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Abstract 

The RNA world hypothesis suggests that RNA systems were the first form of life on the planet, 

beginning to appear approximately 4 billion years ago. Group I introns are self-splicing RNA 

elements in extant organisms and use Mg2+ as the principle divalent cation to promote catalysis. 

The group I intron ribozyme from Azoarcus is frequently used in origin of life studies, partially 

due to its autocatalytic abilities - the Azoarcus ribozyme is able to be broken into fragments and 

reassemble itself into its fully functional ribozyme. Previous work [1] identified metal binding 

sites on the Azoarcus ribozyme which use both potassium and magnesium ions, and suggest that 

other divalent ions, such as manganese (II), may be capable of substituting for Mg2+ in specific 

binding sites. The geological profile of the early earth suggests that manganese (II) was 

especially prevalent in nodules present on the ocean floor [2]. Compatibility with manganese (II) 

could have potentially offered a fitness advantage to early organisms occupying oceanic 

environments. We performed a series of experiments to demonstrate the catalytic ability of the 

Azoarcus ribozyme in various concentrations of MnCl2, using two different reaction 

mechanisms. We show that the catalytic activity of the Azoarcus ribozyme to be significantly 

improved when Mg2+ was replaced with manganese (II), but only when reacted with exogenous 

oligonucleotide substrate.  
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Introduction 

Modern life is a capable and versatile natural force that has evolved over the last 4.3 billion years 

to survive in nearly every environment on Earth [1]. Organisms have tirelessly responded to 

extreme environmental pressures over countless millennia, and have developed with diversity 

ranging from independent, simple chemical systems to multicellular, socially cooperative 

organisms. The range of life seen today can theoretically be traced to a single point in history at 

which the first living system emerged from nonliving materials [3].  This theoretical spontaneous 

generation of biological molecules was first scientifically analyzed in 1924 when Alexander 

Oparin released his book titled The Origin of Life. Experiments throughout the 20th century, 

most notably the Miller and Urey experiments conducted in 1952, as well as the discovery of 

DNA the following year by Wilkins, Franklin, Watson, and Crick, have offered glimpses into the 

nature of the fundamental building blocks of life; however, an exact definition of life has 

remained elusive [4]. 

 

It is accepted that an event of abiogenesis would at the very least require molecules capable of 

organizing into a system capable of transmission, modification, and reproduction of genetic 

information [5]. In order to prevail for any lasting time frame, the organism would also need to 

be capable of making both genotypic and phenotypic adaptations in response to the pressures of 

natural selection over the course of multiple generations [6]. 

 

This turning point from inanimate substance to a biological organism has been an intriguing 

concept. The Miller Urey experiment famously showcased the plausible assembly of amino acids 
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from a variety of smaller constituents. Amino acids are required for modern and ancient 

organisms, but it is unlikely that pioneering, simple living systems could make use of such 

materials due to the complex machinery required for their formation [7]. This began the hunt for 

a holy grail of biological materials - a molecule complex enough to be capable of maintaining, 

modifying, and transmitting genetic information between generations, but simple enough to 

spontaneously generate in an early earth setting and lay the groundwork for further complexity. 

 

Various theories and ideas had been proposed until 1989 [8], when Sidney Altman and Thomas 

and Thomas R. Cech made an astounding discovery that bolstered the plausibility of the RNA 

world hypothesis - the catalytic properties of RNA. Both DNA and RNA are capable of 

independent reproduction and catalytic ability; however, ribose can form under prebiotic 

conditions, while deoxyribose can not. [9].  Further investigation revealed possible spontaneous 

generation of short oligonucleotide RNAs and demonstrated the possibility of extensive 

continuous polymerization [10]. Continuous elongation of RNA fragments may have provided 

sufficient lengths capable of assembling with a tertiary structure that further aided in catalytic 

and reproductive fitness [11]. 

