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Abstract 

While professional developers have been encouraging teachers to plan for 

discourse around problem solving tasks as a way to orchestrate mathematically 

productive discourse (Stein, Engle, Smith, & Hughes, 2008; Stein, Smith, Henningsen, & 

Silver, 2009) no research has been conducted explicitly examining the relationship 

between the plans that teachers make for orchestrating discourse around problem solving 

tasks and the outcomes of implementation of those plans.  This research study is intended 

to open the door to research on planning for discourse around problem solving tasks. 

This research study analyzes how 12 middle school mathematics teachers 

participating in the Mathematics Problem Solving Model professional development 

research program implemented lesson plans that they wrote in preparation for whole-

class discussions around cognitively demanding problem solving tasks.  The lesson plans 

consisted of the selection and sequencing of student solutions to be presented to the class 

along with identification of the mathematical ideas to be highlighted in the student 

solutions and questions that would help to make the mathematics salient.  The data used 

for this study were teachers’ lesson plans and the audio-recordings of the whole-class 

discussions implemented by the teachers. 

 My research question for this study was: How do teachers’ written plans for 

orchestrating mathematical discourse around problem solving tasks influence the 

opportunities teachers create for students to reason mathematically?  To address this 

research question, I analyzed the data in three different ways.  First, I measured fidelity to 

the literal lesson by comparing what was planned in the ISAs to what was actually took 
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place in the implemented debriefs.  That is, I analyzed the extent to which the teachers 

were implementing the basic steps in their lesson (i.e. sharing the student work they 

identified, addressing the ideas to highlight and the planned questions).  Second, I 

analyzed the teachers’ fidelity to the intended lesson by comparing the number of high-

press questions in the lesson plans (that is, questions that create opportunities for the 

students to reason mathematically) to the number of high-press questions in the 

implemented discussion.  I compared these two sets of data using a linear regression 

analysis and t-tests.  Finally, I conducted a qualitative analysis, using grounded theory, of 

a subset of four teachers from the study.  I examined the improvisational moves of the 

teachers as they addressed the questions they had planned, building a theory of how the 

different ways that teachers implemented their planned questions affected the 

opportunities for their students to reason mathematically around those planned questions. 

 My findings showed that it was typical for the teachers to implement most of the 

steps of their lesson plans faithfully, but that there was not a statistically significant 

correlation between the number of high-press questions they planned and the number of 

high-press questions they asked during the whole-class discussions, indicating that there 

were other factors that were influencing the frequency with which the teachers were 

asked these questions that prompted their students to reason mathematically.  I 

hypothesize that these factors include, but are not limited to, the norms in the classrooms, 

teachers’ knowledge about teaching mathematics, and teachers’ beliefs about 

mathematics.  Nevertheless, my findings did show that in the portions of the whole-class 
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discussions where the teachers had planned at least one high-press question, they, on 

average, asked more high-press questions than when they did not plan to ask any.   

Finally, I identified four different ways that teachers address their planned 

questions which impacted the opportunities for students to reason mathematically.  

Teachers addressed their questions as drop-in (they asked the question and then moved 

on as soon as a response was elicited), embedded (the ideas in the question were 

addressed by a student without being prompted), telling (the teacher told the students the 

‘response’ to the question without providing an opportunity for the students to attempt to 

answer the question themselves) and sustained focus (the teacher sustained the focus on 

the question by asking the students follow-up questions). 
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Glossary of Terms 

 

Debrief, problem-solving – A whole-class discussion following the implementation of a 

problem-solving task in which students share their solution strategies and the 

teacher orchestrates the discussion to help students focus on the important 

mathematical ideas in the task. 

Design a Dartboard – One of the three problem-solving tasks the teachers in this study 

were required to implement as part of their Mathematics Problem Solving Model 

professional development experience.  The teachers implemented this task with 

their students, planning and orchestrating a whole-class discussion around the 

ideas in this task.  Please refer to Chapter 4, Task Analysis, for a detailed 

description of this task. 

Episode – Used in the analysis of a problem-solving debrief.  A portion of a problem-

solving debrief in which a planned question is being addressed.  A standard 

episode would occur when the teacher asks the planned question; a student (or 

multiple students) answers the question; and continues as long as the ideas 

generated by the question are being discussed.  An episode also can occur when 

the ideas in a planned question are being addressed, either by the teacher or a 

student, without the question first being asked by the teacher.     

High-press questions – Part of the question coding scheme developed for this research 

study that differentiated between high-press questions and low-press questions.  

There are questions planned and/or asked by the teacher that are intended to 
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encourage students to reason mathematically about the problem-solving task 

and/or the mathematical ideas present within the problem-solving task.  High-

press questions were identified both in the Instructional Sequence Analyses as 

well as in the implemented debriefs.  See Chapter 7, Research Sub-Question 2, for 

a description of this coding scheme. 

Implementation Fidelity Analysis (IFA) – Data analysis tool that was developed and 

used for this research study to gauge how closely teachers were implementing the 

Instructional Sequence Analyses (ISAs).  This data analysis tool focused 

specifically on (1) whether or not the student work identified in the ISA was 

presented, (2) whether or not the teacher addressed the planned questions within a 

segment, and (3) whether or not the mathematical ideas to highlight were 

addressed.  The Implementation Fidelity Analysis analyzes each segment in a 

problem-solving debrief separately, assigning a level of fidelity.  A faithful 

implementation of a segment is when the identified student work was presented, 

and both the planned questions and ideas to highlight were addressed.  A partially 

faithful implementation is when the student work was presented and either the 

idea to highlight was addressed or the identified questions were planned, but not 

both.  A non-faithful implementation of a segment is when either the student work 

was never presented or the student work was presented but neither the idea to 

highlight nor the planned questions were addressed. 

Instructional Sequence Analysis (ISA) – The lesson planning protocol that the teachers 

participating in the Mathematics Problem Solving Model professional 
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development used to plan for the problem-solving debriefs as part of the 

professional development.  The key features of the ISA were the selection and 

sequencing of student work to be presented during the problem-solving debrief, 

the identification of mathematical ideas to highlight for each piece of student 

work and questions to ask to help make the mathematics salient to the students 

during the debrief.  See Appendix A for an example of a blank ISA. 

Inquiry Oriented Teacher Analysis (IOTA) – A coding scheme to code teacher 

utterances.  In contrast to the question codes (see below), the IOTA coding 

scheme is intended to code most teacher utterances in the context of students 

discussing their mathematical thinking.  These codes are grouped into the 

subcategories of revoicing, telling, questioning, and managing.  The codes were 

used in research sub-question 3 to identify varying patterns in teacher discourse 

moves as the planned questions from the ISA were being implemented.  See 

Appendix E for the complete coding scheme. 

Intended Lesson - Part of my theoretical framework that differentiates between a literal 

lesson and an intended lesson.  The intended lesson is the opportunities for 

students to learn as planned within a lesson plan.  In my research study, the 

intended lesson is identified as the opportunities for students to reason 

mathematically based upon the nature of questions planned in the Instructional 

Sequence Analysis. 

Literal Lesson – Part of my theoretical framework that differentiates between a literal 

lesson and an intended lesson.  The literal lesson represents the specific steps 
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identified in a lesson plan.  In this research study, the literal lesson plan within the 

Instructional Sequence Analysis is identified as (1) present the identified piece of 

student work, (2) ask the planned questions, and (3) orchestrate the discourse to 

ensure that the planned ideas to highlight are being addressed.  These steps are 

repeated for each identified piece of student work.  This construct of a literal 

lesson plan was used to develop the Implementation Fidelity Analysis, which was 

used to answer research sub-question 1.   

Low-press questions – Part of the question coding scheme developed for this research 

study that differentiated between high-press questions and low-press questions.  

These are questions planned by the teacher that do not prompt students to reason 

mathematically.  They are primarily characterized as questions that prompt 

students to share their thinking without necessarily attending to the mathematics 

or short-response questions with a single correct response.  Low-press questions 

were identified in the Instructional Sequence Analyses, but not in the 

implemented debriefs.  See Chapter 7, Research Sub-Question 2, for a description 

of this coding scheme. 

Mathematical Problem Solving Model (MPSM) – The model for the professional 

development program that the teachers participated in as part of the larger 

research study that this study has drawn from.  The MPSM focuses on the use 

problem-solving tasks as a way to teach mathematics and the use of formative 

assessment to plan subsequent instruction.  See Chapter 3, Professional 

Development Description, for a complete overview of the program. 
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Question codes – A coding scheme developed for this research study, used to identify 

the nature of questions, both planned in the ISA and asked by the teachers in the 

problem-solving debriefs.  The codes identify the type of discourse the teachers 

are prompting their students to engage in during the problem-solving debrief (e.g. 

sharing their strategies, reasoning about errors in their strategies, making 

connections between strategies).  The codes fall into two separate categories: 

high-press questions and low-press questions.  Only the high-press question codes 

were used to analyze teacher questions and, consequently, not all teacher 

questions in the problem-solving debriefs were coded using the question codes.  

See Chapter 7, Research Sub-Question 2, for a description of this coding scheme 

and Appendix C for a description of all codes.  

Segment – The portion of a problem-solving debrief centered on an identified piece of 

student work.  A segment may be in reference to either the written portion of the 

ISA that is focused on a particular piece of student work or it may refer to the 

implemented portion of the problem-solving debrief in which that piece of student 

work is being discussed by the class.  In the ISA, a segment refers to an identified 

piece of student work along with the ideas to highlight and the questions to make 

the mathematics salient that the teacher recorded in conjunction with that piece of 

student work.  In the implemented problem-solving debrief, a segment begins 

when the teacher brings up the student work to be discussed (either by inviting the 

student to share or showing the work to the class without explicitly attributing the 

work to a particular student).  The segment continues as long as the student work 
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is under discussion.  A segment ends either when the teacher tells the student they 

can sit down, or the teacher brings up a new piece of student work to be 

discussed. 

Snack Shack – One of the three problem-solving tasks the teachers in this study were 

required to implement as part of their Mathematics Problem Solving Model 

professional development experience.  The teachers implemented this task with 

their students, planning and orchestrating a whole-class discussion around the 

ideas in this task.  Please refer to Chapter 4, Task Analysis, for a detailed 

description of this task. 

Spinner Elimination – One of the three problem-solving tasks the teachers in this study 

were required to implement as part of their Mathematics Problem Solving Model 

professional development experience.  The teachers implemented this task with 

their students, planning and orchestrating a whole-class discussion around the 

ideas in this task.  Please refer to Chapter 4, Task Analysis, for a detailed 

description of this task. 
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Chapter 1. Introduction and Theoretical Framework 

 

This research study is part of a larger NSF-funded research project
1
 validating the 

Mathematics Problem Solving Model (MPSM), which is a professional development 

program for middle school mathematics teachers designed by Education Northwest, a 

research laboratory in Portland, Oregon.  The MPSM promotes the use of cognitively 

demanding problem-solving tasks and whole-class discussions around problem-solving 

tasks (referred to as problem-solving debriefs) as a way for students to deepen their 

mathematical understanding.  Before introducing my research questions, I will provide 

some background on the use of discourse around problem-solving tasks to promote 

mathematical learning.  I also describe a protocol for discourse planning that was used by 

the teachers in the program and is central to my research study.  This discussion is 

followed by an introduction to my primary research question and my three sub-questions.  

After introducing my theoretical framework, I will discuss the three sub-questions in 

greater detail followed by an explanation of how these three questions are intended to 

address my primary research question. 

                                                           
1
 NSF DRL 0437612 The opinions expressed in this research project are those of the authors and do not 

necessarily represent the views of the National Science Foundation. 
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Background and Research Questions 

I open this chapter with some background information about whole-class 

discussions around problem-solving tasks as this forms the basis for my research study.  

This section is concluded with an introduction to my research questions. 

Discourse around Problem Solving Tasks as a Means to Promote 

Mathematical Learning.  From Schoenfeld’s research on the teaching of mathematical 

problem solving (1979) to Cognitively Guided Instruction (Carpenter, Fennema, Franke, 

Levi, & Empson, 2000) the potential role of problem solving in the mathematics 

classroom has developed from a skill to be learned on its own to a vehicle for 

mathematical learning to take place.  One way for students to learn mathematics through 

problem-solving tasks is for students to share their problem-solving strategies during a 

whole-class discussion while the teacher scaffolds the discourse, creating opportunities 

for students to engage in thinking about mathematics and mathematical problem solving. 

Discourse around problem-solving tasks that promotes learning is characterized by 

students making connections between strategies, extending and generalizing solutions, 

making conjectures, verifying and modifying claims on the basis of mathematical 

evidence, and making sense of mathematical ideas (Hiebert, Carpenter, Fennema, Fuson, 

Wearne, Murray, Olivier, & Human, 1997).   

One of the many roles for teachers in orchestrating discourse is the use of 

questions to promote mathematical reasoning.  Such questions include asking students to 

provide justification for the strategies they used (Hiebert et al., 1997; Kazemi & Stipek, 
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2001), questions that lead students to make sense of the mathematical ideas used to solve 

a task (Boaler & Humphreys, 2005; Sherin, 2002), questions that prompt students to 

make connections between strategies (Hiebert & Wearne, 1993; Kazemi & Stipek, 2001), 

and questions that encourage students to formulate and prove conjectures and 

generalizations around the mathematics in the task (Fraivillig, Murphy, & Fuson., 1999; 

Hiebert, & Wearne, 2003; Yackel & Hanna, 2003).  Research has shown that students 

demonstrate positive learning gains in classrooms where the teacher regularly requires 

students to reason mathematically (Cobb, Wood, Yackel, Nichols, Wheatly, Trigatti, & 

Perlwitz, 1991; Silver & Stein 1996; Carpenter, Fennema , & Franke, 1997; Hiebert 

2003). 

Students sharing their problem-solving strategies in the context of whole-class 

discussions is one way that teachers can promote new mathematical thinking around a 

problem-solving task (Hiebert, 2003), creating opportunities for students to engage in 

rich mathematical discourse as described above.  However, students sharing solution 

strategies as a way to generate worthwhile discourse comes with the caveat that students 

randomly volunteering to share how they solved a task may lead to limited opportunities 

for students to engage in mathematical thinking around a problem-solving task because 

the students, on their own, do not necessarily recognize the mathematical nature of the 

tasks they are engaging with (Leinhardt, 2001; Nathan & Knuth, 2003; Stein, Engle, 

Smith, & Hughes, 2008; Williams & Baxter, 1996).  The teacher’s role in orchestrating 

discourse around a mathematical problem-solving task is a critical one as it is the 



4 

 

teacher’s responsibility to create opportunities for students to reason mathematically 

about the problem-solving task (Chazan & Ball, 2001).   

Planning for Discourse around Problem-Solving Tasks.  Professional 

developers have proposed that teachers may create a platform upon which worthwhile 

mathematical discourse is more likely to emerge by deliberately planning for the whole-

class discussion following the implementation of a problem-solving task (Stein, Engle, 

Smith, & Hughes, 2008; Stein, Smith, Henningsen, & Silver, 2009).  This may be done 

by identifying which solution strategies will be discussed (selecting), determining the 

order in which those solution strategies will be presented so as to build upon students’ 

understanding and move forward a mathematical agenda (sequencing), and planning 

appropriate questions to help students make connections amongst each other’s’ strategies 

and to the underlying mathematical ideas in the task.  My research study analyzed the 

questions that teachers planned for whole-class discussions.  Additional information 

about the process of planning for discourse around problem-solving tasks may be found 

in Chapter 3, Professional Development Description. 

Once a sequencing of student work is identified, the teacher plans questions 

intended to move forward the mathematical discourse.  Planning for mathematical 

discourse has the potential to yield positive results since “rather than having 

mathematical discussions consist of separate presentations of different ways to solve a 

particular problem, the goal is to have student presentations build on each other to 

develop powerful mathematical ideas” (Stein et al., 2008, p. 330).  Planning questions to 

ask during the whole-class discussion is a way for the teacher to be deliberate about 
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orchestrating the discourse, focus the discourse on the aspects of the students’ problem-

solving strategies that is relevant to the mathematical ideas the teacher hopes will emerge.   

For the remainder of my dissertation, I will be referring to these whole-class 

discussions around problem-solving tasks as problem-solving debriefs.  While this 

language is not widely used in mathematics education communities, it was the language 

that was used in the professional development program from which I have drawn my 

data.  The term debrief is appropriate to describe this type of discourse in which students 

are coming together as a class to meaningfully discuss their thinking and reasoning 

around a problem-solving task because it refers to students reflecting upon their 

experiences with a problem-solving task in meaningful ways.   

 

The Research Questions 

While it has been proposed that preplanning questions will lead teachers to 

orchestrate more effective discussions than if they were to lead a whole-class discussion 

without planning ahead of time what questions they will ask (Stein et al., 2008), no 

research has been done to investigate the impact that preplanning questions can have on 

problem-solving debriefs.  This research study addresses this gap in the literature by 

focusing on the relationship between the questions teachers preplan for discourse around 

mathematical problem-solving tasks and what actually takes place during the 

implemented problem-solving debrief.  I did this by analyzing the enactment of teacher-

written plans for whole-class discussions around a problem-solving task, examining the 

impact that preplanned questions had on the opportunities that teachers created for their 
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students to engage in meaningful mathematical discourse.  The research question for this 

study is:  

How do teachers’ written plans for orchestrating mathematical discourse around 

problem-solving tasks influence the opportunities teachers create for students to 

reason mathematically?   

This question will be addressed with three sub-questions: 

1. Do teachers enact their written plans for problem-solving debriefs in the 

classroom as they had planned prior to implementation? 

2. Is there a correlation between the number of questions teachers plan that promote 

mathematical reasoning around problem-solving tasks and those that they actually 

ask during whole-class discussions? 

3. How do teachers’ improvisational moves during whole-class discussions 

influence the enactment of the questions that were planned by the teacher prior to 

implementation? 

This dissertation analyzed how the teachers participating in the MPSM program 

implemented written plans that they created for mathematical problem-solving tasks, with 

a particular focus on the questions the teachers planned. Below, I will discuss each of the 

research sub-questions and explain how each of these questions contributes to my 

primary research question.  But first, I will briefly describe some highlights of the MPSM 

professional development program that are relevant to my research to provide some 

background (for a complete description of the MPSM professional development program, 

please refer to Chapter 3, Professional Development Background). 

Implementation of Problem-Solving Debriefs.  As part of the MPSM 

professional development research experience, the participating middle-school 
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mathematics teachers were provided with a set of problem-solving tasks that were 

considered to be cognitively demanding for students in middle school mathematics 

courses.  The teachers were required to implement these tasks in their classrooms (see 

Chapter 4, Task Analysis, to see the tasks implemented by the teachers used in this 

study).  After the students had time to work on the tasks in class, the teachers collected 

their students’ written work and used their solutions to plan a problem-solving debrief.  

The teachers analyzed their students’ work; selected pieces of student work to be shared 

with the whole class that would bring out the important mathematical ideas in the task; 

planned a specific order in which the student work would be presented; identified the 

important ideas to be highlighted for each piece of student work; and planned questions 

to be asked to help make the mathematics salient.  The teachers documented these plans 

in a planning form called an Instructional Sequence Analysis (ISA).  For an example of 

an ISA, see Appendix A. My research study examined the MPSM teachers’ uses of their 

ISAs during the MPSM problem-solving debriefs, with a particular focus on their 

planned questions.  In the next section, I discuss my theoretical framework.  This is 

followed by a discussion of my three sub-questions, briefly highlighting the theoretical 

framework and data analysis methods used to answer each question.  For a complete 

discussion of the methods used to address the research questions, see Chapter 5, Method. 

 

 

Theoretical Framework 

My primary research question is: How do teachers’ written plans for orchestrating 

mathematical discourse around problem-solving tasks influence the opportunities 
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teachers create for students to reason mathematically?  This question focuses on what the 

teacher planned in the ISA and how that plan was implemented in the problem-solving 

debrief.  To guide my research, I have adapted two frameworks from research on 

intended and enacted curriculum to fit the perspective of teachers’ self-written lesson-

plans.  While research on intended and enacted curriculum frequently refers to 

curriculum as national, state, district, or school-level standards (Porter, 2004; Tarr, Reys, 

Reys, Chavez, Shih, & Osterlind 2008), I am not focusing on any of these definitions of 

curriculum enactment to guide my research because, for my research study, I examined 

how teachers enacted a single lesson (as opposed to, for example, an entire unit in a 

textbook).  To support my research on teacher planning and implementation, I adapted 

two frameworks for intended and enacted curriculum that focused on the implementation 

of individual lessons.  Also, I focused on theoretical frameworks that perceived the 

teacher as the primary decision-maker concerning what would take place in the 

classroom, both in the planning phase and the implementation phase.  Below, I discuss 

these two frameworks and then describe my own ‘hybrid’ framework that blended these 

two frameworks together for the purpose of making sense of teachers’ planning for and 

implementation of a problem-solving debrief. 

The Temporal Phases of Curriculum Implementation.  Stein, Remillard, and 

Smith (2007) suggested a framework in which intended curriculum refers to the teacher’s 

personal plans for instruction.  In their framework, the written curriculum (i.e. textbooks 

and teaching materials) influences the teacher’s intended curriculum.  As teachers use 

curricular materials to plan for what takes place in the classroom, the teachers must make 
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important decisions about what to cover within a text, how to interpret curricular 

materials, and what aspects of the curriculum to emphasize.   In turn, when teachers 

implement their intended curriculum in the classroom, how that curriculum plays out in 

the classroom is going to look different from what had been originally intended.  What 

students experience with respect to the enacted curriculum is subsequently going to 

influence what the students learn.  Finally, how the enacted curriculum plays out in the 

classroom and what students come to learn as a consequence of the enacted curriculum is 

going to, in turn, influence the plans the teacher makes in subsequent lessons.  The boxes 

in figure 1 illustrate these temporal phases.  This framework demonstrates the teacher as 

central to the implementation process by bridging the gap between the written curriculum 

and the enacted curriculum with the intended curriculum.   

 
Figure 1. The temporal phases of curriculum implementation (Stein et al. 2007, 322) 

 

Research has shown that there are several influencing factors that may contribute 

to the variations that exist between a written, intended, and enacted curriculum (Stein et 
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al., 2007).  What happens in these phases of implementation is influenced by teachers’ 

beliefs, knowledge, and professional identity, among other contributing factors (see, for 

example, Stein, Baxter, & Leinhardt, 1990; Cohen, 1990; Spillane, 1999; 1997; 

Remillard & Bryans, 2004).  This framework supports how I think about teachers’ 

planning and implementation of a problem-solving debrief because it takes into 

consideration not only the influences that teachers have on the planning of a lesson, but 

also its implementation, recognizing that both the intended curriculum and enacted 

curriculum are influenced by teacher decisions.  While this research study recognizes that 

teachers’ beliefs, knowledge, and professional identities influence how teachers enact a 

curriculum in their classroom, this study does not explicitly study these factors. 

Literal versus Intended Lesson.  The other framework that was useful for 

developing my own theoretical framework focused on the lesson plan as central to their 

analysis of the enacted curriculum.  In their research on teachers’ fidelity to a reform-

oriented curriculum, Brown, Pitvorec, Ditto, and Kelso (2009) interpreted a textbook 

lesson as having both a literal lesson and an intended lesson.  The literal lesson plan 

represents the steps laid out by the textbook authors in a written lesson plan for the 

teacher to complete during the enactment of the lesson.  A lesson step might be an 

instruction for students to work on a particular problem in a small group, or it may be a 

prompt for the teacher to pose a particular question for the class to discuss as a whole.  

The intended lesson plan represents the learning opportunities that the textbook author 

hopes the lesson will bring forth.   
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This perspective of a literal lesson versus an intended lesson has been used in 

various studies on fidelity of implementation, although the interpretation of what counted 

as a literal lesson or an intended lesson varied between studies. For example, Porter 

(2005) viewed academic content as both the topics to be covered and the cognitive 

demand linked to those topics.  Tarr et al. (2008) measured both how much the teachers 

were using standards-based textbook materials and the extent to which the teachers were 

establishing a learning environment consistent with the tenets of the NCTM Principles 

and Standards for School Mathematics (2000).  Brown et al. (2009) perceived authors of 

a textbook lesson as making decisions both about what aspects of the lesson content to 

cover, and also the opportunities to learn that content (opportunities to reason about 

mathematics and opportunities to communicate about mathematics).  I used this idea of a 

literal lesson and an intended lesson to allow me to examine how teachers implemented 

their ISAs from contrasting perspectives.  I will describe this more, following the 

description of the theoretical framework that I developed for my research study using 

these Stein et al.’s temporal phases for curriculum implementation (2007) and Brown et 

al.’s framework for literal versus planned lessons. 

A Hybrid Framework. For the theoretical framework that guided this study, I 

blended together Stein et al.’s (2007) framework of the temporal phases of curriculum 

enactment with Brown et al.’s (2009) framework for literal versus intended lesson.  I 

replaced the Teacher’s Intended Curriculum in Stein et al.’s framework with the 

Teacher’s Literal Lesson and Teacher’s Intended Lesson (see figure 2 below).  Another 

key difference between Stein et al.’s framework for the temporal phases of curriculum 
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implementation and my own framework for lesson implementation is that their 

framework focused on teachers implementing a written curriculum by adapting it to fit 

their own plans for classroom instruction, while my research study is focused on teachers 

implementing plans that they wrote themselves.  A written curriculum may refer to 

standards that the teachers are expected to adhere to or textbook lessons that they are 

attempting to implement.  While such curriculum usually would be directly influencing 

the intended lesson, the lessons developed in my research study are not being directly 

influenced by such outside sources.  As a result, the lines connecting the Written 

Curriculum to the Teacher’s Intended Lesson and Teacher’s Literal Lesson are dashed; 

indicating that the influences that the teachers’ curricula that they are using in their own 

classrooms may have on these lessons is going to be indirect.  I also changed the 

language from curriculum to lesson to indicate that I was specifically thinking about 

these temporal phases at the lesson level and, in particular, the enactment of teachers’ 

self-written lesson plans.  Note also, that, although it is not included in figure 2, I still 

consider Stein et al.’s explanations for transformations of the lesson as an important 

element of my framework. 

 
Figure 2. My framework for teacher-written lesson plans for discourse around problem-solving tasks 
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For my own research, I was interested in the fidelity with which the teachers were 

implementing their own ISAs.  To do this, for research sub-question 1, I examined the 

extent to which the teachers followed the basic components of their lessons (for example, 

sharing the pieces of student work that they said they would and asking the questions 

they had planned to ask).  This part of my analysis explicated the teachers’ fidelity to the 

literal lesson.  For research sub-question 2, I analyzed the teachers’ planned questions 

with respect to the opportunities the teachers had intended to create for students to engage 

in mathematical reasoning and compared those to the questions teachers asked during the 

implemented problem-solving debrief.  This looked at fidelity to the teachers’ intended 

lesson.  Finally, in research sub-question 3, I looked at how the teachers implemented 

their planned questions to understand how the teachers’ utterances transformed the way 

that the students interacted with the planned questions.  In Chapter 5, Method, I describe 

in greater detail how the analysis I conducted for these sub-questions each addressed a 

different element of my theoretical framework.   

 

Discussion of the Research Questions 

Research Sub-Question 1: Do teachers enact their written plans for problem-

solving debriefs in the classroom as they had planned prior to implementation?  This 

sub-question is intended to address the teachers’ fidelity to the literal lesson.  Although 

the teachers were required to follow up the implementation of an MPSM problem-solving 

task by creating an ISA and orchestrating a problem-solving debrief using the ISA, there 

is no guarantee that the enactment of the ISA will completely resemble what was laid out 

in the document.  For example, a teacher may not share every piece of student work that 
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was identified in the ISA.  Reasons why this may occur include insufficient time, absence 

of a presenting student, or because the discourse took a different direction than originally 

intended and the teacher chose not to implement the remainder of the ISA as planned.  

Also, a teacher may have a student share their work as planned in the ISA, but not 

address the questions as planned. 

Using Brown et al.’s (2009) concept of fidelity to the literal lesson, research sub-

question 1 is intended to address the extent to which the teachers followed the basic steps 

of their ISAs, or literal lesson.  The analysis for research sub-question 1 addressed 

whether or not the teachers actually presented the student work, asked the planned 

questions, and addressed the identified mathematical ideas to highlight as described in the 

ISA.  This analysis was useful for identifying whether or not the teachers showed 

evidence of attempting to use the ISAs as planned.  This was important for this research 

study because, if the teachers did not follow the ISA (or parts of the ISA), then it may be 

assumed that the plans in the ISA did not influence what took place during the problem-

solving debriefs.  The analysis for research sub-question 1 was used to inform the 

analyses for research sub-questions 2 and 3 by showing which parts of their ISAs the 

teachers did not use (for example, a piece of student work that was never shared).  A 

detailed description of the analysis and results for research sub-question 1 may be found 

in Chapter 6. 
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Research Sub-Question 2: Is there a correlation between the number of 

questions teachers plan that promote mathematical reasoning around the problem-

solving task and those that they actually ask during the whole-class discussion? This 

sub-question is intended to address the teachers’ enactment of their intended lesson, or 

the opportunities the teachers included in their ISA for students to reason mathematically. 

Research shows that, in order for students to engage in discourse in which they are 

reasoning mathematically, teachers need to promote that level of engagement by asking 

pressing questions, encouraging students to provide mathematical justification for their 

problem-solving strategies, address errors and misconceptions in their work, and make 

connections between problem-solving strategies and the mathematics within the task 

(Boaler & Humphreys, 2005; Cobb et. al., 1997; Fraivillig and Murphy, 1999; Hiebert & 

Wearne, 1993; Kazemi & Stipek, 2001).  In this research study, I used Kazemi and 

Stipek’s conceptualization of high-press and low-press classrooms to characterize 

questions that promote mathematical reasoning (2001).  In my study, I made the 

assumption that if teachers ask questions intended to elicit mathematical reasoning from 

the students in their classrooms, then the teachers are creating opportunities for their 

students to reason mathematically.  In this part of my analysis, I focused on the teachers’ 

intended lesson, that is, the opportunities for students to reason mathematically that were 

present in the planned questions in the ISA. 

Based upon this assumption that, if teachers want their students to be reasoning 

mathematically, teachers should be asking high-press questions, I posited that the more 

high-press questions a teacher plans for in the ISA, the more high-press questions that 
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teacher will ask during the problem-solving debrief, therefore creating more opportunities 

for students to reason mathematically.  In research sub-question 2, I test this hypothesis, 

comparing the number of high-press questions planned in the ISA to the number of high-

press questions asked in the implemented problem-solving debrief.  To do this, I created a 

coding scheme to code the questions teachers planned in their ISAs, differentiating 

between high-press questions and low-press questions.  I also use this coding scheme to 

identify the high-press questions the teachers asked in their implemented problem-solving 

debriefs.  Descriptions of the analysis and results for research sub-question 2, including a 

discussion of the framework used to distinguish between high-press and low-press 

questions and a description of the coding scheme may be found in chapter 7. 

Research Sub-Question 3: How do teachers’ improvisational moves during 

whole-class discussions influence the enactment of the questions that were planned 

by the teacher prior to implementation?  It is widely recognized that what takes place 

in the classroom is going differ from what was initially planned, whether it is based upon 

the implementation of published curricular materials, or teachers’ self-written lesson 

plans (Lee & Takahashi, 2011; Remillard, 1999; Schneider, Krajcick, & Blumenfeld, 

2005; Superfine, 2009).  The discrepancies that inevitably occur are influenced by 

“teachers’ beliefs and knowledge, teachers’ orientation towards a curriculum, teachers’ 

professional identity, teacher professional community, organizational and policy context, 

classroom structures and norms, [and] curriculum features” (Stein, Remillard, & Smith, 

2007, p. 322).  As a result of these and other influences, it is logical to assume that the 

teacher will make changes and alterations to what was planned in the ISA.  My final 
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research sub-question is intended to complement research questions 1 and 2 by providing 

a deeper look into the enacted lesson, or what is actually taking place as the teachers are 

implementing their ISAs.   

Keeping in line with the thrust of research sub-question 2, this final data analysis 

is focused specifically on how the teachers enacted the questions they planned in their 

ISAs.  I used grounded theory (Strauss & Corbin, 2007) to examine how the planned 

questions were implemented by the teachers.  I developed and tested some theories to 

help explain how these variations in implementation might affect the ways in which the 

students experienced the planned questions and how this might impact (positively or 

negatively) the opportunities the students had to reason mathematically.  To help me with 

this analysis, I used a second coding scheme to code teacher utterances.  I used the 

Inquiry-Oriented Teaching Analysis (IOTA) codes developed by Rasmussen, Kwon, and 

Marrongelle (2009).  This coding scheme was useful for this stage of the analysis because 

it includes codes for all types of teacher utterances (e.g. questions, telling, revoicing, 

managing).  Also, it was developed to be used in the context of students attempting to 

share their thinking and reasoning about mathematical tasks and ideas, which is the type 

of mathematical activity we expected students to be engaged in during a problem-solving 

debrief.  Chapter 8 provides a detailed description of the analysis and results for research 

sub-question 3.  The complete IOTA coding scheme may be found in Appendix E.  

I would like to make a note here that the intent of this research study is not to 

analyze the relationship between what the teachers planned and what their students did.  

Rather, the intent is to look at what the teachers did during the problem-solving debrief in 
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response to what they planned in the ISA.  That is, I examined the questions the teachers 

asked and the moves the teacher made as they implemented their ISAs, not how students 

responded to the implementation of the ISAs.  My reason for this focus in my analysis is 

both theoretical and practical.  First, I chose to focus on teacher moves because, in 

reference to the temporal phases of curriculum enactment, there is a better defined 

relationship between the moves teachers make in response to a self-written lesson plan 

than what students do or learn in response to the enactment of a lesson plan.  While 

students’ participation in mathematical discourse may enable mathematical development, 

it does not determine it (Cobb & Boufi, 1997), which is why teachers’ questions focused 

on mathematical reasoning are referred to as ‘opportunities’ for students to reason 

mathematically.  My choice to focus on teacher moves was also practical because, in the 

context of whole-class discussions, it is very difficult to make claims about how students 

are reasoning and what students are learning because it is not possible for all students to 

be engaged in a whole-class discussion all of the time.  Below, I describe in greater detail 

the three sub-questions for this study and a discussion of how these are intended to 

address the primary research question. 

 

 

A Road Map to the Remainder of the Dissertation 

 Before discussing the analysis and results for my research questions, I will be 

laying the groundwork needed to fully understand this study.  In Chapter 2, Literature 

Review, I provide a review of research on discourse and planning, situating my own 
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research within this literature.  In Chapter 3, Professional Development Description, I 

give a complete overview of the MPSM professional development program including the 

critical features of the program, assumptions about student learning, some of the key 

professional development activities, a detailed description of the MPSM model itself, and 

a discussion of adult learning framed within the experiences of the MPSM professional 

development experience.  In Chapter 4, Task Analysis, I share the three MPSM problem-

solving tasks that the teachers implemented as part of their professional development 

experience and from which the data for this research study is drawn.  This chapter 

includes a discussion of curriculum placement as well as some of the key strategies that 

students used to solve the tasks. 

 In Chapter 5, Method, I provide information about the teachers participating in the 

MPSM professional development and in my study.  I also describe data collection 

methods and give an overview of the data analysis methods used to address the three 

research sub-questions.  Chapters 6, 7, and 8 are my data analysis chapters in which I 

address research sub-questions 1-3, respectively.  These chapters include more detailed 

descriptions of the data analysis methods used, including inter-rater reliability analyses 

(where applicable), and a discussion of the results, including how the results served to 

address my primary research question.  Chapter 9 concludes this dissertation with a 

summary of my findings, possible implications for both researchers and practitioners, and 

a discussion of the limitations of this study as well as suggestions for future research.  
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Chapter 2. Literature Review 

 

Introduction 

My study focuses on the enactment of teacher-written lesson plans for discourse 

around mathematical problem-solving tasks to examine the interplay between the 

teachers’ use of planned questions and their improvisational moves as they implemented 

those planned questions.  My analysis examines two areas of research on teaching.  These 

are: research on teachers’ orchestration of classroom discourse and research on teacher 

planning.  As a result, my literature review is split into two sections.  First, I will discuss 

the role of discourse as an opportunity for students to reason mathematically around 

problem-solving tasks.  Second, I will discuss research on teacher planning. 

In the section on discourse around mathematical problem solving, I will open with 

a discussion of why the mathematics education community is increasingly focused on 

discourse around problem-solving tasks as a way for students to learn mathematics, 

followed by a discussion of some of the issues that have emerged when teachers attempt 

to engage their students in discussions of their problem-solving strategies.  I will then 

describe some frameworks that help to differentiate between students simply sharing their 

problem-solving strategies and students engaging in meaningful mathematical discourse.  
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Finally, I will share some research studies that highlight the benefits of discursive 

practices that have been recognized as opportunities for students to reason 

mathematically. 

 In the section on planning, I open with a discussion of the challenges that come 

with reflecting-in-action and compare this to the benefits of reflective planning.  I then go 

on to discuss the need for reflecting-in-action in the context of, first, the enactment of 

published curricular materials, and, second, in the context of teacher’s own lesson plans.  

Finally, I describe two research studies that provide some insight into the potential 

benefits of planning for discourse.  I will conclude my literature review with a discussion 

of how my research questions are intended to move forward both the literature on 

discourse around mathematical problem solving and the literature on planning and, more 

specifically, the enactment of teachers’ lesson plans. 

 

Discourse around Mathematical Problem Solving 

 Discourse around students sharing solutions to problem-solving tasks. The 

NCTM Principles and Standards for School Mathematics (2000) advocates for students to 

be able to “communicate their mathematical thinking coherently and clearly to peers, 

teachers, and others” as well as emphasizing that students need to “analyze and evaluate 

the mathematical thinking and strategies of others” (p. 268).  Also, the Common Core 

Standards for Mathematics Practices includes “make sense of problems and persevere in 

solving them” and “construct viable arguments and critique the reasoning of others” 

(2010).  These standards encourage teachers to move away from ‘traditional’ teacher-
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centered instruction and towards reform instruction in which problem solving and the 

students’ voices play a more central role in the classroom.   

The implementation of mathematical problem-solving tasks to generate discourse 

around important mathematical ideas is a method of instruction that has been supported 

by many research studies and professional development programs as a potentially 

effective way to generate worthwhile learning opportunities as students both reason about 

the mathematics in the task and learn to communicate their mathematical thinking 

(Boaler, 1998; Hiebert & Wearne, 1993; Larsen & Bartlo, 2009; Silver & Stein, 1996).  

This instructional approach involves the careful selection of a problem-solving task 

designed to bring out certain mathematical ideas.  The students work on the task in 

groups, the teacher then orchestrates a sharing and discussion time in which students 

report out on their solution methods with the whole class.  This whole-class discussion is 

intended to create a venue in which students are encouraged to consider multiple solution 

methods and where mathematical thinking and argumentation is valued.   

Dilemmas of engaging students in discourse around problem-solving tasks.  

Research has shown that teachers often struggle with successfully orchestrating 

discussions around problem-solving tasks in a way that ensures their students are 

reasoning mathematically, even when the tasks were originally designed to promote 

mathematical thinking and reasoning (Henningsen & Stein, 1997; Stein, Grover, & 

Henningsen, 1996).  Unfortunately, students who are regularly communicating in their 

classrooms with their peers are not necessarily engaging in mathematical reasoning 

(Nathan & Knuth, 2003).  Classroom environments in which students share their 



23 

 

solutions to mathematical tasks have occasionally been referred to as “show and tell” 

(Ball, Lubienski, & Mewborn, 2001) because the teacher is focused on ensuring that 

students’ thinking is valued and listened to, but fails to focus on the mathematical nature 

of the discourse.  In this context, teachers’ questions were focused on encouraging 

students to explain their thinking, but they failed to hold their students accountable to the 

mathematical nature of their argumentation (Cobb, Wood, & Yackel, 1993; Hiebert & 

Wearne, 1993).  Research shows that teachers sometimes deliberately avoid scaffolding 

students’ discourse in order to keep the discourse student-centered (Nathan & Knuth, 

2000, Heaton, 2000) to the detriment of the mathematical quality of the discourse.  Such 

teachers were often observed teaching with the expectation that important mathematical 

ideas would emerge and develop as a result of student-to-student discussions, but this 

often turned out to not be the case (Smith 1996; Williams & Baxter 1996; Chazan & Ball 

1999; Lobato, Clark, & Ellis, 2005; Baxter & William 2010).   

When the goal for classroom discourse is simply that the students do more of the 

talking and that the teacher is not positioned as the mathematical authority in the 

classroom, the quality of the discourse may be weakened with respect to the 

mathematical nature of the discourse.  Nathan & Knuth (2003) worked with a middle 

school mathematics teacher as she undertook to support her students to engage in more 

dialogue between each other without first filtering their ideas through her.  The teacher 

did this by encouraging multiple students to share their thinking, emphasizing that there 

is more than one way to solve a math problem, and encouraging students to listen 

carefully to others.  Closer analysis of the classroom discourse, though, revealed that 
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there was a lack of clear mathematical argumentation.  That is, without the teacher 

participating as a mathematical authority in the classroom, the students were not always 

able to construct or verify meaningful mathematical ideas.   

