
Portland State University Portland State University 

PDXScholar PDXScholar 

University Honors Theses University Honors College 

2-28-2020 

Dictionary Learning for Image Reconstruction via Dictionary Learning for Image Reconstruction via 

Numerical Non-convex Optimization Methods Numerical Non-convex Optimization Methods 

Lewis M. Hicks 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses 

 Part of the Mathematics Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Hicks, Lewis M., "Dictionary Learning for Image Reconstruction via Numerical Non-convex Optimization 
Methods" (2020). University Honors Theses. Paper 837. 
https://doi.org/10.15760/honors.856 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F837&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/837
https://doi.org/10.15760/honors.856
mailto:pdxscholar@pdx.edu


Dictionary Learning for Image Reconstruction via Numerical

Non-convex Optimization Methods

Lewis Hicks1

An Undergraduate Honors Thesis submitted in partial fulfillment of

the requirements for the degree of Bachelor of Science in University

Honors and Mathematics with Honors

Thesis advisor: Mau Nam Nguyen2

Portland State University

2020

Abstract: This thesis explores image dictionary learning via non-convex (difference of convex,

DC) programming and its applications to image reconstruction. First, the image reconstruction

problem is detailed and solutions are presented. Each such solution requires an image dictionary to

be specified directly or to be learned via non-convex programming. The solutions explored are the

DCA (DC algorithm) and the boosted DCA. These various forms of dictionary learning are then

compared on the basis of both image reconstruction accuracy and number of iterations required to

converge.

1Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA. lmh6@pdx.edu
2Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA. mnn3@pdx.edu

1



Contents

1 Introduction 3

2 Problem formulation and accomplished goals 4

3 Image reconstruction 5

3.1 Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Sampling and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Reconstructions of small images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 The gradient descent method and Nesterov’s acceleration . . . . . . . . . . . 7

3.3.2 Nesterov’s smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.3 Smoothed gradient descent for image reconstruction . . . . . . . . . . . . . . 9

3.3.4 The FISTA for image reconstruction . . . . . . . . . . . . . . . . . . . . . . . 9

4 Dictionary learning 10

4.1 The general DCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 DCA dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1 The sparse coding phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.2 The dictionary update phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.3 The dictionary learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 The boosted DCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Results and discussion 18

2



1 Introduction

Convex optimization has been strongly developed since the 1960s, providing minimization

techniques to solve many real-world problems. However, a challenge in modern optimiza-

tion is to go from convexity to nonconvexity as nonconvex optimization problems appear

frequently in many applications. This is the motivation for the search for new optimization

methods to deal with broader classes of functions and sets where convexity is not assumed.

One of the most successful approaches to go beyond convexity is to consider the class of

DC (difference of convex) functions. Given a linear space X and two convex functions

g, h : X → R, a DC optimization program minimizes f = g − h. It was recognized early by

P. Hartman [7] that the class of DC functions exhibits many convenient algebraic properties.

This class of functions is closed under many operations usually considered in optimization.

In particular, it is closed with respect to taking linear combinations, maxima, and finite

products of DC functions. Another nice feature of DC programming is that it possesses

a very nice duality theory; see [16] and the references therein. Generalized differential

properties of DC functions were investigated by Hirriart Urruty (see [8]).

Although the role of DC functions has been known earlier in optimization theory, the first

algorithmic approach was developed by Pham Dinh Tao in 1985. The algorithm introduced

by Pham Dinh Tao for minimizing f = g − h, called the DCA, is based on subgradients of

the function h and subgradients of the Fenchel conjugate of the function g. This algorithm

is summarized as follows: for each xk ∈ Rn, define yk ∈ ∂h(xk) and xk+1 ∈ ∂g∗(yk). Under

suitable conditions on the DC decomposition of the function f , the two sequences {xk} and

{yk} in the DCA satisfy the monotonicity conditions in the sense that {g(xk)− h(xk)} and

{h∗(yk) − g∗(yk)} are both decreasing. In addition, the sequences {xk} and {yk} converge

to critical points of the primal function g − h and the dual function h∗ − g∗, respectively;

see [2, 16, 17] and the references therein. The DCA is an effective algorithm for solving

many nonconvex optimization problems without requiring the differentiability of the data.

However, to deal with optimization problems of large scale, it is necessary to develop new

optimization techniques to accelerate the convergence rate of this algorithm.

In this project, we focus on non-convex methods for developing an image dictionary. The

image dictionary is used for the purposes of image reconstruction: a black and white digital

image (bit depth 8) M̃ of size N1 × N2, expressed in a vectorized form M ∈ RN1N2 is

corrupted with a sampling operator A and Gaussian noise ξ. Using only the blurred image

b = A(M) + ξ, we can restore the image using a version of the FISTA; see, e.g., [14, 22] and

the references therein.

A vector is referred to as sparse when many of its entries are zeros. An image y ∈ RN1N2

(in vectorized form) is said to have a sparse representation under if there is some N1N2×K
matrix D, known as a dictionary, and a vector h ∈ RK such that y = Dh. In this case, the

dictionary D maps a sparse vector to a full image. The columns of D are called atoms, and

given a suitable dictionary in this model, theoretically any image can be built from a linear

combination of the columns (atoms) of the dictionary. Using a clever choice of dictionary

allows us to work with sparse vectors, thereby reducing the amount of computer memory

3



Sampled image (SR=50%) Recovered Image

needed to store an image. Further, sparse representations tend to capture the true image

without extraneous noise.

