp(sd(glassy$As))
exp(sd(glassyOS$As))

exp(mean(sed$As))
exp(mean(sedO$As))
exp(sd(sed$As))
exp(sd(sedO$As))

# Arithmetic Mean, Median, SD

mean(totaldatalLOI$ As[which(totaldataLOI$Weathering == "Weathered")])
mean(totaldata2$ As[which(totaldata2$§Weathering == "Weathered")])
median(totaldataLOI$ As[which(totaldatalL OI$ Weathering == "Weathered")])
median(totaldata2$ As[which(totaldata2$Weathering == "Weathered")])
sd(totaldatalLOI$ As[which(totaldataLOI$ Weathering == "Weathered")])
sd(totaldata2$ As[which(totaldata2§Weathering == "Weathered")])

mean(totaldatalL OI$ As[which(totaldataLOI$Weathering == "Unweathered")])
mean(totaldata2$ As[which(totaldata2$§ Weathering == "Unweathered")])
median(totaldatalLOI$ As[which(totaldataLOI$ Weathering == "Unweathered")])
median(totaldata2$ As[which(totaldata2$Weathering == "Unweathered")])
sd(totaldataL OI$ As[which(totaldataLOI$ Weathering == "Unweathered")])
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sd(totaldata2$ As[which(totaldata2$ Weathering == "Unweathered")])

mean(totaldatalLOI$ As[which(totaldataLOI$Devitrification == "Devitrified")])
mean(totaldata2$ As[which(totaldata2$Devitrification == "Devitrified")])
median(totaldataLOI$ As[which(totaldatalLOI$ Devitrification == "Devitrified")])
median(totaldata2$ As[which(totaldata2$Devitrification == "Devitrified")])
sd(totaldatalLOI$ As[which(totaldataLOI$Devitrification == "Devitrified")])
sd(totaldata2$ As[which(totaldata2§ Devitrification == "Devitrified")])

mean(totaldatalLOI$ As[which(totaldataLOI$Devitrification == "Glassy")])
mean(totaldata2$ As[which(totaldata2$Devitrification == "Glassy")])
median(totaldataLOI$ As[which(totaldatalLOI$Devitrification == "Glassy")])
median(totaldata2$ As[which(totaldata2$Devitrification == "Glassy")])
sd(totaldataLOI$ As[which(totaldataLOI$Devitrification == "Glassy")])
sd(totaldata2$ As[which(totaldata2$Devitrification == "Glassy")])

mean(totaldatalLOI$ As[which(totaldataLOI$Devitrification == "Sediment")])
mean(totaldata2$ As[which(totaldata2$Devitrification == "Sediment")])
median(totaldatalLOI$ As[which(totaldatalLOI$ Devitrification == "Sediment")])
median(totaldata2$As[which(totaldata2$Devitrification == "Sediment")])
sd(totaldatalLOI$ As[which(totaldataLOI$Devitrification == "Sediment")])
sd(totaldata2$ As[which(totaldata2$Devitrification == "Sediment")])

# Test for normality
shapiro.test(tuffs$ As)
shapiro.test(sed$As)
shapiro.test(weathered$ As)
shapiro.test(unweathered$As)
shapiro.test(glassy$As)
shapiro.test(devit$ As)

# Compare tuffs and sediments

t.test(tuffs$As, sed$As)

wilcox.test(tuffs$As, sed$ As)

var.test(tuffs$As, sed$As)

levene.test(testtuff$ As, testtuff§ Weathering, bootstrap = FALSE)
boxplot(tuffs$As, sed$As)

# Compare weathered and unweathered samples
t.test(As ~ Weathering, tuffs)

var.test(As ~ Weathering, tuffs)

wilcox.test(As ~ Weathering, tuffs)
levene.test(tuffs$As, tuffs$ Weathering)
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boxplot(As ~ Weathering, tuffs, ylab = "As (mg/kg)", main = "Total As")
# Compare glassy and devitrified samples

t.test(As ~ Devitrification, unweathered)

wilcox.test(As ~ Devitrification, unweathered)

var.test(As ~ Devitrification, unweathered)

kruskal.test(As ~ Devitrification, unweathered)

levene.test( unweathered$As, unweathered$Devitrification)

boxplot(As ~ Devitrification, unweathered, ylab = "As (mg/kg)", main = "Total As")
# Log tranform and remove outliers from Env. Available Fraction