It can be difficult to distinguish between communication as a goal for instruction 

and communication as a means to understanding mathematics (Lampert & Cobb, 2003) 

because students who attempt to communicate their reasoning are well-situated to 

develop their mathematical understanding (Hiebert & Wearne, 1997).  Williams and 

Baxter (1996) documented a case study in which a middle-school teacher implementing a 

reform-oriented curriculum (QUASAR) successfully built up social norms so that her 

students were using communication as a way to develop each other’s mathematical 

understanding.  However, her students sometimes treated communication as a goal in 

itself, rather than a means for building mathematical understanding.  For example, when 

the teacher asked a group of students how they found a particular solution, a student 

responded that they had worked as a group.  The student assumed that because the 

teacher put so much emphasis on communication, working together was the most 

important part of how they arrived at a solution.  Also, when students shared their 

solutions with the class, students rarely asked questions and, when they did, they were 

typically questions in which the answer was already known, but they asked it anyway 

because they knew they were supposed to ask questions. 

Taking discourse to the next level.  The above-mentioned research studies 

demonstrated how simply shifting the dialogue away from the teacher and toward the 

students is an insufficient method for ensuring that the students are engaging in 
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meaningful mathematical discourse.  In a later study by Baxter and Williams (2010), two 

teachers who showed evidence of successfully implementing a reform-oriented 

curriculum, including high achievement gains on the part of their students, were 

documented as using both social scaffolding and analytic scaffolding to achieve the 

desired learning goals of discourse-oriented instruction.  The authors defined analytic 

scaffolding as teachers providing students with additional explanations and alternative 

solutions strategies as well as asking students to make generalizations, explore alternative 

solutions, and analyze incorrect solutions.  In this section of my literature review, I 

discuss research studies that distinguish between discourse in which sharing is central, 

from discourse that promotes mathematical reasoning and sense-making.  I refer to this 

latter type of discourse as high-level in my research study and consider it to be 

worthwhile mathematical discourse.   

Cobb, Boufi, McClain, and Whitenack (1997) documented a potential shift in 

classroom discussions away from students sharing their solutions and towards students 

discussing their mathematical activity as an object in and of itself.  They referred to this 

type of discourse as collective reflection.  One example they gave of this shift was in a 

first-grade classroom in which the students were trying to find all possible combinations 

of numbers that add up to five (e.g. 0+5, 5+0, 1+4, etc.).  Initially, the students suggested 

random combinations.  When the teacher asked the class how they knew that they had 

found all possible combinations, the discourse shifted to the students reasoning about the 

solutions already presented and attempting argumentations that would allow them to 

know for certain that they had found all possible solutions.  The authors argued that this 



26 

 

shift in the discourse generated opportunities for the students to reorganize their prior 

activity and supported students’ mathematical development. 

Brendefur and Frykholm (2000) defined four levels of mathematical 

communication that are helpful for seeing beyond categorizing discourse as either 

teacher-focused or student-focused.  These levels are uni-directional, contributive, 

reflective, and instructive communication.  Uni-directional communication is when the 

teacher dominates the discourse, typically with lecturing, asking closed questions 

(questions in which there is an expected response) and rarely providing opportunities for 

students to share their strategies or thinking.  Contributive communication involves 

communication between the teacher and students or between students and is focused 

upon the development and sharing of strategies.  This level of communication tends to be 

informal with a higher level of mathematical activity, but minimal focus on mathematical 

reasoning.  Sharing at this level tends to be centered on what students did to complete the 

mathematical tasks rather than why and is similar to the discourse described in the 

previous section in which student communication is high but opportunities for reasoning 

and argumentation are limited.  

Reflective communication tends to emerge from contributive communication, but 

the focus of the discourse shifts such that what the class was doing in action becomes an 

object of discussion in itself.  This shift occurs, for example, when students begin to 

justify or challenge conjectures posed by their peers.  Reflective communication is meant 

to be congruent to collective reflection in which mathematical activity becomes the object 

of discussion as students reflect upon their work (Brendefur & Frykholm, 2000; Cobb et 
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al., 1997).  Finally, instructive communication pertains to the teacher using classroom 

discourse to shape subsequent instruction, which may be viewed as a type of formative 

assessment.  These four levels of communication are meant to be viewed as a hierarchy, 

but they are also viewed as embedded within one another.  For example, a teacher that 

engages her class in reflective communication is going to also, on occasion, engage in 

uni-directional communication when, for example, it is necessary to summarize some 

important mathematical ideas.  Also, reflective communication is not likely to occur 

without contributive communication taking place first. 

In  Brendefur and Frykholm’s research study (2000), they described the changes 

that occurred in a pre-service teacher’s methods of instruction with particular attention to 

how she grew and developed as a teacher by deliberately creating more opportunities for 

her students to engage, not only in contributive communication, but also in reflective 

communication.  In their case study, a key factor in her methods of instruction that 

effectively allowed this shift to occur was the types of questions she was asking.  Her 

students were more deeply engaged in mathematical discussions when she asked open-

ended questions that were focused on the mathematics.     

Kazemi and Stipek (2001) provide further clarification of the differences between 

contributive communication and reflective communication in their conceptualization of 

low-press teacher-student interactions versus high-press ones.  In their analysis of four 

upper-elementary classrooms characterized as having positive social norms, they found 

that, in two of the classrooms, students were engaged in richer mathematical discussions 

than in the other two classrooms.  In order to explain the differences between these two 
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sets of classes, the authors identified four sociomathematical norms that differentiated the 

high-press classes from the low-press classes:   

(a) an explanation consists of a mathematical argument, not simply a 

procedural description or summary;  

(b) mathematical thinking involves understanding relations among 

multiple strategies;  

(c) errors provide opportunities to reconceptualize a problem, explore 

contradictions in solutions, or pursue alternative strategies; and 

(d) collaborative work involves individual accountability and reaching 

consensus through mathematical argumentation. (Kazemi & 

Stipek, 2001, 64). 

Using transcripts from these four classes, this study demonstrated how providing 

opportunities for students to share their problem-solving strategies did not guarantee 

student engagement in worthwhile mathematical discourse because, when students were 

asked to share their work without the requirement of clear mathematical explanations, 

they were simply verbalizing what they already knew, without opportunity to develop or 

refine their thinking (Lampert & Cobb, 2003).  These research studies are demonstrative 

of the differences that can occur between high-level discourse and low-level discourse.  

In the next section, I will describe and discuss some research studies that provide some 

additional details of the characteristics of high-level discourse and how they create 

opportunities for students to learn. 
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Opportunities to learn through high-level discourse.  Current trends in 

mathematics education highlight the importance of students’ high-level engagement in 

mathematical discourse because it creates opportunities for students to deepen their 

mathematical understanding.  In particular, mathematical activities such as reasoning and 

justification; making connections to other students’ strategies or to the underlying 

mathematics of a problem-solving task; and addressing errors are all ways that students 

can build mathematical understanding as they engage in discourse around problem-

solving tasks.  In this section, I highlight some research studies that point to the benefits 

of discourse around mathematical problem-solving tasks as a way for students to learn.   

In order for students to be engaged in meaningful mathematical discourse, it is 

necessary for teachers to press their students for clear and accurate explanations of their 

problem-solving strategies, accompanied by reasoning and justification for their 

strategies.  When students make sense of the mathematics they are doing, providing 

reasoning and justification for their mathematical activity, they are developing 

mathematical proficiency in addition to gaining an understanding of what it means to 

reason and argue mathematically (Hiebert et al., 1997).  Franke et al. (2009) found that 

the ways in which teachers followed up on students’ initial explanations of their thinking 

impacted the opportunities that the students had to connect their thinking to the 

mathematics being learned as well as to the thinking of others in the class.  In a case 

study by Ball and Bass (2003), the questions that the teacher in a 3
rd

 grade classroom 

asked prompted students to clarify how they knew that their solutions to a problem-

solving task were correct and how they knew they had found all possible solutions.  
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These questions created opportunities for the students to make sense of the mathematics 

and to reason mathematically.  Without these promptings by the teacher, those 

opportunities would not have emerged (Franke et al., 2009).  

Discourse around problem-solving tasks also creates opportunities for students to 

learn as they make connections to the underlying mathematics as well as to each others’ 

strategies.  Hiebert and Wearne (1993) provided evidence of the benefit of creating 

opportunities to compare and connect strategies in an analysis of six second-grade 

classrooms’ instructional practices as they covered multi-digit addition and subtraction.  

Two of the classes were deliberately designed for students to solve fewer tasks overall, 

but to spend more time sharing multiple strategies and analyzing the connections between 

the solutions shown.  In the comparison, they found that, in the classes in which discourse 

centered on comparing strategies, the students showed higher gains from the pre- to post- 

tests on all types of questions related to addition and subtract of multi-digit numbers, but 

particularly story problems and place value problems.   

Discourse around problem-solving tasks can create a venue for students to address 

their errors in ways that deepen their understanding of the mathematics they are doing.  

Teachers may be tempted to ignore student errors for the sake of not causing 

embarrassment for the student with the error, but it can be beneficial for teachers to 

provide opportunities for students to discuss errors in students’ strategies. Instead, errors 

should be treated as opportunities to improve understanding, both for the student that 

made the error as well as for other students who engage in making sense of the error 

(Hiebert et al., 1997; Silver & Stein, 1996).    The low-press teachers in Kazemi and 
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Stipek’s study (2001) were observed handling student mistakes by correcting the mistake 

for the students and then moving on, failing to provide an opportunity for students to 

reason through the error on their own.  In another research study, teachers created 

opportunities for students to change an answer given, but did not provide opportunity for 

the students to reason about why their mistakes were incorrect (Fraivillig, Murphy, & 

Fuson, 1999).  These approaches to addressing errors are problematic as they fail to 

provide learning opportunities for students.  In contrast, high-press teachers who create 

opportunities for students to reason about their errors and give them time to identify their 

own mistakes, create opportunities for the students to deepen their understanding of the 

mathematics (Fraivillig, Murphy, & Fuson, 1999; Kazemi & Stipek, 2001). 

Effective classroom discourse is characterized by students making connections 

between strategies, extending and generalizing solutions, making conjectures, verifying 

and modifying claims on the basis of mathematical evidence, and making sense of 

mathematical ideas.  Questions a teacher might ask to promote mathematical reasoning 

include requests for students to provide justification for the strategies they used (Hiebert 

et al., 1997; Kazemi & Stipek, 2001), questions that lead students to make sense of the 

mathematical ideas used to solve the task (Boaler & Humphreys, 2005; Sherin, 2002), 

questions that prompt students to make connections between strategies (Hiebert & 

Wearne, 1993; Kazemi & Stipek, 2001), and questions that encourage students to 

formulate and prove conjectures and generalizations around the mathematics in the task 

(Fraivillig, Murphy, & Fuson., 1999; Hiebert, & Wearne, 2003; Yackel & Hanna, 2003).  

Research has shown that classrooms that support student discourse around these types of 
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activities demonstrate positive learning gains (Cobb, Wood, Yackel, Nichols, Wheatly, 

Trigatti, & Perlwitz, 1991; Silver & Stein 1996; Carpenter, Fennema , & Franke, 1997; 

Hiebert 2003). 

Students should have the opportunity to engage in this type of discourse, both 

with the teacher and their peers (NCTM, 1991).  Students sharing their problem-solving 

strategies in the context of whole-class discussions is a useful way for students to build 

new mathematical thinking (Hiebert, 2003), creating opportunity for students to engage 

in rich mathematical discourse as described above.  However, students sharing solution 

strategies as a way to generate worthwhile discourse comes with the caveat that students 

randomly volunteering to share how they solved a task may lead to limited opportunities 

for students to engage in mathematical thinking around a problem-solving task 

(Leinhardt, 2001; Nathan & Knuth, 2003; Stein, Engle, Smith, & Hughes, 2008; Williams 

& Baxter, 1996).  Consequently, the teacher’s role in orchestrating discourse around a 

mathematical problem-solving task is a critical one as it is the teacher’s responsibility to 

create opportunities for students to reason mathematically about the problem-solving task 

(Chazan & Ball, 2001).  In response to the demands of orchestrating a productive 

mathematical discussion, it has been recommended that teachers reflect upon students’ 

solutions and deliberately plan for discourse around mathematical problem-solving tasks 

(Stein, Engle, Smith & Hughes, 2008).  In the second half of this literature review, I will 

discuss the literature on teachers’ planning and the potential impact that the enactment of 

lesson plans can have on classroom discourse. 
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Teacher Planning and Lesson Implementation 

My research study is intended to assess the impact of reflective planning on 

classroom discourse that is focused on students sharing their problem-solving strategies.  

Such planning gives teachers the opportunity to reflect upon how student work connects 

to the learning needs of the students, and then identify questions to ask that will support 

students to engage in discourse around the selected ideas.  In this section of my literature 

review, I will discuss the tension that exists between the practice of teachers reflecting 

and planning prior to implementation of a whole-class discussion and the practice of 

making on-the-spot decisions during the orchestration of a whole-class discussion.  I 

argue that, while reflecting beforehand does appear to have some benefits for creating 

worthwhile mathematical discourse, the need to “reflect-in-action” is an ever-present 

reality and, particularly in the case of mathematical discourse, must be taken into account 

when analyzing the discursive practices of the teacher.  Following a discussion of the 

existing research on planning and reflecting-in-action, I will then explain how my 

research is attempting to address and better understand this tension. 

Reflecting-in-action.  The role the teacher plays in orchestrating mathematical 

discourse is perceived as a decision-making process that takes place as teachers respond 

to what their students say in the classroom (Heaton, 2000; Lampert, 2001; Leinhardt & 

Steele, 2005).  Effective instruction requires “reflecting-in-action” that leads to 

improvisational moves.  That is, teachers must make instantaneous decisions as they 

reflect upon their students’ thinking and then attempt to translate that information into 

opportunities to advance students’ mathematical thinking and connect their thinking to 
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conventional mathematics (Chazan & Ball, 1999; Heaton, 2000; Krussel, Edwards & 

Springer, 2004; Schifter, 2001; Sherin, 2002).  Research studies have shown that, by 

being responsive to students’ thinking, it is possible to move discourse in directions that 

both attend to students’ thinking and also progress in mathematically productive ways 

(Heaton, 2000; Leinhardt & Steele, 2005; Schifter, 2001).   

Research shows that, as teachers learn to orchestrate discussions around students’ 

thinking, they struggle to attend to students’ thinking and how teachers respond to 

students’ unique ways of thinking can vary.  For example, Sherin (2002) conducted a 

study on two experienced teachers who agreed to implement a reform-based unit on 

linear functions that was distinctly different from their previous style of teaching.  The 

purpose of the study was to investigate the ways that the teachers built new pedagogical 

content knowledge as they encountered novel thinking from their students as they worked 

on problem-solving tasks.  Sherin distinguished between three ways that teachers 

responded to novel aspects of a lesson.  (1) Transform is when teachers adapt the lesson 

to fit their preexisting knowledge about the mathematical topic affording no opportunities 

to build new understanding.  (2) Adapt is when the teacher accepts a novel way of 

thinking contributed by a student, but does nothing to modify the lesson as a result.  (3) 

Negotiate is when the teacher makes changes to the lesson as it is being implemented in 

response to the students’ novel ideas (negotiate).  This last approach would be considered 

successful “reflecting-in-action” because it represents the teacher attending to students’ 

thinking during classroom discourse.  Out of the 17 lessons implemented by these two 

teachers (34 total), it was found that adapt was the most common response, having 
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occurred in 82% of the lessons while transform was evident in 53% of the lessons.  In 

contrast, negotiate occurred only 29% of the time.  While it is significant that this 

“reflection-in-action” was taking place, there were still many instances in which these 

teachers were missing opportunities to respond in the moment to students’ novel ways of 

thinking about the tasks. 

Reflective planning.  Research has shown that for worthwhile mathematical 

discourse to take place, teachers need to be responsive to students’ ideas and ways of 

thinking (Chazan and Ball, 1999; Fraivillig, Murphy, and Fuson, 1999; Heaton, 2000; 

Schifter, 2001; Sherin, 2002).  The study described in the previous section showed that 

this is not easy for teachers to do and that teachers often fail to respond to students’ 

thinking in the moment of implementation.  One response to this challenge of attending 

to students’ thinking is to provide teachers with the opportunity to slow down the 

reflection process.  Reflection upon student work and students’ engagement in the 

classroom has been shown to be beneficial for developing teaching practices.  Kazemi 

and Franke (2004) found that teachers who collectively analyzed student work were able 

to shift their thinking from simply identifying the different strategies used by students 

towards developing possible learning trajectories.  Davies and Walker (2005) studied 

teachers who observed videotapes of themselves teaching with particular attention to 

student talk.  This helped the teachers to be more effective in how they responded to their 

students’ talk.   

Reflection upon curricular lesson plans has also shown to benefit students 

opportunities to learn.  In a study of four elementary school teachers implementing 



36 

 

problem-based curricula (Rigelman, 2009), the teachers collaborated with the researcher, 

analyzing the curriculum for ways in which the lesson supported mathematical discourse.  

By deliberately planning strategies to increase opportunities for high-level discourse, the 

teachers were able to elicit higher levels of discourse than what the curriculum had 

originally intended.  These studies demonstrate the value of focused reflection for the 

purpose of changing teachers’ instructional practices.  However, these examples of 

reflective practice are within the context of supported professional development and are 

not examples of daily teaching practices. 

Enactment of curricular materials.  When it comes to the enactment of reform 

curriculum, it is necessary for teachers to be responsive to students’ thinking.  This 

requires that teachers must make on-the-fly decisions about how to respond to student 

thinking.  When teachers are using new curricular materials in which the concepts, skills 

and tasks presented in the curriculum are unfamiliar to the teacher, the need to make on-

the-fly decisions increases because it is harder for them to anticipate student responses.  

Research shows that it is typical for teachers to digress from the original lesson plan 

when they are faced with challenges of implementation.  In an analysis of teachers’ 

implementation of a reform curriculum in a science classroom, even when teachers were 

faithfully enacting the curriculum, they tended to be less faithful to the intended 

curriculum when the topics were more challenging for the students, when they were 

required to respond to students’ ideas, when they had to support their students in 

performing investigations, and when they led their students in small-group discussions 

(Schneider, Krajcick, & Blumenfeld, 2005).   
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When challenges arise, teachers often fall back into old routines.  Superfine 

(2009) found that teachers’ uses of the teacher guides in the Connected Math Project 

(CMP) curriculum was heavily influenced by their prior teaching practices and 

experiences.  For example, when the teachers in his study were faced with the challenge 

of supporting students who were struggling with the content, they were more likely to 

rely on their prior conceptualizations of teaching rather than utilizing the 

recommendations provided in the teacher’s guide.  In a case study of two elementary 

teacher’s use of curriculum (Remillard, 1999), the teachers made improvisational moves 

in their classrooms for differing reasons.  One teacher was observed constructing new 

questions for her students when she saw that they needed to refine their thinking on a 

problem-solving task while the other teacher was observed making improvisational 

moves such as inserting direct instruction into the lesson when she observed her students 

struggling with a task.  These studies suggest that a teacher’s ability to successfully 

reflect-in-action is going to impact how they implement a lesson.  In the case of the 

teacher who resorted to direct instruction when she observed her students struggling, she 

was unable to scaffold the discourse to continue to promote students’ mathematical 

reasoning.  In contrast, the teacher who constructed new questions was able to make on-

the-fly decisions about how to continue to move students’ thinking forward.  These 

studies are similar to Henningsen and Stein’s study (1997) that demonstrates how the 

cognitive demand of a task can either be sustained or degenerate depending upon the 

types of support provided by the teachers. 
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Enactment of teacher-written lesson plans.  Implementation of curricular 

materials bears some semblance to the notion of implementing one’s own written lesson-

plan.  However, these experiences are not identical.  For one thing, there is an attitude 

that when implementing curricular materials, the teacher is making decisions about what 

he or she wishes to use, using some parts of the curriculum and rejecting others 

(Remillard, 1999).  In contrast, the implementation of a self-written lesson plan is more 

personal because it is the documentation of the teacher’s ideas about what she intends to 

do with her students.  Research on teachers’ lesson plans is often limited to analyzing 

what the teacher plans and how (e.g. Leinhardt, 1989).  Little research has been done, 

though, on the enactment of teacher-written lesson plans.  While it may be easy to 

assume that a teacher-written lesson plan will be more closely followed than a textbook 

lesson, making on-the-spot modifications to a teacher-written lesson is still essential as 

the teacher must respond to student contributions which cannot be anticipated 

beforehand.  In a study of a group of teachers who shared and observed each other’s 

lessons and then reflected in groups upon the enactment of their lesson plans as part of a 

professional development, it was observed that when a lesson plan had to be altered 

during its implementation, the teachers did not treat it as failure to successfully 

implement the lesson plan, but simply regarded it as a design issue that required 

immediate revision (Lee & Takahashi, 2011).  Leaving room for reflection-in-action to 

take place may be important because over-planning (e.g. writing a script) runs the risk of 

the teacher not providing enough space for students to openly engage in discourse in the 

classroom, as was found to be the case in a study in which teachers were either asked on 
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the spot to teach a lesson or asked to prepare a lesson plan in advance (Zahorik, 1970).  

Teachers with extensive lesson plans have been documented providing too much 

feedback, not providing enough pause time for students to reflect, and “talking over” 

their students (Walshaw & Anthony, 2008).   

 

Planning for Discourse 

While it may appear that writing a lesson plan is a way to eliminate the need for 

reflection-in-action, I argue that it remains necessary for teachers to do so as they attempt 

to create dialogue in their classroom.  Preplanned questions do not eliminate the need for 

teachers to follow-up on student responses, encouraging them to provide clear 

mathematical responses (Kazemi & Stipek, 2001), nor does it help the teachers to be 

prepared for unexpected responses and reactions from their students (Chazan & Ball, 

1999).  An extreme example of the potential interplay between planning and 

improvisation is seen in a class taught by Magdalene Lampert (Leinhardt & Steele, 

2005).  While creation of a lesson plan is typically perceived as a series of linear steps, 

Lampert’s discourse-oriented lesson on functions was developed in a more dynamic way, 

in which she perceived the relationship between the concepts of a function as a web in 

which she guided her lessons through the web, allowing the direction of her lessons to be 

guided by the thinking of her students, rather than a predetermined series of tasks.  

Lampert planned her lessons so that they were never intended to be followed rigidly.  

Instead, by continuously reflecting upon the thinking of her students throughout 

implementation, she carefully navigated the lessons to help address all the important 
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learning goals.  Her method of discourse-oriented instruction is an example of instructive 

communication as described earlier (Brendefur & Frykholm, 2000). 

Connecting research on planning back to the earlier discussion of discourse 

creating opportunities for students to reason mathematically, careful attention to the 

opportunities for students to reason mathematically when planning a lesson may lead to 

more opportunities for students to engage in high-level discourse.  For example, in a 

study in which teachers collaborated with the researcher to modify lesson plans, with a 

particular eye to creating opportunities for students to engage in high-level discourse, an 

analysis of the enacted lessons revealed that students did engage in more mathematical 

reasoning as a result of the additional planning (Rigelman, 2009).  While this study 

supports the notion that it is possible for teachers to create more opportunities for 

students to engage in worthwhile mathematical discourse through the act of deliberate 

planning, more research is needed to understand how teachers’ plans for discourse around 

mathematical problem-solving tasks can influence the opportunities that teachers create 

for students to reason mathematically. 

 

Connecting the Literature to My Research 

It is almost an oxymoron to propose that teachers plan discourse given that 

teachers have little control over how the students will respond to planned questions.  

Research on teacher implementation of lesson plans (both curricular and self-written) 

suggests that making on-they-fly decisions is not a question of whether or not the plans 

are modified when teachers implement them, but a question of how the plans are 
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modified upon implementation.  Teachers participating in the MPSM professional 

development program were not expected to create a rigorous lesson plan.  Rather, the 

Instructional Sequence Analysis was a venue for the teachers to make tentative plans 

about what questions they would like to ask their students as a way to generate discourse 

around their problem-solving strategies.  The ISA still leaves room for teachers to 

respond spontaneously to student talk once the questions have been posed.  By limiting 

the number of questions planned, teachers are opening the discourse for new student 

thinking without creating an agenda that is so rigid that students are not able to engage in 

discourse because they are simply answering a series of questions.  My research study 

will be examining this balance between reflective planning and reflection-in-action by 

focusing on how teachers implement their planned questions and how the improvisational 

moves of the teacher as they implement those questions impacts the opportunities they 

create for their students to reason mathematically.   

The lesson planning process affords teachers time to reflect on their students’ 

work and then make decisions on how they wish to organize the discourse, choosing 

questions to ask that will help move their mathematical agenda forward and, hopefully, 

support their students to reason mathematically.  I intend to investigate the impact that a 

teacher-written lesson plan can have on mathematical discourse around problem-solving 

tasks given that the outcomes of the enactment of the lesson plan cannot be anticipated 

simply based upon the contents of the lesson plan.  Research sub-question 1 (Do teachers 

enact their written plans for problem-solving debriefs in the classroom as they had 

planned prior to implementation?) addresses that fact that enactment of lesson plans is 
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frequently different from what was originally planned and is an analysis of how closely 

the teachers followed the basic contents of their ISAs. 

Since opportunities for students to deepen their mathematical understanding 

emerge when students engage in reasoning and justification, making connections between 

students’ strategies and to the mathematics, and reasoning through errors, my research 

study includes a particular focus on the questions teachers planned that were intended to 

prompt students to engage in these mathematical practices.  In research sub-question 2 (Is 

there a correlation between the number of questions teachers plan that promote 

mathematical reasoning around problem-solving tasks and those that they actually ask 

during whole-class discussions?), I analyze the relationship between the number of 

questions teachers plan in their ISA intended to prompt students to reason mathematically 

to the frequency with which the teachers actually ask such questions during 

implementation of the ISA.  My hypothesis is that the more of these questions a teacher 

plans, the more they will subsequently ask during the problem-solving debrief. 

While the ISA is meant to create some structure as the teacher guides the class in 

discourse around mathematical problem solving, teachers must still engage in reflection-

in-action as they are not able to fully anticipate student responses and may still need to 

make some in-the-moment decisions about how to guide the discourse.  My research is 

intended to examine the relationship between what the teachers plan in the ISA (in 

particular, the planned questions) and what actually takes place during the lesson.  In 

particular, research sub-question 3 (How do teachers’ improvisational moves during 

whole-class discussions influence the enactment of the questions that were planned by the 
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teacher prior to implementation?) is intended to examine the improvisational moves of 

the teachers as they address the questions that they planned in the ISA.  My analysis 

looks at how the teachers’ improvisational moves, prompted by in-the-moment decision-

making, influenced (either positively or negatively) the opportunities for students to 

engage in reasoning around mathematical problem-solving tasks. 

These three sub-questions are intended to support the overarching research 

question for this study (How do teachers’ written plans for orchestrating mathematical 

discourse around problem-solving tasks influence the opportunities teachers create for 

students to reason mathematically?).  This research study is intended to bring together 

research on planning, curriculum enactment, and discourse analysis by analyzing 

teachers’ enactment of self-written lesson plans with a particular eye on the opportunities 

that the plans afford for students to reason mathematically, recognizing that teachers’ 

improvisational moves will also, inevitably, impact the outcomes of the discourse.  Since 

mathematics educators are advocating for teachers to make plans concerning how they 

will orchestrate discourse around mathematical problem-solving tasks (Stein, 2008; Stein, 

Smith, & Silver, 2009), research is needed to allow us to better understand how such 

planning practices can impact the opportunities that teachers create for their students to 

reason mathematically. 

 In the next chapter, I discuss the MPSM professional development program 

including a discussion of assumptions about student learning, the major learning activities 

experienced by the teachers, a discussion of the MPSM models and the elements within 

the model, and a discussion of assumptions about adult learning that motivated the 
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activities in the professional development experience.  Throughout the chapter I include 

references to literature and research that promote the implementation of problem-solving 

tasks as supported by the MPSM model. 
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Chapter 3. Professional Development Description 

In this chapter, I describe the Mathematics Problem Solving Model professional 

development research program.  This chapter is intended to give the reader a complete 

picture of the professional development program that was experienced by the teachers.  I 

begin with a description of the assumptions about student learning that motivated the 

structure of the program and the critical issues of the professional development 

experience, including how much time the teachers spent doing the professional 

development and compensation they received for participating in the program.  Before 

going into a discussion of the model itself, I include a section describing some of the 

major aspects of the professional development experience that the teachers received to 

address the components of the framework.  I then give a complete overview of the 

Mathematics Problem Solving Model (MPSM), which is the framework for 

implementing problem-solving tasks that was used for this program.  I conclude this 

chapter with a discussion of the assumptions about adult learning that motivated the 

professional development activities the teachers experienced.  

 While this chapter paints a complete picture of the professional development 

experienced by the teachers that participated in my study, my research study is focused 

on only a small part of this professional development experience.  That is, this study 
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analyzes the teachers’ implementation of the plans they wrote for orchestrating discourse 

around problem-solving tasks.  There are many other features of this professional 

development experience that are not addressed in my study.  This includes, but is not 

limited to, identification of learning goals, task selection, and formative feedback.  I 

include these elements in my description of the MPSM professional development 

program so that the reader may have a complete understanding of the professional 

development that the teachers participating in my study experienced. 

 

Overview and Program Goals 

The Mathematics Problem Solving Model (MPSM) is a professional development 

program designed by Education Northwest, a non-profit organization in Portland, Oregon 

that conducts educational research and provides professional development and 

educational materials to K-12 teachers in the northwest.  The MPSM is a research-based 

framework for teaching mathematics through problem solving with the use of formative 

assessment to enhance instruction.  Formative assessment is when teachers use their 

understanding of student thinking to make decisions about subsequent instruction.  The 

goal of the professional development program is to increase teachers’ understanding of 

mathematics and their ability to implement cognitively demanding problem-solving tasks 

in their mathematics classrooms, including the use of students’ performance on 

mathematics problem-solving tasks as a resource for formative assessment to both 

modify instruction and to provide students with opportunities to improve their 

proficiency in mathematical thinking and mathematical problem solving.  Through an 
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NSF-funded research project
2
, the MPSM professional development program has been 

implemented at Education Northwest with four cohorts of teachers beginning in the 2006-

2007 school year and concluding in the 2009-2010 school year.  This has been part of an 

NSF-funded research project, validating the professional development program. 

 

Critical Issues and Structural Description 

Participating teachers were involved with the Mathematics Problem Solving 

Model professional development program for a complete school year with professional 

development activities taking place both during the summer and integrated throughout 

the following school year.  Teachers spent eight full days engaged in professional 

development during the summer (typically, five days in July, followed by three follow-up 

days in August).  During the school year following their summer professional 

development experiences, the teachers met together for three additional professional 

development days, meeting for one Saturday in fall, winter, and spring.  The total number 

of contact hours came to about 78 hours.  During the following school year, the teachers 

also participated in an online learning management system (MOODLE) and received five 

one-on-one coaching sessions with a professional developer to support implementation of 

the model in their everyday practices.  The professional development seminars took place 

in downtown Portland at the Education Northwest facilities.  As part of the research 

project’s data collection requirements, the teachers implemented five problem-solving 

tasks in their classrooms.     

                                                           
2
 NSF DRL 0437612 The opinions expressed in this research project are those of the authors and do not 
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The MPSM professional development program was implemented with four 

different cohorts of teachers over the course of four years.  The cohorts ranged in size 

from approximately 10 participants to 18.  The participants of the MPSM professional 

development program were middle school mathematics teachers who joined the program 

on a voluntary basis.  Teachers were recruited through letters sent to the schools and an 

advertisement in a local practitioners’ journal.  Teachers also had the option of receiving 

six credit hours for their participation in the professional development program.  The 

credit was professional development credit only, which means that it was useful for 

moving teachers up the pay scale, but could not be used towards completion of a degree.  

Teachers were required to pay a small fee to receive the credit and were required to 

submit an additional paper discussing some aspect of the professional development that 

impacted their teaching practice.  For a description of the teachers participating in the 

professional development research program, including years of experience and school 

demographics, see Chapter 5, Method. 

The professional development was advertised and implemented as part of a large 

research project in which the researchers were validating the professional development 

program.  The teachers signed consent forms agreeing to participate in the program and 

the teachers also collected signed consent forms from the parents of their students.  Data 

collection occurred continually throughout the program and drove many of the teachers’ 

classroom tasks.  During the summer, this included completion of tests and surveys by 

the teachers, collection of reflective writing pieces, and continual video recording of the 

professional development sessions.  During the school year, the teachers were required to 
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submit their students’ standardized test results.  When the teachers implemented the 

problem-solving tasks in their classrooms, they were required to submit their lesson plans 

and all student work.  During the implementation of the task, the teachers wore audio-

recorders.  As incentive and compensation for their participation in the project, the 

teachers received a stipend of $1,500.  They received half of their stipend after 

completing the summer professional development and the other half was given to them 

after all of their data was delivered at the end of the school year.  There were also control 

groups in years one, two, and three who did not participate in the professional 

development, but data was collected from their classrooms.  These teachers received a 

smaller stipend for their participation and were invited to participate as treatment teachers 

the following year. 

 

Assumptions about Student Learning 

The Mathematics Problem Solving Model and the professional development 

program were designed to support the following two assumptions about how students 

learn mathematics: 

1) Two important influences on how children learn mathematics are the tasks and 

problems they engage in and the interactions they have about them. 

2) Teachers’ ability to understand students’ mathematical development is enhanced by 

their ability to notice and describe what students say and do. 

These assumptions were articulated to the teachers participating in the professional 

development at the beginning of the program and were regularly referred to throughout 

the professional development in order to make explicit to the teachers how the 
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professional development they were receiving supported these assumptions.  A 

description of these assumptions is given below. 

Two important influences on how children learn mathematics are the tasks 

and problems they engage in and the interactions they have about them.  This 

assumption about student learning is reflective of the increasingly common perspective 

that effective instructional practice revolves around the use of problem-solving tasks and 

student-centered discussions about these tasks (See, for example, Boaler & Humphreys, 

2005; Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier & Human, 1997; 

Kilpatrick, Swafford, & Findell, 2001; NCTM, 2000; Wood, Nelson, & Scott, 2001).  In 

an analysis of the types of tasks that teachers implemented in their classroom, it was 

found that higher learning gains were achieved when teachers implemented tasks that 

were cognitively demanding.  Moreover, it was found that the greatest learning gains 

were evident when multiple solutions were identified, multiple representations were used, 

and student explanations were expected.  Learning gains were considerably less when a 

single solution was accepted, single representations were used and communication was 

not required of students (Stein & Lane, 1996).  Students that engage in cognitively 

demanding tasks have opportunities to learn problem solving, reasoning skills, and higher 

order thinking.  In contrast, students who engage in tasks that are of low cognitive 

demand only have opportunities to learn facts and procedural skills (Wood & Turner-

Vorbeck, 2001).   

 As mentioned earlier, the learning opportunities within a task are dependent upon 

how the teacher leads students to engage in the task.  This includes how the teacher 
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introduces the tasks to the students as well as what types of discussions the students 

engage in following implementation of the task.  While reporting out solutions is a 

common way to follow up the implementation of a problem-solving task, it is also 

necessary to create opportunities for students to clarify their solutions, provide their 

reasoning and justification for the approaches they take and connect it to relevant 

mathematical content (Hiebert et al., 1997; Kazemi & Stipek, 2001).  Also, students 

should have opportunities to look for patterns and make generalizations around problem-

solving tasks, attempting to defend and justify their conjectures, with reasoning playing a 

central role in the process (Yackel & Hanna, 2003). 

Teachers’ ability to understand students’ mathematical development is 

enhanced by their ability to notice and describe what students say and do.  Analysis 

of student work is a valuable tool for creating effective mathematical instruction.  An 

awareness of students’ understanding and thinking around mathematical concepts and 

tasks makes it possible to appropriately choose tasks that are of high cognitive demand, 

but still within the students’ reach (Stein, Grover, et al., 1996).  Knowledge of student 

work also supports appropriate teacher questions useful for building upon student 

thinking to develop and make connections between mathematical ideas (Grouws, 2003).  

Professional development programs such as Cognitively Guided Instruction (CGI) and 

Integrating Mathematics Assessment (IMA) are examples of programs in which teachers 

are encouraged to attend closely to what their students are saying and doing as they 

engage in mathematics tasks and then use this information to shape subsequent 

instruction.  Research from both of these programs showed that students of CGI and IMA 
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teachers demonstrated greater learning gains compared to control groups of teachers who 

were not trained to attend to students’ thinking, particularly on assessment of conceptual 

understanding and problem solving (Fennema, Carpenter, Franke, Levi, Jacobs, & 

Empson, 1996; Saxe et al., 2001).  The CGI research also showed that teachers who 

attended closely to their students’ thinking and reasoning were better prepared to project 

students’ learning trajectories and build subsequent instruction based upon that 

information than teachers who never asked their students for explanations beyond how 

they obtained a solution (Franke, Carpenter, et al. 2001).  Similarly, Yackel, Cobb, and 

Wood (1999) documented a teacher who was able to meaningfully formulate subsequent 

instructional tasks building towards his mathematical learning goals based upon 

information he obtained about his students’ thinking as they engaged in discourse around 

mathematical problem-solving tasks. 

 Teaching mathematics through problem solving is an overwhelming task for a 

teacher, particularly when they are doing it for the first time.  The challenges that come 

with selecting and implementing cognitively demanding mathematical tasks that support 

mathematical learning can be eased when teachers know how their students think about 

the mathematics in the task and use that information to move forward with instruction.  

Teacher’s knowledge about students’ thinking can be improved by posing problems 

specifically designed to access students’ thinking (Lesh, Hoover, Hole, Kelly, & Post, 

2000) and asking good questions during instruction that access students’ thinking 

(Wiliam, 2007).  Teachers may also gain a deeper understanding of their students’ 

understanding by listening attentively to their students’ thinking (Schifter, 1998) and 
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examining student representations to make a connection between their idiosyncratic ways 

of thinking and more conventional mathematics (Mewborn, 2003).  This knowledge can 

then be used to further support students’ learning and to effectively build subsequent 

instruction.  The Mathematics Problem Solving Model is a framework that demonstrates 

the steps in the teacher’s process of implementing a mathematics problem-solving task, 

with a focus on the use of student work as a formative assessment tool for planning 

subsequent instruction (see figure 3).  Below, I discuss the components of the MPSM 

model which include mathematical learning objectives, choosing and implementing a 

problem-solving task, analyzing student work, and using that analysis to either select and 

sequence student work, plan a whole-class discussion, or provide feedback and use that to 

shape a follow-up instructional activity. 

  

Figure 3. The Education Northwest Mathematics Problem Solving Model (Gummer, Gates, 

& Strowbridge, 2009) 
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The Education Northwest Mathematics Problem Solving Model 

The Education Northwest Mathematics Problem Solving Model (MPSM) is a 

research-based model designed to conceptualize critical elements of the formative 

assessment process of effectively teaching mathematics through problem solving.  It is 

focused on the selection and implementation of mathematics problem-solving tasks, 

analysis of student work through the lens of a formative feedback guide, orchestration of 

classroom discourse around the problem-solving task, and the subsequent use of written 

feedback in the classroom.  Figure 3 shows the elements of the model sequenced together 

in a cyclic fashion.  Each part of the model represents a step that the teacher takes in the 

process of planning, implementing, and following up on a problem-solving task in their 

mathematics classroom.  The professional development program described in this paper 

was designed to support participating teachers in gaining an understanding of the model 

and to develop their capacity to incorporate it into their beliefs about teaching 

mathematics and their everyday mathematical practices.   

Within the model, the teacher begins the implementation of a problem-solving 

task by first identifying a mathematical learning objective that she
3
 would like her 

students to accomplish.  With this learning objective in mind, the teacher then identifies a 

suitable problem-solving task that has the potential to be cognitively demanding for her 

students (a definition of cognitive demand will be given below).  As the teacher 

implements the problem-solving task with her students, she must be careful to maintain 

                                                           
3
 For sake of simplicity, throughout this chapter I use female pronouns to refer to the teacher and male 

pronouns to refer to a single student.  There were male teachers participating in the program as well as 

female. 
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the cognitive demand of the task.  This may be done, for example, by asking the students 

questions that will move their thinking forward without over-simplifying the task for 

them.  After the task has been [mostly] completed by the students, the teacher then 

collects the students’ written work and analyzes the students’ work with the use of a 

feedback guide (which will be described in detail below).  The analyzed student work 

may then be used to move instruction forward in two distinct ways.  The teacher may 

choose to make one or both of these instructional moves.  The teacher may provide 

written feedback to her students and plan for further instruction using the feedback with 

the express purpose of helping students to improve their problem-solving skills.  

Alternatively, the teacher may select a sampling of student work useful for demonstrating 

the important features in the task.  These features may include the key mathematical ideas 

in the task.  It also may be a focus on a problem-solving process such as clearly 

communicating a problem-solving strategy or different methods of representing the 

problem situation.  The teacher uses the selected set of student work to plan for a whole-

class discussion that is focused on the important features of the problem-solving task by 

first carefully sequencing the students’ work in such a way to bring to the forefront those 

key features in the task and preplanning questions to ask her students that will help focus 

the discussion on those ideas.   

Once the task is fully completed, the teacher then uses the new information gained 

about her students’ understanding to plan and implement a new task that will continue to 

move forward her students’ thinking about the mathematics within the task.  The more a 

teacher completes a full cycle of the MPSM, the more knowledge she will have about her 
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students, allowing her to make increasingly informed decisions about which task is 

appropriate for moving forward the mathematical thinking of the class as a whole.  Below 

is a more thorough description of the components of the Mathematics Problem Solving 

Model, including a discussion of what current educational research has to say about these 

elements of the model, and how these elements of the MPSM were incorporated into the 

professional development.  Before I go into a more detailed discussion of the MPSM, I 

will first discuss some of the professional development activities experienced by the 

teachers that were facilitative in deepening their understanding of the elements of the 

model. 