 

The Azoarcus ribozyme is a relatively well studied, ancient RNA [12]. The Azoarcus ribozyme is 

a Group I intron approximately 200 nucleotides in length and primarily operates through two 

reaction mechanisms. The first is defined as the “pick-up-the-tail reaction” (PUTT reaction) in 

which the full length ribozyme cleaves an exogenous substrate [13]. In vivo, this reaction serves 

as a functional self splicing mechanism in the Azoarcus bacterial genome.  
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This reaction begins with the binding of the exogenous substrate to the internal guide sequence 

(IGS). The IGS is a highly conserved sequence responsible for holding the exogenous substrate 

in a favorable position relative to the intron. The IGS positions the 5’ splice site of the ribozyme 

into the active site, and aligns itself with the 3’ splice site. The exogenous substrate binds to the 

IGS, and the 3’ hydroxyl of the ribozyme enters the binding pocket near the 5’ splice site. The 3’ 

hydroxyl of the terminal guanosine acts as a nucleophile to attack the 5’ phosphate of the splice 

site specified on the substrate. During the transition state of the reaction, the geometry of the 

phosphorus is pentacovalent. The guanosine is ligated to the ribozyme at its 3’ hydroxyl along 

with the tail end of the substrate, and the remaining 5’ substrate remains bound to the IGS in the 

active site. Geometric rearrangement of the intron facilitates the release of the substrate. This 

concludes the PUTT reaction. The original 200 nucleotide trans complex is elongated, and the 
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exogenous substrate is cleaved into two fragments as shown in Figure 1.

 

Figure 1: An illustration of pick up the tail and recombination reaction mechanisms of the Azoarcus ribozyme. 
Source: Craig A. Riley, Niles Lehman, Generalized RNA-Directed Recombination of RNA, Chemistry & Biology, Volume 10, Issue 12, 2003, 
Pages 1233-1243, ISSN 1074-5521, http://dx.doi.org/10.1016/j.chembiol.2003.11.015. 
(http://www.sciencedirect.com/science/article/pii/S1074552103002680) 
 

The ribozyme is also capable of recombination (REC). [13]. This process begins with the 

pick-up-the-tail reaction, however, if the 3’ end of the first substrate diffuses out of the catalytic 

pocket, or can be competitively displaced by a second substrate, then the ribozyme is able to 

promote the nucleophilic attack of guanosine on the second substrate, thereby catalyzing 

recombination of a new product. 
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The Azoarcus ribozyme possesses the unique quality of being able to be broken into five 

fragments that are capable of reassembly into the fully functional, catalytically active complex 

for further reproduction [14] via the REC mechanism. Self assembly is complex and occurs 

through a variety of competitive and cooperative networks according to environmental pressures 

on the reproductive system [15].  

 

Research has been performed with Azoarcus in the context of self assembly and investigation of 

its catalytic capabilities, but has primarily been investigated in the presence of the cofactor Mg2+ 

[16]. Examination of the geological timescale of the early Earth reveals that other metals such as 

Mn2+ and Fe2+ could have been more or equally abundant as Mg2+ [17], especially since the Great 

Oxidation event did not occur until hundreds of millions of years after the hypothesized origin of 

life [17,18]. Previous attempts to perform catalytic and self assembly reactions with Azoarcus in 

the absence of Mg2+ have failed or shown negligent yields [18]. Here we show that Mn2+ can 

enhance catalytic capabilities of the Azoarcus ribozyme in a trans configuration, PUTT reaction, 

and we speculate on how the tertiary structure of Azoarcus affects cofactor compatibility 

according to previous research [19]. 
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Materials & Methods 
 

RNA Preparation: Both WXYZ (200-nt) and WXY (148-nt) RNA samples were initially 

prepared via VATR (Vent Assisted Template Reconstruction). Thermococcus litoralis (Vent) is a 

DNA polymerase that facilitates the assembly of these fragments. These templates were 

amplified via the polymerase chain reaction. The assembled double stranded DNA was purified 

via an ethanol precipitation and rehydrated in UltraPure Ambion H2O. Standard in vitro 

transcription was performed using T7 RNA polymerase in transcription buffer and equal 

concentrations of all four ribonucleotide triphosphate molecules (ATP, GTP, UTP, CTP) plus 

rehydrated PCR products. This mixture was incubated at 48º C for approximately 6-8 hours. The 

transcribed RNA was then separated via phenol/chloroform organic extraction. An ethanol 

precipitation was performed and the product was purified by means of polyacrylamide gel 

electrophoresis. The RNA product was resuspended in Ethylenediaminetetraacetic acid (EDTA) 

at a concentration of 0.1 mM and diluted before being analyzed on a NanoDrop 

photospectrometer. 

