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Abstract 
 

The Laurent expansion is a well-known topic in complex analysis for its application in 

obtaining residues of complex functions around their singularities. Computing the 

Laurent series of a function around its singularities turns out to be an efficient way to 

determine the residue of the function as well as to compute the integral of the function 

along any closed curves around its singularities. Based on the theory of the Laurent 

series, this paper provides several working examples where the Laurent series of a 

function is determined and then used to calculate the integral of the function along any 

closed curve around the singularities of the function. A brief description of the Frobenius 

method in solving ordinary differential equations is also provided.     

 

 

Section I. Introduction 
 

The method of Laurent series expansions is an important tool in complex analysis. Where a 

Taylor series can only be used to describe the analytic part of a function, Laurent series allows us 

to work around the singularities of a complex function. To do this, we need to determine the 

singularities of the function and can then construct several concentric rings with the same center 

𝑧0 based on those singularities and obtain a unique Laurent series of 𝑧 − 𝑧0inside each ring 

where the function is analytic. 
 

The construction of Laurent series is important because the coefficient corresponding to the 
1

𝑧−𝑧0
 

term gives the residue of the function. The calculation of the integral of the function along any 

closed curve can be done efficiently by using such residue based on the Residue Theorem. Not 

only does the Laurent series create an efficient method for the integration, it also has many other 

applications in physics and engineering. 
 
While the residue of the function has been used extensively in calculating both complex and real 

integration, we seldom investigate the coefficient of the 
1

𝑧−𝑧0
 term that occur in the outer rings of 

a Laurent series expansion. This paper serves to speak on the significance of this coefficient in 

the outer rings by providing several working examples of the Laurent series outside of the center 

annulus and using them to compute the integral of the function along any closed curve outside of 

the center annulus. This paper also describes the Frobenius method, a method very similar to 

Laurent series, in solving second-order ordinary differential equations around their singularities. 
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Section II. Background Theory 

 
First, let us define a Laurent series.1 

 

Theorem 1.1 Let 0 ≤ 𝑟1 < 𝑟2 and 𝑧0 ∈ ℂ. Suppose 𝑓(𝑧) is analytic on the region 𝐴 =
{𝑧 ∈ ℂ| 𝑟1 < |𝑧 − 𝑧0| < 𝑟2} where 𝑟1 ≥ 0 and 𝑟2 ≤ ∞. Then we have: 

 

𝑓(𝑧) = ∑𝑎𝑛(𝑧 − 𝑧0)
𝑛 +

∞

𝑛=0

∑
𝑏𝑛

(𝑧 − 𝑧0)𝑛

∞

𝑛=1

 

 

which converge absolutely on 𝐴. This series for 𝑓(𝑧) is called the Laurent series or 

Laurent expansion around 𝑧0 in the annulus 𝐴. 

 

The coefficients can be determined by: 

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝜁)

(𝜁 − 𝑧0)𝑛+1
𝑑𝜁 , 𝑛 = 0, 1, 2, …

𝛾

 

𝑏𝑛 =
1

2𝜋𝑖
∫𝑓(𝜁)(𝜁 − 𝑧0)

𝑛−1𝑑𝜁 , 𝑛 = 1, 2, …
𝛾

 

Where 𝛾 can be any circle with center 𝑧0 and radius 𝑟, 𝑟1 < 𝑟 < 𝑟2. Furthermore, 𝑎𝑛and 

𝑏𝑛are unique. 

 

However, the equations for finding the coefficients 𝑎𝑛and 𝑏𝑛in the Laurent Series are impractical 

for a given function. Although the formulas exist, they are seldom used as there are always easier 

tricks to obtain the Laurent expansion. For instance, we can use well-known Taylor expansions 

of some fundamental function to obtain the Laurent series. Another common trick is to creatively 

manipulate a function 𝑓 to fit into the form of a common geometric series. See the working 

examples for demonstrations of these tricks. 

 

Next, let us introduce the classification of singularities, which are central to constructing a 

Laurent series. Simply put, a singularity is a point 𝑧0 in which a function is differentiable at 

points arbitrarily close to but not including 𝑧0. Singularities are not always easily for a 

complicated function. There are different types and classifications of singularities that we will 

define now. 

 

Definition 1.1 If a function 𝑓 is analytic on a region 𝐴 = {𝑧| 0 < |𝑧 − 𝑧0| <
𝑟2} 𝑤𝑖𝑡ℎ 𝑟1 = 0, which is a deleted neighborhood of 𝑧0, then 𝑧0 is called an isolated 

singularity2 and is expressed as: 

𝑓(𝑧) = ⋯+
𝑏𝑛

(𝑧−𝑧0)𝑛
+⋯+

𝑏1

𝑧−𝑧0
+ 𝑎𝑛 + 𝑎1(𝑧 − 𝑧0) + ⋯  𝑖𝑛 {𝑧| 0 < |𝑧 − 𝑧0| < 𝑟2}  

 

 
1 Theorem adapted from Marsden & Hoffman textbook. 
2 Definition taken from Marsden & Hoffman and Apelian & Surace text books. 
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The convenience of Laurent series is that we can always find a Laurent expansion centered at an 

isolated singularity in an annulus that omits that point.3 The Laurent expansion allows for a 

series representation in both negative and positive powers of (𝑧 − 𝑧0) in a region excluding 

points where 𝑓 is not differentiable. If 𝑓 is differentiable in the entire region, then it is analytic 

and the Laurent series centered at 𝑧0 will reduce to the Taylor series of the function below: 