The dictionary can be either directly specified using the DCT (disrete cosine transform) or

using the DCA. In this paper, we present ways to accelerate the DCA used for dictionary

learning, then compare the results of each type of enhancement used. A better dictionary

should yield improved image restorations and converge in fewer iterations.

2 Problem formulation and accomplished goals

Although the focus of this work is on image dictionary learning, it is important to understand

the specific application of image dictionaries: image restoration.

Consider a dictionary D ∈ Rn1n2×K and an observed image b ∈ Rn1n2 which has been

corrupted by a linear operator A and distorted by some noise ξ. A vectorized image

y ∈ Rn1n2 is a “good” image if it has a sparse representation h ∈ RK under the dictionary

D, i.e.,

y = Dh, where h is sparse.

We require that A(y) = A(Dh) be as close to the corrupted image b as possible by min-

imizing ‖A(Dh) − b‖2, while making sure that h is sparse. We thus add an additional

regularization term to ‖A(Dh) − b‖2 to induce sparsity. The classical approach involves

using the `1 norm regularization:

minimize
1

2
‖A(Dh)− b‖2 + λ‖h‖1,

where λ > 0 is a parameter. To solve this problem, we can use the FISTA (fast iterative

shrinkage thresholding algorithm) to reconstruct images; see [4]. The goal of this work is

to find the dictionary which most accurately and quickly reconstructs images. One option

is to directly specify the dictionary using the DCT, given by

Dij =


√

1
n1n2

, j = 1√
2

n1n2
cos( π

n1n2
(j − 1)(i+ 1

2)), j = 2, ..., n1n2.

4



However, more accurate dictionaries can be learned from a set of training images. Consider

a set of T training images, each of size n1×n2. We represent each training image xt ∈ Rn1n2

(1 ≤ t ≤ T ) as a column of a matrix X ∈ Rn1n2×T . The sparse representation of X under

D is denoted by H ∈ RK×T (ideally, DH = X). In order to ensure that each column of the

dictionary has equal weight, we impose the requirement that each column of D is at most

of norm 1. We therefore need to find a dictionary which meets three criteria:

• The dictionary lends itself to accurately representing patches in the training set:

||DH −X||2F is small.

• The representation H must be sparse: ||H||0 is small.

• Each column of D is of at most norm 1: ||dj ||2 ≤ 1 for 1 ≤ j ≤ K.

Since the `0 norm in the second criterion is not continuous, we approximate it with a

regularization: ||H||0 ≈ ||H||11 − ||H||21. In order to meet each criteria simultaneously, we

define the function fλ by

fλ(D,H) =
λ

2
||DH −X||2F + ||H||11 − ||H||21 .

The parameter λ > 0 represents the tradeoff between sparsity in H and accuracy in D. We

therefore seek to solve the optimization problem

minimize fλ(D,H),

subject to ||dj ||2 ≤ 1 for 1 ≤ j ≤ K.

Unlike the problem of image reconstruction, the dictionary learning requires optimization

with respect to two parameters. In order to solve such problems, two steps are repeated:

finding the sparse matrix H and updating the dictionary D. Both processes are accom-

plished via the DCA and its accelerated versions.

3 Image reconstruction

In this section we provide the details of image reconstructions via convex and nonconvex

optimization methods. The readers are referred to [14, 22] and the references therein for

further information.

3.1 Patching

Through dividing the image into smaller pieces before beginning image reconstruction,

improved results and execution speed are achieved. Patching is the process of dividing an

N1 × N2 image into smaller rectangular subdivisions of size n1 × n2. The patches will be

indexed by row (1 ≤ i ≤ t1) and column (1 ≤ j ≤ t2), where t1 and t2 are the number of

patches per row and number of patches per column of the original image, respectively.

5



First, the original image M̃ ∈ RN1×N2 is vectorized by adjoining the columns of M̃ end-to-

end. In particular, if m1,m2, ...,mN2 ∈ RN1 are the columns M̃ , then M̃ = [m1m2...mN2 ]

and its vectorized form is M = [m>1 m
>
2 ...m

>
N2

]>. The same vectorization process can be

applied to any matrix A. The vectorized form of A is denoted by v(A).

For the patch in the ith row and the jth column, a patch extraction matrix Rij ∈ Rn1n2×N1N2

is defined through the indices of its upper-left corner (s, t), its number of rows n1 and its

number of columns n2. In order to build Rij , an indexing matrix J ∈ Rn1×n2 is first defined

by

Jrq = N1((t− 1) + (q − 1)) + s+ (r − 1)

for 1 ≤ q ≤ n2 and 1 ≤ r ≤ n1. Next, the matrix J is vectorized by v and used to define

each row rk ∈ RN1N2 (1 ≤ k ≤ n1n2) of Rij :

rk = e>v(J)k
,

where {ek : k ∈ {1, ...N1N2}} is the set of standard basis vectors of RN1N2 . Thus, the patch

extraction matrix can be framed as an identity matrix with missing rows. Note that the

patch extraction matrices do not depend on the contents of the original image, only its size.

