Portland State University PDXScholar

Dissertations and Theses

Dissertations and Theses

Spring 7-22-2013

Arsenic Mobility and Compositional Variability in High-Silica Ash Flow Tuffs

Courtney Beth Young Savoie Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Geology Commons, and the Other Environmental Sciences Commons Let us know how access to this document benefits you.

Recommended Citation

Savoie, Courtney Beth Young, "Arsenic Mobility and Compositional Variability in High-Silica Ash Flow Tuffs" (2013). *Dissertations and Theses.* Paper 1012. https://doi.org/10.15760/etd.1012

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Arsenic Mobility and Compositional Variability in High-Silica Ash Flow Tuffs

by

Courtney Beth Young Savoie

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Geology

Thesis Committee: Robert B. Perkins, Chair Martin J. Streck Carl Palmer

Portland State University 2013

<u>ABSTRACT</u>

Volcanic rocks typically have only low to moderate arsenic concentrations, nonethe-less, elevated levels of arsenic in ground waters have been associated with pyroclastic and volcaniclastic rocks and sediments in many parts of the world. The potential for arsenic leaching from these deposits is particularly problematic as they often comprise important water-bearing units in volcanic terrains. However, the role that chemical and mineralogical variations play in controlling the occurrence and mobility of arsenic from pyroclastic rocks is largely unexplored.

This study uses chemical and X-ray diffraction data to characterize and classify 49 samples of ash-flow tuffs, and 11 samples of tuffaceous sediments. The samples exhibit a range of devitrification and chemical weathering. Total and partial digestion, and water extractions of samples are used to determine the total, environmentally available, and readily leachable fractions of arsenic present in all tuff samples. Leaching experiments were also performed with buffered solutions to determine the influence of elevated pH levels on arsenic mobility.

The 49 tuff samples have a mean arsenic content of 7.5 mg kg⁻¹, a geometric mean arsenic content of 4.8 mg kg⁻¹, a median arsenic content of 5.2 mg kg⁻¹, and a maximum arsenic concentration of 81 mg kg⁻¹. The mean and median values are 2.8 - 4.4x the average crustal abundance of 1.7 mg kg⁻¹ (Wedepohl, 1995), and consistent with previously reported values for volcanic glasses and felsic volcanic rocks (Onishi and Sandell, 1955; Wedepohl, 1995), although the maximum arsenic content is higher than

i

previously reported (e.g., Casentini et al., 2010; Fiantis et al., 2010; Nobel et al., 2004). In addition, the arsenic concentrations of tuffs were found to be highly heterogenous, both between and within individual units, and in some cases, individual outcrops.

Results of whole rock and leachate analyses indicate that there is no significant difference in the total arsenic content of tuffs as a result of devitrification or weathering, but both devitrified and weathered tuffs contain higher levels of environmentally available arsenic than unweathered glassy tuffs. Glassy tuffs did not produce any readily leachable arsenic, while individual devitrified and weathered tuffs both generated aqueous concentrations that exceeded regulatory limits after 18 hours. Leaching of weathered tuffs produced higher levels of arsenic at high (~9-11) pH than in tests conducted at circum-neutral pH. Devitrified and glassy tuffs showed no increase in leachable arsenic with increasing pH.

The results of this study indicate that devitrification and weathering processes determine the host phases, degree of adsorption, and overall mobility of arsenic from ashflow tuffs. Tuffs that have undergone different types of alteration are likely to have different host phases of arsenic, and different mechanisms that mobilize arsenic into the environment. Potential host phases and mobility mechanisms are discussed, and a conceptual model of arsenic behavior in ash-flow tuffs is proposed.

<u>ACKNOWLEDGMENTS</u>

Thank you to my advisor, Ben Perkins, for all of his patience, support, pep talks, ability to remain calm in the face of broken lab equipment, and for generally putting up with me during this whole process. I would also like to thank Martin Streck for sharing his expertise on ash-flow tuffs and where to find all the best samples. Thanks to Carl Palmer for his thoughtful comments and insights. I would also like to thank Marin Klinger, Megan Masterson, and Katie Davis for volunteering to help with sample preparation. Last, but not least, many thanks to all of my friends and family, who have been endlessly patient and encouraging during this process, and whose love and support I couldn't have done this without. Funding for this research was provided by the Geological Society of America.

TABLE OF CONTENTS

Abstract	i
Acknowledgments	iii
List of Tables	vi
List of Figures	ix
Chapter 1: Introduction and Background	1
Introduction	1
Background	
Arsenic Geochemistry	
Redox Behavior of Arsenic	4
Sorption Behavior of Arsenic	5
Common Sorbents	5
Reducing Groundwater Systems	8
Oxidizing Groundwater Systems	9
Chemical and Mineralogical Variations in Ash-Flow Tuffs	9
Arsenic in Tuffs	12
Chapter 2: Arsenic Occurrence in Ash-Flow Tuffs and Associated Sediments	17
Introduction	
Methods	18
Sample Collection and Preparation	18
X-ray Diffraction (XRD)	19
Optical Microscopy	
Bulk Chemistry	
Total Arsenic.	
Results: Bulk Rock Characterization	
Major Mineralogy	
Sample Categorization	32
Results: Bulk Rock Chemistries	34
QA/QC Results	34
Bulk Chemistry	
Total Arsenic Concentrations	43
Variability Within Units	47
Elemental Correlations	49
Discussion	51
Composition of Source Magma	51
Depositional Processes	52
Post-Depositional Alteration Processes	53
Chapter 3: Arsenic Mobility In Ash-Flow Tuffs and Associated Sediments	56
Introduction	56
Methods	57
Environmentally Available Arsenic	57
Readily Leachable Arsenic	58

pH Dependent Extractions	59
Results	
QC Results	
Environmentally Available Arsenic	
Readily Leachable Arsenic	
pH-Dependent Arsenic Mobility	
Elemental Correlations	
Discussion	
Potential Host Phases of Arsenic	
Potential Mechanisms of Arsenic Mobilization	
Chapter 4: Conclusions	
Conclusions and Conceptual Model	
Future Work	
Works Cited	
Appendix A: Analytical Operating Conditions and Quality Control	
Appendix B: Details of Statistical Methods	
Appendix C: Additional Chemical Data	

LIST OF TABLES

Table 1. Total and environmentally available arsenic concentrations of select tuff samples used in preliminary As leaching study. Available arsenic refers to arsenic present in phases other than glasses and silicate mineral phases such as feldspars and quartz. Note: total As concentrations from previous INAA analysis. Errors = 1_{τ} from replicate analysis
Table 2. Locations and ages of samples used in this study
Table 3. Major mineralogy and categorization of tuff samples, based on semi-quantitative XRD results, optical microscopy, and examination of hand samples. Percentages of amorphous material (glass) was not included in semi-quantitative XRD results, and was instead estimated solely from examination of XRD patterns, thin sections, hand samples. 29
Table 4. Recoveries for certified reference materials analyzed via ICP-OES. Arsenicrecoveries ranged from 82.7% to 94.6%. S had recovery percentages within ± 5%,but other elements were more variable.34
Table 5. Relative percent differences for duplicate samples analyzed via EPA Method 3052
Table 6. Recoveries from Method Blank and check standards analyzed via ICP-OES.Check standard QC1 had a concentration of 100 ug/L for all elements except Sb andSn, and check standard QC2 had a concentration of 50 ug/L for all elements exceptSb and Sn.35
Table 7. Relative percent differences for sample DT3, analyzed at the WSU Geoanalytical Lab (WSU) and Activation Laboratories (AL). Major elements are reported in weight percent, and trace elements are reported in mg/kg
Table 8. Major element chemistry for tuff and tuffaceous sediment samples. All values were obtained via XRF, and reported in weight percent. 37
Table 9. Selected trace element concentrations (mg kg ⁻¹) for tuff and tuffaceous sediment samples. Full trace element results can be found in Appendix C. For samples analyzed at Activation Laboratories the elements Cu, Mo, Pb, Ni, Zn, S, Li, Be, Sr, and V were obtained via ICP-MS, and the elements As, Ba, Cr, Rb, and Sb were obtained via INAA. For samples analyzed at WSU the elements Ba, Cr, Cu, Ni, Pb, Rb, Sr, V, and Zn were analyzed via XRF and the elements As, Be, and Mo were analyzed via ICP-OES at Portland State University. Blank entries indicate that values were not analyzed
Table 10. Total arsenic contents of tuffs and tuffaceous sediments. Numbers in
parentneses indicate values that include samples identified as outliers

Table 11. Test statistics (W) and p-values for Shapiro-Wilk tests of normality
Table 12. Test statistics, number of samples, and p-values for Brown-Forsythe tests of equal variances. 44
Table 13. Test statistic (U), number of samples, and p-values for Man-Whitney-Wilcoxon tests of equality performed on sample categories. 45
Table 14. Statistically significant (p < 0.05) elemental correlations with arsenic. Italicizeditems showed a negative correlation with arsenic, while un-italicized items showed apositive correlation
Table 15. Buffer solutions used to control pH levels in pH specific leaching experiments. 59
Table 16. Relative percent differences for duplicate samples analyzed via EPA Method 3051a
Table 17. Relative percent differences for water extractions analyzed in duplicate. 63
Table 18. Environmentally available fraction of arsenic present in ash-flow tuffs and tuffaceous sediments. Numbers in parentheses indicate values that include samples identified as outliers
Table 19. Test statistics (W) and p-values for Shapiro-Wilk tests of normality
Table 20. Test statistics, number of samples, and p-values for Brown-Forsythe tests of equal variances. 65
Table 21. Test statistic (U), number of samples, and p-values for Man-Whitney-Wilcoxon tests of equality performed on sample categories. 65
Table 22. Readily leachable fraction of arsenic present in ash-flow tuffs and tuffaceous sediments. Values in parentheses indicate values that include samples below the MDL of 102 μg/kg
Table 23. Test statistics (W) and p-values for Shapiro-Wilk tests of normality
Table 24. Test statistics (F), numerator and denominator degrees of freedom, and p- values for F tests of eqaulity of variances
Table 25. Test statistic (t), number of samples, and p-values for two sample students t- tests of equality performed on sample categories.70
Table 26. Aqueous arsenic concentrations produced by water leaching experiments. Descriptive statistical values only include samples that exceeded method detection limits. 73

Table 27. Statistically significant ($p < 0.05$) elemental correlations with arsenic. Italicized	1
elements showed a negative correlation with arsenic, while un-italicized elements	
showed a positive correlation	7

LIST OF FIGURES

Figure 1. Eh-pH diagram for aqueous arsenic species at 25°C and 1 bar pressure, from (Smedley and Kinniburgh, 2002)
 Figure 2. Adsorption of arsenate and arsenite onto A) amorphous iron oxide and B) goethite as a function of pH. Arsenic concentrations range from 100 μM (■) to 10 μM (O). From Dixit & Hering (2003)
Figure 3. Conceptual model of cooling ash-flow unit showing zonation and vertical porosity variation (Istok et al., 1994)
Figure 4. Arsenic K-edge XANES spectra of selected tuff samples from preliminary As leaching study. The less altered tuff contained primarily As(III) while the highly altered tuff contained primarily As(V)
Figure 5. XRD analysis of six tuff samples used in preliminary As leaching study displaying increasing degrees of low-temperature alteration. More altered tuffs contain a larger number of mineral phases, which increases the number of potential host phases of arsenic in altered tuffs relative to unweathered glassy samples 16
Figure 6. Sample PG2, under plane light at 5x magnification, displaying axilotic texture produced during devitrification, where minerals crystallized perpendicular to the boundaries of glass shards
Figure 7. Sample PG1 under plane light at 5x magnification, displaying both axiolitic texture and alteration to green and brown clay minerals
Figure 8. XRD patterns for unweathered glassy (RST9) and devitrified samples (RST13). Glass content of samples was estimated based upon the deviation of background levels from a straight line between approximately 10 and 40 °20, coupled with visual examination of hand samples and thin sections
Figure 9. Arsenic as a function of alumina/alkali ratios of tuff samples. The majority of the samples have ratios > 1, and there is no correlation between alumina/alkali ratios and arsenic concentrations
Figure 10. Log transformed distributions of total arsenic concentrations for samples divided by category. A: without outlying values. B: with outlying values. Yellow squares indicate mean values. 46
Figure 11. Ranges of arsenic found in individual geologic units. DC = Dinner Creek Tuff, DT = Dale Tuff, DVC = Devine Canyon Tuff, FD = Tuff of Foster Dam, LG = Tuff of Leslie Gulch, MK = Tuff of Mohawk, PG = Picture Gorge Tuff, RST = Rattlesnake Tuff, SR = Tuff of Smith Rock

Figure 12. Stratigraphy and corresponding arsenic concentrations for two sections of individual tuff units. The type section of the Rattlesnake tuff shows higher arsenic levels upsection in the less porous sections of the unit. The Dinner Creek section shows arsenic concentrations ranging from <0.5 mg kg ⁻¹ (non-detect value plotted as 0 mg kg ⁻¹) to 6.8 mg kg ⁻¹ , with no apparent relationship between arsenic concentration and position within the section. Error bars are based on INAA recovery percents from certified reference materials from Activation Laboratories, Ltd.
Figure 13. Log transformed Arsenic and FeO concentrations in tuffs and tuffaceous sediments. Although statistically significant positive correlations were found between arsenic and FeO, there is not a strong linear relationship between the elements
Figure 14. Environmentally available fraction of arsenic present in tuffs and tuffaceous sediments. Yellow squares indicate mean values. In unweathered glassy tuffs significantly less of the total arsenic is present in the environmentally available fraction than is found in devitrified or weathered tuffs, or tuffaceous sediments 66
Figure 15. Environmentally available fraction of arsenic present in devitrified and glassy tuffs, by degree of weathering. Yellow squares indicate mean values. Weathering produces substantial differences in the environmentally available fraction of arsenic in glassy tuffs, but the difference between weathered and unweathered devitrified tuffs is not significant
Figure 16. Environmentally available arsenic as a function of total arsenic concentrations. There is a direct relationship between total and available arsenic in all categories except glassy tuffs
Figure 17. Readily leachable arsenic contents of ash-flow tuffs and tuffaceous sediments. Yellow boxes represent mean values. Tuffaceous sediments contained significantly more readily leachable arsenic than all categories of tuffs. Devitrified and weathered tuffs showed a greater range of readily leachable arsenic values than unweathered glassy tuffs
Figure 18. Readily leachable arsenic as a function of total arsenic present in samples. There is no correlation between the total amount of arsenic present in tuffs and sediments and the amount present in the readily leachable fraction
Figure 19. Aqueous arsenic concentrations produced by water leaching experiments. Weathered and devitrified tuffs and tuffaceous sediments all produced aqueous arsenic concentrations exceeding regulatory limits
Figure 20. Arsenic concentrations from leaching experiments with uncontrolled pH compared with concentrations produced at pH 9 and 11. In weathered tuffs arsenic concentrations increased slightly from the circum-neutral conditions of the

uncontrolled leachate experiments to pH 9, while arsenic concentrations decreased slightly between circum-neutral conditions and pH 9.	l 76
Figure 21. Linear relationship between readily leachable arsenic and iron in weathered tuff samples, p = 1.8e-07.	78
Figure 22. Conceptual model of arsenic behavior in ash-flow tuffs	85

CHAPTER 1: INTRODUCTION AND BACKGROUND

INTRODUCTION

The occurrence of groundwater containing elevated arsenic concentrations has emerged as a major health concern throughout the world. Arsenic is known to cause cancer of the skin, bladder, and lungs, damage to the circulatory and nervous systems, hypertension, and diabetes (Brown and Ross, 2002; Ng et al., 2003). Arsenic levels exceeding the World Health Organization Maximum Contaminant Level (MCL) of 50 μ g/L occur in many locations worldwide including Bangladesh, India, Cambodia, Argentina, the United States, Hungary, and China, among others, and is likely to occur in additional regions where reliable data regarding drinking water is currently unavailable (Amini et al., 2008). Within the United States, where approximately half the population depends on groundwater sources for drinking water, arsenic concentrations exceeding the Environmental Protection Agency MCL of 10 μ g/L are found in 5-11% of groundwater sourced drinking water systems (Ryker, 2003).

Elevated arsenic concentrations in drinking water supplies in several locations within the United States, Argentina, Greece, Turkey, Chile and Italy have been associated with volcanic rocks and ash-flow tuffs (Casentini et al., 2010; Johannesson and Tang, 2009; Welch et al., 2000). Proximity to volcanic rocks has been found to be statistically predictive of arsenic contamination of water supplies (Amini et al., 2008). Felsic tuffs have been identified as primary hydrologic units in ~25% of the regions in the United States known to contain high groundwater arsenic levels and in at least one case, dissolution of volcanic glass has been identified as the primary geochemical source of arsenic in groundwater (Johannesson and Tang, 2009; Welch et al., 2000). Several studies have identified volcanic tuffs or tuffaceous sediments as the source of groundwater arsenic in the southern Willamette Valley of Oregon (Goldblatt et al., 1963; Hinkle and Polette, 1999; Nadakavukaren et al., 1984; Whanger et al., 1977).

Despite the widespread association of elevated groundwater arsenic levels with ash-flow tuffs, the mechanisms of arsenic release and the role that compositional variations play in the mobility of arsenic is largely unexplored in the literature. Tuffs vary considerably in composition and can experience both high- and low-temperature alteration, the degree of which can vary considerably, even within a single unit. The goal of my study is to quantify the degree to which chemical composition, devitrification, and low-temperature alteration control the mobility of arsenic and other trace elements from high-silica (> 70% SiO₂) ash-flow tuffs under varying environmental conditions. Developing a better understanding of arsenic-mineral associations in tuffs and identifying the characteristics and conditions that promote high dissolved arsenic concentrations will improve the predictive modeling of arsenic behavior in volcanic terrain and aid in the identification of aquifers that are likely to yield high arsenic groundwaters.

BACKGROUND

Arsenic Geochemistry

Arsenic in groundwater exists primarily as As(III) or As(V). The arsenic species present is dependent of the pH and redox conditions of the specific water systems in question (Figure 1).

Figure 1. Eh-pH diagram for aqueous arsenic species at 25°C and 1 bar pressure, from (Smedley and Kinniburgh, 2002).

Under circum-neutral pH, arsenate occurs primarily as $HAsO_4^{-2}$ or $H_2AsO_4^{-}$ and is the dominant form of arsenic in oxidizing environments, while arsenite occurs predominantly as $H_3AsO_3^{0}$ and is the dominant form under reducing conditions. Both oxidation states are commonly found in natural water systems (Cullen and Reimer, 1989; Welch et al.,

2000). The occurrence of arsenate as an oxyanion contributes to its mobility at pH values typically found in groundwaters. Most toxic trace metals occur as cations which have limited mobility at circumneutral pH due to the tendency of cations to become more strongly sorbed as pH increases (Smedley and Kinniburgh, 2002). In contrast, toxic trace elements that occur as oxyanions become less strongly sorbed as pH increases.

Redox Behavior of Arsenic

The speciation of arsenic is controlled by redox conditions and plays a major role in arsenic mobility mechanisms. As(III) is thermodynamically unstable in aerobic conditions, but the oxidation process proceeds slowly, with a half life of one to three years, unless mediated by microbial action (Rhine et al., 2008; Stollenwerk, 2003). The rate of oxidation under atmospheric conditions has also been observed to increase at pH > 9 (Manning and Goldberg, 1997). In contrast, the reduction of As(V) to As(III) proceeds rapidly under both biotic and abiotic conditions (Stollenwerk, 2003).

Redox conditions also influence the mobility of arsenic by affecting arsenic bearing minerals, and major sorbents of arsenic. Arsenic is frequently hosted in sulfide minerals, and Fe-oxides and oxyhydroxides are a major sorbent of arsenic. Reduction of Fe(III) present primarily as oxides and oxyhydroxides to Fe(II) present primarily as free cations, and oxidation of sulfide minerals are both processes associated with arsenic contamination of groundwater systems. Fe(III) reduction occurs after the reduction of O_2 , NO_3^- , and MnO_2 , at an Eh close to 0 mV, and before the reduction of As(V) and SO_4^{2-} (Langmuir, 1997; Smedley and Kinniburgh, 2002).

SORPTION BEHAVIOR OF ARSENIC

Sorption and coprecipitation processes are the primary mechanisms controlling the mobility of dissolved arsenic in natural waters (Dixit and Hering, 2003; Welch et al., 2000). Adsorption processes are controlled by aquifer mineralogy, arsenic concentrations and speciation, pH, and concentrations of competing anions (Stollenwerk, 2003). Adsorption of arsenic is positively correlated with the Fe- and Al-oxide and clay content of aquifer solids, and these minerals act as the primary sorbents of arsenic, although solid organic matter and carbonate minerals may act as sorbents as well (Goldberg, 2002; Stollenwerk, 2003).

Common Sorbents

Iron, aluminum, and manganese oxides are the most prevalent sorbents for arsenic in aquifer sediments, occurring both as discrete particles and as coatings on other mineral surfaces (Stollenwerk, 2003; Welch et al., 2000). Iron oxides and oxyhydroxides are the most abundant sorbent in aquifer solids, and occur in varying compositions and degrees of crystallinity including hydrous ferric oxides (HFO), goethite, and magnetite (Dixit and Hering, 2003; Jang and Dempsey, 2008). Poorly crystalline oxyhydroxides that form by precipitation of Fe(III) from solution have the highest sorption capacity due to the decrease in surface area and surface complexation sites as the degree of crystallinity increases (Stollenwerk, 2003). Aluminum oxides and oxyhydroxides are structurally similar to Fe minerals and display similar sorption capacity and behavior for arsenic but are generally less abundant in aquifer solids (Stollenwerk, 2003). Clay minerals are another potential sorbent of arsenic. Kaolinite, illite, chlorite, and halloysite have all been observed to sorb both As(III) and As(V) (Stollenwerk, 2003). Overall clay minerals have negative surface charges, but surface metal cations at the edges of particles, most commonly aluminum, have the capacity to form surface complexes with arsenic (Davis and Kent, 1990). The dependence of arsenic sorption on Al-OH sites at clay mineral edges results in some similar responses of clay minerals and aluminum oxides to geochemical parameters including pH (Stollenwerk, 2003). One major area where clay minerals differ from each other and aluminum oxide minerals is in the concentration of sorption sites. Kaolinite has been observed to adsorb greater amounts of arsenic than equal amounts of illite and montmorillonite with larger surface areas, indicating that the number of sorption sites of a specific clay mineral plays a larger role than surface area (Manning and Goldberg, 1996).

pH Dependence

For all potential adsorbents the sorption of arsenic is pH dependent. For Fe oxide minerals, sorption of As(V) is highest at low pH and begins declining near pH 4 while sorption of As(III) increases to a maximum at circum-neutral pH conditions (pH 5 to 9), decreasing under alkaline conditions (Figure 2) (Dixit and Hering, 2003). Both aluminum oxides and clay minerals display similar sorption patterns with respect to pH, with As(V) declining with increasing pH and As(III) reaching a maximum at circum-neutral pH (Goldberg, 2002). When both As(III) and As(V) are present in a system, the sorption behavior of As(V) is largely unchanged, while As(III) increases until it reaches a maximum at pH 10 for Fe-oxides, and then rapidly decreases (Jang and Dempsey, 2008).

6

Figure 2. Adsorption of arsenate and arsenite onto A) amorphous iron oxide and B) goethite as a function of pH. Arsenic concentrations range from 100 μ M (\blacksquare) to 10 μ M (\bigcirc). From Dixit & Hering (2003).

Competing Anions

Competing anions, chiefly phosphate, can decrease the adsorption of arsenic. The influence of phosphate on arsenic sorption is well documented, and elevated arsenic concentrations are correlated with high phosphate concentrations in a number of locations throughout the world (Dixit and Hering, 2003; Welch et al., 2000). Phosphate will decrease the adsorption of both As(V) and As(III), but a higher degree of similarity between P(V) and As(V) results in more effective competition with As(V) (Stollenwerk, 2003). Competition with phosphate will decrease the adsorption of As(V) over the full pH range, while phosphate primarily decreases the adsorption of As(III) at pH < 9 (Jain and Loeppert, 2000).

Silicic acid is a less effective competitor than phosphate, but is known to compete with arsenic for sorption sites at pH values greater than 8 (Dixit and Hering, 2003; Stollenwerk, 2003). Dissolved organic matter (DOC) may also compete with arsenic for sorption sites. In sufficient quantities, DOC, chiefly humic and fulvic acids, may cause oxyhydroxides to which arsenic is adsorbed to dissolve. However, high DOC concentrations tend to occur in reduced waters so these effects likely would impact only adsorbed As(III) (Ravenscroft et al., 2009).

Reducing Groundwater Systems

Arsenic contamination of reducing groundwater systems is known to occur in Bangladesh, Taiwan, Vietnam, and Hungary and Romania (Ravenscroft et al., 2009; Smedley and Kinniburgh, 2002). In all of these locations the contaminated aquifers are composed of Quaternary sedimentary deposits containing high proportions of organic matter, with waters characterized by high Fe, Mn, and NH₄ concentrations (Smedley and Kinniburgh, 2002). The primary geochemical trigger for arsenic mobility in these reducing environments is reductive dissolution of Fe-oxides that act as a sink for arsenic. As Fe³⁺ that comprises the oxides and oxyhydroxides is reduced to Fe²⁺ both crystalline and amorphous forms of Fe oxide minerals dissolve, releasing any adsorbed or coprecipitated arsenic (Ravenscroft et al., 2009; Welch et al., 2000). During the process of dissolution arsenic may be released and immediately readsorbed to the residual oxide surfaces, preventing arsenic contamination until all or most of the Fe-oxides are reduced (Ravenscroft et al., 2009). In environments with exceptionally high organic matter concentrations, such as Bangladesh, elevated phosphate concentrations are found as well,

8

which may contribute to the mobilization of arsenic adsorbed to clays or aluminum oxides.

Oxidizing Groundwater Systems

Arsenic contamination of oxidizing groundwater systems is known to occur in Italy, Argentina, Chile, Mexico, and the Southwestern United States (Casentini et al., 2010; Smedley and Kinniburgh, 2002; Welch et al., 2000). These environments are frequently, but not always, arid, and the groundwater systems are characterized by high pH, and often high salinity and elevated F or B concentrations (Smedley and Kinniburgh, 2002). The geology of these aquifers is more variable than contaminated aquifers with reducing groundwater systems, and include volcanic rocks and sediments as well as alluvial sediments (Smedley and Kinniburgh, 2002). In oxidizing environments the primary geochemical trigger for mobilizing arsenic is alkali desorption, which describes the tendency of As(V) to desorb as pH increases in alkaline oxic waters (Ravenscroft et al., 2009). The occurrence of alkali desorption in arid environments and the presence of high salinity in many waters contaminated by alkali desorption indicates that it may operate in conjunction with evaporative concentration of arsenic in some environments, with evaporation increasing the concentrations of arsenic and the alkalinity of these waters.

Chemical and Mineralogical Variations in Ash-Flow Tuffs

Although elevated arsenic levels in groundwaters have often been associated with ash-flow tuffs, there has been little investigation in the role that variations in tuffs may play in either the occurrence or mobility of arsenic from these units. Compositional variations in high-silica ash-flow tuffs can be divided into three primary categories: chemical variations in the source material, high-temperature alteration that occurs immediately after deposition, and low temperature alteration to zeolites and clays. Unaltered ash-flow tuffs display the same range of compositional variation found in high-silica igneous rocks, but for the purposes of this project the primary variation investigated will be the Al/(Na₂O+K₂O) ratio. Peralkaline (e.g. low Al/ (Na₂O+K₂O)) ash-flow tuffs have been observed to weather at higher rates than tuffs with higher Al/ (Na₂O+K₂O) ratios and equal SiO₂ concentrations (Streck, M., personal communication). Both alkali and aluminum content are likely to play a role in weathering and arsenic mobility, since aluminum is necessary for the formation of low temperature alteration products, and the release of alkalis will influence the pH of groundwaters in peralkaline tuff units.

High-temperature alteration processes that occur immediately after deposition of an ash-flow tuff include devitrification and vapor phase alteration. Devitrification occurs during slow cooling within the interior of thick tuffs deposited at high temperatures, resulting in the glassy ash and pumice particles crystallizing into fine-grained feldspars, primarily sanidine, and other silica minerals including cristobalite, quartz and tridymite (Ross and Smith, 1980; Vaniman, 2006). Vapor-phase alteration is distinguished from devitrification in that it occurs primarily in pore spaces rather than within individual glass particles and will often result in larger crystals (Ross and Smith, 1980). Vapor-phase alteration produces the same primary minerals as devitrification, but can also include a wide variety of minor minerals that can incorporate elements expelled from glass

10

particles during devitrification (Vaniman, 2006). High temperature alteration processes typically occur in the interior of individual cooling units, and produce distinct zonation within the body of the tuff (Figure 3). Element mobility during high-temperature alteration of peralkaline silicic lavas occurs during crystallization and is attributed to both expulsion of the vapor phase and groundwater leaching (Weaver et al., 1990). Na, F, Cl, Cs, Y, and rare earth elements (REE) have been observed to be depleted during crystallization (Weaver et al., 1990).

Figure 3. Conceptual model of cooling ash-flow unit showing zonation and vertical porosity variation (Istok et al., 1994).

Low-temperature alteration processes occur over longer time periods than high temperature alteration. As ash-flow tuffs are exposed to low-temperature waters, the unstable volcanic glasses are altered first to clay minerals, often smectites (Vaniman, 2006). As alteration progresses the relative abundance of illites and chlorites increases (Fisher and Schmincke, 1984). At high pH and ionic strength large quantities of zeolites are also formed during low temperature alteration of tuffs (Vaniman, 2006). Clinoptilolite is the most common zeolite produced outside of saline lake environments, but mordenite, chabazite and phillipsite are also common and the specific minerals formed will be influenced by the Si/Al ratio of the tuff (Vaniman, 2006). During low-temperature alteration, elements can be depleted by groundwater leaching or enriched by structural incorporation in minerals, ion exchange, and adsorption (Zielinski, 1982).

Arsenic in Tuffs

Surprisingly little information is available regarding the range of arsenic concentrations in volcanic glass. The most oft-cited source, even today, is Onishi and Sandell (1955), who report an average arsenic concentration of 5.9 mg/kg based on 12 volcanic glass samples. Nicolli et al. (1989) found arsenic concentrations ranged between 6.8 and 10.4 mg/kg with a geometric mean of 8.7 mg/kg in 10 samples of volcanic glass isolated from volcanically derived loess. These mean values are approximately four times the average crustal abundance of 1.7 mg/kg (Wedepohl, 1995). There are some indications that arsenic concentrations increase with silica content in volcanic rocks, although it is unclear if this holds true for volcanic glasses (Onishi and Sandell, 1955). The upper limit of arsenic in volcanic glass appears be ~20 mg/kg (Casentini et al., 2010; 12 Fiantis et al., 2010), although Noble at al. (2004) reported arsenic concentrations of up to 65 mg/kg in glassy calc-alkalic volcanic rocks from Peru.

The concentrations of arsenic in ash-flow tuffs is relatively modest in comparison to shales, which often have mean arsenic contents in excess of 10 mg/kg (Onishi and Sandell, 1955), but which are not typically sources of groundwater arsenic. Thus, the association of tuffs with elevated groundwater arsenic levels must be due to one or more processes that allow for mobilization, not simply elevated arsenic concentrations. Possible mechanisms include: 1) the relatively rapid dissolution of reactive glasses (Nadakavukaren et al., 1984; Nicolli et al., 1989); 2) dissolution of other readily soluble arsenic-bearing phases, possibly vapor phase alteration products or lithic fragments; 3) alkali desorption wherein weathering of volcanic glass causes an increase in solution pH which promotes release of arsenic from mineral surfaces (Smedley and Kinniburgh, 2002); and or 4) the dissolution of minerals containing competing anions that promote desorption of arsenic via anion exchange (Casentini et al., 2010).

Arsenic K-edge XANES Spectra of Natural Tuff Samples

Collected Jan 2011 @ SSRL BL 11-2 by A. Foster for R. B. Perkins

Preliminary data suggest that arsenic in unaltered glassy tuffs is present predominantly as As(III) while arsenic in altered tuffs is predominantly As(V) (Figure 4). Results of a preliminary arsenic leaching study suggest that arsenic is more easily leached from altered tuffs that unaltered tuffs (Table 1, Figure 5). Altered tuffs present far more complications in terms of identifying the residence of oxidized arsenic because a variety of new hosts are possible, including secondary silica, secondary iron/manganese oxides

Figure 4. Arsenic K-edge XANES spectra of selected tuff samples from preliminary As leaching study. The less altered tuff contained primarily As(III) while the highly altered tuff contained primarily As(V).

or aluminum hydroxides, and various clays and zeolites. The host phase plays an

important role in terms of sorption characteristics and stability under varying conditions.

Table 1. Total and environmentally available arsenic concentrations of select tuff samples used in preliminary As leaching study. Available arsenic refers to arsenic present in phases other than glasses and silicate mineral phases such as feldspars and quartz. Note: total As concentrations from previous INAA analysis. Errors = 1 σ from replicate analysis.