 

𝑓(𝑧) = ∑
𝑓𝑘(𝑐)

𝑘!
(𝑧 − 𝑐)𝑘   𝑓𝑜𝑟 |𝑧 − 𝑐| < 𝑟

∞

𝑛=0

 

 

There are different classifications of isolated singularities as below: 

 

Definition 1.2 Let 𝑧0 be an isolated singularity of 𝑓. If all but a finite number of the 𝑏𝑛 

terms are zero, then 𝑧0 is called a pole of 𝑓. The order of the pole is determined by the 

highest integer k such that 𝑏𝑘 ≠ 0 and is called a pole of order k. A pole of order one is 

commonly referred to as a simple pole or single pole. 

 
Definition 1.3 If an infinite number of 𝑏𝑘 are nonzero, 𝑧0 is called an essential 

singularity. This 𝑧0 is also sometimes called a pole of infinite order.  

 

Definition 1.4 We call 𝑧0 a removable singularity if all 𝑏𝑘’s are zero. A Taylor series 

expansion always exists for removable singularities. 

 

We focus on the main application of Laurent series: finding the residue of a function. While 

some complex functions have handy formulas for calculating the residue, it mainly depends on 

the type of singularity you are dealing with. For instance, there is no efficient way to find the 

residue of a function with an essential singularity. To find the residue in this case, you must find 

the Laurent expansion of the function and locate the 
𝒃𝟏

𝑧−𝑧0
 term: 

 

𝑓(𝑧) = ⋯+
𝑏𝑛

(𝑧−𝑧0)𝑛
+⋯+

𝒃𝟏

𝑧−𝑧0
+ 𝑎𝑛 + 𝑎1(𝑧 − 𝑧0) + ⋯   𝑖𝑛 {𝑧| 0 < |𝑧 − 𝑧0| < 𝑟2}    

In the Laurent expansion, 𝒃𝟏 is the coefficient of the 
1

𝑧−𝑧0
 term in the series. Even if the residue 

can be found easily through a formula, one might want to look at the Laurent series obtained in 

the outer annuli associated with the singularities. Once the Laurent expansion is known, we can 

find the corresponding  
𝒃𝟏

𝑧−𝑧0
 term. It can help us with calculating the integration of 𝑓(𝑧) along 

any closed curve located within those annuli.  

  

 
3 See Apelian & Surace. 
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Theorem 1.2 Residue Theorem4: Let 𝐴 be a region and let 𝑧1,𝑧2, … , 𝑧𝑛 be 𝑛 distinct 

points in A. Let 𝑓 be analytic in 𝐴 except for at the isolated singularities at 𝑧1,𝑧2, … , 𝑧𝑛. 

Let  be a closed curve in 𝐴 homotopic to a point in 𝐴. Assume no 𝑧𝑖 lies on 𝛾. Then: 

 

∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖∑[𝑅𝑒𝑠(𝑓; 𝑧𝑖)]𝐼(𝛾; 𝑧𝑖)

𝑛

𝑖=1𝛾

 

 

Here 𝑅𝑒𝑠(𝑓; 𝑧𝑖) is the residue of 𝑓 at 𝑧𝑖 and 𝐼(𝛾; 𝑧𝑖) is the index of 𝛾 with respect to 𝑧𝑖. 
For simplicity, we assume 𝐼(𝛾; 𝑧𝑖) = 1 for this paper. 

 

Simply put, for a clockwise 𝛾, the integral equals 2𝜋𝑖 times the sum of the residues of 𝑓 inside 𝛾. 

In complex analysis, residues play a critical role in allowing us to easily compute integrals. 

Using the Residue Theorem to solve a line integral is significantly more efficient than other 

methods because it greatly reduces computational time. The Residue Theorem in complex 

analysis also makes the integration of some real functions feasible without need of numerical 

approximation. 

 

The examples in this paper focus on obtaining the residue from a Laurent series. The residues 

obtained from the Laurent series would speed up the complex integration on closed curves. 

 

 
4 Theorem adapted from Marsden & Hoffman textbook. 
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Section III. Working Examples 
 

In the following examples we will refer to a helpful geometric series and some common known 

Taylor expansions. 

 

Geometric Series 

 

1

1 − 𝑧
=

{
 
 

 
 ∑𝑧𝑛

∞

𝑛=0

, |𝑧| < 1

−∑
1

𝑧𝑛
 , |𝑧| > 1

∞

𝑛=1

 

 

Table 1.1 

 

 

  

Known Function Expansions 

Function Taylor Series around 0 Valid for 

 
 sin (𝑧) 𝑧 −

𝑧3

3!
+
𝑧5

5!
− ⋯ = ∑(−1)𝑛+1

𝑧2𝑛−1

(2𝑛 − 1)!

∞

𝑛=1

 
all  𝑧 

cos (𝑧) 
1 −

𝑧2

2!
+
𝑧4

4!
−
𝑧6

6!
+ ⋯ = ∑(−1)𝑛

𝑧2𝑛

(2𝑛)!