 

Professional Development Activities that Attended to the Model 

The MPSM professional development program was designed around this model, 

with teachers being made explicitly aware of the model through the course of the 

professional development.  There is not enough space here to provide a complete 

description of everything that happened in the professional development, including all of 

the refinements that were made over the four years of its implementation.  However, in 

order to give a sense of what did happen during the professional development, I briefly 

describe below four professional development activities that were central to the program.  

These four major activities took place consistently across the four years and all served to 

address key aspects of the model and the professional development experience as 

envisioned by the professional developers.  I will frequently refer to these four activities 
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throughout my discussion of the Mathematics Problem Solving Model, providing more 

detail about each of these activities as they are revisited in the remainder of this paper.   

Implementation of MPSM tasks.  For the purpose of facilitating instruction 

around the MPSM, a collection of problem-solving tasks considered appropriate for 

implementation in a middle school mathematics classroom was pre-assembled by the 

professional developers.  While the number of MPSM tasks used from year-to-year 

varied, three tasks were used all four years.  These were Snack Shack, Design a 

Dartboard, and Spinner Elimination (see chapter 4 for a complete description of these 

tasks).  These problem-solving tasks played a central role in the professional 

development experience.  In preparation for these tasks being used by the teachers, 

considerable time during the professional development was devoted to the teachers 

solving these tasks themselves, playing the role of the student.  The members of the 

professional development team took turns playing the role of the teacher, implementing 

the tasks as intended in the MPSM.  That is, the professional developer would enact 

certain elements of the MPSM model such as deliberately selecting and sequencing 

solutions and then leading a discussion based upon those solutions.  Following this 

whole-group discussion, the professional developer would often explain the choices made 

in leading the whole-group discussion.  This allowed the teachers to gain an 

understanding of the mathematics involved in the task and to observe how the tasks are 

intended to be implemented, according to the MPSM.  The teachers also analyzed pre-

existing student work from these tasks as a way to experience the formative assessment 

practices of the MPSM (i.e. using student work to plan subsequent instruction).  
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Following the summer professional development sessions, the teachers took these MPSM 

tasks, and other tasks developed during the sessions, into their own classrooms and 

implemented them according to the MPSM.  The teachers began the initial planning 

process in the summer by identifying their mathematical learning objectives and 

considering where they intended to place the tasks in their curricula. 

Identifying the cognitive demand of a task.  The effectiveness of a mathematics 

problem-solving task will vary depending upon the level of thinking required to 

successfully complete the task.  To support the teachers in suitable tasks, we used the 

concept of cognitive demand as drawn from Stein, Smith et al.’s (2009) Implementing 

standards-based mathematics: A casebook for professional development in which they 

identify four levels of cognitive demand (memorization, procedures without connections, 

procedures with connections, and doing mathematics).  It is the intent of the professional 

development program that the teachers are able to identify and select tasks for 

implementation in their classrooms that are of high cognitive demand (that is, procedures 

with connections and doing mathematics).  The tasks developed by the MPSM research 

team are considered to be at the level of doing mathematics and these were provided to 

the teachers during the summer professional development as a resource for the teachers to 

become familiar with the characteristics of a task that is doing mathematics.  In order to 

further build the teachers’ understanding of cognitively demanding tasks, the teachers 

were introduced to Stein et al.’s (2009) definitions of the four levels of cognitive demand 

and given a collection of middle school mathematics tasks that were of varying levels of 

cognitive demand which they were asked to categorize according to their potential level 



59 

 

of cognitive demand.  The purpose of this task was to familiarize the teachers with the 

four levels of cognitive demand and to increase their facility with recognizing the 

cognitive demand of a problem-solving task they may be considering using in their 

classrooms.  Later in the professional development, the teachers were led through another 

activity in which they adapted tasks from their own textbooks to raise the cognitive 

demand of those tasks. 

Examples of discourse in the classroom.  Since many teachers are only familiar 

with traditionally taught classrooms in which discourse around problem solving is not a 

common occurrence, the professional development program showed videos to the 

teachers for the purpose of increasing their understanding of what it looks like for a 

teacher to successfully engage his or her students in discourse around a problem-solving 

task.  The goal of these activities was to engage teachers in reflective discussions around 

samples of classroom instruction that support the MPSM, creating opportunities for 

teachers to “not only to see alternative conceptions of teaching but also to build their own 

understandings as they interact with these cases and their colleagues” (Merseth, 1996, p. 

734). 

Adapted from Boaler and Humphreys’ book, Connecting mathematics ideas, 

Middle school video cases to support teaching and learning (2005), the teachers were 

shown a video of Cathy Humphreys implementing The Border Problem, a problem-

solving task designed to engage students in thinking about algebraic representations.  The 

teachers were given a handout from the Boaler and Humphreys book of nine types of 

questions teachers might ask with a description of each question type.  They were then 
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asked to review the transcript of the video they just watched to identify the different 

question types.  The teachers were led in further discussion as they compared these 

question types to Examples of Effective Questions, adapted from NCTM, and discussed 

which question types they felt would be most useful in moving students’ thinking 

forward.    

Another classroom example of effective classroom discourse was drawn from the 

Mathematics in the City Research Project (Fosnot et al., 2006).  This video was shown to 

give the teachers an opportunity to follow another teacher’s thinking in planning, 

implementing, and facilitating classroom discourse around a problem-solving task.  The 

teachers watched videos of Joel, a middle school teacher, implementing a problem-

solving task with his sixth grade class, including Joel posing the problem, the students 

working on the problem as Joel gives feedback, students discussing the task in small 

groups, Joel engaging the students in a whole-class discussion of the task, and, finally, an 

interview of Joel sharing the goals and decisions he made as he was implementing the 

problem.  The teachers interacted with the videos by solving the task themselves and 

discussing possible solutions, discussing the questions asked by Joel as the students 

worked on the task, reviewing student solutions and predicting in what sequence Joel 

might choose to discuss those solutions with the class, and reflecting upon how Joel’s 

classroom moves connect to the Mathematics Problem Solving Model. 

Reading and Reflection on Practitioner Articles. The participating teachers 

were assigned, as homework, a variety of practitioner articles related to problem solving, 

classroom discourse, and formative assessment.  Examples of these articles include a 
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review of research on formative feedback in the classroom (Wiliam, 2007) and an article 

about classroom discourse called Never Say Anything a Kid Could Say, from 

Mathematics Teaching in the Middle School (Reinhart, 2000).  The articles read by the 

teachers changed some over the four years as new and more appropriate articles became 

available.  The purpose of reviewing these articles with the teachers was to raise their 

awareness of what research says about classroom practices that align with the MPSM and 

to provide an opportunity for the teachers to reflect upon their own teaching practices.  In 

addition to the articles that the teachers read during the summer, the teachers also read 

through the book Implementing standards-based mathematics: A casebook for 

professional development (Stein, et al., 2009).  During the school year, the teachers 

discussed the book via MOODLE, an online learning management system, sharing their 

general impressions of the case studies as well as discussing how they felt the reading 

connected to their own teaching practices. 

The Elements of the MPSM Model 

We now shift back to a discussion of the MPSM Model itself and the role it 

played in the professional development.  As a reminder and for easy reference, I have 

included the model again in figure 4.  Below is a description if each of the elements of 

the model including a discussion of the research literature that supports the views 

expressed in the model and descriptions of how the professional development 

experiences described above supported these elements.  Also there are some references to 

responses that were received from the teachers participating in the professional 
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development.  These responses are based upon informal feedback forms that the teachers 

filled out at the end of each professional development day. 

 

Figure 4. The Education Northwest MPSM, Revisited (Gummer, Gates, & Strowbridge, 

2009) 

 

Mathematical Learning Objectives. Before a problem-solving task is selected to 

be implemented in a mathematics classroom, a mathematical learning objective must first 

be chosen to ensure that the task is useful for moving forward the mathematical agenda in 

the classroom.  Teachers’ instructional moves that lead towards building conceptual 

understanding should begin with, and be subsequently guided by, the identification of an 

instructional learning goal (Sherin, 2002; Stein, Smith, Henningsen, & Silver, 2009).  The 

MPSM program emphasizes that, in order to successfully teach mathematics through the 

use of problem-solving tasks, the implementation of a problem-solving task should take 
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place concurrently with the mathematical concepts and procedures in the classroom’s 

curriculum (NCTM 2000; Lesh & Zawojewski, 2007).  A clearly identified learning 

objective is central to instructional planning, but also to formative assessment: 

Learning goals are the starting, ending, and recycling points in the 

selection and implementation of quality assessment tools, in interpretation 

and analysis of student work, and in the use of results to provide 

informative feedback and take action that will further students’ progress. 

(Herman et al., 2006, p. 5) 

The ‘Examples of Discourse in the Classroom’ activity served to demonstrate to 

teachers the potential value of articulating a learning goal when implementing a problem-

solving task.  In the follow-up interview, Joel was able to articulate exactly what his 

learning goal was for the problem-solving task he had selected.  From the interview and 

classroom video, it was clear that Joel was successful in selecting a task and then 

orchestrating discourse in his classroom to accomplish that learning goal.  Participating 

teachers expressed that the effectiveness with which Joel utilized his learning goal was 

eye-opening for them to understand how important having a learning goal can be.  As 

teachers planned to implement their five problem-solving tasks in their classroom, 

teachers were first asked to examine the mathematical content and skills required for 

successful implementation of the tasks and then looked at their own curriculum to see 

where these tasks would best fit to support a mathematical learning goal appropriate for 

their class.  By emphasizing the importance of a clearly articulated mathematical learning 

goal, the MPSM program discourages the concept of “problem solving Friday” in which 
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a problem-solving task is essentially “dropped” into the curriculum without regard for 

how the task fits into the content being covered in the curriculum.  

Research unfortunately shows that when teachers plan for instruction, they 

typically focus on selecting an activity without identification of a learning goal (Brown, 

1988; Young, Reiser, & Dick, 1998).  This tended to be true of the teachers participating 

in the MPSM professional development program as well, as observed by one of the 

professional developers when visiting the teachers’ classrooms.  While the professional 

development emphasized the importance of having a mathematical learning goal when 

implementing a problem-solving task, the design of the research study did not allow the 

participating teachers to identifying a learning goal before choosing a task because the 

teachers were required to implement the three MPSM tasks, regardless of whether it fit 

with a mathematical learning goal from their curriculum.  That is, as part of data 

collection for the research study, the teachers were given three tasks to implement in their 

classroom during the following school year and they had to identify a learning goal based 

upon the task that was given to them, which is backwards from how the model was 

intended.  The data collected from the teachers also showed that when choosing their own 

tasks, they were more likely to choose a task and then select a mathematical learning 

objective for the task.   

Mathematical Tasks. Once a mathematical learning objective has been 

identified, a problem-solving task that supports that learning objective is then selected.  

One major assumption about how students learn mathematics is that students build 

meaning and understanding through engagement with mathematical tasks (Hiebert et al., 
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1997).  Research has shown that students demonstrate greater learning gains and more 

flexible reasoning skills in classrooms in which students spend more time on tasks that 

engage students in sense-making and building conceptual understanding as opposed to 

classrooms in which students are demonstrated a skill and then practice that skill by 

solving several related problems (Boaler, 1998; Hiebert & Wearne, 1993; Silver & Stein, 

1996).  In order for this to happen, the appropriate task must be thoughtfully selected as 

“the mathematical tasks with which students become engaged determine not only what 

substance they learn but also how they come to think about, develop, use, and make sense 

of mathematics” (Stein, Grover, & Henningsen, 1996, p. 459).  Therefore, in order to 

successfully select a mathematics problem-solving task, the teacher must take into 

consideration, not only the mathematical content of the task, but also the level of thinking 

in which the task will afford opportunity for the students to be engaged.  In order to 

clarify what is meant by students building understanding through mathematical tasks, this 

section will start with a discussion of how problem solving is defined in the MPSM and 

then further discuss the concept of students engaging with mathematical tasks within the 

framework of cognitively demanding tasks (Stein et al., 2009). 

Defining problem solving as utilized in the MPSM.  While there are many 

different definitions for problem solving (Schoenfeld, 1992), the MPSM focuses in 

particular on the use of open-ended problem-solving tasks as a means for building new 

mathematical knowledge.  An open-ended problem-solving task is one that has multiple 

solution methods that may lead to multiple possible solutions.  When solving and 

discussing open-ended problem-solving tasks, the focus is not on finding the answer, but 
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on the processes that students use to arrive at their solutions.  Genuine problem solving 

means that students are responsible for choosing their method or procedure that they will 

use to solve the task and then reflecting on the problem-solving experience, affording 

opportunities to deepen understanding of the problem-solving process and the 

mathematical concepts underlying the problem-solving process (Hiebert et al., 1997).  

Such problem-solving tasks should be non-routine and challenging, but not inaccessible 

(Becker & Shimada, 1997). 

 The Mathematics Problem Solving Model strongly encourages the placement of 

problem-solving tasks into the curriculum in such a way that they create opportunities for 

students to build new mathematical knowledge and deepen conceptual understanding 

(Boaler, 1998; Hiebert & Wearne, 1993; Silver & Stein, 1996).   Stanic and Kilpatrick 

(1989) identified the potential for problem solving to be used as a tool for teaching new 

concepts and skills.  In addition to this definition of problem solving, a well-chosen 

problem-solving task also has the potential to support students in making connections 

between mathematical concepts, representations, and operations, deepening conceptual 

understanding, and creating richer conceptual structures (Donovan & Bransford, 1999; 

Kahan & Wyberg, 2003).  Problem solving is also defined as model-eliciting in which 

students mathematize real-world problems by mathematically interpreting a contextual 

problem (Bonotto, 2002; Lesh, Hoover, Hole, Kelly, & Post, 2000).  All of these 

conceptualizations of problem solving support how problem solving is perceived within 

the MPSM.  Below is a discussion of the types of tasks that best support this type of 

learning in the mathematics classroom. 
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Cognitively demanding tasks.  The appropriate selection of problem-solving tasks 

is critical for the success of the Mathematics Problem Solving Model.  Selection of a 

problem-solving task goes beyond finding a task that will keep students busy throughout 

a class period to selecting a task that will lead students to “understanding fundamental 

mathematical concepts and principles and to acquiring skill in the use of basic 

mathematics techniques” (Marcus & Fey, 2003, p. 55).  The MPSM professional 

development program used Stein et al.’s conceptualization of cognitively demanding 

tasks as a framework to be used for the selection of tasks.  There are four levels of 

cognitive demand that a task may elicit: memorization, procedures without connections, 

procedures with connections, and doing mathematics (Stein et al., 2009).  Memorization 

tasks are straight-forward tasks that require students to recall previously learned 

information to solve and do not afford opportunities to use procedures either because the 

task does not require the execution of a procedure or not enough time is allotted to allow 

for the use of a procedure.  Procedures without connections tasks are algorithmic in 

nature, requiring the use of previously learned procedures.  Memorization tasks and 

procedures without connections tasks are considered low-level tasks that require little to 

no cognitive demand to complete, are focused on producing correct answers, having no 

connections to related concepts, and require little explanations.  Research shows that 

students who only ever engage in tasks of low cognitive demand have a very difficult 

time connecting the mathematics they learn to problems outside of a textbook or where 

the procedure to be applied is not made explicit (Boaler, 1998).  While there is an 



68 

 

appropriate time and place for students to perform tasks of low cognitive demand, the 

MPSM is not intended to be used with these types of tasks. 

Tasks considered to be of high cognitive demand are procedures with connections 

tasks and doing mathematics tasks.  Procedures with connections tasks focus students on 

the use of broad procedural pathways for the purpose of deepening understanding of the 

concepts underlying the procedures, requiring students to engage with conceptual ideas in 

order to successfully complete the task.  This is often done through the use of multiple 

representations.  Doing mathematics tasks require complex, non-algorithmic thinking, 

and require considerable cognitive effort.  These tasks require students to explore 

mathematical relationships, processes, and concepts, demand self-monitoring of one’s 

thinking.  In addition, doing mathematics tasks require students to access relevant 

knowledge from past experiences and students must be able to examine these tasks in 

order to recognize constraints that may limit possible strategies and solutions (Stein et al., 

2009).  Research has shown that a major contributing factor to the success of students in 

high achieving schools is that their teachers engage them in tasks of high cognitive 

demand (Boaler & Staples, 2008).  This is likely due to the fact that tasks of high 

cognitive demand are designed to build conceptual understanding (Boston & Smith, 

2009) and promote reasoning skills (Yackel & Hanna, 2003). 

The MPSM professional development supported teachers in the identification and 

use of cognitively demanding tasks in several ways.  In the activity, identifying cognitive 

demand of a task, the teachers analyzed problem-solving tasks for the purpose of 

categorizing tasks by their level of cognitive demand and discussing the features of the 
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tasks that placed them into their respective categories.  This task is meant to help teachers 

to recognize the features of a task that make them high-level or low-level.  The teachers 

often disagreed on the level of cognitive demand of some of the tasks and the teachers 

learned that some task features can be misleading in identification of the cognitive 

demand.  For example, teachers participating in the professional development recognized 

that just because a task was a story problem or required the use of manipulatives did not 

guarantee that the task had a high cognitive demand.   Teachers are often distracted by 

certain features when selecting a problem-solving task and this activity was helpful for 

teachers to build acuity for recognizing when a task is of high cognitive demand.   

It was also the intent of the professional development that teachers should learn 

how to find or develop cognitively demanding tasks of their own.  If cognitively 

demanding tasks are not readily available to teachers, then they must be able to adapt the 

tasks available to them in order to raise the cognitive demand of the task.  As an 

extension of the identifying cognitive demand task, the teachers selected tasks from their 

own textbooks and made changes to the tasks based upon some guidelines given by the 

professional developers to raise the cognitive demand of the tasks.  For example, one 

recommendation for raising the cognitive demand of a task was to remove excess 

scaffolding from the task (i.e. step-by-step directions that lead the students to the answer).  

The teachers later implemented some of these tasks in their own classroom.   

Implementation of MPSM tasks with the teachers was another strategy used in the 

professional development program to raise teachers’ awareness of what a ‘doing 

mathematics’ task looks like.  ‘Doing mathematics’ tasks are rarely implemented in a 
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typical middle school classroom, making it important for the teachers to experience first-

hand what such a task looks and feels like as it is being implemented.  The teachers used 

some of these tasks in their classrooms as part of the professional development 

experience in order to guarantee that the teachers did have the opportunity to implement 

tasks that are ‘doing mathematics’.   

Implementing Tasks. It is necessary to select a task that is of high cognitive 

demand in order to give students opportunities to think and reason mathematically.  

However, even when tasks are set up as high cognitive demand, the level at which the 

students engage with the tasks may be lower.  How the teacher supports students’ 

thinking and reasoning during implementation of the task is a major factor in how the 

students ultimately engage with the task (Henningsen & Stein, 1997; Stein et al., 1996).  

Stein et al. (2007) used the Mathematical Tasks Framework as a lens to understand how a 

task can evolve during the implementation process (see figure 5).  The basic premise of 

the framework is that the nature of the task can change as it is set up by the teacher and 

then implemented by the students.  Consequently, what the students learn when 

completing the task will also be impacted.  Note that this framework is similar to the 

temporal phases of curriculum enactment that I used to develop my theoretical 

framework (see figure 1 in Chapter 1).  Because the ways in which a task is implemented 

can greatly impact the learning opportunities of the students, the set-up of the task was 

referred to as the launch and teachers were encouraged to very seriously consider how 

they introduced a task to their students as it has the potentially to alter how the students 

experience the task. 
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Figure 5. Mathematical Tasks Framework 

 

Maintaining cognitive demand of a task.  Just as important as the selection of a 

cognitively demanding task that supports a mathematical learning goal, the MPSM 

emphasizes the importance of implementing classroom instruction in such a way to 

maintain the cognitive demand of a task.  A research study focused on the 

implementation of mathematics tasks found that, of the tasks set up as high cognitive 

demand, less than half of the tasks maintained a high-level of cognitive demand (Stein, 

Grover, & Henningsen, 1996).  The researchers identified several factors that contributed 

to the decline of cognitive demand: (1) tasks became non-problematic as the teacher 

either reduced the requirements of the task or completed the challenging steps for the 

students; (2) the task was inappropriate for the students, indicating a lack of knowledge 

about students on the part of the teacher; (3) the focus shifted to finding the correct 

answer; (4) too much or too little time was allotted to complete the task; (5) a lack of 
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accountability on the part of the students; and (6) classroom management issues.  Factors 

that contributed to teachers maintaining the cognitive demand of the task included (1) the 

task built on students’ prior knowledge; (2) an appropriate amount of time was allotted 

for students to work on the task; (3) a high level of performance was modeled either by 

the teacher or more capable peers; (4) there was sustained pressure for explanation and 

meaning; (5) scaffolding was provided by the teacher or a peer without taking away from 

the complexity of the task; (6) students were encouraged to self-monitor their work; and 

(7) the teacher helped the students to draw conceptual connections (Henningsen & Stein, 

1997; Stein, et al., 1996).   

Maintaining the cognitive demand of a problem-solving task is particularly 

challenging for teachers when they see their students are struggling with a task and they 

want to relieve that anxiety for their students (Henningsen & Stein, 1997).  In this sort of 

situation, it is necessary for teachers to provide scaffolding for their students that allow 

them to move forward with the task without removing the demands of the task for them.  

The use of questions is central to how teachers may support their students, as they work 

on a task, to maintain the cognitive demand.  Questions that support students in moving 

their thinking forward should encourage students to provide mathematical argumentation 

and make mathematical connections (Kazemi & Stipek, 2001).  The MPSM provided 

teachers with multiple opportunities to discuss how the cognitive demand of tasks, such 

as the MPSM tasks, might be maintained and how the cognitive demand of the MPSM 

tasks might be lowered and what to do to avoid this.  These discussions arose as the 

teachers discussed Cathy Humphreys’ classroom (Discourse and Feedback in the 
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Classroom activity) and Joel’s classrooms (“Visiting a Classroom” activity) as these 

classroom episodes provided examples of teachers that were effectively able to maintain 

the cognitive demand of the tasks they were implementing in their classrooms. 

 To make sense of the types of questions that can be asked in the classroom as a 

task is implemented, Boaler and Humphrey’s framework of teacher questions (2005) was 

shared with the participating MPSM teachers (see table 1) and they were asked to identify 

these different types of questions in a classroom video of Cathy Humphreys 

implementing the Border Problem with middle school students.  The purpose of this 

activity was for teachers to recognize the importance of the difference types of questions 

that are asked in the classroom and to become more aware of the types of questions that 

they are asking in their own classrooms.  The teachers revisited these question types 

when they watched the video of Joel engaging his class in discourse.  The teachers were 

asked to discuss the questioning practices that led Joel to successfully maintain the 

cognitive demand of the problem-solving task he implemented in his classroom.  

Question Type  Description 

1. Gathering information, 

checking for a method, 

leading students through 

a method 

Wants direct answer, usually wrong or 

right; Rehearses known facts or procedures; Enables 

students to state facts or procedures 

2. Inserting terminology 
Once ideas are under discussion, enables correct 

mathematical language to be used to talk about them 

3. Exploring mathematical 

meanings and relationships 

Points to underlying mathematical relationships and 

meanings; Makes links between mathematical ideas 

4. Probing; getting students 

to explain their thinking 

Clarifies student thinking; Enables students to elaborate 

their thinking for their own benefit and for the 

Class 
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5. Generating discussion 
Enables other members of class to contribute and 

comment on ideas under discussion. 

6. Linking and applying  
Points to relationships among mathematical ideas and 

mathematics and other areas of study and life. 

7. Extending thinking  
Extends the situation under discussion, where similar 

ideas may be used 

8. Orienting and focusing 
Helps students focus on key elements or aspects for the 

situation in order to enable problem solving 

9. Establishing context 
Talks about issues outside of math in order to enable 

links to be made with mathematics at a later point?? 

Table 1. Teacher questions from Boaler and Humphrey’s Connecting Mathematical Ideas (2005) 

 

The reading and reflection upon the piece Never Say Anything a Kid Can Say 

(Reinhart, 2000) was another tool used to develop the teachers’ thinking about how a 

problem-solving task is implemented.  The article discussed a teacher’s experience with 

learning how to encourage all of his students to be actively engaged in thinking about a 

problem-solving task.  In that article, he recommended that the types of questions asked 

in a classroom force the students to do the thinking (not just the teacher) and that the 

manner in which the questions are asked presses all students to be prepared to respond to 

the questions (for example, directing a question to the whole group and not just an 

individual).  Participating teachers were asked to reflect upon how this article reminded 

them of their own teaching practices. 

Analyzing Student Work. In a typical mathematics classroom, once the students 

have finished a problem-solving task, the work is handed in and then the teacher assigns a 

grade.  The work is [sometimes] returned to the student, stuffed into their binder, and 

then never thought about again.  One of the assumptions about student learning in the 

MPSM professional development is that:  Teachers’ ability to understand students’ 
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mathematical development is enhanced by their ability to notice and describe what 

students say and do (Franke, Carpenter, Levi, & Fennema, 2001; Sowder, 2007; Franke, 

Kazemi, & Battey, 2007).  As a result, the perspective of the MPSM is that once the 

students hand in their work, the teacher now has valuable new information about her 

students and has the opportunity to use that information to gain further understanding of 

her students’ thinking and to move forward more effectively in the learning process.  The 

analysis of student work allows for teachers to gain insight into how their students think 

about and understand mathematics.  This insight into how students are thinking about the 

mathematics is valuable as teachers implement problem-solving tasks in their classrooms 

and allows them to better understand how they can support their students in moving 

forward their thinking, asking appropriate questions to assist students in making 

connections, and shaping subsequent instruction (Sowder, 2007; Franke et al., 2007).   

Several professional development programs have been developed that place 

student work at the center of teacher learning.  Cognitively Guided Instruction (CGI) was 

a professional development program in which teachers studied children’s developmental 

thinking about addition and subtraction; Integrating Mathematics Assessment (IMA) 

focused participating teachers’ attention on student thinking from video tapes of students 

working on problem-solving tasks and using that information to inform lessons.  The 

students of teachers in the CGI and IMA programs outperformed students of teachers in 

control groups, including on computational tests (Carpenter, Fennema, Peterson, Chiang, 

& Loef, 1989; Saxe, Gearhart, & Nasir, 2001).   
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Analysis of student work was a central part of the MPSM.  Participating teachers 

frequently engaged in analysis of student work from the MPSM problem-solving tasks 

and samples of student work from Joel’s classroom.  Teachers were encouraged to look 

beyond the surface features of the students’ work (such as whether or not they provided a 

correct solution) to think about the mathematical ideas that are evident within the student 

work and how they can provide feedback and modify subsequent instruction to support 

students in their mathematical development, leading them towards the teacher’s identified 

mathematical learning goals.   

Feedback Guide as Lens.  The MPSM utilized a formative feedback guide 

around mathematical problem solving to assist the teachers in thinking about how to 

respond to student work.  This framework consists of five components of problem 

solving: Conceptual Understanding, Strategies & Reasoning, Communication, 

Computation & Execution, and Insights.  The basic premise behind these components is 

that as students engage in mathematical problem solving, these five components 

characterize the skills and thinking that will lead students to be successful, both in 

completing the task and in developing mathematical understanding through problem 

solving.  In order to support students in their problem-solving experience, the teachers 

were encouraged to address these components as they planned subsequent instruction 

around the task.  These five problem solving components are grounded in research 

literature and are similar to the National Research Council’s five intertwined strands of 

mathematical proficiency (Kilpatrick, Swafford, & Findell, 2001) which are conceptual 
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understanding, procedural fluency, strategic competence, adaptive reasoning, and 

productive disposition. 

Conceptual Understanding. In the formative feedback guide, conceptual 

understanding pertains to the student’s ability to make sense of the mathematics in a task.  

Comprehending the mathematics in a problem-solving task includes the appropriate use 

of mathematical language and mathematical representations in generating a solution to 

the task and recognizing the mathematical ideas used to solve the task.  Students with a 

good conceptual understanding of a task are able to recognize how a mathematical idea or 

procedure is useful for solving a task.  Also, a student should be able to connect a 

problem-solving task to old and new mathematical ideas.  Research shows that learning 

with understanding involves an extensive factual knowledge base organized into a 

conceptual framework (Donovan & Bransford, 2001).  That is, the mathematical ideas, 

terminology, and representations useful for solving a task best serve the learner when 

they are all interconnected.  When working on a problem-solving task, students have 

opportunities to build conceptual understanding as they make decisions about which 

representations are useful for solving the task and why (Kilpatrick et al., 2001).  The 

appropriate use of mathematical terminology is another avenue for building conceptual 

understanding, particularly when it is built up from students’ everyday use of 

mathematical words (NCTM, 2000).   

Strategies & Reasoning.  Successfully solving a task involves identifying a 

strategy and supplying a reason for why that strategy is useful for solving the task.  

Students should be able to recognize strategies available to them for solving a task and 
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know when a strategy is appropriate to solve a task.  Strategies as recommended by Polya 

(1945) include trying special values or cases, guessing and checking, using diagrams, 

looking for patterns, listing all possibilities, working backward, creating an equivalent 

problem, and creating a simpler problem.  Students need to be able to not only recognize 

a strategy useful for solving a task, but flexibly recognize multiple strategies and select 

the best one (Kilpatrick et al., 2001).  Engagement in a mathematical problem-solving 

task should entail students developing their own, informal strategies, providing 

explanation and justification for the strategies used, and making connections between 

multiple strategies.  This process guides students’ thinking towards a more advanced 

understanding of problem-solving strategies (Hiebert et al., 1997). 

Communication. Students need to be able to communicate their thinking, both 

verbally to their peers and teacher as they are discussing a problem-solving task and in 

writing in their final written product of a task.  Students should develop their ability to 

communicate clearly in mathematics in much the same way that students learn to 

communicate clearly in their language classes (NCTM, 2000).  The ability to 

communicate one’s thinking around a mathematical problem-solving task inevitably 

leads to the use of more concise language and better mathematical representations.  Clear 

communication is a valuable skill in mathematics as it can function as a stepping stone to 

build mathematical ideas and deepen conceptual understanding, positioning students to 

build useful mathematical connections (Hiebert et al, 1997).  Verbal communication in 

the classroom creates a forum in which students’ thinking about mathematics becomes 

visible (Fuson, Kalchman, & Bransford, 2001).  Within the MPSM problem solving 
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framework, communication refers to writing and talking about a problem-solving task in 

such a way that the students make it clear to the instructor what they and why they did it.  

Note that communication, as it pertains to appropriate mathematical terminology and 

representations, is captured within the conceptual understanding component. 

Computation & Execution.  It is not only necessary to successfully identify a 

strategy, but the computation and execution of the strategy must be done accurately in 

order to arrive at a correct solution.  Completing a problem-solving task should afford 

opportunities for students to use the mathematical skills and procedures they have been 

learning in the classroom (Hiebert et al., 1997).  It is important that students can compute 

a number accurately and efficiently, but it is also important that students can estimate a 

solution and recognize when a solution is appropriate.  Part of this process involves 

recognizing when a procedure will lead to a correct solution.  While accurate 

computation and execution may seem contrary to conceptual understanding, 

mathematical procedures should, in fact, be incorporated into a student’s conceptual 

framework, organized in such a way for facile retrieval and application (Bransford, 

Brown, & Cocking, 2000).  Computations that are founded in conceptual understanding 

will be more efficient and less prone to error (Kilpatrick et al., 2001). 

Insights.  Student engagement with a cognitively demanding task should afford 

opportunities for students to make connections to other mathematics and to real-world 

contexts.  NCTM (2000) advocates for students making connections between the 

mathematics they are using in their classroom and to real world contexts outside the 

classroom.  Research shows that learners’ conceptual frameworks tend to remain deeply 
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rooted in their understanding of the outside world, despite formal instruction, making it 

vital that students’ conceptualizations of the outside world be directly addressed in 

mathematics instruction (Bransford, Brown, & Cocking, 2000).  Making connections to 

real-world contexts and extending mathematical thinking around a problem-solving task 

are useful for deepening mathematical understanding (Hiebert et al., 1997).  Exploring 

mathematics problem-solving tasks beyond simply finding a solution can lead to students 

making, and eventually justifying, conjectures and generalizations related to the task 

(Kalathil, 2006).   

The Feedback Guide.  One of the features of the MPSM professional 

development is a feedback guide based upon the five problem-solving traits.  The original 

version of the feedback guide resembled a rubric and the professional development team 

felt that the suggested feedback in the guide was summative in nature and not useful for 

moving students forward in their thinking about the task.  By year three of the 

professional development program, one of the researchers in the project had developed a 

revised version of the feedback guide, which was used for years three and four of the 

professional development (Cohen, 2008).  The new feedback guide was designed to help 

teachers give constructive feedback to their students that would help them move forward 

with the task.  Another major difference in the revised formative feedback guide is that 

the feedback comments were organized not only according to the five problem-solving 

traits, but also according to the five NCTM process strands: Problem Solving, Reasoning 

and Proof, Communication, Connections, and Representations (2000).   
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Plan Next Step with Same Task. Once the students have worked the task and the 

teacher has had a chance to analyze the student work, the teacher must choose how he or 

she will then use that information in subsequent classroom instruction.  The MPSM 

model proposes two avenues for subsequent instruction.  One option is for the teacher to 

plan and orchestrate a whole class discussion around samples of student work.  Whole 

classroom discourse around a mathematics problem-solving task creates an opportunity 

for students to deepen their understanding of the mathematics used to solve the task and 

also creates an opportunity for students to reason mathematically, justifying their 

reasoning and making connections between student work (Hiebert et al., 1997).  To 

support the orchestration of this type of discourse, teachers are expected to analyze 

student work, select samples of student work to help make the mathematics salient to the 

class as a whole and then select the order in which student work will be presented to best 

support the development of mathematical ideas.  The other instructional process 

supported by the MPSM model involves the teacher providing her students with written 

feedback on their work and then using that feedback in the classroom to create 

opportunities for students to move forward in their thinking about the task.   

While this element of the model makes the assumption that the teacher must make 

a decision about which direction to take when planning for follow-up instruction, the 

professional development program was not designed in such a way to give teachers the 

opportunity to make this decision.  Originally, in the professional development, teachers 

were required to both orchestrate classroom discussions around the task and provide 

written feedback to students for each of the five problem-solving tasks they implemented 
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during the follow-up school year.  In later years, in an effort to decrease the load for the 

teachers, this requirement was changed so that they orchestrated discourse for three of the 

five tasks and then provided written feedback with follow-up instruction for the other two 

tasks.  This structure of the professional development limited the teachers’ opportunities 

to make the decision about whether or not they wanted to follow-up the implementation 

of a problem-solving task with a whole-class discussion or with instructional activities 

using feedback. 

Select and Sequence Student Work for Whole-Class Discourse. All students 

should have the opportunity to engage in discourse both with the teacher and their peers 

(NCTM, 1991).  Students sharing their problem-solving strategies in the context of 

whole-class discussions is a valuable way for students to build new mathematical 

thinking (Hiebert, 2003), but this must come with a caveat that students randomly 

volunteering to share how they solved a task can lead to limited opportunities for students 

to engage in mathematical thinking around a problem-solving task (Leinhardt, 2001; 

Nathan & Knuth, 2003; Stein, Engle, Smith, & Hughes, 2008; Williams & Baxter, 1996).  

The teacher’s role in orchestrating discourse around a mathematical problem-solving task 

is a critical one as it is the teacher’s responsibility to create opportunities for students to 

reason mathematically about the problem-solving task (Chazan & Ball, 2001).  The 

MPSM proposes planning for discourse around a mathematical problem-solving task by 

identifying which solution strategies will be discussed, determining the order in which 

those solution strategies will be presented, and planning appropriate questions to make 
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the mathematics salient (Stein et al, 2008; Stein et al, 2009).  These three planning 

activities are described in further detail below.   

Selecting, Sequencing and Planning for Discourse. The practice of selecting 

which pieces of student work will be presented during a whole-class discussion 

commonly takes place as the teacher navigates the classroom, observing the types of 

solutions students are generating (Groves, 2004).  This approach is practical when a 

whole-class discussion takes place immediately following students working on the task.  

However, in the context of the MPSM professional development, teachers are expected to 

collect student work and take time outside of class to plan for the discourse.  Research 

has shown that reflection of student work outside of the classroom is effective for 

enabling teachers to recognize their students’ mathematical thinking and to make 

decisions about how to move that thinking forward (Davies & Walker, 2005; Kazemi & 

Franke, 2004; Nelson, 2001).  The purpose of selecting student work is to make sure that 

particular mathematical ideas become open for discussion during the discourse (Lampert, 

2001).  Selection of student work may be based upon the ideas present in the solution, 

representations used, or misconceptions that are evident in the work.  Selection of student 

work is also based less upon mathematical factors such as sharing a particularly well-

written solution, or making sure that a student who hasn’t presented in a while gets an 

opportunity to share. 

The next step in planning for classroom discourse around mathematical problem-

solving tasks is to determine the order in which the selected pieces of student work will 
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be presented during the whole-class discussion.  This is referred to in the MPSM as the 

sequencing of student work.   

“Rather than being at the mercy of when students happen to 

contribute an idea to a discussion, teachers can select students to 

present in a particular sequence to make a discussion more 

mathematically coherent and predictable” (Stein, Engle, Smith, & 

Hughes, 2008, p. 330).  

 

  Ideally, solutions are ordered in such a way that students will have opportunities 

to further develop the mathematical ideas that are the focus of the lesson.  A common and 

effective way to sequence student solutions for discourse around a mathematical 

problem-solving task is to start with the least sophisticated solutions to allow the 

classroom community to progressively build a sophisticated solution to the task (Groves 

& Doig, 2004).  Other ways to sequence include, but are not limited to, sharing incorrect 

solutions up front to eliminate misconceptions before proceeding with the discussion, 

sharing two conceptually similar solutions together to create opportunities for students to 

make connections between the strategies, and sequencing in such a way to allow a 

mathematical lesson to emerge (Stein et al., 2008). 

Once a sequencing of student work is identified, the teacher plans questions 

intended to move forward the mathematical discourse.  Planning for mathematical 

discourse has the potential to yield positive results since “rather than having 

mathematical discussions consist of separate presentations of different ways to solve a 

particular problem, the goal is to have student presentations build on each other to 
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develop powerful mathematical ideas” (Stein et al., 2008, p. 330).  Effective classroom 

discourse is characterized by students making connections between strategies, extending 

and generalizing solutions, making conjectures, verifying and modifying claims on the 

basis of mathematical evidence, and making sense of mathematical ideas.  Questions a 

teacher might ask include requests for students to provide justification for the strategies 

they used (Hiebert et al., 1997; Kazemi & Stipek, 2001), questions that lead students to 

make sense of the mathematical ideas used to solve the task (Boaler & Humphreys, 2005; 

Sherin, 2002), questions that prompt students to make connections between strategies 

(Hiebert & Wearne, 1993; Kazemi & Stipek, 2001), and questions that encourage 

students to formulate and prove conjectures and generalizations around the mathematics 

in the task (Fraivillig, Murphy, & Fuson., 1999; Hiebert, & Wearne, 2003; Yackel & 

Hanna, 2003).  Research has shown that classrooms that support student discourse around 

these types of activities demonstrate positive learning gains (Cobb, Wood, Yackel, 

Nichols, Wheatly, Trigatti, & Perlwitz, 1991; Silver & Stein 1996; Carpenter, Fennema , 

& Franke, 1997; Hiebert 2003). 

Professional Development around Selecting and Sequencing. Teachers 

participating in the MPSM professional development program received support in 

engaging in this method of planning for classroom discourse.  First, teachers were able to 

experience first-hand the implementation of a follow-up discussion of a problem-solving 

task as the professional developers implemented the MPSM tasks with the teachers.  As 

one of the experiences planned by the professional development team, the professional 

developer implementing the task navigated around the room, observing the solutions the 
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participating teachers were developing in small groups.  After the teachers had completed 

the task, the professional developer asked specific groups to share their solutions and 

asked pressing questions that led teachers to recognize important mathematical 

connections between the solutions.  After the discussion, the professional developer 

shared with the teachers her strategies for selecting and sequencing the solutions they 

discussed.  The participating teachers expressed surprise and pleasure at how effectively 

this approach allowed for interesting mathematical ideas to be exposed that they 

themselves were not even aware of. 

Multiple times during the professional development, teachers were given samples 

of actual student work from various problem-solving tasks and were asked to identify the 

important mathematical ideas evident in the student work, sequence the student work in 

such a way to develop further thinking about important mathematical ideas in the task, 

and think about what questions they might ask to make the mathematics salient.  

Teachers engaged in this activity first with a very simple problem-solving task, then an 

MPSM problem-solving task, and also with Joel’s problem-solving task (before watching 

the video of his follow-up discourse).  Practicing with samples of student work from 

actual teachers’ classrooms made it possible to share with the teachers the actual plans 

that were developed by the teachers and to compare and contrast their own plans to what 

actually took place.  In some cases, the teachers were pleased to see that the plans they 

developed were very similar to what the teachers had actually planned, while, in other 

instances, the teachers were amazed at how different the plans could be, even though they 

were selecting from the same set of student work. 
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In order to facilitate planning for whole-class discussions around a problem-

solving task, a planning form called the Instructional Sequence Analysis (or ISA) was 

developed for the teachers to complete (see Appendix A).  The ISA included a table with 

three column and several rows.  The first column is for the teacher to put the names of the 

students whose work is to be presented in the order in which they plan to present their 

work.  In the second column, the teacher identifies the idea to be highlighted in that 

student’s work.  For example, the teacher may have picked that student’s work because 

they used a particular representation.  In the third column, the teacher identifies the 

questions they plan to ask in order to make the mathematics salient to the class.  There is 

one row for each piece of student work to be presented.  Following the table, space is 

provided for the teacher to provide any rationale they had for the sequencing of student 

work they chose and to provide information about any additional follow-up they plan to 

do after the whole-class discussion. The Instructional Sequence Analysis was used on 

more than one occasion as the teachers practiced selecting and sequencing student work 

during the summer professional development.  Also, the teachers were shown samples of 

the ISA completed by teachers in previous cohorts.  During the following school year, the 

teachers used the ISA when planning the whole-class discussions they implemented in 

their classrooms.  The ISA was used both to support the teachers in practicing 

implementing whole-class discussions around problem-solving tasks in their classrooms 

and also were used for data collection purposes in the research project. 