	Total As (µg g ⁻¹)	"Available" As (µg g ⁻¹)	Available/Total	Degree of Alteration
Little Butte	~4?	2.18 ± 0.07	0.55	Highly Altered
LST	~4?	1.85 ± 0.03	0.46	Highly Altered
San Luis (NM)	1.9 ± 0.5	0.64 ± 0.04	0.34	Intermediate
San Luis (RC)	2.3 ± 0.4	0.39 ± 0.03	0.17	Intermediate
NMT	4.2 ± 0.3	0.48 ± 0.01	0.11	Hydrated Glass
RST	4.1 ± 0.4	0.26 ± 0.03	0.06	Fresh Glass

Figure 5. XRD analysis of six tuff samples used in preliminary As leaching study displaying increasing degrees of low-temperature alteration. More altered tuffs contain a larger number of mineral phases, which increases the number of potential host phases of arsenic in altered tuffs relative to unweathered glassy samples.

<u>CHAPTER 2: ARSENIC OCCURRENCE IN ASH-FLOW TUFFS AND ASSOCIATED</u> <u>SEDIMENTS</u>

INTRODUCTION

Despite the widespread association between ash-flow tuffs and arsenic contamination, surprisingly little is known about arsenic occurrence in these units. Previously reported values for mean arsenic concentrations are based on only 10-12 samples of volcanic glasses, and there has been little effort to identify arsenic host phases or to correlate arsenic with other elements in these rocks (Onishi and Sandell, 1955; Nicolli et al., 1989). Ash-flow tuffs are complex geologic units that can display multiple types and degrees of alteration, but most research involving arsenic and tuffs focuses on glassy tuffs, and does not consider devitrification and weathering.

In this study, 49 tuff samples spanning a range of chemical and mineralogical compositions, as well as 11 samples of tuffaceous sediments were used to investigate the behavior of arsenic in ash-flow tuffs. Specific objectives of the study are 1) to better quantify the levels of arsenic found in tuffs, 2) to determine if bulk chemical composition, particularly alumina-alkali ratios, influence levels of arsenic found in tuffs, and 3) to determine if devitrification and weathering influence arsenic concentrations in tuffs.

METHODS

Sample Collection and Preparation

For this study, 42 hand samples of tuffs and tuffaceous sediments were collected from various locations throughout Oregon. Eight samples were collected from the Southern Willamette Valley, and 23 samples were collected from Central and Eastern Oregon. As both tuffs and tuffaceous sediments have been suggested as sources of groundwater arsenic, 11 samples of tuffaceous sediments were collected from Eastern Oregon. Wherever possible, samples displaying different alteration states were obtained from the same unit, and in some cases the same location. Full sections of unweathered samples were collected from single outcrops for two units, the Dinner Creek Tuff and the Rattlesnake Tuff. An additional 18 samples obtained from the existing collection of Dr. Martin Streck collection were also analyzed. Sample locations can be found in Table 2.

To prepare samples for analysis, visibly altered exteriors were chipped away with a rock hammer, and approximately fist-sized or smaller chunks of sample were fed through a Braun jaw-crusher until the largest pieces were between ~2 cm and ~5 mm. Early samples were hand split, and one quarter of the sample was then run through a disc grinder, until the largest pieces were ~5 mm. For later samples this step was eliminated in favor of using a finer setting on the crusher to achieve a smaller grain size. (~5 mm). In all cases, the equipment was thoroughly cleaned between samples.

Crushed samples were hand split and ~ 5-15 g portions were sent to either the Washington State University Geoanalytical Lab, in Pullman, WA, or Activation

Laboratories Ltd., in Ontario, Canada for bulk chemical analysis. The remainder of each crushed sample was split up to four times using a small (Jones-type) riffle splitter, and split portions (\sim 5 – 10 g) ground to a fine powder using a Fisher alumina ceramic mortar grinder. Samples were ground for 20 – 30 minutes. If grains larger than \sim 0.5 mm remained after 30 minutes, grinding was finished by hand with a ceramic mortar and pestle.

X-ray Diffraction (XRD)

To characterize the mineralogy of the tuffs samples were analyzed using a Phillips (now PANalytical) Theta-Theta PW3040 X-ray diffractometer equipped with a standard scintillation counter and copper anode X-ray lamp. Samples were further ground by hand using an agate mortar and pestle until they passed through a 65 μ m sieve. A random powder mount was prepared using a side-pack aluminum sample holder. Diffraction patterns were obtained in continuous mode using a step size of 0.020 degrees two theta (°2 θ) and scan step times of 1.00 second from 5 to 75 °2 θ .

Sample ID BC1 Bully C BC2 Bully C Sedime						
BC1 Bully C BC2 Bully C Sedime	Unit	Formation	Age	Latitude	Longitude	Age Source
BC2 Bully C Sedime	Sreek Tuff	Bully Creek	15.66 +- 0.7 Ma	44.07925	-117.5435833	Nash and Perkins, 2012
	Creek Tuffaceous ats	Bully Creek		44.07925	-117.5435833	
BC3 Bully C Sedime	Creek Tuffaceous ats	Bully Creek		44.07925	-117.5435833	
DC1 Dinner	Creek	Hog Creek Sequence	15.9–15.4 Ma			Streck at al., 2011
DC4 Dinner	Creek	Hog Creek Sequence	15.9–15.4 Ma	43.766139	-118.030167	Streck at al., 2011
DC5 Dinner	Creek	Hog Creek Sequence	15.9–15.4 Ma	43.766139	-118.030167	Streck at al., 2011
DC6 Dinner	Creek	Hog Creek Sequence	15.9–15.4 Ma	43.766139	-118.030167	Streck at al., 2011
DC7 Dinner	Creek	Hog Creek Sequence	15.9–15.4 Ma	43.766139	-118.030167	Streck at al., 2011
DC8 Dinner	Creek	Hog Creek Sequence	15.9–15.4 Ma	43.766139	-118.030167	Streck at al., 2011
DC9 Dinner	Creek	Hog Creek Sequence	15.9–15.4 Ma	43.32795	-118.1321	Streck at al., 2011
DS1 Drip SI Sedime	prings Tuffaceous ints	Drip Springs	Late Miocene to Pliocene	43.98541667	-117.5765	Walker and MacLeod, 1991
DS2 Drip SI Sedime	prings Tuffaceous ints	Drip Springs	Late Miocene to Pliocene	43.98541667	-117.5765	Walker and MacLeod, 1991
DS3 Drip Sl Sedime	prings Tuffaceous ints	Drip Springs	Late Miocene to Pliocene	43.98541667	-117.5765	Walker and MacLeod, 1991
DT1 Dale T1	uff	Tower Mountain/ Eastern John Day facies	28.5 Ma			Ferns et al., 2001
DT2 Dale T ₁	uff	Tower Mountain/ Eastern John Day facies	28.5 Ma			Ferns et al., 2001
DT3 Dale Ti	uff	Tower Mountain/ Eastern John Day facies	28.5 Ma			Ferns et al., 2001
DVC1 Devine	Canyon		9.68 Ma	43.77685	-119.00065	Streck et al., 1999

Table 2. Locations and ages of samples used in this study.

20

Sample ID	Unit	Formation	Age	Latitude	Longitude	Age Source
DVC2	Devine Canyon		9.68 Ma	43.7124	-119.0078	Streck et al., 1999
DVC4	Devine Canyon		9.68 Ma	43.77275	-118.127611	Streck et al., 1999
FD1	Foster Dam	Little Butte Volcanics	26.28 Ma	44.41991667	-122.6653167	McClaughry et al., 2010
FD2	Foster Dam	Little Butte Volcanics	26.28 Ma	44.41991667	-122.6653167	McClaughry et al., 2010 (McClaughry 2010)
FD3	Foster Dam	Little Butte Volcanics	26.28 Ma	44.41991667	-122.6653167	McClaughry et al., 2010
FD4	Foster Dam	Little Butte Volcanics	26.28 Ma	44.41991667	-122.6653167	McClaughry et al., 2010
LB1	Little Butte	Little Butte Volcanics?				•
LG1	Tuff of Leslie Gulch		15.5 +- 0.5 Ma	43.322389	-117.315806	Vander Meulen et al., 1987
LG2	Tuff of Leslie Gulch		15.5 +- 0.5 Ma	43.322389	-117.315806	Vander Meulen et al., 1988
LG3	Tuff of Leslie Gulch		15.5 +- 0.5 Ma	43.322389	-117.315806	Vander Meulen et al., 1989
LG4	Tuff of Leslie Gulch		15.5 +- 0.5 Ma	43.314111	-117.218944	Vander Meulen et al., 1990
1 CT1	I amor Conidina Tuff	Turtle Cove Member of				Datalladt at al. 2000
1101	LOWEL SAULULUE 1 UIL	the John Day Formation	DIVI C1.67			Netalleck et al., 2000
MA1	Member A	John Day	39.17 Ma			Smith et al., 1998
MK1	Tuff of Mohawk (Intracaldera)	Little Butte Volcanics	30.9 Ma	44.09558333	-122.9628833	McClaughry et al., 2010
MK2	Tuff of Mohawk (Intracaldera)	Little Butte Volcanics	30.9 Ma	44.08903333	-122.9740167	McClaughry et al., 2010
MTA1	Mount Angel					
PG1	Picture Gorge	John Day	28.65 ±0.07 Ma	44.02693	-119.18415	Retalleck et al., 2000
PG2	Picture Gorge	John Day	28.65 ±0.07 Ma	44.02693	-119.18415	Retalleck et al., 2000
PG3	Picture Gorge	John Day	28.65 ±0.07 Ma			Retalleck et al., 2000
RST1	Rattlesnake Tuff		7.1 Ma			Streck and Grunder, 1995
RST2	Rattlesnake Tuff		7.1 Ma			Streck and Grunder, 1995
RST4	Rattlesnake Tuff		7.1 Ma			Streck and Grunder, 1995
RST5	Rattlesnake Tuff		7.1 Ma	43.709694	-119.464167	Streck and Grunder, 1995
RST6	Rattlesnake Tuff		7.1 Ma	43.716028	-119.630972	Streck and Grunder, 1995
21						

Sample ID	Unit	Formation	Age	Latitude	Longitude	Age Source
RST7	Rattlesnake Tuff		7.1 Ma	43.716028	-119.630972	Streck and Grunder, 1995
RST8	Rattlesnake Tuff		7.1 Ma	43.659278	-118.99875	Streck and Grunder, 1995
RST9	Rattlesnake Tuff		7.1 Ma	43.659278	-118.99875	Streck and Grunder, 1995
RST10	Rattlesnake Tuff		7.1 Ma	43.659278	-118.99875	Streck and Grunder, 1995
RST11	Rattlesnake Tuff		7.1 Ma	43.659278	-118.99875	Streck and Grunder, 1995
RST13	Rattlesnake Tuff		7.1 Ma	43.659278	-118.99875	Streck and Grunder, 1995
RU1	Round Up	John Day	<28.7 Ma			Patridge, 2010
MNJS	Nelson Mountain Tuff	San Luis Caldera Complex	26.1 Ma			Lipman, 2006
SLRC	Rat Creek Tuff	San Luis Caldera Complex	25.47 Ma			Lipman, 2006
SR1	Smith Rock Tuff - Haystack Reservoir Outflow Lobe	Smith Rock Tuff	29.53 Ma	44.4967	-121.1547	Smith et al., 1998
SR2	Smith Rock Tuff - Haystack Reservoir Outflow Lobe	Smith Rock Tuff	29.57 Ma	44.4967	-121.1547	Smith et al., 1998
TS1	Tuffaceous Sediments		Late Miocene to Pliocene	43.940833	-118.132806	Walker and MacLeod, 1991
TS3	Tuffaceous Sediments		Late Miocene to Pliocene	43.868833	-118.507583	Walker and MacLeod, 1991
TS4	Tuffaceous Sediments		Late Miocene to Pliocene	44.41805556	-118.11275	Walker and MacLeod, 1991
TSD1	Tuffaceous Sandstone		Late Miocene to Pliocene	43.82997222	-118.4250556	Walker and MacLeod, 1991
TSD2	Tuffaceous Sandstone		Late Miocene to Pliocene	43.82997222	-118.4250556	Walker and MacLeod, 1991
TW1	Tuff at Willamette Street	Fisher Formation	Middle Eocene	43.95128	-123.13797	McClaughry et al., 2010
1 W2 WU1	Tull at willametic surger Winema Unnamed	FISHEI FOIIIIAU01	Midule Eocene Miocene	43.33941	-121.61758	Nechauging et al., 2010 Sherrod and Pickthorn, 1992

Diffraction patterns were analyzed using PANalytical X'Pert Highscore Plus software package, to obtain semi-quantitative mineral compositions. When possible AutoQuan software was used to perform non-standardized Reitveld analysis and obtain more accurate semi-quantitative compositional percentages. In some cases the software database was missing one or more of the mineral phases present in the samples, and Reitveld analysis was not performed. Amorphous phases were not included in these results, and the proportion of amorphous phases (glass) was estimated based on deviations in the background of XRD patterns from a straight line, particularly between approximately 10 and 40 °20, where the presence of amorphous phases produces a wide curved deviation of the background pattern from a straight line.

The XRD used produces wide low-intensity peaks at approximately 4-5 °2 θ and 8-9 °2 θ that are consistently present in XRD patterns. These peaks were determined to be instrument artifacts, possibly due to misaligned slits and peaks at these positions were excluded from analysis unless significantly larger than that measured on a blank holder.
Optical Microscopy

Thin sections of selected samples were examined in order to confirm the XRD results and identify any potential minor mineral phases that were not identified in the XRD patterns. In addition, particular textures were considered to be indicative of different alteration processes (

Figure 6).

Figure 6. Sample PG2, under plane light at 5x magnification, displaying axilotic texture produced during devitrification, where minerals crystallized perpendicular to the boundaries of glass shards.

Figure 7. Sample PG1 under plane light at 5x magnification, displaying both axiolitic texture and alteration to green and brown clay minerals.

Bulk Chemistry

Crushed samples were hand split, and ~ 5-10 g portions were sent to either the Washington State University Geoanalytical Lab, in Pullman, WA, or Activation Laboratories Ltd., in Ontario, Canada for bulk chemical analysis. At both labs, values for major elements were obtained via X-ray fluorescence (XRF). For samples sent to WSU, selected trace elements (Ni, Cr, V, Ba, Rb, Sr, Ga, Cu, Zn, Pb, La, Ce, Th, and Nd) were obtained via XRF. For samples sent to Activation Laboratories trace elements were determined via ICP-MS (Cu, Cd, Mo, Pb, Ni, Zn, S, Be, Li, Sr, V, Y) or Instrumental Neutron Activation Analysis (INAA) (As, Ba, Co, Cr, Cs, Eu, Rb, Sb, Sc, Se, Th, La, Ce, Nd, Sm, Sn, Yb, Lu). Total Arsenic

For samples where arsenic values were not obtained via INAA at Activation Laboratories, samples were digested following US EPA Method 3052 (US Environmental Protection Agency, 1996b). Sample aliquots were weighed to 0.250 ± 0.001 g and placed in Teflon vessels that had been cleaned with concentrated nitric acid and repeatedly rinsed with deionized water (18.2 M Ω cm). Subsequently, 1.5 mL tracemetal grade HF, 4.5 mL trace-metal grade HNO₃⁻, and 1 mL trace-metal grade HCl were added to the vessels. Samples were digested using a Milestone Ethos EZ microwave digester for 40 minutes reaching a final temperature of 240°C for 20 minutes. Method blanks and certified reference materials (JR1 from the Japanese Geological Survey, and SRM 1633a from the National Bureau of Standards) were run every 20 samples, and duplicate digests were carried out on three samples. After digestion samples were poured into 50 mL plastic centrifuge tubes. Vessels were rinsed three times with 18.2 M Ω cm distilled water, and the water was added to the samples. Centrifuge tubes were filled with water to 25 mL.

Samples were further diluted to a total of 50.0 mL in test tubes (1:1 dilution) and analyzed using an Agilent 700 Series ICP-OES with an inert sample introduction system (a V-groove nebulizer with Sturman–Masters spray chamber and alumina injector). Detailed operating conditions for the analysis are listed in Appendix A.

RESULTS: BULK ROCK CHARACTERIZATION

Major Mineralogy

The major mineralogy of all samples was determined based of the results of XRD analysis in concert with examination of thin sections and hand samples. The percentage of glass present in all samples was estimated based upon deviations in background levels of the XRD patterns from a straight line, particularly between approximately 10 and 40 $^{\circ}2\theta$ (Figure 8), coupled with examination of thin sections and hand samples to confirm the XRD results.

Figure 8. XRD patterns for unweathered glassy (RST9) and devitrified samples (RST13). Glass content of samples was estimated based upon the deviation of background levels from a straight line between approximately 10 and 40 °20, coupled with visual examination of hand samples and thin sections.

The majority of minerals identified in XRD patterns fell into four categories; feldspars, low pressure silica polymorphs, zeolites, and clay minerals (Table 3). Sanidine was the most common feldspar identified followed by albite, but anorthoclase, microcline, and labradorite were all identified in at least one sample. In many cases multiple feldspars were acceptable matches to the XRD patterns, and especially in devitrified samples with very small crystals, the specific alkali feldspar present could not be identified in thin section. In these cases, the feldspar that best matched the XRD pattern was selected.

Quartz, cristobalite, and tridymite were all identified in multiple samples, and many samples contained more than one silica phase. Quartz can occur as a phenocryst in glassy samples, while cristobalite and tridymite occur exclusively as devitrification products. The presence of multiple silica polymorphs in a single sample may indicate either devitrification of a glassy rock that contains quartz phenocrysts, or multiple phases forming as the temperature decreases during the devitrification process.

Clays and zeolites are both common alteration products found in weathered tuffs. The most common clays identified in XRD patterns were smectites, particularly saponite and montmorillonite. Illite, kaolinite, and sepiolite were also identified in multiple samples. The clay mineral tosudite, a 1:1 interstratified chlorite-smectite mineral known to be a product of alteration of tuffs and tuffaceous sediments (Shimoda, 1969), was identified in a number of tuffaceous sediment samples. The zeolite minerals most commonly identified were heulandite, mordenite, and clinoptilolite.

Sample ID	Primary Minerals / Glass (>30%)	Secondary Minerals (30% - 10%)	Minor Minerals (<10%)	Devitrification Classification	Weathering Classification
BC1	Saponite Anorthoclase	1070)		Glassy	Weathered
BC2	Cristobalite	Tridymite Kaolinite	Sanidine	Sediment	Sediment
BC3	Montmorillonite	Sanidine	Quartz	Sediment	Sediment
DC1	Glass Anorthoclase	Quartz Montmorillonite	Sepiolite	Glassy	Unweathered
DC4	Glass	Labradorite		Glassy	Unweathered
DC5	Cristobalite Sanidine Albite			Devitrified	Unweathered
DC6	Cristobalite Sanidine	Albite	Tridymite	Devitrified	Unweathered
DC7	Cristobalite	Sanidine Albite	Tridymite	Devitrified	Unweathered
DC8	Glass Saponite Labradorite	Thore		Glassy	Weathered
DC9	Sanidine		Albite	Devitrified	Unweathered
DS1	Saponite	Albite	Tridymite Cristobalite Ouartz	Sediment	Sediment
DS2	Tosudite	Kaolinite Tridymite Cristobalite	Calcite Quartz	Sediment	Sediment
DS3	Tridymite Cristobalite		Kaolinite	Sediment	Sediment
DT1	Albite	Cristobalite Glass		Glassy	Unweathered
DT2	Glass Albite		Illite	Glassy	Unweathered
DT3	Sanidine Cristobalite		Pigeonite Quartz Cordierite	Devitrified	Unweathered
DVC1	Sanidine	Cristobalite Ouartz		Devitrified	Unweathered
DVC2	Sanidine	Quartz Saponite	Cristobalite	Devitrified	Weathered
DVC4	Glass	Albite		Glassy	Unweathered
FD1	Heulandite	Quartz Quartz Mordenite	Montmorillonite	Glassy	Weathered

Table 3. Major mineralogy and categorization of tuff samples, based on semi-quantitative XRD results, optical microscopy, and examination of hand samples. Percentages of amorphous material (glass) was not included in semi-quantitative XRD results, and was instead estimated solely from examination of XRD patterns, thin sections, hand samples

Sampla	Driman Minarals /	Secondamy	Minor Minorals	Dovitrification	Weathering
ID	Glass (>30%)	Minerals (30% - 10%)	(<10%)	Classification	Classification
FD2	Heulandite	Mordenite Quartz	Montmorillonite	Glassy	Weathered
FD3	Heulandite	Mordenite Ouartz	Montmorillonite	Glassy	Weathered
FD4	Heulandite	Mordenite Quartz		Glassy	Weathered
LB1	Illite	Quartz Sanidine	Kaolinite Zeolite ZSM-11	Glassy	Weathered
LG1	Heulandite Mordenite		Quartz	Glassy	Weathered
LG2	Sanidine	Quartz	Cristobalite Pyrite	Devitrified	Weathered
LG3	Quartz Microcline		Palygorskite Cristobalite	Devitrified	Weathered
LG4	Quartz	Albite	Calcite	Devitrified	Weathered
LST1	Clinoptilolite Montomorillonite	Albite Glass	Calcite	Glassy	Weathered
MA1	Saponite Sanidine	Cristobalite Illite		Devitrified	Weathered
MK1	Albite	Quartz Montmorillonite		Devitrified	Unweathered
MK2	Albite Quartz		Montmorillonite	Devitrified	Unweathered
MTA1	Glass Anorthoclase		Illite	Glassy	Weathered
PG1	Quartz	Sanidine Illite Cristobalite		Devitrified	Weathered
PG2	Cristobalite Sanidine	Albite		Devitrified	Unweathered
PG3	Glass		Sanidine Saponite	Glassy	Unweathered
RST1	Glass		Montmorillonite Quartz	Glassy	Unweathered
RST3	Glass		Quartz	Glassy	Unweathered
RST4	Sanidine Cristobalite		Biotite	Devitrified	Unweathered
RST5	Sanidine	Tridymite Quartz Cristobalite Albite		Devitrified	Unweathered
RST6	Glass	Sanidine		Glassy	Unweathered
RST7	Sanidine Cristobalite	Zumitz		Devitrified	Unweathered

Sample ID	Primary Minerals / Glass (>30%)	Secondary Minerals (30% - 10%)	Minor Minerals (<10%)	Devitrification Classification	Weathering Classification
RST8	Glass		Sanidine Quartz	Glassy	Unweathered
RST9	Glass		Albite Quartz	Glassy	Unweathered
RST10	Glass		Albite Ouartz	Glassy	Unweathered
RST11	Sanidine Tridymite	Cristobalite	Helvite	Devitrified	Unweathered
RST13	Sanidine Cristobalite			Devitrified	Unweathered
RU1	Clinoptilolite Montmorillonite	Glass	Quartz	Glassy	Weathered
SLNM	Albite Montmorillonite		Illite Cristobalite Quartz	Devitrified	Weathered
SLRC	Illite	Saponite Glass	Anorthite Albite	Glassy	Weathered
SR1	Clinoptilolite	Quartz Albite Mordenite		Glassy	Weathered
SR2	Quartz	Albite Orthoclase		Devitrified	Unweathered
TS1	Tosudite	Sanidine	Cristobalite Quartz	Sediment	Sediment
TS3	Tosudite		Cristobalite	Sediment	Sediment
TS4	Tosudite Montmorillonite			Sediment	Sediment
TSD1	Anorthite Tosudite			Sediment	Sediment
TSD2	Albite Tosudite		Quartz	Sediment	Sediment
TW1	Albite	Quartz	Cristobalite Illite Montmorillonite	Devitrified	Unweathered
TW2	Heulandite	Albite Stilbite	Illite Chlorite Quartz	Sediment	Sediment
WU1	Anorthoclase	Cristobalite Quartz		Devitrified	Unweathered

Sample Categorization

Major mineralogy and bulk chemical analysis were used to categorize each sample. Each sample was placed into a category for two different compositional variables: degree of devitrification (devitrified or glassy), and degree of weathering (unweathered or weathered) (Table 3).

Samples were categorized as devitrified or glassy based on XRD results and optical microscopy. Samples containing glass were categorized as glassy, while samples lacking glass and containing cristobalite, tridymite, or quartz were categorized as devitrified. For highly weathered samples containing neither glass nor cristobalite, alteration products were used to distinguish between the categories. Both clays and zeolites are common alteration products found in tuffs, with zeolites forming specifically from the alteration of glass (Vaniman, 2006). Samples containing both clays and zeolites were categorized as originally glassy, and samples containing clays but lacking zeolites were categorized as originally devitrified. Although weathered samples were given a categorization of either glassy or devitrified, they were mineralogically distinct enough that they were excluded from the Devitrified and Glassy categories for the purposes of data analysis, and all subsequent references to those categories include only unweathered samples.

The degree of weathering was determined using the semi-quantitative XRD results, and was based on the proportion of alteration products (clays + zeolites) in each sample. When compared to observation of both hand samples and thin sections the

proportions of clays and zeolites determined via AutoQuan software appeared to greatly exceed the actual amount of alteration products present, and the categories defined reflect that. Therefore, samples for which the estimated content of clays + zeolites was \leq 30% were categorized as "Unweathered" while samples with estimated clay + zeolite contents \geq 31% were categorized as "Weathered." A few exceptions to these categories were made, particularly for highly glassy rocks. Since the amount of glass present was not included in the semi-quantitative XRD results, samples composed primarily of glass produced results that contained very high percentages (>90%) of clays, despite the rocks themselves obviously not being clay-rich. In these cases, the weathering categorization was determined primarily based on observation of hand samples, and thin sections if available.

Categorizations were compared to major element chemistry, particularly Loss on Ignition (LOI) values (Table 8). Samples classified as Unweathered that contained LOI values higher than 5% were re-examined, since high LOI values are a potential indicator of the presence of hydrated alteration products. Two samples with semi-quantitative clay percentages near the classification limit of 30% were reclassified as Weathered based on LOI values exceeding 5%.

RESULTS: BULK ROCK CHEMISTRIES

QA/QC Results

For samples digested via EPA Method 3052 and analyzed via ICP-OES recoveries of As from certified reference standards ranged from 82.7% to 94.6%, but were inconsistent for a number of other trace elements (Table 4).

Table 4. Recoveries for certified reference materials analyzed via ICP-OES. Arsenic recoveries ranged from 82.7% to 94.6%. S had recovery percentages within \pm 5%, but other elements were more variable.

		JR-1			SRM 1633a	
Element	Measured Value (ppm)	Certified Value (ppm)	Recovery %	Measured Value (ppm)	Certified Value (ppm)	Recovery %
As	13.48	16.30	82.7	137.13	145.00	94.6
Be*	2.64	3.34	78.9	11.72	12.00	97.7
Mo*	2.57	3.25	79.1	24.93	29.00	86.0
Sb	1.64	1.19	138.2	11.42	6.80	167.9
Sm	< 0.70	6.03	< 11	< 0.70	NA	

* Values for SRM 1633a are not certified values.

Three samples were prepared and analyzed in duplicate. Relative percent

differences (RPDs) between arsenic concentrations in the duplicate samples ranged from

1.4 to 12% (Table 5).

Table 5. Relative percent differences for duplicate samples analyzed via EPA Method 3052.

				1		2			
Element	MAla	MA1b	RPD	RST4a	RST4b	RPD	MK2a	MK2b	RPD
Element	(µg/L)	$(\mu g/L)$	(%)	(µg/L)	(µg/L)	(%)	(µg/L)	(µg/L)	(%)
As	41.69	36.99	11.95	19.70	18.19	7.96	46.17	45.53	1.38
Be	13.67	14.05	-2.74	12.58	12.28	2.42	6.04	6.02	0.25
Мо	3.83	3.31	14.41	6.84	6.93	-1.32	1.98	2.58	-26.03
Sm	19.96	15.74	23.59	18.38	18.29	0.50	ND	ND	NA

Check standards were run during ICP-OES analysis as a check on instrumental accuracy. All elements reported produced values that were within \pm 5% of the standard value (Table 6).

Table 6. Recoveries from Method Blank and check standards analyzed via ICP-OES. Check standard QC1 had a concentration of 100 ug/L for all elements except Sb and Sn, and check standard QC2 had a concentration of 50 ug/L for all elements except Sb and Sn.

Elamont	QC Blank1	QC1a	QC2a	QC Blank2	QC1b	QC2b	Method Blank
Element	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)
As	ND	103.3	49.6	ND	103.9	50.2	ND
Be	ND	98.6	48.6	ND	95.4	47.1	ND
Мо	ND	92.5	46.9	ND	91.0	45.1	ND
Sm	ND	100.6	54.7	ND	95.8	49.6	ND

One sample, DT3, was analyzed at both the WSU Geoanalytical Lab and

Activation Laboratories. The RPDs for the two analyses reached a maximum of 35% for major elements (P_2O_5), and 106% for trace elements (Cu) (Table 7).

Element	DT3 WSU	DT3 AL	RPD
SiO2	75.00	75.21	-0.28
Al2O3	12.19	12.45	-2.11
FeO	1.13	1.25	-10.26
MnO	0.010	0.011	-9.52
MgO	0.29	0.35	-18.75
CaO	0.46	0.49	-6.32
Na2O	2.97	3.04	-2.33
K2O	4.61	4.62	-0.22
TiO2	0.07	0.08	-10.53
P2O5	0.014	0.02	-35.29
Ni ¹	2	3.00	-30.77
Cr ²	2.80	< 2	NA
\mathbf{V}^1	6.00	5.00	18.18
Ba ²	602.80	460.00	26.87
Rb ²	103.90	95.00	8.95
Sr^1	31.40	35.00	-10.84
Y^1	18.50	16.00	14.49
Cu^1	3.70	12.00	-105.73
Zn^1	23.20	31.00	-28.78
Pb^1	16.30	14.00	15.18
La ²	33.00	32.90	0.30
Ce ²	57.20	55.00	3.92
Th ²	11.20	8.30	29.74
Nd ²	20.20	22.00	-8.53

Table 7. Relative percent differences for sample DT3, analyzed at the WSU Geoanalytical Lab (WSU) and Activation Laboratories (AL). Major elements are reported in weight percent, and trace elements are reported in mg/kg.

¹Analyzed via ICP-MS at Activation Laboratories, and XRF at WSU.

²Analyzed via INAA at Activation Laboratories and XRF at WSU.

Bulk Chemistry

Major element chemistry for all samples is provided in Table 8. Among tuff samples, SiO_2 values ranged from a low of 52.8% in a weathered sample to a high of 81.8% in a devitrified sample. Total weight percents including Loss on Ignition (LOI) values ranged from a low of 97.7% to a high of 100.2%.