Therefore, a set of patching matrices can be generated once, saved to a file, and reused.

The vectorized patch of the original image at index (i, j) is given by Pij = RijM ∈ Rn1n2 .

3.2 Sampling and noise

In order to distort the original vectorized image M , a fraction of pixels are removed and

Gaussian noise is added. Given a sample rate S ∈ [0, 1], a set Ω ⊆ {1, 2, ..., N1N2} represents

which pixels of the image are sampled. For 1 ≤ k ≤ N1N2, a real number ωk ∈ [0, 1] is

chosen at random. If ωk ≤ S, then k ∈ Ω.

Next, each row of a sampling operator A ∈ R|Ω|×N1N2 is defined by

Ak: = e>k

for all k ∈ Ω, where {ek : k ∈ {1, ...N1N2}} is the set of standard basis vectors of RN1N2 .

Given a vectorized image M ∈ RN1N2 , AM ∈ R|Ω| therefore represents the original image

with N1N2 − |Ω| pixels deleted. Next, random noise ξ ∈ R|Ω| is generated and added to

create the blurred vectorized image b = AM + ξ.

3.3 Reconstructions of small images

In this section, we show how to apply techniques for general image restoration to a small

blurred image b. The restored patch of size n1 × n2 (usually 8× 8) can be considered as a

part of a larger image.

Since the sample operator for the entire image is large, computing products with it is inef-

ficient. Furthermore, it does not need to be explicitly calculated. For each patch extraction

6



operator Rij , we define A = A(R>ijD). The value of A does not need to be found explicitly,

so in practice functions x 7→ Ax and x 7→ A>x are computed for each patch.

The goal of our optimization for each patch is to find a vector h ∈ RK such that y = Dh

is close to the blurry patch b under the sample operator A and h is very sparse. Here, h is

called the sparse representation of y under D. In essence, finding the value of h amounts to

simultaneously minimizing two terms: an error term 1
2‖Ah−b‖

2 and a sparsity penalty term

‖h‖0. However, the `0 norm cannot be used because it returns a discrete value (the integer

number of non-zero entries in h). Therefore, we use the `1 regularization: ||h||0 ≈ ||h||1.

Combining the two terms yields the overall function

f(h) =
1

2
‖Ah− b‖2 + λ ||h||1 , (3.1)

where λ > 0 is a weight parameter which determines how sensitive the optimization is to

the sparsity of h. By finding h for each patch of the image and recombining all patches, the

restored image is generated.

3.3.1 The gradient descent method and Nesterov’s acceleration

A straightforward way to optimize a function is via a gradient descent method. Given a

differentiable and convex function f : Rn → R, we know that ∇f is a vector which points

in the direction of fastest increase. After starting at some initial guess h0, we can move in

the direction of fastest decrease, ie. the direction of −∇f . In addition, we specify a step

size t for each iteration. The general gradient descent algorithm is as follows:

Gradient descent algorithm

INPUT: h0 ∈ Rn, N ∈ N, t0, t2, ..., tN > 0.

for k ∈ {0, . . . , N}
Set hk+1 := hk − tk∇f(hk).

end

In the case where f is a C1 function whose gradient is Lipschitz continuous with constant

` > 0, an accelerated gradient method can be used to improve its convergence rate. One of

the most well-known such methods is Nesterov’s accelerated gradient method (see [24]):

Accelerated gradient descent

INPUT: h0 ∈ Rn, N ∈ N, α ∈ (0, 1
` ]

Set y1 := h0

for k ∈ {1, . . . , N}
Set xk := yk − α∇f(yk)

Set tk+1 :=
1+
√

1+4t2k
2

Set yk+1 := xk + tk−1
tk+1

(xk − xk−1)

end

7



3.3.2 Nesterov’s smoothing

One way to solve the image reconstruction problem is to use a gradient descent approach.

However, the objective function f , given by

f(h) =
1

2
||Ah− b||2 + λ ||h||1

is convex, but is not differentiable everywhere. In particular, the ||·||1 term is non-smooth.

In order to solve this issue, Nesterov’s smoothing technique is applied to generate a smooth

approximation of ||·||1; see [15]. This technique will be applied later to dictionary learning

and appears often in optimization involving non-smooth functions.

Consider x ∈ Rn. Then ||x||1 =
∑n

i=1 |xi|. By definition, |xi| = max{−xi, xi}. For each xi,

it holds that |xi| = maxui∈[−1,1]{xiui}.

If we define the unit box to be Q := B∞ (0; 1) (the unit ball under the `∞ norm), it follows

that

||x||1 =

n∑
i=1

|xi| =
n∑
i=1

max
ui∈[−1,1]

{xiui} = max
u∈Q

n∑
i=1

xiui = max
u∈Q
{〈x, u〉}.

