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ABSTRACT 

Biodiversity is important for ecosystem health and sustainability, especially in the current, 

rapidly changing climate. Understanding the underlying causes behind morphological variation 

will allow for more accurate predictions about how a population will respond to climate 

change, and potentially yield better natural resource management strategies. Achyrachaena 

mollis is an annual, self-fertilizing, a range-limited, endemic species found in Northern California 

and Southern Oregon. This species depends primarily on wind seed dispersal for gene flow, 

making it a good study species in seed dispersal experiments. Additionally, A. mollis is more 

readily influenced by changes in its environment than a perennial due to its annual nature. In 

this study, I analyzed morphological variation among eleven populations of A. mollis seeds 

against variation in both chloroplast DNA (cpDNA) haplotypes and environmental factors. 

Morphological seed traits varied significantly between populations (P < 0.01, N = 1,181), 

providing material for selection and evolution. Morphological variation was found to correlate 

with cpDNA variation (P < 0.10). This indicates that morphological diversity is likely the product 

of long-term cycles of mutation and evolution. Additionally, morphological variation correlated 

with soil-clay content (P < 0.05), likely due to availability of water and nutrients. 
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INTRODUCTION 

For centuries, humans have pondered the source of phenotypic diversity among organisms. 

Diversity is a key component of healthy ecological systems at all levels of biological 

organization. At the community level, species interact to exchange resources. Within- and 

among-populations, diversity provides material for selection and adaptation. Diversity is 

evident in populations both large and small, even when populations share most of their 

genome. This begs the question: is observable diversity due to genetic variation or phenotypic 

plasticity? Frequently, diversity is a combination of both genetic and environmental factors. 

Morphological diversity within- and among-populations could be explained by enduring cycles 

of mutation and evolution, leading to variation in an individual’s genotype. Moreover, 

morphological diversity could be the product of a more proximate response to a local 

environment in the form of phenotypic plasticity. Phenotypic plasticity is caused by varying 

gene expression, making it a more elastic response to one’s environment. Understanding the 

underlying causes behind morphological variation will allow for more accurate predictions 



about how a population will respond to climate change, and potentially yield better natural 

resource management strategies (Cochrane et al., 2015). 

Furthering our understanding of seed dispersal is also important due to increasing pressures of 

climate change on species’ habitat range and dispersal. To effectively predict how plant 

populations will react to rising temperatures and habitat loss, seed dispersal must be studied 

(Cochrane et al., 2015; Johnson et al., 2019). In response to climate change, plant population 

distributions are altered through range expansion and novel colonization. However, human 

modification of landscapes and fragmentation can disrupt these processes. This could present 

an advantage for species that utilize long-distance dispersal, as fragmentation can impede 

short-distance dispersal processes by creating low-quality habitat and physical barriers. Long-

distance dispersal is especially important in the current climate due to its role in maintaining 

gene flow across populations, colonization of novel locations, and range expansion (Bacles et 

al., 2006). Maintaining gene flow across populations enhances diversity within populations and 

reduces inbreeding. Long-distance dispersal may also lead to population establishment and 

range expansion (Chybicki et al., 2018), which are vital tools in the fight against habitat loss and 

fragmentation. 

Wind dispersal (anemochory) is one dispersal syndrome associated with long-distance seed 

movement. In most wind dispersal experiments, traits of the parent plant have been the 

primary focus; morphological traits of individual seeds are not observed closely. Some 

experiments have considered the height of the parent plant from which seeds disperse  

(Johnson et al., 2019) or the mass of seeds (Millberg et al., 2009; McWilliams et al., 2020) with 

regards to seed dispersal, while others ignore morphological characteristics altogether. Greater 

morphological diversity within- and among-populations allows for greater adaptive advantage 

in response to climate change and other selective pressures. Morphological traits may be 

affected by genetic or environmental characteristics acting upon an individual or a population. 

Morphological seed traits such as pappus diameter, pappus-achene angle, and wing width are 

likely to affect a seed’s potential for dispersal, as these traits will facilitate wind dispersal. The 

drag and vortex created by a seed’s pappus will affect its flight ability. These characteristics are 

influenced by its size, shape, and porosity (Cummins et al., 2018). However, there are many 

variables that will affect seed dispersal ability. At the local scale, these factors include seed-

release height (Nathan et al., 2002; Johnson et al., 2019), abscission force (Treep et al., 2018), 

seed morphology (Nathan et al., 2002; Andersen, 1993), and small-scale turbulence (Nathan et 

al., 2002). At the regional scale, dispersal is influenced by landscape features (Grasty et al., 

2020), meteorological events, and regional wind patterns (Treep et al., 2018). 