	Total	99.64	99.18	99.17	94.17	99.34	99.67	99.68	99.67	98.65	99.11	99.55	99.03	98.55	97.70	99.34	99.53	99.44	98.28	99.82	99.64	90.06	99.24	98.64	98.71	99.40	99.48	99.41	99.56	85.67	92.60	99.05	90.09
ercent.	LOI	16.25	9.12	21.49		3.2	1.98	1.57	1.55	9.11	0.31	15.97	10.61	6.41	4.32	4.23	2.01	1.14	5.75	2.87	11.33	11.50	12.55	10.09	4.26	13.53	5.97	9.9	2.3			2.18	3.74
weight p	P205	0.180	0.010	0.080	0.02	0.020	0.030	0.080	0.020	0.030	0.030	0.050	0.020	0.010	0.032	0.018	0.020	0.049	0.032	0.010	0.080	0.058	0.053	0.056	0.011	0.010	0.010	0.020	0.010	0.03	0.12	0.089	0.017
orted in	Ti02	1.170	0.220	1.240	0.17	0.170	0.170	0.160	0.150	0.180	0.170	0.450	0.270	0.100	0.216	0.081	0.080	0.294	0.290	0.180	0.454	0.361	0.304	0.425	0.174	0.240	0.310	0.170	0.230	0.26	0.47	0.371	0.382
and rep	K20	0.98	0.12	0.53	5.81	5.79	3.82	3.51	3.22	3.44	3.81	0.23	0.09	0.19	3.97	5.50	4.62	4.47	3.74	5.25	1.30	1.28	0.76	2.34	4.35	2.48	6.74	3.91	2.34	3.03	1.76	1.62	1.58
ia XRF,	Na2O	1.61	0.08	0.53	2.36	2.77	4.16	4.10	3.93	2.18	4.73	0.37	0.13	0.06	2.62	2.05	3.04	4.04	2.72	3.71	1.67	2.18	2.03	1.46	0.92	3.73	2.42	1.57	4.39	1.77	3.04	4.31	4.05
tained v	CaO	3.72	0.50	1.99	0.57	0.53	0.31	0.28	0.30	1.10	0.22	3.39	2.82	0.47	0.97	0.62	0.49	0.24	0.75	0.21	3.64	3.62	3.67	2.79	0.40	1.72	1.30	1.18	0.48	3.72	2.08	2.39	2.06
were ob	MgO	2.27	0.55	1.73	0.13	0.11	0.13	0.11	0.09	1.58	0.04	1.21	0.86	0.21	0.16	0.08	0.35	0.17	0.82	0.05	0.63	0.34	0.43	0.90	0.17	0.01	0.05	0.10	0.15	0.36	0.66	0.25	0.32
values	FeO	8.59	1.59	5.97	1.75	2.14	1.69	2.31	1.98	2.76	0.70	2.84	1.73	0.47	1.73	0.99	1.25	2.82	2.65	2.81	3.98	3.18	3.04	4.06	1.83	2.31	0.69	1.64	2.39	2.06	2.95	2.69	2.35
ples. All	MnO	0.078	0.013	0.037	0.04	0.056	0.005	0.012	0.044	0.115	0.005	0.005	0.005	0.005	0.028	0.019	0.011	0.036	0.067	0.062	0.049	0.060	0.065	0.048	0.017	0.005	0.005	0.005	0.033	0.78	0.13	0.041	0.007
nent sam	A12O3	11.98	2.80	14.97	11.85	11.84	12.23	11.48	10.65	12.77	12.60	7.41	4.53	1.67	12.27	12.27	12.45	11.65	12.95	10.65	12.43	12.40	12.08	12.59	13.53	11.48	14.18	8.71	10.68	10.53	12.30	14.00	14.58
ous sedir	SiO2	52.82	84.17	50.60	71.48	72.71	75.14	76.07	77.73	65.39	76.49	67.63	77.97	88.96	71.38	73.48	75.21	74.53	68.51	74.02	64.08	64.08	64.26	63.88	73.05	63.89	67.80	75.51	76.56	63.84	60.09	71.11	70.00
d tufface	Lab	AL	\mathbf{AL}	AL	MSU	AL	Al	AL	AL	AL	AL	AL	AL	AL	MSU	MSU	AL	MSU	MSU	AL	MSU	MSU	MSU	MSU	MSU	\mathbf{AL}	\mathbf{AL}	AL	AL	MSU	MSU	MSU	WSU
stry for tuff an	Weathering	Weathered	Sediment	Sediment	Unweath.	Unweath	Unweath	Unweath	Unweath	Weathered	Unweath	Sediment	Sediment	Sediment	Unweath	Unweath	Unweath	Unweath	Weathered	Unweath	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered
element chemi:	Devitrificat	Glassy	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Sediment	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Devitrified
Table 8. Major	Sample	BC1	BC2	BC3	DC1*	DC4	DC5	DC6	DC7	DC8	DC9	DSI	DS2	DS3	DT1	DT2	DT3	DVC1	DVC2	DVC4	FD1	FD2	FD3	FD4	LB1	LG1	LG2	LG3	LG4	LST1*	$MA1^*$	MK1	MK2

	.219 6.35 98.83	.058 1.78 99.82	.020 1.58 99.49	.030 4.88 99.26	.030 0.22 100.08	.050 2.98 98.95	.050 0.7 99.52	.150 3.18 99.21	.020 3.44 100.00	.009 3.52 99.40	.040 2.95 99.59	.020 1.31 100.23	.060 0.71 100.13	.015 3.42 98.94	.035 0.28 99.18).50 86.93	.535 2.16 99.23	.098 6.03 98.72	.036 10.53 98.91	.066 0.64 99.97	.030 12.73 99.69	.020 12.38 99.98	.040 6.16 98.08	.420 10.62 99.23	.220 6.19 99.67	.209 2.49 99.27	.162 6.51 99.31	.109 2.26 99.59	
107	0.759 (0.160 (0.210 (0.220 (0.120 (0.200	0.210 (0.130 (0.140 (0.146 (0.130 (0.130 (0.180 (0.145 (0.169 (0.29	0.327 (0.457 (0.147 (0.125 (0.560 (0.280 (0.170 (1.150 (1.090 (0.833 (1.665 (0.540 (
07V	2.19	4.78	3.81	5.43	4.92	4.75	4.30	5.92	5.47	4.74	5.52	3.82	4.30	5.04	4.40	1.12	4.28	4.30	2.08	4.26	0.28	0.23	3.14	0.76	1.34	1.89	0.24	2.81	lable.
Na2U	2.93	2.27	4.37	2.26	3.93	3.50	4.14	2.78	3.10	3.58	3.27	3.54	4.19	3.32	4.24	3.48	3.46	2.74	1.07	2.52	1.17	0.43	3.33	1.83	2.20	4.53	3.56	5.55	e unavai
Ca()	3.67	1.54	0.48	0.92	0.08	0.54	0.41	0.24	0.23	0.32	0.22	0.24	0.35	0.32	0.30	2.40	2.08	2.14	2.49	0.06	0.98	0.55	0.50	7.23	6.57	2.77	6.40	1.32	ues wer
MgO	1.65	0.10	0.10	0.63	0.03	0.21	0.19	0.07	0.08	0.05	0.07	0.10	0.19	0.03	0.05	0.68	0.78	1.44	0.67	ND	1.01	0.63	1.23	2.89	2.91	0.21	3.35	0.43	LOI val
FeO	5.05	2.51	1.61	2.23	1.64	1.84	1.98	1.34	1.48	1.33	1.45	1.49	1.80	1.34	1.56	2.49	2.27	2.44	1.43	1.48	2.96	2.43	2.77	8.23	7.08	3.14	11.06	3.72	ies, and
MnO	0.120	0.033	0.010	0.044	0.085	0.097	0.081	0.075	0.091	0.085	0.074	0.091	0.112	0.070	0.075	0.05	0.139	0.112	0.041	0.042	0.005	0.005	0.088	0.212	0.144	0.096	0.189	0.126	rior stud
A1203	15.37	8.80	13.03	12.04	11.82	11.94	12.34	12.11	12.74	12.00	11.72	10.33	11.92	11.75	12.03	11.92	13.56	15.49	11.48	8.98	10.02	6.70	14.56	16.00	16.21	15.05	14.43	14.95	urse of p
Si02	60.52	77.79	74.27	70.57	77.21	72.85	75.12	73.21	73.21	73.62	74.15	79.16	76.32	73.49	76.04	64.45	69.64	63.47	68.94	81.80	69.94	76.32	60.09	49.89	55.71	68.05	51.74	67.77	ng the co
Lab	MSU	MSU	AL	AL	AL	AL	AL	Al	AL	MSU	AL	AL	AL	MSU	MSU	MSU	MSU	MSU	MSU	MSU	AL	AL	AL	AL	AL	MSU	MSU	WSU	ined duri
Weathering	Weathered	Weathered	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Unweath	Weathered	Weathered	Weathered	Weathered	Unweath	Sediment	Sediment	Sediment	Sediment	Sediment	Weathered	Sediment	Weathered	nples was obta
Devitrificat	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Devitrified	Glassy	Glassy	Devitrified	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified	lemistry for sar
Sample	MTA1	PG1	PG2	PG3	RST05	RST06	RST07	RST08	RST09	RST1	RST10	RST11	RST13	RST2	RST4	RU1*	SLNM	SLRC	SR1	SR2	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WU1	* Bulk ch

The majority of samples had alumina/alkali ratios >1, which is likely a result of loss of alkalis during alteration, rather than being representative of original magmatic composition. There was no correlation between alumina/alkali ratios and arsenic in any category of ash-flow tuffs (Figure 9).

Figure 9. Arsenic as a function of alumina/alkali ratios of tuff samples. The majority of the samples have ratios > 1, and there is no correlation between alumina/alkali ratios and arsenic concentrations.

Trace element concentrations of tuff and tuffaceous sediment samples are located in Table 9. For samples analyzed via INAA at Activation Laboratories, five samples produced arsenic levels below the MDL of 0.5 mg kg⁻¹. For samples analyzed via ICP-OES, only one sample was below the MDL of 1.2 mg kg⁻¹.

Table 9. Select samples analyz Rb, and Sb wei elements As. B	ed trace elemen ed at Activatio e obtained via e, and Mo wer	nt concentrations n Laboratories th INAA. For sam e analyzed via 10	t (mg kg ne eleme oles anal CP-OES	¹) for tu: nts Cu,] yzed at ^v at Portla	ff and t Mo, Pb WSU th nd Stat	uffaceo , Ni, Zn ie eleme e Unive	us sed , S, Li ents Ba trsitv.	, Be, S , Be, S a, Cr, O	sampl ir, and Cu, Ni entrie	es. Ful V we , Pb, F s indic	l trace re obta tb, Sr, ate tha	elem ained V, an at valu	ent res via IC d Zn v les we	P-MS, vere an vere vere an vere an vere an vere vere vere vere vere vere vere ver	n be fo and the alyzed analyze	und in eleme via XI d.	Appe ents A RF an	ndix C s, Ba, C d the	. For Cr,
Sample	Devit.	Weathering	Lab	\mathbf{As}	Ba	Be	, Ç	Cu	Li	Мо	ïZ	Ъb	Rb	S	Sb	Sr	>	Zn	1
BC1	Glassy	Weathered	AL	5.20	820	1.00	6	11		0.5	6	5	7.5	300	0.8	206	78	128	i
BC2	Sediment	Sediment	AL	<0.5	25	0.50	1	6	8	0.5	e	1.5	7.5	50	0.6	31	54	50	
BC3	Sediment	Sediment	AL	4.80	690	3.00	18	12	23	0.5	8	13	7.5	200	0.9	154	43	144	
DC1	Glassy	Unweathered	NSU	4.97	1351	2.39	ω	-		5.3	0	17	87			29	ω	142	
DC4	Glassy	Unweathered	AL	5.00	1220	3.00	1	9	12	7.0	9	13	76	100	1.1	27	4	204	
DC5	Devitrified	Unweathered	Al	<0.5	1150	3.00	1	S	2	0.5	0	8	7.5	50	0.8	35	S	185	
DC6	Devitrified	Unweathered	AL	6.80	950	3.00	1	9	5	1.0	0	10	7.5	50	1	30	24	134	
DC7	Devitrified	Unweathered	AL	3.80	1000	3.00	1	9	9	2.0	m	9	55	50	0.9	34	12	102	
DC8	Glassy	Weathered	AL	2.50	930	3.00	1	5	18	4.0	0	14	47	50	0.7	50	13	241	
DC9	Devitrified	Unweathered	AL	<0.5	1190	3.00	1	ς	٢	1.0	0.5	13	160	50	-	30	9	129	
DS1	Sediment	Sediment	AL	20.50	25	2.00	23	30	9	0.5	8	4	7.5	9700	2.7	122	149	47	
DS2	Sediment	Sediment	AL	5.00	250	1.00	٢	11	4	0.5	S	1.5	7.5	300	2.8	71	74	58	
DS3	Sediment	Sediment	AL	<0.5	110	1.00	11	9	$\overline{\vee}$	0.5	0.5	1.5	7.5	50	0.5	33	34	10	
DT1	Glassy	Unweathered	NSU	3.64	626	2.04	13	16		2.6	5	16	86			92	18	35	
DT2	Glassy	Unweathered	MSU	5.09	615	2.19	9	×		3.5	2	16	123			38	2	32	
DT3	Devitrified	Unweathered	AL	4.80	603	3.00	Э	4	16	1.0	2	16	104	50	0.9	31	9	23	
DVCI	Devitrified	Unweathered	MSU	3.55	170	3.36	6	12		1.8	5	24	85			23	15	159	
DVC2	Devitrified	Weathered	NSU	1.43	262	2.48	10	7		1.5	4	15	43			52	15	128	
DVC4	Glassy	Unweathered	AL	8.60	25	8.00	17	2	37	7.0	e	28	185	50	1.6	4	Э	284	
FD1	Glassy	Weathered	MSU	5.39	539	1.64	9	10		0.1	2	6	26			191	29	101	
FD2	Glassy	Weathered	MSU	5.51	505	1.51	9	×		0.6	-	10	39			132	23	102	
FD3	Glassy	Weathered	MSU	8.98	466	1.65	4	2		0.1	-	11	29			151	15	103	
FD4	Glassy	Weathered	WSU	13.13	713	1.70	4	10		0.2	e	6	76			783	29	100	
LB1	Glassy	Weathered	WSU	5.77	733	0.32	9	S		0.7	4	12	104			33	12	35	
LG1	Glassy	Weathered	AL	10.10	1100	5.00	1	ς	S	0.5	0.5	15	122	600	0.6	27	-	169	
LG2	Devitrified	Weathered	AL	23.20	1220	5.00	1	5	9	0.5	0.5	6	172	50	0.9	22	1	89	
LG3	Devitrified	Weathered	AL	2.60	380	3.00	1	ς	43	0.5	-	14	65	400	0.9	2	0	127	
LG4	Devitrified	Weathered	AL	80.80	640	4.00	-	S	32	2.0	0.5	6	7.5	50	0.4	34	-	153	

c nn n	NIF	. ,	Mo	Li Mo	Cu Li Mo	Cr Cu Li Mo	Be Cr Cu Li Mo	Ba Be Cr Cu Li Mo	As Ba Be Cr Cu Li Mo	ab As Ba Be Cr Cu Li Mo
6 63	2 1	0.	-	1	11 1	4 11 1	2.25 4 11 1	483 2.25 4 11 1	6.52 483 2.25 4 11 1	/SU 6.52 483 2.25 4 11 1
8 54	5 1	0.7			20	10 20	2.77 10 20	1298 2.77 10 20	7.87 1298 2.77 10 20	/SU 7.87 1298 2.77 10 20
35	8	0.9			20	20 20	1.12 20 20	405 1.12 20 20	4.68 405 1.12 20 20	/SU 4.68 405 1.12 20 20
31	ς ε	0.5				3 7	1.21 3 7	421 1.21 3 7	9.17 421 1.21 3 7	VSU 9.17 421 1.21 3 7
3 47	8	1.6			19	24 19	1.17 24 19	553 1.17 24 19	3.13 553 1.17 24 19	/SU 3.13 553 1.17 24 19
1 132	2	0.3			7	4 7	1.90 4 7	641 1.90 4 7	4.44 641 1.90 4 7	/SU 4.44 641 1.90 4 7
1 7.5 50	1	0.5	8		9	1 6	3.00 1 6	1280 3.00 1 6	<0.5 1280 3.00 1 6	L <0.5 1280 3.00 1 6
89 100	2	5.0	2		×	16 8	5.00 16 8	720 5.00 16 8	9.80 720 5.00 16 8	L 9.80 720 5.00 16 8
9 90	3	4.0			ε	5 3	2.88 5 3	605 2.88 5 3	3.00 605 2.88 5 3	/SU 3.00 605 2.88 5 3
4 79 50	4	5.0	31		S	1 5	4.00 1 5	400 4.00 1 5	6.20 400 4.00 1 5	L 6.20 400 4.00 1 5
1 140 50	5 1	3.0	29		×	1 8	4.00 1 8	600 4.00 1 8	5.70 600 4.00 1 8	L 5.70 600 4.00 1 8
1 110 200	6 1	1.0	11		2	13 7	4.00 13 7	1080 4.00 13 7	7.40 1080 4.00 13 7	L 7.40 1080 4.00 13 7
9 85	2	3.7			0	6 2	2.71 6 2	721 2.71 6 2	3.29 721 2.71 6 2	/SU 3.29 721 2.71 6 2
4 88	4	1.4			4	5 4	2.49 5 4	739 2.49 5 4	3.79 739 2.49 5 4	/SU 3.79 739 2.49 5 4
6 143 50	2	2.0	24		۲	10 7	3.00 10 7	480 3.00 10 7	5.50 480 3.00 10 7	L 5.50 480 3.00 10 7
2 107 50	4	5.0	26		6	22 9	4.00 22 9	560 4.00 22 9	7.30 560 4.00 22 9	L 7.30 560 4.00 22 9
2 7.5 50	11 1	2.0	25		38	1 38	4.00 1 38	530 4.00 1 38	4.30 530 4.00 1 38	L 4.30 530 4.00 1 38
6 99 50	1	5.0	14		S	1 5	4.00 1 5	370 4.00 1 5	3.20 370 4.00 1 5	L 3.20 370 4.00 1 5
7 7.5 50	3 1	6.0	20		4	1 4	4.00 1 4	290 4.00 1 4	2.30 290 4.00 1 4	L 2.30 290 4.00 1 4
0 20	0	0.1			8	5 8	1.03 5 8	552 1.03 5 8	3.55 552 1.03 5 8	/SU 3.55 552 1.03 5 8
8 158	2	2.0			12	9 12	3.74 9 12	770 3.74 9 12	2.72 770 3.74 9 12	/SU 2.72 770 3.74 9 12
1 106	4	1.5			21	4 21	1.86 4 21	1819 1.86 4 21	2.17 1819 1.86 4 21	/SU 2.17 1819 1.86 4 21
9 92	1 1	0.6			10	4 10	3.96 4 10	571 3.96 4 10	6.80 571 3.96 4 10	/SU 6.80 571 3.96 4 10
6 128	2	2.0			10	5 10	3.10 5 10	374 3.10 5 10	30.89 374 3.10 5 10	/SU 30.89 374 3.10 5 10
18 3500	16 3	2.0	15		26	32 26	2.00 32 26	25 2.00 32 26	13.90 25 2.00 32 26	L 13.90 25 2.00 32 26
5 7.5 1400	6 1.	2.0	11		21	30 21	0.50 30 21	25 0.50 30 21	4.90 25 0.50 30 21	L 4.90 25 0.50 30 21
0 7.5 2400	6 2	3.0	18		Ś	1 5	5.00 1 5	25 5.00 1 5	6.70 25 5.00 1 5	L 6.70 25 5.00 1 5
5 7.5 400	81 1.	0.5	9		65	164 65	0.50 164 65	880 0.50 164 65	2.60 880 0.50 164 65	L 2.60 880 0.50 164 65
7.5 400) 62	0.5	6		99	139 66	1.00 139 66	600 1.00 139 66	<0.5 600 1.00 139 66	L <0.5 600 1.00 139 66
33	3	0.6			26	7 26	1.24 7 26	351 1.24 7 26	5.06 351 1.24 7 26	/SU 5.06 351 1.24 7 26
5	15 3	0.1			161	16 161	0.42 16 161	154 0.42 16 161	< 1.2 154 0.42 16 161	/SU < 1.2 154 0.42 16 161
4 53	9	1.2			16	11 16	1.97 11 16	875 1.97 11 16	4.19 875 1.97 11 16	/SII 419 875 197 11 16

Total Arsenic Concentrations

The 49 tuff samples have a mean arsenic content of 7.5 mg kg⁻¹, a geometric mean arsenic content of 4.8 mg kg⁻¹, a median arsenic content of 5.2 mg kg⁻¹, and a maximum arsenic content of 81 mg kg⁻¹ (Table 10). The mean and median values are 2.8 - 4.4x the average crustal abundance of arsenic of 1.7 mg kg⁻¹ (Wedepohl, 1995), and consistent with previously reported mean values for both felsic volcanic rocks (3.5 mg kg⁻¹) and volcanic glasses (5.9 mg kg⁻¹) (Onishi and Sandell, 1955; Wedepohl, 1995).

Table 10. Total arsenic contents of tuffs and tuffaceous sediments. Numbers in parentheses inc	licate values
that include samples identified as outliers.	

	Mean (mg/kg)	Geometric Mean (mg/kg)	Median (mg/kg)	Standard Deviation (mg/kg)	Median Absolute Deviation (mg/kg)
All Tuffs $n = 45 (49)$	5.2 (7.5)	4.2 (4.8)	5.0 (5.2)	3.4 (11)	2.5 (2.8)
Weathered Tuffs $n = 18$ (20)	6.0 (10.0)	5.2 (6.2)	6.0 (5.6)	3.3 (16)	3.2 (3.8)
Unweathered Tuffs $n = 28$ (29)	4.7 (5.7)	3.4 (3.7)	4.6 (4.9)	2.6 (5.8)	1.9 (2.2)
Devitrified $n = 15$ (16)	4.3 (9.6)	2.4 (2.9)	4.3 (4.7)	2.6 (17)	2.1 (2.3)
Glassy $n = 13$	6.1	4.9	6.0	3.1	2.8
Tuffaceous Sediments $n = 10 (11)$	4.5 (6.3)	2.0 (2.5)	4.3 (5.6)	4.9 (7.7)	4.8 (7.3)

Arsenic values were normalized to 100% on an anhydrous basis. Four samples (LG4, LG2, SR2, and DS1) were identified as outliers using Grubbs test for outliers. Arsenic concentrations in tuffs were positively skewed, and appeared to be lognormally distributed, so the data were log transformed, and Shapiro-Wilk tests of normality were performed on arsenic concentrations for tuffs, tuffaceous sediments, and the different categories of tuff samples. At a significance level of $\alpha = 0.05$, unweathered tuffs, glassy tuffs, and tuffaceous sediments were still found to be non-normally distributed after log transformation and removal of outliers (Table 11). Details of statistical methods can be found in Appendix B.

able 11. Test statistics (W) and p-values for Shapiro-Wilk tests of normality					
		W	p-Value		
All Tuffs $n = 45$		0.782	7.93E-07		
Weathered Tuffs $n = 1$	8	0.985	0.974		
Unweathered Tuffs n	= 28	0.711	1.41E-05		
Devitrifie	d n = 16	0.971	0.917		
Glassy n =	= 13	0.699	0.0008		
Tuffaceous Sediments	n = 10	0.844	0.050		

Brown-Forsythe tests for equality of variances were performed on log transformed arsenic concentrations for all groups of samples with outliers removed (Table 12). At a significance level of $\alpha = 0.05$, the variance of all tuffs was found to be different than the variance of tuffaceous sediments. Both devitrified and glassy and

weathered and unweathered tuffs were found to have statistically indistinguishable

variances.

Table 12.	Test statistics.	number of same	oles, and p	-values for	Brown-Forsythe	tests of equal	variances
10010 12.	1 000 000000000000000000000000000000000	indinio er or samp	neo, and p	101000 101	210	tests of equal	

	Test Stat	nl	n2	p-Value
Tuffs v. Tuffaceous Sediments	8.12	46	10	0.006
Weathered v. Unweathered Tuffs	0.800	18	28	0.380
Devitrified v. Glassy	2.30	15	13	0.143

Non-parametric Mann-Whitney-Wilcoxon tests were performed on log transformed arsenic values, and the arsenic concentrations were not found to be significantly different between the different categories of samples (Table 13).

	U	n1	n2	p-Value
Tuffs v. Tuffaceous Sediments	273	46	10	0.367
Weathered v. Unweathered Tuffs	213	18	28	0.270
Devitrified v. Glassy	59	15	13	0.478

Table 13. Test statistic (U), number of samples, and p-values for Man-Whitney-Wilcoxon tests of equality performed on sample categories.

Although the categories are not statistically distinguishable, devitrified and weathered samples contain a larger range of arsenic concentrations than glassy samples, and higher maximum arsenic concentrations (Figure 10). Although 10% of all samples have arsenic concentrations in excess of 10 mg kg⁻¹ no fresh glassy samples contain arsenic at those levels.

Figure 10. Log transformed distributions of total arsenic concentrations for samples divided by category. A: without outlying values. B: with outlying values. Yellow squares indicate mean values.

Total arsenic concentrations can vary substantially within individual units (Figure 11). The most extreme example is the Tuff of Leslie Gulch, which has a maximum arsenic concentration or 81 mg kg⁻¹, about 30 times greater than its minimum arsenic concentration of 2.6 mg kg⁻¹.

Figure 11. Ranges of arsenic found in individual geologic units. DC = Dinner Creek Tuff, DT = Dale Tuff, DVC = Devine Canyon Tuff, FD = Tuff of Foster Dam, LG = Tuff of Leslie Gulch, MK = Tuff of Mohawk, PG = Picture Gorge Tuff, RST = Rattlesnake Tuff, SR = Tuff of Smith Rock.

Arsenic concentrations varied within individual outcrops as well as individual units. Complete sections from unwelded bases through devitrified tops were collected from single outcrops of the Rattlesnake Tuff and the Dinner Creek Tuff (Figure 12). Both sections contained ranges of arsenic concentrations >5 mg kg⁻¹.

Figure 12. Stratigraphy and corresponding arsenic concentrations for two sections of individual tuff units. The type section of the Rattlesnake tuff shows higher arsenic levels upsection in the less porous sections of the unit. The Dinner Creek section shows arsenic concentrations ranging from $<0.5 \text{ mg kg}^{-1}$ (non-detect value plotted as 0 mg kg⁻¹) to 6.8 mg kg⁻¹, with no apparent relationship between arsenic concentration and position within the section. Error bars are based on INAA recovery percents from certified reference materials from Activation Laboratories, Ltd.

In the Rattlesnake Tuff arsenic concentrations generally increased upsection, with lower arsenic levels in the incipiently and partially welded glassy samples at the base, and

higher values in both the densely welded glassy sample and devitrified samples. In contrast, the Dinner Creek Tuff did not display any apparent relationship between arsenic concentration and vertical position within the section.

Elemental Correlations

Tests of correlation between arsenic and other elements were performed on log transformed data with outliers excluded using the non-parametric Spearman's rank correlation coefficient, which was chosen over Pearson's product moment correlation coefficient due to both the non-normal distribution of the data and the comparative robustness of Spearman's rank correlation coefficient when dealing with outliers. Details of statistical calculations can be found in Appendix B. Arsenic displayed statistically significant (p < 0.05) correlations with a few of the elements in the samples used in this study (Table 14).

correlation.Significant Correlations with ArsenicAll Tuffs (df = 44) Al_2O_3 , FeO, SbWeathered Tuffs (df = 16) K_2O , MoAll Unweathered Tuffs (df = 26) Al_2O_3 , Cu, FeO, SmDevitrified Tuffs (df = 13)MnO, SmGlassy Tuffs (df = 11)Cr, FeOTuffaceous Sediments (df = 8)None

Table 14. Statistically significant (p < 0.05) elemental correlations with arsenic. Italicized items showed a negative correlation with arsenic, while un-italicized items showed a positive correlation.

Arsenic in all tuff samples was negatively correlated with Al_2O_3 , and positively correlated with FeO and Sb. Different categories of tuffs displayed different correlations between arsenic and other elements, although a positive correlation with FeO was present in multiple categories. The majority of the statistically significant correlations, including the correlation with FeO, were not reflective of strong linear relationships between elements, with R² values < 0.15 (Figure 13).

Figure 13. Log transformed Arsenic and FeO concentrations in tuffs and tuffaceous sediments. Although statistically significant positive correlations were found between arsenic and FeO, there is not a strong linear relationship between the elements

DISCUSSION

Arsenic concentrations in ash-flow tuffs are higher than previously reported values, and highly heterogenous between and within individual units. Although the median arsenic concentrations do not differ between categories of tuffs, the range of arsenic, particularly the maximum arsenic concentrations, is different between both weathered and unweathered tuffs and devitrified and glassy tuffs. Although 10% of the samples in this study had arsenic concentrations exceeding 10 mg kg⁻¹ none of those samples were unweathered glassy samples. Together, these results suggest three distinct mechanisms that determine the arsenic concentrations of individual tuff samples: arsenic content of the original source magma, mobility of arsenic during deposition of the unit, and mobility of arsenic during post-depositional alteration processes, both devitrification and weathering.

Composition of Source Magma

The first factor in determining arsenic levels in a tuff sample is the arsenic content of the original source magma. Although no correlation was found between alumina/alkali ratios and arsenic, previous research has suggested that the arsenic content of volcanic rocks increases with silica content, and less felsic volcanic rocks have lower mean arsenic concentrations than ash-flow tuffs (Onishi and Sandell, 1955). Fractional crystallization of feldspars, other anhydrous silicates, and oxides produces melts enriched in volatiles and incompatible metals, including arsenic (Borisova, 2010). Enrichment driven by fractional crystallization is a likely mechanism for producing arsenic concentrations in high-silica tuffs that exceed both the average value of the continental crust, and values found in less silicic volcanic rocks.

Arsenic concentrations can also vary between different silicic magmas. Along with boron, arsenic has been suggested as an indicator of contributions from sedimentary materials and slab-derived fluids in subduction zone magmas (Noll, 1996). Magmas produced by melting of high arsenic sedimentary materials and magmas incorporating a high proportion of slab-derived fluids can contain higher arsenic concentrations than magmas produced in other tectonic settings.

Although the arsenic concentrations of tuff samples in this study displayed a high degree of heterogeneity within individual units it seems likely that the magmatic source plays some role in determining the final arsenic concentrations of individual samples. All of the units in this study that contained at least one sample with arsenic levels exceeding 10 mg kg⁻¹ also contained samples with lower arsenic levels. However, the lower arsenic levels for these units still exceeded the median value of 5.0 mg kg⁻¹ for all tuffs, which suggests that the original source magmas for these units were potentially more arsenic rich than units lacking high arsenic (>10 mg kg⁻¹) samples.

Depositional Processes

Pyroclastic volcanic eruptions that produce ash-flow tuffs involve substantial and rapid degassing of silicic magmas. Arsenic is known to preferentially partition into the vapor phase, and has been found to be enriched by factors of $10^2 - 10^3$ relative to the melt in studies of andesitic magma systems (Symonds, 1987). Unlike more effusive eruption

mechanisms pyroclastic flows entrain both solid and vapor phase portions of a magma during deposition. The presence of arsenic in the vapor phase during deposition of ash-flow tuffs is likely to result in loss of some portion of arsenic from the system as well as heterogeneity of arsenic levels within the unit itself (Borisova, 2010).

While substantial heterogeneity was observed within units the results of this study do not provide definitive conclusions about spatial patterns of arsenic distribution that occur as a result of movement of the vapor phase. The arsenic concentrations in the type section of the Rattlesnake Tuff suggest one possible pattern of spatial distribution. Within a single outcrop samples taken higher in the section, representing the denser, less permeable interior of the unit, display higher arsenic concentrations than un- or partially welded samples from the base of the unit (Figure 12). This suggests that volatile arsenic entrained in the flow may have migrated from the permeable lower portions of the unit during deposition and cooling, and been trapped in the overlying less permeable interior. This same pattern is not seen in the Dinner Creek Tuff.

An additional hypothesis regarding the spatial distribution of arsenic within individual tuffs is that arsenic may decrease with increasing distance from the eruptive center, as a higher proportion of the volatiles are lost as the flow travels further from its source. Distance from the eruptive center is a variable worth exploring in further studies.

Post-Depositional Alteration Processes

Although the median values were not statistically different between categories of tuffs only weathered and devitrified tuffs included samples with arsenic concentrations

that exceeded 10 mg kg⁻¹, and unweathered glassy samples contained a much smaller range of arsenic levels than the other categories of tuffs. This suggests that both devitrification and weathering have the potential to concentrate arsenic relative to unaltered tuffs.

The most likely mechanism to explain the potential for arsenic enrichment in devitrified tuffs relative to glassy tuffs is vapor phase mineralization. Vapor phase mineralization occurs primarily in the interiors of thick (>10 m) ash-flow tuffs, and can be driven by the degassing of H₂O, CO₂, S, and other volatile components from pyroclastic glasses during the process of devitrification (Vaniman, 2006). As a result of the wide variety of constituents that are excluded from the structure of feldspars and silicates that form during devitrification, vapor phase mineralogy can be very complex, and can differ substantially between tuffs. Vapor phase minerals include a variety of silicate minerals (alkali feldspar, tridymite, cristobalite, quartz, amphibole, biotite, zircon, monazite, and garnet have all been observed), as well as oxides, carbonates, phosphates, chlorides, and sulfides (Stimac, 1996; Vaniman, 2006). Oxides, phosphates, and sulfide minerals are all likely candidates for arsenic host phases. In addition, the fact that vapor phase mineralization occurs in some, but not all, tuffs may explain why only a portion of the devitrified samples in this study were enriched in arsenic relative to glassy samples.

Unfortunately, identification of vapor phase minerals is difficult, because they tend to be small (< 1-10 μ m), present at low concentrations (< 1% by volume), fragile, and located on grain surfaces and boundaries between larger crystals (Stimac, 1996). The

complexity of vapor phase mineralogy and difficulty of identifying individual vapor phase minerals makes the characterization of vapor phase minerals beyond the scope of the solid phase characterization performed in this study.

<u>CHAPTER 3: ARSENIC MOBILITY IN ASH-FLOW TUFFS AND ASSOCIATED</u> SEDIMENTS

INTRODUCTION

Despite the widespread association between ash-flow tuffs and elevated groundwater arsenic concentrations, surprisingly little is known about arsenic mobility from these units. Multiple mechanisms have been proposed to explain the mobilization of arsenic from tuffs, including dissolution of volcanic glasses (Nicolli et al., 1989; Johannesson and Tang, 2009), and alkali desorption of arsenic from mineral grain surfaces (Smedley and Kinniburgh, 2002). Although tuffs are typically highly heterogenous and include both glassy and devitrified sections as well as varying degrees of weathering, most research has focused solely on volcanic glasses, and has not considered the alteration processes of devitrification and weathering, or what role those processes may play in mobilizing arsenic.

This study uses 49 tuff samples spanning a range of chemical and mineralogical compositions, as well as 11 samples of tuffaceous sediments to investigate the mobility of arsenic in ash-flow tuffs. Specific objectives of the study are 1) to quantify the amount of arsenic present in tuffs that can be mobilized into the environment by determining total environmentally available arsenic levels and readily leachable arsenic levels and 2) to determine if and how devitrification and weathering influence the amounts of mobile arsenic present in tuffs.

METHODS

To investigate the relative mobility of arsenic in tuffs of varying compositions two fractions of arsenic were identified. Both environmentally available and readily leachable fractions were operationally defined. The environmentally available fraction refers to the portion of arsenic mobilized by microwave digestion with concentrated HNO_3^- , following USEPA Method 3051A, which results in the dissolution of solid phases that are susceptible to chemical alteration under a range of surface geochemical conditions. This method does not recover metals hosted in silicate phases (feldspars, silica polymorphs, or glass), and is frequently referred to a "total recoverable" analytical method, in contrast to USEPA Method 3052 using HF + HNO₃⁻ + HCl, which is a "total total" method (Chen, 1998; US Environmental Protection Agency, 1996a).

The readily leachable fraction refers to the fraction of arsenic (and other elements) mobilized by simple mixing with reagent-grade water for a relatively short period of time (18 hours), following ASTM D3987-85. This method is designed to produce a water extract that simulates conditions where the solid phase is the dominant factor in determining the final pH of the extract (Das, 2007).