Nesterov’s smoothing technique states that given a function q of the form

q(x) = max
u∈Q
{〈Ax, u〉 − φ(x)},

q can be approximated by the smooth function qµ, defined by

qµ(x) := max
u∈Q

{
〈Ax, u〉 − φ(x)− µ

2
||x||22

}
,

where µ > 0 is a parameter which controls the smoothness of the approximation. In our

case, we can use the approximation with A = In and φ = 0. Thus, if we define p = ||·||1,

then

p(x) ≈ pµ(x) = max
u∈Q

{
〈x, u〉 − µ

2
||x||22

}
= −µ

2
min
u∈Q

{
−2

〈
x

µ
, u

〉
+ ||u||22

}
= −µ

2
min
u∈Q

{
−
∣∣∣∣∣∣∣∣xµ
∣∣∣∣∣∣∣∣2

2

+

∣∣∣∣∣∣∣∣xµ
∣∣∣∣∣∣∣∣2

2

+−2

〈
x

µ
, u

〉
+ ||u||22

}

= −µ
2

min
uinQ

{∣∣∣∣∣∣∣∣xµ
∣∣∣∣∣∣∣∣2

2

+

∣∣∣∣∣∣∣∣u− x

µ

∣∣∣∣∣∣∣∣2
2

}

=
1

2µ
||x||22 −

µ

2
min
u∈Q

{∣∣∣∣∣∣∣∣u− x

µ

∣∣∣∣∣∣∣∣
2

}2

=
1

2µ
||x||22 −

µ

2
d

(
x

µ
;Q

)2

=
1

2µ
||x||22 −

µ

2

∣∣∣∣∣∣∣∣xµ −ΠQ

(
x

µ

)∣∣∣∣∣∣∣∣2 .
8



The last equalities follow since Q is a convex set. Note that the projection map is given by

[ΠQ (x)]i = max(−1,min(1, xi)). The smoothed approximation has a gradient of

∇pµ(x) = ΠQ

(
x

µ

)
.

3.3.3 Smoothed gradient descent for image reconstruction

We can approximate f by fµ, where

fµ(h) =
1

2
||Ah− b||22 + λ

(
1

2µ
||h||22 −

µ

2

∣∣∣∣∣∣∣∣hµ −ΠQ

(
h

µ

)∣∣∣∣∣∣∣∣2
)
.

This function has a gradient of

∇fµ(h) = A>(Ah− b) + λΠQ

(
h

µ

)
.

Thus, we can write a gradient descent algorithm based on Nesterov’s smoothing to solve

the image reconstruction problem:

Gradient descent algorithm for image reconstruction

INPUT: h0 ∈ Rn, N ∈ N, t0, t2, ..., tN > 0, µ > 0.

for k ∈ {0, ..., N}
Set hk+1 := hk − tk

(
A>(Ah− b) + λΠQ

(
h
µ

))
.

end

Although this algorithm serves as a possible method to reconstruct images, a faster algo-

rithm such as Nesterov’s accelerated gradient method can be used to solve similar convex

problems.

3.3.4 The FISTA for image reconstruction

The FISTA is a common technique used to solve convex optimization problems. In the case

of (3.1), it relies on splitting the objective function into two convex parts: f = φ+ψ, where

φ(h) := 1
2 ||Ah− b||

2
2 and ψ(h) = λ ||h||1.

Note that φ is continuously differentiable and its gradient is Lipschitz continuous with

L > 0. Define the shrinkage operator ρL componentwise as

[ρL(y)]i :=

{
sign ([zL(y)]i)

(
|[zL(y)i]| − λ

L

)
, |[zL(y)]i| > λ

L

0, |[zL(y)]i| ≤ λ
L

.

The algorithm is then as follows:

9



FISTA with backtracing for image reconstruction

INPUT: L0 > 0, η > 1, h0 ∈ Rn, N ∈ N
Set y1 := h0.

for k ∈ {1, ..., N}
Set L := Lk−1.

do

Set L := ηL.

while f(ρL(yk)) > QL(ρL(yk), hk)

Set Lk := L.

Set hk := ρLk
(yk).

Set tk+1 :=
1+
√

1+4t2k
2 .

Set yk+1 := hk + tk−1
tk+1

(hk − hk−1).

end

return hN .

This algorithm is useful because its convergence does not rely on setting many parameters,

just an initial guess and η > 1. The first instructions within the for loop are the backtracing

steps; this technique will be used in the boosted DCA. The FISTA was used to test the

image reconstruction abilities of learned and DCT dictionaries; see [22] and the references

therein.

4 Dictionary learning

In this section, methods of dictionary learning via the DCA and the boosted DCA will be

detailed. Given a set of training data X, Each method is fundamentally the same in two

ways:

• Optimization is done in two phases: first with respect to the sparse representation H

and next with respect to the dictionary D. This ensures that the objective function

will converge with respect to both variables, ie. the function is minimized at the final

values of D and H.

• Both of these phases are completed using variations of the DCA.

The goal will therefore be to find two DC programs for each method: one for sparsity

and one for updating the actual dictionary. In summary, the dictionary learning process

proceeds as follows:

General dictionary learning
INPUT: X,H0, D0, N ∈ N
for k ∈ {0, . . . , N}

Find Hk+1 (depending on X,Hk and Dk) through DC programming.

Find Dk+1 (depending on X,Hk+1 and Dk) through DC programming.

end

10



4.1 The general DCA

Consider a function of the form f = g − h, where g and h are convex.