Implementing Whole-Class Discourse.  Once the teacher has planned for 

discourse by completing the Instructional Sequence Analysis, the obvious next step is 
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that they will implement their plans in the classroom.  At this stage, there are some 

additional decisions that must be made by the teacher.  The teachers must choose whether 

or not they will ask the students whose work is being presented to come up and share 

their work with the class or if they will present the student work anonymously.  They 

must make decisions such as whether or not they will direct the planned questions at the 

presenting students or to the class in general.  Also, follow-up questions may need to be 

asked based upon how the students respond to the preplanned questions.  The teachers 

had several opportunities to witness this type of whole-class discussion during the 

summer professional development.  The teachers experienced these whole-class 

discussions as a student participant when the MPSM tasks were implemented by the 

professional developers.  Also, the video of Joel’s whole-class discussion represented an 

example of a whole-class discussion that promoted mathematical reasoning as he 

preplanned which pieces of student work would be presented.  Also, in the later cohorts, 

excerpts of whole-class discussions from previous cohorts were shared with the 

participants. 

While the teachers were able to witness examples of the implementation of a 

whole-class discussion around a problem-solving task, the teachers did not have a chance 

to practice implementing a whole-class discussion themselves until the following school 

year.  As part of the larger research study, the teachers audio-recorded their whole-class 

discussions.  The purpose of my dissertation is to gain a better understanding of what 

happens as the teachers implement their ISAs and how their choice of questions in the 

ISA affects the opportunities they create for students to reason mathematically. 



89 

 

Written Feedback and Classroom Use of Feedback. The other option in the 

MPSM for following up a mathematical problem-solving task is to provide the students 

with written feedback that they can use to improve their problem-solving skills.  The 

primary purpose of formative feedback is to increase the knowledge, skills, or 

understanding of a student within a certain content area (Shute, 2008).  Formative 

feedback involves establishing where the student is in the learning process, determining 

where they are going, and identifying what that student needs to do in order to get there.  

An important characteristic of good feedback is that the nature of feedback provided 

should be guided by the teacher’s instructional goals and the teacher’s knowledge of the 

student (or students) in question (Narciss & Huth, 2004). 

There are many methods employed to impart formative feedback, but this section 

is focused specifically on written feedback.  Nyquist (2003) identified five different 

forms of feedback.  These are: 

 Weaker feedback: Feedback which only gives the student knowledge of a score or 

a grade 

 Feedback: Feedback which gives the student knowledge of a score or grade and 

also provides clear goals to work for or knowledge of correct results, often in the 

form of correct answers to questions the student attempted. 

 Weak formative assessment: The student is given information about the correct 

results along with some explanation 

 Moderate formative assessment: The student is given information about the 

correct results, some explanation, and some suggestions for improvement 
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 Strong formative assessment: The student is given information about correct 

results, some explanation, and suggestions for specific activities to undertake in 

order to improve. 

In his meta-analysis of 185 studies, Nyquist found that, while there were positive 

learning gains for all five of these forms of feedback, strong formative assessment 

demonstrated the greatest learning gains (Nyquist, 2003). In light of this research, the 

MPSM formative feedback guide and the professional development experiences 

encouraged the teachers to not only identify the relationship between the students’ 

performance and what the teachers considers to be ideal performance, but to also include 

some recommended action that the students can take to decrease the gap between student 

performance and ideal performance.  This action may be implicitly or explicitly stated.  

In addition, the action may be directive, recommending specific action by students, or 

facilitative, providing hints or clues to what a student might do next.   

Written feedback and the MPSM formative feedback guide.  A MPSM feedback 

guide was developed for the MPSM professional development program that was meant to 

support teachers as they provided feedback to their students.  An analysis of the original 

MPSM feedback guide that was used with the teachers in cohorts 1 and 2 revealed that 

the feedback guide was useful for weaker feedback only, providing information to 

students about the deficiencies in their work, but not giving recommendations for how 

they could move forward with the task and eliminate those deficiencies (Nyquist, 2003).  

Research shows that feedback is more effective when the feedback does not simply 

indicate whether the student was right or wrong, but also provides information pertaining 
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to actions the student may take to increase proficiency (Bangert-Drowns, Kulik, Kulik, & 

Morgan, 1991; Pridemore & Klein, 1995).  In order to increase the efficacy of the 

feedback guide, the revised feedback guide, used with cohorts 3 and 4 teachers, identifies 

the deficiencies in student performance, with some explanation, and gives suggestions for 

specific activities the student may undertake in order to address the deficiency.  The new 

version of the MPSM formative feedback guide was designed to better encapsulate the 

feedback guide’s purpose as a formative assessment tool by prompting the teacher to give 

more detailed information when providing written feedback and also suggesting possible 

avenues for improving the issues evident in the student’s work (Cohen, 2006).  This new 

feedback guide was designed to be useful as either moderate formative assessment or 

strong formative assessment. 

Teachers practiced giving feedback and using the formative feedback guide 

during the summer professional development.  The teachers began by giving feedback as 

they would in their own everyday practices and eventually worked towards practicing 

giving written feedback using the formative feedback guide.  Teachers were given 

samples of student work and asked to pretend to provide feedback to these students as 

they would in their own classrooms.  Teachers then discussed the type of feedback they 

were giving the students.  Later, teachers were given a similar task, but were asked to use 

the formative feedback guide to help support their thinking as they thought about the 

types of comments they wanted to give the students.  Throughout this process, the 

teachers reflected on the usefulness of the feedback they were giving, comparing and 

contrasting to feedback of their peers.   
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Classroom Use of Feedback.  The extent to which the MPSM formative 

feedback guide is used for formative assessment is dependent upon how the teacher 

chooses to use the feedback in subsequent instructional activities.  “[Formative 

assessment] is to be interpreted as encompassing all those activities undertaken by 

teachers, and/or by their students, which provide information to be used as feedback to 

modify the teaching and learning activities in which they are engaged.” (Black & Wiliam, 

1998).  This quote implies that effective feedback should be used to move students’ 

learning forward.  It is, unfortunately, common practice for students to receive feedback 

comments from their teacher, possibly glance at the comments briefly, and then shove the 

paper into the back of their binder never to be looked at again.  In order to ensure that the 

written feedback generated by the teacher is put to good use and that students actually use 

the feedback to engage in activities that will improve their performance on problem-

solving tasks, the MPSM recommends formal activities in the classroom centered on the 

feedback.  The most common use of feedback is to require that students use the feedback 

to revise their task solution and resubmit it for additional regard by the teacher or other 

students.  This type of activity is more effective when feedback includes information 

about how a student may move forward with a task (Day & Cordon, 1993; Nyquist, 

2003).  Other common uses of feedback include peer feedback and student reflection on 

written feedback, providing information about how that student might improve.  These 

follow-up activities, in which students reflect upon their work and take action to make 

improvements, have the potential to be beneficial to students as they encourage learners’ 
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engagement in active cognitive and metacognitive processing, thus engendering a sense 

of autonomy (and perhaps improved self-efficacy)” (Shute, 2008, p. 166).  

 

Adult Learning: Building Understanding of the MPSM through Cognitive 

Apprenticeship 
 

While the description of the elements of the MPSM given above provided some 

details about the four professional development activities described at the beginning of 

this chapter, this section is devoted specifically to describing how the professional 

development activities referred to as ‘implementing MPSM tasks’ were used to support 

teachers in developing their understanding of the MPSM.  A common perspective of 

adult learning is that it needs to be experience-based (Baird, Schneier, & Laird, 1983; 

Donovan, Bransford, & Pellegrino, 1999).  In keeping with this perspective, the MPSM 

professional development program engaged teachers in the ‘implementing MPSM tasks’ 

activities for the purpose of giving them increasingly independent experiences with the 

model.  In this way, the ‘implementing MPSM tasks’ activities were in alignment with 

cognitive apprenticeship, a teaching model for adult learners (Merriam, 2007).   

Brandt, Farmer, and Buckmaster (1993) defined five phases of cognitive 

apprenticeship: Modeling, Approximating, Fading, Self-directed Learning, and 

Generalizing.  Modeling is when the professional developers model the activity they wish 

the learner to perform.  Approximating is when the adult learner engages in activities that 

simulate the desired activity, with support from the professional developers as needed.  

Approximating activities progress into fading activities in which the learners engage in 

activities that more closely resemble what they are expected to do.  Self-directed learning 
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takes place when the learner independently engages in the newly learned activity.  

Finally, generalizing takes place as the learner reflects upon the learning that took place 

and makes personal choices about how that new learning will be applied to his 

professional practices.  The activities developed for the MPSM professional development 

program reflected these phases of professional learning.  In particular, ‘implementing 

MPSM tasks’ was an ongoing activity that developed in this manner.  Further detail of 

this professional development activity is described below with respect to the concept of 

cognitive apprenticeship. 

  As an introduction to the Mathematics Problem Solving Model, the participating 

teachers were led through the MPSM problem-solving tasks by the professional 

development team.  The participating teachers played the role of the student as they 

solved the tasks while the professional developers modeled the elements of the MPSM by 

playing the role of the teacher.  As the professional developers modeled the MPSM, they 

frequently made the teachers aware of the different elements of the MPSM as they 

implemented the problem-solving tasks.  For example, after implementing a task, the 

professional developer might talk about how they introduced the task and explain how 

the way that a task is introduced is going to impact the cognitive demand of the task as 

the students engage in it.  The professional developer would then explain that how the 

task is introduced is part of the ‘implementing tasks’ element of the framework.  This part 

of the professional development experience was important because it allowed the 

teachers to see how a task should be implemented according to the MPSM. 
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  The activities of fading and approximating took place throughout the summer 

professional development.  As the teachers learned about the different elements of the 

MPSM, they were given activities that gave them experiences with the model.  For 

example, the teachers engaged with the mathematical tasks element of the model by first 

looking at sample problem-solving tasks and identifying the cognitive demand of the 

tasks.  Later, they actually took tasks from their own textbooks and altered them in order 

to raise the cognitive demand of the tasks.  This latter activity more closely simulated 

what we expected the teachers to do in their own classrooms as they look for problem-

solving tasks to implement with their students. 

Another important tool that was used to approximate implementing the MPSM 

tasks was the use of samples of student work.  This made it possible for the teachers to 

analyze real student work under the guidance of the professional development team.  This 

included providing written feedback as the teachers practiced giving useful feedback 

comments on samples of students’ written work.  Also, the teachers used samples of 

student work to practice selecting and sequencing student work in preparation for a 

hypothetical whole-class discussion.    

Self-directed learning took place in the MPSM professional development program 

during the following school year when the teachers were asked to implement five 

problem-solving tasks in a manner consistent with the MPSM.  With some variation 

across the four years, the teachers were asked to implement at least three MPSM tasks 

(tasks developed for the program that were recognized as doing mathematics) and two 

tasks of their own choosing.  With at least three of the tasks, the teachers were expected 
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to select and sequence student work and plan a whole-class discussion (the left side of the 

model).  With at least two of the tasks the teachers were asked to give written feedback 

and plan follow-up instructional activities based upon the feedback (the right side of the 

model).  During this phase of the learning process, the teachers were also required to fill 

out and submit planning forms and provide copies of their students’ work with comments 

as part of data collection for the research project.  This gave some accountability for the 

work they did, pressing them to follow the MPSM as expected.  However, at this time, 

they worked independently and the manner in which they applied the model was under 

their control.   

The final phase of cognitive apprenticeship is generalizing.  The teachers received 

approximately 6 coaching visits during the school year to support their implementation of 

the MPSM.   Since it was the goal of the professional development that the teachers 

would change their classroom practices to include problem solving as a common 

approach to teaching mathematics, these coaching visits were intended to support the 

teachers in their use of cognitively demanding tasks in their everyday classrooms.  For 

the coaching visits, prior to the in-class visit, the teachers were asked to send the coach 

the goals of the lesson, the lesson itself, and any planned questions and activities. The 

coach would visit with the teacher before the lesson, encouraging the teacher to refine her 

thinking about the lesson in order to bring it more in alignment with the philosophy of the 

MPSM. The coach would then observe the lesson and debrief with the teacher.  

Following the observation, the coach would send written feedback to the teacher about 

key observations.   
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In the next chapter, I share and discuss the three MPSM tasks that were used by 

the teachers in the MPSM professional development program.  These tasks were Spinner 

Elimination, Design a Dartboard, and Snack Shack.  These tasks were implemented by 

the teachers in their classrooms.  I will be discussing some of the common strategies that 

students provided 
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Chapter 4. Task Analysis 

 

 During the Mathematics Problem Solving Model professional development, the 

teachers were presented with several tasks, developed for the professional development, 

that were considered to be ‘doing mathematics’ (for more information, see Chapter 3, 

Professional Development Description).  Three tasks, in particular, were shared with all 

cohorts and were used as part of their professional development during the school year.  

That is, all teachers in all cohorts were asked to implement three problem-solving tasks 

with their students during the school year and either provide the students with formative 

feedback or orchestrate a problem-solving debrief as follow-up to implementation of the 

tasks.  While there were other problem-solving tasks that the teachers implemented with 

their students during the school year, these three tasks (Design a Dartboard, Snack Shack, 

and Spinner Elimination) were required for all teachers in all four cohorts.  In preparation 

for implementing these tasks, the teachers completed these tasks during the summer 

professional development, debriefed them with a professional developer, and analyzed 

student work from these tasks. 

 When the teachers implemented debriefs for these tasks, they collected student 

work and selected and sequenced which samples of student work they wanted to share 
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with the rest of the class.  When they did this, they focused on common misconceptions 

and common strategies as well as strategies that revealed students’ mathematical thinking 

about the task.  When planning for the debriefs, they focused the discussion on sharing 

the common strategies, discussing the common misconceptions, and asking questions that 

helped students to focus on the mathematics in the tasks.  In this section, I will discuss 

each of these tasks, beginning with a discussion of where these tasks fit into a middle 

school curriculum.  In my discussion of student solutions, I highlight some of the most 

common strategies used by the middle school students, share some common 

misconceptions that students had with the tasks, and discuss some of the important 

mathematical ideas in the tasks.  I encourage the reader to attempt these tasks on their 

own as a way to provide familiarity with these tasks as they will be referenced frequently 

throughout this study.  
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Design a Dartboard 

 

 

As some of you may know, the traditional dartboard is made up of concentric 

circles or squares.  As a new twist on the traditional dartboard your company 

wants to make a dart board of some other shape.  You are in charge of designing 

the board.  Be sure to use a shape other than a square or circle.  The board 

should have three major sections.  The area of the board should be divided so the 

area has: 

15% for the inner section  

25% for the middle section 

60% for the outer section 

 Draw a design for your dartboard 

 Show all your work using numbers, drawings, and words 

 Explain the strategy you used to get your answer 
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 Placement in the curriculum. The Design a Dartboard task focuses on 

two areas in mathematics: the geometry of shapes and percentages.  With 

respect to geometry, this task has the potential to address finding the areas of 

shapes, whether it is by counting squares or using area formulas.  The task also 

allows students to compute percentages of area in various ways.  While some 

teachers used this activity immediately following an introduction to percents, 

others used it as a culminating activity.  For example, one teacher used it as a 

review of percentages before the State tests.  Teachers also used the task during 

their geometry units. 

 A Common Misconception. A common misconception for the Design a 

Dartboard task was to make the middle shape 25% of the largest shape and then place the 

inner-most shape inside of the middle shape.  This would result in the middle section only 

taking up 10% of the dartboard and leaving 75% for the outer-most shape instead of the 

required 60%.  There are two ways to avoid this error.  One way was to not place the 

inner-most shape inside of the middle shape.  While some teachers accepted this as a 

valid solution, others made the assumption that the inner shape needed to lie inside of the 

middle shape because this is how a dartboard is typically constructed.  In this case, the 

middle shape has to take up 40% of the dartboard because the 25% required for the 

middle section is supposed to surround the inner-most section.  It can be verified that this 

is logical because if the middle shape takes of 40% of the dartboard, this leaves the 
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required 60% for the outer-most section.  Many teachers asked their students to explain 

why they chose to make the middle shape 40% of the dartboard. 

 
Figure 6. Example of using 100 squares to represent 100% because it made the percentages easier 

and counting squares to determine area. 

 

A simple solution. A straight-forward entry-point into these tasks was to create 

shapes using graph paper.  Students understand that each square on a piece of graph paper 

could represent one square unit.  Students then let the largest shape be equal to 100 

square units, the next shape would be equal to 40 square units, and the smallest shape 

would be equal to 15 square units.  Students that used this strategy were not concerned 

with the fact that their resulting shapes were irregular.  Nevertheless, this allowed 

students to reason through the task who had a very basic understanding of area as well as 

percentages.  Notice in figure 6, the student used graph paper to create a shape with 100 

square units total.  While she did use the counting squares method to find the area, she 

was also able to create a shape that was symmetrical and she counted half squares to 
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determine the total area.  Many students made shapes that were more irregular than this 

one such as the example in figure 7. 

 
Figure 7. Example in which student divided the given percentages by 2 to determine workable areas 

and the student configured the shapes on graph paper. 

 

Using Areas other than 100. When students wanted to construct shapes that 

were larger than 100 square units, they used their understanding of percentages to 

determine what size each shape had to be.  Some students deliberately chose an area of 

the largest shape that would make it easier for them to know what the other percentages 

had to be.  For example, they might let the largest shape be a multiple of 100 such as 300 

square units.  In this way, they easily knew that each shape would have an area that was 

three times the size of their percentages.  The inner-most shape would be 45 square units 

(15x3), and the middle shape would be 120 square units (40x3).  Similarly, it was 

possible to make the area smaller by dividing each percentage by the same number, such 
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as 5, which would reduce the areas of the inner, middle, and outer shapes to 3, 8, and 20.  

As seen in the illustration below where they divided each percentage by two to determine 

the areas they would use, the students did not always try to reduce to whole numbers.  

When students chose the areas of the shapes to be factors or multiples of the given 

percentages, they often built their shapes starting with the inner shape, and then built the 

other shapes around it. 

Another strategy that involved using areas other than 100 was to draw 

the outermost shape, determine the area of that shape (either by counting squares 

or using formulas for the areas of triangles), and then compute the 

corresponding areas for the middle and inner shapes.  Students that used this 

strategy applied different methods they had used in class to determine the areas 

of the corresponding shapes.  Teachers often chose to ask these students to share 

their methods as a way to remind the class of how percentages are computed.  

The most common methods were multiplying by the decimal of the percent and 

setting up common ratios.  For example, if the biggest shape were 250, then the 

middle shape would be determined by multiplying 250 by .40 and the inner 

shape would be determined by 250 x .15.  Alternatively, students might set of 

the ratios 
40100

250 M
  and 

15100

250 I
 .  They would then use these equations to 

determine the areas for the middle and inner sections. 

Determining Dimensions of Regular Shapes. It would appear that 

necessary prerequisite knowledge for this task would be knowledge of formulas 

for finding the area of various shapes and algebraic reasoning.  However, for 
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many students in middle school, this was not information that they were not 

knowledgeable about.  In some of the lower grades, students had not yet learned 

formulas for the areas of shapes and, in most classes they did not have 

knowledge of how to solve equations algebraically to determine the dimensions 

of a regular shape with a given area.  When students wanted to use regular 

shapes, their most common choices were triangles and rectangles because they 

were most familiar with their formulas.  No student attempted to make the three 

shapes similar.  Instead, they would focus on creating three figures that were the 

same type of shape, but did not focus on making their dimensions proportional.  

One exception to this that did not result in a working solution was to make the 

dimensions proportional to the required percentages.  For example, if a student 

had a 100cm by 200cm rectangle for the outer section, they might make the 

middle shape a 40cm by 80cm rectangle and the inner shape 15cm by 30cm.  

This method would result in rectangles that were similar, but the areas of the 

rectangles (20,000cm
2
, 3,200cm

2
, and 450cm

2
 respectively) do not result in the 

needed percentages.   

Determining dimensions of similar shapes would require algebraic 

reasoning that these students were not familiar with.  Instead of using algebra to 

construct similar shapes, the students focused on their knowledge of factors to 

determine the dimensions of rectangles and triangles.  For example, in the 

example with the dimensions that corresponded directly with the given 

percentages, they might make a rectangle of areas 10x10=100, 5x8=40, and 
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3x5=15.  To determine the areas of triangles, they could use their understanding 

of triangles as half of a rectangle, including the visualization of cutting a 

rectangle in half and flipping one of the resulting triangles to the other side.  In 

this way, they would use the factors given above to create [usually isosceles] 

triangles with the dimensions 20x30, 10x8, and 6x5 (see figure 8). 

 
Figure 8. Student uses knowledge of rectangles and triangles to create isosceles triangles. 

 

In the next section, I will discuss the Snack Shack task. 
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Snack Shack 

Here’s something to think about… 

If you were starting a snack stand for students at your school and you had 

$200 to spend and room to store 50 cases, how would you decide how 

much of each item to buy if prices were as follows: 

 Chips    $5.00/case 

Candy Bars   $8.00/case 

Soda    $3.00/case 

 

 Find as many possible solutions (using exactly $200 

and 50 cases) as you can to this problem. 

 Show all work using diagrams, charts, numbers, and 

words. 

 Explain the strategies and describe any patterns you 

used to get your answers. 
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Placement in the curriculum. The Snack Shack task can be implemented at 

multiple levels.  This task can be used as an entry level task for learning algebraic 

reasoning, but it can also be used as a culminating activity for students learning systems 

of linear equations.  This task was implemented in middle school classrooms ranging 

from 6
th

 grade general math up through pre-algebra for advanced 8
th

 grade students.  

Solutions developed for this task varied significantly, depending upon the class in which 

it was implemented.  One teacher placed this task towards the beginning of the school 

year as a focus on using tables to organize one’s work, while another teacher placed it 

after a unit on systems of linear equations.  There were also teachers who perceived this 

task as very challenging and, because they did not know where to place it in their 

curriculum, placed the task at the very end of the school year, or randomly placed it in 

their curriculum as a general practice in problem solving. 

Using Tables to Find Solutions. Because this problem has two constraints, 

finding even one solution was challenging for most students.  For many students, it was 

difficult to find a strategy to make just one of the constraints work.  A common initial 

strategy was guess and check.  Students would often choose three numbers randomly to 

represent the number of chips, candy, and soda and then add the numbers up on their 

calculator to check if they added up to a total of 50 cases, or if the cost added up to $200, 

but not necessarily both.  When students plugged random combinations into their 

calculators in this way, they were not keeping track of what they had tried.  As a result, 

they did not know which combinations they had already tried nor did they have a clear 
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idea of what combinations to try next.  For students in lower level math classes, keeping 

track of their guesses in an organized manner became an important focus in their 

mathematical development of the task.   

 
Figure 9. A table created by a student to keep track of her attempted combinations. 

 

Understanding of organizational strategies developed, starting with numbers 

randomly plugged into calculators, randomly jotting down their calculations on paper, 

creating tables to display possible solutions in a more organized way, and developing 

strategies for which numbers to try next in a series of guesses.  As students begin to 

organize their work, they have to make decisions about what information to display in 
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their tables or charts, how to label their solutions so that other people will understand the 

data that is being shown, and what number combinations should be tried as they build up 

their tables.  Notice how, in figure 9, a student kept track of the combinations she had 

tried in an organized table.  The first three columns identified how many of each case she 

was trying, the fourth column was the sum of the cases, the fifth column was the total 

cost, and the final column noted whether or not the combination worked. 

Because there are so many possible combinations to try, lists of combinations can 

become very cumbersome, sometimes taking up several pages of work.  While in the 

illustration provide, she attempted some patterns to help her look for solutions in a 

consistent manner, such as trying 50 of each case, much of her guesses were fairly 

random.  If she had continued trying to find all six solutions in this manner, she would 

have had a much longer list.  As a result, students developed strategies for limiting the 

combinations that they tried.  Something that some students noticed was that you could 

only have an even number of cases for candy bars.  The reason for this has to do with the 

fact that candy bars were the only item with an even numbered cost ($8).  If there were an 

odd number of candy bar cases, then the combination of chips and soda would 

necessarily be odd too, resulting in an odd total cost.    

 A useful strategy for finding at least one solution that worked well for students 

who were using guess and check strategies was to reduce the number of one type of case 

to zero.  By reducing the types of cases used, the problem of finding a solution that 

worked became simpler.  Students that tried this strategy quickly learned that it was not 

possible to create a working combination with only one type of case because they ended 
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up with either more or less than 50 cases.  For example, there could be no more than 25 

boxes of candy bars because 25 boxes of candy bars at $8.00 a box came to $200, so 

more than 25 candy bar boxes would come to too much money.  Similarly, there could be 

no more than 40 cases of chips because 40 cases of chips at $5/case came to $200.  Also, 

students realized that it was not possible to have all soda cases at $3.00/case because they 

only came to $150.  It was possible, however, to reduce the types of cases to just two.  

Two solutions emerge from this strategy.  One is 25 cases of chips and 25 cases of candy 

bars.  The other is 40 cases of soda and 10 cases of candy bars. 

Finding Solutions by Making Even Trades. While it was very difficult to find a 

working solution using guess and check, it was much easier for students to find a solution 

that satisfied one constraint, but not another.  It was then possible for students to use 

those combinations to strategically adjust the number of cases to get closer to the missing 

constraint while still satisfying the original constraint.  For example, in Teacher 27’s 

class, one student found a combination that added up to a total of 50 cases.  She got 30 

cases of chips which would be $150, 8 cases of soda which comes to $24, and 12 cases of 

candy which costs $96.  While the total number of cases added up to the necessary 50 

cases, the total cost was $270 which was too much money.  In this example where the 

student had found the right number of cases but it cost too much money, it is possible to 

make even trades that would lower the overall cost.   

By swapping out $8.00 cases of candy bars for $3.00 cases of soda, each swap 

would reduce the cost by $5.00 (see table 2 for a summary of these trades).  

Alternatively, swapping out candy bars for chips reduces the cost by $3.00, swapping out 
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chips for soda reduced the cost by $2.00.  Using the example given above of 30 chips, 8 

sodas, and 12 candy bars, the goal is to reduce the overall cost from $270 down to $200.  

This, feasibly, could be down by swapping out 14 cases of candy bars with 14 cases of 

soda because each case swapped would reduce the cost by $5.00.  However, there are 

only 12 candy bars.  Alternatively, suppose only 8 candy bars were swapped out for 8 

sodas (note that I could have swapped out 12 candy bars for 12 sodas, leaving 0 cases of 

candy bars, but we already have seen an example with 0 cases of candy bars).  This trade 

results in 30 chips, 16 sodas, and 4 candy bars.  This still adds up to 50 cases total, but the 

total is now reduced down to $230.  This process of making even trades can now be 

repeated with another even trade.  Since the total cost must be reduced by $30, we could 

either trade 15 chips for 15 soda or 10 candy bars for 10 chips.  Since we only have 4 

candy bar bases left, it only makes sense to trade chips for soda.  This now gives the 

combination of 15 chips, 31 sodas, and 4 candy bars which does add up to $200 ($5 x 15 

chips + $3 x 31 sodas + $8 x 4 candy bars = $200 total).  These trades leading to a correct 

solution are shown in table 2. 

Table 2. demonstration of even trades to reduce cost by $70 while keeping 50 cases 

 Chips 

$5/case 

Soda 

$3/case 

Candy Bars 

$8/case 

Total 

Right number of cases, 

too much money. 

30 

$150 

8 

$24 

12 

$96 

50 cases 

$270 

Swapped 8 candy bars 

for 8 sodas.  

30 

$150 

16 

$48 

4 

$32 

50 cases 

$230 

Swapped 15 chips for 

15 sodas, 

15 

$75 

31 

$93 

4 

$32 

50 cases 

$200 

 

A similar strategy can be used when a combination has been found such that the 

cost is right but the number of cases is not 50.  In Teacher 9’s class, two of his students 
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found a combination that added up to $200.  They had found 12 cases of chips, 10 cases 

of candy bars and 20 cases of soda.  This combination cost a total of $200, but only added 

up to 42 cases.  There is only one possible combination that will increase the number of 

cases while maintaining a cost of $200, which is trading one case of candy bars for both a 

case of chips and a case of soda.  This works because the cost of chips and soda together 

($5+$3) is equivalent to a case of candy bars ($8) which means that every time this trade 

is made, the cost is the same but the number of cases increases by one.  In order to make 

this trade and increase the total number of cases by eight (from 42 cases up to 50 cases), 

it is necessary to trade 8 cases of candy bars for 8 cases, each, of soda and chips.  This 

new combination is 20 cases of chips, 2 candy bars, and 28 cases of soda. 

Using Patterns to Find the Remaining Solutions. Once multiple solutions were 

identified, these solutions were then typically used to find additional solutions.  This was 

most commonly done by putting the found solutions into a table and looking for patterns.  

To illustrate how this was done, observe table 3 containing the four solutions that have 

been identified thus far:   

Table 3. subset of solutions obtained thus far 

Chips Soda Candy 

Bars 

0 40 10 

15 31 4 

20 28 2 

25 25 0 

  

 They have been organized so that chips are in ascending order while soda and candy bars 

are in descending order.  There is a linear relationship between the solutions.  When 

given a subset of the solutions in a table as shown in table 3, students quickly observe 
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that, as you go from one solution to the next, the chips increase by five while the soda 

decreases by three and the candy bars decreases by two.  Once this pattern is observed, 

students can quickly identify two additional solutions: 1) 5 chips, 37 sodas, and 8 candy 

bars; and 2) 10 chips, 34 sodas, and 6 candy bars. 

When asked to justify why this taking away five chips and adding back in three 

cases of soda and 2 cases of candy bars gives another solution, students can explain, first, 

that the number of cases is preserved because five cases are taken away (the five cases of 

chips) while five cases are added back in (the three cases of soda and the two cases of 

candy bars).  Also, the cost is preserved because five cases of chips cost $25 while three 

bases of soda cost $9 and two cases of candy bars cost $16.  As a result, $25 is taken out 

and $9 + $16 = $25 is added back in. 

The next question often asked is: “How do we know that we have found all 

possible solutions?”  Two explanations are commonly given to address this question.  

First, as explained earlier, it is only possible to have an even number of candy bars.  As a 

result, we know that there is, for example, no solution with just one candy bar.  Second, 

because the number of chips on the list of solutions begins at zero and works its way up, 

we know that there can be no solutions with a negative number of chips.  The same thing 

is true for the number of candy bars.  The list has to stop at zero cases of candy bars. 

 Using algebra to find a solution. While the solution strategies described above 

were the most commonly used, it is also possible to find solutions using algebraic 

methods.  Algebraic methods were not commonly used because middle school students 

have had very little, if any, exposure to linear equations.  The use of algebraic 
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expressions were used by Teacher 31’s students to reason through the task and, with 

Teacher 31’s assistance, they were shown a way to find solutions by solving the 

expressions using substitution.  A challenge for many students was to create algebraic 

expressions to show both the number of cases and the total cost of the cases.  One 

misconception that emerged was to use variables A, B, and C to represent both 

50 CBA  and 200 CBA .  In this case, students were letting A, B, and C 

represent, in one equation, the number of cases while in the other equation the variables 

represented the cost of the cases.  It was necessary for students to recognize that A, B, 

and C should always represent the same thing and that, if A, B, and C represented cases 

of chips, soda, and candy bars, respectively then the second equation should be 

200835  CBA .   

Even when students were able to successfully derive these two equations, they 

typically did not know how to use them.  In Teacher 31’s class, there was one student that 

made use of the equations.  In the class, they had already begun to learn about linear 

equations and solving systems of linear equations.  However, they had only seen systems 

of equations with two variables.  In order for this student to be able to apply systems of 

linear equations to the problem, he let the number of cases of candy bars be equal to 0.  In 

this way, he reduced the two equations to equations with two variables and was able to 

find the other variables using the methods he had already learned. 

 During the debrief, Teacher 31 acknowledged this strategy as ‘legitimate’, 

describing it as ‘making the problem simpler’.  He then led the class through a strategy 

that was similar to the student’s, but used all three variables.  He solved the equation 
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50 CBA  for soda: CAB  50  and substituted this into the second equation:  

2008)50(35  CCAA  and simplified the equation to 5052  CA .  Teacher 31 

then explained to his students how, by substituting a value for one of the variables, it is 

possible to find out what the other variable has to be.  For example, if A were equal to 0, 

then C would have to be equal to 10 and these values can then be inserted into the 

equation 4010050  CAB .  He explained to the class that no solution can be 

a fraction and that they would have to use guess and check to find other solutions.  He 

allowed the class some time to try different numbers and they were able to find additional 

solutions.  This particular solution strategy was not one that Teacher 31’s students were 

able to come up with on their own, and their understanding of how to use it to find 

solutions was rudimentary at best.  However, it demonstrates a way that middle school 

students might be able to use algebra to solve this task if they had sufficient pre-requisite 

knowledge (specifically, some experience with solving systems of linear equations). 

 In the next section, I will discuss the Spinner Elimination task. 
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Spinner Elimination 

 

Here’s something to think about… 

 

 
Design a spinner that you think will help you to cross out more squares than your 

opponent on a 50’s chart like the one shown in table 4.  (See rules for the Spinner 

Elimination Game.) After you have played a game with your spinner, decide if you want 

to change the numbers on your spinner. 

 

After you have played several games, answer the following questions: 

 

 Do you think that you have created the best spinner possible or, if you 

were to play the game again, would you change the numbers on your 

spinner?  Why or why not? 

 What advice would you give to someone who wants to cross out the 

most squares on how to choose numbers for their spinner? 
 

 

 

 

Rules for the Spinner Elimination Game 

 

1. Divide your spinner into eight equal sections. 

2. You may choose up to 8 numbers (from zero to nine) to put on your spinner.  

3. You may put them on any space you choose on the spinner and you may use the same 

number as many times as you like. 

4. You eliminate squares on the 50’s chart by spinning your spinner as many times as 

you choose and multiplying the product of the spins (E.g. If you spin three times and 

you spin a 4, then a 3 and then a 4 you would get 43 = 12, 124 = 48.  You would 

eliminate 48 from the 50’s chart.  If choose to spin only one time and get a 4, then 

you would eliminate the 4.).  Each time you eliminate a square counts as one turn. 

5. If your spin creates a product greater than 50 you lose that turn and the next player 

spins.  

6. You can only cross off one number per turn.   

7. After 20 turns, the player with the most squares eliminated on their 50’s chart wins 

the game.  
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1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 Table 4. 50’s chart for Spinner Elimination Game 
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Placement in the curriculum. The Spinner Elimination task asks students to 

create a spinner with some combination of 8 numbers from 0-9.  The spinner is used for a 

game in which the students spin the spinner one or more times and multiply the numbers 

together.  They then cross out a number on a chart numbered from 1-50.  They get 20 

turns, they can’t cross out a number more than once, and if their product is more than 50 

they lose their turn. The goal of the task is to create a spinner that will give them the best 

chance of winning the game.  This task focuses largely on multiples and factors, creating 

opportunities to reason about primes and composites.  It also has some opportunities to 

reason about probability.  Because multiples, factors, primes, and composites are 

concepts that students are expected to already have learned before entry into middle 

school, this task was often used at the beginning of the school year as a way to introduce 

students to reasoning and problem solving as well as to provide students with a review of 

number concepts. 

Zero is problematic. Most students quickly recognized that you would never 

want to put zero on a spinner because any number multiplied by zero is zero.  As a result, 

once zero is spun, every additional spinner during that turn is going to result in another 

zero.  Many students, though, did not realize this would happen.  These students made the 

initial assumption that having a zero on your spinner would allow you to start over 

because they saw it as causing them to go back down to zero.  What they did not realize 

was that in order to ‘start over’ they would have to some have ‘get back down’ to 1, 

which is not possible. 
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Should the number one go on the spinner? While students were all able to 

agree that you would never want a zero on your spinner, the number one was more 

debatable.  When the number one was spun, the result would be no change on the value.  

For example, if the player had spun a five and then a one, they would still be at five.  

Because of this, many students saw this as a wasted spin and preferred not to have it on 

their spinner, while others perceived a one as a free spin in which they did not have to 

worry about going over 50.  While everyone generally agreed that a one on the spinner 

had no impact on the outcomes of the game, there was one exception to this, which was if 

the one was spun during the first spin.  In this case, since it was not a requirement to spin 

the spinner more than once, this would make it possible to cross of a one on the 50’s 

chart.  Students had mixed feelings about whether or not this made having a one on the 

spinner worth it.  While many students argued that it wasn’t worth it, other students 

recognized that since it counted as one more number that could be crossed of, it would be 

worth having on your spinner. 

 Using a wide variety of numbers and avoiding high numbers. After 

recognizing the role that one and zero play on the spinner, the two most common 

strategies that students used were to use a wide variety of number and to avoid high 

numbers.  Students often tried all the numbers from one to eight or two to nine on their 

first spinners.  This tended to be a logical first step for this game because it allowed 

students to see what would happen when they used all of the possible numbers on their 

spinner.  Usually, after trying this initial strategy students would then choose to eliminate 

the high numbers on their spinner.  This was because having large numbers like seven, 
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eight, and nine on a spinner made it more likely to get more than 50 on a turn.  In 

particular, eight and nine were recognized as the most problematic because if you spun, 

for example, an eight twice in a row, then the resulting number would be 64, which is 

more than 50, resulting in a lost turn.  Whether or not seven should be counted as a ‘high’ 

number was debated.  If seven were spun twice in a row, it only results in 49, which is 

still less than 50.  However, there were some students that felt that seven was too high to 

have on the spinner.  Others, though, recognized that seven could be a worthwhile 

number to have on the spinner because it creates more multiples that could be crossed off 

since it’s a prime.  This will be discussed in further detail later. 

 Sticking with very low numbers: A common misconception. When students 

saw the risks of going over 50 with the larger numbers, some of them attempted to 

remedy this dilemma by using only very low numbers.  For example some students tried 

making spinners with either just the number two or only the numbers two and three on it.  

These students reasoned that if they were less likely to go over 50, they would have more 

opportunities to cross of multiples.  More specifically, a misconception that occurred here 

was that students believed they would be able to get all even numbers if they had just a 

two on their spinner.  What these students discovered was that by limiting the variety of 

numbers, they were limiting the possible combinations they could make.  Students who 

tried only two on the spinner quickly realized this problem because they could only cross 

off the exponents of two (2, 4, 8, 16, and 32).  While the students that tried only two on 

their spinner recognized that they could not make enough combinations, the students that 

tried just two and three were not able to recognize this limitation as easily because there 
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were 15 possible combinations.  In Teacher 27’s debrief, he led them through a 

discussion that allowed them to see this problem.  He asked them to list out all of the 

possible combinations that could be made with the numbers two and three and then count 

how many combinations they got.  This allowed them to recognize that they would only 

ever be able to cross off 15 numbers on the 50’s chart. 

   
Figure 10. Spinners designed by students with just 1, 2, 3 and 1, 2, 3, 4, respectively. 

  

Reasoning with primes and composites. When students saw that putting only 

very low numbers on the spinner limited the number of combinations they could spin, 

they would still want to avoid the higher numbers and, as a result, they would try to 

compromise by adding another number that is also low.  In Teacher 27’s class, a student 

tried a spinner with the numbers one, two, three, and four (see figure 10).  This spinner 

actually has the exact same problem as the spinner with just two’s and three’s because 

four is created by multiplying two by itself twice.  Consequently, any combinations that 

are possible with a two, three, and four are also possible with just a two and three.  In 

Teacher 27’s class, he exposed this relationship between these two spinners by asking his 

students to once again list out all of the possible combinations, but this time using the 

numbers two, three, and four.  When the students saw that they were making all of the 
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same combinations, they were able to reason that, because four was a composite of two, 

they would not have any more combinations with the second spinner.  While four does 

not make any additional combinations because it is a composite of two, adding a five or a 

seven to the spinner is going to create new combinations.  This is because they are prime 

numbers. 

Reasoning through the task in this way allowed students to see an important 

distinction between prime number and composite numbers.  A central idea that students 

explored was that they could not cross certain numbers off of the 50’s chart unless their 

prime factors were on the spinner.  For example, you cannot cross off a 25 unless you 

have a 5 on the spinner.  A similar realization was that, it is not always necessary to have 

composite numbers on the spinner because the prime numbers may be used instead.  

Reasoning for this idea connects to the concept of prime factorization.  For example, a 

four is not necessary on the spinner because the two may be used in place of the four by 

spinning a two twice.  Although 16 = 4x4 means that 16 can be crossed off by spinning a 

four twice, it is also true that 16 = 2x2x2x2, so the 16 may also be crossed off by 

spinning two four times.  Similarly, 24 = 4x6 = 2x2x2x3.   

Students further recognized that there were some numbers on the 50’s chart that 

could never be crossed off, even if you have all numbers from two to nine on the spinner.  

This was because they were either prime numbers greater than nine (like 17) or numbers 

with prime factors greater than nine (like 22 = 2x11).  While students were capable of 

understanding these concepts related to primes and composites with respect to the task, 
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many students did not make these connections on their own.  It was typically necessary 

for the teachers to draw their students’ attention to these ideas.  