Environmentally Available Arsenic

To determine the environmentally available fraction of elements, samples were digested following USEPA Method 3051A (US Environmental Protection Agency, 1996a). A subsample of crushed and powdered sample was weighed to 1.000 ± 0.001 g and placed in a Teflon microwave vessel to which 10 mL of 17 M trace-metal grade

HNO₃⁻ was subsequently added. Samples were digested using a Milestone Ethos EZ microwave digester for 40 minutes, reaching a maximum temperature of 240°C for 20 minutes. Method blanks and standard JR1 from the Japanese Geological Survey were run every 20 samples. Samples were decanted into 50-mL plastic centrifuge tubes and vessels were rinsed three times with 18.2 M Ω cm distilled water. The rinse was added to the digested samples, and the centrifuge tubes were filled to 40 mL with water. Samples were centrifuged at 3000 rpm for 10 minutes. Samples were further diluted (1:1 with water) in plastic test tubes immediately prior to analysis, and mixed by pouring the diluted sample into a second plastic test tube. Samples were analyzed using an Agilent 700 Series ICP-OES. Operating conditions for the analysis are listed in Appendix A.

Readily Leachable Arsenic

An additional aliquot of powdered sample was weighed to 1.000 ± 0.001 , placed in a 50-mL centrifuge tube and combined with 20.0 mL of 18.2 M Ω cm deionized water. Samples were mixed at 20 rpm for 18 hours. After mixing, samples were centrifuged at 3000 rpm for 15 minutes and ~15 mL of each solution was decanted into a fresh 50-mL centrifuge tube. Samples were acidified using 0.300 mL of trace-element grade HNO₃⁻ in order to preserve the solution for analysis. Samples were analyzed using an Agilent 700 Series ICP-OES. Operating conditions for the analysis are listed in Appendix A. For selected samples the pH of the resulting solution was determined from the unacidified sample.

pH Dependent Extractions

To determine how pH influences the leachability of arsenic from tuffs, the procedure for determining readily leachable arsenic was repeated with varying pH levels on selected samples. Five tuff samples with the highest total arsenic concentrations were selected from the glassy (BC1, DVC4, PG3, RST6, RST10), devitrified (DC6, MK2, RST11, RST13, SR2), and weathered (FD3, FD4, LG1, LG2, LG4) categories. Leaching experiments were performed at pH 3, 5, and 9 using Fisher Scientific buffer solutions, and at pH 11 using a buffer solution prepared in the lab using reagent grade NaOH and NaHCO₃ (Table 15). Specific buffers were selected primarily to avoid the use of potassium phosphate, a common component of buffer solutions, in order to avoid introducing phosphate anions into solution, as phosphate can behave as a competing anion and decrease the sorption of arsenic.

Name	Composition	pН
Fisher Chemical SB97-500 Buffer Solution	Potassium Acid Phthalate Hydrochloric Acid	3
Fisher Chemical SB102-1 Buffer Solution	Potassium Acid Phthalate Sodium Hydroxide	5
Fisher Chemical SB114-1 Buffer Solution	Boric Acid Potassium Chloride Sodium Hydroxide	9
	Sodium Hydroxide Sodium Bicarbonate	11

Table 15. Buffer solutions used to control pH levels in pH specific leaching experiments.

One gram of powdered sample was placed in a 50-mL centrifuge tube and combined with 20.0 mL of buffer solution. Samples were mixed at 20 rpm for 18 hours.
After mixing, samples were centrifuged at 3000 rpm for 15 minutes. Following centrifuging ~15 mL of solution was decanted into fresh 50-mL centrifuge tubes. Samples were acidified using 0.300 mL of trace element grade HNO₃⁻ to preserve the solution for analysis. Unfortunately, rectangular euhedral crystals were observed forming on the wall of the centrifuge tubes holding the pH 3 and pH 5 solutions, potentially the result of oxidation of the potassium acid phthalate in the buffer solutions by HNO₃⁻, and the low pH extracts were not analyzed. The high pH solutions were analyzed using an Agilent 700 Series ICP-OES. Operating conditions for the analysis are listed in Appendix A.

RESULTS

QC Results

Check standards were run during ICP-OES analysis as a check on instrumental accuracy, and results are listed in Appendix A. For environmentally available arsenic samples, three analytical sessions were conducted, and results for individual elements varied slightly between sessions. Most elements consistently produced values that were within \pm 10% of the standard value, with the exception Na and Si. Na was measured at values up to 118% of the check standard value during the first run, but was consistently within \pm 10% of the standard value during subsequent runs. Si was not measured during the first run, but was measured at values exceeding the check standard value by up to 400% during subsequent sessions. Si values increased over the course of both runs, and values in excess of check standard values were likely the result of insufficient rinsing of the element between analyses of different samples. For the second and third sessions neither S and P were present in the check standard, but were still measured at low levels (up to 30 ppb for S) in check standard and blanks.

For readily leachable arsenic samples two analytical sessions were conducted. For both sessions the check standard results were similar to those for the environmentally available samples. Na and Si were consistently measured with values exceeding those of the check standards, and P and S were measured at low levels in check standards and blanks, despite not being present in those standards.

Three samples analyzed for environmentally available arsenic were analyzed in

duplicate. Relative percent differences for arsenic in the samples range from 2.5 to 7.6%.

	WU1 RPD	MK1 RPD	MK2 RPD
	(%)	(%)	(%)
Al	0.24	1.18	0.37
As	7.64	3.53	2.49
Ba	0.06	0.83	0.45
Ca	0.41	1.62	0.38
Cd	4.07	1.72	5.17
Ce	0.03	0.94	0.91
Co	0.40	0.56	1.50
Cr	0.50	1.46	0.12
Cu	0.00	0.58	0.32
Fe	0.05	0.98	0.11
La	0.12	1.23	0.82
Mg	0.06	0.72	0.44
Mn	0.04	1.00	0.38
Na	0.61	1.10	0.01
Ni	0.45	0.79	2.00
Р	0.03	0.36	0.42
Pb	1.31	4.04	1.66
S	0.92	2.54	0.41
Sm	2.01	0.54	0.00
Sr	0.05	1.11	0.49
V	0.18	1.09	0.46
Zn	0.20	0.74	0.62

 Table 16. Relative percent differences for duplicate samples analyzed

 via EPA Method 3051a.

All water extractions were performed in duplicate, and selected sample RPDs are displayed in Table 17, full RPD results can be found in Appendix A. Relative percent differences for arsenic ranged from 1.32% to 6.65%. The low levels of elements present in the water extracts produced many non-detections, as well as higher RPDs for many elements than occurred for other experiments.

inuryzeu m	dupneute.		
	LG1 RPD	RST10 RPD	DST2 RPD
	(%)	(%)	(%)
Al	26.2	21	40.6
As	1.32	NA	6.65
Ва	32.1	13.5	18.1
Ca	20.5	12.5	0.59
Cu	1.18	8.16	4.36
Fe	7.29	19.6	46.9
La	16.5	NA	40.2
Mg	13.5	12.7	19.8
Mn	NA	NA	39.4
Mo	NA	NA	NA
Na	1.87	0.31	3.28
Р	1.02	0.18	19.5
S	5.92	1.22	3.14
Si	1.65	10.6	9.03
Sr	30.6	15.7	14.4
Ti	0.46	18.4	35.9
V	18.5	0.29	1.70
Zn	6.99	13.0	43.9

Table 17. Relative percent differences for water extractions analyzed in duplicate.

Environmentally Available Arsenic

Complete results for the environmentally available fraction are listed in Appendix C. Two samples (LG4 and SR2) were identified as outliers using Grubbs test for outliers. Arsenic concentrations in tuffs were positively skewed and appeared to be lognormally distributed, so the data was log transformed, The mean environmentally available arsenic concentration present in all tuff samples, excluding the two outliers, is 2.2 mg kg⁻¹, the median environmentally available arsenic concentration is 1.8 mg kg⁻¹, and the geometric mean of arsenic present in the environmentally available fraction is 1.2 mg kg⁻¹ (Table 18).

	Mean (mg/kg)	Geometric Mean (mg/kg)	Median (mg/kg)	Standard Deviation (mg/kg)	Median Average Deviation (mg/kg)
All Tuffs $n = 47 (49)$	2.2 (4.1)	1.2 (1.4)	1.8 (1.8)	2.1 (9.9)	2.3 (2.4)
Weathered Tuffs $n = 19$ (20)	3.3 (5.8)	2.4 (2.8)	2.9 (3.0)	2.3 (12.7)	2.4 (2.4)
Unweathered Tuffs $n = 28$ (29)	1.2 (2.3)	0.63 (0.74)	0.43 (0.57)	1.4 (5.7)	0.34 (0.54)
Devitrified $n = 15 (16)$	2.8 (6.6)	1.9 (2.4)	2.3 (2.4)	2.1 (13.8)	0.71 (0.78)
Glassy $n = 13$	1.8	0.23	0.7	2.1	0
Tuffaceous Sediments n = 11	2.4	1.1	1.4	3.1	1.7

Table 18. Environmentally available fraction of arsenic present in ash-flow tuffs and tuffaceous sediments. Numbers in parentheses indicate values that include samples identified as outliers.

Shapiro-Wilk tests of normality were performed on log transformed arsenic concentrations for all tuffs, tuffaceous sediments, and the different categories of tuff samples. At a significance level of $\alpha = 0.05$, all tuffs, unweathered tuffs, and glassy tuffs were found to be non-normally distributed (Table 19). Details of statistical methods can be found in Appendix B.

normanty.		
	W	p-Value
All Tuffs $n = 46$	0.883	2.40E-04
Weathered Tuffs $n = 18$	0.935	0.137
Unweathered Tuffs $n = 29$	0.804	4.39E-04
Devitrified $n = 16$	0.935	0.467
Glassy $n = 13$	0.327	1.21E-06
Tuffaceous Sediments $n = 10$	0.918	0.306

Table 19. Test statistics (W) and p-values for Shapiro-Wilk tests of normality.

Brown-Forsythe tests for equality of variances were performed on log

transformed arsenic concentrations for all groups of samples (Table 12). At a significance level of $\alpha = 0.05$, both devitrified and glassy and weathered and unweathered tuffs were found to have unequal variances.

Table 20. Test statistics, number of samples, and p-values for Brown-Forsythe tests of equal variances.

	Test Stat	nl	n2	p-Value
Tuffs v. Tuffaceous Sediments	0.0471	47	11	0.829
Weathered v. Unweathered Tuffs	6.038	19	28	0.018
Devitrified v. Glassy Tuffs	5.282	15	13	0.051

Non-parametric Mann-Whitney-Wilcoxon tests were performed on the log transformed solid arsenic concentrations in the environmentally available fraction. Environmentally available arsenic was found to be significantly different between both weathered and unweathered tuffs and glassy and devitrified tuffs (Table 21). Unweathered tuffs have significantly less arsenic in the environmentally available fraction than weathered tuffs, and glassy tuffs have significantly less arsenic in the environmentally available fraction than devitrified tuffs.

Table 21. Test statistic (U), number of samples, and p-values for Man-Whitney-Wilcoxon tests of equality performed on sample categories.

	U	n1	n2	p-Value
Tuffs v. Tuffaceous Sediments	236	47	11	0.736
Weathered v. Unweathered Tuffs	101.5	19	28	3.15E-04
Devitrified v. Glassy	131	15	13	2.61E-05

Although unweathered tuffs are significantly different than weathered tuffs it appears that difference is driven primarily by the very low levels of environmentally available arsenic found in unweathered glassy tuffs in comparison to the other categories, rather than differences produced by weathering in both glassy and devitrified tuffs. When compared directly there is no significant difference between weathered tuffs and unweathered devitrified tuffs (Figure 14).

Figure 14. Environmentally available fraction of arsenic present in tuffs and tuffaceous sediments. Yellow squares indicate mean values. In unweathered glassy tuffs significantly less of the total arsenic is present in the environmentally available fraction than is found in devitrified or weathered tuffs, or tuffaceous sediments.

When the weathered tuff category is broken into originally glassy and originally devitrified samples the difference between glassy and devitrified samples is more apparent. Weathering does not produce a higher proportion of environmentally available arsenic in devitrified tuffs, but does produce a significantly higher proportion of environmentally available arsenic in glassy tuffs (Figure 15).

Figure 15. Environmentally available fraction of arsenic present in devitrified and glassy tuffs, by degree of weathering. Yellow squares indicate mean values. Weathering produces substantial differences in the environmentally available fraction of arsenic in glassy tuffs, but the difference between weathered and unweathered devitrified tuffs is not significant.

There are statistically significant positive correlations between environmentally available arsenic and total arsenic in all categories of samples except unweathered glassy tuffs (Figure 16). For devitrified and weathered tuffs, as well as tuffaceous sediments, regressions between total and available arsenic remain statistically significant (p < 0.05) even when samples identified as outliers are removed.

Figure 16. Environmentally available arsenic as a function of total arsenic concentrations. There is a direct relationship between total and available arsenic in all categories except glassy tuffs.

Readily Leachable Arsenic

The majority of tuff samples, including all unweathered glassy samples, produced levels of readily leachable arsenic below the method detection limit (MDL) of 102 μ g kg⁻¹. Among the samples that produced detectable levels of arsenic, the geometric mean concentration was 236 μ g kg⁻¹, and the median concentration was 219 μ g kg⁻¹ (Table 22).

	Mean (µg/kg)	Geometric Mean (µg/kg)	Median (µg/kg)	Standard Deviation (µg/kg)	Median Absolute Deviation (µg/kg)
All Tuffs $n = 9$ (49)	266 (90.5)	236 (67.6)	219 (51.1)	131 (99.6)	159 (0)
Weathered Tuffs $n = 5$ (20)	282 (109)	258 (76.5)	219 (51.1)	135 (120)	111 (0)
Unweathered Tuffs $n = 4$ (29)	245 (77.9)	212 (62.1)	248 (51.1)	143 (82.7)	178 (0)
Devitrified $n = 4$ (16)	245 (96.8)	212 (71.3)	248 (51.1)	143 (105)	178 (0)
Glassy $n = 13$	ND	ND	ND	ND	ND
Tuffaceous Sediments $n = 7 (11)$	1232 (1907)	1134 (367)	2174 (192)	1330 (1392)	1270 (208)

Table 22. Readily leachable fraction of arsenic present in ash-flow tuffs and tuffaceous sediments. Values in parentheses indicate values that include samples below the MDL of $102 \mu g/kg$.

For statistical purposes non-detect values were replaced with a value of 0.5 x MDL (Antweiler, 2008; Clark, 1998). Arsenic levels in the leachable fraction were positively skewed, and appeared to be lognormally distributed, so values were log transformed and Shapiro-Wilk tests of normality were performed on arsenic concentrations for tuffs, tuffaceous sediments, and the different categories of tuff samples. At a significance level of $\alpha = 0.05$, all categories of tuffs and tuffaceous sediments were found to be normally distributed, with the exception of glassy tuffs where all samples had identical values (Table 23). Details of statistical methods can be found in Appendix B.

	W	p-Value
All Tuffs $n = 46$	0.498	1.03E-11
Weathered Tuffs $n = 18$	0.596	2.68E-06
Unweathered Tuffs $n = 29$	0.412	1.07E-09
Devitrified $n = 16$	0.554	3.84E-06
Glassy $n = 13$	NA	NA
Tuffaceous Sediments $n = 10$	0.787	0.006

Table 23. Test statistics (W) and p-values for Shapiro-Wilk tests of normality.

Parametric F tests for equality of variances were performed on log transformed readily leachable arsenic values. At a significance level of $\alpha = 0.05$, tuffs and tuffaceous sediments, as well as devitrified and glassy tuffs, were found to have unequal variances. The variances of weathered and unweathered tuffs were not found to be statistically distinct (Table 24).

Table 24. Test statistics (F), numerator and denominator degrees of freedom, and p-values for F tests of eqaulity of variances.

	F	df1	df2	p-Value
Tuffs v. Tuffaceous Sediments	8.9	10	48	9.38E-08
Weathered v. Unweathered Tuffs	0.52	28	19	0.113
Devitrified v. Glassy	Inf	16	11	< 2.2 e-16

Two sample students t-tests were performed on log transformed arsenic levels in the different categories of samples. At a significance level of $\alpha = 0.05$, the means of glassy and devitrified tuffs were found to be unequal, while weathered and unweathered tuffs were not found to be statistically distinguishable (Table 25).

Table 25. Test statistic (t), number of samples, and p-values for two sample students t-tests of equality performed on sample categories.

	t	n1	n2	p-Value
Tuffs v. Tuffaceous Sediments	2.92	49	11	0.015
Weathered v. Unweathered Tuffs	-1.07	20	29	0.295
Devitrified v. Glassy	2.02	16	13	0.060

Unlike the total or environmentally available fractions, the readily leachable fraction did show a significant difference between tuffs and tuffaceous sediments (Figure 17, Table 25). Tuffaceous sediments contain both much higher arsenic concentrations and a much larger range of readily leachable arsenic concentrations than all categories of tuff samples. Both weathered and devitrified samples display a wider range of readily leachable arsenic levels than glassy tuffs (Figure 17).

Figure 17. Readily leachable arsenic contents of ash-flow tuffs and tuffaceous sediments. Yellow boxes represent mean values. Tuffaceous sediments contained significantly more readily leachable arsenic than all categories of tuffs. Devitrified and weathered tuffs showed a greater range of readily leachable arsenic values than unweathered glassy tuffs.

Unlike the environmentally available fraction of arsenic, the readily leachable

fraction shows no correlation with total arsenic for any category of sample (Figure 18).

Figure 18. Readily leachable arsenic as a function of total arsenic present in samples. There is no correlation between the total amount of arsenic present in tuffs and sediments and the amount present in the readily leachable fraction.

Although the majority of tuff samples did not produce detectable levels of arsenic during water leaching experiments, individual samples of both devitrified and weathered tuffs and tuffaceous sediments did produce relatively high aqueous arsenic concentrations (Table 26).

exceeded method detection mints.						
	Mean (ug/L)	Median (ug/L)	Std Dev (ug/L)	Min (ug/L)	Max (ug/L)	
Tuffs $(n = 18)$	8.1	5.3	7.1	1.7*	24.0	
Weathered $(n = 8)$	9.7	8.9	8.0	2.0	24.0	
Devitrified $(n = 10)$	6.8	4.4	6.3	1.7	18.7	
Sediments $(n = 7)$	95.4	108.7	66.5	6.2	171.9	

Table 26. Aqueous arsenic concentrations produced by water leaching experiments. Descriptive statistical values only include samples that exceeded method detection limits.

* Value is equivalent to the instrument detection limit of 1.7 ug/L, and should be considered semi-quantitative.

Overall, 12% of tuff samples and 45% of tuffaceous sediments produced aqueous arsenic concentrations exceeding EPA MCLs in only 18 hours, with some sediment samples approaching 20x the MCL of 10 ppb (Figure 19).

Figure 19. Aqueous arsenic concentrations produced by water leaching experiments. Weathered and devitrified tuffs and tuffaceous sediments all produced aqueous arsenic concentrations exceeding regulatory limits.

pH-Dependent Arsenic Mobility

Mean arsenic values increased as solution pH was increased between pH 9 and pH 11 for both devitrified and weathered tuffs, while glassy tuffs produced no arsenic concentrations above detection limits at either pH (consistent with the results from the unbuffered solutions). The increase in arsenic was minor for devitrified tuffs (92 to 124 μ g kg⁻¹) but substantial for weathered tuffs (197 to 1068 μ g kg⁻¹).

Patterns of arsenic mobility become clearer when the results of the controlled pH leaching experiments are compared with the readily leachable fraction of arsenic for the same samples. Unfortunately, the final pH of the readily leachable solutions was not

measured for all samples. Of the solutions that were measured, pH levels varied between 6.2 and 8.9 with a mean value of 8.0. Arsenic concentrations of weathered tuffs at the circum-neutral pH conditions of the readily leachable extractions were slightly lower than arsenic concentrations at pH 9, and arsenic concentrations appear to increase at varying rates with increases in pH (Figure 20). In contrast, arsenic concentrations in devitrified tuffs actually decrease slightly between circum-neutral conditions and pH 9, and then increase slightly at pH 11, producing no clear relationship between pH and leachable arsenic in devitrified samples (Figure 20). Although the standard error bars for the devitrified and weathered samples overlap, a Mann-Whitney-Wilcoxon test confirms that the arsenic concentrations are significantly different (p = 0.03).

Figure 20. Arsenic concentrations from leaching experiments with uncontrolled pH compared with concentrations produced at pH 9 and 11. In weathered tuffs arsenic concentrations increased slightly from the circum-neutral conditions of the uncontrolled leachate experiments to pH 9, while arsenic concentrations decreased slightly between circum-neutral conditions and pH 9.

Elemental Correlations

For both fractions of mobile arsenic tests of correlation between arsenic and other elements were performed on log transformed data with outliers excluded using the non-parametric Spearman's rank correlation coefficient. In both the environmentally available fraction and the readily leachable fraction arsenic displayed statistically significant (p < 0.05) correlations with a variety of elements (Table 27).

	Environmentally Available Fraction	Readily Leachable Fraction
All Tuffs (n = 47)	Al, Ca, Cd, Ce, Co, Cu, Fe, La, Pb, Sm, Sr, Ti, V, Zn	Al, Ba, Cu, Fe, Si, Ti, V, Zn
Weathered Tuffs ($n = 19$)	Ce, Co, La, P, S, V	Al, Fe, Si, Ti, Zn
Unweathered Tuffs (n = 28)	Ba, Cd, Ce, Co, Cu, Fe, La, Mn, Mo, <i>Na,</i> Ni, P, Pb, Sm, V, Zn	Mo, V
Devitrified Tuffs ($n = 15$)	Mn, S, V	Мо
Glassy Tuffs (n = 13)	None	None
Tuffaceous Sediments (n = 11)	Ce, S	Ca, Mo, S, Sr

Table 27. Statistically significant (p < 0.05) elemental correlations with arsenic. Italicized elements showed a negative correlation with arsenic, while un-italicized elements showed a positive correlation.

In the environmentally available fraction, arsenic is positively correlated with a variety of elements including Al, Ca, Fe, Sr, and Zn. In the readily leachable fraction arsenic is positively correlated with Al, Fe, Si and Zn, among others. Tuffaceous sediments were positively correlated with S in both the environmentally available and readily leachable fractions. Although the correlation coefficients were statistically significant (p < 0.05), linear regression analysis determined that few of the correlations were reflective of strong linear relationships between arsenic and other elements ($R^2 < 0.60$). The two exceptions to this were the correlations between readily leachable arsenic and Fe in weathered samples, and readily leachable arsenic and Mo in devitrified samples (Figure 21).

DISCUSSION

Potential Host Phases of Arsenic

The behavior of arsenic in both mobile fractions provides a number of indications that different host phases of arsenic exist in different categories of tuffs. My results indicate that in glassy tuffs arsenic is hosted in the glass phase. No glassy tuffs produced leachable arsenic under any pH conditions, indicating that arsenic is neither sorbed to mineral surfaces nor hosted in an easily soluble mineral phase. In addition, glassy tuffs contain significantly less environmentally available arsenic than other categories of tuffs, and are the only category of sample that does not show a positive correlation between total arsenic and environmentally available arsenic. This indicates that the bulk of the arsenic in glassy samples in bound in a silicate phase that is not dissolved in the partial digestions used to identify the environmentally available fraction. In glassy tuffs the most abundant silicate phase is the glass itself, which makes up the majority of the volume of glassy tuffs. Glass is also the most likely silicate phase to host arsenic since it is produced by quenching of lavas which can retain relatively high proportions of volatiles in comparison to silicate minerals.

In devitrified tuffs the most likely host phase of arsenic is a non-silicate mineral phase. Devitrified tuffs contain a relatively high percentage of their arsenic in the environmentally available fraction (median = 57%, max = 90%), and there is a strong positive correlation between total and environmentally available arsenic, which indicates that the bulk of the arsenic in these samples is not hosted in a silicate phase, because silicates are resistant to HNO_3^- treatment. The correlation between total and mobile arsenic is not seen in the readily leachable fraction, indicating that arsenic is not hosted in a highly soluble phase. Finally, leachable arsenic levels in devitrified tuffs do not increase with increasing pH, ruling out sorption to mineral surfaces as a potential host phase of arsenic in these samples.

While these results show that a non-silicate mineral phase is the most likely host of arsenic in devitrified tuffs it is not clear what specific mineral or minerals this might

be. Vapor phase alteration that occurs during devitrification has the potential to produce a variety of minerals that would be likely host phases (particularly sulfides and phosphates), but as a result of their typical small size and low abundance, these minerals were not identified in the solid phase characterization performed during this study. Vapor phase mineralization is also highly variable, so it is possible that devitrified tuffs could contain multiple mineral phases enriched in arsenic and that these phases could differ between different tuffs.

In weathered tuffs the most likely host phase of arsenic is Fe-oxides and oxyhydroxides, as well as other alteration products including clay surfaces. Similarly to devitrified tuffs, weathered tuffs both contain a high percentage of their total arsenic in the environmentally available fraction and show a strong positive correlation between total and environmentally available arsenic, indicating a non-silicate host phase. In contrast to devitrified tuffs, weathered tuffs do show an increase in leachable arsenic with increasing pH, which indicates that sorption to grain surfaces likely plays a role in the behavior of arsenic. Weathering produces a range of alteration products that are potential sorbents for arsenic, including Fe-oxides and oxyhydroxides, kaolinite and illite clay minerals, and some zeolites, including clinoptilolite (Manning and Goldberg, 1996; Stollenwerk, 2003). Fe-oxides and oxyhydroxides are generally considered the most likely sorbent of arsenic, due to both their ubiquity and high concentration of surface sites. A positive correlation between Fe and arsenic was found in the readily leachable fraction, although the same relationship was not observed in the environmentally available fraction.

In glassy tuffs the weathering process produces higher levels of environmentally available arsenic than is present in unweathered tuffs, but this is not the case for devitrified tuffs. In glassy tuffs the relationship between weathered and unweathered samples is relatively straightforward. The differences between environmentally available arsenic in unweathered vs. weathered glassy tuffs, combined with the pH dependence of arsenic leachability from weathered samples suggests that during weathering arsenic is released from the glass phase and subsequently sorbs to alteration products.

The fate of arsenic during the weathering of devitrified tuffs is much less clear. One possible scenario is that arsenic behaves largely as it does in glassy tuffs, and is released from its non-silicate mineral phase and subsequently sorbs to alteration products. Another potential scenario is that only portions of the arsenic present in the non-silicate mineral host phase(s) is released and subsequently sorbed, producing weathered tuffs that contain both sorbed arsenic and arsenic hosted in minerals, resulting in two distinct arsenic host phases that both produce environmentally available arsenic.

In tuffaceous sediments the potential host phase or phases of arsenic remains more enigmatic than in tuffs themselves. Tuffaceous sediments display the same behavior of arsenic in the environmentally available fraction as weathered and devitrified tuffs (a high percentage of arsenic present in the environmentally available fraction and a strong correlation between total and environmentally available arsenic concentrations) that indicate a non-silicate host phase. In tuffaceous sediments the question of what that phase might be is more difficult to answer. The correlation between arsenic and S in both

mobile fractions of the samples suggests that sulfide minerals are a likely host. However, tuffaceous sediments contain a high percentage (mean = 27%, max = 77%) of their total arsenic in the readily leachable fraction, and sulfide minerals are not highly soluble and would not be expected to produce high levels of leachable arsenic over short time periods in circum-neutral waters. Although contact with oxygenated waters would be expected to result in redox-driven dissolution of sulfide minerals, the 18 hour time period was likely insufficient for those reactions to fully occur.

One factor that is important to note is that with the exception of TW2, a volcaniclastic conglomerate from the Willamette Valley, all of the sediment samples in this study come from the Owyhee Upland physiographic province of Oregon and were formed in a similar arid climate. It is possible that environmental conditions and depositional processes played a significant role in determining both the overall arsenic concentrations and the host phase of arsenic in these samples. For example, evaporative concentration of arsenic during reworking of the tuffaceous material may have contributed to high levels of arsenic in some sediments. It may not be appropriate to use these samples to draw conclusions about arsenic in tuffaceous sediments from other regions, particularly if those regions have significantly different climates.

Potential Mechanisms of Arsenic Mobilization

Based on the different host phases tentatively identified for different categories of tuff, the mechanisms by which arsenic is mobilized from those categories will differ as well. In glassy tuffs the most likely mechanism of arsenic mobilization is the relatively

slow dissolution of the glass phase. This is consistent with previous research that identified dissolution of volcanic glass as a primary geochemical control on arsenic levels in one groundwater system in the American Southwest (Johannesson and Tang, 2009). The fact that dissolution of glass is a relatively slow process, combined with the lack of arsenic concentrations exceeding 10 mg kg⁻¹ in glassy tuff samples, suggests that unweathered glassy tuffs present a lower risk of producing aqueous arsenic concentrations exceeding regulatory limits than other categories of tuff.

The most likely mechanism of mobilizing arsenic from devitrified tuffs is the dissolution of the non-silicate mineral host phase. Two of the unweathered devitrified samples in this study produced aqueous arsenic concentrations exceeding $10 \ \mu g \ L^{-1}$ in the water extraction experiment, indicating that at least some of the potential minerals hosting arsenic may be relatively soluble. Without a better understanding of what those minerals may be it is unclear what geochemical conditions might present greater risks of arsenic contamination sourced from devitrified tuffs.

In weathered tuffs the most likely mechanism of arsenic mobilization is desorption from mineral grain surfaces. The presence of sorbed arsenic in weathered tuffs means that a variety of geochemical conditions present increased risk of tuff-sourced arsenic contamination. Groundwaters with high pH, reducing conditions, and high concentrations of competing anions, particularly phosphate, can all result in desorption of arsenic from mineral grains and its release into solution.

CHAPTER 4: CONCLUSIONS

Conclusions and Conceptual Model

Arsenic concentrations in high silica ash-flow tuffs have a geometric mean value of 4.8 mg kg⁻¹, which is consistent with previously reported values and approximately 2.8 times the mean crustal abundance of 1.7 mg kg⁻¹ (Onishi and Sandell, 1955; Wedepohl, 1995). Arsenic levels in tuffs are highly heterogenous both between and within units, and can reach levels exceeding 80 mg kg⁻¹. Additionally, 12% of ash-flow tuffs and 45% of tuffaceous sediments are capable of producing aqueous arsenic concentrations that exceed regulatory limits over a short period of time.

In addition to confirming the widespread idea that high silica ash-flow tuffs and tuffaceous sediments are a potential source of geogenic arsenic contamination, the results of this study indicate that the host phases and potential mechanisms of arsenic mobilization differ between categories of tuffs, and suggest a conceptual model for the behavior of arsenic in tuffs. The conceptual model suggested by these results includes factors influencing the total concentrations of arsenic in tuffs, changes in arsenic host phases during both devitrification and weathering, and potential mechanisms for the mobilization of arsenic into the environment (Figure 22).

Figure 22. Conceptual model of arsenic behavior in ash-flow tuffs.

Future Work

Further identification of specific host phases should be pursued, particularly in devitrified tuffs and tuffaceous sediments. While the results of this study indicate that one or more non-silicate mineral phases are the most likely host phase of arsenic in devitrified tuffs it is still unclear what those mineral phases may be. The process of vapor phase mineralization provides a wide range of options, but identification of specific minerals would be valuable in determining what geochemical conditions present an increased risk of arsenic mobilization from devitrified tuffs. In the tuffaceous sediments investigated in this study it is still largely unclear what the host phase of arsenic may be, and how much that may be influenced by environmental conditions during the formation of these units.

Additional exploration into the role of solution chemistry in arsenic mobility should be continued as well. Investigating the leaching behavior of arsenic over a full range of pH values would provide additional insight into sorption processes in weathered tuffs, and potentially identify additional geochemical conditions that facilitate mobilization of arsenic from other categories of tuffs. Other variables that would be valuable to explore are redox state and concentration of competing anions.

Finally, further investigations into possible patterns of spatial distribution of arsenic within individual tuff units should be pursued. Spatial patterns of arsenic distribution, whether vertical patterns within the interior of the tuff, or lateral patterns varying with distance from the eruptive center, could potentially be of great use in assessing the risk of arsenic contamination at specific geographic locations. This study did not investigate possible lateral patterns of arsenic distribution, and provided inconclusive results with regard to vertical patterns of arsenic distribution.

WORKS CITED

- Amini, M., Abbaspour, K. C., Berg, M., Winkel, L., Hug, S. J., Hoen, E., Yang, H., and Johnson, C. A., 2008, Statistical Modeling of Geogenic Arsenic Contamination in Groundwater: Environmental Science & Technology, v. 42, no. 10, p. 3669 -33675.
- Antweiler, R. C., Taylor, H.E., 2008, Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. Summary statistics: Environmental Science & Technology, v. 42, p. 3732 3738.
- Borisova, A. Y., Pokrovski, G.S., Pichavant, M., Freydier, R., and Candaudap, F., 2010, Arsenic enrichment in hydrous peraluminous melts: Insights from femtosecond laser ablation-inductively coupled plasma-quadrupole mass spectrometry, and in situ X-ray absorption fine structure spectrocsopy.: American Mineralogist, v. 95, p. 1095-1104.
- Brown, K. G., and Ross, G. L., 2002, Arsenic, drinking water, and health: A position paper of the American Council on Science and Health: Regulatory Toxicology and Pharmacology, v. 36, p. 162-174.
- Casentini, B., Pettine, M., and Millero, F., 2010, Release of Arsenic from Volcanic Rocks through Interactions with Inorganic Anions and Organic Ligands: Aquatic Geochemistry, v. 16, no. 3, p. 373-393.
- Chen, M., Ma, L.Q., 1998, Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils: Journal of Environmental Quality, v. 27, no. 6, p. 1294 - 1300.
- Clark, J. U., 1998, Evaluation of censored data methods to allow statistical comparisons among very small samples with below detection observations: Environmental Science & Technology, v. 32, p. 177 - 183.
- Cullen, W. R., and Reimer, K. J., 1989, Arsenic speciation in the environment: Chemical Reviews, v. 89, no. 4, p. 713-764.
- Das, G. P., 2007, Ash weathering controls on contaminant leachability [Doctor of Philosophy: University of North Carolina at Charlotte, 305 p.
- Davis, J. A., and Kent, D. B., 1990, Surface complexation modeling in aqueous geochemistry, *in* Hochella, M. F., and White, A. F., eds., Mineral-Water interface geochemistry: Washington, D.C., Mineralogical Society of America, p. 177-248.
- Dixit, S., and Hering, J., 2003, Comparison of Arsenic(V) and Arsenic(III) Sorbtion onto Iron Oxide Minerals: Implications for Arsenic Mobility: Environmental Science & Technology, v. 37, no. 18, p. 7.
- Ferns, M. L., Madin, I.P., and Taubeneck, W.H., 2001, Reconnaissance Geologic Map of the La Grande 30'X60' quadrangle, Baker, Grant, Umatilla, and Union Counties, Oregon: Oregon Department of Geology and Mineral Industries, scale 1:100,000.
- Fiantis, D., Nelson, M., Shamshuddin, J., Goh, T. B., and Van Ranst, E., 2010, Determination of geochemical weathering indicies and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia: Eurasian Soil Science, v. 43, no. 13, p. 1477-1485.