∞

𝑛=1

 
all  𝑧 

e𝑧 
1 + 𝑧 +

𝑧2

2!
+
𝑧3

3!
+ ⋯ = ∑

𝑧𝑛

𝑛!

∞

𝑛=0

 
all  𝑧  
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Example 1 

 

Let 𝑓(𝑧) =
1

2+𝑧
. Determine the Laurent series around 𝑧 = 1.  

 

Solution: 

 

Obviously, we have a simple pole at 𝑧 = −2. Hence, we are dealing with a radius of 3 and want 

to find the Laurent series for both |𝑧 − 1| < 3 𝑎𝑛𝑑 |𝑧 − 1| > 3. The Laurent series will reduce 

to a Taylor series inside |𝑧 − 1| < 3  where 𝑓(𝑧) is analytic. 

 

For |𝑧 − 1| < 3, we refer to the well-known geometric series. We begin by trying to create a 

(𝑧 − 1) term in the denominator.  

 

𝑓(𝑧) =
1

2 + 𝑧
=

1

2 + 𝑧 − 1 + 1
=

1

3 + (𝑧 − 1)
= (

1

3
)

1

1 − (
−(𝑧 − 1)

3
)
 

Since |
−(𝑧−1)

3
| < 1, we can now represent the function as a series: 

 

⇒ 𝑓(𝑧) =
1

3
∑

−(𝑧 − 1)𝑛

3𝑛

∞

𝑛=0

= ∑
(−1)𝑛(𝑧 − 1)𝑛

3𝑛+1

∞

𝑛=0

 for |𝑧 − 1| < 3 

 

Which is just a Taylor series as the function is analytic inside the region.  

 

For |𝑧 − 1| > 3, we can use 
3

|𝑧−1|
< 1 and follow our previous work to obtain: 

 

𝑓(𝑧) =
1

3 + (𝑧 − 1)
=

1

𝑧 − 1

1

1 − (
−3
𝑧 − 1)

=
1

𝑧 − 1
∑

(−1)𝑛3𝑛

(𝑧 − 1)𝑛

∞

𝑛=0

= ∑
(−1)𝑛3𝑛

(𝑧 − 1)𝑛+1

∞

𝑛=0

 

 

⟹ 𝑓(𝑧) = ∑
(−1)𝑛3𝑛

(𝑧 − 1)𝑛+1

∞

𝑛=0

=∑
(−1)𝑛−13𝑛−1

(𝑧 − 1)𝑛

∞

𝑛=1

 

 

In this case, we have obtained the Laurent expansion. The generalized residue for the outer ring 

|𝑧 − 1| > 3 is the coefficient of  
1

𝑧−1
, that is 𝑏1 = 1. 

 

Remarks: 

a) Integrating along a closed path inside the inner ring |𝑧 − 1| < 3 means we should use the 

residue obtained from the Laurent series in |𝑧 − 1| < 3. By Theorem 1.1, we can 

compute 

∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖(𝑏1) = 2𝜋𝑖(0) = 0.

|𝑧−1|=1
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b) Integrating along a non-simple closed path inside the outer ring |𝑧 − 1| > 3 means we 

must use the generalized residue obtained from the Laurent series in |𝑧 − 1| > 3. By 

Theorem 1.1, we can compute 

∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖(𝑏1) = 2𝜋𝑖(1) = 2𝜋𝑖

|𝑧−1|=4

. 

c) By combining a) and b), we conclude that the Laurent series computed in each ring, 

either inner ring or outer ring can be used directly with coefficient 𝑏1to compute the 

integral along any closed curve inside that ring. 
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Example 2 

 

This example will use the same method as in Example 1 based on the known geometric series to 

find the Laurent Expansion. However, this is a more complicated example and will require extra 

techniques—a substitution and partial fraction decomposition. Suppose: 

 

𝑓(𝑧) =
1

𝑧(𝑧 − 2)(𝑧 − 5)
 

 

By observation, we can easily see that 𝑓(𝑧) has simple poles at 𝑧 = 0, 𝑧 = 2 𝑎𝑛𝑑 𝑧 = 5. These 

poles determine the radii of the annuli produced with the Laurent Series. We have 0 < |𝑧| < 2 as 

the center annulus, 2 < |𝑧| < 5 as the middle annulus, and 5 < |𝑧| < ∞ as the outermost infinite 

“ring.” 

 

 
Figure 1.1 

 

In this example, we will find the Laurent expansion valid on 𝑅 = {𝑧 | |𝑧 − 3| < 1}. This is the 

circle of radius 1 centered at 𝑧 = 3 where 𝑓(𝑧) is analytic. 

 

 

Step 1 In order to construct the Laurent series of this function, we first use a substitution such 

that 𝑤 = 𝑧 − 3. Then we can center 𝑤 around 𝑤 = 0 within |𝑤| < 1. 