 

Buffer Preparation: Reaction buffer stocks were prepared by addition of 150 μL of 1M EPPS pH 

7.5 to 500 μL respective metal buffer (100 mM MgCl2, 10 mM MgCl2, or 10 mM MnCl2) and 

350 μL of UltraPure Ambion H2O. Quench was added to the reaction to interrupt reaction 

activity at a volume of 7 μL (2 parts 0.5M EDTA and 3 parts 2X polyacrylamide gel loading dye 

with 8M urea). 
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Experimental Preparation: Three sets of five 600 μL tubes were labeled in series. The first series 

acted as a control (50 mM Mg2+ trans-splicing buffer) compared against two separate 

experimental series (5 mM Mg2+ buffer and 5 mM Mn2+ buffer). Each of the four tubes in each 

series were labeled at timepoints as following: Reaction tube, 0’, 30’, 60’, 120’. For the 

pick-up-the-tail reaction, WXYZ RNA and SNL-1a substrate (table 1) were diluted to a ratio of 1 

μM : 2.5 μM within the reaction tubes. For the WXY+Z Self Assembly, WXY RNA and Z RNA 

were diluted to a ratio of 1 μM : 1 μM within the reaction tubes. At 0’, 30’, 60’, and 120’, ¼ of 

the reaction tube volume was removed and combined with an equal volume of Quench in the 

respective time point tubes to terminate the reactions at the appropriate time point. Reaction 

tubes were incubated at 80º C for 1 minute. 

 

Equal volumes of trans-splicing buffer were added to reaction tubes and time points were taken 

immediately thereafter. Reaction tubes were incubated at 48º for the duration of the reaction. 

 

Quenched samples were loaded on an 8% polyacrylamide analytic gel (8M urea) and run at 

800V for 2 hours. The gel was exposed to SyBr Green Visualization dye and examined using 

fluorescence imaging on a Typhoon Trio+. Reaction bands were analyzed using ImageQuant and 

calculated using the following formula: 

% reacted = [reacted/(reacted + unreacted)] * 100 

Typhoon quantification techniques identify the opacity of procedurally generated cells centered 

around reactant and product bands. This introduces the possibility for varying amounts of error 

in quantitative results, as gel imaging opacity can vary depending on the quality of the staining 
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procedure and presence of residual, unpolymerized polyacrylamide in wells prior to the running 

of the gel.  
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Results & Discussion 

A series of experiments were conducted to directly assess the ability of the Azoarcus ribozyme to 

function catalytically in the presence of manganese divalent ions. The first experiment analyzed 

the PUTT with the full length ribozyme and exogenous substrate at concentrations of 10 mM 

MnCl2, 10 mM MgCl2, and 100 mM MgCl2. Trans-splicing buffers were prepared and the 

experiments were performed according to the PUTT procedure as detailed in the methods 

section. Results are noted (figure 2) below. 

 

Quantification of bands shows the total percentage of Azoarcus that reacted with substrate (table 

2). Due to error in quantification software and presence of background opacity on gel, some 

reaction is noted at 0’ time points. This is especially notable in the 100 mM Mg segment, in 

which a significant amount of product was noted at the 0’ time point, possibly due to 

unpolymerized polyacrylamide.  

 

Visual qualitative assessment of gel electrophoresis results can be used in addition to quantitative 

analysis to analyze the viability of the ribozyme in the presence of manganese (II) ions. It is 

noted upon examination of each band that both magnesium and manganese based solutions 

yielded a product band to varying degrees of opacity, and that the Azoarcus ribozyme is indeed 

active with manganese (II) ions. 
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Figure 2: The results of a pick up the tail reaction in varying concentrations of 5x t-x Manganese buffer and 
Magnesium buffer. Time points were taken at 0’, 30’, 60’, and 120’. SNL-1a was present in the reaction at a 
concentration of 2.5 μM, and WXYZ was present at a concentration of 1 μM. 
 