- Fisher, R. V., and Schmincke, H.-U., 1984, Pyroclastic rocks, Berlin, Springer-Verlag, 471 p.:
- Goldberg, S., 2002, Competetive adsoption of arsenate and arsenite on oxides and clay minerals: Soil Science Society of America Journal, v. 66, no. 2, p. 413-421.
- Goldblatt, E. L., Van Denburgh, S. A., and Marsland, R. A., 1963, The unusual and widespread occurance of arsenic in well waters of Lane County Oregon: Lane County Health Department Report.
- Hinkle, S. R., and Polette, D. J., 1999, Arsenic in ground water of the Willamette Basin, Oregon: U.S. Geological Survey, Water-Resources Investigation Report 98-4205.
- Hooper, P. R., Binger, G.B., and Lees, K.R., 2002, Ages of the Steens and Columbia River flood basalts and their relationship to extension related calc-alkalic volcanism in eastern Oregon: Geological Society of America Bulletein, v. 110, p. 43-50.
- Istok, J. D., Rautman, C. A., Flint, L. E., and Flint, A. L., 1994, Spatial Variability in Hydrologic Properties of a Volcanic Tuff: Ground Water, v. 32, no. 5, p. 751-760.
- Jain, A., and Loeppert, R. H., 2000, Effect of competing anions in the adsorption of arsenate and arsenite by ferrihydrite: Journal of Environmental Quality, v. 29, p. 1422-1430.
- Jang, J.-H., and Dempsey, B., 2008, Coadsorption of Arsenic(III) and Arsenic(V) onto Hydrous Ferric Oxide: Effects on Abiotic Oxidation of Arsenic(III), Extraction Efficiency, and Model Accuracy: Environmental Science & Technology, v. 42, no. 8, p. 5.
- Johannesson, K. H., and Tang, J., 2009, Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system.: Journal of Hydrology, v. 378, p. 13-28.
- Langmuir, D., 1997, Aqueous Environmental Geochemistry, Upper Saddle River, NJ, Prentice-Hall, Inc., 600 p.:
- Lipman, P. W., 2006, Geologic map of the Central San Juan Caldera Cluster, southwestern Colorado, *in* Survey, U. S. G., ed., p. 34.
- Manning, B. A., and Goldberg, S., 1996, Modeling Arsenate Competetive Adsorption on Kaolinite, Montmorillonite and Illite: Clays and Clay Minerals, v. 44, no. 5, p. 609-623.
- Manning, B. A., and Goldberg, S., 1997, Adsorption and stability of arsenic(III) at the clay mineral-water interface: Environmental Science & Technology, v. 31, no. 7, p. 2005-2011.
- McClaughry, J. D., Ferns, M.L., Streck, M.J., Patridge, K.A., and Gordon, C.I., 2009, Paleogene calderas of central and eastern Oregon: Eruptive sources of widespread tuffs of the John Day and Clarno Formations, *in* O'Connor, J. E., Dorsey, R.J., and Madin, I.P., ed., Volcanoes to vineyards: geologic field trips through the dynamic landscape of the Pacific northwest: Geological Society of America field guide 15, p. 407-434.
- McClaughry, J. D., Wiley, T.J., Ferns, M.L., and Madin, I.P., 2010, Digital geologic map of the wouthern Willamette Valley, Benton, Lane, Linn, Marion, and Polk Counties, Oregon, *in* Industries, O. D. o. G. a. M., ed., p. 116.

- Nadakavukaren, J. J., Ingerman, R. L., and Jeddeloh, G., 1984, Seasonal variation of arsenic concentration in well water in Lane County Oregon: Bulletin of Environmental Contamination and Toxicology, v. 33, no. 3, p. 264-269.
- Ng, J. C., Wang, J., and Shraim, A., 2003, A global health problem caused by arsenic from natural sources: Chemosphere, v. 52, p. 1353-1359.
- Nicolli, H. B., Suriano, J. M., Gomez Peral, M. A., Ferpozzi, L. H., and Baleani, O. H., 1989, Groundwater contamination with arsenic and other trace elements in an area of the Pampa province of Cordoba, Argentia: Environmental Geology and Water Sciences, v. 14, p. 3-16.
- Noble, D. C., Ressel, M. W., Lechler, P. J., and Connors, K. A., 2004, Magamtic As, Sb, Cs, Bi, Tl, and other elements in glassy volcanic rocks of the Julcani District, Peru, and the Carlin Trend, Nevada: Boletin de la Sociedad Geologica del Peru, v. 97, p. 29-50.
- Noll, P. D., Newsome, H.E., Leeman, W.P., and Ryan, J.R., 1996, The role of hydrothermal fluids in the production of subduction zone magams: Evidence from siderophile and chalcophile trace elements and boron: Geochemica et Cosmochimica Acta, v. 60, p. 587 - 611.
- Onishi, H., and Sandell, E. B., 1955, Geochemistry of arsenic: Geochemica et Cosmochimica Acta, v. 7, p. 1-33.
- Patridge, K. A., 2010, Kaboom! A look back at the volcanic past of the John Day Basin., *in* Service, N. P., ed.: Denver, CO.
- Ravenscroft, P., Brammer, H., and Richards, K. S., 2009, Arsenic pollution: a global synthesis, Chichester, United Kingdon, John Wiley & Sons.
- Retalleck, G. J., Bestland, E.A., and Fremd, T.J., 2000, Eocene and Oilgocene paleosols of Central Oregon: Geological Society of America Special Paper, v. 344, p. 192.
- Rhine, E. D., Onesios, K., Serfes, M. E., Reinfelder, J. R., and Young, L. Y., 2008, Arsenic Transformation and Mobilization from Minerals by the Arsenite Oxidizing Strain WAO: Environmental Science & Technology, v. 42, no. 5, p. 6.
- Ross, C. S., and Smith, R. L., 1980, Ash flow tuffs: their origin, geologic relations, and identification and Zones and zonal variations in welded ash flows, p. 159.
- Ryker, S. J., 2003, Arsenic in ground water used for drinking water in the United States, *in* Welch, A. H., and Stollenwerk, K. G., eds., Arsenic in groundwater: occurence and geochemistry: Norwell, MA, Kluwer Academic Publishers, p. 165-178.
- Sherrod, D. R., and Pickthorn, L.B.G., 1992, Geologic map of the west half of Klamath Falls 1 degree by 2 degrees quadrangle, south-central Oregon: U.S. Geological Survey, Miscellaneous Investigation Series Map I-2182, scale 1:250,000.
- Shimoda, S., 1969, New data for Tosudite: Clays and Clay Minerals, v. 17, p. 179 184.
- Smedley, P. L., and Kinniburgh, D. G., 2002, A review of the source, behavior and distribution of arsenic in natural waters: Applied Geochemistry, v. 17, p. 517-569.
- Smith, G. A., Manchester, S.R., Ashwill, M., McIntosh, W.C., and Conrey, R.M., 1998, Late Eocene-early Oligocene tectonism, volcanism, and floristic change near Gray Butte, central Oregon: Geological Society of America Bulletein, v. 110, p. 759 - 778.

- Stimac, J., Hickmott, D., Abell, R., Larocque, A.C.L., Broxton, D., Gardner, J., Chipera, S., Wolff, J., and Gauerke, E., 1996, Redistribution of Pb and other volatile trace metals during eruption, devitrification, and vapor-phase crystallization of the Bandelier Tuff, New Mexico: Journal of Volcanology and Geothermal Research, v. 73, p. 245 - 266.
- Stollenwerk, K. G., 2003, Geochemical Processes Controlling Transport of Arsenic in Groundwater: A Review of Adsorption, *in* Welch Alan, H., and Stollenwerk, K. G., eds., Arsenic in Ground Water: Geochemistry and Occurence: Norwell, MA, Kluwer Academic Publishers.
- Streck, M. J., Grunder, A., 1995, Crystallization and welding variations in a widespread ignimbrite sheet: the Rattlesnake Tuff, eastern Oregon: Bulletin of Volcanology, v. 57, p. 151 - 160.
- Streck, M. J., Grunder, A., 1997, Compositional gradients and gaps in high-silica rhyolites of the Rattlesnake Tuff, Oregon: Journal of Petrology, v. 38, no. 1, p. 133-163.
- Streck, M. J., Johnson, J.A., and Grunder, A.L., 1999, Field guide to the Rattlesnake Tuff and High Lava Plains near Burns, Oregon: Oregon Geology, v. 61, p. 64 - 76.
- Symonds, R. B., Rose, W. I., Reed, M.H., Lichte, F.E., Finnegan, D.L., 1987, Volatilization, transport, and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia: Geochemica et Cosmochimica Acta, v. 51, p. 2083 - 2101.
- US Environmental Protection Agency, 1996a, Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils., *in* Waste, O. o. S., ed.
- US Environmental Protection Agency, 1996b, Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices., *in* Waste, O. o. S., ed.
- Vaniman, D., 2006, Tuff mineralogy, *in* Heiken, G., ed., Tuffs their properties, uses, hydrology, and resources, Geological Society of America Special Paper 408, p. 11-15.
- Weaver, S. D., Gibson, L. L., Houghton, B. F., and Wilson, C. J. N., 1990, Mobility of rare earth and other elements during crystallization of peralkaline silicic lavas: Journal of Volcanology and Geothermal Research, v. 43, p. 57-70.
- Wedepohl, K. H., 1995, The composition of the continental crust: Geochimica et Cosmochimica Acta, v. 59, no. 7, p. 1217-1232.
- Welch, A. H., Westjohn, D. B., Helsel, D. R., and Wanty, R. B., 2000, Arsenic in ground water of the United States: Ground Water, v. 38, no. 4, p. 589 604.
- Whanger, P. D., Weswing, P. H., and Stoner, J. C., 1977, Arsenic levels in Oregon waters: Environmental Health Perspectives, v. 19, p. 139-143.
- Zielinski, R. A., 1982, The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: a case study in the Troublesome Formation, Colorado, U.S.A.: Chemical Geology, v. 35, p. 185-204.

APPENDIX A: ANALYTICAL OPERATING CONDITIONS AND QUALITY

<u>CONTROL</u>

Table A1.	Operating	conditions	for ICF	P-OES	analysis	of total	digests.
							-

Condition	Value
Power (kW)	1.4
Replicate Read Time (s)	45
Instrument Stabilization Delay (s)	25
Sample Uptake Delay (s)	25
Max Rinse Time (s)	90
Number of Replicates	3
PolyBoost	On

Table A2. Operating conditions for ICP-OES analysis of partial digests.

Condition	Value
Power (kW)	1.4
Replicate Read Time (s)	45
Instrument Stabilization Delay (s)	25
Sample Uptake Delay (s)	20
Max Rinse Time (s)	30
Number of Replicates	3
PolyBoost	On

Table A3. Operating conditions for ICP-OES analysis of water extracts and pH leaching experiments. _

Condition	Value
Power (kW)	1.3
Replicate Read Time (s)	45
Instrument Stabilization Delay (s)	25
Sample Uptake Delay (s)	20
Max Rinse Time (s)	60
Number of Replicates	3
PolyBoost	On

Element and Wavelength	QC Blank a	QC1a	QC2a	Method Blank	QC1b
Al 237.312	2.40	104.84	58.71	6.41	107.33
As 188.980	ND	102.83	50.78	ND	102.23
Ba 455.403	ND	107.51	50.90	ND	109.04
Ca 317.933	ND	105.89	56.10	4.07	106.63
Cd 214.439	ND	104.19	55.09	ND	102.59
Ce 407.347	ND	105.34	4.32	ND	107.99
Co 228.615	ND	105.25	51.04	ND	105.61
Cr 267.716	1.50	105.58	63.90	1.59	105.24
Cu 327.395	1.12	106.00	44.16	1.46	106.99
Fe 238.204	ND	103.69	144.61	3.89	103.56
La 398.852	ND	105.94	0.02	ND	106.91
Mg 279.078	ND	103.90	53.01	1.49	105.00
Mn 260.568	ND	104.83	50.82	ND	103.57
Na 588.995	ND	118.04	66.08	3.66	114.47
Nd 399.467	1.86	103.99	0.29	1.37	104.57
Ni 231.604	ND	103.30	52.56	ND	102.08
P 177.434	4.41	116.39	5.95	6.24	135.93
Pb 220.353	ND	105.17	50.47	ND	104.26
S 181.972	4.03	109.39	12.37	ND	103.21
Sm 356.827	39.54	104.24	39.21	39.22	106.84
Sr 407.771	ND	106.11	51.36	ND	107.64
V 311.837	ND	103.47	43.60	ND	104.39
Zn 202.548	ND	132.89	43.31	ND	133.43

Table A4. Check standard and blank results from analytical session of 3/2/2012. QC1 contains 100 ppb, and QC2 contains 50 ppb, of all elements except Ga, P, S, and Sn.

Element and Wavelength	QC Blank a	QC1a	QC2a	Method Blank	QC Blank b	QC1b	QC2b
Al 237.312	3.81	108.93	53.81	22.49	5.93	112.60	57.07
As 188.980	ND	97.51	43.66	ND	ND	98.13	45.24
Ba 455.403	ND	101.92	50.67	ND	ND	96.64	47.30
Ca 317.933	6.82	129.77	64.26	9.60	8.02	132.26	66.69
Cd 214.439	ND	102.90	49.51	ND	ND	107.28	52.63
Ce 407.347	1.57	100.21	49.79	2.23	1.58	92.64	46.66
Co 228.615	ND	101.78	49.76	ND	ND	104.93	51.68
Cr 267.716	ND	101.23	49.50	ND	ND	103.04	50.49
Cu 327.395	ND	103.22	49.60	ND	ND	100.03	47.50
Fe 238.204	ND	104.22	50.08	14.17	1.67	107.12	52.50
La 398.852	ND	104.09	52.28	ND	ND	98.90	48.31
Mg 279.078	ND	103.20	48.93	3.90	ND	108.21	52.37
Mn 260.568	ND	101.01	49.79	ND	ND	102.52	50.50
Mo 202.032	ND	96.82	45.31	ND	ND	96.12	44.83
Na 588.995	3.73	103.99	45.43	12.49	7.94	106.29	50.87
Nd 399.467	1.48	101.15	52.23	1.53	1.66	92.91	45.18
Ni 231.604	ND	101.04	49.78	ND	ND	104.27	51.61
P 177.434	3.92	1.20	1.80	3.15	2.77	ND	ND
Pb 220.353	ND	102.56	50.30	ND	ND	103.25	51.01
S 181.972	ND	3.25	-1.97	31.96	24.68	29.71	26.38
Si 185.005	ND	134.45	63.17	99.47	ND	125.17	46.87
Sm 356.827	14.73	90.94	41.71	14.73	14.68	79.93	33.29
Sr 407.771	ND	101.06	51.29	ND	ND	94.47	47.09
Ti 334.941	ND	100.51	50.10	ND	ND	96.42	47.70
V 311.837	ND	100.69	50.11	1.04	ND	99.54	48.97
Zn 202.548	ND	118.21	51.40	ND	ND	126.22	57.10

Table A5. Check standard and blank results from analytical session of 10/25/2012. QC1 contains 100 ppb, and QC2 contains 50 ppb, of all elements except P and S.

le A6. Check nents except F	standard and S.	and blank	results fro	om analytic	cal session	1 of 4/2/20	13. QC1 c	ontains 10	0 ppb, and	l QC2 con	tains 50 pp	b, of all
Element	QC			Method	QC			Method	Method	QC		
and Wovelength	Blank	QCIa	QC2a	Blank	Blank	QC1b	QC2b	Blank	Blank	Blank	QC1c	QC2c
wavelengui	а 702	106 15	51 05	1	0	100.05	25 60	4 C C	00.0		100 02	55 53
AI C. / C2 IA	CU.2	C1.001	CK.1C	CC.0	07.0	CU.601	60.00	77.7	0.00		0.001	cc.cc
As 188.980	-3.48	98.17	48.19	Q	QN	98.80	45.37	QN	QN	ND	96.95	46.35
Ba 455.403	-0.01	99.67	50.09	0.01	QN	101.45	50.23	ŊŊ	ND	ND	99.79	49.54
Ca 317.933	ND	104.28	51.38	6.96	ND	106.22	51.66	2.19	2.98	ND	106.02	51.56
Cd 214.439	ND	101.08	50.45	ND	ND	103.11	50.37	ND	ND	ND	102.47	50.09
Ce 407.347	3.26	99.50	50.21	1.86	2.48	100.82	48.70	1.55	2.20	3.02	100.19	50.08
Co 228.615	ND	100.84	49.93	ND	ΟN	102.54	49.97	ŊŊ	ND	ND	101.01	49.78
Cr 267.716	ND	99.03	49.67	ND	ΟN	101.31	49.92	ŊŊ	ND	ND	100.99	49.60
Cu 327.395	ND	98.89	49.69	ND	ΟN	100.77	49.79	ŊŊ	ND	ND	100.25	49.67
Fe 238.204	ND	101.98	50.80	ŊŊ	ND	104.01	50.76	Ŋ	3.91	ND	103.43	50.82
La 398.852	ND	103.51	51.99	ND	ND	105.44	51.96	ND	ND	ND	103.44	51.53
Mg 279.07	ND	100.95	50.52	ND	ND	103.70	50.38	1.27	ND	ND	102.25	49.49
Mn 260.56	ΟN	99.59	49.87	ND	QN	101.02	49.72	ŊŊ	ND	ND	99.89	49.26
Mo 202.03	QN	97.93	49.72	ŊŊ	QN	101.04	49.90	Ŋ	ND	ND	99.61	49.93
Na 588.995	ND	100.02	49.52	2.95	ND	101.53	49.49	2.31	4.54	ND	98.06	49.97
Nd 399.467	1.20	100.83	50.02	1.47	1.18	102.51	49.77	2.29	ND	1.37	100.69	50.15
Ni 231.604	QN	99.73	49.79	ŊŊ	QN	100.32	49.37	QN	ND	ND	98.13	48.47
P 177.434	2.05	1.82	0.94	1.27	2.89	1.70	1.34	2.48	3.00	2.21	2.35	1.40
Pb 220.353	ND	100.87	50.81	ND	ND	101.82	49.66	ND	ND	ND	99.26	49.47
S 181.972	ND	2.97	0.74	2.41	ND	4.13	-0.78	1.25	1.55	ND	2.59	-0.52
Si 185.005	QN	154.97	79.04	129.12	156.72	313.40	216.29	192.51	287.19	293.46	431.71	461.54
Sm 356.827	QN	101.11	50.27	ŊŊ	QN	102.34	51.35	Ŋ	ND	ND	100.87	50.12
Sr 407.771	ΟN	99.00	51.25	ND	QN	101.88	50.86	ŊŊ	ND	ND	100.53	49.29
Ti 334.941	QN	100.48	50.97	ŊŊ	QN	103.03	51.41	QN	ND	ŊŊ	101.85	50.75
V 311.837	QN	98.66	49.43	ŊŊ	QN	100.98	49.60	QN	ND	ŊŊ	100.11	49.19
Zn 202.548	ND	101.59	50.33	QX	QN	104.17	50.65	QN	ŊŊ	ΠN	103.07	50.55

000 ξ Č d Ę 1 ele
APPENDIX B: DETAILS OF STATISTICAL METHODS

All statistical analysis performed in R Version 2.11.1 # All analysis! rm(list = ls())_____ =# # Investigating Alk/Alumina ratios and As _____ load("~/Documents/Thesis/Analysis/AllData.Rdata") # Calculate Alumina/Alkali ratios in molar percents (not wt %) molmajors\$AlkAl <- molmajors\$Al/(molmajors\$Na2O + molmajors\$K2O) # Look for correlations with As cor.test(molmajors\$AlkAl, totaldata\$As) # Use AllPlots.R script to plot here. # Basic Comparisons Between Groups #______ rm(list = ls())# Total fraction # Load workspace that includes data frames of data for all three fractions (total, env. available, and readily leachable) load("~/Documents/Thesis/Analysis/AllData.Rdata") # Create data frame excluding sediment samples tuffs <- subset(totaldata, totaldata\$Devitrification != "Sediment") tuffs\$Devitrification <- factor(tuffs\$Devitrification) tuffs\$Weathering <- factor(tuffs\$Weathering) # Create data frame of only sediment samples sed <- subset(totaldata, totaldata\$Devitrification == "Sediment")</pre>

Create data frame of unweathered samples only
unweathered <- subset(tuffs, Weathering == "Unweathered")</pre>

Create data frame of weathered samples only
weathered <- subset(tuffs, Weathering == "Weathered")</pre>

Create data frame of devitrified samples only
devit <- subset(unweathered, Devitrification == "Devitrified")</pre>

Create data frame of glassy samples only
glassy <- subset(unweathered, Devitrification == "Glassy")</pre>

Compare tuffs and sediments wilcox.test(tuffs\$As, sed\$As) kruskal.test(tuffs\$As, sed\$As) boxplot(tuffs\$As, sed\$As)

Compare weathered and unweathered samples
wilcox.test(As ~ Weathering, tuffs)
kruskal.test(As ~ Weathering, tuffs)
boxplot(As ~ Weathering, tuffs, ylab = "As (mg/kg)", main = "Total As")

Compare glassy and devitrified samples wilcox.test(As ~ Devitrification, unweathered) kruskal.test(As ~ Devitrification, unweathered) boxplot(As ~ Devitrification, unweathered, ylab = "As (mg/kg)", main = "Total As")

Calculate mean/median/SD values for categories mean(tuffs\$As) median(tuffs\$As) sd(tuffs\$As)

mean(sed\$As)
median(sed\$As)
sd(sed\$As)

mean(unweathered\$As)
median(unweathered\$As)
sd(unweathered\$As)

mean(weathered\$As)
median(weathered\$As)
sd(weathered\$As)

```
mean(devit$As)
median(devit$As)
sd(devit$As)
mean(glassy$As)
median(glassy$As)
sd(glassy$As)
```

Environmentally available fraction

```
totaldatatest <- subset(totaldata, Sample != "DVC1")</pre>
```

rm(totaldatatest)

```
if(is.na(envavail$percent[i]) == FALSE){
    if(envavail$percent[i] >100){
        envavail$percent[i] <- NA
    }
    }
}</pre>
```

```
# Create Tuffs Only data frame
envavailtuffs <- subset(envavail, Devitrification != "Sediment")
envavailtuffs$Devitrification <- factor(envavailtuffs$Devitrification)
envavailtuffs$Weathering <- factor(envavailtuffs$Weathering)</pre>
```

```
# Create Sediments only data frame
envavailsed <- subset(envavail, Devitrification == "Sediment")</pre>
```

envavailsed\$Devitrification <- factor(envavailsed\$Devitrification) envavailsed\$Weathering <- factor(envavailsed\$Weathering)

Create data frame of unweathered samples only
envavailunw <- subset(envavailtuffs, Weathering == "Unweathered")</pre>

Create data frame of weathered samples only
envavailw <- subset(envavailtuffs, Weathering == "Weathered")</pre>

Create data frame of devitrified samples only
envavaildevit <- subset(envavailunw, Devitrification == "Devitrified")</pre>

Create data frame of glassy samples only
envavailglassy <- subset(envavailunw, Devitrification == "Glassy")</pre>

Test for normality

shapiro.test(envavailtuffs\$PartialAs) shapiro.test(envavailsed\$PartialAs) shapiro.test(envavailunw\$PartialAs) shapiro.test(envavailw\$PartialAs) shapiro.test(envavaildevit\$PartialAs) shapiro.test(envavailglassy\$PartialAs)

Compare tuffs and sediments
wilcox.test(envavailtuffs\$percent, envavailsed\$percent)
wilcox.test(envavailtuffs\$PartialAs, envavailsed\$PartialAs)

Compare weathered and unweathered samples wilcox.test(percent ~ Weathering, envavailtuffs) wilcox.test(PartialAs ~ Weathering, envavailtuffs) kruskal.test(percent ~ Weathering, envavailtuffs) kruskal.test(PartialAs ~ Weathering, envavailtuffs) boxplot(percent ~ Weathering, envavailtuffs, ylab = "As (%)", main = "Available As") boxplot(PartialAs ~ Weathering, envavailtuffs, ylab = "As (mg/kg)", main = "Available As")

Compare divitrified and glassy samples. wilcox.test(percent ~ Devitrification, envavailunw) wilcox.test(PartialAs ~ Devitrification, envavailunw) kruskal.test(percent ~ Devitrification, envavailunw) kruskal.test(PartialAs ~ Devitrification, envavailunw) boxplot(percent ~ Devitrification, envavailunw, ylab = "As (%)", main = "Available As") boxplot(PartialAs ~ Devitrification, envavailunw, ylab = "As (mg/kg)", main = "Available As")

Calculate descriptive statistics mean(envavailtuffs\$PartialAs, na.rm = TRUE) median(envavailtuffs\$PartialAs, na.rm = TRUE) sd(envavailtuffs\$PartialAs, na.rm = TRUE)

mean(envavailtuffs\$percent, na.rm = TRUE)
median(envavailtuffs\$percent, na.rm = TRUE)
sd(envavailtuffs\$percent, na.rm = TRUE)

mean(envavailsed\$PartialAs, na.rm = TRUE) median(envavailsed\$PartialAs, na.rm = TRUE) sd(envavailsed\$PartialAs, na.rm = TRUE)

mean(envavailsed\$percent, na.rm = TRUE) median(envavailsed\$percent, na.rm = TRUE) sd(envavailsed\$percent, na.rm = TRUE)

mean(envavailunw\$PartialAs, na.rm = TRUE) median(envavailunw\$PartialAs, na.rm = TRUE) sd(envavailunw\$PartialAs, na.rm = TRUE)

mean(envavailunw\$percent, na.rm = TRUE)
median(envavailunw\$percent, na.rm = TRUE)
sd(envavailunw\$percent, na.rm = TRUE)

mean(envavailw\$PartialAs, na.rm = TRUE) median(envavailw\$PartialAs, na.rm = TRUE) sd(envavailw\$PartialAs, na.rm = TRUE)

mean(envavailw\$percent, na.rm = TRUE) median(envavailw\$percent, na.rm = TRUE) sd(envavailw\$percent, na.rm = TRUE)

mean(envavaildevit\$PartialAs, na.rm = TRUE) median(envavaildevit\$PartialAs, na.rm = T) sd(envavaildevit\$PartialAs, na.rm = T)

mean(envavaildevit\$percent, na.rm = TRUE)
median(envavaildevit\$percent, na.rm = TRUE)

sd(envavailunw\$percent, na.rm = TRUE)

mean(envavailglassy\$PartialAs, na.rm = T) median(envavailglassy\$PartialAs, na.rm = T) sd(envavailglassy\$PartialAs, na.rm = T)

mean(envavailglassy\$percent, na.rm = TRUE)
median(envavailglassy\$percent, na.rm = TRUE)
sd(envavailglassy\$percent, na.rm = TRUE)

Leachable Fraction

Create tuffs only data frame

leachtuffs <- subset(leachable, Devitrification != "Sediment")
leachtuffs\$Devitrification <- factor(leachtuffs\$Devitrification)
leachtuffs\$Weathering <- factor(leachtuffs\$Weathering)</pre>

Create sediments only data frame leachsed <- subset(leachable, Devitrification == "Sediment") leachsed\$Devitrification <- factor(leachsed\$Devitrification) leachsed\$Weathering <- factor(leachsed\$Weathering)</pre>

Create data fram of unweathered tuffs only leachunw <- subset(leachtuffs, Weathering == "Unweathered")</pre>

Create data frame of weathered tuffs only leachw <- subset(leachtuffs, Weathering == "Weathered")</pre>

Create data frame of devitrified tuffs only
leachdevit <- subset(leachunw, Devitrification == "Devitrified")</pre>

Create data frame of glassy tuffs only leachglassy <- subset(leachunw, Devitrification == "Glassy")</pre>

Compare sediments and tuffs

wilcox.test(leachtuffs\$percent, leachsed\$percent)
wilcox.test(leachtuffs\$LeachableAs, leachsed\$LeachableAs)
boxplot(leachtuffs\$percent, leachsed\$percent)
boxplot(leachtuffs\$LeachableAs, leachsed\$LeachableAs)

Compare weathered and unweathered tuffs wilcox.test(percent ~ Weathering, leachtuffs) wilcox.test(LeachableAs ~ Weathering, leachtuffs) kruskal.test(percent ~ Weathering, leachtuffs) kruskal.test(LeachableAs ~ Weathering, leachtuffs) boxplot(percent ~ Weathering, leachtuffs) boxplot(LeachableAs ~ Weathering, leachtuffs)

Compare devitrified and glassy tuffs wilcox.test(percent ~ Devitrification, leachunw) wilcox.test(LeachableAs ~ Devitrification, leachunw) kruskal.test(percent ~ Devitrification, leachunw) kruskal.test(LeachableAs ~ Devitrification, leachunw) boxplot(percent ~ Devitrification, leachunw) boxplot(LeachableAs ~ Devitrification, leachunw)

Calculate descriptive statistics, excluding samples that were non-detects ND <- 51.05875

mean(leachtuffs\$LeachableAs[which(leachtuffs\$LeachableAs > ND)]) median(leachtuffs\$LeachableAs[which(leachtuffs\$LeachableAs > ND)]) sd(leachtuffs\$LeachableAs[which(leachtuffs\$LeachableAs > ND)])

mean(leachsed\$LeachableAs[which(leachsed\$LeachableAs > ND)])
median(leachsed\$LeachableAs[which(leachsed\$LeachableAs > ND)])
sd(leachsed\$LeachableAs[which(leachsed\$LeachableAs > ND)])

mean(leachunw\$LeachableAs[which(leachunw\$LeachableAs > ND)])
median(leachunw\$LeachableAs[which(leachunw\$LeachableAs > ND)])
sd(leachunw\$LeachableAs[which(leachunw\$LeachableAs > ND)])

mean(leachw\$LeachableAs[which(leachw\$LeachableAs > ND)])
median(leachw\$LeachableAs[which(leachw\$LeachableAs > ND)])
sd(leachw\$LeachableAs[which(leachw\$LeachableAs > ND)])

mean(leachdevit\$LeachableAs[which(leachdevit\$LeachableAs > ND)])
median(leachdevit\$LeachableAs[which(leachdevit\$LeachableAs > ND)])
sd(leachdevit\$LeachableAs[which(leachdevit\$LeachableAs > ND)])

mean(leachglassy\$LeachableAs[which(leachglassy\$LeachableAs > ND)])
median(leachglassy\$LeachableAs[which(leachglassy\$LeachableAs > ND)])
sd(leachglassy\$LeachableAs[which(leachglassy\$LeachableAs > ND)])

```
# Look for statistically significant correlations between As and other elements
```

Create variable for correlation coefficient to use cormeth = "spearman"

Define function for doing what I want, rather than typing it over and over again

```
myCorrelations <- function(data, cormeth){
numelements <- ncol(data) - 3
```

```
cortable <- vector(mode = "numeric", length = numelements)
ptable <- vector(mode = "numeric", length = numelements)
elements <- vector(mode = "character", length = numelements)</pre>
```

```
for (i in 4:(ncol(data)))
{test <- print(cor.test(data$As,data[,i], method = cormeth))
elements[i] <- colnames(data[i])
cortable[i] <- test$estimate
ptable[i] <- test$p.value}</pre>
```

```
# Create data frame of all correlation coefficients and p values
correlations <- data.frame(Element = elements, Correlation = cortable, pValue = ptable)
# Find all elements with p <= 0.05
sigcor <- subset(correlations, pValue <=0.05)
return(sigcor)
}
```

```
# Find correlations for total fraction
```

```
tufftotalsigcor <- myCorrelations(tuffs, cormeth) # Tuffs
```

```
# Exclude extreme values
tuffs2 <- subset(tuffs, As < 25)
tuff2totalsigcor <- myCorrelations(tuffs2, cormeth)</pre>
```

```
sed2 <- subset(sed, select = c(-Ga, -Ho, -Tm))
sedtotalsigcor <- myCorrelations(sed2, cormeth) # Sediments</pre>
```

=#

±#

weathtotalsigcor <- myCorrelations(weathered, cormeth) # Weathered unweathtotalsigcor <- myCorrelations(unweathered, cormeth) # Unweathered devittotalsigcor <- myCorrelations(devit, cormeth) # Devitrified glassytotalsigcor <- myCorrelations(glassy, cormeth) # Glassy

rm(sed2)