Achyrachaena mollis is a range-limited, endemic species found primarily in Northern California. 

Due to a reduced corolla and frequent autogamous self-reproduction strategy, A. mollis 

experiences limited pollinator activity, and gene flow is primarily dependent on seed dispersal 



(Jepson, 1975; Munz et al., 1968). Information about the seed dispersal strategies of A. mollis is 

lacking, probably due to its limited distribution. A. mollis is most likely wind dispersed, as it has 

a large, robust pappus, seen in many other wind-dispersed species (e.g. many members of 

Asteraceae family). A. mollis  is an adequate study species in research regarding climate change, 

as it is an annual herb. Annual herbs have shorter generation times, expediting evolution and 

making them more readily influenced by changes in the environment than perennials. 

In this study, I used a collection of morphological measurements in conjunction with chloroplast 

haplotype diversity and various environmental characters to explore patterns between 

morphological, genetic, and environmental variation. My aim is to determine whether variation 

in among-population seed morphology and subsequently, dispersal, is influenced by genetic or 

environmental variables. If morphological variation among populations is more heavily 

correlated with chloroplast haplotype frequencies, then chloroplast genotypic variation is most 

likely the driver behind morphological diversity of seeds. If morphological variation among seed 

populations is better predicted by spatial heterogeneity and environmental variables, then 

phenotypic plasticity would be a more likely predictor of phenotypic diversity of seeds. 

However, I expect to see a combination of these two processes influencing seed morphology 

variation. 

 

METHODS 

Data Collection 

Seeds of Achyrachaena mollis were collected from areas surrounding Medford, Oregon, 

including the unique geological feature; the Table Rocks, which are mesas in the Rogue River 

Valley. Seeds were collected from sixteen separate locations of A. mollis at varying distances 

across a nine-hundred square-kilometer study range, each representing independent 

populations (Fig. 1). Ten plants from each of sixteen populations were selected, and ten to 

twelve seeds were collected from each plant.  

Seed morphological features were imaged and measured, including: pappus-achene angle 

(degrees), long wing length (cm), short wing length (cm), long wing width (cm), short wing 

width (cm), pappus diameter (cm), and achene length (cm; Fig. 2). These seeds were placed 

under a microscope and photographed at 7.1 total magnification using the software Image Pro 

Plus by Media Cybernetics. Measurements were taken from two directions: lateral and 

posterior (Fig. 2). A total of 1,614 seeds were measured, with approximately 75% of seeds 

measured by one researcher, and 25% measured by another. Seed mass (mg) was determined 

by weighing all seeds from one individual and then dividing by the number of seeds collected. A 

subset of seed populations from eleven populations was used in the following analyses (n = 

1,181). 

http://www.mediacy.com/imageproplus
http://www.mediacy.com/imageproplus


Chloroplast DNA (cpDNA) was utilized due to its highly conserved nature, allowing the 

inheritance of mutations to be tracked. Additionally, cpDNA is maternally inherited, so any gene 

flow seen represents seed dispersal independent of pollen movement. Chloroplast DNA was 

isolated and quantified using procedure described in Grasty et al. (2020). Population-level 

cpDNA was pooled in an equimolar fashion and sequenced, in addition to single-sample 

libraries. Samples were sequenced by Oregon Health and Science University (OHSU), Massively 

Parallel Sequencing Shared Resource (MPSSR) in Portland, Oregon, USA. 

 

 

Figure 1: This map depicts populations sampled in and around Medford in southern Oregon. Blue circle 
markers delineate sites included in the seed morphological analysis, and green square markers represent 
populations where both seeds and leaf tissue for cpDNA extraction were collected. 

 

 



Quantifying Morphological Variation 

The dispersion of each morphological trait was displayed for each population using box-and-

whisker plots. Irregular measurements were identified as data collection errors and removed 

(four seeds were removed in total). Morphological variation data was aggregated by averaging 

the morphological traits of one individual together, then using these data to find overall 

population averages. Significant morphological variation between populations was identified 

using the ANOVA function from the R stats package v3.6.3. 

A Principle Components Analysis (PCA) was used to measure variation of all seed traits among 

populations. Variation was described using the distance to centroid of the graph. The vector 

length was found by applying the Pythagorean Theorem to the centroid positions of each 

population (√𝑥2 + 𝑦2). This distance represents the overall variation of morphological traits; as 

the distance increases, the morphological differentiation increases. 