 Spinning strategies and probabilities on the spinner. While the purpose of this 

activity was to select a spinner that would help you win, most students recognized that 

there were also appropriate strategies for playing the game that were important for 

increasing your chances of winning the game.  Specifically, students had to make 

decisions about when to stop spinning the spinner.  In some cases, students would 

continue to spin the spinning even if they had opportunities to cross off a square on the 

50’s chart.  For example, when a student spins once, and spin, for example, a 5, they 

could choose to cross that number off of the board, or they could choose to spin again.  

Some students would choose to spin again, wanting to cross off some of the bigger 

number first.  Most students, though, agreed that it was best to cross off a number as soon 

as one became available.  As a result, if a student spun a 3 in their first turn they would 

immediately cross off the 3 on the 50’s chart.  During their next turn, they might spin a 3 

again and they would not be able to cross off the 3, but they would just spin again.  They 

then might spin a 5, giving them 3x5 = 15 as an option to cross off on the board.  If this 

spot were available, most students would choose to cross it off.  Other students, though, 

would consider choosing to spin again.  At this point, depending upon what is on their 

spinner, they would have a varying probability of going over 50. 

 In some classes, students reasoned about the probability of going over 50 after 

spinning a certain combination.  For example, if a student spins a 5 first, they know it is 

safe to spin again because they have a 0% probability of going over 50.  This is because 
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the largest number they could spin was a 9 which would result in 45.  In contrast, if a 

student had already spun up to a number greater than 25, like 27, they have a 100% 

probability of going over 50 because on their next spin because the smaller number they 

could spin was a 2 which would give them 54.  Students could reason further about the 

probabilities of going over 50 if, for example, they have a spinner from 2 through 9 with 

one of each number on the spinner.  Then if they had spun a 15, the numbers 2 and 3 

would not cause them to go over 50 (giving them the products 30 and 45 respectively) 

while landing on any of the remaining numbers on the spinner would cause them to go 

over 50.  As a result, they can determine that they have a 2/8 chance of staying under 50, 

or a 25% chance and a 6/8 chance of going over 50, or a 75% chance.  Teacher 27 

discussed these types of probabilities with his students because some of his students 

chose to keep spinning even if they had blank spots on their 50’s chart that they could 

have cross out.  They reasoned about how the decision of when to stop spinning would 

depend upon the individual and that some students would want to risk it, while others 

would prefer to be safe.  

 In the next chapter, I describe the methods used in my study including a 

description of the participating teachers, data collection methods, and a description of the 

research designs for my three sub-questions. 
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Chapter 5. Method 

 

Participants and Context 

The participants in my research study were drawn from the middle school 

mathematics teachers that were involved in the Mathematics Problem Solving Model 

professional development program.  The professional development program ran for a 

total of four years with teachers participating in the program for one year.  The total 

number of teachers who participated in the Mathematics Problem Solving Model 

professional development program over the four years was about 50.  For this research 

study I used data collected from 12 teachers from cohorts 2 and 3.  Nine of the 

participants were from cohort 2 and three of the participants were from cohort 3.  I did 

not use data collected from cohort 1 because the data collected from cohort 1 was 

different from the remaining years.  The teachers that participated in this study from 

cohorts 2-4 were selected based upon the availability of complete data sets.  For a 

complete description of the professional development program and information 

pertaining to the demographics of the teachers, see Chapter 3, Professional Development 

Description.  Below, I provide a description of the teachers who participated in the 

professional development program.  The information given includes years of experience, 
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both as a licensed teacher and as a middle school mathematics instructor; grade levels 

taught; school settings, percent free and reduced lunch, percentage of schools that met 

adequate yearly progress in the year prior to the professional development; and 

availability of reform curricular materials.  This information is provided for each cohort 

and then I provide a summary for the teachers whose data was used in my study. 

Summary of cohort 1 treatment group. Ten middle school teachers participated 

in the professional development in the 2006-2007 school year (cohort 1).  Years of 

experience as licensed teachers ranged from a minimum of five years teaching experience 

to a maximum of 29 years.  The average number of years of experience as a licensed 

teacher was approximately 12 years.  Within the area of teaching math in the middle 

schools, these teachers averaged a total of 10 years of experience, ranging from two to 

20.  Two teachers taught 6
th

 grade math, two taught 7
th

 grade math, two taught 8
th

 grade 

math, and four taught 7
th

/8
th

 grade math. 

Five of these teachers taught in an urban setting, four taught in towns with 

populations less than 50,000, and one taught in a rural setting.  Percent of students 

receiving free and reduced lunch ranged from 20.2% to 64.3%, with an average of 

41.35%.  Seventy percent of the teachers participating in the professional development 

program came from schools that did not meet criteria for adequate yearly progress in the 

previous school year.  Fifty percent of the treatment teachers used at least some reform-

based materials in their classrooms. 

Summary of Cohort 2 Treatment Group.  Eleven middle school teachers 

participated in the professional development in the 2007-2008 school year (cohort 2).  
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Years of experience as licensed teachers ranged from a minimum of one year of teaching 

experience to a maximum of 28 years.  The average numbers of years of experience as a 

licensed teacher was approximately nine years.  Within the area of teaching math in the 

middle schools, these teachers averaged a total of approximately five years.  Years of 

experience within the field of math in the middle schools ranged from one to 10 years.  

Three teachers taught 6
th

 grade math, six taught 7
th

 grade math, and two taught 8
th

 grade 

math. 

Five of these teachers taught in an urban setting, one taught in a town with a 

population less than 50,000, and four taught in a rural setting.  One of the schools was a 

private prep school.  Percent of students receiving free and reduced lunch ranged from 

0% to 70.2%, with an average of 33%.  It is worth noting that four of the teachers taught 

at schools with over 59% percent of students receiving free and reduced lunch while the 

remaining seven teachers taught at schools with less than 22% of students receiving free 

and reduced lunch.  55% of the teachers participating in the professional development 

program came from schools that did not meet criteria for adequate yearly progress in the 

previous school year.  20% of the treatment teachers used at least some reform-based 

materials in their classrooms (one teacher was not included in this number as the type of 

curriculum used by the teacher was not made available to us). 

Summary of cohort 3 treatment group. Seventeen middle school teachers 

participated in the professional development in the 2008-2009 school year (cohort 3).  

Years of experience as licensed teachers ranged from a minimum of three years teaching 

experience to a maximum of 33 years.  The average numbers of years of experience as a 
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licensed teacher was approximately 13 years.  Within the area of teaching math in the 

middle schools, these teachers averaged eight years.  Years of experience within the field 

of math in the middle schools ranged from one to 20.  Two teachers taught 6
th

 grade 

math, eight taught 7
th

 grade math, six taught 8
th

 grade math, and one teacher taught 8
th

 

grade content to 6
th

 grade students. 

Nine of these teachers taught in an urban setting, four taught in towns with 

populations less than 50,000, and four taught in a rural setting.  Percent of students 

receiving free and reduced lunch ranged from 25.5% to 65.9%, with an average of 

39.28%.  88% of the teachers participating in the professional development program 

came from schools that did not meet criteria for adequate yearly progress in the previous 

school year.  71% of the treatment teachers used at least some reform-based materials in 

their classrooms (three teachers were not included in this number as the type of 

curriculum they used was not made available to us). 

Summary of cohort 4 treatment group. Twelve middle school teachers 

participated in the professional development in the 2009-2010 school year (cohort 4).  Of 

those 12 teachers, five completed the program, providing us with data.  Of those teachers 

that completed the program, years of experience as licensed teachers ranged from a 

minimum of two years teaching experience to a maximum of 25 years.  The average 

numbers of years of experience as a licensed teacher was approximately 10.4 years.  

Within the area of teaching math in the middle schools, these teachers averaged three 

years.  Years of experience within the field of math in the middle schools ranged from 
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two to four.  Two teachers taught 6
th

 grade math, two taught 7
th

 grade math, and one 

taught 8
th

 grade math. 

One of these teachers taught in an urban setting, one taught in a suburban setting, 

two taught in towns with populations less than 50,000, and one taught in a rural setting.  

Percent of students receiving free and reduced lunch ranged from 14.2% to 61.7%, with 

an average of 40.34%.  50% of the teachers participating in the professional development 

program came from schools that did not meet criteria for adequate yearly progress in the 

previous school year.  50% of the treatment teachers used at least some reform-based 

materials in their classrooms (This data was not available from one of these teachers). 

Summary of teachers  used in this study. The data collected from 12 of the 

middle school teachers who had participated in the professional development were used 

in my study.  Nine of these teachers completed the professional development in the 2007-

2008 school year (cohort 2).  Three of these teachers participated in the 2008-2009 school 

year.  Years of experience as licensed teachers ranged from a minimum of one year of 

teaching experience to a maximum of 33 years.  The average numbers of years of 

experience as a licensed teacher was approximately 11.25 years.  Within the area of 

teaching math in the middle schools, these teachers ranged from 1-12 years of experience 

and averaged a total of approximately 5.5 years.  Four teachers taught 6
th

 grade math, five 

taught 7
th

 grade math, and three taught 8
th

 grade math. 

The teachers in my study taught in 8 schools, with four pairs of teachers working 

the same school.  Two teachers taught in an urban setting, four taught in a suburban 

setting, and six taught in a rural setting.  One of the schools was a private prep school 
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while the remaining schools were public schools.  Percent of students receiving free and 

reduced lunch ranged from 0% to 70.2%, with an average of 29.3%.  Three of the 

teachers taught at schools with over 59% percent of students receiving free and reduced 

lunch while the remaining teachers taught at schools with less than 30% of students 

receiving free and reduced lunch.  50% of the teachers came from schools that did not 

meet criteria for adequate yearly progress in the previous school year.  33% of the 

teachers reported using at least some reform-based materials in their classrooms. 

 

Data Collection 

As part of their participation in the MPSM professional development program, 

teachers were required to implement 5 cognitively demanding problem-solving tasks 

during the school year, orchestrating a problem-solving debrief with the students, and/or 

providing written feedback after students had an opportunity to work on the tasks.  

During the four years that the program was implemented, the requirements changed as to 

which tasks the teachers were required to implement and whether they were to give 

written feedback on students work or orchestrate a problem-solving debrief as their 

follow-up instruction.  In year 1, all teachers were required to implement the same five 

MPSM tasks, chosen by the researchers, and to both orchestrate a problem-solving 

debrief with the students and provide written feedback for all five tasks
4
.  In year 2, the 

teachers were required to implement three MPSM tasks chosen by the researchers and 

two tasks of their own choosing.  They were also required to provide written feedback 

                                                           
4
 Because year 1 was a pilot year for the program and because of how many changes were made to the 

professional development experience from year 1 to year 2, I chose not to use the data collected in year 1 

for my study.   
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and orchestrate a problem-solving debrief for all five tasks.  In year 3, the teachers were 

required to implement three MPSM tasks chosen by the researchers and two of their own 

choosing; they were required to implement a problem-solving debrief for three of the 

tasks (two MPSM and one of their own choosing) and to provide written feedback on the 

other two tasks.  In year 4, the teachers were required to implement three MPSM tasks 

chosen by the researchers, one task of their own choosing, and one task of their own 

choosing from a collection of tasks designed by Lesh and his colleagues (Lesh, Cramer, 

Doerr, Post, & Zawojewski, 2003).  In year 4, teachers were required to orchestrate 

problem-solving debriefs for two MPSM tasks and the Lesh et al. task.  For the remaining 

two tasks, they were required to provide written feedback.  Teachers were expected to 

implement the tasks at a time during the school year when the task would fit 

appropriately with the content that was being covered in their curriculum at the time of 

implementation.   

 For the tasks in which the teachers orchestrated a problem-solving debrief, once 

the task had been at least partially completed by the students, the teachers collected the 

student work and used it to complete a debrief planning form, called an Instructional 

Sequence Analysis (ISA).  To see an example of a blank Instructional Sequence Analysis, 

see Appendix A.  The teachers chose two to six pieces of student work to be shared 

during the problem-solving debrief which was implemented on a later class day.  

Teachers implemented their ISAs as early as the next class day, but teachers sometimes 

delayed the problem-solving debrief as much as two weeks later.  In the ISA, the teacher 

wrote down (1) the order of the students whose work was to be shared with the class, (2) 
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the ideas the teacher wished to highlight for each piece of student work, and (3) questions 

planned by the teacher to help make the mathematics salient to the students.  The teacher 

was also required to give a rationale for the selection and sequencing made in the 

Instructional Sequence Analysis.   

As part of the research project, the teachers submitted student solutions and the 

ISA they had completed for the task (when they orchestrated a debrief).  The problem-

solving debriefs were audio-recorded.  Whenever possible, two audio-recorders were 

used.  One audio-recorder was placed to pick up the teacher’s voice (often wore around 

the teacher’s neck or attached to her lapel) and the other was placed somewhere else in 

the classroom to pick up students’ voices.  In years 1 and 2, a researcher was always 

present for the problem-solving debrief to assist with the audio-recorder and to collect 

data.  In years three and four, the teachers were given the audio recorders to run during 

the debriefs and asked to submit their data online through a secure website. 

For my research study, I analyzed the debriefs that were implemented for the 

three MPSM tasks.  I used two data sources for this research study.  These were (1) the 

Instructional Sequence Analysis, and (2) audio recordings of the implementation of the 

ISAs (which were transcribed with time stamps on all teacher utterances).  The students’ 

work was occasionally used as a resource for making sense of the data, but was not 

explicitly used for the study.   

Not all data sets of the problem-solving debriefs for the MPSM tasks were 

useable for my analysis due to issues with the data collected.  These issues primarily 

included the teacher forgetting to turn on the audio-recorder, the audio recorder 
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malfunctioning, or the audio-recording being inaudible.  Sometimes a teacher would 

misplace their ISA, so it would not get turned in.  There was also evidence that a couple 

ISAs were written following the implemented problem-solving debrief and these data sets 

were consequently not used in my analysis since my study is looking at how teachers 

used the ISAs to implement their debriefs and if they completed the ISA after the debrief, 

then it may have been written as a report of what happened, not what was planned.  Once 

I eliminated incomplete data sets for this study, I had a total of 25 problem-solving 

debriefs to analyze.  These came from 12 teachers: nine from cohort 2 and three from 

cohort 3.  There was no useable data from cohort 4.  Three teachers had one complete 

data set (these were all from the three teachers in cohort 3), five teachers had two 

complete data sets, and four teachers had data sets for all three of the MPSM tasks.   

There is a noteworthy discrepancy between how much data was useable from year 

2 in comparison to years three and four.  One reason why so little of the data was 

available from cohorts 3 and 4 was because the teachers were only required to implement 

two problem-solving debriefs for the MPSM tasks, making less data available to begin 

with.  Also, in year 2, somebody from the research team was present for every problem-

solving debrief, assisting the teachers with the audio-recorders and collecting the data 

from the teachers at the end of the debriefs, while in years 3 and 4 the teachers were 

responsible for recording their own classes and submitting the data themselves.  Because 

the teachers were required to run the audio-recorders themselves, they were only given 

one (as opposed to each researcher always having two), which meant that if they had 

trouble with the recorder there was no backup.  Also, it was easy for the teachers to forget 
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to turn on the recorders in the midst of teaching and they sometimes ran into difficulties 

with downloading the audio recordings online.  The research team has also speculated 

that the most motivated middle school teachers joined the MPSM program in the first 

couple years that it was offered and that, by the final year, the teachers participating in 

the program took the requirements of the professional development and research program 

less seriously and, consequently, did not implement all of their tasks as required. 

 

Research Design 

In this section, I will briefly describe the data analysis I did for each research sub-

question with a particular focus on how, for each sub-question, I made use of the data to 

address a particular element of my theoretical framework.  I conclude this section with a 

discussion of how these sub-questions worked together to address my primary research 

question.  A more detailed description of the data analysis tools I used to answer each 

sub-question is given within their respective chapters. 

Research Sub-question 1: Fidelity to the Literal Lesson. My first sub-question 

(Do teachers enact their written plans for problem-solving debriefs in the classroom as 

they had planned prior to implementation?) is intended to address the extent to which 

teachers are following the literal lesson.  In the ISA, the teachers planned for certain 

pieces of student work to be shared in a particular order, planned to highlight specific 

ideas in the students’ solutions, and wrote down specific questions to ask to help make 

the mathematics salient to the students
5
.  For my study, I considered these three pieces of 

                                                           
5
 For an example of an ISA, see Appendix A 
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the ISA to represent the literal lesson because they represented a specific agenda that the 

teachers were supposed to follow as they implemented their problem-solving debriefs.    

In my analysis of the literal lesson in research sub-question 1, I further specify the steps 

of the literal lesson in an ISA as follows: 

1. The teacher will provide an opportunity for a piece of student work to 

be shared with the class either by allowing the student to present his or 

her work, or the teacher, herself, showing the work to the class. 

2. The teacher will ask the questions, or a close approximation of the 

questions, identified in the ISA.  A question might alternatively be 

addressed if a student provides a “response” to the question without 

having to be prompted by the teacher. 

3. The teacher scaffolds the sharing of the piece of student work to 

ensure that the mathematical ideas proposed by the teacher in the ISA 

surrounding the piece of student work emerge during the segment.   

4. Repeat steps 1-3 for the next piece of student work. 

The framework used for this study, as depicted in figure 2 in Chapter 1, is useful 

for making sense of the relationship between what teachers plan and what actually takes 

place during implementation of the lesson.  When a teacher selects pieces of student work 

to be shared and plans questions to ask during that student’s presentation (the literal 

lesson), the teacher has made some pedagogical decisions about what content to focus on 

and how to engage the students in thinking about the content (the intended lesson).  Since 

my research question is focusing on the effect that the planned questions have on the 
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enacted lesson, it is necessary to assess whether the teachers are simply asking those 

questions.  That is, whether the teacher’s literal lesson is enacted as stated in the ISA.  If 

the answer to this question is yes, then it may be assumed that what was recorded in the 

literal lesson impacted what took place in the enacted lesson.  If the teacher did not 

follow the literal lesson, then it cannot be assumed that the ISA impacted what took place 

during the problem-solving debrief. 

Research Sub-Question 2: Fidelity to the Intended Lesson.  I considered the 

types of questions the teachers planned to ask in their ISAs to be an indication of the 

level of mathematical reasoning they would be encouraging their students to engage in.  

A primary assumption underlying this study is that the types of questions teachers ask 

during discourse centered on mathematical problem solving will influence the 

opportunities students have to engage in discourse around mathematical problem solving.  

I used Kazemi and Stipek’s conceptualization of high-press versus low-press (2001) to 

guide the development of a coding scheme to differentiate between questions that prompt 

students to engage in mathematical reasoning and those that do not.  The discussion of 

the coding scheme may be found in the Chapter 6 and a complete description of the 

coding scheme may be found in Appendix C. 

Sub-question 2 asks: “Is there a correlation between the number of questions 

teachers plan that promote mathematical reasoning around the problem-solving task and 

those that they actually ask during the whole-class discussion?”  To answer this question, 

I analyzed the questions planned by the teacher, differentiating between high-press 

questions and low-press questions to identify the opportunities the teachers had planned 
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for students to engage in mathematical reasoning and subsequently assess whether the 

teachers utilized these opportunities to engage their students in mathematical discourse 

during the enacted lesson.  Further details on how I conducted this analysis and the 

results will be given in Chapter 6. 

Research Sub-Question 3: Transformation of the Enacted Lesson.  My third 

research sub-question, “How do teachers’ improvisational moves during whole-class 

discussions influence the enactment of the questions that were planned by the teacher 

prior to implementation?” is intended to take a closer look at the teachers’ discourse 

moves during their problem-solving debriefs; that is, the enacted lesson.  While research 

sub-questions 1 and 2 both analyzed the enacted lesson through the lens of how teachers 

were implementing their literal lessons (the steps laid out in the ISAs) and the intended 

lessons (the level of discourse planned in the ISA), research sub-question 3 is included in 

this research study to take into account the many factors that can transform an enacted 

lesson such as teachers’ beliefs and knowledge about mathematics, teachers’ professional 

identity, and classroom structure and norms, among other contributing factors (Stein et al, 

2007).   

While I did not analyze these contributing factors, since that was outside of the 

scope of this research study, I analyzed the audio-recording and transcripts of the 

implemented problem-solving debriefs using grounded theory (Strauss & Corbin, 2007) 

with the understanding that what took place during the enacted lesson (the implemented 

problem-solving debrief) was only partially influenced by the literal and intended lessons 

(the ISAs) and that there are other, invisible factors, modifying what took place during 
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the debriefs.  My intention in this final stage of my analysis was to gain an understanding 

of how the teachers might be implementing the questions from their ISAs in ways that 

might modify the opportunities the teachers are creating for the students to reason about 

the mathematics in the tasks.  I argue that these transformations of the questions have the 

potential to either diminish the opportunities for students to reason mathematically or 

afford the students more opportunities to reason mathematically. 

The Primary Research Question: The Big Picture. The analyses for these three 

sub-questions is intended to support the analysis for my primary research question which 

is “How do teachers’ written plans for orchestrating mathematical discourse around 

problem-solving tasks influence the opportunities teachers create for students to reason 

mathematically?”  My research is focused on the relationship between what the teachers 

planned in their ISAs and how they implemented those plans, with a particular eye on 

teacher moves.  By breaking this analysis into three sub-questions, I focused on different 

aspects of teacher implementation.  That is, using my framework as a guideline, I focused 

on teachers’ implementation of the literal lesson (the steps in the ISA) and the intended 

lesson (the level of mathematical reasoning the teacher planned for their students to be 

engaged in) as well as how those plans played out during the implemented lesson (taking 

into account that outside factors can transform what actually takes place during lesson 

implementation).  

These three viewpoints on lesson implementation provided a picture of what 

happened as the teachers are implementing their ISAs.  Research sub-questions 1 and 2 

allow us to see whether or not faithful enactment of the literal lesson (i.e. the steps in the 
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ISA) ensured that the opportunities the teachers designed for students to reason 

mathematically through the planning of high-press questions led to an increase in the 

opportunities for students to reason mathematically in the enacted lesson.  Alternatively, 

the analysis in research sub-question 3 investigates how on-the-fly decisions about 

implementation of an ISA can also impact the opportunities the teachers created for 

students to engage in mathematical discourse (either positively or negatively).  By 

conducting both a quantitative analysis of the types of questions the teachers asked in 

relation to the types of questions they planned (research sub-question 2) and a qualitative 

analysis of how the teachers were implementing the questions they planned (research 

sub-question 3), this analysis offers a more robust picture of how teachers implemented 

their ISAs. 

At the conclusion of my analysis of research sub-question 3, I include a 

discussion of the four teachers, focusing on how they implemented their ISAs overall.  

The intention of this discussion is to provide a synthesis of my research, focusing on how 

each aspect of my research contributes to an understanding of how these four teachers 

implemented their ISAs and how these variations in implementation impacted the 

opportunities these teachers created for their students to reason mathematically.   

The next three chapters are a discussion of my analysis and results, starting with 

research sub-question 1. 
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Chapter 6. Research Sub-Question 1 

 

The purpose of this chapter is to address research sub-question 1: Do teachers 

enact their written plans in the classroom as they had planned prior to implementation?  

This part of my data analysis is focused on the teachers’ implementation of the literal 

lesson, as described in my theoretical framework in Chapter 1.  To answer this question, I 

developed a data analysis tool called the Implementation Fidelity Analysis Tool (IFA). In 

this chapter, I will discuss the IFA by explaining how it is useful for addressing the 

teachers’ fidelity to the literal lesson in their ISAs, describing the data analysis tool itself, 

including a description of the different levels of fidelity to the literal lesson, the criteria 

for which these levels were assigned, and the specific processes of data analysis that were 

used to assign these levels.  Next, I will provide examples from the data to describe how 

the data analysis tool is used.  This is followed by a discussion of the inter-rater reliability 

of the tool.  Finally, I share the results of my analysis along with a discussion of the 

findings for my study and how these contribute to my main research question. 
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Method: Implementation Fidelity Analysis Tool 

The Implementation Fidelity Analysis tool measures the extent to which the 

teachers followed their Instructional Sequence Analysis (ISA) during implementation of 

their problem-solving debriefs.  The key elements of the ISA is the selection and 

sequencing of student work to be presented, the identification of the main ideas the 

teacher wishes to highlight within each chosen piece of student work, and questions 

planned to help make the mathematics salient within the debrief.  See figure 11 for an 

example of a blank ISA and table 7 for an example of an ISA completed by one of the 

participating teachers (a larger example of a blank ISA is shown in Appendix A and 

additional examples of completed ISAs are given in Appendix F). 

 

Figure 11.  Blank ISA 
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Fidelity to the Literal Lesson. With respect to my theoretical framework, this 

data analysis tool is intended to measure fidelity to the literal lesson, or the extent to 

which the enacted lesson resembles the literal lesson, where the literal lesson is the steps 

laid out in the written lesson plan (Brown, 2009).  While every ISA completed by a 

participating teacher is going to be different with respect to what ideas will be highlighted 

and what questions the teacher plans to ask, the general format of the ISA assumes the 

teachers will follow certain steps as they implement each the ISA.  The steps of the literal 

lesson are: 

1. The teacher will provide an opportunity for the piece of student work 

to be shared with the class, either by allowing the student to present his 

or her work, or the teacher, herself, showing the work to the class. 

2. The teacher will ask the questions (or an approximate variation of the 

questions) that they identified in the ISA.  A question might 

alternatively be considered addressed if a student provides a 

“response” to the question before the teacher asks it. 

3. The teacher scaffolds the sharing of the piece of student work to 

ensure that the mathematical ideas proposed by the teacher in the ISA 

surrounding the piece of student work emerge during the segment.   

4. Repeat steps 1-3 for the next piece of student work. 

The Implementation Fidelity Analysis identifies the extent to which the teachers followed 

these steps as they implemented their ISAs. 
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Fidelity to the literal lesson is measured for each piece of student work identified 

by the teacher in the ISA.  According to the format of the ISAs, the planned debrief is 

broken up by segments in which one segment is characterized by a selected piece of 

student work to be demonstrated accompanied by an identified Idea to Highlight and 

some questions the teacher plans to ask.  Within the enacted debrief, a segment refers to 

the time spent during the debrief focused on the selected piece of student work previously 

identified in the ISA.  A segment begins when a piece of student work is brought forth to 

be shared (either by the student or the teacher) and a segment ends when another piece of 

student work is brought forward to be shared or the focus of the discussion is no longer 

related to that student’s work.  These segments are delineated by time stamps from the 

audio-recording and breaking points from one segment to the next are also labeled in the 

transcripts.  Breaking down the whole-class discussions by these segments is reasonable 

as the teachers were requested to structure their problem-solving debriefs around the 

sequential demonstration of student work (Stein, Smith, et al., 2009).   

 Levels of fidelity. For each segment, one of three levels of fidelity to the literal 

lesson is assigned, with two of the three levels broken down into two sub-levels.  Fidelity 

level 1 is considered to be faithful implementation to the literal lesson.  During a faithful 

implementation of a segment of a debrief, the teacher clearly followed the ISA, sharing 

the selected pieces of student work, addressing the questions identified in the ISA, and 

addressing the mathematical ideas proposed by the teacher in the ISA.  Levels 2a and 2b 

are considered to be a partially faithful implementation of the literal lesson.  If a segment 

of a debrief is partially faithful then there is evidence that the teacher was attempting to 
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follow the ISA, but either the questions were not addressed but the Idea to Highlight was 

(level 2a), or the proposed Idea to Highlight did not emerge even though the questions 

were asked (level 2b).  Finally, levels 3a and 3b are considered to be non-faithful 

implementation of the literal lesson.  Either the student work was never presented (level 

3b) or the student did present, but the planned questions were never addressed and the 

Idea to Highlight did not emerge (level 3a).  While these three levels of fidelity point to a 

hierarchy of fidelity to the literal lesson in which the levels range from more to less 

faithful implementation, level 2a is not necessarily intended to indicate a more faithful 

implementation of the ISA than level 2b.  In both cases, a certain element of the ISA was 

not being addressed during the segment of the problem-solving debrief. 

In addition to these levels of fidelity, a participation code of + or – will be 

assigned to the segments indicating evidence of participation from the class.  A code of + 

is given to a segment in which students other than the presenting student spoke up during 

the segment.  A code of – is given to segments in which only the teacher and/or the 

presenting student spoke.  This code serves the purpose of distinguishing between 

discussions that are limited to the teacher and presenting student talking about the 

student’s work and those in which there is evidence of participation from other members 

of the classroom.  In the case where a segment is assigned a level 3b, a participation code 

is not assigned because the segment is essentially missing from the debrief. 

Assigning a Level of Fidelity.  In order to identify the level of fidelity, the audio 

recordings of the debriefs were transcribed and broken up into segments as described 

above.  A level of fidelity was assigned to each segment by answering a series of yes or 



146 

 

no criteria questions with respect to the proposed mathematical ideas and the planned 

questions as identified by the teacher in the ISA.  The questions are: 

1. Was the identified student’s work shown?   

2. Were the planned questions addressed by a student (either as a result of the teacher 

asking the question, or unprompted)?  

3. Were the important ideas surrounding this piece of student work, as proposed by 

the teacher in the ISA, evident in the segment? 

4. Did at least one other student, other than the presenting student, contribute to the 

discussion? 

These questions are used to assign one of the levels of fidelity to each segment.  See table 

5 for a summarized description of these levels and the criteria used to assign levels of 

fidelity. 

Table 5. Implementation Fidelity Analysis Tool: Four Levels of Fidelity 

Level Description Criteria 

1 The student work was shared.  The questions were asked 

and the proposed mathematical ideas were addressed 

during the debrief.   

Questions 1-3 are 

answered yes 

2a The student work was shared.  The questions were not 

addressed, but the proposed mathematical ideas emerged 

as planned. 

Questions 1 and 3 are 

yes, but Question 2 is 

no 

2b The student work was shared.  The questions were 

addressed by the students, but the proposed mathematical 

ideas were either not addressed or inadequately addressed.  

Questions 1 and 2 are 

yes, but Question 3 is 

no. 

3a The student work was shared, but the proposed 

mathematical ideas were not addressed and the questions 

planned by the teacher were never asked. 

Question 1 is yes, but 

Questions 2 and 3 are 

both no. 

3b The student’s work was never shared Question 1 is no. 

Participation Code: In addition to the assignment of one of the four levels described above, 

each segment will be assigned a participation code. 

+ 

 

At least one other student other than the presenting 

student made a verbal contribution to the discussion. 

Question 4 is 

answered yes. 

- Only the student whose work was being presented spoke 

during the segment 

Question 4 is 

answered no. 
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Data analysis procedures.  To assign the levels of fidelity to each segment 

within a debrief, I created a Microsoft Word document for every debrief.  In that 

document, a template was created for each segment in which I kept track of my responses 

to the four criteria questions along with an explanation for my responses and relevant 

time stamps. (See table 6 for a blank version of the implementation fidelity template and 

see table 10 for a completed example).  I completed these tables by listening to the audio 

recording and simultaneously reading the completed transcripts.  As I listened, I was 

looking for evidence of the planned questions and ideas to highlight being addressed.  In 

the template, I recorded the necessary yes/no responded to the criteria questions, the time 

stamps from the transcript for the times in which these episodes took place, and a brief 

description of how these events were taking place in the debrief.  (Note that, while the 

time stamps are not necessary for the assignment of a level of fidelity, they are recorded 

for future reference when answering research sub-question 3).  In the case of criteria 

question 2 (Were any of the planned questions addressed?), I answered the question 

(yes/no) for each planned question and, if at least half of the planned questions were 

addressed during the segment, then an overall response of yes was assigned for that 

segment.  Once all of the criteria questions were answered for a segment, a level of 

fidelity was assigned to that segment based upon the responses to the criteria questions 

(see table 5).  
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Table 6. Template Used for Analysis of Research Sub-Question 1 

Task: _________________________ Segment #: 
Teacher’s plan for the instructional segment as 

described in the ISA including questions. 

 

 

Idea to Highlight:  

Planned question(s)  

 Answer and explanation Times 

1. Was the identified student’s work shown?   

2. Were any of the planned questions 

addressed?  

 

 

 

3. Did the mathematical idea as proposed by 

the teacher become evident in the discussion?  

At some point was it the focus of the 

discussion? 

  

4. Did at least one other student, other than the 

presenting student contribute to the 

discussion? 

 

 

 

 

Level of Fidelity  

 

Once a level of fidelity was assigned to all segments in all debriefs, the data were 

consolidated into an excel spreadsheet with a column created for each task implemented 

by each teacher (grouped first by teacher, then by task).  In that column, the levels of 

fidelity were listed for every segment in the order in which they had been planned.  As a 

result, each implemented task was assigned from 2 to 6 levels of fidelity assigned, 

depending upon how many segments had been planned.  See Appendix B for the 

complete results of my analysis.  In the next section, I will provide two examples of how 

I used the IFA to assign levels of fidelity to the segments implemented from an ISA. 

Table 7. Teacher 3’s ISA for Spinner Elimination 

Student  Ideas to Highlight Questions to make the math salient 
1. Jake Change of numbers on spinner 

used bigger values.   
“Your advice to choose new numbers was to 

“spread them out”.  Does your work show this?  

Explain your thinking.” 



149 

 

2. Jeff -Uncover the issue with using 

numbers like 7 and 9. 
What did you discover in your experiment with 

using spinner number 2 numbers? 
3. Tara -Only 2s lead to even number 

choices 
What did you discover happens when using all 

similar numbers? 
4. Jenny -Using numbers higher than 4 

more likely to lose a turn. 
Relay your conclusion about using numbers less 

than 4.  What did two ones do to your products? 
5. 

Brian 
-Students should recognize 

that spinner numbers are low 

prime numbers. 

Can you think of a number to replace the 4 that 

would work just as well? 

Rationale:  My choices show a slight development in thinking about using small prime 

numbers for the spinner.  I used some samples (initially) that would not prove overly 

successful 7s, 9s, only 2s.  I ended with 2 sample papers that came the closest to using all 

prime factors. 

Mathematical Learning Goal: "Students will recognize prime numbers (or their multiples) 

connect to all numbers." 

 

Examples of the Implementation Fidelity Analysis  

In this section, I discuss two examples of the Implementation Fidelity Analysis 

applied to two segments from the same debrief
6
. Table 7, above, shows the ISA that 

Teacher 3 completed following implementation of the Spinner Elimination task and prior 

to implementation of the Spinner Elimination debrief.  The segments that I will be 

discussing in further detail are in bold print.  For a complete description of the Spinner 

Elimination task, please refer to Chapter 4, Task Analysis.  Below is a discussion of the 

IFA for segments 2 (student Jeff) and 5 (student Brian).  Along with an explanation for 

how the levels of fidelity were assigned to these two segments, I also include the 

transcripts of these segments (tables 9 and 12) and the document used to assign the 

appropriate level of fidelity to these segments (tables 10 and 13). 

 Discussion of Segments 2 and 3.  In segment 2 (Jeff’s work), Teacher 3 chose to 

focus on the difficulties that can arise from selecting large numbers to go on the spinner.  

                                                           
6
 The names of the students have been changed.  The teachers have been given numbers as identifiers; this 

allowed me to either identify a teacher as, for example, Teacher 3 when referencing the teacher in text and 

as T3 when identifying a teacher in a table or a graph where space was limited. 
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In particular, if a large number is spun more than once in a single turn, then the player 

will get a product that is greater than 50, causing him or her to lose a turn.  For example, 

if the 9 is spun twice in a row, the product is 81 and the player cannot cross the number 

off of the 50s chart and he or she will lose a turn.  In segment 5 (Brian’s work), the 

teacher planned to lead students to recognize that Brian was using not just low numbers, 

but low prime numbers.  Teacher 3 planned on having the class recognize that if they had 

at least one 2 on their spinner, then it was not absolutely necessary to have a 4 on the 

spinner because multiples of 4 will come up when a 2 is spun twice in one turn. 

 Example 1: Segment 2. In order to demonstrate how the IFA tool is used to assign 

a level of fidelity, I show how a level of fidelity was assigned to segment 2 of Teacher 

3’s Spinner Elimination debrief.  Table 8 shows an excerpt from Teacher 3’s Spinner 

Elimination ISA, identifying what she had planned for this portion of her debrief, 

including an excerpt from her rationale that was relevant to segment 2.  Immediately 

following that, in table 9, I show the transcript of the portion of the implemented debrief 

in which segment 2 was being addressed.  In the following paragraph, I discuss my 

rationale for how I assigned a level of fidelity to this segment.   

Table 8. Excerpt 1 from Teacher 3’s Spinner Elimination ISA 

Order of 

sharing 
Student 

name 
Ideas to Highlight Questions to make the math salient 

2 Jeff Uncover the issue with 

#s like 7 and 9. 
“What did you discover in your experiment 

with using spinner #2 #s?” 

Rationale: I used some samples (Initially) that would not prove overly successful 7s, 9s. 

 
Table 9. Teacher 3 Spinner Elimination Segment 2 Transcript 

Teacher3 All right.  I would like Jeff.  Would you bring yours up, please? 

Jeff For the first one, I did just as an experiment 1, 2, 3, 4, 5, 6, 7, 8. 

Teacher3 And how did your experiment go? 

Jeff That was okay, but I think I started out and once I got a low number like 8 or 
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something I spun again and went over, so that was my problem, not the 

spinner's problem.  And, yeah, that one worked out pretty well, but then for 

the second one I tried to switch it up as an experiment and I did 1, 1, 2, 2, 7, 

7, 9 and 9 and I spread them out more on the spinner, so there's like 1 and 1, 9 

and 9, 2 and 2, and 7 and 7. 

Teacher3 How did you choose doubles, you know, 1, 1, 2, 2.  How did you pick 7 and 

9?  How did you pick those numbers? 

Jeff Um, I wanted to do the extreme high and the extreme low and then… 2, I like 

2 for some reason so I just did that and then 7 was 9 minus 2, I guess, and it 

was kind of in the middle between 2 and 9, so I picked that and that one didn't 

work so well because I just went over every time like Jake said, so I said have 

at least 6 different numbers and keep those numbers below 8. 

Teacher3 So that was your final conclusion there, have at least 6 different numbers.  By 

that you mean 1, 2, 3, 4, 5, 6.  Are those different? 

Jeff Yeah.  Those are all different numbers.  So don't have only 4 different 

numbers. 

Teacher3 And keep them below 8.  So you would still have 7, and 6, and… 

Jeff Yeah. 

Teacher3 Okay.   Any questions for Jeff? 

Teacher3 Thank you. 

 

 In segment 2 of the ISA, the teacher planned to ask “What did you discover in 

your experiment with using spinner #2 numbers?”  In the implemented debrief, the 

teacher does not directly ask this question (she did ask a similar question with respect to 

the student’s first spinner when she asks him “And how did your experiment go?” but not 

the student’s second spinner as originally planned).  However, in this debrief, the planned 

question is considered to be addressed because the student stated, with respect to his 

second spinner, “that one didn't work so well because I just went over every time like 

Jake said”, essentially reporting that he discovered that the larger numbers on his second 

spinner were causing him to go over 50.  This statement about his spinner also served to 

address the teacher’s proposed mathematical idea that the larger numbers on a spinner 

were problematic.  The student went on to say that, in response to this dilemma, he 
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concluded that his next spinner would only have numbers less than 8.  Since the question 

was address and the proposed Idea to Highlight came up during the discussion, this 

segment was assigned a level 1.  Also, because Jeff was the only student speaking during 

this entire segment, a – code was assigned for student participation.  Below, in table 10, is 

the completed Implementation Fidelity Analysis for segment 2.   

Table 10. Implementation Fidelity Analysis for Segment 2 of Teacher 3’s Spinner Elimination debrief  

Teacher’s plan for the instructional segment as 

described in the ISA including questions. 

Jeff – Uncover the issue with using #’s like 7 & 9.     

 “What did you discover in your ‘experiment with 

using spinner #2 #’s’?” 

 

Idea to Highlight: Uncover the issue with using #’s like 7 and 9 

Planned question(s) What did you discover in your experiment with 

using spinner number 2’s numbers? 

 Answer and explanation Times 

1. Was the identified student’s work shown? yes 6:15-

8:26 

2. Were any of the planned questions addressed? 

Identify the times in which the questioning 

occurred. 

Yes 

Jeff said “that didn’t work so well b/c I 

just went over every time like Jake 

said.” 

7:19 

3. Did the mathematical idea as proposed by the 

teacher become evident in the discussion?  At 

some point was it the focus of the discussion? 

Yes 

Jeff identified that the large numbers 

were causing him to go over 50.  His 

conclusion was to keep the numbers 

below 8. 

7:19 

4. Did at least one other student, other than the 

presenting student contribute to the discussion? 

No  

Level of Fidelity 1- 

 

 Example 2: Segment 3.  My second example is the fifth and last segment of 

Teacher 3’s debrief for Spinner Elimination.  I selected this segment of this debrief as an 

example because it is in this segment that the teacher finally addresses the goal of her 

lesson which was: “Students will recognize prime numbers (or their multiples) connect to 

all numbers”, as stated in her Ideas to Highlight section of segment 5 (see Table 11).  She 

planned to ask the question of “Can you think of a number to replace the 4 that would 
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work just as well?”  This question could potentially allow her students to recognize that 

having 2’s on a spinner would potentially allow the player to cross off all multiples of 4 

on the 50’s chart by spinning the 2 at least twice in one turn.  See table 11 for the excerpt 

of segment 5 from Teacher 3’s Spinner Elimination ISA and see table 12 for the 

transcript of the implementation of segment 5.  Below I discuss the assignment of fidelity 

for this segment. 