Correlations for the environmentally available fraction

tuffpartial <- subset(partialdata, Devitrification != "Sediment") unweatheredpartial <- subset(partialdata, Weathering == "Unweathered") weatheredpartial <- subset(partialdata, Weathering == "Weathered") devitpartial <- subset(unweatheredpartial, Devitrification == "Devitrified") glassypartial <- subset(unweatheredpartial, Devitrification == "Glassy") sedpartial <- subset(partialdata, Weathering == "Sediment")

tuffpartialsigcor <- myCorrelations(tuffpartial, cormeth) weathpartialsigcor <- myCorrelations(weatheredpartial, cormeth) unweathpartialsigcor <- myCorrelations(unweatheredpartial, cormeth) devitpartialsigcor <- myCorrelations(devitpartial, cormeth) glassypartialsigcor <- myCorrelations(glassypartial, cormeth) sedpartialsigcor <- myCorrelations(sedpartial, cormeth)

Correlations for the readily leachable fraction

tuffleach <- subset(leachdata, Devitrification != "Sediment") weatheredleach <- subset(leachdata, Weathering == "Weathered") unweatheredleach <- subset(leachdata, Weathering == "Unweathered") devitleach <- subset(unweatheredleach, Devitrification == "Devitrified") glassyleach <- subset(unweatheredleach, Devitrification == "Glassy") sedleach <- subset(leachdata, Weathering == "Sediment")

```
tuffleachsigcor <- myCorrelations(tuffleach, cormeth)
weathleachsigcor <- myCorrelations(weatheredleach, cormeth)
unweathleachsigcor <- myCorrelations(unweatheredleach, cormeth)
devitleachsigcor <- myCorrelations(devitleach, cormeth)
glassyleachsigcor <- myCorrelations(glassyleach, cormeth)
sedleachsigcor <- myCorrelations(sedleach, cormeth)
```

Analysis of pH extractions

load("~/Documents/Thesis/Analysis/pH.Rdata")

 $pH9 \leq subset(pHed, pH == 9)$

 $pH11 \leq subset(pHed, pH == 11)$ plot(pH11\$pH, pH11\$As) points(pH9\$pH, pH9\$As) $pHall \le c(8, 9, 11)$ $FD3 \le c(34, 34, 279)$ FD4 <- c(143, 164, 564) LG1 <- c(355, 181, 415) LG2 <- c(218, 83, 154) $LG4 \le c(34, 525, 3928)$ plot(pHall, LG4, type = "b", col = "dodgerblue4", pch = 15, ylim = c(0, 600)) points(pHall, FD3, type = "b", col = "gold", pch = 15) points(pHall, FD4, type = "b", col = "gold", pch = 15) points(pHall, LG1, type = "b", col = "gold", pch = 15)points(pHall, LG2, type = "b", col = "dodgerblue4", pch = 15) $DC6 \le c(133, 134, 185)$ $DC6pH \le c(7.35, 9, 11)$ $MK2 \le c(103, 137, 198)$ RST11 <- c(373, 85, 97) $RST11pH \le c(8.74, 9, 11)$ $RST13 \le c(113, 70, 91)$ $RST13pH \le c(8.25, 9, 11)$ $SR2 \le c(34, 34, 48)$ devitall <- data.frame(rbind(DC6, MK2, RST11, RST13, SR2)) weatheredall <- data.frame(rbind(FD3, FD4, LG1, LG2, LG4)) stderrw <- sd(weatheredall)/sqrt(length(weatheredall))</pre> stderrd <- sd(devitall)/sqrt(length(weatheredall)) plot(pHall, mean(weatheredall), type = "b", pch = 15, col = "chartreuse4", $v_{1} = c(0,2000),$ vlab = expression(paste("Leachable As (",mu,"g/kg)")), xlab = "pH", xaxt = "n")

axis(1, at = c(9, 10, 11),

```
labels = c("9", "10", "11")
axis(1, at = 8, labels = "pH not\ncontrolled", cex.axis = 0.65)
errbar(pHall, mean(devitall),
    (mean(devitall)+stderrd), (mean(devitall)-stderrd),
    add = TRUE, col = "dodgerblue4", pch = 20)
errbar(pHall, mean(weatheredall),
    (mean(weatheredall)+stderrw), (mean(weatheredall)-stderrw),
    add = TRUE, col = "chartreuse4", pch = 20)
points(pHall, mean(weatheredall), pch = 15, col = "chartreuse4", cex = 1.5)
points(pHall, mean(devitall), type = "b", pch =16, col = "dodgerblue4", cex = 1.5)
points(pHall, c(34, 34, 34), type = "b", pch = 17, col = "gold", cex = 1.5)
legendtext <- c("Weathered Tuffs", "Devitrified Tuffs", "Glassy Tuffs")
legendcol <- c("chartreuse4", "dodgerblue4", "gold")
legendpch <- c(15, 16, 17)
legend(x = "topleft", legend = legendtext, col = legendcol, pch = legendpch, cex = 1.2,
bty = "n")
```

```
plot(DC6pH, DC6, type = "b", col = "dodgerblue4", ylim = c(0,600))
points(pH, FD3, type = "b", col = "chartreuse4")
points(pH, LG1, type = "b", col = "chartreuse4")
points(pH, LG2, type = "b", col = "chartreuse4")
points(pH, MK2, type = "b", col = "dodgerblue4")
points(RST11pH, RST11, type = "b", col = "dodgerblue4")
points(RST13pH, RST13, type = "b", col = "dodgerblue4")
points(pH, SR2, type = "b", col = "dodgerblue4")
points(pH, SR2, type = "b", col = "dodgerblue4")
allpH <- c(6.36, 6.81, 8.40, 8.28, 7.35, 8.94, 8.37, 8.48,
8.29, 8.65, 7.99, 8.05, 8.74, 6.16, 6.93,
8.43, 8.44, 7.05, 8.65, 7.46, 8.30, 8.23, 7.90,
8.90, 7.92, 8.64, 8.70, 8.90, 8.25, 8.19,
6.94, 6.52, 7.03, 8.84, 8.88, 7.91, 8.01,
8.56)
```

mean(allpH)

Look at aqueous values

Convert back to aqueous concentrations

=#

```
convert <- function(x) \{x/(10^3 * 0.02)\}
```

water <- sapply(leachdata[,4:45], convert)
water <- as.data.frame(water)
water\$Sample <- leachdata\$Sample
water\$Devitrification <- leachdata\$Devitrification
water\$Weathering <- leachdata\$Weathering</pre>

```
mean(water$As)
mean(water$As[which(water$As > 0.851)])
```

```
# Remove non-detect values
water2 <- subset(water, As > 0.851)
waterunw <- subset(water2, Weathering == "Unweathered")
waterw <- subset(water2, Weathering == "Weathered")
waterdevit <- subset(waterunw, Devitrification == "Devitrified")
waterglassy <- subset(waterunw, Devitrification == "Glassy")
watersed <- subset(water2, Devitrification == "Sediment")
watertuff <- subset(water2, Devitrification != "Sediment")</pre>
```

```
mean(watertuff$As)
median(watertuff$As)
sd(watertuff$As)
max(watertuff$As)
min(watertuff$As)
```

mean(waterw\$As) median(waterw\$As) sd(waterw\$As) max(waterw\$As) min(waterw\$As)

mean(waterunw\$As) median(waterunw\$As) sd(waterunw\$As) max(waterunw\$As) min(waterunw\$As)

mean(waterdevit\$As) median(waterdevit\$As) sd(waterdevit\$As) max(waterdevit\$As) min(waterdevit\$As)

```
mean(waterglassy$As)
median(waterglassy$As)
sd(waterglassy$As)
max(waterglassy$As)
min(waterglassy$As)
```

mean(watersed\$As) median(watersed\$As) sd(watersed\$As) max(watersed\$As) min(watersed\$As)

```
# Log transforming the data
```

rm(list = ls())

#======

#=

Load workspace that includes data frames of data for all three fractions (total, env. available, and readily leachable) load("~/Documents/Thesis/Analysis/AllData.Rdata")

Use Grubb method to exclude outliers

```
grubb <- function(totaldata) {
# Calculate g stat
g <- abs(totaldata$As - mean(totaldata$As))
g2 <- max(g)/sd(totaldata$As)
```

```
# Calculate gcrit
n <- length(totaldata$As)
tcrit <- abs(qt(0.05/(2*n), n-2))
gcrit <- (n - 1)/sqrt(n) * sqrt(tcrit^2/(n - 2 + tcrit^2))</pre>
```

```
print(totaldata$Sample[which.max(g)])
samp <- (totaldata$Sample[which.max(g)])
print(max(g))
print(gcrit)</pre>
```

```
if (g2 > gcrit){
  temptot <- subset(totaldata, totaldata$Sample != samp)</pre>
```

108

=#

```
return(temptot)
  }
 if (g2 \leq gcrit)
  print("No more outliers!")
  return(totaldata)
 }
}
test <- grubb(totaldata)
test <- grubb(test) # Repeat until no more outliers are found.
totaldata2 <- test
# Replace missing LOI values with 100 - Total, rather than NA
MajorChemUnNorm$LOI[which(is.na(MajorChemUnNorm$LOI))] <- 100 -
MajorChemUnNorm$Total[which(is.na(MajorChemUnNorm$LOI))]
# Remove outliers from this data frame also
MajorChem <- subset(MajorChemUnNorm, Sample != "LG4")
MajorChem <- subset(MajorChem, Sample != "SR2")
MajorChem <- subset(MajorChem, Sample != "LG2")
MajorChem <- subset(MajorChem, Sample != "DS1")
# Correct for LOI values
temp <- totaldata2$As/(100 - MajorChem$LOI) * 100
totaldata2$As <- temp
temp <- totaldata$As/(100 - MajorChemUnNorm$LOI) * 100
totaldataLOI <- totaldata
totaldataLOI$As <- temp
# Log transform data
\log (totaldata < - \log (totaldata2[,4:36]))
logtotaldata <- cbind(totaldata2[,1:3], logtotaldata)
totaldata3 <- logtotaldata
\log totaldata < -\log(totaldataLOI[.4:36])
logtotaldata <- cbind(totaldataLOI[,1:3], logtotaldata)
```

totaldataLOI2 <- logtotaldata

Create data frame excluding sediment samples
tuffs <- subset(totaldata3, totaldata3\$Devitrification != "Sediment")
tuffs\$Devitrification <- factor(tuffs\$Devitrification)
tuffs\$Weathering <- factor(tuffs\$Weathering)</pre>

tuffsO <- subset(totaldataLOI2, totaldataLOI2\$Devitrification != "Sediment") tuffsO\$Devitrification <- factor(tuffsO\$Devitrification) tuffsO\$Weathering <- factor(tuffsO\$Weathering)

Create data frame of only sediment samples sed <- subset(totaldata3, totaldata3\$Devitrification == "Sediment") sedO <- subset(totaldataLOI2, totaldataLOI2\$Devitrification == "Sediment")</pre>

Create data frame where tuff v sed is a factor

testtuff <- tuffs
testtuff\$Weathering <- "Tuff"
testtuff <- rbind(testtuff, sed)
testtuff\$Weathering <- factor(testtuff\$Weathering)</pre>

testtuffO <- tuffsO testtuffO\$Weathering <- "Tuff" testtuffO <- rbind(testtuffO, sedO) testtuffO\$Weathering <- factor(testtuffO\$Weathering)

Create data frame of unweathered samples only
unweathered <- subset(tuffs, Weathering == "Unweathered")
unweatheredO <- subset(tuffsO, Weathering == "Unweathered")</pre>

Create data frame of weathered samples only
weathered <- subset(tuffs, Weathering == "Weathered")
weatheredO <- subset(tuffsO, Weathering == "Weathered")</pre>

Create data frame of devitrified samples only
devit <- subset(unweathered, Devitrification == "Devitrified")
devitO <- subset(unweatheredO, Devitrification == "Devitrified")</pre>

Create data frame of glassy samples only
glassy <- subset(unweathered, Devitrification == "Glassy")
glassyO <- subset(unweatheredO, Devitrification == "Glassy")</pre>

Calculate descriptive statistics

```
# Geometric mean and SD
exp(mean(tuffs$As))
exp(mean(tuffs0$As))
exp(sd(tuffs$As))
exp(sd(tuffs0$As))
```

```
exp(mean(unweathered$As))
exp(mean(unweatheredO$As))
exp(mean(weathered$As))
exp(mean(weatheredO$As))
exp(sd(unweathered$As))
exp(sd(unweatheredO$As))
exp(sd(weathered$As))
exp(sd(weathered$As))
```

```
exp(mean(devit$As))
exp(mean(devitO$As))
exp(mean(glassy$As))
exp(mean(glassyO$As))
exp(sd(devit$As))
exp(sd(devit$As))
exp(sd(glassy$As))
exp(sd(glassy$As))
```

exp(mean(sed\$As)) exp(mean(sedO\$As)) exp(sd(sed\$As)) exp(sd(sedO\$As))

Arithmetic Mean, Median, SD

mean(totaldataLOI\$As[which(totaldataLOI\$Weathering == "Weathered")])
mean(totaldata2\$As[which(totaldata2\$Weathering == "Weathered")])
median(totaldataLOI\$As[which(totaldataLOI\$Weathering == "Weathered")])
median(totaldata2\$As[which(totaldata2\$Weathering == "Weathered")])
sd(totaldataLOI\$As[which(totaldataLOI\$Weathering == "Weathered")])
sd(totaldata2\$As[which(totaldata2\$Weathering == "Weathered")])

mean(totaldataLOI\$As[which(totaldataLOI\$Weathering == "Unweathered")])
mean(totaldata2\$As[which(totaldata2\$Weathering == "Unweathered")])
median(totaldataLOI\$As[which(totaldataLOI\$Weathering == "Unweathered")])
median(totaldata2\$As[which(totaldata2\$Weathering == "Unweathered")])
sd(totaldataLOI\$As[which(totaldataLOI\$Weathering == "Unweathered")])

sd(totaldata2\$As[which(totaldata2\$Weathering == "Unweathered")])

mean(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Devitrified")])
mean(totaldata2\$As[which(totaldata2\$Devitrification == "Devitrified")])
median(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Devitrified")])
median(totaldata2\$As[which(totaldata2\$Devitrification == "Devitrified")])
sd(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Devitrified")])
sd(totaldata2\$As[which(totaldata2\$Devitrification == "Devitrified")])

mean(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Glassy")])
mean(totaldata2\$As[which(totaldata2\$Devitrification == "Glassy")])
median(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Glassy")])
sd(totaldataLOI\$As[which(totaldata2\$Devitrification == "Glassy")])
sd(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Glassy")])
sd(totaldata2\$As[which(totaldata2\$Devitrification == "Glassy")])

mean(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Sediment")])
mean(totaldata2\$As[which(totaldata2\$Devitrification == "Sediment")])
median(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Sediment")])
median(totaldata2\$As[which(totaldata2\$Devitrification == "Sediment")])
sd(totaldataLOI\$As[which(totaldataLOI\$Devitrification == "Sediment")])
sd(totaldata2\$As[which(totaldata2\$Devitrification == "Sediment")])

Test for normality
shapiro.test(tuffs\$As)
shapiro.test(sed\$As)
shapiro.test(weathered\$As)
shapiro.test(unweathered\$As)
shapiro.test(glassy\$As)
shapiro.test(devit\$As)

Compare tuffs and sediments
t.test(tuffs\$As, sed\$As)
wilcox.test(tuffs\$As, sed\$As)
var.test(tuffs\$As, sed\$As)
levene.test(testtuff\$As, testtuff\$Weathering, bootstrap = FALSE)
boxplot(tuffs\$As, sed\$As)

Compare weathered and unweathered samples
t.test(As ~ Weathering, tuffs)
var.test(As ~ Weathering, tuffs)
wilcox.test(As ~ Weathering, tuffs)
levene.test(tuffs\$As, tuffs\$Weathering)

boxplot(As ~ Weathering, tuffs, ylab = "As (mg/kg)", main = "Total As")

Compare glassy and devitrified samples

t.test(As ~ Devitrification, unweathered) wilcox.test(As ~ Devitrification, unweathered) var.test(As ~ Devitrification, unweathered) kruskal.test(As ~ Devitrification, unweathered) levene.test(unweathered\$As, unweathered\$Devitrification) boxplot(As ~ Devitrification, unweathered, ylab = "As (mg/kg)", main = "Total As")

Log tranform and remove outliers from Env. Available Fraction

Remove outliers
test <- grubb(partialdata)
test <- grubb(test)</pre>

partialdata2 <- test

Log transform the data

logpartialdata <- log(partialdata2[,4:30]) logpartialdata <- cbind(partialdata2[,1:3], logpartialdata)

logpartialdataO <- log(partialdata[,4:30]) logpartialdataO <- cbind(partialdata[,1:3], logpartialdataO)

Create data frame excluding sediment samples
tuffspartial <- subset(logpartialdata, logpartialdata\$Devitrification != "Sediment")
tuffspartial\$Devitrification <- factor(tuffspartial\$Devitrification)
tuffspartial\$Weathering <- factor(tuffspartial\$Weathering)</pre>

tuffspartialO <- subset(logpartialdataO, logpartialdataO\$Devitrification != "Sediment") tuffspartialO\$Devitrification <- factor(tuffspartialO\$Devitrification) tuffspartialO\$Weathering <- factor(tuffspartialO\$Weathering)

Create data frame of only sediment samples
sedpartial <- subset(logpartialdata, logpartialdata\$Devitrification == "Sediment")
sedpartialO <- subset(logpartialdataO, logpartialdataO\$Devitrification == "Sediment")</pre>

Create data frame where tuff v sed is a factor

testtuffpartial <- tuffspartial testtuffpartial\$Weathering <- "Tuff" testtuffpartial <- rbind(testtuffpartial, sedpartial) testtuffpartial\$Weathering <- factor(testtuffpartial\$Weathering)

testtuffpartialO <- tuffspartialO testtuffpartialO\$Weathering <- "Tuff" testtuffpartialO <- rbind(testtuffpartialO, sedpartialO) testtuffpartialO\$Weathering <- factor(testtuffpartialO\$Weathering)

Create data frame of unweathered samples only
unweatheredpartial <- subset(tuffspartial, Weathering == "Unweathered")
unweatheredpartialO <- subset(tuffspartialO, Weathering == "Unweathered")</pre>

Create data frame of weathered samples only
weatheredpartial <- subset(tuffspartial, Weathering == "Weathered")
weatheredpartialO <- subset(tuffspartialO, Weathering == "Weathered")</pre>

Create data frame of devitrified samples only
devitpartial <- subset(unweatheredpartial, Devitrification == "Devitrified")
devitpartialO <- subset(unweatheredpartialO, Devitrification == "Devitrified")</pre>

Create data frame of glassy samples only
glassypartial <- subset(unweatheredpartial, Devitrification == "Glassy")
glassypartialO <- subset(unweatheredpartialO, Devitrification == "Glassy")</pre>

Calculate descriptive statistics

Geometric mean and SD exp(mean(tuffspartial\$As)) exp(mean(tuffspartial0\$As)) exp(sd(tuffspartial\$As)) exp(sd(tuffspartial0\$As))

exp(mean(unweatheredpartial\$As)) exp(mean(unweatheredpartialO\$As)) exp(mean(weatheredpartial\$As)) exp(mean(weatheredpartialO\$As)) exp(sd(unweatheredpartial\$As)) exp(sd(unweatheredpartial\$As)) exp(sd(weatheredpartial\$As)) exp(sd(weatheredpartial\$As)) exp(sd(weatheredpartial\$As))

```
exp(mean(devitpartial$As))
exp(mean(devitpartialO$As))
exp(mean(glassypartial$As))
exp(mean(glassypartialO$As))
exp(sd(devitpartial$As))
exp(sd(devitpartialO$As))
exp(sd(glassypartial$As))
exp(sd(glassypartial$As))
```

exp(mean(sedpartial\$As)) exp(mean(sedpartialO\$As)) exp(sd(sedpartial\$As)) exp(sd(sedpartialO\$As))

Arithmetic Mean, Median, SD

mean(partialdata\$As[which(partialdata\$Weathering == "Weathered")])
mean(partialdata2\$As[which(partialdata2\$Weathering == "Weathered")])
median(partialdata\$As[which(partialdata\$Weathering == "Weathered")])
median(partialdata2\$As[which(partialdata2\$Weathering == "Weathered")])
sd(partialdata\$As[which(partialdata\$Weathering == "Weathered")])
sd(partialdata2\$As[which(partialdata\$Weathering == "Weathered")])

```
mean(partialdata$As[which(partialdata$Weathering == "Unweathered")])
mean(partialdata2$As[which(partialdata2$Weathering == "Unweathered")])
median(partialdata$As[which(partialdata$Weathering == "Unweathered")])
median(partialdata2$As[which(partialdata2$Weathering == "Unweathered")])
sd(partialdata$As[which(partialdata$Weathering == "Unweathered")])
sd(partialdata2$As[which(partialdata2$Weathering == "Unweathered")])
```

mean(exp(devitpartial\$As)) mean(exp(devitpartialO\$As)) median(exp(devitpartial\$As)) median(exp(devitpartialO\$As)) sd(exp(devitpartial\$As)) sd(exp(devitpartialO\$As))

mean(exp(glassypartial\$As))
median(exp(glassypartial\$As))
sd(exp(glassypartial\$As))

mean(partialdata\$As[which(partialdata\$Devitrification == "Sediment")])

mean(partialdata2\$As[which(partialdata2\$Devitrification == "Sediment")])
median(partialdata\$As[which(partialdata\$Devitrification == "Sediment")])
median(partialdata2\$As[which(partialdata2\$Devitrification == "Sediment")])
sd(partialdata\$As[which(partialdata\$Devitrification == "Sediment")])
sd(partialdata2\$As[which(partialdata2\$Devitrification == "Sediment")])

mean(partialdata\$As[which(partialdata\$Devitrification != "Sediment")])
mean(partialdata\$As[which(partialdata\$Devitrification != "Sediment")])
median(partialdata\$As[which(partialdata\$Devitrification != "Sediment")])
median(partialdata\$As[which(partialdata\$Devitrification != "Sediment")])
sd(partialdata\$As[which(partialdata\$Devitrification != "Sediment")])
sd(partialdata\$As[which(partialdata\$Devitrification != "Sediment")])

Test for normality
shapiro.test(tuffspartial\$As)
shapiro.test(sedpartial\$As)
shapiro.test(weatheredpartial\$As)
shapiro.test(unweatheredpartial\$As)
shapiro.test(devitpartial\$As)
shapiro.test(glassypartial\$As)

Compare groups

Compare variability

levene.test(testtuffpartial\$As, testtuffpartial\$Weathering)
levene.test(tuffspartial\$As, tuffspartial\$Weathering)
levene.test(unweatheredpartial\$As, unweatheredpartial\$Devitrification)

Compare medians kinda..

wilcox.test(As ~ Weathering, testtuffpartial) wilcox.test(As ~ Weathering, tuffspartial) wilcox.test(As ~ Devitrification, unweatheredpartial)

Compare weathered and unweathered devitrified and glassy

glassytest <- subset(tuffspartial, Devitrification == "Glassy") wilcox.test(As ~ Weathering, glassytest)

devittest <- subset(tuffspartial, Devitrification == "Devitrified")
wilcox.test(As ~ Weathering, devittest)</pre>

Check correlations with total As excluding outliers.

```
testcor <- subset(totaldata, Sample != "DVC1")
testcor <- data.frame(testcor$Sample,
          testcor$Devitrification,
          testcor$Weathering,
          testcor$As,
          partialdata$As)
testcor <- subset(testcor, testcor.Sample != "LG4")
testcor <- subset(testcor, testcor.Sample != "LG2")
testcor <- subset(testcor, testcor.Sample != "SR2")
testcor <- subset(testcor, testcor.Sample != "DS1")
testcorweathered <- subset(testcor, testcor.Weathering == "Weathered")
testcorun <- subset(testcor, testcor.Weathering == "Unweathered")
testcordevit <- subset(testcorun, testcor.Devitrification == "Devitrified")
testcorsed <- subset(testcor, testcor.Devitrification == "Sediment")
test \leq lm(partialdata.As ~ testcor.As, testcor)
test <- lm(partialdata.As ~ testcor.As, testcorweathered)
test <- lm(partialdata.As ~ testcor.As, testcordevit)
test <- lm(partialdata.As ~ testcor.As, testcorsed)
#====
# Log tranform and remove outliers from Readily Leachable Fraction
#_____
# Create subset of data frame that only includes As > MDL
leachdata2 <- subset(leachdata, As > 51.05875)
# Log transform the data
logleachdata <- cbind(leachdata2[,1:3], logleachdata)
logleachdataO \le log(leachdata[,4:20])
logleachdataO <- cbind(leachdata[,1:3], logleachdataO)
# Create data frame excluding sediment samples
tuffsleach <- subset(logleachdata, logleachdata$Devitrification != "Sediment")
tuffsleach$Devitrification <- factor(tuffsleach$Devitrification)</pre>
tuffsleach$Weathering <- factor(tuffsleach$Weathering)
```

tuffsleachO <- subset(logleachdataO, logleachdataO\$Devitrification != "Sediment")
tuffsleachO\$Devitrification <- factor(tuffsleachO\$Devitrification)
tuffsleachO\$Weathering <- factor(tuffsleachO\$Weathering)</pre>

Create data frame of only sediment samples
sedleach <- subset(logleachdata, logleachdata\$Devitrification == "Sediment")
sedleachO <- subset(logleachdataO, logleachdataO\$Devitrification == "Sediment")</pre>

Create data frame where tuff v sed is a factor

testtuffleach <- tuffsleach testtuffleach\$Weathering <- "Tuff" testtuffleach <- rbind(testtuffleach, sedleach) testtuffleach\$Weathering <- factor(testtuffleach\$Weathering)

testtuffleachO <- tuffsleachO testtuffleachO\$Weathering <- "Tuff" testtuffleachO <- rbind(testtuffleachO, sedleachO) testtuffleachO\$Weathering <- factor(testtuffleachO\$Weathering)

Create data frame of unweathered samples only
unweatheredleach <- subset(tuffsleach, Weathering == "Unweathered")
unweatheredleachO <- subset(tuffsleachO, Weathering == "Unweathered")</pre>

Create data frame of weathered samples only
weatheredleach <- subset(tuffsleach, Weathering == "Weathered")
weatheredleachO <- subset(tuffsleachO, Weathering == "Weathered")</pre>

Create data frame of devitrified samples only
devitleach <- subset(unweatheredleach, Devitrification == "Devitrified")
devitleachO <- subset(unweatheredleachO, Devitrification == "Devitrified")</pre>

Create data frame of glassy samples only
glassyleach <- subset(unweatheredleach, Devitrification == "Glassy")
glassyleachO <- subset(unweatheredleachO, Devitrification == "Glassy")</pre>

Calculate descriptive statistics

Geometric mean and SD exp(mean(tuffsleach\$As)) exp(mean(tuffsleach0\$As)) exp(sd(tuffsleach\$As)) exp(sd(tuffsleachO\$As))

```
exp(mean(unweatheredleach$As))
exp(mean(unweatheredleach0$As))
exp(mean(weatheredleach$As))
exp(mean(weatheredleach0$As))
exp(sd(unweatheredleach0$As))
exp(sd(unweatheredleach0$As))
exp(sd(weatheredleach0$As))
exp(sd(weatheredleach0$As))
```

```
exp(mean(devitleach$As))
exp(mean(devitleachO$As))
exp(mean(glassyleach$As))
exp(mean(glassyleachO$As))
exp(sd(devitleach$As))
exp(sd(devitleachO$As))
exp(sd(glassyleach$As))
exp(sd(glassyleachO$As))
```

exp(mean(sedleach\$As)) exp(mean(sedleachO\$As)) exp(sd(sedleach\$As)) exp(sd(sedleachO\$As))

Arithmetic Mean, Median, SD

```
mean(leachdata$As[which(leachdata$Weathering == "Weathered")])
mean(leachdata$As[which(leachdata$Weathering == "Weathered")])
median(leachdata$As[which(leachdata$Weathering == "Weathered")])
median(leachdata$As[which(leachdata$Weathering == "Weathered")])
sd(leachdata$As[which(leachdata$Weathering == "Weathered")])
sd(leachdata$As[which(leachdata$Weathering == "Weathered")])
```

```
mean(leachdata$As[which(leachdata$Weathering == "Unweathered")])
mean(leachdata$As[which(leachdata$Weathering == "Unweathered")])
median(leachdata$As[which(leachdata$Weathering == "Unweathered")])
median(leachdata$As[which(leachdata$Weathering == "Unweathered")])
sd(leachdata$As[which(leachdata$Weathering == "Unweathered")])
sd(leachdata$As[which(leachdata$Weathering == "Unweathered")])
```

```
mean(exp(devitleach$As))
mean(exp(devitleachO$As))
median(exp(devitleach$As))
```

median(exp(devitleachO\$As))
sd(exp(devitleach\$As))
sd(exp(devitleachO\$As))

mean(leachdata\$As[which(leachdata\$Devitrification == "Glassy")])
mean(leachdata2\$As[which(leachdata2\$Devitrification == "Glassy")])
median(leachdata\$As[which(leachdata\$Devitrification == "Glassy")])
median(leachdata2\$As[which(leachdata2\$Devitrification == "Glassy")])
sd(leachdata\$As[which(leachdata\$Devitrification == "Glassy")])
sd(leachdata2\$As[which(leachdata2\$Devitrification == "Glassy")])

mean(leachdata\$As[which(leachdata\$Devitrification == "Sediment")])
mean(leachdata2\$As[which(leachdata2\$Devitrification == "Sediment")])
median(leachdata\$As[which(leachdata\$Devitrification == "Sediment")])
median(leachdata2\$As[which(leachdata2\$Devitrification == "Sediment")])
sd(leachdata\$As[which(leachdata\$Devitrification == "Sediment")])
sd(leachdata2\$As[which(leachdata2\$Devitrification == "Sediment")])

mean(leachdata\$As[which(leachdata\$Devitrification != "Sediment")])
mean(leachdata2\$As[which(leachdata2\$Devitrification != "Sediment")])
median(leachdata\$As[which(leachdata\$Devitrification != "Sediment")])
median(leachdata2\$As[which(leachdata2\$Devitrification != "Sediment")])
sd(leachdata\$As[which(leachdata\$Devitrification != "Sediment")])
sd(leachdata2\$As[which(leachdata2\$Devitrification != "Sediment")])

Test for normality
shapiro.test(tuffsleachO\$As)
shapiro.test(sedleachO\$As)
shapiro.test(weatheredleachO\$As)
shapiro.test(unweatheredleachO\$As)
shapiro.test(devitleachO\$As)
shapiro.test(glassyleachO\$As)

Compare groups

Compare variability

levene.test(testtuffleachO\$As, testtuffleachO\$Weathering)
levene.test(tuffsleachO\$As, tuffsleachO\$Weathering)
levene.test(unweatheredleachO\$As, unweatheredleachO\$Devitrification)

var.test(As ~ Weathering, testtuffleachO)

var.test(As ~ Weathering, tuffsleachO) var.test(As ~ Devitrification, unweatheredleachO)

Compare means

t.test(As ~ Weathering, testtuffleachO, var.equal = FALSE) t.test(As ~ Weathering, tuffsleachO, var.equal = TRUE) t.test(As ~ Devitrification, unweatheredleachO, var.equal = FALSE)

Table C1. Lc	og transformed tot.	al elemental conc	centrations	s used in s	statistical	analysis.						
Sample	Devitrification	Weathering	Al203	As	Ba	Be	CaO	Cr	Cu	FeO	K20	MgO
BC1	Glassy	Weathered	2.48	1.83	6.71	0.00	1.31	2.20	2.40	2.25	-0.02	0.82
BC2	Sediment	Sediment	1.03	-1.29	3.22	-0.69	-0.69	0.00	2.20	0.57	-2.12	-0.60
BC3	Sediment	Sediment	2.71	1.81	6.54	1.10	0.69	2.89	2.48	1.89	-0.63	0.55
DC1	Glassy	Unweathered	2.47	1.66	7.21	0.87	-0.56	1.10	0.00	0.56	1.76	-2.04
DC4	Glassy	Unweathered	2.47	1.64	7.11	1.10	-0.63	0.00	1.79	0.87	1.76	-2.21
DC5	Devitrified	Unweathered	2.50	-1.37	7.05	1.10	-1.17	0.00	1.61	0.63	1.34	-2.04
DC6	Devitrified	Unweathered	2.44	1.93	6.86	1.10	-1.27	0.00	1.79	0.94	1.26	-2.21
DC7	Devitrified	Unweathered	2.37	1.35	6.91	1.10	-1.20	0.00	1.79	0.79	1.17	-2.41
DC8	Glassy	Weathered	2.55	1.01	6.84	1.10	0.10	0.00	1.61	1.12	1.24	0.46
DC9	Devitrified	Unweathered	2.53	-1.38	7.08	1.10	-1.51	0.00	1.10	-0.25	1.34	-3.22
DS2	Sediment	Sediment	1.51	1.72	5.52	0.00	1.04	1.95	2.40	0.65	-2.41	-0.15
DS3	Sediment	Sediment	0.51	-1.32	4.70	0.00	-0.76	2.40	1.79	-0.65	-1.66	-1.56
DT1	Glassy	Unweathered	2.51	1.34	6.44	0.71	-0.03	2.56	2.77	0.55	1.38	-1.83
DT2	Glassy	Unweathered	2.51	1.67	6.42	0.78	-0.48	1.79	2.08	-0.01	1.70	-2.53
DT3	Devitrified	Unweathered	2.52	1.59	6.40	1.10	-0.71	1.10	1.39	0.33	1.53	-1.05
DVC1	Devitrified	Unweathered	2.46	1.28	5.14	1.21	-1.43	2.20	2.48	1.04	1.50	-1.77
DVC2	Devitrified	Weathered	2.56	0.42	5.57	0.91	-0.29	2.30	1.95	0.97	1.32	-0.20
DVC4	Glassy	Unweathered	2.37	2.18	3.22	2.08	-1.56	2.83	1.95	1.14	1.66	-3.00
FD1	Glassy	Weathered	2.52	1.80	6.29	0.50	1.29	1.79	2.30	1.38	0.26	-0.46
FD2	Glassy	Weathered	2.52	1.83	6.22	0.41	1.29	1.79	2.08	1.16	0.25	-1.08