4.
1

I+

I+

# Remove outliers
test <- grubb(partialdata)
test <- grubb(test)

partialdata2 <- test
# Log transform the data

logpartialdata <- log(partialdata2[,4:30])
logpartialdata <- cbind(partialdata2[,1:3], logpartialdata)

logpartialdataO <- log(partialdata[,4:30])
logpartialdataO <- cbind(partialdata[,1:3], logpartialdataO)

# Create data frame excluding sediment samples

tuffspartial <- subset(logpartialdata, logpartialdata$§Devitrification != "Sediment")
tuffspartial$ Devitrification <- factor(tuffspartial$ Devitrification)

tuffspartial§ Weathering <- factor(tuffspartial§ Weathering)

tuffspartialO <- subset(logpartialdataO, logpartialdataO$Devitrification != "Sediment")
tuffspartialO$Devitrification <- factor(tuffspartialO$Devitrification)

tuffspartialO$ Weathering <- factor(tuffspartialO$ Weathering)

# Create data frame of only sediment samples

sedpartial <- subset(logpartialdata, logpartialdata$Devitrification == "Sediment")
sedpartialO <- subset(logpartialdataO, logpartialdataO$Devitrification == "Sediment")

# Create data frame where tuff v sed is a factor
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testtuffpartial <- tuffspartial

testtuffpartial} Weathering <- "Tuft"

testtuffpartial <- rbind(testtuffpartial, sedpartial)
testtuffpartial§ Weathering <- factor(testtuffpartial$ Weathering)

testtuffpartial O <- tuffspartial O

testtuffpartialO$ Weathering <- "Tuff"

testtuffpartial O <- rbind(testtuffpartialO, sedpartialO)
testtuffpartialO$ Weathering <- factor(testtuffpartial O$ Weathering)

# Create data frame of unweathered samples only
unweatheredpartial <- subset(tuffspartial, Weathering == "Unweathered")
unweatheredpartialO <- subset(tuffspartialO, Weathering == "Unweathered")

# Create data frame of weathered samples only
weatheredpartial <- subset(tuffspartial, Weathering == "Weathered")
weatheredpartialO <- subset(tuffspartial O, Weathering == "Weathered")

# Create data frame of devitrified samples only
devitpartial <- subset(unweatheredpartial, Devitrification == "Devitrified")
devitpartialO <- subset(unweatheredpartialO, Devitrification == "Devitrified")

# Create data frame of glassy samples only
glassypartial <- subset(unweatheredpartial, Devitrification == "Glassy")
glassypartial O <- subset(unweatheredpartialO, Devitrification == "Glassy")

# Calculate descriptive statistics

# Geometric mean and SD
exp(mean(tuffspartial$As))
exp(mean(tuffspartial O$As))
exp(sd(tuffspartial$ As))
exp(sd(tuffspartialO$ As))

exp(mean(unweatheredpartial$ As))
exp(mean(unweatheredpartial O$ As))
exp(mean(weatheredpartial$As))
exp(mean(weatheredpartial O$As))
exp(sd(unweatheredpartial$As))
exp(sd(unweatheredpartial O$ As))
exp(sd(weatheredpartial$ As))
exp(sd(weatheredpartial O$ As))
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exp(mean(devitpartial$As))
exp(mean(devitpartial O$ As))
exp(mean(glassypartial$ As))
exp(mean(glassypartial O$ As))
exp(sd(devitpartial$As))
exp(sd(devitpartialO$As))
exp(sd(glassypartial$ As))
exp(sd(glassypartialO$ As))

exp(mean(sedpartial$ As))
exp(mean(sedpartialO$ As))
exp(sd(sedpartial$ As))
exp(sd(sedpartial O$As))