 

𝑓(𝑧) =
1

(𝑤 + 3)(𝑤 + 1)(𝑤 − 2)
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Step 2 We now use partial fraction decomposition: 

 

𝑓(𝑤) =
1

(𝑤 + 3)(𝑤 + 1)(𝑤 − 2)
=

𝐴

𝑤 + 3
+

𝐵

𝑤 + 1
+

𝐶

𝑤 − 2
 

 

⟹ 𝐴(𝑤2 − 𝑤 − 2) + 𝐵(𝑤2 + 𝑤 − 6) + 𝐶(𝑤2 + 4𝑤 + 3) = 1 

 

𝐴 + 𝐵 + 𝐶 = 0 

−𝐴 + 𝐵 + 4𝐶 = 0 

−2𝐴 − 6𝐵 + 3𝐶 = 1 

 

From the above equations, we obtain the following coefficients: 

𝐴 =
1

10
 ;  𝐵 = −

1

6
 ;  𝐶 =

1

15
. 

 

We will denote the partial fraction components of 𝑓(𝑧) as: 

 

𝑓1(𝑤) =
1

10(𝑤+3)
,  𝑓2(𝑤) =

−1

6(𝑤+1)
,  𝑓3(𝑤) =

1

15(𝑤−2)
. 

 

 

Step 3 Determine the Laurent expansion valid for |𝑤| < 1 based on the above partial fractions.  

 

Let us start with 𝑓1(𝑤) =
1

10(𝑤+3)
. For |𝑤| < 1: 

 
1

10(𝑤+3)
=

1

10

1

3−(−𝑤)
=

1

10

1

3

1

1−(
−𝑤

3
)
=

1

10
∑

(−1)𝑛𝑤𝑛

3𝑛+1
∞
𝑛=0   

 

We obtain the following geometric series and then substitute 𝑤 = 𝑧 − 3. 

 

 

𝑓1(𝑤) = ∑
(−1)𝑛𝑤𝑛

10(3𝑛+1)
∞
𝑛=0 , |𝑤| < 1 ⟹ 𝑓1(𝑧) = ∑

(−1)𝑛(𝑧−3)𝑛

10(3𝑛+1)
, |𝑧 − 3| < 1∞

𝑛=0 . 

 

 

For 𝑓2(𝑤) =
−1

6(𝑤+1)
 on |𝑤| < 1:  

−1

6(𝑤+1)
= −

1

6

1

1−(−𝑤)
= −

1

6
∑ (−1)𝑛𝑤𝑛∞
𝑛=0   

 

We obtain the following geometric series and substitute back in for 𝑤 = 𝑧 − 3. 

 

𝑓2(𝑤) = −∑
(−1)𝑛𝑤𝑛

6
∞
𝑛=0 , |𝑤| < 1 ⟹ 𝑓2(𝑧) = −∑

(−1)𝑛(𝑧−3)𝑛

6

∞
𝑛=0 ,    |𝑧 − 3| < 1 
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For 𝑓3(𝑤) =
1

15(𝑤−2)
 on |𝑤| < 1: 

1

15(𝑤−2)
=

1

15(−2−(−𝑤))
=

1

15

−1

2

1

(1−
𝑤

2
)
= −

1

15
∑

𝑤𝑛

2𝑛+1
∞
𝑛=0   

 

We obtain the following geometric series and substitute back in for 𝑤 = 𝑧 − 3. 

 

𝑓3(𝑤) = −
1

15
∑

𝑤𝑛

2𝑛+1
∞
𝑛=0    |𝑤| < 1 ⟹ 𝑓3(𝑧) = −∑

(𝑧−3)𝑛

15(2𝑛+1)
, |𝑧 − 3| < 1∞

𝑛=0 . 

 

Step 4 Determine which parts are relevant for the Laurent series. In this case, we only 

want |𝑤| < 1, or |𝑧 − 3| < 1. We combine the above geometric series and obtain: 

 

𝑓(𝑧) = ∑
(−1)𝑛(𝑧 − 3)𝑛

10(3𝑛+1)
−∑

(−1)𝑛(𝑧 − 3)𝑛

6

∞

𝑛=0

−∑
(𝑧 − 3)𝑛

15(2𝑛+1)

∞

𝑛=0

 

∞

𝑛=0

 

 

⟹ 𝑓(𝑧) = ∑(
(−1)𝑛(𝑧 − 3)𝑛

10(3𝑛+1)
−
(−1)𝑛(𝑧 − 3)𝑛

6
−
(𝑧 − 3)𝑛

15(2𝑛+1)
)

∞

𝑛=0

 

 

⟹ 𝑓(𝑧) = ∑(
(−1)𝑛

10(3𝑛+1)
−
(−1)𝑛

6
−

1

15(2𝑛+1)
) (𝑧 − 3)𝑛

∞

𝑛=0

 

 

⟹ 𝑓(𝑧) = ∑
{(−1)𝑛(2𝑛+1)[3 − 5(3𝑛+1)] − 2(3𝑛+1)}

30(6𝑛+1)

∞

𝑛=0

(𝑧 − 3)𝑛 

 

 

Note that this results in the analytic part of the Laurent expansion without principal part. This 

means our Laurent series has reduced to a Taylor series as in Example 1. 
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Example 3 

 

Let us find the Laurent series of 𝑓(𝑧) =
1

𝑧(𝑧−2)(𝑧−5)
 valid in the region 2 < |𝑧| < 5 around 𝑧 = 0. 

 

Step 1 we start with partial fraction decomposition. 