APPENDIX C: ADDITIONAL CHEMICAL DATA

MgO	-0.84	-0.11	-1.77	-5.30	-2.30	-1.02	-0.42	-1.39	-1.14	0.50	-2.30	-2.30	-0.46	-3.00	-2.66	-2.30	-1.66	-3.51	-3.00	-3.51	-1.56	-1.66	-2.66	-2.53	-0.39
K20	-0.27	0.85	1.47	0.91	1.36	1.11	0.57	0.48	0.46	0.78	1.56	1.34	1.69	1.56	1.71	1.34	1.46	1.62	1.48	1.59	1.56	1.46	1.78	1.70	0.11
FeO	1.11	1.40	0.60	0.94	0.60	0.72	1.08	0.99	0.85	1.62	0.92	0.58	0.91	0.29	0.48	0.50	0.69	0.29	0.44	0.60	0.71	0.79	0.40	0.49	0.91
Cu	1.95	2.30	1.61	1.10	1.10	2.40	3.00	3.00	1.95	2.93	1.95	1.79	2.08	1.06	1.61	2.08	1.95	0.69	1.39	1.95	2.20	3.64	1.61	1.39	2.08
Cr	1.39	1.39	1.79	0.00	0.00	1.39	2.30	3.00	1.10	3.18	1.39	0.00	2.77	1.61	0.00	0.00	2.56	1.79	1.61	2.30	3.09	0.00	0.00	0.00	1.61
CaO	1.30	1.03	-0.92	0.54	0.17	1.31	0.73	0.87	0.72	1.30	0.43	-0.73	-0.08	-1.14	-1.51	-1.43	-1.05	-1.14	-1.20	-2.53	-0.62	-0.89	-1.43	-1.47	0.88
Be	0.50	0.53	-1.14	1.61	1.10	0.81	1.02	0.11	0.19	0.16	0.64	1.10	1.61	1.06	1.39	1.39	1.39	1.00	0.91	1.10	1.39	1.39	1.39	1.39	0.03
Ba	6.14	6.57	6.60	7.00	5.94	6.18	7.17	6.00	6.04	6.32	6.46	7.15	6.58	6.41	5.99	6.40	6.98	6.58	6.61	6.17	6.33	6.27	5.91	5.67	6.31
\mathbf{As}	2.33	2.68	1.80	2.46	1.02	2.03	2.14	1.57	2.25	1.21	1.51	-1.37	2.33	1.10	1.85	1.75	2.03	1.23	1.37	1.73	2.00	1.47	1.20	0.84	1.41
AI2O3	2.49	2.53	2.60	2.44	2.16	2.35	2.51	2.64	2.68	2.73	2.17	2.57	2.49	2.48	2.46	2.34	2.48	2.46	2.49	2.47	2.48	2.51	2.49	2.54	2.48
Weathering	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Unweathered	Weathered												
Devitrification	Glassy	Glassy	Glassy	Glassy	Devitrified	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy
Sample	FD3	FD4	LB1	LG1	LG3	LST1	MA1	MK1	MK2	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RU1

MgO	-0.25	0.36	-0.40	0.01	-0.46	0.21	1.06	1.07	-1.56	1.21	-0.84
K20	1.45	1.46	0.73	-1.27	-1.47	1.14	-0.27	0.29	0.64	-1.43	1.03
FeO	0.82	0.89	0.36	1.19	0.99	1.12	2.21	2.06	1.14	2.40	1.31
Cu	2.48	3.04	2.30	3.26	3.04	1.61	4.17	4.19	3.26	5.08	2.77
Cr	2.20	1.39	1.39	3.47	3.40	0.00	5.10	4.93	1.95	2.77	2.40
CaO	0.73	0.76	0.91	-0.02	-0.60	-0.69	1.98	1.88	1.02	1.86	0.28
Be	1.32	0.62	1.38	0.69	-0.69	1.61	-0.69	0.00	0.22	-0.86	0.68
Ba	6.65	7.51	6.35	3.22	3.22	3.22	6.78	6.40	5.86	5.04	6.77
\mathbf{As}	1.02	0.84	2.03	2.77	1.72	1.97	1.07	-1.32	1.65	-0.44	1.45
Al2O3	2.61	2.74	2.44	2.30	1.90	2.68	2.77	2.79	2.71	2.67	2.70
Weathering	Weathered	Weathered	Weathered	Sediment	Sediment	Sediment	Sediment	Sediment	Weathered	Sediment	Weathered
Devitrification	Devitrified	Glassy	Glassy	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified
Sample	SLNM	SLRC	SR1	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WU1

Sample	Devit.	Weathering	MnO	Mo	Na2O	Ni	P205	Pb	Rb	S	Sb	SiO2	\mathbf{Sr}	TiO2	>	Zn
BC1	Glassy	Weathered	-2.55	-0.69	0.48	2.20	-1.71	1.61	2.01	5.70	-0.22	3.97	5.33	0.16	4.36	4.85
BC2	Sediment	Sediment	-4.34	-0.69	-2.53	1.10	-4.61	0.41	2.01	3.91	-0.51	4.43	3.43	-1.51	3.99	3.91
BC3	Sediment	Sediment	-3.30	-0.69	-0.63	2.08	-2.53	2.56	2.01	5.30	-0.11	3.92	5.04	0.22	3.76	4.97
DC1	Glassy	Unweathered	-3.22	1.66	0.86	-Inf	-3.91	2.83	4.47	NA	0.21	4.27	3.37	-1.77	1.10	4.96
DC4	Glassy	Unweathered	-2.88	1.95	1.02	1.79	-3.91	2.56	4.33	4.61	0.10	4.29	3.30	-1.77	1.39	5.32
DC5	Devitrified	Unweathered	-5.30	-0.69	1.43	0.69	-3.51	2.08	2.01	3.91	-0.22	4.32	3.56	-1.77	1.61	5.22
DC6	Devitrified	Unweathered	-4.42	0.00	1.41	0.69	-2.53	2.30	2.01	3.91	0.00	4.33	3.40	-1.83	3.18	4.90
DC7	Devitrified	Unweathered	-3.12	0.69	1.37	1.10	-3.91	1.79	4.01	3.91	-0.11	4.35	3.53	-1.90	2.48	4.62
DC8	Glassy	Weathered	-2.16	1.39	0.78	0.69	-3.51	2.64	3.85	3.91	-0.36	4.18	3.91	-1.71	2.56	5.48
DC9	Devitrified	Unweathered	-5.30	0.00	1.55	-0.69	-3.51	2.56	5.08	3.91	0.00	4.34	3.40	-1.77	1.79	4.86
DS2	Sediment	Sediment	-5.30	-0.69	-2.04	1.61	-3.91	0.41	2.01	5.70	1.03	4.36	4.26	-1.31	4.30	4.06
DS3	Sediment	Sediment	-5.30	-0.69	-2.81	-0.69	-4.61	0.41	2.01	3.91	-0.69	4.49	3.50	-2.30	3.53	2.30
DT1	Glassy	Unweathered	-3.58	0.97	0.96	1.61	-3.44	2.77	4.45	NA	0.13	4.27	4.52	-1.53	2.89	3.56
DT2	Glassy	Unweathered	-3.96	1.26	0.72	0.69	-4.02	2.77	4.81	NA	-0.10	4.30	3.64	-2.51	0.69	3.47
DT3	Devitrified	Unweathered	-4.51	0.00	1.11	0.69	-3.91	2.77	4.64	3.91	-0.11	4.32	3.43	-2.53	1.79	3.14
DVC1	Devitrified	Unweathered	-3.32	0.59	1.40	1.61	-3.02	3.18	4.44	NA	0.36	4.31	3.14	-1.22	2.71	5.07
DVC2	Devitrified	Weathered	-2.70	0.39	1.00	1.39	-3.44	2.71	3.76	NA	0.03	4.23	3.95	-1.24	2.71	4.85
DVC4	Glassy	Unweathered	-2.78	1.95	1.31	1.10	-4.61	3.33	5.22	3.91	0.47	4.30	1.39	-1.71	1.10	5.65
FD1	Glassy	Weathered	-3.02	-2.43	0.51	0.69	-2.53	2.20	3.26	NA	1.15	4.16	5.25	-0.79	3.37	4.62
FD2	Glassy	Weathered	-2.81	-0.60	0.78	0.00	-2.85	2.30	3.66	NA	0.22	4.16	4.88	-1.02	3.14	4.62
FD3	Glassy	Weathered	-2.73	-2.43	0.71	0.00	-2.94	2.40	3.37	NA	0.41	4.16	5.02	-1.19	2.71	4.63
FD4	Glassy	Weathered	-3.04	-1.40	0.38	1.10	-2.88	2.20	4.33	NA	0.26	4.16	6.66	-0.86	3.37	4.61
LB1	Glassy	Weathered	-4.07	-0.36	-0.08	1.39	-4.51	2.48	4.64	NA	0.38	4.29	3.50	-1.75	2.48	3.56
LG1	Glassy	Weathered	-5.30	-0.69	1.32	-0.69	-4.61	2.71	4.80	6.40	-0.51	4.16	3.30	-1.43	0.00	5.13
12:																

1	_	_
÷	~	÷
	≍	٢.
	4	2
	÷	2
	2	2
•	-	÷.
1	Ξ	2
	Έ	
	C	2
	c)
`	-	-
	r /	n
	2	1
	Ù	Ď.
	5	~
-	-	÷,
	σ	ŝ.
	č	Ŧ.
	Ξ	3
	~	•
-	-	
	3	3
	C.)
•	2	Ξ.
1	÷.,	2
	2	4
١,	f	5
	à	3
	÷	ذ
	U	2
	-	-
	Ł	٤.
•	1	1
-	С	5
	2	5
	2	2
	2	4
	-	د
	r 4	•
	2	4
	F	1
	C	2
•	-	ζ.
1	1	5
	\$	۰.
	È	3
	È	
	7	5
	4	٢.
	2	2
	2	2
	C	2
	ē	5
	~	
-	-	1
	5	Ś
1	Ξ	2
	È	Į.
	đ	2
	۶	
	÷	1
	đ	,
-		1
	ų,	,
-	_	-
	3	3
1	÷	ذ
	C	2
1	÷	د
-	_	÷
	۲	٢.
	đ	2
	۲	
	۲	۰.
	5	
,	c	2
٩	t.	
	2	4
	5	ł.
	3	3
	۲	ţ
1	•	-
	b	ſ
	۲	~
	9	٢
F		
ſ		1
,	~	i
Ş	2	1

Sample	Devit.	Weathering	MnO	Мо	Na2O	Ni	P205	$^{\mathrm{Pb}}$	Rb	S	Sb	SiO2	Sr	TiO2	>	Zn
LG3	Devitrified	Weathered	-5.30	-0.69	0.45	0.00	-3.91	2.64	4.17	5.99	-0.11	4.32	1.95	-1.77	0.69	4.84
LST1	Glassy	Weathered	-0.25	0.00	0.57	0.69	-3.51	2.77	4.14	NA	0.60	4.16	5.80	-1.35	2.83	4.71
MA1	Devitrified	Weathered	-2.04	-0.34	1.11	1.61	-2.12	2.89	3.99	NA	0.66	4.23	5.17	-0.76	3.50	4.86
MK1	Devitrified	Weathered	-3.19	-0.08	1.46	2.08	-2.42	1.79	3.56	NA	-0.56	4.26	5.21	-0.99	3.18	4.14
MK2	Devitrified	Weathered	-4.96	-0.79	1.40	1.10	-4.07	1.79	3.43	NA	0.52	4.25	5.18	-0.96	3.18	3.30
MTA1	Glassy	Weathered	-2.12	0.48	1.08	2.08	-1.52	2.56	3.85	NA	1.07	4.10	5.74	-0.28	4.20	4.32
PG1	Devitrified	Weathered	-3.41	-1.38	0.82	0.69	-2.85	2.40	4.88	NA	0.40	4.35	3.30	-1.83	2.30	4.88
PG2	Devitrified	Unweathered	-4.61	-0.69	1.47	0.00	-3.91	2.40	2.01	3.91	-0.11	4.31	3.76	-1.56	2.40	4.99
PG3	Glassy	Unweathered	-3.12	1.61	0.82	0.69	-3.51	1.95	4.49	4.61	0.34	4.26	3.89	-1.51	2.20	5.15
RST1	Glassy	Unweathered	-2.47	1.39	1.28	1.10	-4.71	2.94	4.50	NA	0.84	4.30	2.30	-1.92	1.79	4.68
RST10	Glassy	Unweathered	-2.60	1.61	1.18	1.39	-3.22	2.64	4.37	3.91	0.34	4.31	1.79	-2.04	1.39	4.88
RST11	Devitrified	Unweathered	-2.40	1.10	1.26	1.61	-3.91	2.40	4.94	3.91	0.69	4.37	2.83	-2.04	2.48	4.62
RST13	Devitrified	Unweathered	-2.19	0.00	1.43	1.79	-2.81	2.40	4.70	5.30	0.47	4.33	3.53	-1.71	2.48	4.88
RST2	Glassy	Unweathered	-2.66	1.30	1.20	0.69	-4.20	2.94	4.44	NA	0.26	4.30	2.40	-1.93	1.61	4.79
RST4	Devitrified	Unweathered	-2.59	0.32	1.44	1.39	-3.35	2.64	4.48	NA	0.61	4.33	2.77	-1.78	1.79	4.56
RST5	Devitrified	Unweathered	-2.47	0.69	1.37	0.69	-3.51	2.77	4.96	3.91	0.10	4.35	1.61	-2.12	2.30	4.84
RST6	Glassy	Unweathered	-2.33	1.61	1.25	1.39	-3.00	2.48	4.67	3.91	0.53	4.29	3.22	-1.61	2.40	4.82
RST7	Devitrified	Unweathered	-2.51	0.69	1.42	2.40	-3.00	2.48	2.01	3.91	0.59	4.32	3.30	-1.56	2.94	4.67
RST8	Glassy	Unweathered	-2.59	1.61	1.02	0.00	-1.90	2.77	4.60	3.91	0.47	4.29	2.56	-2.04	1.39	4.93
RST9	Glassy	Unweathered	-2.40	1.79	1.13	1.10	-3.91	2.83	2.01	3.91	0.34	4.29	2.20	-1.97	1.39	4.93
RU1	Glassy	Weathered	-3.00	-2.43	1.25	-Inf	-0.69	2.30	3.00	NA	-0.46	4.17	5.04	-1.24	2.71	4.29
SLNM	Devitrified	Weathered	-1.97	0.70	1.24	0.69	-0.63	3.33	5.06	NA	-0.41	4.24	5.58	-1.12	3.74	4.58
SLRC	Glassy	Weathered	-2.19	0.40	1.01	1.39	-2.32	3.04	4.66	NA	-0.81	4.15	6.09	-0.78	3.00	4.25
SR1	Glassy	Weathered	-3.19	-0.53	0.07	0.00	-3.32	2.94	4.52	NA	0.31	4.23	4.57	-1.92	2.20	5.10
TS1	Sediment	Sediment	-5.30	0.69	0.16	2.77	-3.51	1.10	2.89	8.16	-0.92	4.25	4.30	-0.58	5.02	4.47
126																

Sample	Devit.	Weathering	MnO	Мо	Na2O	Ni	P2O5	$^{\mathrm{pb}}$	Rb	S	\mathbf{Sb}	SiO2	Sr	TiO2	٧	Zn
TS3	Sediment	Sediment	-5.30	0.69	-0.84	1.79	-3.91	0.41	2.01	7.24	-1.61	4.33	3.66	-1.27	4.23	3.58
TS4	Sediment	Sediment	-2.43	1.10	1.20	1.79	-3.22	3.00	2.01	7.78	-0.11	4.19	4.03	-1.77	3.00	5.19
TSD1	Sediment	Sediment	-1.55	-0.69	0.60	4.39	-0.87	0.41	2.01	5.99	-3.00	3.91	5.41	0.14	4.85	4.25
TSD2	Sediment	Sediment	-1.94	-0.69	0.79	4.37	-1.51	1.79	2.01	5.99	-0.92	4.02	5.25	0.09	4.61	4.34
TW1	Devitrified	Weathered	-2.34	-0.45	1.51	1.10	-1.57	2.08	3.50	NA	0.03	4.22	5.38	-0.18	3.76	3.89
TW2	Sediment	Sediment	-1.67	-2.43	1.27	2.71	-1.82	1.10	1.61	NA	0.92	3.95	5.61	0.51	5.67	4.70
WU1	Devitrified	Weathered	-2.07	0.19	1.71	2.20	-2.22	2.64	3.97	NA	0.55	4.22	4.91	-0.62	3.71	4.44

Table C3. I values repo	Environmentally availted in mg/kg.	ailable elements pr	resent in tu	ff sample	es prepared	via EPA	Method (3051a, and	analyzed	l via ICP-C	JES. All
Sample	Devitrification	Weathering	AI	\mathbf{As}	Ba	Са	Cd	Ce	Co	Cr	Cu
BC1	Glassy	Weathered	26032	0.66	332.71	8848	0.85	16.29	15.58	5.33	9.01
BC2	Sediment	Sediment	11633	ND	39.68	2440	0.22	11.82	4.01	3.38	7.68
BC3	Sediment	Sediment	50795	2.32	299.44	9914	1.14	52.35	12.56	8.97	10.68
DC1	Glassy	Unweathered	3042	ND	11.99	691	0.07	4.03	0.65	0.59	1.37
DC4	Glassy	Unweathered	1790	ND	24.02	420	0.04	5.26	0.51	1.37	1.78
DC5	Devitrified	Unweathered	6565	1.49	63.26	1221	0.12	54.54	1.43	0.99	2.23
DC6	Devitrified	Unweathered	3642	5.51	34.91	837	0.22	158.38	2.04	2.37	60.24
DC7	Devitrified	Unweathered	3055	2.35	70.96	752	0.23	81.89	1.66	1.58	11.74
DC8	Glassy	Weathered	20261	2.27	52.32	4353	0.57	49.79	2.06	0.51	2.75
DC9	Devitrified	Unweathered	2346	1.30	28.03	319	0.09	84.69	0.78	1.33	55.62
DS1	Sediment	Sediment	21293	9.66	60.47	9552	0.54	20.06	3.61	6.68	9.52
DS2	Sediment	Sediment	19653	2.74	189.82	14628	0.33	19.38	3.08	5.20	47.59
DS3	Sediment	Sediment	5468	0.43	89.65	2294	0.16	9.97	0.75	2.48	4.17
DT1	Glassy	Unweathered	16263	0.71	95.77	1262	0.17	15.40	3.77	15.17	6.53
DT2	Glassy	Unweathered	5001	ND	31.89	995	0.09	5.35	0.89	7.42	2.55
DT3	Devitrified	Unweathered	5584	0.43	26.98	1012	0.10	8.70	1.35	16.68	3.00
DVC2	Devitrified	Weathered	23354	4.54	115.88	4162	0.40	189.02	4.22	6.64	7.37
DVC4	Glassy	Unweathered	<i>L</i> 6 <i>L</i>	ND	9.63	229	0.03	9.85	0.20	1.02	3.88
FD1	Glassy	Weathered	33215	3.05	322.48	18266	0.41	56.32	5.52	4.39	74.81
FD2	Glassy	Weathered	34183	2.53	322.27	18196	0.49	55.02	4.03	4.80	101.70
FD3	Glassy	Weathered	35974	5.10	304.16	18718	0.38	58.93	3.50	2.14	6.61
FD4	Glassy	Weathered	29175	8.16	486.05	14402	0.27	57.36	3.95	2.83	9.43
LB1	Glassy	Weathered	11005	2.49	83.03	1655	0.11	17.33	2.36	1.20	2.51
LG1	Glassy	Weathered	28029	4.24	518.44	8767	0.32	112.39	1.61	0.55	2.93
LG2	Devitrified	Weathered	7582	9.09	25.54	5351	0.56	138.79	0.92	0.38	14.75
LG3	Devitrified	Weathered	6832	2.40	40.71	5858	0.43	93.58	1.92	0.58	9.32
LG4	Devitrified	Weathered	4891	64.51	8.58	2345	0.47	93.72	2.43	0.67	4.42
128											

Cu	11.99	14.08	18.16	8.62	12.92	3.56	3.92	3.39	2.54	1.73	85.33	4.28	4.13	3.77	2.38	4.18	14.18	1.13	13.12	9.48	9.23	9.81	43.73	15.86	20.19	13.52	2.57	38.18	22.91
Cr	2.72	3.33	2.63	3.41	5.73	14.53	8.14	2.97	1.89	1.38	2.42	1.95	2.37	7.26	0.47	2.48	5.16	0.61	1.22	1.84	3.84	0.75	4.46	241.55	17.90	11.33	0.58	60.54	40.68
Co	3.78	4.37	6.18	2.68	7.25	1.48	2.29	1.36	0.61	0.38	1.14	1.78	0.78	1.53	0.84	1.71	3.31	0.34	0.52	3.12	3.04	3.17	1.44	6.60	5.60	3.21	3.18	24.94	16.91
Ce	55.48	34.38	29.45	19.73	7.00	87.32	73.94	24.05	5.96	5.35	52.73	64.78	8.00	70.50	89.31	5.06	54.98	5.34	10.40	39.26	21.66	38.50	116.16	128.32	28.00	12.47	48.78	9.78	4.91
Cd	0.35	0.25	0.35	0.21	0.25	1.16	0.16	0.05	0.08	0.05	0.15	0.34	0.11	0.16	0.09	0.11	0.29	Ŋ	0.07	0.28	0.35	0.13	0.65	0.65	0.30	0.13	0.64	0.48	0.22
Ca	47000	4757	2742	2033	5809	8330	901	2454	303	160	477	937	454	933	180	775	786	253	209	9924	3450	3959	13902	471	4862	2638	1700	14532	8857
Ba	297.98	252.14	23.11	26.32	114.52	30.94	72.49	26.68	43.30	15.58	72.88	286.26	57.07	46.29	18.03	50.84	75.72	12.24	35.31	171.12	315.04	303.49	331.21	34.51	33.17	33.52	29.43	369.63	149.38
\mathbf{As}	3.69	0.89	3.28	5.60	0.87	3.74	1.42	ŊŊ	QN	ŊŊ	3.60	3.64	ŊŊ	1.76	2.00	QN	1.77	QN	ŊŊ	1.83	ŊŊ	1.04	5.09	28.13	7.13	1.49	1.35	1.03	g
AI	28020	9978	6694	11585	16747	2544	5457	7014	4812	1187	1458	1589	3752	2479	1056	2842	2917	4319	8010	9570	4538	10271	27242	3308	35235	20817	23658	33670	23473
Weathering	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Sediment	Sediment												
Devitrification	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Devitrified	Glassy	Glassy	Devitrified	Sediment	Sediment	Sediment	Sediment	Sediment
Sample	LST1	MA1	MK1	MK2	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RU1	SLNM	SLRC	SR1	SR2	TS1	TS3	TS4	TSD1	TSD2

Ι				
Cu	24.82	541.48	13.64	
Cr	6.37	9.90	21.72	
Co	5.31	31.29	8.38	
Ce	43.84	13.12	38.50	
Cd	0.40	0.97	0.43	
Са	2955	21135	2675	
Ba	26.23	103.98	95.21	
\mathbf{As}	2.91	ND	1.24	
Al	6972	30175	9527	
Weathering	Weathered	Sediment	Weathered	
Devitrification	Devitrified	Sediment	Devitrified	
Sample	TW1	TW2	WU1	

<u>.</u>	rification	Weathering	Fe	La	Mg	Mn	Mo	Na	Nd	Ņ
C	lassy	Weathered	17852	10.62	7318	202.10	0.41	1644	10.14	4.23
(1)	diment	Sediment	8020	9.36	2656	66.59	ND	213	8.01	2.07
U	diment	Sediment	17677	28.91	8484	230.16	1.08	502	23.04	5.26
~ ~	Glassy	Unweathered	2599	ND	631	11.37	NA	1579	ND	0.21
	Glassy	Unweathered	2803	3.66	246	73.05	0.20	3791	2.62	2.36
	vitrified	Unweathered	7568	28.32	614	23.74	0.08	3538	22.82	1.10
Ĵ	svitrified	Unweathered	9447	59.04	487	60.31	0.36	790	53.72	5.93
U)	witrified	Unweathered	8434	32.79	376	328.76	0.52	936	28.97	2.64
-	Glassy	Weathered	9069	39.75	7217	468.51	ND	1252	29.82	1.43
Ū.	witrified	Unweathered	1652	26.35	106	13.60	ND	765	25.10	14.01
	ediment	Sediment	10473	QN	5249	45.63	0.18	2032	9.50	4.44
	ediment	Sediment	8401	QN	4204	18.98	0.09	956	9.26	4.52
	ediment	Sediment	2202	5.65	863	8.12	ND	204	4.76	0.82
-	Glassy	Unweathered	8673	8.56	820	82.03	NA	4637	5.93	5.44
-	Glassy	Unweathered	4287	4.18	397	25.42	NA	5298	ND	0.98
<u> </u>	vitrified	Unweathered	6508	4.87	1171	56.67	0.33	567	3.72	1.89
Ä	witrified	Weathered	12610	91.65	4830	396.39	NA	1474	54.97	3.07
-	Glassy	Unweathered	1234	5.24	125	59.73	0.11	1569	3.18	1.70
$\overline{}$	Glassy	Weathered	16107	27.36	3268	285.73	NA	5422	21.43	10.45
-	Glassy	Weathered	13595	25.26	1676	369.64	NA	6931	20.67	5.25
-	Glassy	Weathered	12666	27.68	2065	389.28	NA	6992	22.02	0.94
-	Glassy	Weathered	13698	37.73	3439	225.28	NA	3890	28.45	1.14
-	Glassy	Weathered	8236	7.53	719	68.92	NA	233	4.72	0.27
$\overline{}$	Glassy	Weathered	8168	59.36	257	39.97	0.53	8177	43.01	0.84
<u> </u>	witrified	Weathered	2558	60.73	88	30.37	ND	6276	47.83	1.63
ě	vitrified	Weathered	8068	44.39	351	51.06	ND	6604	32.60	1.50
ě	vitrified	Weathered	10123	54.41	712	216.48	0.46	1753	39.81	0.48
-	Glassy	Weathered	11053	26.48	1894	1781.68	NA	9346	22.07	0.87

Ъ																														
\mathcal{O}																														
Γ																														
.ia																														
>																														
g																														
S.																														
S.																														
al																														
ц																														
-0																														
p																														
at																														
<u>_</u>																														
13																														
5																														
0																														
<u>a</u>)																														
R																														
Ĕ																														
Ъ.																														
Ż.																														
~																														
\triangleleft																														
P.																														
Щ																														
a																														
5																														
Ч																														
õ																														
aī																														
ę.																														
Ľ																														
р																														
ŝ																														
Ä																														
đ																														
E																														
ŝ																														
Ч																														
пf																														
÷																														
.п																														
÷																														
8																														
š																														
<u>е</u>																														
d																														
\mathbf{s}	4																													
n	1																													
O	1																													
-																														
ü																														
lem																														
elem																														
le elem	(
ible elem																														
lable elem	n /																													
ailable elem																														
vailable elem																														
/ available elem																														
ly available elem																														
ally available elem																														
ntally available elem																														
entally available elem																														
mentally available elem	······································																													
nmentally available elem																														
ronmentally available elem	······································																													
vironmentally available elem																														
nvironmentally available elem	1																													
Environmentally available elem																														
4. Environmentally available elem	1																													
C4. Environmentally available elem	V11 1																													
e C4. Environmentally available elem																														
ïZ	1.66	0.83	6.13	1.15	1.40	1.26	0.72	2.17	11.23	3.23	1.28	1.57	1.10	2.83	6.79	0.68	1.61	0.70	1.91	0.74	1.38	14.26	90.6	3.99	2.35	54.18	46.62	2.08	24.70	6.76
-----------------	-------------	-------------	-----------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------------	-------------	-------------	-----------	-------------	-----------	-----------	-------------	----------	----------	----------	----------	----------	-------------	----------	-------------
Νd	ND	7.43	5.60	30.33	26.15	9.22	2.57	ND	ND	20.67	4.24	26.87	28.92	3.45	22.68	2.65	3.22	ND	8.79	ND	50.88	81.58	ND	5.67	ND	7.26	3.90	20.57	9.52	ŊŊ
Na	1159	1026	2298	1507	1013	2911	4956	4462	511	941	4333	1969	399	2456	<i>6LL</i>	929	1579	11172	1326	1243	5734	1319	4154	1499	5595	2241	2043	1218	5060	3116
Mo	NA	NA	NA	NA	0.17	ND	NA	0.19	0.76	0.41	NA	NA	0.44	0.08	1.04	0.09	ND	NA	NA	NA	NA	NA	ND	0.45	ND	ND	ND	NA	NA	NA
Mn	293.96	35.39	280.47	128.60	57.90	68.99	34.93	71.61	469.88	615.54	64.14	351.21	434.48	229.92	465.33	68.18	184.63	233.65	416.29	308.54	226.83	478.88	38.65	11.61	167.94	901.52	341.42	695.29	977.90	665.56
Mg	1429	1514	2438	367	473	3207	163	95	320	868	182	334	111	624	800	105	201	1703	1771	4734	3145	205	4471	2593	4097	5328	3423	1081	13548	1970
La	ND	QN	5.33	38.96	31.00	QN	2.91	2.50	20.39	22.11	4.75	28.55	31.01	3.74	23.57	2.73	3.72	QN	Ŋ	QN	59.65	91.81	ŊŊ	6.59	20.53	6.86	3.54	QN	7.15	ŊŊ
Fe	11927	9616	12569	6776	7795	4777	1296	2142	4677	6552	2110	5733	4196	4138	7733	1532	2605	7918	6168	5065	6812	22411	10577	9042	8030	16020	11246	14434	25190	15192
Weathering	Weathered	Weathered	Weathered	Weathered	Unweathered	Unweathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Sediment	Sediment	Weathered	Sediment	Weathered										
Devitrification	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Devitrified	Glassy	Glassy	Devitrified	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified
Sample	MK1	MK2	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RU1	SLNM	SLRC	SR1	SR2	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WU1

values	Zn	81.57	39.94	125.78	15.49	36.92	118.05	123.21	76.05	101.05	129.70	30.32	68.72	7.03	24.65	14.76	18.80	80.63	8.53	107.58	121.27	74.28	60.54	20.68	126.89	68.25	116.48	114.30	70.24	41.53
OES. All	٧	66.41	25.15	48.92	2.85	ND	ND	ND	9.18	7.02	3.64	59.46	34.38	21.73	ND	ND	4.03	ND	ND	ND	Ŋ	6.34	8.59	4.87	ND	Ŋ	ND	ND	7.11	ND
zed via ICP.	Ti	692.25	155.41	374.02	NA	90.14	167.79	94.81	135.57	222.66	82.82	290.17	95.43	87.82	NA	NA	21.25	NA	47.09	NA	NA	NA	NA	NA	289.73	335.98	490.09	623.31	NA	NA
, and analy.	Sr	72.95	16.00	74.14	2.97	3.08	9.47	6.78	5.30	24.37	2.59	44.72	44.02	17.56	13.99	8.15	4.49	36.86	1.56	117.44	76.60	95.21	560.11	9.46	15.05	1.36	2.91	9.58	205.89	35.91
od 3051a,	Sm	2.92	QN	5.70	6.37	QN	6.31	QN	7.57	8.38	6.49	QN	QN	QN	3.92	3.95	ND	9.65	QN	5.19	5.32	5.53	8.17	6.26	QN	QN	8.35	9.13	6.64	6.39
EPA Meth	Si	609.07	783.37	701.38	NA	149.78	108.30	384.95	365.74	417.21	198.49	514.28	562.26	438.94	NA	NA	319.43	NA	149.00	NA	NA	NA	NA	NA	390.19	480.39	513.40	203.53	NA	NA
repared via	S	81.89	7.26	27.87	81.41	5.53	17.21	81.69	8.44	23.71	6.65	2297.62	114.72	30.00	30.35	10.52	7.27	11.92	3.72	13.40	31.52	12.48	13.23	19.96	492.25	12.43	342.47	38.07	109.72	22.16
samples p	$^{\mathrm{Pb}}$	3.18	1.43	10.62	ND	0.75	4.85	6.84	3.19	6.28	9.19	3.96	3.99	1.12	2.69	1.39	1.77	10.13	ND	9.72	10.99	7.09	5.46	3.14	14.16	8.81	13.80	12.47	10.95	4.43
sent in tuff	Р	180.04	13.94	82.44	42.30	19.88	89.77	302.04	77.10	97.30	79.05	107.90	40.88	12.04	83.07	24.34	23.03	157.18	17.11	268.69	155.17	161.68	171.78	27.55	16.86	6.08	18.55	38.14	62.16	357.63
ilable elements pre	Weathering	Weathered	Sediment	Sediment	Unweathered	Unweathered	Unweathered	Unweathered	Unweathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Unweathered	Unweathered	Unweathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Weathered						
Invironmentally ava mg/kg (continued).	Devitrification	Glassy	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Sediment	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified
Table C5. E reported in	Sample	BC1	BC2	BC3	DC1	DC4	DC5	DC6	DC7	DC8	DC9	DS1	DS2	DS3	DT1	DT2	DT3	DVC2	DVC4	FD1	FD2	FD3	FD4	LB1	LG1	LG2	LG3	LG4	LST1	MA1