 
Table 2: Quantitative results of the PUTT reaction with varying concentrations of manganese and magnesium. 
 

Time 

% Reaction 

10 mM 
Mn 

10 mM 
Mg 

100 mM 
Mg 

0’ 5.20 12.81 41.04 

120’ 43.18 15.93 31.86 

 
 
 
 
 
With evidence that manganese (II) ions were able to support the catalytic activity of the 

Azoarcus ribozyme, efforts were taken to understand the operational boundaries of manganese 

based PUTT reactions. Further investigation of concentration correlated with an improved yield 

with an optimal concentration identified at 45 mM MnCl2 5x-tx buffer with a percent reaction of 

87%, as shown in Table 2. As noted previously, the extent of the percent reaction requires further 

investigation. 
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Figure 3: The results of a pick up the tail reaction in varying concentrations of 5x t-x Manganese buffer. Time points 
were taken at 0’, 30’, and 60’. SNL-1a was present in the reaction at a concentration of 2.5 μM, and WXYZ was 
present at a concentration of 1 μM. 
 
 
Table 3: Quantitative results of the PUTT reaction with varying concentrations of manganese and magnesium. 
 

Time 

% Reaction 

25 mM 
Mn 

35 mM 
Mn 

45 
mM 
Mn 

0’ 6.81 3.57 10.15 

30’ 64.1 66.03 69.63 

60’ 67.01 70.22 85.65 

 
 

Covalent self assembly reactions were tested at the same range of concentrations as the PUTT 

with no detectable reaction at any concentrations as shown in figure 4. 
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Figure 4: The results of a self assembly reaction in varying concentrations of 5x t-x Manganese buffer. Time points 
were taken at 0’, 10’, 30’, and 60’. Z was present in the reaction at a concentration of 1 μM, and WXY was present 
at a concentration of 1 μM. 
 

The discrepancy between the results of covalent self assembly and the PUTT reactions is not 

fully understood, and requires further investigation to better identify the underlying mechanisms 

at play. However, previous work [18] as shown in figures 5 and 6 identified the crystal structure 

of the Azoarcus group 1 intron, and further identified key binding sites essential in different 

reaction mechanisms. The P4-P6 binding sites were identified as a scaffold for the entirety of the 

intron. M1-M2, M5, and M12 were identified as the core metals, and make contact directly with 

the scaffold, while M8-M11 and M14-M16 also bind to P4. Other metal groups in the 

surrounding regions were found to be essential for structural stability [18, 19].  
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Figure 5: Ribbon diagram of the Azoarcus group I intron pre-2S deoxy-ΩG (PDB 1U6B) crystal structure with 
metals indicated as spheres. Metal numbering indicated are used throughout the text. Metal sphere color indicates 
binding region: core metals are orange; P10-P2, P8 metals are blue; P4-P6 metals are purple; the P9.0-9 metal is 
green.  
Source: Stahley, M. R., Adams, P. L., Wang, J., & Strobel, S. A. (2007). Structural metals in the group I intron: a 
ribozyme with a multiple metal ion core. Journal of Molecular Biology, 372(1), 89–102. 
http://doi.org/10.1016/j.jmb.2007.06.026 
 

 
 
Figure 6: Visual mapping of M6, M13, M7, M18, and M4 (K+ ions). 
Source: Source: Stahley, M. R., Adams, P. L., Wang, J., & Strobel, S. A. (2007). Structural metals in the group I 
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intron: a ribozyme with a multiple metal ion core. Journal of Molecular Biology, 372(1), 89–102. 
http://doi.org/10.1016/j.jmb.2007.06.026 
 

Previous metal rescue experiments with Azoarcus have been attempted in the past using Ca2+ 

ions with no noted activity [17]. Reaction yield was noted after RT-PCR, which utilized in vitro 

selection to facilitate mutant strands of Azoarcus compatible with the large divalent ions. 

Utilizing similar methods may be fruitful for investigating compatibility of Mn2+ ions with 

mutant strands of Azoarcus and further honing in on the mutations required to alter the 

specificity of the target metal binding sites. 
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