 

𝑓(𝑧) =
1

𝑧(𝑧 − 2)(𝑧 − 5)
=
𝐴

𝑧
+

𝐵

𝑧 − 2
+

𝐶

𝑧 − 5
 

 

⟹ 𝐴(𝑧2 − 7𝑧 + 10) + 𝐵(𝑧2 − 5𝑧) + 𝐶(𝑧2 − 2𝑧) = 1  

𝐴 + 𝐵 + 𝐶 = 0  

−7𝐴 − 5𝐵 − 2𝐶 = 0  

 10𝐴 = 1 

 

From the above equations, we obtain the following coefficients: 

 

𝐴 =
1

10
 ;  𝐵 = −

1

6
 ;  𝐶 =

1

15
. 

 

We will denote the partial fraction components of 𝑓(𝑧) as: 

 

𝑓1(𝑧) =
1

10𝑧
,  𝑓2(𝑧) =

−1

6(𝑧−2)
,  𝑓3(𝑧) =

1

15(𝑧−5)
. 

 

Step 2 Determining the geometric series to each corresponding partial fraction.  

 

We consider the region 2 < |𝑧| < 5. In order to use our geometric series, we must represent the 

function in the region in terms of 𝑧 𝑜𝑟 
1

𝑧
 based on the fact that 

 

2 < |𝑧| ⟹ |
2

𝑧
| < 1 𝑎𝑛𝑑 |𝑧| < 5 ⟹ |

𝑧

5
| < 1. 

 

The Laurent series representation is found by looking for 
2

𝑧
 for 𝑓2(𝑧) and 

𝑧

5
 for 𝑓3(𝑧): 

 

a.  𝑓2(𝑧) =
−1

6(𝑧−2)
=

−1

6𝑧

1

(1−
2

𝑧
)
= −

1

6𝑧
∑

2𝑛

𝑧𝑛
∞
𝑛=0 = −

1

6
∑

2𝑛

𝑧𝑛+1
∞
𝑛=0   

 

b.  𝑓3(𝑧) =
1

15(𝑧−5)
=

1

15

1

5
(

1

−1+
𝑧

5

) = −
1

15

1

5
∑

𝑧𝑛

5𝑛
∞
𝑛=0 = −

1

15
∑

𝑧𝑛

5𝑛+1
∞
𝑛=0   

 

Note that 𝑓1(𝑧) =
1

10𝑧
=

1

10

1

𝑧
 is the form of series representation. 
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Step 3 Build the Laurent expansion from the above geometric series. 

 

𝑓(𝑧) =
1

10

1

𝑧
−
1

6
∑

2𝑛

𝑧𝑛+1

∞

𝑛=0

−
1

15
∑

𝑧𝑛

5𝑛+1

∞

𝑛=0

 

 

⟹ 𝑓(𝑧) = −∑
𝑧𝑛

15(5𝑛+1)

∞

𝑛=0

+
1

10

1

𝑧
−∑

2𝑛

6(𝑧𝑛+1)

∞

𝑛=0

 

 

⟹ 𝑓(𝑧) = −∑
𝑧𝑛

15(5𝑛+1)

∞

𝑛=0

−
1

15

1

𝑧
−∑

2𝑛−1

6

1

𝑧𝑛

∞

𝑛=2

 

 

Step 4 Find the generalized residue. We only need to collect the 
𝑏1

𝑧
 term. 

           Therefore, the generalized residue of 𝑓(𝑧) is −
1

15
 in the region 2 < |𝑧| < 5. 
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Example 4 

 

To demonstrate application of how the generalized residue can be used to solve complex 

function integration, we will use 𝑓(𝑧) from Example 3. Suppose we want to integrate 𝑓(𝑧)  
along the path |𝑧| = 4.  

 

We can solve this problem using the Residue Theorem with two methods: 

a. Finding the residues using known formulas and apply the Residue Theorem. 

b. Use our previously constructed Laurent series and apply Theorem 1.1 directly.  

 

For (a), we can find the residue of a pole using the formula 𝑅𝑒𝑠(𝑓, 𝑧0) = lim
𝑧→𝑧0

(𝑧 − 𝑧0)𝑓(𝑧).
5 

We will only need to find the residue of the poles 𝑧 = 0 and 𝑧 = 2 because they are the only two 

simple poles that lie within the closed path. The other simple pole 𝑧0 = 5 lies outside the given 

path, and will not be considered for this integral. 

 

𝑅𝑒𝑠(𝑓, 0) = lim
𝑧→0

(𝑧 − 0)𝑓(𝑧) =
1

10
 

𝑅𝑒𝑠(𝑓, 2) = lim
𝑧→2

(𝑧 − 2)𝑓(𝑧) = −
1

6
 

 

Applying the Residue Theorem, we have ∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 (
1

10
−
1

6
)

|𝑧|=4
= −

2𝜋𝑖

15
. 

 

For (b), we can use Theorem 1.1 directly. This means we can use the generalized residue found 

in our Laurent expansion obtained in Example 3 because the Laurent series was constructed in 

the ring containing |𝑧| = 4. We simply take the generalized residue, and multiply it by 2𝜋𝑖:  
 

∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 (−
1

15
)

|𝑧|=4

= −
2𝜋𝑖

15
 

 

Remarks 

 

If we wanted to integrate along any path |𝑧| > 5, then we need the Laurent expansion for the 

outmost ring |𝑧| > 5. The Laurent series is the only way to obtain the generalized residue 

associated with this region. We skip the details as its approach is similar to Example 3. 