Table 11. Excerpt 2 from Teacher 3’s Spinner Elimination ISA (Segment 5) 

Order of 

sharing 

Student 

name 

Ideas to Highlight Questions to make the math salient 

5 Brian -Students should 

recognize that spinner 

numbers are low prime 

numbers. 

Can you think of a number to replace the 4 that 

would work just as well? 

Rationale: I ended with 2 sample papers that came the closest to using all prime factors. 

 
Table 12. Teacher 3 Spinner Elimination Segment 5 Transcript 

Teacher 3:  And Brian.  Would you mind?  Thank you.  Talking about you and your 

partner's thinking. 

Brian: Me and my partner, Jordan, did different things.  But, um, I mostly chose 

on the lower side of numbers. 1, 5, 2, 2, 3, 5, 4, 3. 

Teacher 3: Why? 

Brian: The one was like a safety net in case I spun again because I wanted to.  

It's like a safety net.  I thought it might help me.  Um, 5s I figured that if I 

get anything times 5 I've got a pretty good range.  I've got 20 numbers I 

could have with 5s. [inaudible].  And 2, is just a good number.  It's got 25 

multiples in 50 and then, um, 3 and 4 are just lower numbers and they've 

got a lot of multiples and so that worked. 

Teacher 3: I noticed that with your first guess you almost followed Jenny's 

recommendation of picking all the numbers less than six with two repeats. 

Brian: I did pretty good on that turn.  I got 8 only.  That's pretty good.  And 

possibly, I had a pretty good score but I think I would switch a 5 with a 4 

and it might make my score a bit better because a 5 I ended up busting.  

That's the only time I busted with the 5, so I went 15223243 instead of, I 

didn't do that. 

Teacher 3: So you changed your five to a two.  Looks like.  Is that the only change 

you made?  Any just random low numbers?  Could you leave your paper 

up there for a second.  Class, if you were looking at Brian's spinner 2 

selections, most of those numbers on spinner 2 are what type of numbers? 

Stud. prime 
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Teacher 3: Why?…. Why, Jordan? 

Jordan: Because if you have like a lot of prime numbers it won't usually like go 

over.  Because if you multiply a lot with something like 6 or 7 it could go 

over.  But if you use a lot of prime numbers you could get a different 

variety on the chart. 

Teacher 3: Of what type of number? 

Jordan: Prime. 

Teacher 3: But get a different variety on the chart of what type of number? 

Jason Composite. 

Teacher 3: Yeah.  Because composite numbers are all products of prime numbers.  

And possibly, Brian, if you could change one number on spinner number 

two for your third assessment what would they be? 

Brian: I'd probably change a 1 to a 2. 

Teacher 3: Why? 

Brian I'd change it because the 1 really didn't help me at all.  It didn't give me 

any points.  I got maybe 1 point off of it.  It's not really worth anything. 

Teacher 3: Right.  Because you could just stop and get the same answer as if you 

spun a one. 

 

 In this second example, the teacher had planned to ask “Can you think of a 

number to replace the 4 that would work just as well?” but nowhere in this segment did 

anyone discuss the possibility of replacing a 4 with a different number.  An appropriate 

response to this question would have been to replace the 4 with a 2 because, if the spinner 

landed on the 2 twice, it would be the same as spinning a 4 once.  This idea was never 

brought up during the segment.  However, the proposed mathematical idea, that she 

wanted her students to recognize that the presenting student’s spinner contained low 

prime numbers, did come up during the debrief.  The teacher directed the class’s attention 

to the fact that his spinner contained mostly prime numbers when she asked “most of 

those numbers on spinner two are what type of numbers?”  A student in the class 

responded that they were mostly prime numbers and, with the teacher’s prompting, 

explained that having mostly primes was beneficial because it could potentially give you 

a wider variety of composite numbers on the 50’s chart.  The teacher closed this 
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discussion by stating that “composite numbers are all products of prime numbers.”  

Analysis of this segment, as shown in table 13, resulted in the assignment of level 2a+ to 

the segment because, although the planned question was never addressed, the proposed 

mathematical idea did emerge.  The + was assigned because an additional student shared 

during the discussion.  Below is the Implementation Fidelity Analysis completed for this 

segment. 

Table 13. Implementation Fidelity Analysis for Segment 5 of Teacher 3’s Spinner Elimination debrief 

Teacher’s plan for the instructional segment as 

described in the ISA including questions. 

Brian – Students should recognize that spinner 

numbers are low prime #’s. 

 “Can you think of a # to replace the 4 that would 

work just as well?” 

 

Idea to Highlight: Students should recognize that spinner numbers 

are low prime #’s. 

Planned Question: Can you think of a number to replace the 4 that 

would work just as well? 

 Answer and explanation Times 

1. Was the identified student’s work shown? Yes 13:55-

18:08 

2. Were any of the planned questions addressed?  No.  Nowhere in the segment did 

anyone discuss replacing a 4 with 

another number. 

 

3. Did the mathematical idea as proposed by the 

teacher become evident in the discussion?  At 

some point was it the focus of the discussion? 

Yes.  Teacher 3 focused the class’s 

attention on the fact that most of 

Brian’s numbers on his second spinner 

were low prime numbers.  With a little 

prompting, a student in the class stated 

that this would lead to a variety of 

composite numbers on the 50’s Chart. 

16:00-

16:48 

4. Did at least one other student, other than the 

presenting student contribute to the discussion? 

Yes 16:14-

16:48 

Level of convergence 2a+ 

 

 Discussion of the Two Examples. It is important to be clear that the purpose of the 

Implementation Fidelity Analysis is not to analyze the mathematical nature of the 

problem-solving debrief.  Rather, the tool is simply intended to determine the extent to 

which the discussion was implemented as intended by the teacher.  What we learn from 
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this tool is that, in the first example, the segment was well aligned with the ISA as the 

planned question was addressed by the student and the proposed idea to highlight was 

evident.  In the second example, although the teacher was successful in focusing the 

discussion on the proposed idea to highlight, this was not done with the help of the 

planned question.  It is clear here that the teacher stuck to her plan of focusing the class’s 

attention on the fact that the student was using low prime numbers on his spinner, but this 

was not done with the help of the question the teacher planned. 

What we may observe from these two examples is that the teacher is not 

consistently using the planned questions to focus the discussion on the planned ideas to 

highlight.  Particularly in the second example, Teacher 3 disregarded her planned 

question and chose a different approach for bringing out the planned idea to highlight.  

This raises questions about the relationship between the nature of the teacher’s plans and 

the outcomes of the problem-solving debrief.  For example, are segments more likely to 

be faithfully implemented if there is a clear relationship between the planned questions 

and the planned ideas to highlight?  Also, does the way that a question from the ISA is 

addressed affect the opportunities for the students to think and reason about the question? 

Notice that, although a lower level of fidelity was assigned in the second example, 

this does not necessarily reflect the strength or weakness of the segment with respect to 

the mathematical content of the discussion within the segments.  The first segment may 

be considered weak with respect to its mathematical content because it was only useful 

for drawing attention to the idea that larger numbers on the spinner are more likely to 

cause the player to go over fifty.  In contrast, mathematical concepts were more evident 
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in the second example because, in the second segment, the class’s attention was drawn to 

the fact that the student’s spinner contained mostly prime numbers and that the prime 

numbers were useful for creating a wide variety of composite numbers on the chart.  

While this tool is helpful for demonstrating the relationship between the ISA and the 

implemented debrief, more analysis is required to understand the quality and nature of the 

discourse.  This further analysis is reserved for research sub-questions 2 and 3. 

Inter-Rater Reliability of the Implementation Fidelity Analysis Tool 

After I developed the Implementation Fidelity Analysis tool, I collaborated with 

another member of the MPSM research team to assess the inter-rater reliability of the 

tool.  After collaborating together on the analysis of a couple of debriefs, allowing me to 

share the Implementation Fidelity Analysis tool and to make sure that the other coder 

understood how to respond to the questions designed to lead to the designation of a level 

of fidelity, we each completed an analysis of three debriefs from three different teachers 

from cohort 2.  Between the three teachers, there was a total of 14 segments, giving us a 

segment population of n=14.  Because we both agreed that one of the 14 segments was 

never implemented (giving that segment a fidelity level of 3b, the majority of the results 

shown below were for a population of n=13).  Below, I share the percentage of agreement 

for each of the four questions from the Implementation Fidelity Analysis tool and then 

discuss the overall outcome that our responses to these questions had on the assignment 

of the levels of fidelity. 
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Question 1: Was the identified student’s work shown?  Of the 14 segments 

identified in the ISAs by the three teachers, we demonstrated 100% agreement.  Of the 14 

segments identified in the teachers’ lesson plans, all but one of the students’ work were 

shared.  Because no discourse took place around that student’s work, the remaining 

questions will be analyzed with a population of 13 segments.  See table 14 for a summary 

of our analysis for question 1.   

     Table 14. Inter-rater reliability comparison for question 1 of IFA 

(A1 = my responses, B1 = colleague’s responses, 1 = yes, 0 = no) 

TeacherID Segment A1 B1 Agreement? 

23 1 1 1 1 

23 2 0 0 1 

23 4
7
 1 1 1 

31 1 1 1 1 

31 2 1 1 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 1 1 1 

31 6 1 1 1 

3 1 1 1 1 

3 2 1 1 1 

3 3 1 1 1 

3 4 1 1 1 

3 5 1 1 1 

    %agreement:100% 

 

Question 2: Were any of the planned questions addressed by a student (either as 

a result of the teacher asking the question, or unprompted)?  We agreed on 11 out of 13 

of the segments, yielding 84.6% consistency (see table 15).  In both cases, the other 

researcher thought that the planned questions were addressed by the student, while I did 

not. 

 

                                                           
7
 Data skips from segment 2 to segment 4 because the data for segment 3 of Teacher 23’s debrief is 

missing. 
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Table 15. Inter-rater reliability comparison for question 2 of IFA 

(A2 = my responses, B2 = colleague’s responses, 1 = yes, 0 = no) 

TeacherID Segment A2 B2 Agreement? 

23 1 1 1 1 

23 2 NA NA  

23 4 0 1 0 

31 1 1 1 1 

31 2 1 1 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 1 1 1 

31 6 1 1 1 

3 1 1 1 1 

3 2 1 1 1 

3 3 1 1 1 

3 4 1 1 1 

3 5 0 1 0 

    %Agreement:84.6% 

     

Question 3: Was the mathematical idea as proposed by the teacher evident in 

the segment?  We agreed upon 12 out of 13 of the segments, yielding 92.3% reliability.  

In the instance that we did not agree, the other researcher thought that the mathematical 

idea as proposed by the teacher was not evident, while I did (see table 16).   

Table 16. Inter-rater reliability comparison for question 3 of IFA 

(A3 = my responses, B3 = colleague’s responses, 1 = yes, 0 = no) 

TeacherID Segment A3 B3 Agreement? 

23 1 1 1 1 

23 2 NA NA  

23 4 1 1 1 

31 1 1 1 1 

31 2 0 0 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 1 1 1 

31 6 1 1 1 

3 1 1 1 1 

3 2 1 1 1 

3 3 1 1 1 

3 4 1 0 0 

3 5 1 1 1 

    %Agreement:92.3% 
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Levels of fidelity. The levels of fidelity that are assigned to the segments in a 

debrief are completely dependent upon the responses given to the three questions (see 

Table 5 above for the criteria used to assign these questions).  Recall that the levels of 

fidelity are ranked as faithful implementation (1), partially faithful implementation 

(2a/2b), and non-faithful implementation (3a/3b).  Within these parameters and based 

objectively on the responses to criteria questions 1-4, we agreed on 11 out of the 14 

segments, showing a 78.6 % rate of consistency (see table 17).  Because our inconsistent 

results from criteria questions 2 and 3 were never from the same segment, the overall 

fidelity is less consistent than the results for each individual criteria question. 

  Table 17. Inter-rater reliability comparison for assignment of fidelity 

(AL = level of fidelity assigned based upon me, BL = level of fidelity assigned by colleague) 

TeacherID Segment A1 B1 A2 BT2 A3 B3 AL* BL* Agreement? 

23 1 1 1 1 1 1 1 1 1 1 

23 2 0 0  NA NA  NA  NA  3b 3b 1 

23 4 1 1 0 1 1 1 2a 1 0 

31 1 1 1 1 1 1 1 1 1 1 

31 2 1 1 1 1 0 0 2b 2b 1 

31 3 1 1 1 1 1 1 1 1 1 

31 4 1 1 1 1 1 1 1 1 1 

31 5 1 1 1 1 1 1 1 1 1 

31 6 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

3 2 1 1 1 1 1 1 1 1 1 

3 3 1 1 1 1 1 1 1 1 1 

3 4 1 1 1 1 1 0 1 2b 0 

3 5 1 1 0 1 1 1 2b 1 0 

          %agreement:78.6% 

 

Question 4: Did at least one other student, other than the presenting student 

contribute to the discussion?  The last question in the Implementation Fidelity Analysis 

does not affect the levels of fidelity shown above.  Rather, this is a separate analysis that 
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simply rates the level of participation of the class during the segment.  Of the 13 

segments, we agreed upon 11 out of 13 of the segments, yielding 84.6% consistency (see 

table 18).  In both cases of disagreement, I said that there were contributions from other 

students and the other researcher did not.  Part of the reason for the inconsistencies here 

is because I originally tried to require that the contributions from the students were of 

some value to the discussion.  This meant that when students made minor contributions to 

the discussion, such as answering a short-response question, this was not necessarily 

counted.  Because this was producing inconsistent results, I later changed this criteria to 

simply require that students were contributing to the discussions, whether the 

contributions were significant or not. 

Table 18. Inter-rater reliability comparison for question 4 of IFA 

(S4 = my responses, T4 = Colleague’s responses, 1 = yes, 0 = no) 

TeacherID Student S4 T4 Agreement? 

23 1 1 0 0 

23 2 NA NA NA 

23 4 1 0 0 

31 1 1 1 1 

31 2 0 0 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 0 0 1 

31 6 1 1 1 

3 1 0 0 1 

3 2 0 0 1 

3 3 0 0 1 

3 4 0 0 1 

3 5 1 1 1 

    %Agreement:84.6%  

 

 Based upon the results from the inter-rater reliability analysis, it may be 

concluded that the Implementation Fidelity Analysis yields reasonably consistent results. 
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Results 

 Twenty-five debriefs were planned and implemented by twelve teachers for this 

analysis.  Within these twenty-five debriefs, a total of 107 segments were planned.  

Grouping all 107 segments together, disregarding which teacher or task the segments 

belonged to, 67 of the 107 (about 63%) were implemented faithfully (level 1), in which 

the student’s work was presented, the planned questions were addressed, and the 

identified ideas to highlight was discussed.  15 of the 107 segments (or about 14%) were 

not implemented faithfully either because the student’s work was not presented (level 3a) 

or because the teacher presented the student’s work without addressing either the ideas to 

highlight or the planned questions (level 3b).  This left 25 of the 107 segments (about 

23%) that were implemented partially faithfully, with the student’s work being addressed 

and either the ideas to highlight being addressed or the planned questions being 

addressed, but not both.  See table 19 and figure 12 for a summary of this data.  The 

complete set of results may be found in Appendix B.   

Table 19. Summary of Results from Implementation Fidelity Analysis Tool 

Level of Fidelity #segments (%) 
Level 1 67 (62.62%) 
Level 2 
     Level 2a 
     Level 2b 

25 (23.36%) 
         23 (21.495%) 
         2   (1.869%) 

Level 3 
     Level 3a 
     Level 3b 

15 (14.02%) 
         7 (6.54%) 
         8 (7.48%) 

Total 107 

 

Interestingly, 23 of the 25 segments that were implemented partially faithfully 

were because the teacher never addressed the planned questions but still addressed the 
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ideas to highlight.  This may be because the teachers tended to plan their questions such 

that if the question was addressed, then the Ideas to Highlight would consequentially be 

highlighted, which would result in level 1 fidelity.   

 

 
 Figure 12. Distribution of segments by levels of fidelity 

 

 It is important for this overall research study to know that the teachers were using 

their ISAs in their classrooms.  Since partially faithful implementation shows that the 

teacher used at least part of the ISA in their debrief (either addressing the ideas to 

highlight or asking the planned questions), which allows us to consider both faithful and 

partially faithful segments as being implemented by the teacher with some attention to 

the ISA.  We see that 92 of the 107 segments (or about 86%) were implemented as 

described in the ISA.  Also, 90 of the 107 segments (about 84%) were implemented 

faithfully with respect to the mathematics identified in the Ideas to Highlight.  This 

suggests that, overall, the teachers were following the ISAs as they were implementing 

their debriefs.  One possible explanation for these high levels of consistency is that the 

teachers knew that they were expected by the research team to follow the ISA during the 
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debriefs, as both the ISA and the audio-recording of the debrief would be collected.  It 

would also be hoped, though, that the act of writing up an ISA would be helpful for 

developing in the teacher’s mind what he or she wishes to address with the students 

during the debrief and that they would, in turn, find it useful and natural to follow along 

with ISA to keeps those important ideas in focus. 

 It is also possible that so many of the partially faithful segments were due to the 

teachers addressing their identified ideas to highlight without asking the planned 

questions (23 out of 25) was because it was easier for the teachers to remember what the 

big ideas were in the ISAs, but may have had a harder time remembering what the 

questions were that they were going to ask.  If they were running their debriefs without 

holding the ISA directly in front of them, they may have failed to follow the ISA exactly 

as planned simply because they couldn’t remember all of the details. 

 When looking at the data grouped by debrief, we see further evidence that the 

teachers were committed to using the ISAs. Findings showed that all of the teachers were 

using the ISA to some extent during their problem-solving debriefs.  Specifically, of the 

25 debriefs implemented by the 12 teachers, only eight of those 25 debriefs had been 

identified as having any non-faithfully implemented segments in them (levels 3a or 3b).  

Looking at the same data by teacher, these eight debriefs containing non-faithful 

segments were implemented by the same four teachers.  Also, of the 15 segments that 

were implemented non-faithfully, 11 were implemented by the same two teachers.  While 

these two teachers had a strongly tendency towards non-faithfully implementing their 

ISAs as planned (implementing two to three segments non-faithfully for each ISA), the 
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other two teachers only ever had one non-faithfully implemented segment per debrief.  

Interestingly, the teachers with a high tendency towards non-faithfully implementing a 

debrief worked at the same school, although they both reported never having time to 

work together.  It is possible, though, that norms or policies within the school encouraged 

teachers to adapt instruction. 

Regardless of the inclusion of segments that were not faithfully implemented, 

even those debriefs showed some evidence of faithful implementation as all eight of the 

debriefs with at least one non-faithful segment also had at least one other segment that 

was identified as faithfully implemented.  This suggests that, while these teachers were 

neglecting some parts of their ISAs, they were attentive to other parts of the tool.  

Generally speaking, 24 of the 25 total debriefs had at least one level 1 segment.  The one 

debrief that was lacking a level 1 segment contained only two segments, both of which 

were assigned level 2a, suggesting that the teacher was following the big ideas of the 

ISA, but was neglecting the planned questions.   

 
Figure 13. Distribution of fidelity of segments by debrief (organized from more to less faithfully 

implemented) 
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Figure 13 shows the distribution of faithful, partially faithful, and non-faithful 

segments within each debrief.  The debriefs in this table are roughly organized from more 

to less faithful to demonstrate the overall trend for teachers to follow the ISA they created 

for their debriefs.  Note that four of the debriefs were implemented completely faithfully, 

eight of the debriefs were implemented faithfully, with the exception of one partially 

faithful segment, and two debriefs were implemented faithfully with the exception of one 

non-faithful segment (both Teacher 23).  This shows 15 of the 25 debriefs implemented 

with a strong tendency towards faithful implementation.   

 
Figure 14. Distribution of fidelity of segments by debrief (grouped by teacher) 

 

 Figure 14 also shows the distribution of faithful, partially faithful and non-faithful 

segments within each debrief, but the segments have been grouped by teachers.  This 

table allows us to see the individual tendencies of the teachers to be more or less faithful 

when implementing their problem-solving debriefs.  Notice, in particular, teacher 3’s 

tendency to faithfully implement her debriefs with two of her debriefs containing four out 

of five segments faithfully implemented (80%) and a third debrief faithfully implemented 

with all four segments (100%).  In contrast, teachers 25 and 26 have an unusually strong 
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tendency to not faithfully implement their debriefs.  Out of teacher 25’s two implemented 

debriefs, she implemented two out of five (40%) and three out of four (75%) of her 

planned segments non-faithfully.  Similarly, teacher 26 implemented three out of six 

(50%) and three out of five (60%) of his debriefs non-faithfully. These findings for 

teachers 25 and 26 particularly stand out because they were the only teachers that 

implemented more than one non-faithful segment in a single debrief and they did it for all 

of their debriefs.  It is interesting to note that teachers 25 and 26 are both from the same 

school, although during the time that this data was collected, they had both mentioned 

that they rarely had time to collaborate.   

 While teachers 3, 25, and 26 all showed consistencies with the fidelity or lack of 

fidelity with which they implemented their debriefs, some teachers showed some 

surprising difference in how they faithfully implemented their debriefs.  Teachers 27 and 

31 each implemented two debriefs that were, for the most part, faithfully implemented 

(75%-100% of their segments were faithfully implemented), but they each had a third 

debrief that was not implemented faithfully (20% and 0% faithful, respectively).  This 

raises the question of what made those debriefs that were less faithfully implemented 

different from the faithfully implemented ones.  In particular, did the nature of the plans 

they wrote in their ISAs have an impact on the level of fidelity with which they 

implemented those debriefs?  I look more closely at teacher 27’s debrief and discuss 

further the discrepancies between his ISA and the enacted debrief when I address 

research sub-question 3. 
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 Participation codes. Along with the levels of fidelity, each segment was also 

assigned a participation code.  Each segment was assigned a code of ‘+’ or ‘–’ based 

upon whether or not there was evidence of participation from the rest of the class (that is, 

other than the presenting student).  A code of ‘+’ (referred to below as a participation 

code) was assigned if a student other than the presenting student made a contribution to 

the segment.  A code of ‘–’ (referred to below as a non-participation code) was assigned 

if no student other than the presenting student made a contribution to the discussion.  This 

code was not assigned to segments that were coded as 3b because, if the student work 

was never presented, then there was no discussion around which students might 

participate.  As a result, the participation/non-participation codes were assigned to a total 

of 99 segments.  See a breakdown of these participation codes in Table 20. 

Table 20.  Breakdown of Participation Codes by Level of Fidelity 

 Faithful Partially Faithful Non-Faithful Total 

Participation 45 (67%) 14 (56%) 4 (57%) 63(63.6%) 

Non-Participation 22 (33%) 11 (44%) 3 (43%) 36 (36.4%) 

Total 67 25 7 99 

 

 Out of a total of 99 segments, 63 segments were given a participation code 

(63.6%) and 36 segments were given a non-participation code (36.4%).  The percentage 

distribution of these codes within the partially faithful and non-faithful segments was 

very similar with 56% of the partially faithful segments and 57% of the non-faithful 

segments being assigned the participation code.  In contrast, the faithful segments had a 

slightly higher level of participation with 67% of these segments being assigned the 
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participation code.  This suggests that either the teachers have an easier time engaging the 

class when they use their plans from the ISA, or they have an easier time following the 

ISA when their students are willing to participate. 

 
Figure 15. Evidence of participation per segment, grouped by debrief from most to least 

participation. 

  

Figure 15 shows the distribution of participation levels within each debrief.  The 

chart is roughly organized according to the number of segments assigned a participation 

code and the number of segments assigned a non-participation code (the third bar 

represents segments that were assigned a code of 3b and, thus, could not be given a 

participation code).  The table demonstrates teachers’ tendencies to either run their class 

so that students are regularly contributing or to run their class so that students are almost 

never participating.  Notice how there are six debriefs in which students were 

participating for all segments.  Conversely, there are four segments in which students 

were never found to be participating.   
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Figure 16. student participation in debriefs, grouped by teachers 

 

 Figure 16 shows the same data grouped by teachers.  Note that teachers 22 and 27 

each have a debrief in which someone is participating in every segment and a debrief in 

which no students were observed participating other than, possibly, the presenting 

student.  (Teacher 27 also had a debrief in which the students were contributing half the 

time and the other half of the time they were not.).  This would suggest that something 

was different about their debriefs that affected the level of participation of the students.  

On the other hand, there was also a teacher (teacher 24) who had two debriefs in which 

students were regularly participating and a teacher (teacher 3) who had two debriefs in 

which no students ever participated.  This suggests that these teachers may be following a 

pattern of instruction that either gives opportunities for students to share or fails to give 

opportunities to allow students to share.  These patterns are worth investigating to see 

whether or not there is a relationship between the teachers’ plans that is affecting the 

outcomes of their debriefs, or if it is the improvisational moves of the teachers that are 

causing more or less participation from the class.  These are questions that will be 

investigated further in research sub-question 3. 
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Conclusions 

 The Implementation Fidelity Analysis tool was designed to answer research sub-

question 1 (Do teachers enact their written plans in the classroom as they had planned 

prior to implementation?).  The quick answer to this question is that, yes, teachers did 

show a tendency to implement at least part of their ISAs as planned.  Nearly two thirds of 

all the segments planned by the teachers were faithfully implemented and 86% of all the 

segments were implemented with at least partial fidelity.  An examination of the 

segments grouped within their respective debriefs also supported the conclusion that most 

of the teachers were implementing their problem-solving debriefs with at least some 

fidelity to the ISAs.  In particular, more than half of the problem-solving debriefs were 

implemented in such a way that no more than one segment was implemented unfaithfully.  

Also, twenty-four of the twenty-five debriefs in the study were implemented with at least 

one of the segments implemented faithfully.  This suggests that, even if there wasn’t 

perfect fidelity to the ISAs, all of the teachers at least attempted to implement their 

debriefs according to their written plans. 

 There was, however, some exceptions to this trend to implement the ISAs 

faithfully.  Two teachers demonstrated a very strong tendency to not faithfully follow the 

plans they documented in their ISAs.  Both of these teachers failed to faithfully 

implement either two or three of their segments for each debrief they implemented.  

These were the only teachers to show non-faithful implementation on more than one 

segment within a debrief.  Also, there were two teachers that showed a strong tendency to 

faithfully implement their ISAs for two of the three debriefs they implemented, but they 
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then demonstrated an, overall, less faithful implementation on a third debrief.  These 

examples suggest that teachers’ improvisational moves may continue to heavily impact 

the outcomes of a lesson despite the use of a lesson plan. 

 In addition to analyzing the extent to which the teachers were addressing their 

planned questions and ideas to highlight, the IFA tool also examined whether or not 

students other than the presenting student were contributing to the discussion.  The results 

showed some tendency for the students to participate in the debriefs (63.6% of the 

segments were assigned the participation code).  Interestingly, students were more likely 

to participate when the ISA was being implemented faithfully (67% of the segments 

identified as faithfully implemented were assigned a participation code versus 56% and 

57% for the partially faithful and non-faithful segments, respectively).  It is difficult to 

say, however, why this trend towards greater participation in the faithful segments exists.  

It might be that when teachers are following the ISA they have an easier time engaging 

their students in the discussion, or it might be that the teachers have an easier time 

following the ISA when their students are willing to participate.    

Application of the Implementation Fidelity Analysis to the Research 

Questions.  The levels of the Implementation Fidelity Analysis tool were intended to 

capture the extent to which the teachers were implementing the questions and ideas they 

had identified in the ISA.  It does not address how they engaged students in mathematical 

discourse.  The Implementation Fidelity Analysis only captures fidelity to the literal 

lesson.  That is, it measures the extent to which the teachers followed the steps in their 

ISAs, regardless of the mathematical content that was developed in the plan.  This data 
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analysis tool was used to answer research sub-question 1 (Do teachers enact their written 

plans in the classroom as they had planned prior to implementation?).  This is an essential 

question to ask when studying the impact that a written lesson plan has on the enacted 

lesson because, if a teacher fails to adhere to the basic steps in the lesson plan, then it is 

difficult to attribute the outcomes of the debrief to the written lesson plan.   

In order to accurately answer research sub-question 2 (Is there a correlation 

between the number of questions teachers plan that promote mathematical reasoning and 

argumentation and those that they actually ask during the whole-class discussion?), it is 

necessary to know the level at which the teacher adhered to the lesson plan during 

implementation.  Research sub-question 2 addresses the influence that the types of 

questions the teachers planned to ask had on the nature of the discourse.  If a teacher was 

not using the questions from the ISA in his or her debrief, then we cannot assume any 

connections exist between the types of questions the teacher planned to ask and the nature 

of the discourse that subsequently took place.   

A faithful implementation of the ISA does not necessarily imply that what took 

place during the problem-solving debrief was a perfect reflection of what the teacher had 

intended in the write-up of an ISA.  For research sub-question 3 (“How do teachers’ 

improvisational moves during whole-class discussions influence the enactment of the 

questions that were planned by the teacher prior to implementation?”) I analyzed the 

episodes in the debriefs in which the planned questions were being addressed.  The 

purpose of this analysis was to gain a better understanding of how a question that was 

planned in the ISA can change as it is being implemented by the teacher.  In particular, I 
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examined the teachers’ moves that impacted how a planned question was addressed.  I 

continue this discussion of my research analysis and results in the following chapter in 

which I discuss the analysis and results for research sub-question 2.
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Chapter 7. Research Sub-Question 2 

 

 This chapter is devoted to the analysis of research sub-question 2, the part of the 

analysis focused on the intended lesson, or the opportunities to reason mathematically, 

that were identified in the lesson plan.  This portion of the analysis addresses the nature 

of questions that the teachers planned with a particular focus on whether or not the 

planned questions were intended to create opportunities for students to reason 

mathematically.  In this chapter, I will describe the coding scheme that I developed to 

differentiate between questions that promote mathematical reasoning (high-press) and 

those that do not (low-press).  My description of the coding scheme includes a discussion 

of Kazemi and Stipek’s (2001) conceptualization of a high-press mathematics classroom 

and a low-press mathematics classroom and how this framework was used to develop my 

codes.  I include a discussion of my coding scheme, including a discussion of inter-rater 

reliability.  The analysis section of this chapter includes a description of how I used this 

coding scheme to analyze my data, the results from this analysis, and I conclude with a 

discussion of how these findings contribute to the larger study. 
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Development of the Question Codes 

To answer research sub-question 2 (Is there a correlation between the number of 

questions teachers plan that promote mathematical reasoning and argumentation and 

those that they actually ask during the whole-class discussion?), I developed a coding 

scheme to analyze teacher questions from the Instructional Sequence Analysis (ISA) and 

their implemented debriefs (see Appendix A to see an example of the ISA).  My primary 

goal for developing this coding scheme was that the codes differentiated the questions as 

either high-press (promoting thinking and reasoning about the mathematics in the task) or 

low-press (promoting communication, but not necessarily mathematical reasoning).  To 

define what I mean by high-press and low-press, I used Kazemi and Stipek’s concept of 

high-press and low-press teacher-student interactions as a basis for my coding scheme 

(2001).  In their analysis of four upper-elementary classrooms that were characterized as 

having positive social norms, that is, characterized by students working together and 

sharing their problem-solving strategies with one another, they found that, in two of the 

classrooms, students were engaged in richer mathematical discussions than in the other 

classrooms.  They identified four sociomathematical norms that differentiated the high-

press classes from the low-press classes:   

(a) an explanation consists of a mathematical argument, not simply a 

procedural description or summary;  

(b) mathematical thinking involves understanding relations among 

multiple strategies;  

(c) errors provide opportunities to reconceptualize a problem, explore 

contradictions in solutions, or pursue alternative strategies; and 
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(d) collaborative work involves individual accountability and reaching 

consensus through mathematical argumentation. (Kazemi & 

Stipek, 2001, 64). 

This conceptualization of high-press and low-press discourse was helpful for 

developing a coding scheme that clearly distinguished between high-level and low-level 

mathematical discourse because their characterizations of low-press versus high-press 

were primarily developed in the context of students sharing out their problem-solving 

strategies in a manner similar to the debriefs I am analyzing.  Below is an overview of the 

final coding scheme developed for my analysis.  See Appendix C for a complete 

description of the codes and examples of coded questions from the data. 

Question Codes 

High Press- 

H1. Reasoning and Justification 

H2. Addressing Errors and Misconceptions, Verifying a Solution 

H3. Generalizations, Conjectures, New Strategies 

H4. Making Connections 

H5. Clarifying other Students’ Thinking 

Low-Press- 

L1. Sharing and Explaining 

L2. Short-Answer Questions, Recall Facts, Procedural Answer 

L3. Non-Mathematical Questions 

While my coding scheme was inspired by Kazemi and Stipek’s high-press versus 

low-press teacher-student interactions, my codes were not meant to be a perfect match 

between these norms.  Table 21 shows the relationship between my codes and the 

characterizations of high-press and low-press identified in Kazemi and Stipek’s study.  In 
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this table, the first column contains my question codes with a brief description of the 

code, the second column gives both references to the sociomathematical norms given in 

the quotation above as well as additional quotes from Kazemi and Stipek’s article 

describing characteristics of the high-press and low-press classrooms.  I also include a 

third column that includes additional references to educational research that further 

support these categories of questions as promoting mathematical reasoning (high-press) 

or not (low-press). 

Table 21 Relating Question Codes to Kazemi and Stipek’s high-press/low-press framework (2001) 

The Question Codes Sociomathematical Norm Other Supporting 

References 

H1 Reasoning and 

Justification. Questions that 

create an opportunity for 

students to provide rationale to 

support their reasoning and/or 

solution 

An explanation consists of a 

mathematical argument 

“In high-press interactions, students 

learned that they could justify their 

actions by triangulating verbal, 

graphical, and numerical strategies” 

(67) 

Ball & Bass (2003) 

Yackel & Cobb (1996) 

Wood & Turner-

Vorbeck (2001) 

H2 Addressing Errors and 

Misconceptions, Verifying a 

Solution. Prompts students to 

verify whether or not a solution 

is correct or discussing what 

makes a solution, or part of a 

solution, incorrect or 

problematic 

Errors provide opportunities to 

reconceptualize a problem, explore 

contradictions in solutions, or pursue 

alternative strategies.   

 “ Verification was an integral part of 

group activities during the lesson” 

(66) 

Baxter & Williams 

(2010) 

Fraivillig and Murphy 

(1999) 

Hiebert et al (1997) 

H3 Generalizations, 

Conjectures, and New 

Strategies. Prompt students to 

move forward with their 

thinking on the task by coming 

up with new ideas on how to 

solve the task or exploring the 

mathematical ideas surrounding 

the task 

“the teacher pressed them to think 

how else they could conceptualize 7/6” 

(68) 

 

Fraivillig & Murphy 

(1999) 

Hiebert et al (1997) 

Jansen (2009) 

Rasmussen & 

Marrongelle (2006) 

H4 Making Connections. 

Prompts students to make 

connections between strategies, 

representations, other 

mathematics (besides that which 

is central to solving the task), or 

real-world context. 

Mathematical thinking involves 

understanding relations among multiple 

strategies 

“The teacher initiated a discussion 

that required students to 'focus on the 

mathematical concept of equivalence 

and its relation to the process of 

adding fractional parts.” (70) 

 

Hiebert & Wearne 

(1993) 

Fraivillig & Murphy 

(1999) 

Carpenter, Ansell, & 

Levi (2001) 

H5 Clarifying other Students’ Collaborative work involves individual O’Connor (1998) 
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Thinking. Prompt students to 

make sense of what other 

students are saying or thinking. 

accountability 

“She invited everyone, not just the 

students at the board, to think about 

how the students had solved the 

problem.” 

 “both [high-press teachers] invited all 

members of the group to contribute to 

the explanation of their group's 

work.” (77) 

Hiebert et al. (1997) 

L1 Sharing and Explaining a 

request for the presenting 

student to describe the work that 

they did, or explain their 

thinking on the task. 

An explanation … [is] not simply a 

procedural description or summary 

“In low-press exchanges …Students 

described solutions primarily by 

summarizing the steps they took to 

solve a problem” (68) 

Ball, Lubienski, & 

Mewborn (2001) 

Cobb, Wood, & Yackel 

(1993) 

L2 Short-Answer Questions, 

Recall Facts, Procedural 

Answer there is only one 

appropriate answer and/or these 

questions would be evaluated as 

right or wrong based upon text-

book knowledge 

 “[in the low-press classes] there was 

no evidence that the teachers were 

looking for detailed responses” (69) 

“Ms. Reed called on one student after 

another until she called on a student 

who provided the correct solution” 

Cazden (2001) 

L3 Non-Mathematical 

Questions questions that fail to 

focus on the mathematical 

content. 

“In low-press exchanges, connections 

were limited to nonmathematical 

aspects of students' strategies.” 

“both [low-press teachers] were 

primarily concerned with managerial 

and procedural instructions” 

 

 

The codes L2 (Short-Answer Questions, Recall Facts, Procedural Answer) and H3 

(Generalizations, Conjectures, and New Strategies) do not have a clear connection to the 

Kazemi and Stipek framework.  L2 questions (Short-Answer Questions, Recall Facts, 

Procedural Answer) were not something that was explicitly addressed in Kazemi and 

Stipek’s framework, although they did characterize the teachers in low-press questions as 

focusing on correct solutions over detailed solutions (see quotes in table 21 for L2).  

These types of questions occurred frequently in the teacher’s ISA’s.  Because these types 

of questions are closed-ended, they are not useful for promoting mathematical reasoning 

and/or argumentation which is why they are labeled as low-press questions.  I included 

H3 (Generalizations, Conjectures, and New Strategies) in the high-press category because 

I consider these types of questions important for generating discourse focused on 
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reasoning and argumentation because generating new ideas is an important step towards 

creating opportunities for students to reason mathematically (Jansen, 2009; Rasmussen & 

Marrongelle, 2006).  In a research study that analyzed the practices of a successful 

elementary school teacher, they found that she frequently supported students in thinking 

about the mathematics in their problem-solving tasks by encouraging them to make 

generalizations and conjectures as well as try alternate solutions methods and look for 

more efficient solution methods (Fraivillig & Murphy, 1999).  Also, a primary goal in 

discourse around student-generated problem-solving solutions is to make the methods 

more powerful and efficient (Hiebert et al, 1997).  In order to do this, students should be 

thinking about new strategies beyond their initial attempts to solve the task.  I found in 

the data for this research study that it was common for teachers to plan questions that 

prompted their students to think about the task in a new way.  That is, asking them to 

develop new strategies or look for additional solutions.  The complete question coding 

which I used for my data analysis may be found in Appendix C.  

 

Inter-rater Reliability 

 To assess the inter-rater reliability of the question codes, I brought in a secondary 

coder who was also a mathematics education PhD student.  To train the secondary coder, 

I shared the coding scheme, going over the codes with her.  Then, we reviewed several 

ISA’s, individually coding each question and then sharing our codes, discussing why we 

coded them as we had.  In this process, we were working to build a mutual understanding 

of what each code represented.  Following this training session, the secondary coder and I 

individually coded four other Instructional Sequence Analyses, different from the ones 
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that we had trained with.  There were a total of 26 questions that we coded.  Overall, our 

codes were 77% consistent.  Because I will only be utilizing this coding scheme to 

differentiate between high-press questions and low-press question, I also compared our 

codes by whether they were high-press or low-press.  In other words, I reanalyzed the 

consistency of our codes, counting a code as consistent between coders if we both coded 

a question as high-press or both coded a question as low-press.  For example, I counted a 

question as consistent because we both coded it as high-press, even though I coded it as 

H2 (reasoning through errors) and the secondary coder coded it as H1 (providing 

justification). A comparison of our codes for high-press versus low press were 85% 

consistent.   

 

Analysis and Results 

The data used for the analysis of research sub-question 2 included the ISAs of all 

the teachers and the audio-recordings of their problem-solving debriefs for the three 

MPSM problem-solving tasks.  There were a total of 12 teachers whose data were used 

and a total of 25 problem-solving debriefs that were analyzed.  Four teachers turned in 

complete data sets for all three of the tasks, five teachers turned in complete data sets for 

two of the tasks, and three teachers turned in a complete data set for only one of the tasks.  

The three teachers who submitted complete data sets for just one of the problem-solving 

tasks were all from cohort 3 while the remaining teachers were all from cohort 2.  Of the 

25 implemented problem-solving debriefs, seven were Snack Shack tasks, ten were 

Design a Dartboard tasks, and eight were Spinner Elimination tasks.  For a full 

description and analysis of these tasks, refer to Chapter 4, Task Analysis.  For a full 
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description of the participating teachers and demographic information about their 

schools, see Chapter 5, Method. 

Coding the questions.  The question codes, as described above, were used to 

analyze both the questions planned in the ISA and the questions asked by the teacher in 

the implemented debrief.  Identification of the questions to be coded in the ISAs was 

straightforward, because the questions were literally listed out for me in the column for 

questions to make the mathematics salient (see Appendix A for a blank version of the 

ISA and see Appendix F for samples of completed ISAs).  The criteria for what 

constitutes a question in the implemented debrief and which questions I would be coding 

needed to be made explicit.  A question in the implemented debrief was defined as an 

utterance made by the teacher that prompted some sort of response from a student.  As a 

result, both direct questions (“Why did you choose that strategy?”) and indirect questions 

(“please tell the class why you chose that strategy.”) were considered in my analysis.  