# Arithmetic Mean, Median, SD

mean(partialdata$§ As[which(partialdata$ Weathering == "Weathered")])
mean(partialdata2$ As[which(partialdata2$ Weathering == "Weathered")])
median(partialdata$ As[which(partialdata§Weathering == "Weathered")])
median(partialdata2$ As[which(partialdata2$Weathering == "Weathered")])
sd(partialdata$ As[which(partialdata$ Weathering == "Weathered")])
sd(partialdata2$ As[which(partialdata2$ Weathering == "Weathered")])

mean(partialdata$ As[which(partialdata§ Weathering == "Unweathered")])
mean(partialdata2$ As[which(partialdata2$ Weathering == "Unweathered")])
median(partialdata$§ As[which(partialdata§ Weathering == "Unweathered")])
median(partialdata2$ As[which(partialdata2$Weathering == "Unweathered")])
sd(partialdata$ As[which(partialdata§ Weathering == "Unweathered")])
sd(partialdata2$ As[which(partialdata2$ Weathering == "Unweathered")])

mean(exp(devitpartial$As))
mean(exp(devitpartial O$ As))
median(exp(devitpartial$ As))
median(exp(devitpartialO$As))
sd(exp(devitpartial$As))
sd(exp(devitpartialO$As))

mean(exp(glassypartial$ As))
median(exp(glassypartial$As))
sd(exp(glassypartial$ As))

mean(partialdata$ As[which(partialdata$ Devitrification == "Sediment")])
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mean(partialdata2$ As[which(partialdata2$ Devitrification == "Sediment")])
median(partialdata$§ As[which(partialdata$ Devitrification == "Sediment")])
median(partialdata2$ As[which(partialdata2$Devitrification == "Sediment")])
sd(partialdata$ As[which(partialdata§Devitrification == "Sediment")])
sd(partialdata2$ As[which(partialdata2$ Devitrification == "Sediment")])

mean(partialdata$§ As[which(partialdata$ Devitrification != "Sediment")])
mean(partialdata2$ As[which(partialdata2$Devitrification != "Sediment")])
median(partialdata$ As[which(partialdata§Devitrification != "Sediment")])
median(partialdata2$ As[which(partialdata2$Devitrification != "Sediment")])
sd(partialdata$ As[which(partialdata$§Devitrification != "Sediment")])
sd(partialdata2$ As[which(partialdata2$Devitrification !="Sediment")])

# Test for normality
shapiro.test(tuffspartial$ As)
shapiro.test(sedpartial$ As)
shapiro.test(weatheredpartial$ As)
shapiro.test(unweatheredpartial$ As)
shapiro.test(devitpartial § As)
shapiro.test(glassypartial §As)

# Compare groups

# Compare variability

levene.test(testtuffpartial § As, testtuffpartial§ Weathering)
levene.test(tuffspartial$ As, tuffspartial$ Weathering)
levene.test(unweatheredpartial$ As, unweatheredpartial$ Devitrification)
# Compare medians kinda..

wilcox.test(As ~ Weathering, testtuffpartial)

wilcox.test(As ~ Weathering, tuffspartial)

wilcox.test(As ~ Devitrification, unweatheredpartial)

# Compare weathered and unweathered devitrified and glassy

glassytest <- subset(tuffspartial, Devitrification == "Glassy")
wilcox.test(As ~ Weathering, glassytest)

devittest <- subset(tuffspartial, Devitrification == "Devitrified")
wilcox.test(As ~ Weathering, devittest)
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# Check correlations with total As excluding outliers.