 

 

Genetic Diversity Analysis 

Population diversity among populations was quantified using haplotype frequencies obtained 

from chloroplast DNA. Single nucleotide polymorphisms (SNPs) were analyzed by the program 

CallHap to identify unique haplotypes (Kohrn et al., 2017). Genetic differentiation was 

measured using haplotype diversity in terms of expected heterozygosity (Hs) using the 

adegenet R package v2.1.2 (Jombart, 2008) for each of eleven populations. Correlation between 

Hs values and morphological variation was identified using a Generalized Least Squares (GLS) 

model from the nlme R package v3.1-144 (Pinheiro, 2017).  

Figure 2: Diagrams of seed measurements, where A is achene length, B is long wing length, C is short 
with length, D is pappus-achene angle, E is pappus diameter, G is short wing width, and F is long wing 
width. 



Environmental Diversity Analysis 

Environmental factors were evaluated using ArcGIS v10.7 to examine spatial heterogeneity that 

may influence phenotypic plasticity of A. mollis. Environmental factors included soil moisture, 

clay content of soil, elevation, average annual precipitation, tree canopy, and average annual 

temperature. Soil data were supplemented by Natural Resources Conservation Service (NRCS) 

public databases. Elevation data were obtained from the Oregon Geospatial Enterprise Office. 

Tree canopy data were obtained from the National Land Cover Database (NLCD) United States 

Forest Service (USFS) Tree Canopy Change (CONUS). Precipitation and temperature data were 

obtained from the Prism Climate Group (OSU). GLS models were used to determine correlations 

between environmental variables and morphological variation. Univariate and bivariate 

combinations were used for analysis of environmental variables. 

Habitat suitability was evaluated using Maxent (Phillips, 2006). Population location data were 

supplemented by the Consortium of Pacific Northwest Herbaria. Variables included in the 

Maxent model were clay composition, average annual precipitation, average annual 

temperature, and percent soil moisture. Several different models were tested for habitat 

suitability, including Linear, Linear-Quadratic, Linear-Hinge, Quadratic Hinge, and Linear-

Quadratic models, which are recommended for small sample sizes. Ultimately, a Hinge model 

was determined as the best fit using the area under the curve (AUC) metric and was compared 

to morphological variation using a GLS model. 

  

RESULTS 

Figure 3: PCA of population-level seed morphology shows variation among populations. Each group color denotes 
a unique population.  



Morphological traits showed significant variation among populations (Table 1; Fig. 3). 

Comparisons of each individual morphological trait across all populations in an ANOVA were 

significant (p-value < 0.01, df = 14, n = 1,181). Genetic diversity (Hs) and morphological 

variation were slightly correlated (p = 0.067) during GLS analysis. Morphological variation 

correlated with soil clay content (p = 0.040; Table 2) when analyzed with GLS. However, all 

other environmental variables showed no correlation with morphological variation. Habitat 

suitability (Maxent) analysis with GLS also showed no correlation with morphological variation 

(p = 0.24). 

Table 1: Population averages of all eight morphological traits. SWL: short wing length (cm); LWL: long 
wing length (cm); AL: achene length (cm); PAA: pappus-achene angle (degrees); PD: pappus diameter 
(cm); LWW: long wing width (cm); SWW: short wing width (cm). 

Population SWL 
(cm) 

LWL 
(cm) 

AL 
(cm) 

PAA 
(degrees) 

PD 
(cm) 

LWW 
(cm) 

SWW 
(cm) 

Mass 
(mg)  

ALST 0.467 0.859 0.682 127.70 1.33 0.200 0.143 0.556 

BLM 0.428 0.839 0.646 126.61 1.27 0.190 0.133 0.480 

DEN 0.430 0.899 0.699 128.29 1.32 0.185 0.136 0.452 

DCR 0.437 0.806 0.669 128.37 1.26 0.186 0.133 0.542 

DR 0.508 0.948 0.735 113.87 1.49 0.188 0.140 0.942 

LTR1 0.468 0.920 0.688 118.69 1.42 0.191 0.138 0.595 

UTR2 0.486 0.943 0.730 129.35 1.38 0.193 0.155 0.529 

UR2 0.438 0.969 0.685 124.46 1.54 0.207 0.151 0.531 

UR3 0.494 0.870 0.650 126.11 1.43 0.198 0.148 0.577 

UW2 0.346 0.688 0.564 130.56 1.07 0.163 0.118 0.429 

WHS 0.464 0.860 0.684 122.19 1.39 0.182 0.143 0.525 

 

 

 

 

 

 

 

 



Table 2: P-values obtained from univariate and bivariate GLS analysis. Significant P-values are indicated 
in bold. 