 

 

 

 

 

 

 

 

 

 
5 See Marsden & Hoffman textbook for this formula and others to calculate residues. 
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Example 5 

 

The following two functions are further examples on how to use a well-known series expansion 

to find the Laurent series. Each of these functions contains essential singularities. Notice that 

they have infinitely many 𝑏𝑛 terms. 

 

1. 𝑓(𝑧) = 𝑧2𝑒
1

𝑧 = 𝑧2 (1 +
1

1!𝑧
+

1

2!𝑧2
+⋯) =  𝑧2 + 𝑧 +

1

2
+

1

3!𝑧
+

1

4!𝑧2
…   𝑓𝑜𝑟 |𝑧| > 0 

2. 𝑔(𝑧) =
𝑠𝑖𝑛𝑧

𝑧2
=

1

𝑧2
(𝑧 −

𝑧3

3!
+
𝑧5

5!
−+⋯) =

1

𝑧
−
𝑧3

3!
+
𝑧5

5!
−+⋯ 

For 𝑓(𝑧), you simply multiply a 𝑧2 term through the Taylor Series of 𝑒
1

𝑧. In order to find the 

residue, you need to find the constant associated with the 
1

𝑧
 term. Clearly, that term for 𝑓(𝑧) 

is 
1

3!𝑧
. Therefore 𝑏1 =

1

6
 is the residue of 𝑓(𝑧) around 𝑧 = 0. 

 

For 𝑔(𝑧), we divide by 𝑧2 the Taylor Series of sin (𝑧). We immediately get our residue from the 

first term 
1

𝑧
. Then 𝑏1 = 1 is the residue of 𝑔(𝑧) around 𝑧 = 0. 
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Section IV. The Frobenius Method 

The Frobenius method is used to solve linear differential equations with variable coefficients. 

Theorem 1.36 Any differential equation that has the form: 

(𝟏)          𝑦′′ +
𝑝(𝑥)

𝑥
𝑦′ +

𝑞(𝑥)

𝑥2
𝑦 = 0  

Here the functions 𝑝(𝑥) and 𝑞(𝑥) are analytic at 𝑥 = 0 will have at least one solution that 

can be represented by: 

(𝟐)         𝑦(𝑥) = 𝑥𝑟 ∑ 𝑎𝑚𝑥
𝑚 = 𝑥𝑟∞

𝑛=0 (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯)  

The exponent r can be any real or complex number and is chosen so that 𝑎0 ≠ 0. 

Solving (1) involves expanding 𝑝(𝑥) and 𝑞(𝑥) in power series and differentiating (2) term by 

term. The process results in a very important quadratic equation called the indicial equation.  

We begin by expanding y(x) as defined in (2) along with its first and second derivatives: 

i. 𝑦(𝑥) = 𝑎0𝑥
𝑟 + 𝑎1𝑥

𝑟+1 + 𝑎2𝑥
𝑟+2 +⋯ 

ii. 𝑦′(𝑥) = 𝑟𝑎0𝑥
𝑟−1 + (𝑟 + 1)𝑎1𝑥

𝑟 +⋯ 

iii. 𝑦′′(𝑥) = 𝑎0𝑟(𝑟 − 1)𝑥
𝑟−2 + 𝑎1𝑟(𝑟 + 1)𝑥

𝑟−1 +⋯ 

If we multiply (1) by 𝑥2, we get 𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0. 

Now plug the expansions of y(x) from (i), (ii), and (iii) into our simplified (1) and let 𝑥 → 0 

then 𝑝(𝑥) → 𝑝0𝑎𝑛𝑑 𝑞(𝑥) → 𝑞0. From this, we get the equation: 

𝑎0𝑟(𝑟 − 1)𝑥
𝑟 + 𝑝0𝑎0𝑟𝑥

𝑟 + 𝑞0𝑎0𝑥
𝑟 = 0 

Here 𝑎0𝑟(𝑟 − 1)𝑥
𝑟−2 of 𝑦′′(𝑥), 𝑎0𝑟𝑥

𝑟−1 of 𝑦′(𝑥), and 𝑎0𝑥
𝑟 of y(x) are the major terms. 

We factor out and divide by the common term to arrive at the indicial equation: 

(𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0)(𝑎0𝑥
𝑟) = 0 

⟹ 𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0 

  

 
6 Theorem adapted from Kreyszig’s Theorem 1 (p. 216). 
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Definition 1.57 The indicial equation is a quadratic equation defined that takes on the 

form: 

𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0, where 

 𝑝(𝑥) = ∑ 𝑝𝑘𝑥
𝑘∞

𝑘=0 , 𝑞(𝑥) = ∑ 𝑞𝑘𝑥
𝑘∞

𝑘=0 . 

The roots r1 and r2 of the indicial equation can present in three different cases: 

1. Distinct roots not differing by an integer. 

2. Double root 𝑟1 = 𝑟2 = 𝑟. 

3. Roots differing by an integer, which may or may not have a logarithmic term. 

Let us show the framework of the method of Frobenius.8 Suppose we have the equation:  

𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 

Here 𝑥 = 0 is a regular singular point. Then p(x) and q(x) are analytic at the origin and have 

power series expansions 

𝑝(𝑥) = ∑𝑝𝑘𝑥
𝑘

∞

𝑘=0

, 𝑞(𝑥) = ∑𝑞𝑘𝑥
𝑘

∞

𝑘=0

, |𝑥| < 𝜌 

Those are convergent for some 𝜌 > 0. Let r1, r2 be the roots of the indicial equation  

𝐹(𝑟) = 𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞𝑜 = 0. 