testcor <- subset(totaldata, Sample !="DVC1")
testcor <- data.frame(testcor$Sample,

testcor$Devitrification,

testcor$ Weathering,

testcor$As,

partialdata$ As)
testcor <- subset(testcor, testcor.Sample !="LG4")
testcor <- subset(testcor, testcor.Sample !="LG2")
testcor <- subset(testcor, testcor.Sample !="SR2")
testcor <- subset(testcor, testcor.Sample !="DS1")

testcorweathered <- subset(testcor, testcor.Weathering == "Weathered")
testcorun <- subset(testcor, testcor. Weathering == "Unweathered")
testcordevit <- subset(testcorun, testcor.Devitrification == "Devitrified")
testcorsed <- subset(testcor, testcor.Devitrification == "Sediment")

test <- Im(partialdata.As ~ testcor.As, testcor)

test <- Im(partialdata.As ~ testcor.As, testcorweathered)
test <- Im(partialdata.As ~ testcor.As, testcordevit)

test <- Im(partialdata.As ~ testcor.As, testcorsed)

4.
1

# Log tranform and remove outliers from Readily Leachable Fraction

F

4.
1

I+

# Create subset of data frame that only includes As > MDL
leachdata2 <- subset(leachdata, As > 51.05875)
# Log transform the data

logleachdata <- log(leachdata2[,4:20])
logleachdata <- cbind(leachdata2[,1:3], logleachdata)

logleachdataO <- log(leachdata[,4:20])
logleachdataO <- cbind(leachdatal,1:3], logleachdataO)

# Create data frame excluding sediment samples

tuffsleach <- subset(logleachdata, logleachdata§Devitrification != "Sediment")
tuffsleach§Devitrification <- factor(tuffsleach$Devitrification)

tuffsleach$ Weathering <- factor(tuffsleach$ Weathering)
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tuffsleachO <- subset(logleachdataO, logleachdataO$Devitrification != "Sediment")
tuffsleachO$Devitrification <- factor(tuffsleachO$Devitrification)
tuffsleachO$ Weathering <- factor(tuffsleachO$ Weathering)

# Create data frame of only sediment samples
sedleach <- subset(logleachdata, logleachdata$Devitrification == "Sediment")
sedleachO <- subset(logleachdataO, logleachdataO$Devitrification == "Sediment")

# Create data frame where tuff v sed is a factor

testtuffleach <- tuffsleach

testtuffleach§ Weathering <- "Tuff"

testtuffleach <- rbind(testtuffleach, sedleach)

testtuffleach§ Weathering <- factor(testtuffleach$ Weathering)

testtuffleachO <- tuffsleachO

testtuffleachO$ Weathering <- "Tuft"

testtuffleachO <- rbind(testtuffleachO, sedleachO)
testtuffleachO$ Weathering <- factor(testtuffleachO$Weathering)

# Create data frame of unweathered samples only
unweatheredleach <- subset(tuffsleach, Weathering == "Unweathered")
unweatheredleachO <- subset(tuffsleachO, Weathering == "Unweathered")

# Create data frame of weathered samples only
weatheredleach <- subset(tuffsleach, Weathering == "Weathered")
weatheredleachO <- subset(tuffsleachO, Weathering == "Weathered")

# Create data frame of devitrified samples only
devitleach <- subset(unweatheredleach, Devitrification == "Devitrified")
devitleachO <- subset(unweatheredleachO, Devitrification == "Devitrified")

# Create data frame of glassy samples only
glassyleach <- subset(unweatheredleach, Devitrification == "Glassy")
glassyleachO <- subset(unweatheredleachO, Devitrification == "Glassy")

# Calculate descriptive statistics

# Geometric mean and SD
exp(mean(tuffsleach$As))
exp(mean(tuffsleachO$As))
exp(sd(tuffsleach$As))
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exp(sd(tuffsleachO$ As))

exp(mean(unweatheredleach$As))
exp(mean(unweatheredleachO$As))
exp(mean(weatheredleach$As))
exp(mean(weatheredleachO$As))
exp(sd(unweatheredleach$As))
exp(sd(unweatheredleachO$As))
exp(sd(weatheredleach$As))
exp(sd(weatheredleachO$As))

exp(mean(devitleach$As))
exp(mean(devitleachO$As))
exp(mean(glassyleach$As))
exp(mean(glassyleachO$As))
exp(sd(devitleach$As))
exp(sd(devitleachO$As))
exp(sd(glassyleach$As))
exp(sd(glassyleachO$As))

exp(mean(sedleach$As))
exp(mean(sedleachO$As))
exp(sd(sedleach$As))
exp(sd(sedleachO$ As))