The DCA consists of two steps repeated until a convergence criterion has been met: finding

yk+1 ∈ ∂h(xk), then finding xk+1 ∈ ∂g∗(yk+1). Here, g∗ represents the Fenchel conjugate of

g. In optimizing via the DCA, we usually use the following property of Frechet conjugates:

x ∈ ∂g∗(y) ⇐⇒ y ∈ ∂g(x).

The general DCA is given below:

General DCA
INPUT: x0, N ∈ N
for k = 1, . . . , N

Find yk+1 ∈ ∂h(xk).

Find xk+1 ∈ ∂g∗(yk+1).

end

4.2 DCA dictionary learning

4.2.1 The sparse coding phase

In order to find a DC representation of fλ designed to solve the sparse coding portion of

dictionary learning, we use Nesterov’s smoothing technique.

Recall from the image reconstruction section that if p(x) := ||x||1, its Nesterov approxima-

tion is given by

pµ(x) =
1

2µ
||x||22 −

µ

2
d

(
x

µ
,Q

)2

,

for some parameter µ > 0 and Q is the unit box under the `∞ norm. Define

Q̃ := Q×Q× . . .×Q = QT ⊂ RK×T . This is the set of all K×T matrices such ||ht||∞ ≤ 1,

for 1 ≤ t ≤ T . It follows that

T∑
t=1

d

(
ht
µ

;Q

)2

=

T∑
t=1

∣∣∣∣∣∣∣∣htµ −ΠQ

(
ht
µ

)∣∣∣∣∣∣∣∣2
2

=

∣∣∣∣∣∣∣∣Hµ −Π
Q̃

(
H

µ

)∣∣∣∣∣∣∣∣2
F

= d

(
H

µ
; Q̃

)2

,

where the distance in the last equality is measured with the Froebenius norm.

We therefore can approximate ||H||11 by

||H||11 =
T∑
t=1

||ht||1 ≈
T∑
t=1

pµ(ht) =
T∑
t=1

1

2µ
||ht||22−

µ

2
d

(
ht
µ
,Q

)2

=
1

2µ
||H||2F−

µ

2
d

(
H

µ
; Q̃

)2

.

11



Therefore, we can approximate the function fλ by

fλ(D,H) ≈ fλµ (D,H) =
λ

2
||DH −X||2F − ||H||21 +

1

2µ
||H||2F −

µ

2
d

(
H

µ
; Q̃

)2

=
λ

2
||DH −X||2F − ||H||21 +

1

2µ
||H||2F −

µ

2
d

(
H

µ
; Q̃

)2

+
(γ1

2
||H||2F −

γ1

2
||H||2F

)
=

(
1

2µ
+
γ1

2

)
||H||2F −

(
µ

2
d

(
H

µ
; Q̃

)2

− λ

2
||DH −X||2F +

γ1

2
||H||2F + ||H||21

)
.

Each term is defined as

gµ(H) :=

(
1

2µ
+
γ1

2

)
||H||2F and hλµ(D,H) :=

µ

2
d

(
H

µ
; Q̃

)2

−λ
2
||DH −X||2F+

γ1

2
||H||2F+||H||21 .

Under these definitions, fλµ = gµ − hλµ. The parameter γ1 > 0 is chosen such that γ1/λ is

greater than the absolute value of the largest eigenvalue of D>D. If γ1 is sufficiently large,

hλµ will be convex. Since gµ is also convex, fλµ is a smooth, DC approximation of fλ.

In order to perform optimization via the DCA, we need to find subdifferentials of hµ and

gλµ, which are functions of matrices. For a function F : Rm×n → R,W 7→ F (W ), we define

its subgradient ∂F columnwise by

[∂F (W )]j := ∂wjF (W ),

where ∂wj denotes taking the vector subgradient with respect to the jth column of W . If

the function is differentiable at W , we write ∂F (W ) = {∇F (W )}.

In finding the gradient of the function hµ, each term is differentiable everywhere except for

the last (the ||H||21 term). It is non-differentiable whenever ||ht||2 = 0 for some

t ∈ {1, ..., T}.

Consider the function a = ||·||2. Then if x 6= 0, ∇a(x) = x/ ||x||2, so ∂a(x) = {x/ ||x||2}. If

x = 0, then ∂a(0) = B2 (0; 1). Define the function ω by

ω(x) =

0, x = 0
x
||x||2

x 6= 0.

Thus, ω(x) ∈ ∂a(x) for all x.

The matrix subgradient of F = ||·||21 is given columnwise by

[∂F ]t = ∂ht ||H||21 = ∂ht

T∑
j=1

a(hj) =
T∑
j=1

∂hta(hj) = ∂hta(ht) 3 ω(ht).

Define Ω : RK×T → R columnwise by [Ω(H)]t := ω(ht). Then Ω(H) ∈ ∂F (H) for all H.

Differentiating the other terms of hλµ yields

∇hλµ(H) =
H

µ
−Π

Q̃

(
H

µ

)
− λD>(DH −X) + γ1H + Ω(H).

12



This is not technically the true gradient of hλµ: ∇hλµ always returns one element of ∂hλµ. To

complete the first step of the DCA, it suffices to set

Y :=
H

µ
−Π

Q̃

(
H

µ

)
− λD>(DH −X) + γ1H + Ω(H).