Within the problem-solving debriefs, teachers asked a large number of a wide variety of 

questions.  For example, teachers check in on student understanding (“Does that make 

sense to everyone?”), they call on students (“Sierra, did you have something to share?”), 

they direct students to move around the classroom (“Anthony, please bring your paper up 

here.”), they give behavioral directions (“be quiet, please”), etc.  As a result, the number 

of questions a teacher asks during a debrief can be copious.  Rather than coding all of 

these questions, my analysis was focused on coding only the high-press questions.  As a 

result, the number of questions I coded was considerably less than what was actually 

asked by the teacher.  For example, Teacher 23 made twenty-three utterances that would 

be considered questions in the first 10 minutes of her debrief of the Snack Shack task.  In 
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contrast, in that same block of time, I coded just two of those questions as high-press 

questions.  

I chose to only code the high-press questions in the implemented debriefs because 

research sub-question 2 is specifically focused on the teachers’ use of high-press 

questions in their problem-solving debriefs.  The assumption I am making is that a 

teacher who maintains press for high cognitive demand in his or her classroom is going to 

do so with the use of high-press questions.  As a result, my research is focused on the use 

of the high-press questions in the classroom and research sub-question 2 is intended to 

analyze the relationship between the high-press questions that were planned in the ISA 

and the high-press questions that were asked in the implemented debrief. 

In order to ensure consistency in my analysis for all teachers and debriefs, I 

followed certain rules when assigning codes.  (1) A code was assigned to a high-press 

question only if students were given an opportunity to answer the question.  This applies 

even if no student was able to answer it.  However, if a teacher asked a high-press 

question and then immediately provided an answer to the question without waiting for a 

response, then the question was not counted.  (2) A question that was repeated several 

times was only counted once.  It is often the case that a teacher will ask a question several 

times or reword a question in a couple different ways before students give a response.  In 

this case of repetition, the question was counted once.  (3) If several students gave a 

response to the same question, it was counted only once.  However, if the question was 

directed to one group of students and, after they responded to it, redirected to another 

group, it was counted twice.  An example of this would be if the teacher asks the 

presenter a question and, after that student responds, redirects the same question to the 
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class in order to see if someone in the group could answer the question better or 

differently.  (4) If a teacher asked the class to respond to a question by thinking quietly to 

oneself or discussing it in small groups, this question was only counted if the students 

were then asked to share out their responses. 

Two data analysis approaches.  The following sections address the processes 

that were used to analyze the data.  The data was analyzed in two ways.  First, the 

number of high-press questions asked in the ISAs was compared to the number of high-

press questions asked during the implemented debrief.  In this manner, the planned and 

implemented debriefs were compared overall.  That is, the frequency of high-press 

questions planned in the entire ISA was compared to the frequency of high-press 

questions asked in the entire debrief.  The second way in which the data was analyzed 

was by segment (a segment is the portion of the ISA/debrief that is focused on a single, 

selected piece of student work).  That is, I compared the number of high-press questions 

planned around the presentation of a particular piece of student work to the number of 

high-press questions asked during the portion of the implemented debrief in which that 

student’s work was being discussed.  The benefit of this latter approach was that it 

allowed me to disregard segments that were not faithfully implemented (as determined in 

the analysis for research sub-question 1) as well as portions of the debrief that were 

attending to things other than what was planned in the ISA (such as reviewing what the 

problem was asking).  While these may be interesting instructional moves, they were not 

answering my research questions. 

Analysis of the overall debriefs. In order to consistently compare the number of 

high-press questions planned for and asked in a problem-solving debrief, I chose to look 
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at the rate at which the planned and asked questions were being addressed with respect to 

the length of the debrief.  If a teacher asked five high-press questions during a thirty 

minute debrief, this would be different from if another teacher had asked five high-press 

questions during a ten minute debrief.  Similarly, if a teacher had planned one high-press 

question for a debrief that was only ten minutes long, this would be different from a 

teacher who planned one high-press question for a debrief that was thirty minutes long.  

As a result, I chose to consider the average number of high-press questions asked by the 

teacher per 10 minutes of debrief time as well as the number of high-press questions 

planned per 10 minutes of the debrief.  This latter value is meant to represent the 

frequency (per 10 minutes) which we would expect to see the planned questions appear, 

given the length of the debrief, if the teacher were to ask all of the planned high-press 

questions during the debrief.  For example, if a teacher were to plan six high-press 

questions and her debrief was 30 minutes long, then we would say that this teacher 

planned for two high-press questions to be asked every ten minutes of her debrief.  On 

the other hand, if another teacher planned four high-press questions, but his debrief was 

16 minutes long, then he planned for 2 ½ high-press questions to be asked per 10 

minutes.  This allowed me to compare the frequency of high-press questions asked in the 

debrief to the number of high-press questions planned for the debrief given the varying 

lengths of the teachers’ implemented debriefs.  

Organization of the Data. Once the questions from the ISAs and the high-press 

questions asked by the teachers in their debriefs were coded, a table was constructed in 

which each task implemented by a teacher was assigned a column (see Appendix D for 

the complete table).  The first rows of the table contained the following data: (1) the total 
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number of high-press questions planned by the teachers in the ISA, (2) the total number 

of high-press questions asked by the teacher in the implemented debrief, and (3) the total 

length of the implemented debrief.  The value of row three was determined by measuring 

the time on the audio-recording from when the teacher brought the class together to begin 

discussing student work on the task and ending with either the end of the audio recording 

or when the class was no longer discussing the task.  Using the data in rows one through 

three, the following additional rows were added: (4) The average number of high-press 

questions planned per 10 minutes of the debrief, which was calculated as: ((number of 

high-press questions planned)/(number of minutes in a debrief))*10 and (5) the average 

number of high-press questions asked during a debrief per 10 minutes, which was 

calculated as: ((number of high-press questions asked)/(number of minutes in a 

debrief))*10. 

Results. Using a correlation analysis, the number of questions planned per 10 

minutes of the debrief was compared to the number of questions asked per 10 minutes of 

the debrief.  This data showed that there was a negative correlation between these data 

sets with a very weak R
2
 of .0043 (see figure 17).  A review of the corresponding scatter 

plot, though, made it clear that there was an outlier within the data set that was skewing 

the data.  This outlying data value had an unusually high number of high-press questions 

planned per 10 minutes (6.25 high-press questions planned per 10 minutes, which is more 

than twice as many planned high-press questions than any other debrief).  This was 

coupled with an unusually low number of high-press questions asked during the debrief 

(1.25 high-press questions asked per 10 minutes of the debrief).  By removing this 
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outlier, the data did reveal a positive correlation with a slightly significant, but still very 

weak R
2
 of 0.1004 (see figure 18). 

Figure 17. # high-press questions planned versus # high-press questions asked (including outlier) 

 
Figure 18. # high-press questions planned vs. # high-press questions asked (excluding outlier) 

  

Overall, the data suggests that the relationship between the high-press questions 

the teachers planned in their ISAs and those they actually asked during a debrief were 

only slightly related, suggesting that there were other factors that influenced the 

frequency with which the teachers asked high-press questions during the implemented 
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problem-solving debriefs.  One of the possible reasons why this analysis showed only a 

slight correlation is because this analysis compared all debriefs in their entirety, 

regardless of how closely the teachers were following the ISAs, whether or not they were 

asking the planned questions, and how much time was additionally spent discussing 

things other than what was planned in the segments.  In many cases, the teachers would 

engage their classes in lengthy discussions about the task prior to discussing the student 

work as planned in the ISA.  Also, the teachers occasionally led follow-up discussion 

after presenting the student work.  These episodes before and after the discussion of 

student work represented a part of the debrief, but did not necessarily reflect what was 

planned in the debrief.  In order to more clearly connect the planned and asked high-press 

questions of the teachers in their implemented debriefs, I conducted a second analysis of 

the data, this time focusing on the segments in which the teachers faithfully implemented 

the questions they planned in their ISA’s.  This analysis is discussed in the next section. 

Analysis by Segment.  Since this analysis is intended to look specifically at the 

relationship between the number of high-press questions planned for each segment in the 

ISA and the number of high-press questions asked in the implemented debrief, an 

analysis in which the planned questions more clearly corresponded with what was taking 

place in the implemented debriefs was appropriate.  As a result, I narrowed the scope of 

what I was analyzing by comparing the number of high-press questions planned within 

each segment of the ISA to the number of high-press questions asked in the 

corresponding segment within the implemented debrief.  As a result, my unit of analysis 

became each individual segment of a debrief.  In addition, I only used the segments of the 

debriefs that were faithfully implemented with respect to the planned questions.  That is, I 
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only included in this analysis the segments that were assigned either level 1 (faithfully 

implemented) or level 2b (partially faithfully implemented in which the questions were 

addressed, but the Ideas to Highlight were not; recall that only two segments fell into this 

category).  By narrowing down the scope of my analysis, I focused on the portions of the 

debriefs in which (1) the teacher addressed the presentation of student work as described 

in their ISA and (2) attended to the questions in the ISA, according to the Implementation 

Fidelity Analysis. 

For each segment that was identified as either level 1 (faithful) or level 2b 

(partially faithful with respect to the planned questions), I counted the number of high-

press questions that were planned for that segment.  The number of high-press questions 

planned for a segment ranged from no (0) high-press questions planned to three high-

press questions planned.  Nineteen segments were planned with no high-press questions 

(This implied that the questions that were planned were all coded as low-press); 36 

segments were planned with one high-press question; nine were planned with two high-

press questions and two were planned with three high-press questions.  Three was the 

highest number of high-press questions planned for a single segment.  Using the time 

stamps identified in the IFA, I counted the number of times that the teacher asked a high-

press question during each segment.  I used the same criteria as described earlier to 

determine when to count a high-press question. 

Results.  Table 22 is a summary of the findings from this analysis.  The table 

shows the number of segments that were implemented such that the given number of 

planned high-press questions resulted in a corresponding number of high-press questions 

being asked by the teacher during that segment.  For example, there were seven segments 
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in which no high-press questions were planned and, correspondingly, no high-press 

questions were asked.  Also, There was just one segment in which two high-press 

questions were planned and nine high-press questions were then asked during the 

corresponding segment in the debrief.   

Table 22. Frequency table of high-press questions asked given planned questions 

 

Number of High Press Questions 

Planned 

0 1 2 3 
Number of High-

Press Questions 
Asked During the 

Segment 

0 7* 5 0 0 

1 5 6 4 0 

2 2 11 1 0 

3 4 5 0 1 

4 1 5 1 0 

5 0 1 1 1 

6 0 3 0 0 

7 0 0 0 0 

8 0 0 1 0 

9 0 0 1 0 
*This number means that 7 segments were implemented such that 0 high-press questions  

were planned and 0 high-press questions were asked. 

 

A correlation analysis comparing the number of high-press questions planned 

within each segment of the ISA’s to the high-press questions asked in the implemented 

debriefs reveals a positive correlation between the number of questions planned and the 

number of questions asked in the implemented debrief (see figure 19).  The correlation 

coefficient of 0.1489, while stronger than what was found in the previous analysis, is still 

quite weak.  This finding provides further evidence of the simple fact that all teachers are 

unique in how they teach and, as a result, the number of high-press questions they ask per 

segment is going to vary significantly. 
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Figure 19. Linear regression of high-press questions planned and asked per segment 

 

Although the data continues to show much variation, I conducted a t-test which 

showed that the average number of high-press questions the teachers asked did increase 

when the teachers planned to ask at least one high-press question in comparison to when 

they did not plan any.  The segments in which no high-press questions were planned 

recorded a mean score of 1.32 high-press questions asked during the implemented 

segment, with a standard deviation of 1.32, while the segments in which exactly one 

high-press question was planned recorded a mean score of 2.39 high-press questions 

asked during the implemented segment, with a standard deviation of 1.71. Hypothesis 

testing shows that there is a significant difference at 5% significance level (t-value =  

-2.56 and p-value < .05) in the mean score.  The mean difference between these two 

groups is -1.073, with a t-value of -2.56 and a p-value of 0.007 (<.05), which indicates 

that the mean number of high-press questions asked within a segment is significantly 

higher when one high-press question is planned for a segment compared to when no high-

press question is planned. 
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However, the difference between the number of high-press questions asked in a 

segment when the teacher planned more than one high-press question in the ISA was not 

significantly different compared to when the teachers planned for just one high-press 

question.  When the teachers had planned either two or three high-press questions, the 

mean number of high-press questions asked within a segment was 3.64 with a standard 

deviation of 2.87.  When compared to the segments in which one high-press question was 

planned (mean of 2.39, standard deviation of 1.71), the mean difference between these 

two groups is -1.247, with a t-value of −1.37 and a p-value of .098 (>.05), which 

indicates that there is not a significant difference in the number of high-press questions 

asked in these two groups.  The failure of the t-test is likely due in part to the small 

sample size of segments in which more than one high-press question was planned (there 

were 11 segments in which more than one high-press question was planned versus 36 

segments in which exactly one high-press questions was planned).   

 

Conclusions and Implications 

The lack of correlation between the number of high-press questions planned and 

the number of high-press questions asked, whether the data is grouped by overall debrief 

or by segments, leads me to surmise that the number of high-press questions planned for 

a debrief plays only a minor contributing role with respect to the types of questions the 

teachers are asking when implementing their debriefs.  The teachers are making on-the-

fly decisions to ask either more or less high-press questions during the problem-solving 

debriefs and these decisions are not completely dependent upon the nature of the 

questions that the teachers planned prior to implementation.   
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While this analysis failed to reveal a correlation between the number of high-press 

questions the teachers planned for their problem-solving debriefs and the number of high-

press questions they actually asked during the implemented debrief, my analysis of the 

data did show that teachers who pre-planned at least one high-press question for a 

segment did, on average, ask more high-press questions during that segment compared to 

when they did not plan any high-press questions for a segment.  That is, planning at least 

one high-press question for a segment did, in fact, make a difference with respect to the 

number of high-press questions the teacher asked during the corresponding implemented 

segments.  However, no conclusions may be drawn from this data that the more high-

press questions the teachers planned the more high-press questions they asked in the 

debrief.  This suggests that simply having a high-press question in mind when 

implementing a segment has a greater impact on how many high-press questions the 

teachers asks than the sheer number of high-press questions the teacher has in mind. 

Teachers’ instructional practices are heavily influenced by their prior experiences 

as teachers (Superfine, 2009).  Given that every teacher has their own unique methods of 

instruction, the variability in the number of high-press questions asked was not 

surprising.  Based upon the results of this analysis, teachers that wish to engage their 

students in discussions that are focused on mathematical reasoning and not just reporting 

out solutions should be encouraged to plan at least one high-press question to be asked 

during the discussion of a piece of student work.  By thinking about what type of high-

press question(s) they want to ask their students, in order to help their students to reason 

mathematically about the task, a teacher is in a better position to move students beyond 

simply sharing their work on a problem-solving task and begin focusing them on the 
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mathematical nature of their solution strategies.  In addition to this move, though, 

teachers should also think about what types of sociomathematical norms they are 

developing with their students and cultivate the practice of regularly asking questions that 

promote mathematical reasoning in their classrooms (Rasmussen, Yackel, & King, 2003; 

Yackel & Cobb, 1996). 

The theoretical framework used for this study of the temporal phases of 

curriculum implementation (figure 1 in Chapter 1) recognizes that there are many factors 

that can contribute to the implementation of a lesson beyond the contents of that lesson 

(in this case, the questions that the teachers plan).  It is possible to hypothesize about 

many other factors that might contribute to the nature of questions asked by the teachers 

during a problem-solving debrief.  These factors may include the social and 

sociomathematical norms developed by the teacher and students in the classrooms, 

teachers’ beliefs about the teaching and learning of mathematics, the content knowledge 

of the teachers, the nature of the mathematical learning goals of the ISA and their 

relationship to the planned questions (Koency & Swanson, 2000; Manouchehri & 

Goodman, 1998; Rasmussen, Yackel, & King, 2003; Stein, Remillard, & Smith, 2007).  

Further research would be necessary to identify the manner and extent to which these 

factors may influence the nature of questions asked by the teachers.  However, this is 

outside of the scope of this research study.  In the analysis of my third and final research 

question, though, I look at the improvisational moves the teachers make as they address 

the planned questions in their ISAs.  In this analysis, I will demonstrate that how a 

teacher addresses a planned question during a problem-solving debrief, as influenced by 

these external factors, can impact the opportunities for the teachers create for their 
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students to reason mathematically.  The analysis and results for research sub-question 3 

will be discussed in the following chapter.  
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Chapter 8. Research Sub-question 3 

 

Research sub-questions 1 and 2 were meant to provide an analysis of certain 

aspects of the implementation of the Instructional Sequence Analysis (ISA).  In research 

sub-question 1, I analyzed the literal lesson, addressing whether or not the teachers were 

following their Instructional Sequence Analyses as planned.  In research sub-question 2, I 

analyzed the intended lesson by comparing the frequency of planned high-press questions 

(i.e. questions intended to create opportunities for students to reason mathematically) to 

the frequency of high-press questions actually asked by the teachers during 

implementation of the debrief.  In research sub-question 3 (“How do teachers’ 

improvisational moves during whole-class discussions influence the enactment of the 

questions that were planned by the teacher prior to implementation?”) I looked in greater 

depth at what was actually taking place during the debriefs with an eye to the teachers’ 

moves as he or she implemented the questions planned in the ISA.  The goal of this 

research sub-question was to gain an understanding of how the improvisational moves of 

the teachers, as they implemented the planned questions, influenced the students’ 

opportunities to reason mathematically.  Is it enough to say that the teachers are asking 

the planned questions, or is there more taking place during the debrief that makes the 

implementation of the planned questions more or less successful in terms of the 



 197 

opportunities available to the students to engage with the mathematical ideas in the 

questions? 

 

Method: Grounded Theory 

To address research sub-question 3, my analysis was based on the qualitative 

research methodology of grounded theory as described by Strauss and Corbin (2007) in 

which systematic and iterative analysis leads to the generation and verification of 

conceptual theory useful for explaining observed phenomena.  The purpose of this 

analysis was to develop a theory that explains how these teachers’ improvisational moves 

served to influence the discourse that took place in their classrooms with respect to the 

questions planned by the teachers in their ISA’s.  To do this, I closely analyzed the 

transcripts of four teachers whom I selected based upon the findings from research sub-

question 2.   

Selection of four teachers.  The overall goal in my selection of the subset of four 

teachers was to have a set of teachers who demonstrated a wide range of variability in 

how they implemented the planned questions with respect to the number of high-press 

questions planned.  For my analysis for research sub-question 3, I chose Teacher 9, 

Teacher 22, Teacher 23, and Teacher 27.  I chose these teachers to represent a varying 

range of planned questions versus implemented questions as determined in research sub-

question 2.  In figure 20, these teachers' points have been highlighted on a scatter plot of 

the planned high-press questions (on the horizontal axis) versus the asked high-press 

questions (on the vertical axis) from research sub-question 2 to provide a visual 

representation of how these teachers’ high-press questions were implemented.  In the 
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chart, each point represents a debrief, placed on the chart according to how many high-

press questions the teacher planned for that debrief and how many high-press questions 

the teacher asked in the debrief.  Points representing debriefs implemented by the same 

teacher have been connected.  The solid lines connect the debriefs implemented by the 

four teachers used for research sub-question 3; the dashed lines connect the points of 

teachers who were not selected for this study; and the singleton points are from teachers 

who only had one set of data used in this study.  The points are connected from least to 

most high-press questions planned in a debrief.  In the following paragraphs, I describe 

the relationship between each teacher’s planned and implemented high-press questions as 

well as provide some specific background information about the teachers and their 

schools.   

 

   Figure 20.  Planned questions vs. Asked questions, four subjects used in Research Sub-question 3 

are highlighted. 
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Teacher 22 represents an example of someone who did not plan for many high-

press questions, nor did she ask many high-press questions during her problem-solving 

debriefs.  She had nine years of teaching experience and during the year of data 

collection, she taught 7
th

 grade math.  Teacher 23 taught at the same school as Teacher 

22.  She had 16 years of experience as a licensed teacher and 5 years of experience as a 

middle school math teacher.  She also taught the 7
th

 grade.  Teacher 23 showed the 

highest number of high-press questions asked in a problem-solving debrief.  Also, her 

three problem-solving debriefs show a very consistent relationship between the number 

of high-press questions she planned and the number of high-press questions she asked 

(that is, the more high-press questions she planned, the more high-press questions she 

asked).  The school that teachers 22 and 23 taught at was a public school in a suburban 

setting.  Their school had 21.6% of their students eligible for free and/or reduced lunch.  

The year prior to data collection and the year of data collection, their school did not meet 

annual yearly progress requirements.  The textbook Teachers 22 and 23 taught with was a 

traditional textbook. 

Teacher 27 was chosen for further analysis because two of his three debriefs fell 

within the center of the data for overall planned versus asked questions on the scatter 

plots.  In contrast, in his debrief for the Design a Dartboard task, he planned for an 

unusually large number of high-press questions, but asked an unusually low number of 

high-press questions in his debrief.  Teacher 27 had 13 years of experience as a licensed 

teacher and nine years of experience teaching middle school math.  He taught 6
th

 grade 

math in a suburban private prep school. 
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Finally, I chose Teacher 9 for further analysis because his data represented an 

outlier in the analysis for research sub-question 2.  That is, while he had planned more 

than twice as many high-press questions than any other teacher, his debrief showed a 

very low number of high-press questions asked.  Teacher 9 had three years of experience 

teaching middle school math.  He taught 7
th

 grade math in a rural public school with 

10.1% free and/or reduced lunch.  He taught using a traditional textbook. 

Descriptions of the teachers.  In this section, I provide a brief description of how 

each of the four teachers chosen for this analysis tended to orchestrate their problem-

solving debriefs.  The information given here is not meant to be part of the analysis.  

Rather, these are my general impressions of how the teachers were choosing to 

implement their problem-solving debriefs.  As the analysis of research sub-question 3 

focuses on the implementation of individual questions from the ISAs, these descriptions 

here are meant to give the reader a broader perspective of what was happening in their 

debriefs. 

Teacher 27’s debriefs tended to be teacher-centered.  He was more likely to lead 

his students through a discussion of the tasks than to orchestrate the discourse for his 

students to participate in.  In Spinner Elimination and Snack Shack, he clearly had a 

learning goal in mind.  He used many leading questions to lead towards what he wanted 

his students to see.  As Teacher 27 focused the discussions on the mathematics he wanted 

his students to see, his students occasionally chimed in to share their own mathematical 

reasoning.  Teacher 27 was always willing to open the floor to students who wanted to 

share their thinking, but he rarely initiated opportunities for his students to share their 

thinking.     
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An exception to his typical methods of leading a problem-solving debrief was 

Design a Dartboard.  This debrief was not characteristic of his other debriefs.  He did not 

make a significant effort to engage his students with the mathematics.  This debrief was 

characteristic of a low-press debrief in which students shared their work without much 

additional press for thinking.  While it is not clear what caused this change in his usual 

methods, it is possible that he did not have a clear mathematical learning goal in mind to 

motivate how he led the discussions, leaving him to focus on student solutions and then 

move on without attending to the mathematics in the task. 

 Teacher 9’s debriefs tended to take the form of students reporting out with 

minimal opportunity for reasoning and justification.  He rarely pressed his students for 

thinking.  In his ISA, he planned questions that would be considered high-press, but he 

was less likely to implement a high-press question from his ISA than a low-press 

question.  Surprisingly, despite his overall low-press approach to orchestrating a debrief, 

in his Snack Shack debrief he demonstrated an example of a well-implemented high-

press question.  I would reason that it made a difference that he had planned a question 

which, when asked appropriately, had triggered some good reasoning from his students.  

His students, in turn, seemed excited to be reasoning about something that was 

challenging yet accessible. 

Teacher 23 was very focused on pressing students’ thinking.  She planned a lot of 

high-press questions and asked even more high-press questions.  Teacher 23 rarely 

missed an opportunity to press her students to reason about the mathematics in a task.  

Sometimes, even when implementing low-press questions from the ISA, she would ask 

high-press questions as follow-up.  However, she struggled to get her students to share 
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their reasoning as her students were sometimes unsure what types of reasoning and 

explanations they were expected to provide in response to her questions.  These 

challenges were more common with her English language learners.  When her students 

struggled in this way, Teacher 23’s high-press questioning did not always result in high-

level discourse on the part of her students.     

 Teacher 22 was attentive to creating positive social norms in her classroom.  She 

did not want to make students uncomfortable, so she typically shared the students’ work 

herself.  She asked a lot of open-ended questions, encouraging her students to share their 

thinking, but she often did not press her students to reason mathematically.  Teacher 22 

focused on encouraging her students to share in a low-stress environment.  She planned 

very few high-press questions and she, in turn, asked very few high-press questions.  She 

tended to accept all students’ thinking without judgment of the validity of their 

statements.  When her students were unable to provide the appropriate type of reasoning 

to a question she posed, she was likely to provide an answer to the question herself, rather 

than push her students to think about the question and struggle to give an appropriate 

answer.  While she seemed to succeed in creating an environment where her students felt 

comfortable, she did not elicit much high-press reasoning from her students. 

Data analysis tools. To assist with my analysis for research sub-question 3, I 

used a second discourse coding scheme (different from the question codes developed for 

research sub-question 2) designed to analyze teacher utterances.  I chose to use this 

secondary coding scheme because the coding scheme developed for research sub-

question 2 was only meant to code questions and did not encompass all types of teacher 

utterances.  For sub-question 3, I was looking to better understand the teachers’ moves 
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during the time in which the planned questions were addressed.  Since many of the 

utterances made by a teacher are not questions, it was useful to borrow another coding 

scheme that addressed all types of utterances made by a teacher.  I used the Inquiry 

Oriented Teaching Analysis (IOTA) codes developed by Rasmussen, Kwon, and 

Marrongelle (2009) because it was developed to analyze inquiry-oriented classrooms; 

that is, classrooms in which value is placed on students sharing their thinking about 

mathematical ideas and providing mathematical argumentation.  This view of students 

sharing their thinking fit well with the values of the MPSM professional development 

project and, as a result, is both the type of discourse that we expect to see as the teachers 

are implementing the MPSM problem-solving tasks, but it also represents the aspects of 

the discourse which are of interest to me in my analysis.  I also chose to use this coding 

scheme because I already had some prior experience using this coding scheme in 

conjunction with the MPSM research project.  Table 23 is a brief overview of the codes 

(see Appendix E for sub-codes and a description of each code).   

Table 23. Inquiry-Oriented Teaching Analysis Codes 

Revoicing Questioning/Requesting 

Repeating – R1 Evaluating – Q1 

Rephrasing – R2 Clarifying – Q2 

Expanding – R3 Explaining – Q3 

Reporting –R4 Justifying – Q4 

Telling Managing 

Initiating – T1 Arranging – M1 

Facilitating – T2 Directing – M2 

Evaluating
8
 – T3 Motivating – M3 

Summarizing – T4 Checking – M4 

 

                                                           
8
 Originally, T3 was labeled as Responding, but I changed this to Evaluating since that was the element of 

this code that is most relevant to my analysis. 



 204 

When I applied this coding scheme, I was not trying to code every single teacher 

utterance because some teacher utterances did not contribute significantly to the 

discourse.  For example, I did not code a teacher utterance when they called on a student 

unless the teacher also asked a question when he or she called on the student.  I used the 

codes to allow me to look for identifiable patterns of behavior on the part of the teachers 

as they implemented the questions.  In particular, my intent was to identify specific 

patterns of teacher utterances within the context of the implementation of planned 

questions.  My goal was to utilize these patterns to develop categories that described the 

different ways that teachers implemented questions they planned in their ISAs
9
.   

 

Analysis 

 Amongst the four teachers that were chosen for this analysis, there were a total of 

10 transcripts.  Teachers 23 and 27 submitted data for all three of the MPSM tasks and 

teachers 9 and 22 submitted data from two tasks (Design a Dartboard and Snack Shack).  

In line with grounded theory, analysis of these transcripts took place iteratively, allowing 

me to look for patterns and continue to verify and develop these patterns as I continued to 

deepen and expand my analysis.  My first step in analyzing these transcripts was to 

review the transcripts and identify the episodes in which the teachers’ planned questions 

were being addressed.  I made physical notes of when these episodes occurred directly in 

my copies of the transcripts for easy reference as I analyzed the transcripts.  The 

Implementation Fidelity Analysis that I completed for research sub-question 1 was useful 

for this phase of the analysis as I had already recorded the time stamps in which the 

                                                           
9
 Photocopies of the ISAs for these four teachers may be found in Appendix F. The names of the students 

have been removed. 
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questions were addressed.  In addition to the questions recognized as being addressed in 

the Implementation Fidelity Analysis, for this analysis I also included episodes in which 

the teachers addressed the ideas in the planned questions without eliciting participation 

from their students.  I included these teacher-focused episodes because the purpose of this 

analysis was to understand what happened to the planned questions as they were being 

implemented, even if they were not being implemented as questions posed to the 

students.   

 Once the episodes of implemented questions were identified in the transcripts, I 

passed through the transcripts for just one of the tasks. I chose Snack Shack for this phase 

of the analysis because all four teachers had submitted data for these tasks (as opposed to 

Spinner Elimination, for which only two of the four teachers had submitted data) and I 

knew that there was a lot of rich discourse in the Snack Shack tasks.  In this analysis, 

using the IOTA codes, I coded the teachers’ utterances for the episodes surrounding the 

planned questions (that is, the dialogue that occurred immediately before, during, and 

after when the question emerged).  I then compared and contrasted the moves of the 

teachers in these episodes from the Snack Shack debriefs.  In this phase of the analysis, I 

developed some categories that were useful for describing the improvisational moves of 

the teachers as they implemented the planned questions. Once these categories were 

tentatively developed, I moved on to analyze the remaining transcripts, coding each 

teacher’s remaining transcripts together.  By conducting my analysis in this fashion, I 

was allowed to test out my initial categories, verifying their validity, as well as make 

some modifications to how I defined these categories.  Below, I will discuss the four 

categories that I developed to describe the different ways that these teachers’ 



 206 

improvisational moves impacted the implementation of their planned questions, and I will 

provide examples from the teachers’ debriefs to aid in my descriptions and discussions.  I 

will also include discussions of the patterns of teacher talk that occurred within these 

categories as evidenced by the IOTA codes. 

Transformation of planned questions: What happens to planned questions 

during implementation? While planning questions is an initial step towards bringing up 

meaningful questions during a problem-solving debrief, the manner in which such 

questions are addressed by the teacher during the implementation of a debrief can vary 

significantly from one teacher to the next and also from one question to the next within a 

single debrief.  You will note that I do not say that the teacher asked a planned question.  

Rather, I say that the teacher addressed a planned question because the teachers rarely 

asked the questions exactly as they had stated in their ISA’s and, sometimes, the 

questions were never asked at all, but were still addressed when the key ideas in the 

questions were brought into the discussion.  In fact, there were many variations on how 

the questions were addressed, including how the questions were (or were not) introduced 

by the teachers, the role that the teacher played in bringing the desired responses into the 

discussion, and the ways in which the teachers followed up the responses offered by the 

students.   

I identified four different ways that the planned questions were being 

implemented during the problem-solving debriefs.  I named these four different 

approaches to question implementation drop-in, embedded, telling, and sustained-focus 

questions.  Before moving on to a description of these four categories, I would like to 

make some things clear to the reader.  First, these categories are referred to as questions 
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because they represent how the questions planned in the ISAs were being addressed 

during the problem-solving debriefs.  However, they do not necessarily represent 

questions posed by the teachers during the implemented problem-solving debriefs.  

Rather, these categories represent classroom activity that involves the key ideas in these 

planned questions.  Second, these four categories of question implementation are not 

meant to be exhaustive or exclusive.  In fact, later on I will discuss some examples of 

how two of these categories may become blended together as a question is being 

addressed in the classroom.  As I describe these four categories below, I will provide 

detailed examples from the data for each category, including a discussion of the types of 

teacher utterances from the IOTA coding scheme that were common within each 

category. 

A drop-in question is one in which the question is asked, student(s) provide(s) 

responses, the teacher evaluates the responses and then immediately moves on without 

further discussion.  An embedded question is one in which the teacher does not actually 

ask the planned question because the question was essentially addressed by the students 

without the teacher prompting them.  A telling question is one in which the teacher never 

asks the students the planned question but, rather, addresses the question by simply 

providing the class with the information they would need to know to be able to answer 

the question themselves (alternatively, the teacher may verbalize the question and then 

answer the question without waiting for a response from the students).  Finally, a 

sustained focus question is one in which the teacher maintains the classroom’s focus on 

the question by engaging the class in further discussion related to the planned question.   
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Below, I discuss each of these categories in greater detail, providing illustrative 

examples from the data including some examples of how two categories may occur 

within the implementation of a single question.  I will also describe and discuss four 

teacher moves that I observed taking place in some of the sustained focus questions from 

my analysis which I propose contributed to the successful implementation of those 

particular questions.  In my summary and conclusions, I will make some 

recommendations for how those teacher moves may be used as a tool in professional 

development to support teachers in the implementation of planned questions. 

Throughout my descriptions of each category, I provide examples from the data 

that I analyzed.  Note that these categories that I developed are meant to describe the 

implementation of planned questions that the teachers recorded in their ISAs.  As a result, 

for each example that I provide below, I will include the question as it was planned in the 

ISA as well as the transcript of the episode in which the question was implemented.  All 

names used in the transcripts are pseudonyms. 

Drop-in. A drop-in question occurs when the teacher addresses a question from 

the ISA as planned but the question fails to yield any further discussion.  These questions 

are often implemented in an Initiation-Response-Evaluate format (IRE) (Cazden, 

1988/2001).  That is, the teacher initiates by asking the planned question, a student (or 

possibly multiple students) provide a response to the question, and the teacher either 

evaluates the correctness of their response(s), or elaborates on what was said by the 

student.  For a drop-in question, the teacher’s responses are typically coded as revoicing 

(IOTA codes R1, R2, R3) what the student had said or evaluating the correctness of the 
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students’ responses (IOTA code T3).  In some cases, the teacher may not even respond at 

all to the students’ responses.   

Example 1 of a drop-in question.  In the following example from Teacher 9’s 

Design a Dartboard debrief, the teacher planned to ask (in reference to the dartboard 

shown in figure 21) “Why did you use 15 squares?”  The question asked in the 

implemented debrief is very similar; teacher 9 asked “So why did you start with the 15?” 

(see table 24).  Note that in the transcripts, the IOTA codes that I assigned are in the 

column to the right of the teacher’s utterances. 

Table 24. Teacher 9 Design a Dartboard Episode (transcript 1) 

T9 Clark, do you want to just explain where you started.  Q3 

Clark Uh, making the 15% box.  

T9 And how many..?  Q1 

Clark 15 boxes in there.  

T9 So why did you start with the 15? Q4 

Clark Well, I used Matt's idea. I had, like, 100 boxes 

and, so, 15% of that is just 15 boxes, or squares. 
 

T9 Okay. T3 

T9 So how many are in the middle? Q1 

Clark 25.  

T9 And outer? Q1 

Clark 60.  

T9 And you're positive there's a hundred all together? Q1 

Clark Yes.  

T9 Are there any questions for Clark?  Or comments? 

Tyler? 

M4 

 

In this episode, we see Teacher 9 asking Clark how many squares were in the 

15% box, which he uses as a segue into asking why he started with 15 squares.  The 

student offers a response in which he references another student’s idea.  Teacher 9 offers 

a simple “okay” in response to the student’s explanation and continues asking how many 

squares are in each of the other sections, checking that the middle and outer sections 
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were, in fact, 25 and 60 squares respectively.  Note that this was the first piece of student 

work presented and took place at the very beginning of the problem-solving debrief.  As a 

result, it is unclear whether or not any of the students understood what Clark meant by 

‘Matt’s idea.’  That is, Clark was not referencing something that was said earlier in the 

debrief, so it is unclear how meaning this reference to Matt’s idea would be for the 

students.  Teacher 9 does not ask Clark to clarify what he meant by Matt’s idea, although 

it may have been helpful for making connections between students’ strategies.  

 

Figure 21. Clark's dartboard 

  

 The remaining discourse, in which Teacher 9 checks in about how many squares 

are in the middle and outer sections, is related to the student’s solution, but fails to 

contribute any useful thinking about the student’s strategy of starting with the 15.  For 

example, Teacher 9 could have tried to make a connection between the number of 

squares in the middle and outer sections and their corresponding percentages as this 
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would have built upon the idea that Clark proposed about using 15 squares to correspond 

to 15%.  We see in this example that Teacher 9 was faithful about implementing this 

planned question in his debrief, but he failed to follow through with the student’s 

thinking.  We see the IRE discourse pattern here when the teacher asks the planned 

question, the student responds, and then the teacher evaluates when he says “okay”.  The 

response of “okay” is an example of a T3, or evaluating comment. 

Example 2 of a drop-in.  Sometimes, there is a very notable lack of connection 

between a drop-in question and the surrounding discourse.  A drop-in question will likely 

occur because the teacher is being diligent about implementing the ISA even if there is 

not a clear connection between the planned questions and, either the ideas to highlight 

planned by the teacher, and/or what the students are choosing to share as they present 

their work.   In the following example, I demonstrate how a drop-in question can feel 

somewhat unnatural with respect to the surrounding discourse.   The example in table 25 

of a drop-in question is from Teacher 22’s Design a Dartboard debrief.  In this segment, 

she planned to ask "Does it matter whether or not each section is exactly the same 

shape?"  This question was planned with respect to the fact that the presenting student’s 

dartboard had three different shapes for the inner, middle, and outer shapes.  Creating a 

dartboard with differing shapes would be in contrast to a dartboard in which all three 

shapes were either similar or all the same type of shape (e.g. all triangles).  The episode 

below picks up where the teacher had just finished helping Shannon, the presenting 

student, to share her work and explain how she used 100 squares for her dartboard 

because it was easy to get the percentages since each square took up 1% of the dartboard.  

The end of this transcript marks the end of the presentation of that student’s work.  I 
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include the end of this discussion about percentages in the transcript below in order to 

illustrate the disparity that existed between the dialogue that was already taking place and 

the dialogue that emerged from the planned question. 

 

Table 25. Teacher 22 Design a Dartboard Episode (transcript 2) 

T22 Okay, so you did start on the outside and work in, but you knew 

how many squares you had to have because you said a hundred 

squares equals a hundred percent and you just keep redrawing it 

until it worked.  

R4 

Shannon Yeah.  

T22 Ok.  Um, anything else you wanted to add to that?  What you 

were thinking when you were working on this?  
Q3 

St. I was just thinking that 60 squares would be out of 60 and the 

middle could be 25. 

 

T22 Um, did you guys notice that her shapes aren't all exactly the 

same?  

M4 

Sts. yeah.  Of course  

T22 Did we ever say in the directions that all the shapes had to be 

the same?  

Q1 

Sts. no.  

T22 No!  R1 

T22 We didn't. T3 

T22 Um, I think that's all I'm going to say on that one for now. NA 

 

This episode, and the overall segment, were well aligned with what the teacher 

had planned.  In her ISA, the teacher identified her ideas to highlight as follows: “Show 

that one square can equal 1%.  Also, not every square [section] has to be the same shape.” 

The first half of the discussion of this student’s work successfully addressed the first half 

of her planned idea to highlight (“Show that one square can equal 1%”).  At the very end 

of the debrief (the episode shown here in table 25), Teacher 22 addressed her planned 

question of "Does it matter whether or not each section is exactly the same shape?"  The 

questions she asked to address this planned question and the discourse that took place 

prior to when she addressed this question were not connected.  She is making a sudden 
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shift from talking about percentages to talking about the student’s choice of shapes.  We 

again see the IRE pattern when she asked the question “Did we ever say in the directions 

that all the shapes had to be the same?” which was coded as Q1 because there is only one 

appropriate response to this question.  The students responded “No.” and she evaluated 

the response in a way that affirms they were correct (R1, T3). The question that she asked 

likely did serve its purpose of making the students aware that it was okay for them to 

create shapes that were not all similar, but it did not afford any opportunities for the 

students to reason about the task, nor does the question fit with the other ideas that the 

class had discussed with this piece of student work.  She could have pressed the class 

further to reason about whether or not the condition of similar figures should be a 

required part of the task, but it is possible she simply wanted her students to recognize 

that it was okay to make a dartboard in which the inner, middle, and outer shapes were all 

different. 

The IRE discourse pattern was a common occurrence with drop-in questions.  

While the IRE discourse pattern may have emerged as the teachers were implementing 

the planned questions in the other ways described below, what made the use of the IRE 

patterns unique to drop-in questions was that fact that there was little evidence of other 

discourse taking place surrounding the planned question beyond this IRE pattern.  That 

is, the drop-in questions are characterized by the question being initiated by the teacher, 

responded to by a student (or multiple students), evaluated by the teacher, and then the 

discussion moves away from the intended focus of the question to a different topic.  Note 

also, that in the first example of a drop-in question, the planned question was a high-press 

question (a request for the student to justify a part of their strategy) while the planned 
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question in the second example was low-press (short-answer).  However, in both 

examples the opportunities for students to reason mathematically were very limited. 

Embedded. An embedded question is one in which the teacher does not actually 

ask the planned question because the question was already addressed by the students, 

without the teacher prompting them.  This may be a logical move on the part of the 

teacher because, if they asked the planned question after a student had already made a 

statement that would have counted as a desirable response, it might seem odd to the flow 

of classroom discussion because the answer was already stated earlier, creating a feeling 

of redundancy.  However, the dilemma with this implementation of a planned question is 

that, if the teacher does not respond in some way to what the student said, the students 

may not realize that this idea proposed by the student was important to the teacher.  The 

codes for teacher utterances surrounding this type of implementation varied because 

embedded questions are characterized by the question being ‘addressed’ in the absence of 

teacher prompting.  Q3 (request for student explanation) may be a likely code if the 

desired response emerges out of the teachers’ requests for students to share their thinking 

about the problem. 