The power series given in each of the following solution forms are convergent at least in the 

interval |𝑥| < 𝜌. 

Case 1: Distinct roots not differing by an integer (i.e. 𝑟1 − 𝑟2 ≠ 𝑛, 𝑛 ∈ ℤ). 

The solutions will have the form: 

𝑦1(𝑥) = 𝑥
𝑟1∑𝑎𝑘(𝑟1)𝑥

𝑘

∞

𝑘=0

 

𝑦2(𝑥) = 𝑥𝑟2∑𝑏𝑘(𝑟2)𝑥
𝑘

∞

𝑘=0

 

Where 𝑎𝑘(𝑟1) and 𝑏𝑘(𝑟2) are determined by substituting 𝑦1(𝑥) or 𝑦2(𝑥) into the original ODE. 

 
7 Indicial equation and form of solutions taken from Kreyszig. 
8 Framework adapted from Phinney’s lecture notes 
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Case 2: Repeated root (i.e. 𝑟1 = 𝑟2). 

The solutions will have the form: 

𝑦1(𝑥) = 𝑥
𝑟1∑𝑎𝑘(𝑟1)𝑥

𝑘

∞

𝑘=0

 

𝑦2(𝑥) = 𝑦1(𝑥)𝑙𝑜𝑔𝑥 + 𝑥
𝑟1∑𝑏𝑘(𝑟1)𝑥

𝑘

∞

𝑘=0

 

Let us show that the formula for 𝑦2(𝑥) is fesible by demonstrating why the term 𝑦1(𝑥)𝑙𝑜𝑔𝑥 is 

needed, based on the fact that 𝑦1(𝑥) and 𝑦2(𝑥) need to be linearly independent. 

 

Let 𝐸2(𝑥) = 𝑥
𝑟1 ∑ 𝑏𝑘(𝑟1)𝑥

𝑘∞
𝑘=0  denote the second term of 𝑦2(𝑥). 

 

Begin by differentiating: 

𝑦2
′(𝑥) = 𝑦1

′(𝑥)𝑙𝑜𝑔𝑥 + 𝑦1(𝑥)
1

𝑥
+ 𝐸2′(𝑥) 

𝑦2
′′(𝑥) = 𝑦1

′′(𝑥)𝑙𝑜𝑔𝑥 + 2𝑦1
′(𝑥)

1

𝑥
− 𝑦1(𝑥)

1

𝑥2
+ 𝐸2

′′(𝑥) 

Recall: 

 𝑥2𝑦2
′′ + 𝑥𝑝(𝑥)𝑦2

′ + 𝑞(𝑥)𝑦2 = 0 

Plugging in for 𝑦2(𝑥), 𝑦2
′(𝑥), and 𝑦2

′′(𝑥) we get: 

𝑥2 [𝑦1
′′(𝑥)𝑙𝑜𝑔𝑥 +

2𝑦1(𝑥)

𝑥
−
𝑦1(𝑥)

𝑥2
+ 𝐸2′′(𝑥)] + 𝑥𝑝(𝑥) [𝑦1

′(𝑥)𝑙𝑜𝑔𝑥 +
𝑦1(𝑥)

𝑥
+ 𝐸2

′(𝑥)]

+ 𝑞(𝑥)[𝑦1(𝑥)𝑙𝑜𝑔𝑥 + 𝐸2(𝑥)] = 0 

⟹ 𝑙𝑜𝑔𝑥[𝑥2𝑦1
′′(𝑥) + 𝑥𝑝(𝑥)𝑦1

′(𝑥) + 𝑞(𝑥)𝑦1(𝑥)] + 2𝑥𝑦1
′(𝑥) − 𝑦1(𝑥) + 𝑝(𝑥)𝑦1(𝑥)

+ (𝑥2𝐸2
′′(𝑥) + 𝑥𝑝(𝑥)𝐸2

′(𝑥) + 𝑞(𝑥)) = 0 

Since 𝑦1(𝑥) is already a solution, the first term above is zero. The second term 𝐸2(𝑥) of 𝑦2(𝑥) 
satisfies: 

𝑥2𝐸2
′′(𝑥) + 𝑥𝑝(𝑥)𝐸2

′(𝑥) + 𝑞(𝑥) = 1 − 𝑝(𝑥)𝑦1(𝑥) − 2𝑥𝑦1
′(𝑥) 

This is nonhomogeneous Frobenius equation for 𝐸2(𝑥). Since 𝑦1(𝑥) is already expressed in a 

power series, a similar method can be used to solve 𝐸2(𝑥). Adding 𝐸2(𝑥) back into 𝑦1(𝑥)𝑙𝑜𝑔𝑥 

will ensure 𝑦2(𝑥) is linearly independent with 𝑦1(𝑥). 
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Case 3: Roots differing by an integer (i.e. 𝑟1 − 𝑟2 = 𝑛, 𝑛 ∈ ℤ
+). 