For matrix subgradients, the properties of the Fenchel conjugates still apply. Thus,

H ∈ ∂g∗µ(Y ) ⇐⇒ Y ∈ ∂gµ(H). Since gµ is differentiable,

Y ∈ ∂gµ(H) =⇒ Y = ∇gµ(H).

The gradient of gµ is readily calculated to be

∇gµ(H) =

(
1

µ
+ γ1

)
H =

(
1 + γ1µ

µ

)
H.

Therefore, to satisfy the second step of the DCA, we set H such that Y =
(

1+γ1µ
µ

)
H, or

H =

(
µ

1 + γ1µ

)
Y.

The DCA for sparse coding can be summarized as follows:

DCA for sparse coding
INPUT: λ > 0, γ1 > 0, X,D,H0, N ∈ N
for k = 1, . . . , N

Set Yk+1 := Hk/µ−ΠQ̃ (Hk/µ)− λD>(DHk −X) + γ1Hk + Ω(Hk).

Set Hk+1 :=
(

µ
1+γ1µ

)
Yk+1.

end

return HN+1

4.2.2 The dictionary update phase

Again applying the same techniques, we can develop a DCA method for updating the

dictionary after finding an adequate sparse representation. We apply similar techniques of

differentiating functions with respect to matrices, except instead we take derivatives with

respect to D.

First, define the constraint set for each dictionary atom by C := B2 (0; 1). In order for D

to be within the defined constraint set, its atoms must satisfy dj ∈ C for 1 ≤ j ≤ K. In

order to develop a constraint for the entire dictionary D, simply define

C̃ := C ×C × . . .×C = CK ⊂ Rn1n2×K . This is the set of all n1n2×K matrices such that

each column has a norm less than or equal to 1.

13



The original problem can be restated as

minimize fλ(D,H),

subject to D ∈ C̃. Consider the indicator function for C̃, I
C̃

. For any matrix D, I
C̃

(D) = 0

if D ∈ C̃ and I
C̃

(D) = ∞ otherwise. Therefore, if D does not satisfy the constraint,

f(D,H) + I
C̃

(D) could never be at a minimum value. In fact, f(D,H) + I
C̃

(D) could only

be minimized if D ∈ C̃. Therefore, we can recast the original problem as

minimize fλ(D,H) + I
C̃

(D).

Explicitly writing each term,

fλ(D,H) + I
C̃

=
λ

2
||DH −X||2F + ||H||11 − ||H||21 + I

C̃
(D).

During the dictionary update step, H is assumed to be fixed. Therefore, the ||H||11 and

||H||21 terms are not important in updating the dictionary. Excluding these terms, the

sparsity tradeoff term λ is also unimportant. Define f̃(D) := 1
2 ||DH −X||

2
F + I

C̃
(D).

Then the dictionary update step is designed to solve the problem

minimize f̃(D).

Note that for any choice of γ2,

f̃(D) =
1

2
||DH −X||2F + I

C̃
(D) +

(γ2

2
||D||2F −

γ2

2
||D||2F

)
=
(
I
C̃

(D) +
γ2

2
||D||2F

)
−
(
γ2

2
||D||2F −

1

2
||DH −X||2F

)
= g̃(D)− h̃(D),

where g̃(D) := I
C̃

(D) + γ2
2 ||D||

2
F and h̃(D) := γ2

2 ||D||
2
F −

1
2 ||DH −X||

2
F . The parameter

γ2 is chosen to be larger than the absolute value of the greatest eigenvalue of H>H, which

will ensure that h̃ is convex. Thus, f̃ is a DC function.

In order to accomplish the first step of our DCA, we note that h̃ is differentiable and find

that

∇h̃(D) = γ2D − (DH −X)H>.

Therefore, the first step is accomplished by simply setting

Y = ∇h̃(D) = γ2D − (DH −X)H>.

The second step of the DCA is accomplished via two smaller processes executed in order:

by first finding D from Y assuming no constraints apply and next projecting onto the

constraint set C̃. We note that since ||·||2F is differentiable,

Y = ∇
(γ2

2
||D||2F

)
= γ2D =⇒ D =

Y

γ2
.

14



Projecting this answer onto the constraint set, we satisfy the second step of the DCA by

setting

D = Π
C̃

(
Y

γ2

)
.

In summary, these two steps can be combined in the algorithm below, which is the DCA

for the dictionary update step:

DCA for dictionary update
INPUT: γ2 > 0, X,D0, H,N ∈ N
for k ∈ {0, ..., N}

Set Yk+1 := γ2Dk − (DkH −X)H>.

Set Dk+1 := ΠC̃ (Yk+1/γ2).

end

return DN+1.

4.2.3 The dictionary learning algorithm

Combining the sparse coding and dictionary update phases, the resulting dictionary learning

algorithm is listed below:

DCA for dictionary learning
INPUT: µ, γ1, γ2 > 0, X,D0, H0, N,N1, N2 ∈ N
for i ∈ {0, ..., N}

for k ∈ {0, ..., N1}
Set Yk+1 := Hk/µ−ΠQ̃ (Hk/µ)− λD>i (DiHk −X) + γ1Hk + Ω(Hk).