Factor P-value 

Soil Moisture 0.1345 

Soil Clay Content 0.0404 

Elevation 0.3209 

Precipitation 0.8780 

Canopy 0.7607 

Temperature 0.4132 

Habitat Suitability 0.2389 

Genetic Diversity (Hs) 0.0674 

Soil Salinity + Clay Content 0.5644 

Soil Salinity + Elevation 0.6795 

Soil Salinity + Precipitation 0.8814 

Soil Salinity + Tree Canopy 0.9442 

Soil Salinity + Temperature 0.8135 

Clay Content + Elevation 0.4344 

Clay Content + Precipitation 0.4237 

Clay Content + Tree Canopy 0.7222 

Clay Content + Temperature 0.4927 

Elevation + Precipitation 0.7831 

Elevation + Tree Canopy 0.5721 

Elevation + Temperature 0.4237 

Precipitation + Canopy 0.9166 

Precipitation + Temperature 0.6296 

Canopy + Temperature 0.5721 

 

 

DISCUSSION 

Eight morphological seed traits were measured from eleven populations of Achyrachaena 

mollis across a nine-hundred square-kilometer range in Southern Oregon. Variation in these 

traits was compared to variation in cpDNA haplotype frequencies and environmental features 

to determine the underlying causes for morphological diversity. 

Morphological variation, seed dispersal, and climate change 

Achyrachaena mollis displayed significant seed morphological diversity among eleven 

populations (Table 1; Fig. 1). This is especially valuable in our rapidly changing climate, which 

threatens the biodiversity and sustainability of many ecosystems. Biodiversity is crucial to 

ecosystem health and is threatened by human developments causing global warming, 

fragmentation of habitat, and habitat loss.  



Trait variation among populations provides an adaptive advantage against changing 

environments (Johnson et al., 2018). Phenotypic traits of seeds affect their ability for seed 

dispersal (Nathan et al., 2002; Andersen, 1993), indicating that different populations will vary in 

their ability to successfully colonize new environments, expand their ranges, and maintain gene 

flow among populations. Morphological seed traits have been observed to pose fitness trade-

offs. For example: larger seeds are associated with greater food storage, but lighter seeds are 

more buoyant easily dispersed via wind (McWilliams et al., 2020). If variation in mass and other 

morphological traits among populations are determined by local adaptation, it will provide 

material for selection and adaptation in changing environments. 

Genetic variation and phenotypic plasticity 

Morphological variation was marginally significant when correlated with genetic variation 

among populations (Table 2), indicating that morphological variation is may be due to enduring 

cycles of selection and evolution in contrast to a more short-term, plastic response to the 

environment. Morphological variation did not show significant correlation with any 

environmental variables except for soil-clay content (Table 2). This lack of correlation indicates 

that A. mollis has a limited plastic response to its environment: a potentially disadvantageous 

quality in the face of a rapidly changing climate. However, A. mollis also demonstrates short 

generation times due to its annual nature, providing a mechanism for rapid adaptation to a 

contemporary change in the environment. In contrast, perennials have longer generation times 

causing slower rates of mutation and evolution. 

Although morphological seed traits of A. mollis did not show correlation with most 

environmental variables, additional components could be considered, such as habitat 

fragmentation (due to roads or rivers) and local geography. Additionally, seed germination 

timing could be studied in the context of phenotypic plasticity, as it has been observed to 

correlate with environmental variation (McWilliams et al., 1967). 

Morphological variation and content of clay in soil 

Morphological variation showed a correlation with variation in soil-clay content (Table 2). Soil-

clay content has been observed to affect nitrogen concentration within soil (Castellano et al., 

2009). Nitrogen plays an important role in production of carbohydrates during photosynthesis, 

providing energy for the plant. Additionally, nitrogen is important for synthesis of proteins 

involved in plant structure and many other cell processes (Parnes, 2013). This nutrient provides 

a potential connection between morphological variation of seeds and content of clay in soil.  

Soil-clay content could also be responsible for impeding germination of seeds and increasing 

water availability to roots. Increasing water availability could lead to larger, healthier seeds. 

However, the natural stiffness of clay could pose challenges for infiltration of seeds into soil and 

seed germination. 

 



Conclusions 

Morphological seed traits among populations of A. mollis vary significantly, providing material 

for selection and adaptation to a rapidly changing climate. Morphological seed trait variation 

among populations correlates with variation in chloroplast haplotype frequencies, indicating a 

morphological variation is likely due to enduring cycles of selection and evolution. 

Morphological seed trait variation among populations also correlates with soil-clay content, 

likely due to availability of water and nutrients in combination with germination ability. Overall, 

information about the underlying causes of diversity among populations of A. mollis could be 

utilized for natural resource management and habitat conservation. 
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