Zn	53.12	30.41	20.85	48.24	106.31	44.63	11.12	20.19	100.84	75.41	23.72	48.62	71.71	23.61	71.41	11.45	31.24	37.30	47.22	20.72	128.13	58.27	58.44	21.51	62.41	37.09	26.07	37.01	244.22	61.28
Λ	Ŋ	ND	23.82	3.06	6.50	5.65	3.33	Ŋ	7.08	7.57	Ŋ	3.66	6.09	5.38	Ŋ	ND	ND	25.46	Ŋ	4.49	6.62	24.30	71.13	29.86	6.18	60.42	44.56	31.82	84.62	31.34
Ti	NA	NA	NA	NA	231.60	191.35	NA	59.50	141.74	158.83	NA	NA	197.61	207.82	461.10	54.20	108.35	NA	NA	NA	NA	NA	185.32	184.00	21.58	1039.47	403.21	NA	NA	NA
Sr	17.08	22.46	61.88	6.30	7.26	9.47	5.23	1.20	4.16	12.76	3.82	4.26	1.43	5.39	5.99	6.79	3.77	114.58	51.46	33.96	79.84	3.91	35.48	19.09	35.57	95.33	54.42	15.94	138.89	21.82
Sm	3.97	3.91	6.27	8.54	6.44	QN	3.94	QN	5.58	6.04	3.90	7.73	8.37	ND	6.08	ND	ND	6.86	6.24	6.27	QN	25.94	2.69	QN	6.08	ND	QN	6.07	4.22	3.98
Si	NA	NA	NA	NA	178.17	198.93	NA	42.41	62.46	67.29	NA	NA	62.83	118.00	126.72	265.93	369.62	NA	NA	NA	NA	NA	400.07	291.79	241.39	544.27	371.71	NA	NA	NA
s	9.46	9.59	376.39	48.82	9.45	45.83	5.78	20.85	18.66	132.46	15.32	12.88	8.01	22.58	55.20	9.82	9.90	15.20	347.67	19.04	33.32	45.77	2831.05	1143.82	2051.26	38.64	44.32	14.25	7.50	40.90
Ъb	1.21	1.06	4.98	3.27	3.66	1.79	1.35	0.67	8.76	2.97	1.96	2.84	9.25	1.80	3.85	1.17	2.47	8.64	5.23	4.01	18.06	9.35	5.04	2.53	7.33	1.75	1.53	1.76	19.08	4.96
Ь	413.44	59.99	537.38	219.68	71.68	71.71	16.53	148.66	70.42	190.49	41.58	130.87	90.38	131.17	189.26	598.90	27.94	197.17	2437.44	396.99	112.62	336.62	85.62	49.83	117.26	1029.20	144.15	965.19	412.50	490.71
Weathering	Weathered	Weathered	Weathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Sediment	Sediment	Weathered	Sediment	Weathered												
Devitrification	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Devitrified	Glassy	Glassy	Devitrified	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified
Sample	MK1	MK2	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RU1	SLNM	SLRC	SR1	SR2	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WU1

Sample	Devit.	Weathering	Al	\mathbf{As}	Ba	Ca	Cd	Ce	Co	Cr	Cu	Fe	Ga	La	Mg	Mn
BC1	Glassy	Weathered	10.17	-0.41	5.81	9.09	-0.16	2.79	2.75	1.67	2.20	9.79	2.48	2.36	8.90	5.31
BC2	Sediment	Sediment	9.36	-1.59	3.68	7.80	-1.51	2.47	1.39	1.22	2.04	8.99	1.62	2.24	7.88	4.20
BC3	Sediment	Sediment	10.84	0.84	5.70	9.20	0.13	3.96	2.53	2.19	2.37	9.78	3.02	3.36	9.05	5.44
DC1	Glassy	Unweathered	8.02	-1.59	2.48	6.54	-2.64	1.39	-0.43	-0.53	0.32	7.86	0.18	0.18	6.45	2.43
DC4	Glassy	Unweathered	7.49	-1.59	3.18	6.04	-3.28	1.66	-0.67	0.31	0.58	7.94	0.18	1.30	5.51	4.29
DC5	Devitrified	Unweathered	8.79	0.40	4.15	7.11	-2.10	4.00	0.36	-0.01	0.80	8.93	1.31	3.34	6.42	3.17
DC6	Devitrified	Unweathered	8.20	1.71	3.55	6.73	-1.51	5.07	0.71	0.86	4.10	9.15	1.16	4.08	6.19	4.10
DC7	Devitrified	Unweathered	8.02	0.85	4.26	6.62	-1.49	4.41	0.51	0.46	2.46	9.04	0.88	3.49	5.93	5.80
DC8	Glassy	Weathered	9.92	0.82	3.96	8.38	-0.56	3.91	0.72	-0.67	1.01	8.84	2.01	3.68	8.88	6.15
DC9	Devitrified	Unweathered	7.76	0.26	3.33	5.76	-2.43	4.44	-0.24	0.29	4.02	7.41	0.18	3.27	4.67	2.61
DS1	Sediment	Sediment	9.97	2.27	4.10	9.16	-0.62	3.00	1.28	1.90	2.25	9.26	2.09	2.32	8.57	3.82
DS2	Sediment	Sediment	9.89	1.01	5.25	9.59	-1.11	2.96	1.13	1.65	3.86	9.04	2.04	2.35	8.34	2.94
DS3	Sediment	Sediment	8.61	-0.85	4.50	7.74	-1.84	2.30	-0.29	0.91	1.43	7.70	0.89	1.73	6.76	2.09
DT1	Glassy	Unweathered	9.70	-0.35	4.56	7.14	-1.79	2.73	1.33	2.72	1.88	9.07	1.84	2.15	6.71	4.41
DT2	Glassy	Unweathered	8.52	-1.59	3.46	6.90	-2.44	1.68	-0.11	2.00	0.94	8.36	0.18	1.43	5.98	3.24
DT3	Devitrified	Unweathered	8.63	-0.83	3.29	6.92	-2.31	2.16	0.30	2.81	1.10	8.78	1.24	1.58	7.07	4.04
DVC2	Devitrified	Weathered	10.06	1.51	4.75	8.33	-0.90	5.24	1.44	1.89	2.00	9.44	2.55	4.52	8.48	5.98
DVC4	Glassy	Unweathered	6.68	-1.59	2.27	5.43	-3.50	2.29	-1.61	0.02	1.36	7.12	0.18	1.66	4.83	4.09
FD1	Glassy	Weathered	10.41	1.11	5.78	9.81	-0.88	4.03	1.71	1.48	4.31	9.69	2.78	3.31	8.09	5.66
FD2	Glassy	Weathered	10.44	0.93	5.78	9.81	-0.71	4.01	1.39	1.57	4.62	9.52	2.68	3.23	7.42	5.91
FD3	Glassy	Weathered	10.49	1.63	5.72	9.84	-0.96	4.08	1.25	0.76	1.89	9.45	2.69	3.32	7.63	5.96
FD4	Glassy	Weathered	10.28	2.10	6.19	9.58	-1.31	4.05	1.37	1.04	2.24	9.53	2.33	3.63	8.14	5.42
LB1	Glassy	Weathered	9.31	0.91	4.42	7.41	-2.21	2.85	0.86	0.18	0.92	9.02	1.56	2.02	6.58	4.23
LG1	Glassy	Weathered	10.24	1.45	6.25	9.08	-1.13	4.72	0.47	-0.59	1.08	9.01	2.83	4.08	5.55	3.69
LG2	Devitrified	Weathered	8.93	2.21	3.24	8.58	-0.58	4.93	-0.08	-0.98	2.69	7.85	2.31	4.11	4.48	3.41
LG3	Devitrified	Weathered	8.83	0.88	3.71	8.68	-0.83	4.54	0.65	-0.54	2.23	9.00	2.25	3.79	5.86	3.93
LST1	Glassy	Weathered	10.24	1.30	5.70	10.76	-1.04	4.02	1.33	1.00	2.48	9.31	2.61	3.28	7.55	7.49
MA1	Devitrified	Weathered	9.21	-0.11	5.53	8.47	-1.38	3.54	1.47	1.20	2.64	8.97	1.63	2.63	7.60	6.28
MK1	Devitrified	Weathered	8.81	1.19	3.14	7.92	-1.06	3.38	1.82	0.97	2.90	9.39	1.33	2.50	7.26	5.68
MK2	Devitrified	Weathered	9.36	1.72	3.27	7.62	-1.55	2.98	0.99	1.23	2.15	9.17	1.42	2.31	7.32	3.57
]																

Table C6. Log transformed environmentally available elemental concentrations used in statistical analysis.

			5	~		~		2			~	—	_	2	2		~	~	2			~		~	_	~	
Mn	5.64	4.8(4.06	4.23	3.55	4.27	6.15	6.42	4.16	5.86	6.07	5.4	6.14	4.23	5.22	5.45	6.03	5.73	5.42	3.65	2.45	5.12	6.8(5.83	6.54	6.85	6.5(
Mg	7.80	5.91	6.16	8.07	5.09	4.55	5.77	6.80	5.20	5.81	4.71	6.44	69.9	4.65	5.31	7.44	7.48	8.46	8.05	8.41	7.86	8.32	8.58	8.14	6.99	9.51	7.59
La	1.67	3.66	3.43	2.43	1.07	0.92	3.01	3.10	1.56	3.35	3.43	1.32	3.16	1.00	1.31	2.94	2.43	2.93	4.09	2.67	1.89	3.02	1.92	1.26	2.72	1.97	2.70
Ga	1.68	1.14	1.19	1.26	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.90	0.18	1.02	1.53	1.00	1.17	2.82	2.41	1.85	2.02	2.26	1.85	1.56	2.87	1.68
Fe	9.44	8.82	8.96	8.47	7.17	7.67	8.45	8.79	7.65	8.65	8.34	8.33	8.95	7.33	7.87	8.98	8.73	8.53	8.83	9.27	9.11	8.99	9.68	9.33	9.58	10.13	9.63
Cu	2.56	1.27	1.37	1.22	0.93	0.55	4.45	1.45	1.42	1.33	0.87	1.43	2.65	0.12	2.57	2.25	2.22	2.28	3.78	3.01	2.60	0.94	3.64	3.13	3.21	6.29	2.61
\mathbf{Cr}	1.75	2.68	2.10	1.09	0.63	0.32	0.88	0.67	0.86	1.98	-0.77	0.91	1.64	-0.49	0.20	0.61	1.34	-0.29	1.49	2.88	2.43	-0.54	4.10	3.71	1.85	2.29	3.08
Co	1.98	0.39	0.83	0.31	-0.50	-0.96	0.13	0.58	-0.25	0.42	-0.17	0.54	1.20	-1.09	-0.66	1.14	1.11	1.15	0.37	1.72	1.17	1.16	3.22	2.83	1.67	3.44	2.13
Ce	1.95	4.47	4.30	3.18	1.79	1.68	3.97	4.17	2.08	4.26	4.49	1.62	4.01	1.68	2.34	3.67	3.08	3.65	4.75	3.33	2.52	3.89	2.28	1.59	3.78	2.57	3.65
Cd	-1.37	0.15	-1.85	-2.97	-2.58	-3.03	-1.87	-1.08	-2.24	-1.85	-2.45	-2.19	-1.25	-4.90	-2.65	-1.27	-1.06	-2.07	-0.44	-1.22	-2.05	-0.44	-0.73	-1.53	-0.93	-0.03	-0.84
Ca	8.67	9.03	6.80	7.81	5.71	5.07	6.17	6.84	6.12	6.84	5.19	6.65	6.67	5.53	5.34	9.20	8.15	8.28	9.54	8.49	7.88	7.44	9.58	9.09	7.99	9.96	7.89
Ba	4.74	3.43	4.28	3.28	3.77	2.75	4.29	5.66	4.04	3.83	2.89	3.93	4.33	2.50	3.56	5.14	5.75	5.72	5.80	3.50	3.51	3.38	5.91	5.01	3.27	4.64	4.56
\mathbf{As}	-0.14	1.32	0.35	-1.59	-1.59	-1.59	1.28	1.29	-1.59	0.57	0.69	-1.59	0.57	-1.59	-1.59	0.60	-1.59	0.04	1.63	1.96	0.40	0.30	0.03	-1.59	1.07	-1.59	0.22
Al	9.73	7.84	8.60	8.86	8.48	7.08	7.28	7.37	8.23	7.82	6.96	7.95	7.98	8.37	8.99	9.17	8.42	9.24	10.21	10.47	9.94	10.07	10.42	10.06	8.85	10.31	9.16
Weathering	Weathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Sediment	Sediment	Sediment	Sediment	Sediment	Weathered	Sediment	Weathered												
Devit.	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Devitrified	Glassy	Glassy	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified
Sample	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RU1	SLNM	SLRC	SR1	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WU1

	Zn	4.40	3.69	4.83	2.74	3.61	4.77	4.81	4.33	4.62	4.87	3.41	4.23	1.95	3.20	2.69	2.93	4.39	2.14	4.68	4.80	4.31	4.10	3.03	4.84	4.22	4.76	4.25	3.73	3.97	3.41	
	>	4.20	3.22	3.89	1.05	0.18	0.18	2.93	2.22	1.95	1.29	4.09	3.54	3.08	2.52	0.18	1.39	2.38	0.18	2.75	2.31	1.85	2.15	1.58	0.18	0.18	0.18	1.96	2.39	2.90	2.74	
	Τi	6.54	5.05	5.92	NA	4.50	5.12	4.55	4.91	5.41	4.42	5.67	4.56	4.48	NA	NA	3.06	NA	3.85	NA	NA	NA	NA	NA	5.67	5.82	6.19	NA	NA	NA	NA	
d).	\mathbf{Sr}	4.29	2.77	4.31	1.09	1.12	2.25	1.91	1.67	3.19	0.95	3.80	3.78	2.87	2.64	2.10	1.50	3.61	0.45	4.77	4.34	4.56	6.33	2.25	2.71	0.31	1.07	5.33	3.58	2.84	3.11	
continue	Sm	1.07	0.18	1.74	1.85	0.18	1.84	2.73	2.02	2.13	1.87	0.18	0.18	0.18	1.37	1.37	0.18	2.27	0.18	1.65	1.67	1.71	2.10	1.83	2.52	2.63	2.12	1.89	1.85	1.38	1.36	
ınalysis (Si	6.41	6.66	6.55	NA	5.01	4.68	5.95	5.90	6.03	5.29	6.24	6.33	6.08	NA	NA	5.77	NA	5.00	NA	NA	NA	NA	NA	5.97	6.17	6.24	NA	NA	NA	NA	
atistical a	\mathbf{S}	4.41	1.98	3.33	4.40	1.71	2.85	4.40	2.13	3.17	1.89	7.74	4.74	3.40	3.41	2.35	1.98	2.48	1.31	2.60	3.45	2.52	2.58	2.99	6.20	2.52	5.84	4.70	3.10	2.25	2.26	
used in st	Ъb	1.16	0.36	2.36	-1.28	-0.29	1.58	1.92	1.16	1.84	2.22	1.38	1.38	0.11	0.99	0.33	0.57	2.32	-1.28	2.27	2.40	1.96	1.70	1.14	2.65	2.18	2.62	2.39	1.49	0.19	0.06	
itrations 1	Р	5.19	2.63	4.41	3.74	2.99	4.50	5.71	4.35	4.58	4.37	4.68	3.71	2.49	4.42	3.19	3.14	5.06	2.84	5.59	5.04	5.09	5.15	3.32	2.82	1.81	2.92	4.13	5.88	6.02	4.09	
al concer	Ņ	1.44	0.73	1.66	-1.55	0.86	0.10	1.78	0.97	0.35	2.64	1.49	1.51	-0.20	1.69	-0.02	0.63	1.12	0.53	2.35	1.66	-0.07	0.13	-1.29	-0.18	0.49	0.40	-0.14	0.75	0.51	-0.18	
element	Na	7.40	5.36	6.22	7.36	8.24	8.17	6.67	6.84	7.13	6.64	7.62	6.86	5.32	8.44	8.58	6.34	7.30	7.36	8.60	8.84	8.85	8.27	5.45	9.01	8.74	8.80	9.14	8.37	7.06	6.93	
available	Mo	-0.88	-3.68	0.08	NA	-1.59	-2.47	-1.02	-0.65	-3.68	-3.68	-1.70	-2.40	-3.68	NA	NA	-1.09	NA	-2.18	NA	NA	NA	NA	NA	-0.64	-3.68	-3.68	NA	NA	NA	NA	
environmentally	Weathering	Weathered	Sediment	Sediment	Unweathered	Unweathered	Unweathered	Unweathered	Unweathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Unweathered	Unweathered	Unweathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Weathered	Weathered							
Log transformed	Devitrification	Glassy	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Sediment	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Devitrified	
Table C7.]	Sample	BC1	BC2	BC3	DC1	DC4	DC5	DC6	DC7	DC8	DC9	DS1	DS2	DS3	DT1	DT2	DT3	DVC2	DVC4	FD1	FD2	FD3	FD4	LB1	LG1	LG2	LG3	LST1	MA1	MK1	MK2	

Zn	3.04	3.88	4.67	3.80	2.41	3.01	4.61	4.32	3.17	3.88	4.27	3.16	4.27	2.44	3.44	3.62	3.85	3.03	4.85	4.07	3.07	4.13	3.61	3.26	3.61	5.50	4.12
>	3.17	1.12	1.87	1.73	1.20	0.18	1.96	2.02	0.18	1.30	1.81	1.68	2.53	0.18	0.18	3.24	2.95	1.50	1.89	4.26	3.40	1.82	4.10	3.80	3.46	4.44	3.44
Ti	NA	NA	5.44	5.25	NA	4.09	4.95	5.07	NA	NA	5.29	5.34	6.13	3.99	4.69	NA	NA	NA	NA	5.22	5.21	3.07	6.95	6.00	NA	NA	NA
\mathbf{Sr}	4.13	1.84	1.98	2.25	1.65	0.18	1.43	2.55	1.34	1.45	0.36	1.69	1.79	1.92	1.33	4.74	3.94	3.53	4.38	3.57	2.95	3.57	4.56	4.00	2.77	4.93	3.08
\mathbf{Sm}	1.84	2.14	1.86	0.18	1.37	0.18	1.72	1.80	1.36	2.04	2.12	0.18	1.81	0.18	0.18	1.93	1.83	1.84	2.81	0.99	0.18	1.81	0.18	0.18	1.80	1.44	1.38
Si	NA	NA	5.18	5.29	NA	3.75	4.13	4.21	NA	NA	4.14	4.77	4.84	5.58	5.91	NA	NA	NA	NA	5.99	5.68	5.49	6.30	5.92	NA	NA	NA
\mathbf{v}	5.93	3.89	2.25	3.82	1.75	3.04	2.93	4.89	2.73	2.56	2.08	3.12	4.01	2.28	2.29	2.72	5.85	2.95	3.51	7.95	7.04	7.63	3.65	3.79	2.66	2.02	3.71
$^{\mathrm{Pb}}$	1.61	1.18	1.30	0.58	0.30	-0.40	2.17	1.09	0.67	1.04	2.23	0.59	1.35	0.16	0.91	2.16	1.65	1.39	2.89	1.62	0.93	1.99	0.56	0.42	0.57	2.95	1.60
Ч	6.29	5.39	4.27	4.27	2.81	5.00	4.25	5.25	3.73	4.87	4.50	4.88	5.24	6.40	3.33	5.28	7.80	5.98	4.72	4.45	3.91	4.76	6.94	4.97	6.87	6.02	6.20
Ņ	1.81	0.14	0.34	0.23	-0.33	0.77	2.42	1.17	0.24	0.45	0.09	1.04	1.92	-0.38	0.48	-0.35	0.65	-0.30	0.32	2.20	1.38	0.85	3.99	3.84	0.73	3.21	1.91
Na	7.74	7.32	6.92	7.98	8.51	8.40	6.24	6.85	8.37	7.59	5.99	7.81	6.66	6.83	7.36	9.32	7.19	7.13	8.65	8.33	7.31	8.63	7.71	7.62	7.11	8.53	8.04
Mo	NA	NA	-1.78	-3.68	NA	-1.68	-0.28	-0.89	NA	NA	-0.83	-2.47	0.04	-2.46	-3.68	NA	NA	NA	NA	-3.68	-0.80	-3.68	-3.68	-3.68	NA	NA	NA
Weathering	Weathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Sediment	Sediment	Sediment	Sediment	Sediment	Weathered	Sediment	Weathered												
Devitrification	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Devitrified	Glassy	Glassy	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified
Sample	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RU1	SLNM	SLRC	SR1	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WUI

	Mn	ND	Ŋ	QN	QN	Ŋ	QN	7342.58	9216.71	QN	Ŋ	QN	Ŋ	QN	QN	QN	Ŋ	QN	QN	Ŋ	QN	ŊŊ	QN	QN	Ŋ	QN	ŊŊ	ŊŊ	ŊŊ	ŊŊ
	Mg	161327	136664	206829	62044	10316	41774	262019	30970	33462	14337	73196	546669	66177	2608	1380	81564	2902	12314	7490	8016	4130	4543	11589	1955	1775	6213	6679	346430	67332
n.	Fe	30140	245270	324780	44962	68586	265150	456480	463810	24914	133100	QN	347520	32351	11230	9598	254460	58716	29669	53811	65556	74323	68105	53274	5840	186674	109565	84242	1795	526460
	Cu	71.38	131.29	210.81	96.36	QN	91.26	QN	1358.71	8.24	8251.80	274.91	4346.50	877.11	41.88	QN	43.35	36.15	QN	185.64	QN	Ŋ	27.80	59.89	18.84	58.49	590.43	195.53	17.78	532.05
•	Co	11.69	79.13	162.13	QN	6.74	38.44	140.22	53.81	QN	77.10	QN	136.22	9.27	QN	QN	29.30	QN	QN	8.93	QN	Ŋ	QN	QN	QN	5.30	12.14	Ŋ	ND	122.70
	Са	142200	293440	476183	113109	24673	96014	468364	61357	51900	74654	135370	1139997	423093	4427	2921	117750	4198	19195	20728	35702	38021	33508	33513	22865	27974	32339	41363	142287	140141
-	Ba	3078	4310	5977	449	1008	4365	3843	4520	346	2523	1884	41347	6524	334	102	2377	132	365	715	290	421	276	729	350	1680	778	264	139	1164
-	\mathbf{As}	ND	Ŋ	123.62	QN	Ŋ	QN	99.12	364.22	QN	61.36	1627.53	3436.80	191.64	QN	QN	Ŋ	QN	QN	Ŋ	QN	ŊŊ	QN	143.91	Ŋ	355.62	218.84	39.38	ŊŊ	481.65
	Al	16722	244218	398179	45642	74536	285379	234035	259351	46385	191398	QN	QN	QN	QN	QN	QN	8243	QN	QN	QN	99648	QN	QN	QN	QN	ND	ND	ND	QN
-	Weathering	Weathered	Sediment	Sediment	Unweathered	Unweathered	Unweathered	Unweathered	Unweathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Unweathered	Unweathered	Unweathered	Unweathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered						
reported in ug/kg	Devitrification	Glassy	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Sediment	Sediment	Sediment	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Glassy	Devitrified	Devitrified	Devitrified	Glassy
All values	Sample	BC1	BC2	BC3	DC1	DC4	DC5	DC6	DC7	DC8	DC9	DS1	DS2	DS3	DT1	DT2	DT3	DVC1	DVC2	DVC4	FD1	FD2	FD3	FD4	LB1	LG1	LG2	LG3	LG4	LST1

Table C8. Readily leachable elements present in tuff samples prepared via water leaching experiments, and analyzed via ICP-OES.

Mn	ND	QN	QN	ND	QN	ND	ND	QN	932.13	QN	QN	QN	ND	QN	984.05	QN	Ŋ	ND	QN	QN	8660.73	ND	QN	ND	ND							
Mg	9606	30056	7411	111144	4509	39410	446300	QN	773	QN	Ŋ	ŊŊ	ŊŊ	QN	Ŋ	QN	QN	Ŋ	67864	64322	QN	9674	ŊŊ	ŊŊ	QN	QN	ŊŊ	705047	6043	ŊŊ	ŊŊ	
Fe	36999	23097	35387	69718	32797	610540	75442	3134	7497	100921	100989	6770	4136	16615	21978	32381	8915	4675	313460	5442	8682	22882	11616	1601	79093	109512	374370	238485	31962	107155	26426	
Cu	90.60	42.96	42.44	219.54	35.91	477.65	984.54	6.35	ŊŊ	2969.10	1863.68	23.67	45.65	41.29	34.56	386.65	59.52	85.53	ŊŊ	ŊŊ	40.18	ŊŊ	19.18	1903.09	9262.20	296.64	582.58	849.70	49.17	655.65	142.67	
Co	5.90	QN	QN	37.26	QN	123.10	48.16	QN	QN	15.10	272.87	ŊŊ	ŊŊ	QN	QN	QN	QN	QN	82.68	QN	QN	QN	ŊŊ	227.74	1346.82	62.50	371.19	307.60	QN	39.75	ND	
Са	57933	50963	17701	137698	95570	120005	1117111	971	2282	26704	692426	1399	1554	1532	7619	18702	15997	1720	134570	137823	50847	22336	614	1102057	1146764	163630	580886	1095931	19587	39730	4265	
Ba	624	135	232	1347	218	11326	1465	139	126	2987	40115	219	156	263	467	580	243	286	409	1618	1058	296	76	1306	2369	1460	7396	5008	285	41	302	
\mathbf{As}	42.29	34.65	132.45	ND	56.12	ND	ND	ND	ND	373.22	111.48	ND	ND	47.28	ND	50.39	ND	ND	211.58	ND	ND	ND	77.07	2766.90	3030.30	2173.70	ND	ND	ND	ND	ND	
Al	ΟN	QN	QN	QN	QN	QN	QN	QN	7513	QN	QN	QN	8352	QN	QN	QN	QN	QN	QN	QN	QN	QN	9261	QN	QN	QN	QN	QN	QN	QN	ŊŊ	
Weathering	Weathered	Unweathered	Unweathered	Weathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Sediment	Sediment	Unweathered	Sediment	Unweathered													
Devitrification	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Devitrified	Glassy	Glassy	Devitrified	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified	
Sample	MA1	MK1	MK2	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RUI	SLNM	SLRC	SR1	SR2	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WU1	

All values	s reported in ug/kg	g (continued).		·	-)	1			
Sample	Devitrification	Weathering	Mo	Р	S	Si	\mathbf{Sr}	Ti	٧	Zn
BC1	Glassy	Weathered	21.52	3037	59729	1402178	3411.8	1543.0	729.97	64.4
BC2	Sediment	Sediment	QN	2189	15545	9124540	2145.7	8802.6	3813.99	918.2
BC3	Sediment	Sediment	QN	9534	72749	13056210	3396.2	13450.5	9655.55	1054.5
DC1	Glassy	Unweathered	33.69	2348	86580	448821	409.1	1094.7	Ŋ	445.1
DC4	Glassy	Unweathered	QN	9162	14902	1810935	184.5	1221.3	ND	697.4
DC5	Devitrified	Unweathered	QN	155134	49970	5132010	709.0	3528.8	ND	2965.5
DC6	Devitrified	Unweathered	129.88	123411	727436	4081800	2613.2	2294.8	ND	8938.9
DC7	Devitrified	Unweathered	403.92	38333	28962	7738600	409.6	4282.8	Ŋ	4035.3
DC8	Glassy	Weathered	16.11	2567	19930	1100316	307.7	754.4	ND	253.1
DC9	Devitrified	Unweathered	QN	83033	27725	1792738	433.2	5721.5	ND	11536.4
DS1	Sediment	Sediment	QN	1047	2264930	1031016	10124.5	ND	8504.10	248.2
DS2	Sediment	Sediment	Ŋ	18608	558514	13182200	18427.3	8488.8	Ŋ	4256.9
DS3	Sediment	Sediment	Ŋ	19955	154705	10482280	2525.5	ND	Ŋ	82.3
DT1	Glassy	Unweathered	35.46	2636	16066	323681	43.5	ND	Ŋ	55.9
DT2	Glassy	Unweathered	Ŋ	804	2008	173231	19.1	ND	Ŋ	113.9
DT3	Devitrified	Unweathered	QN	2036	35724	3674000	526.8	ND	QN	738.3
DVC1	Devitrified	Unweathered	32.86	5589	67704	258759	34.8	ND	QN	346.3
DVC2	Devitrified	Weathered	ŊŊ	1242	3480	847964	165.3	ND	83.00	238.0
DVC4	Glassy	Unweathered	QN	8208	21218	1532573	137.6	ND	QN	417.7
FD1	Glassy	Weathered	ŊŊ	3752	2478	525495	97.6	ND	87.20	219.4
FD2	Glassy	Weathered	28.50	6008	6559	654734	82.5	ND	ND	397.7
FD3	Glassy	Weathered	ŊŊ	3805	3156	544549	74.8	950.8	ND	365.3
FD4	Glassy	Weathered	QN	4815	2539	561298	868.4	767.0	QN	223.7
LB1	Glassy	Weathered	ŊŊ	Ŋ	15536	116999	141.2	91.0	ND	22.2
LG1	Glassy	Weathered	25.99	1925	544479	1136816	35.0	ND	ND	2677.1
LG2	Devitrified	Weathered	ŊŊ	3074	3281	1296727	19.0	ND	9.09	4299.2
LG3	Devitrified	Weathered	13.40	2562	366899	611712	32.4	ND	ND	876.2
LG4	Devitrified	Weathered	22.33	Ŋ	36710	155305	4874.0	ND	ND	ND
LST1	Glassy	Weathered	220.86	7837	83579	2738310	783.0	ND	ND	ND

Table C9. Readily leachable elements present in tuff samples prepared via water leaching experiments, and analyzed via ICP-OES.

Zn	91.8	ND	ND	ND	ND	7173.8	ND	ND	ND	ND	ND	78.9	ND	ND	98.8	ND	ND	ND	ND	ND	ND	ND	ND	75.5	ND	984.3	ND	ND	ND	ND	94.8
V	650.79	QN	QN	Ŋ	Ŋ	877.60	Ŋ	Ŋ	Ŋ	QN	Ŋ	68.61	Ŋ	QN	90.00	QN	QN	QN	QN	60.09	QN	QN	62.14	6019.06	Ŋ	9183.44	Ŋ	Ŋ	Ŋ	925.60	ŊŊ
Ti	ΠŊ	ND	ND	ND	ND	7612.3	ND	603.3	ND	ND	ND	ND	ND	70.0	80.9	ND	ND	ND	ND	ND	ND	ND									
\mathbf{Sr}	359.3	394.5	212.9	2096.8	112.3	941.8	4515.6	17.7	14.4	239.9	8496.6	13.4	11.9	15.2	59.7	118.6	229.9	34.8	230.2	1572.8	424.4	60.0	QN	QN	QN	QN	QN	QN	QN	QN	QN
Si	682070	324412	397828	621098	776802	4755290	6338740	119467	123058	2705560	2941260	138314	150852	187233	342697	410759	169047	239173	1892137	185742	489439	434278	122108	5202830	5834720	8790260	7209030	8410310	410928	387117	253232
S	8326	1508	3163	298682	6895	33922	363410	1390	15467	65761	691899	4037	4875	1538	3662	8665	3524	6199	6701	168647	2217	8727	3508	14599210	7461630	1488500	75741	203739	2123	1245	9837
Р	3030	2233	5474	1213	3158	12788	25802	1518	46125	27800	30187	4926	7599	14140	17719	19430	107566	11597	33611	241710	1339	2155	2696	ŊŊ	ŊŊ	ŊŊ	5740	3845	10804	4272	9342
Mo	ND	ND	ND	ND	13.66	ND	ND	ND	15.32	716.36	241.49	4.48	61.75	57.79	6.99	75.64	42.23	6.59	2.11	20.86	8.22	66.87	8.59	2360.10	4004.17	1972.64	ND	ND	ND	ND	52.70
Weathering	Weathered	Unweathered	Unweathered	Weathered	Weathered	Unweathered	Weathered	Weathered	Weathered	Weathered	Unweathered	Sediment	Sediment	Sediment	Sediment	Sediment	Unweathered	Sediment	Unweathered												
Devitrification	Devitrified	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Glassy	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Devitrified	Glassy	Devitrified	Glassy	Glassy	Glassy	Devitrified	Glassy	Glassy	Devitrified	Sediment	Sediment	Sediment	Sediment	Sediment	Devitrified	Sediment	Devitrified
Sample	MA1	MK1	MK2	MTA1	PG1	PG2	PG3	RST1	RST10	RST11	RST13	RST2	RST4	RST5	RST6	RST7	RST8	RST9	RU1	SLNM	SLRC	SR1	SR2	TS1	TS3	TS4	TSD1	TSD2	TW1	TW2	WU1