Set Hk+1 :=
(

µ
1+γ1µ

)
Yk+1.

end

Set Hi+1 := HN1+1.

for k ∈ {N1 + 1, ..., N1 +N2 + 1}
Set Yk+1 := γ2Dk − (DkHi+1 −X)H>i+1.

Set Dk+1 := ΠC̃(Yk+1/γ2).

end

Set Di+1 := DN2+1.

end

return DN+1

In applying this technique, it usually makes sense to start with µ large and gradually

decrease its value. This ensures stability early in the process and gradually moves the

dictionary learning towards a more accurate answer. To accomplish this, an initial value µi
and a final value µf are input.

In addition, we can replace γ1 and γ2 by γ := max{γ1, γ2}, since we only require that γ1

and γ2 be sufficiently large. Applying these tweaks, the resulting algorithm is listed below.

15



DCA for dictionary learning
INPUT: 0 < µN < µ0, γ > 0, X,D0, H0, N,N1, N2 ∈ N
Set σ := (µN/µ0)N .

for i ∈ {0, ..., N}
for k ∈ {0, ..., N1}

Set Yk+1 := Hk/µi −ΠQ̃ (Hk/µi)− λD>i (DiHk −X) + γHk + Ω(Hk).

Set Hk+1 :=
(

µi

1+γµi

)
Yk+1.

end

Set Hi+1 := HN1+1.

for k ∈ {N1 + 1, ..., N1 +N2 + 1}
Set Yk+1 := γDk − (DkHi+1 −X)H>i+1.

Set Dk+1 := ΠC̃(Yk+1/γ).

end

Set Di+1 := DN2+1.

Set µi+1 := µiσ.

end

return DN+1

4.3 The boosted DCA

Although the algorithm above accurately produces image dictionaries, improvements could

be made by applying the boosting technique for the DCA. This involves introducing a line

search to the overall process, which backtraces to improve the convergence rate. Below is

the general boosted DCA (see [25]).

Boosted DCA

INPUT: x0, N ∈ N,
α > 0, t̄ > 0, 0 < β < 1.

for k = 1, . . . , N

Find zk+1 ∈ ∂h(xk).

Find yk+1 ∈ ∂g∗(zk+1).

Set dk+1 := yk+1 − xk.
if dk+1 = 0: break.

Set t := t̄.

while f(yk+1 + tdk+1) > f(yk+1)− αt ||dk+1||22
Set t := βt.

end

Set xk+1 := yk+1 + tdk+1.

end for

return xN+1.

The first two steps of the boosted DCA follow the conventional DCA. A backtracing section

is applied afterwards in order to guide the solution towards a minimum again. In our case,

we use the Nesterov smoothed approximations for the first two steps and the exact value of

f for the backtracing steps.

16



For the sparse coding phase, the boosted DCA is as follows:

Boosted DCA for sparse coding

INPUT: γ1, µ > 0, D,H0, X,

α > 0, t̄ > 0, 0 < β < 1.

for kk = 1, . . . , N

Set Zk+1 := Hk/µ−Π
Q̃

(Hk/µ)− λD>(DHk −X) + γ1Hk + Ω(Hk).

Set Yk+1 :=
(

µ
1+γ1µ

)
Zk+1.

Set dk+1 := Yk+1 −Hk.

if dk+1 = 0K×T : break

Set t := t̄.

while fλ(D,Yk+1 + tdk+1) > fλ(D,Yk+1)− α ||dk+1||2F
Set t := βt.

end

Set Hk+1 := Yk+1 + tdk+1.

end for

return HN+1

In the case of updating the dictionary, no Nesterov smoothing was used. Therefore, the

function f̃ can be used with no penalty to the accuracy of the algorithm. Below is the

boosted DCA for the dictionary update.

Boosted DCA for dictionary update

INPUT: γ2, D0, H,X,

α > 0, t̄ > 0, 0 < β < 1.

for kk = 1, . . . , N

Set Zk+1 := γ2Dk − (Dk+1H −X)H>.

Set Yk+1 := Π
C̃

(Z/γ2).

Set dk+1 := Yk+1 −Dk.

if dk+1 = 0n1n2×K : break

Set t := t̄.

while f̃(Yk+1 + tdk+1) > f̃(Yk+1)− αt ||dk+1||2F
Set t := βt.

end

Set Dk+1 := Yk+1 + tdk+1.

end for

return DN+1

In making a boosted dictionary learning algorithm, one can choose to use the boosted sparse

coding phase, the boosted dictionary update phase, or both at once. These combinations

were tested and compared with the standard version of the DCA.

17



5 Results and discussion

For each method tested, λ = 1.5, γ = 5000λ = 7500, µi = 1, µf = 10−6. The number of

atoms was K = 256. A maximum of 5000 iterations were used overall for each method (if

the dictionary converged within 10−4, the program exited early). The convergence graphs

for each technique are shown below, with the y-axis in logarithmic scale.

18



The dictionaries were each tested via the FISTA for image reconstruction, with λ = 0.01,

η = 1.001. The N1 × N2 = 512 × 512 black and white Lena image was used for the test,

with a sample rate of 50%. Let M̃ be the original image and let M̃ ′ be the restored image,

in matrix form. Define the relative error RE and the peak-signal-to-noise ratio PSNR by

RE =

∣∣∣∣∣∣M̃ ′ − M̃ ∣∣∣∣∣∣
F∣∣∣∣∣∣M̃ ∣∣∣∣∣∣

F

; PSNR = 20 log10

√
N1N2∣∣∣∣∣∣M̃ ′ − M̃ ∣∣∣∣∣∣

F

.