The solutions will have the form: 

𝑦1(𝑥) = 𝑥
𝑟1∑𝑎𝑘(𝑟1)𝑥

𝑘

∞

𝑘=0

 

𝑦2(𝑥) = 𝑐𝑦1(𝑥)𝑙𝑜𝑔𝑥 + 𝑥
𝑟2∑𝑏𝑘(𝑟2)𝑥

𝑘

∞

𝑘=0

 

And c may be the value zero. The constant 𝑏𝑛(𝑟2) is arbitrary and may be set to zero. 

Let us justify the feasibility of second solution 𝑦2(𝑥): 
 

Let 𝐸2(𝑥) = 𝑥
𝑟2 ∑ 𝑏𝑘(𝑟2)𝑥

𝑘∞
𝑘=0  denote the second term of 𝑦2(𝑥). 

 

Begin by differentiating: 

𝑦2
′(𝑥) = 𝑐 (𝑦1

′(𝑥)𝑙𝑜𝑔𝑥 + 𝑦1(𝑥)
1

𝑥
) + 𝐸2′(𝑥) 

𝑦2
′′(𝑥) = 𝑐 (𝑦1

′′(𝑥)𝑙𝑜𝑔𝑥 + 2𝑦1
′(𝑥)

1

𝑥
− 𝑦1(𝑥)

1

𝑥2
) + 𝐸2

′′(𝑥) 

Recall:  

𝑥2𝑦2
′′ + 𝑥𝑝(𝑥)𝑦2

′ + 𝑞(𝑥)𝑦2 = 0 

 

Plugging in for 𝑦2(𝑥), 𝑦2
′(𝑥), and 𝑦2

′′(𝑥) we get: 

𝑥2 [𝑐 (𝑦1
′′(𝑥)𝑙𝑜𝑔𝑥 +

2𝑦1′(𝑥)

𝑥
−
𝑦1(𝑥)

𝑥2
) + 𝐸2′′(𝑥)] + 𝑥𝑝(𝑥) [𝑐 (𝑦1

′(𝑥)𝑙𝑜𝑔𝑥 +
𝑦1(𝑥)

𝑥
) + 𝐸2

′(𝑥)]

+ 𝑞(𝑥)[𝑐𝑦1(𝑥)𝑙𝑜𝑔𝑥 + 𝐸2(𝑥)] = 0 

⟹ 𝑙𝑜𝑔𝑥[𝑐𝑥2𝑦1
′′(𝑥) + 𝑐𝑥𝑝(𝑥)𝑦1

′(𝑥) + 𝑐𝑞(𝑥)𝑦1(𝑥)] + 2𝑐𝑥𝑦1
′(𝑥) − 𝑐𝑦1(𝑥) + 𝑐𝑝(𝑥)𝑦1(𝑥)

+ (𝑥2𝐸2
′′(𝑥) + 𝑥𝑝(𝑥)𝐸2

′(𝑥) + 𝐸2(𝑥)𝑞(𝑥)) = 0 
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Since 𝑦1(𝑥) is already a solution, the first term above is zero. The second term 𝐸2(𝑥) of 𝑦2(𝑥) 
satisfies: 

𝑥2𝐸2
′′(𝑥) + 𝑥𝑝(𝑥)𝐸2

′(𝑥) + 𝑞(𝑥)𝐸2(𝑥) = 𝑐(𝑦1(𝑥) − 𝑝(𝑥)𝑦1(𝑥) − 2𝑥𝑦1
′(𝑥)) 

From here, we must explore two scenarios with the value of c. First, assume 𝑐 = 0, and then 

solve the above homogeneous ODE to see if there exist two linearly independent solutions 𝑦1(𝑥) 
and 𝑦2(𝑥) = 𝐸2(𝑥) . Linear dependence occurs if 𝑦2(𝑥) turns out to be a multiple of 𝑦1(𝑥). Then 

we must choose 𝑐 = 1 to solve for 𝑦2(𝑥). 

For example, assume 𝑟1 = 3.5 and 𝑟2 = 1.5. If 𝑦1(𝑥) is already solved, then: 

𝑦1(𝑥) = 𝑥
3.5(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯) 

Assume for 𝑐 = 0, we get 

𝑦2(𝑥) = 𝑥1.5(𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 +⋯) 

If 𝑏0 ≠ 0 𝑜𝑟 𝑏1 ≠ 0, then 𝑦1(𝑥) and 𝑦2(𝑥) are surely linearly independent and we are done. 

Otherwise we have 𝑦2(𝑥) = 𝑥1.5(𝑏2𝑥
2 + 𝑏3𝑥

3…) = 𝑥3.5(𝑏2 + 𝑏3𝑥 … ) = 𝑦1(𝑥). Then we need 

to choose  𝑐 = 1 to solve for 𝑦2(𝑥) as in Case 2 with the repeated root. 
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Section V. Conclusion 

The Laurent series are central to complex analysis and its applications. Although the residue of 

some functions can be found easily with well-known formulas, this is not true in general. For 

example, for a function with an essential singularity—where no such easy formula exists—the 

Laurent expansion is the only way to determine the function residue at such a singularity. The 

residues found through the Laurent series will greatly simplify complex integration, which can 

be applied in many fields outside of pure mathematics. A similar series expansion called the 

Frobenius method is also useful in solving second-order ordinary different equations with 

singularities. 
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