# Arithmetic Mean, Median, SD

mean(leachdata$ As[which(leachdata§Weathering == "Weathered")])
mean(leachdata2$ As[which(leachdata2$Weathering == "Weathered")])
median(leachdata$ As[which(leachdata$ Weathering == "Weathered")])
median(leachdata2$ As[which(leachdata2$ Weathering == "Weathered")])
sd(leachdata$§As[which(leachdata§Weathering == "Weathered")])
sd(leachdata2$ As[which(leachdata2$Weathering == "Weathered")])

mean(leachdata$ As[which(leachdata§Weathering == "Unweathered")])
mean(leachdata2$ As[which(leachdata2$Weathering == "Unweathered")])
median(leachdata$ As[which(leachdata$Weathering == "Unweathered")])
median(leachdata2$ As[which(leachdata2$Weathering == "Unweathered")])
sd(leachdata$As[which(leachdata§Weathering == "Unweathered")])
sd(leachdata2$ As[which(leachdata2$Weathering == "Unweathered")])

mean(exp(devitleach$ As))
mean(exp(devitleachO$As))
median(exp(devitleach$ As))
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median(exp(devitleachO$As))
sd(exp(devitleach$As))
sd(exp(devitleachO$As))

mean(leachdata$ As[which(leachdata$Devitrification == "Glassy")])
mean(leachdata2$ As[which(leachdata2$Devitrification == "Glassy")])
median(leachdata$§ As[which(leachdata$Devitrification == "Glassy")])
median(leachdata2$ As[which(leachdata2$Devitrification == "Glassy")])
sd(leachdata$As[which(leachdata$Devitrification == "Glassy")])
sd(leachdata2$ As[which(leachdata2$Devitrification == "Glassy")])

mean(leachdata$ As[which(leachdata$Devitrification == "Sediment")])
mean(leachdata2$ As[which(leachdata2$Devitrification == "Sediment")])
median(leachdata$ As[which(leachdata$Devitrification == "Sediment")])
median(leachdata2$ As[which(leachdata2$Devitrification == "Sediment")])
sd(leachdata$As[which(leachdata$Devitrification == "Sediment")])
sd(leachdata2$ As[which(leachdata2$Devitrification == "Sediment")])

mean(leachdata$ As[which(leachdata$Devitrification !="Sediment")])
mean(leachdata2$ As[which(leachdata2$Devitrification !="Sediment")])
median(leachdata$ As[which(leachdata$Devitrification !="Sediment")])
median(leachdata2$ As[which(leachdata2$Devitrification != "Sediment")])
sd(leachdata$ As[which(leachdata$Devitrification !="Sediment")])
sd(leachdata2$ As[which(leachdata2$Devitrification != "Sediment")])

# Test for normality
shapiro.test(tuffsleachO$ As)
shapiro.test(sedleachO$ As)
shapiro.test(weatheredleachO$As)
shapiro.test(unweatheredleachO$ As)
shapiro.test(devitleachO$As)
shapiro.test(glassyleachO$ As)

# Compare groups

# Compare variability

levene.test(testtuffleachO$ As, testtuffleachO$Weathering)
levene.test(tuffsleachO$ As, tuffsleachO$ Weathering)

levene.test(unweatheredleachO$ As, unweatheredleachO$Devitrification)

var.test(As ~ Weathering, testtuffleachO)
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var.test(As ~ Weathering, tuffsleachO)
var.test(As ~ Devitrification, unweatheredleachO)

# Compare means
t.test(As ~ Weathering, testtuffleachO, var.equal = FALSE)

t.test(As ~ Weathering, tuffsleachO, var.equal = TRUE)
t.test(As ~ Devitrification, unweatheredleachO, var.equal = FALSE)
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