For the corrupted image, the RE was 70.7% and the PSNR was 8.47.

A reconstructed image is “good” if it has a low RE and a high PSNR. The table below

summarizes the results for these dictionaries.

Dictionary learning results

Dictionary No. iterations to converge RE(%) PSNR

DCT Not applicable 6.18 29.6

DCA 17 6.18 29.6

DCA, sparse boost 18 6.16 29.7

DCA, dict. boost 17 6.18 29.6

DCA, both boost 21 6.11 29.7

Notice that the DCA method performed better overall than the DCT method. The DCT

does have one primary advantage though: it does not have to be learned from data.

19



References

[1] M. Aharon, M. Elad, A. Bruckstein. K-SVD: An algorithm for designing overcomplete dictio-

naries for sparse representation. IEEE Trans. Signal Process. 54 (2006), 4311–4322.

[2] L.T.H. An, P.D. Tao. DC programming and DCA: thirty years of developments. Mathematical

Programming. Special Issue: DC Programming - Theory, Algorithms and Applications. 169(1)

(2018), 5–64.

[3] A. Beck, M. Teboulle. Smoothing and first order methods: a unified framework. SIAM J. Optim.

22 (2012), 557–580.

[4] A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse prob-

lems. SIAM J. Imaging Sci. 2 (2009), 183–202.

[5] F.H. Clarke. Nonsmooth Analysis and Optimization. John Wiley & Sons, Inc., New York, 1983.

[6] J.R. Giles. A Survey of Clarke’s Subdifferential and the Differentiability of Locally Lipschitz

Functions. In: Progress in Optimization. Applied Optimization 30. Springer, Boston, MA.

[7] P. Hartman. On functions representable as a difference of convex functions. Pacific J. Math. 9

(1959), 707–713.

[8] J.B. Hiriart-Urruty. Generalized differentiability, duality and optimization for problems dealing

with differences of convex functions. Lecture Note in Economics and Math. Systems. 256 (1985),

37–70.

[9] J. Mairal, F. Bach, J. Ponce, G. Sapiro. Online dictionary learning for sparse coding. Proc. 26th

Int’l Conf. Machine Learning. Montreal, Canada, 2009.

[10] D. Martin, C. Fowlkes, D. Tal, J. Malik. A database of human segmented natural images and

its application to evaluating segmentation algorithms and measuring ecological statistics. Proc.

8th Int’l Conf. Computer Vision. 2 (2001), 416–423.

[11] B.S. Mordukhovich. Variational Analysis and Generalized Differentiation, I: Basic Theory, II:

Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), 330 and

331, Springer, Berlin, 2006.

[12] B.S. Mordukhovich, M.N. Nam. An Easy Path to Convex Analysis and Applications. Morgan

& Claypool, 2014.

[13] B.S. Mordukhovich, N.M. Nam, and N.D. Yen, Fréchet subdifferential calculus and optimality

conditions in nondifferentiable programming. Optimization. 55 (2006), 685–708.

[14] N.M. Nam, L.T.H. An, N.T. An, D. Giles, Smoothing techniques and difference of convex

functions algorithms for image reconstructions, Optimization (2019), accepted.

[15] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., Ser. A. 103

(2005), 127–152.

[16] T. Pham Dinh, H.A. Le Thi. Convex analysis approach to D.C. programming: Theory, algo-

rithms and applications. Acta Math. Vietnam. 22 (1997), 289–355.

[17] T. Pham Dinh, H.A. Le Thi. A d.c. optimization algorithm for solving the trust-region sub-

problem. SIAM J. Optim. 8 (1998), 476–505.

[18] L. Vandenberghe. Optimization methods for large-scale systems, EE236C lecture notes, UCLA.

[19] J. Xin, S. Osher, Y. Lou. Computational aspects of L1-L2 minimization for compressive sensing.

Advances in Intelligent Systems and Computing. 359 (2015), 169–180.

20



[20] P. Yin, Y. Lou, Q. He, J. Xin. Minimization of L1-L2 for compressed sensing. SIAM J. of Sci.

Comput. 37 (2015), A536–A563.

[21] Y. Xu, W. Yin. A block coordinate descent method for regularized multiconvex optimization

with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6

(2013), 1758–1789.

[22] Y. Xu, W. Yin. A fast patch dictionary method for whole image recovery. Inverse Problems

and Imaging. 10 (2016), 563–583.

[23] C. Zǎlinescu. Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.

[24] Y. Nesterov. A method for solving the convex programming problem with convergence rate

O(1/k2). Dokl. akad. nauk Sssr 269 (1983), 534–547

[25] A. Artacho, F. Javier. The boosted difference of convex functions algorithm for nonsmooth

functions. SIAM Journal on Optimization. 30(1) (2020), 980–1006.

21


	Dictionary Learning for Image Reconstruction via Numerical Non-convex Optimization Methods
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1587406976.pdf.qRnim