Example 1 of embedded.  The following example in table 26 of an embedded 

question is from teacher 22’s Snack Shack debrief.  In this segment, the teacher planned 

several questions: “What do you notice about this paper?  What’s the Same? Different?  

Is every part (label) addressed?”  We see in the episode shown below that the teacher 

explicitly asked the first three questions altogether when she said “Let’s go with one 

observation.  A similarity, a difference, or just an observation.” (The episode below 

begins with the teacher re-asking these questions, just after she had given them some time 
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to think about the questions).  Within this episode in which the students shared their 

responses to these questions, we see that the students addressed the question “Is every 

part (label) addressed?” without needing to be prompted by the teacher, as multiple 

students made comments pertaining to the fact that the presenting student’s work was 

clearly labeled.  Since the teacher never had to ask this planned question, but instead the 

students addressed it without any prompting, this question was embedded in the students’ 

discussion.  The utterances that support a response to the question of “Is every part (label) 

addressed?” have been highlighted in bold in the transcript below. 

Table 26. Teacher 22 Snack Shack Episode (transcript 3) 

T22 Let's go with one observation.  A similarity, a difference, or just an 

observation.  Clarence. 

Q3 

Clarence I don't know.  

T22 What did you guys talk about? NA 

Clarence Nothing.  

T22 You all just sat there and nobody said anything? NA 

Clarence Like one word.  

T22 Does somebody in the group want to help out? Q3 

Student: Well, what we said was it looks well thought-out and because 

the person put the amount of money and the number of cases it 

looks easier to add because they have a good rounded number 

like 10 and 20 cases and they know how much money that is so 

they can start subtracting one case at a time to find 50 cases and 

then get 200 dollars. 

 

T22 All right. M3 

Student They only used 10 cases and 20 cases and they didn't use any other 

number.  __________
10

 

 

T22 Okay, so they stuck with ten and twenty cases.  R2 

T22 Do you have any idea why they might have done that?  Q3b 

Student: no.  

T22 Could you take a guess? NA 

Student: Because like 30 and 20 equal 50 easier.  

T22 All right.  So they add up tens and twenties to get to 50 easier. 

Eleanor? 

R2 

Eleanor We thought it was confusing to have the lines in the middle.  

                                                           
10

 Underlined spaces indicate utterances that were inaudible in the recording 
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T22 That was these lines- the horizontal lines?  Q2 

T22 Okay.  All right. Megan? M3 

Megan I thought it was a lot more organized than the last one; you 

could read it better.  How many cases you can get for how 

much money. 

 

T22 All right, so it seemed more organized and easier to read. 

Tyler? 

R2 

Tyler It went way more than 50 cases.  

T22 Oh, if we added up all of the cases it would be way more than 

fifty.    

R3 

T22 Okay.  What else, ____? NA 

Student Well, I thought she was adding 20 and 10 first for the candy bars, 

but then-  

 

T22 Is that here?  Q2 

Student Yeah, but then, but yeah like Megan said that one side was 

money and then one side is how many cases they had. 

 

Student They were more organized.  

T22 More organized.  R1 

T22 Okay.  M3 

 

Students made statements like: “…because the person put the amount of money 

and the number of cases it looks easier to add…” ; “I thought it was a lot more organized 

than the last one.  You could read it better. How many cases you can get for how much 

money.” and “that one side was money and then one side is how many cases they had.”  

All of these statements alluded to the fact that the students were recognizing that the chart 

was clearly labeled.  However, these comments were all made in passing with minimal 

follow-up by the teacher.  The teacher either repeated (R1) or rephrased (R2) some of 

these utterances about organizing and labeling the graph but she did not say anything to 

lead students to recognize that this idea of clearly labeling was a part of her debrief plan, 

or something that she considered important.  Further, she pressed her students to reason 

about why the presenting student chose to use only 10 and 20 cases even though this was 

not identified as part of her original plan.  It is possible that Teacher 22’s desire was for 
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her students to recognize that this student was labeling her chart and when she observed 

through the discourse that this was something they were all observing, she may have felt 

there was no need to further emphasize it.  On the other hand, it may have been useful for 

the students if she had engaged them in a more detailed discussion in which they 

considered what they specifically liked about her labels, or how labeling the graph made 

the student’s work better in contrast to a graph that was unlabeled. 

An embedded question may be problematic in terms of clearly accomplishing the 

goals of the lesson plan because the students may not be aware that these embedded 

responses put forth by their peers are important to the teacher unless the teacher says 

something to help emphasize the idea for the students.  This type of implementation of a 

planned question may be risky because the students are not given any cues from the 

teacher that the presented ideas were considered important, which may cause them to 

move on without considering the students’ utterances.  In classes where the teacher shares 

the mathematical authority with her students, though, this would likely not be an issue.  

Research has shown that students can be intellectually autonomous in mathematics 

classes and they know, based upon social norms, that they should be aware of, and draw 

on, their own intellectual capabilities when making mathematical decisions and 

judgments as they participate in discourse with their peers (Yackel & Cobb, 1996).   

In classrooms where mathematical authority is shared, students may provide input 

and it will be received as viable input from their peers without it necessarily being 

identified as such by the teacher.  However, this is not a typical norm for most 

mathematics classes.   In order for a teacher to ensure that his or her students are aware 

that an idea presented by a student (or group of students) is important with respect to the 
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mathematics being addressed in the class, the teacher may need to make some 

improvisational moves that further draw the class’s attention to the planned question that 

is being implicitly addressed.  Later on, I will provide an example that illustrates how 

another teacher, when one of her planned questions was embedded in the discourse, 

followed through with the important ideas from the planned question in a way that 

highlighted the students’ comments as important. 

Telling. A telling question is when the teacher does not give students an 

opportunity to answer the question, but the question is clearly addressed by the teacher.  

This happens when the teacher talks about the important ideas from the planned question 

without ever posing the question to the class.   

Example 1 of a telling question.  The episode in table 27 is an example from 

Teacher 27’s Snack Shack task.  The teacher planned to ask the class “Why is focusing 

on the money first more difficult?”  This question refers to the process of finding a 

combination of cases of soda (for $3 per case), chips (for $5 per case), and candy bars 

(for $8 per case) that add up to a total of $200 without worrying about there being 50 

cases with the intention of then adjusting the number of cases to get 50 total.  This 

process would require finding a solution to the equation 3x+5y+8z=200.  An alternative, 

but similar, strategy would be trying to find a combination of cases of soda, chips, and 

candy bars that add up to 50 cases, which would require finding a solution to the equation 

x+y+z=50.  Instead of posing the question to the class first, T27 just jumps into 

explaining what makes it more difficult to start with $200.  In this example, he doesn’t 

give the presenting student an opportunity to share her own thinking on the problem. 
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Table 27. Teacher 27 Snack Shack Episode (Transcript 4) 

T27 So here was the thing about trying to start with either the money or the 

cases. For this one, she tried to start with the money.  So, you'll notice here 

you've got a hundred dollars, hundred and ten, thirty, that's too much 

money.  This one, here's finally 200 hundred dollars, but there's only 15, 

let's see, soda was 3.  So 15, 15 and 10 was 40, so not enough cases.  Then 

she tried to change some of the chip ones to soda ones.  

R4 

T27 The hard part was you had to go through all these calculations.  You 

made it 200 dollars, but then you had to kind of divide to figure out 

how many cases there were and then it still- this one still didn't get to 

the right sum.  

T3 

T27 She got closer, so a few more trades using the one we’re talking about and 

she would have been okay for a solution.  
T4 

T27 What I did like was there was a nice method to this, you could- some of 

you were trying to erase your mistakes as you went, but by seeing what you 

tried before, that helps you to decide what to try the next time.  

M3 

T27 Right?  M4 

T27 The only thing is, notice this took up the whole page just to get, almost 

to get- just one more box and she would have had a solution.  
T3 

 

In this example above, we see that the teacher addressed the planned question in 

the midst of reporting out on the student work.  The codes in this episode are mostly a 

combination of reporting out what the student had done (R4) and evaluating the 

efficiency of her method (T3).  Note that, in this example, the statements that addressed 

the teacher’s planned question were all T3.  It is worth noting that, in this particular 

debrief, the teacher had rushed through all of the segments in this manner, telling his 

students the information they needed to know instead of engaging them in discussions 

around the relevant ideas.  Part of the reason that he chose to do this, was because he was 

planning on engaging his class in an activity in which the class worked together to 

develop a new strategy for finding additional solutions.  As a result, he may have chosen 

to address questions like this himself, instead of engaging his students in a lengthier 

discussion, for the purpose of saving time for the part of his lesson that he considered 

most important. 
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Example 2 of a telling question.  This next example in table 28 of a telling 

question is from Teacher 22’s Design a Dartboard task.  In this episode, Teacher 22 

planned to ask “How many squares out of 180 is 15% of the whole?"  This question was 

planned by the teacher to help address the idea to highlight of “Show the use of a 

proportion to determine percents.”  In this example, the teacher chooses to describe for 

the class the process of using proportions to determine what 15% of 180 is. 

Table 28.  Teacher 22 Design a Dartboard Episode (Transcript 5) 

T22 And so he said how many squares out of a hundred and eighty equal 

15% over a hundred?  And then he solved the proportion for the 

number of squares and he found out that, for his picture, 27 squares 

is going to be the 15 percent and then he did similar math for the 25% 

and found that he would need 45 squares for the second portion of his 

dartboard and 108 squares for the 60%.  

R4 

T22 Do those numbers look reasonable compared to the 180?  Q1 

sts yes.  

sts No.  

T22 They look pretty good.  Don't they?   

sts Yeah.  

T22 The 15%, the 27 squares is the smallest number, but it's not that much 

smaller than the 25%, okay?  And the 108 squares is more than twice as 

much as the 45 which makes sense because 60% is more than twice as 

much as 25%.  

T2 

T22 So I thought it was cool that he actually used the proportions instead of 

using a hundred like Shannon did, for the hundred percent.  

M3 

T22 Jared started with 180 squares as the hundred percent and then found out 

how many would be 15% or 25% or 60%.  

R4 

 

In this second example, Teacher 22 provided an answer to her planned question 

(that is, that 27 squares is 15% of 180) and also described for the class how the student 

went about determining this percentage and she verified how one might conclude that 27 

is a reasonable solution for determining 15% of 180.  In this episode, the teacher involved 

the class by asking whether or not the solutions seemed reasonable, but she did not 

acknowledge that some of her students had said ‘no’, indicating that they did not think 
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the numbers seemed reasonable.  By not attending to their thinking, Teacher 22 missed an 

opportunity to help her students to reason through their errors (Fraivillig, Murphy, & 

Fuson, 1999).  Also, the second question she asked them (“They look pretty good. Don’t 

they?”) was a rhetorical question in the sense that she expected agreement from her 

students.  This episode was dominated by the teacher and the only true student input is in 

the form of the summaries that Teacher 22 is providing of the student’s work (R4). 

What both of these examples have in common, with respect to teacher utterances, 

is a large amount of reporting in the form of descriptions of the presenting students’ 

solutions.  In both of these cases, we see that the teachers used student work as a vehicle 

for sharing ideas about the tasks with their students but the students do not get an 

opportunity to actively engage in reasoning and discussing the planned questions.  There 

are many possible reasons why a teacher might choose to address a planned question in 

this way.  It is possible that they make an on-the-spot decision to address the questions 

themselves because it seems more time-efficient (Stein, Grover, & Henningsen, 1996).  

Another possibility is that teachers may occasionally feel that their students need to hear 

a particular explanation directly from them rather than trying to make sense of what the 

other students are saying (Baxter & Williams, 2010).  In some cases, a teacher may 

choose to implement a planned question as telling because he or she may think that the 

students are not capable of successfully addressing the question (Fennema et al., 1996).  

Later, I will discuss an example in which the teacher attempted to meaningfully address a 

planned question with her students, but the discussion degenerated into the teacher telling 

the class the information they needed because she was unable to elicit any worthwhile 

responses from the students. 
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 Sustained Focus. The final type of question implementation is a sustained focus 

question.  These are planned questions that are posed by the teacher and the teacher 

continues to focus the class on the ideas connected to the planned question.  This 

particular category will be discussed in greater length than the previous ones, because 

how the focus is maintained on a question can vary significantly and I will be discussing 

some key features of a sustained focus question that may positively impact the 

opportunities for students to reason mathematically.  Ideally, the questions teachers ask as 

they sustain the focus on a planned question should be high-press, encouraging multiple 

students to think deeply about the question and to provide well thought-out responses 

(Kazemi & Stipek, 2001).  In contrast, the teacher may ask follow-up questions to 

maintain focus on the planned question, but the questions are primarily evaluative or 

checking for understanding, resulting in low-press discourse.  This next example 

illustrates how maintaining a high-press discussion around a question can be challenging 

to accomplish.   

Example 1 of a sustained focus question.  In the following example in table 29 

from Teacher 23’s Design a Dartboard, the planned question was “What was your plan?”  

As identified in Teacher 23’s idea to highlight for this segment, she wanted to focus the 

class on Jolene’s strategy to let the total area be 267 and how 267 is the same as 100%.  

We see in the transcript below, that as the presenting student, Jolene, is attempting to 

explain her approach (or plan), Teacher 23 is trying to focus her explanation on her use of 

decimals to determine the percentages of 267. 
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Table 29. Teacher 23 Design a Dartboard Episode (Transcript 6) 

T23 Ok, Jolene.  What was your approach?  What did you start with?  

Jolene I started by choosing the numbers___________________  

T23 Am I understanding you that you drew kind of like a cross, you drew 

that first and then counted the boxes?  
Q2 

T23 OK.  And then what did you do from there? Q3 

Jolene I multiplied.  And then I multiplied by the _____________.  

T23 I can't see here, let's refocus it down on the bottom.  M1 

T23 Ok, so down here at the bottom you took your total number, right?  

Which was 267 and you multiplied that by .15, 15 hundredths.   

Q2 

T23 Why did you multiply by 15 hundredths?  Q4 

Jolene To make it easier.  

T23 To make it easier for what?   Q2 

T23 Why .15?  Why not .17?  Q4 

T23 Where did the .15 come from?  Q2 

Jolene  The yellow paper.  

T23 From the yellow paper, yeah.  R1 

T23 What is represented?  Q3 

T23 Who can help her out?  M4 

T23 I don't think she's understanding what I'm trying to get at.  M3 

T23 Who can help her out?  M4 

T23 Where did the .15 come from?  Jamie?  Q3b 

Jamie 15%.  

T23 15%.  15% as a decimal is .15, right?  R3 

T23 Ok, so she knew that.  It's the English that… and my lack of Spanish 

to ask her well enough what I'm trying to get at.  
M3 

T23 Ok, and then here you multiplied by…by 25 hundredths because that 

is the same as what, everybody?  
Q1 

sts 25  

T23 25%.  R2 

T23 And then here multiplied by 60 hundredths. She said that very well.  R4 

T23 Because that is the decimal form, or the rate, we call it, of the 60%.  

Right?  So she multiplied the total number of the squares by those 

numbers.  

R4 

T23 Ok. And then what does your answer represent here?  40.  What does 

that tell you? Ok.  Help her out.  What does the 40 give?   267 

multiplied by 15 hundredths and 40 is her product, her answer.  What 

is 40?  What does that tell her?  

Q1 

st 40 is 15%  

T23 40 is 15%. So 40 squares would be 15 percent of the total number of 

squares that she has so that the smaller section of her drawing should 

be how many squares? 

R1 

Q1 

sts 40  

T23 40 squares.  R2 
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In this example, Teacher 23 pressed Jolene, the presenting student, to provide 

more information about her choice to multiply by the decimal .15 to obtain the area of the 

smaller shape.  Teacher 23 asked questions like “Why did you multiply by 15 

hundredths?” and “Why .15?  Why not .17?”  These were high-press questions that the 

teacher asked in an effort to support Jolene in being able to provide a mathematical 

explanation.  Jolene struggled to appropriately answer the teacher’s questions, so Teacher 

23 began posing the questions to the class as well.  Despite Teacher 23’s efforts to ask 

high-press questions, she was, in general, only able to get responses out of the students 

when she reworded the questions to be low-press such as when she asked “…you 

multiplied by 25 hundredths because that is the same as what, everybody?”  In the end, 

Teacher 23 resorted to providing all of the explanations and asking only evaluative 

questions of her students.  This is an example of the challenges that teachers can face 

when trying to sustain the focus on a question.  Here, we see that, despite the teacher’s 

efforts to elicit meaningful explanations from her students, she was only able to elicit 

brief statements of lower-level thinking. 

Example 2 of a sustained focus question: Four teacher moves.  My second 

example, in table 30, of a sustained focus question stood out to me as particularly 

successful based upon the fact that multiple students were able to provide clear, 

mathematical explanations and reasoning as a result of the manner in which the teacher 

structured the implementation of the planned question.  This episode comes from Teacher 

9’s Snack Shack task.  In this example, the students’ work being presented was chosen 

because they had found a solution that cost 200 dollars, but had only 42 cases instead of 
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the required 50 cases.  The planned question was “How can the numbers be adjusted to 

increase or decrease cases?”  The focus of this discussion was on strategies the students 

came up with to take this incorrect solution and modify it to increase the number of cases 

without changing the cost and, ultimately, using their strategies to find a solution that 

worked. 

Table 30. Teacher 9 Snack Shack Episode (Transcript 7) 

Lucas:  For these one, we didn't exactly get 50 cases but we got 42, we got 

12 chips, 10 candy bars, 20 sodas that equaled 200 dollars. 

 

T9 Ok, one of the reasons I thought this was interesting…[St. because 

it's like hard enough to get 200] it's hard to get it exactly 200.  

M3 

T9 So how long did it take you to get 200?  Q1 

Lucas:  Only like 10 minutes  

T9 Five or six tries?  What I'm curious about right now - Lucas and 

Tyler came up with this solution.  Can we tweak it so that we 

somehow get more cases, but the same amount of dollars?  

T1b 

T9 So, take 30 seconds.  M1 

T9 Everyone write down that.  Write down 12 chips, 10 candy, 20 

soda.  Yeah.  

M1 

T9 Write it on your sheet somewhere and, with your partner, see if 

you can change it somehow, exchange cases for case or something 

like that so, I don't know, maybe you get 43 cases or 44 cases and 

200 dollars.  

T1b 

 [Students working]  

T9 15 more seconds.  M1 

St. We got one that's exact!  

T9 The question was I want more, I just want either 43 or 44 cases, 

ok?  

T1b 

T9 Can you change it so we get 43 or 44 cases?  M4 

St. Yeah.  

T9 This is a new question.  Ok.  Anyone get it?  Jon?  Q3 

Jon Yeah.  You can actually take away one of the candy and add two 

more. 

 

T9 How do you do that?  Q3 

Jon You take away the candy and you add the 5 dollar chips and 3 

dollars sodas and you gain one every time you do that. 

 

T9 Wait, say that again.  Q2 

Jon You need 8 more cases.  Every time you take one candy bar from 

the ten, you can add one chips and one soda. 

 

St.  I understand that!  
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St. 9 candy, 13 chips and 21 soda.  

T9 So if I take one of these away, then I have to….[St.: That means 

you would have to take 4 away]  
Q2 

T9 So now this is 13 and this is 21?   Q1 

St. Yeah.  And you're still at 200 dollars.  

T9 We are?   Q2 

St. Yeah, cuz…  

St. The candy bars are 8 dollars!  

T9 No, no.  Convince yourselves.  Are you still at 200 dollars?  Q4 

St 5 by 3 is 8.  

St Yeah, you take away 8  

St 5 times 13 is…  

St 9 times 8 is 72  

T9 65… 9 times 8 is… 72…. 3 times 21, 63.  R3 

T9 Add all these up we get 200?  That equals 200?  Q1 

St.  You just have to take off the candy for each one and then add two 

onto each side. 

 

T9 Ok, so can we do it again?  Q1 

[Students go on to find a solution with 43 cases and then a solution with 50 

cases.] 

 

 

The preceding example showed implementation of a planned question with 

deliberate moves on the part of the teacher to optimize the meaningfulness of the 

questions for the students.  From this example, I identified four teacher moves that were 

useful for sustaining focus the focus on the planned question.  I call these four teacher 

moves contextualization, problem-posing, think-time, and follow-up (see table 31 for a 

summary of these categories).  Contextualization refers to discourse that leads up to the 

question and that ensures the class has the necessary background information needed to 

successfully address the given question.  In this example, the contextualization was as 

simple as teacher 9 drawing attention to the aspects of the student’s work that were 

relevant to the question about to be posed.  We see teacher 9 drawing attention to the fact 

that it was very difficult for the presenting students to come up with an example in which 

they had exactly $200, but not enough cases.  I coded this utterance from the teacher as 
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Motivating because the teacher was giving the class reason to value the non-solution that 

this group had found and to use it to find a better solution.  This non-solution of 42 cases 

worth exactly $200 was used to pose the planned question, providing the class with a 

mathematical object (that is, the solution with 200 dollars, but not enough cases) to work 

with as they addressed the planned question.   

Research has demonstrated the potential value of providing appropriate 

contextualization of a question as a way to promote students’ successful engagement with 

the question.  In a study that compared three pre-service teachers to three in-service 

teachers performing an arithmetic problem-solving task with their students, it was found 

that the in-service teachers spent more time making sure that their students understood 

the problem before beginning to discuss with their students how to solve the problem.  In 

contrast, the pre-service teachers spent less time guaranteeing that their students 

understood the problem, initially, but then had to refocus the discussion on understanding 

the problem as the students struggled to identify the correct operation (Rosales, Orrantia, 

Vicente, & Chamosa, 2008).  In a case study of a teacher who was identified as 

particularly successful implementing a reform-oriented curriculum, the researchers 

identified that she supported students in solving problems by reminding them of 

conceptually similar problems previously solved in the class as well as providing the 

necessary background knowledge to ensure that the students would be able to solve a 

problem with understanding (Fraivillig, Murphy, & Fuson, 1999). 

Problem-posing refers to the teacher asking the planned question in a way that 

provides more detail than what was recorded in the ISA.  This would be for the purpose 

of ensuring that everyone understands exactly what is being asked of them.  While the 
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question from teacher 9’s plan was worded as “How can the numbers be adjusted to 

increase or decrease cases?” the question was posed to the class as “Can we tweak it so 

that we somehow get more cases, but the same amount of dollars?  So, take 30 seconds.  

Everyone write down that, including Zac and Jack.  Write down 12 chips, 10 candy, 20 

soda.  Yeah.  Write it on your sheet somewhere and with your partner, see if you can 

change it somehow, exchange cases for case or something like that so, I don't know, 

maybe you get 43 cases or 44 cases and 200 dollars.”  He modified the planned question 

in such a way that he tied the question directly to the presenting students’ solution; he 

gave specific moves for the class to make in order to get started on the problem (writing 

down 12 chips, 10 candy, and 20 soda), gave specific directions on how to solve the 

problem (30 seconds, work with your partner).  He also provided a hint on how to do it 

(“exchange case for case or something like that”).  It may be argued that he gave too 

much scaffolding to his students.  However, research has shown that some scaffolding is 

necessary to maintain the cognitive demand of a task (Henningsen & Stein, 1997).  

Another research study showed that minority students were more likely to respond to a 

question when the teacher was clear about what mathematical ideas the question was 

intended to address and how the students were expected to respond to the question 

(Parks, 2010). 

Once the question was clearly stated by the teacher, some think-time was 

provided so that all students were given an opportunity to consider how they might 

respond to the posed question.  While think-time may be as basic as a few seconds of 

wait time before asking for students to share their responses, or as extensive as 10 

minutes of small-group work, in this case teacher 9 gave just 30 seconds for the class to 
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work on the problem.  In this example, the amount of time given seemed sufficient for 

several students to have come up with a solution. While it is not possible to tell exactly 

how many students were participating in the discussion of this question, multiple students 

chimed in with solutions, comments, and explanations.  The benefit of think-time is that 

the teacher provided the class with enough time to think about the question and, as a 

result, more students felt comfortable sharing their responses.  In a research study 

comparing the discourse of teachers who were asked to allow their students at least 3 

seconds of think-time following questions to the discourse of a control group where 

think-time was not a focus, they found that students in the classes where think-time was 

provided were more likely to respond and provided longer utterances in response to 

teacher questions (Tobin, 1986).  Another study showed that students were more likely to 

share their thinking with the class when they were first allowed to respond to the question 

either individually or in small groups (Parks, 2010). 

Finally, we see Teacher 9 follow-up with the class as they provided solutions.  He 

pressed Jon, who offered up his solution strategy, to be more detailed about what his 

strategy was when he asks “How do we do that?”, a request for explanation (Q3), and 

then “Wait, say that again”, a request for clarification (Q2).  As the rest of the class 

joined in on the discussion, Teacher 9 continued to ask clarifying questions and asked the 

class to verify that their new solution was still at 200 dollars “Convince yourselves; are 

you still at 200 dollars?”  He then followed up with extension questions (“can we do it 

again?” and “can you get to 50 cases doing this?  I don’t know if we can…Try it! Try it!” 

were additional statements made by Teacher 9 following the episode transcript in table 

30).  While a focus on obtaining a correct solution can lower the cognitive demand of a 
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task like this one, Teacher 9’s press for thinking and reasoning from his students was 

useful for maintaining the cognitive demand of the task (Doyle, 1988). 

Table 31. Four Potential Teacher Moves of a Sustained Focus Question 

Contextualization  Dialogue preceding the question is deliberately orchestrated to 

help support students’ understanding of the question.  This 

could be as simple as making a statement to draw students’ 

attention to a key element of the upcoming problem or as 

focused as engaging the class in a discussion of the necessary 

background information needed to successfully engage in the 

planned question. 

Problem Posing  In addition to just asking the question, there is additional 

wording from the teacher to make sure all students understand 

what is being asked of them. 

Think time  Teacher allows time for students to consider the question, rather 

than expecting immediate responses from the students.  This 

could be a few seconds of think time before the teacher calls on 

students to respond, or several minutes of small group activity, 

allowing all students time to grapple with the question. 

Follow-up  The teacher asks additional pressing questions to sustain the 

classroom’s focus on the posed question.  This may include one 

or more of the following:  Encouraging students to clarify their 

thinking, add additional explanation, justify their reasoning etc.  

Requesting multiple students to contribute.  Asking extension 

questions to further thinking on the posed problem. 

 

 Example 3 of Sustained Focus.  These four teacher-moves of a well-implemented, 

sustained focus question that I described above for Teacher 9’s debrief were also evident 

in many other episodes from all of the teachers.  These four moves were not always used 

together (for example, a teacher may give her students think-time, but not necessarily 

contextualize the question, or the four teacher moves may all be evident, but the follow-

up fell short because the teacher ran out of time).  Below, I give another example of a 

sustained focus question in which we can see these four teacher moves, but they look 

different from the previous example.  This example, shown in table 32 is excerpted from 

Teacher 27’s Spinner Elimination task.  Just before this episode, the class had figured out 
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that no more than 15 squares could be crossed off of the 50’s chart if your spinner only 

has the numbers 1, 2, and 3 on it.  This discussion that led up to the following example 

had been based upon the planned question of “How does this [having only 1, 2, and 3 on 

your spinner] affect the possible results?”  The implementation of this previous question 

had been sustained focus with low-press questions as the students were only prompted to 

list possible multiples that could be made with 1, 2, and 3.  In the following example, the 

class is addressing the question “Is a 4 necessary?”  The goal of the question was for the 

students to recognize that any multiple of 4 can be crossed off of the 50’s chart as long as 

you have a 2 because 2 times 2 is 4.  Notice from the excerpt below that he modified this 

question to ask, “If I have the same numbers, but now with a 4 on it, what's going to 

happen here?”  This eventually led to the generalization that a 4 is not necessary if you 

already have a 2 on your spinner. 

Table 32. Teacher 27 Spinner Elimination Episode (Transcript 8) 

T27 So, if I go back to this.  If I just have 1, 2, 3, 4.  Let's do what we did 

before.   

M2 

T27 Actually, the last time we had this: 1, 2, and 3. What's going to happen 

if I add a 4 in terms of my possibilities?  

T1b 

T27 Raise your hand.  M1 

T27 Think about this for a second.   M1 

T27 Remember, this is Henry's one and we said he had 15 out of 50 

possibilities, right?  But the most number of squares he could get was 

15.  

T1c 

T27 If I have the same numbers, but now with a 4 on it, what's going to 

happen here? Peter. 

T1b 

 Peter You're going to have at least _______ numbers.  You'll have 20 at least.  

T27 So you're guessing that with this we might have 20 possibilities out of 

the 50?  Or more maybe?  

R2 

T27 Any other ideas?  

 St 1 I think, because 4 times 3 is 12, so that's one and 4 times 2 is one, well, 

I guess you could do it again and again.  Yeah.  I think it would be 20 

plus. 

 

T27 So she thinks it will be 20 plus?  R1 



 232 

T27 What do the rest of you think?  Q3 

St 2  With just the 1, 2, 3 and you add one more you have 4 other 

possibilities.  You have 4 times 3, 4 times 2, 4 times 1, so that would be 

20. 

 

T27 Does anybody think it will be even higher, like 30? M4 

 St 3 Maybe.  It could be like 25.  

T27 Does anybody think it will be less than 20?  M4 

St 4  No, I don't, but when you did the 1, 2, 3 it seems like each one gives 

you 5 possible entries because 3 times 5 is 15. 

 

T27 Right, but there's more than one 2.  We can use all the 2's and 3's that 

you want.  

T2a 

T27 For this sequence of numbers, what is possible?  So, Kelsey, what's 

possible hits on my chart if this is my spinner?  

M2 

[Sts list out all of the possible combinations.  A student realizes that a spinner 

with 1, 2, 3, and 4 would have the same possible outcomes as a spinner with 

just 1, 2 and 3.] 

 

T27 What are you realizing?  Q3 

St 1 You can have 2 and you spun 2 twice on the spinner: times 2 times 2.  

You get 4 and then if you did any of those other numbers you would get 

that same sequence of numbers on the board and so… 

 

T27 As what?  Q2 

St 2  You can have 4 times 4.  That’s true but you could also do that instead 

because you can do 2 times 2 times 2 times 2. 

 

T27 So then what should I get in terms of my answers?  Q1 

St 1 You should get all the same or less.  

St 2 15 out of 50.  

T27 Do you guys see what he's saying?  M4 

Sts [students respond with some yes’s and some no’s.]  

T27 He's saying this four can be created from what?  The 2's which we 

already had.   

R4 

T27 We've already got 2's.  We've got all the two's you want.  Which means 

adding this 4 is just going to give you duplicates, right?  

T4 

 

 In this example, Teacher 27 rephrased the planned question of “Is a 4 necessary?” 

in a way that allowed the previous example of a Spinner with just the numbers 1, 2, and 3 

on it to be a contextualization for this new question.  Rather than asking whether or not a 

4 was a necessary number on the spinner, generally speaking, he framed the question 

with respect to comparing a spinner with the numbers 1, 2, and 3 on it to a spinner with 

the numbers 1, 2, 3, and 4.  He does this by posing the question as follows: “The last time 
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we had this: 1, 2, and 3. What's going to happen if I add a 4 in terms of my possibilities?” 

and he carefully poses the problem by going on to say “Remember, this is Henry's one 

[with the numbers 1, 2, and 3] and we said he had 15 out of 50 possibilities, right?  But 

the most number of squares he could get was 15.  If I have the same numbers, but now 

with a 4 on it, what's going to happen here?”  By connecting the problem to the prior 

discussion, he is making sure that the class is clear what he is asking them.  Also, he gave 

the class a little think-time by asking the students to raise their hands (as opposed to 

blurting out their answers) and to “think about this for a second”.  By carefully repeating 

the question for the class, he gave the students about an extra 20 seconds to think about 

the question before eliciting responses from the class.  As the students begin to share their 

thinking, Teacher 27 chose not to correct anyone (even though all of them had answered 

the question incorrectly).  Instead, he encouraged his students to continue to make their 

predictions until everyone had made a guess.  He then followed-up their initial responses 

by proceeding to lead the class to list out all of the combinations that you can get with a 

1, 2, 3, and 4 on the spinner in the exact same manner that they had done earlier with the 

spinner with the numbers 1, 2, and 3.  When two students realized that they were not 

going to be able to make any new combinations by adding a 4 to the spinner, Teacher 27 

encouraged the students to clearly explain their thinking by asking clarifying questions 

and then summarizing their finding for the class. 

 In both of these examples of a sustained focus using the four teacher moves 

described above, there were a wide variety of teacher utterances.  In both examples, the 
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planned question was posed with T1b’s
11

, giving the students something new to reason 

about.  Both posed questions were accompanied by a couple M1 (classroom 

management) utterances as the teachers kept the students from blurting out responses and 

prompted them, instead, to spend some time thinking about the problem.  As students 

shared their responses to the posed questions, in both examples, the teachers made 

requests for their students to provide further explanation (Q3) and clarification (Q2).  The 

IOTA codes on these transcripts allowed us to see the complex range of teacher 

utterances that can occur during an engaging discussion, as the teacher is managing the 

discourse. 

 Meta-Categories. For each of these four categories (drop-in, embedded, telling, 

and sustained focus), I was able to find multiple examples from the four sample teachers 

that fit easily into one of these categories.  However, not every implemented question that 

I analyzed fit clearly into one of these four categories.  One of the reasons for this was 

because characteristics from more than one category would be present in the 

implementation of a question.  This would often happen because the nature of the 

discourse would shift as the question was being implemented.  Most commonly, the 

variations that I observed were derivations of a sustained focus question.  Below are two 

examples of such variations. 

 Embedded to sustained focus. I had mentioned earlier about an implemented 

question that had started out as an embedded question, but in order for the teacher to 

ensure that the students knew that ideas which emerged from the embedded question 

                                                           
11

 T1b is the initiating code defined as: “Telling students what the new problem is that they are to work on 

next. Must involve some mathematical contextualization of the next task, in contrast to the managing code 

for students to work on problem x.” 



 235 

were important, she sustained the focus on the question.  In this example, shown in table 

33, from Teacher 23’s Design a Dartboard debrief, Teacher 23 planned to ask the 

presenting student “Where did you start?  How did you use that starting point to find the 

sizes of the sections?”  Rather than Teacher 23 asking this question, following the 

student’s initial explanation of his work, another student in the class asked him to explain 

the math the he had used.  This prompted the presenting student to explain to the class 

how, after counting the squares of his largest shape, he used proportions to determine 

how big his three inner sections needed to be. 

Table 33.  Teacher 23 Design a Dartboard Episode (Transcript 9) 

St. Would you explain, like, what math you used?  You said, "yeah, I 

did math". 

 

Cade So I found out, for 15%, I did 15 over 100 equals X over 346.  I 

counted that in this diamond there are 346 squares and then, so I did 

15 over 100 equals X over 346 so I did 100 times, uh, 100 times 

equals 1 - no - 100X equals 5,190.  Then I divided by 100 and I 

figured out that X was 1.9 (sic).  I did the same thing for 25% and I 

figured out that the rest of that had to be 60%. 

 

Students Wow.  

T23 So, it sounds like you started with the total number of squares and 

worked into the middle more.  

R3 

Cade:  Yeah.  

T23 You found the total and then, from that, how many squares did the 

middle have to be and you used the number of squares to determine 

the shape rather than choosing the shape and trying to make it fit the 

number of squares.  

R3 

T23 And I wanted you to see that because solution-wise it's easier to 

work it that way.  It's just an easier way to go about it, rather than 

choose, oh, I think I want it to look like a Z and try and figure out 

how many squares that's going to be and then make it be 15% of the 

whole thing.  It was easier to know how many squares, at least the 

way Cade went about it, it was easier to count the squares and then 

make his drawing to fit that.  

T2 

T23 Ok. Turn to your table partner, please, and explain to them how you 

would do this same thing if the outside diamond was 200 squares 

instead of Cade's 346 squares, what if the outside was 200 squares?  

What would you do to find the inside part?  

T1b 
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T23 Tell your table partners.  M1 

[Students talking amongst themselves]  

  

Following this episode, the class spent a few minutes working on the problem 

posed by Teacher 23 and then multiple students shared their thinking on the problem with 

the whole class.  In this example, we see that the teacher emphasized what the student 

had shared by telling the class what she thought was useful about his strategy, even 

commenting that that was why she had picked his work to share.  She then emphasized 

his method further by giving the class a task to work on, based upon the mathematics that 

the student had shared.  In this example, although it could have been treated like an 

embedded question in which the teacher does not ask the planned question because it was 

already addressed by a student without being prompted, the teacher clearly emphasized 

the idea for the class by sustaining a focus on the ideas presented by the student.  In fact, 

we see some of the four elements described above for a sustained focus question.  As the 

teacher is sustaining the focus on the important ideas from her planned question, she 

poses a related problem, gives the class some think-time, and (although we do not see it 

in the episode transcript above) she pressed her students for thinking by asking them to 

explain their thinking (e.g. “explain how you got 30”) and justifying questions (“Why 

would he multiply by 2 in this case?”). 

 Sustained focus to telling. Sometimes, a teacher will try to sustain the focus on a 

question, but due to a lack of appropriate responses, they just answer the question 

themselves, causing the implementation of a sustained-focus question to become telling.  

The following example, shown in table 34, is from Teacher 22’s Design a Dartboard 
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Task.  Teacher 22 explained the student’s work to the class when she asked the planned 

question of “Where did the 300 come from?” 

Table 34. Teacher 22 Design a Dartboard Episode (Transcript 10) 

T22 So what Andrew has here is 3 triangles, one inside another and it 

looks a lot like the dartboards we're used to with the circles.  Just a 

different shape, right?  And what I notice was that he labeled the 

outer area 'area A', the inner area 'B' and the smallest area 'C' and 

then off to the side here he said A +B +C has to equal 300.   

R4 

 Where did you get the 300 from? Q3a 

Andy It came with the formula.  

T22 It came with the formula on the internet? Q2 

Andy Not like, it was like a multiple or something on it.  

T22 A multiple of the percents of 15 and 25 and 60? Q2 

 (no audible response)  

T22 Did anybody else find 300 as a multiple of those?  Did anybody list 

multiples? 

M4 

Sts. no.  

T22 No?  You guys all did it differently? M4 

Sts. Yeah.  

T22 Yeah.  300 is a multiple of 15, 25, and 60, so we know that all of 

those [A, B, and C] are going to go into there [the 300]. 

T1a 

 

In this example, Andy, the presenting student, gave an answer to the asked 

question that did not fit with what Teacher 22 was expecting to hear, so she prompted 

Andy a little in the hopes the he would say that he used 300 because it was a multiple of 

15, 25, and 60 (the percentages of the three areas in the dartboard design).  When he did 

not respond, she turned to the rest of the class, hoping that someone else would recognize 

that 300 is a multiple of the three percentages.  When no one claimed to have used 

multiples to determine the areas of their shapes, Teacher 22 gave up prompting the 

students for an appropriate response to her question and answered it herself.  In this 

example, we see Teacher 22 pressing her students to give a meaningful response to the 

question, but when she was unable to do so, she took over addressing the question.  
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Because students are also responsible for creating the norms in the classroom, it is not 

always easy for teachers to elicit exactly the types of responses they are looking for from 

the questions that they ask (Heaton, 2000).  In this case, when Teacher 22 was 

unsuccessful in prompting her students to share a reasonable response to her question, she 

simply chose to provide a suitable explanation herself instead of allowing the question to 

be unanswered. 

A Synthesis 

The three research sub-questions that have been presented in this study are 

intended to work together to address the larger research question: “How do teachers’ 

written plans for orchestrating mathematical discourse around problem-solving tasks 

influence the opportunities teachers create for students to reason mathematically?”  In 

order to make it clearer to the reader how these three sub-questions can work together to 

create a robust picture of how the teachers in this study used the questions in their ISAs 

to create opportunities for students to reason mathematically, I will now individually 

discuss these four teachers’ enactments of their problem-solving debriefs for Snack 

Shack and Design a Dartboard (I will not be discussing Spinner Elimination in an effort 

to preserve time and space).  The purpose of this section is to provide a more complete 

picture of how these teachers used their ISAs to implement their debriefs.  This is in 

contrast to the snap-shots provided in the analysis of sub-question 3 in which the 

implementation of just one question at a time was discussed, isolated from the context of 

the whole debrief.   

In this section, I will describe what took place during each teachers’ debriefs, 

using the tools developed for the three sub-questions to help paint a picture of how these 
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teachers implemented their debriefs, focusing on the unique characteristics of how each 

of these teachers implemented their debriefs to help explain some of the distinct ways 

that teachers can plan and implement their ISAs and how these differences may impact 

(either positively or negatively) the opportunities that the teachers created for their 

students to reason mathematically.  To facilitate this discussion of these teachers’ 

debriefs, I will be referencing several transcripts from this chapter, using both their table 

numbers and transcript numbers as identifiers. 

 Teacher 22. Teacher 22 was chosen for the analysis of research sub-question 3 

because she had planned very few high-press questions and she also asked very few high-

press questions during her implemented debriefs.  I included her in the analysis in order 

to see how her lack of high-press questions may have negatively impacted the 

opportunities she created for students to reason mathematically.  Also, she provided an 

example of how teachers’ improvisational moves may further detract from potential 

opportunities for students to reason mathematically.  Her two documented debriefs 

demonstrate two distinct examples of how her teacher moves failed to provide 

opportunities for her students to reason mathematically. 

 Teacher 22’s Snack Shack debrief is an example of an ISA that was faithfully 

implemented with several questions implemented as sustained focus.  However, the 

planned questions she implemented as sustained focus were low-press with few high-

press questions asked as follow-up.  Most of her follow-up questions were invitations for 

more students to share.  In the ISA, she planned to ask the class, with respect to each 

piece of presented work “What do you notice about this paper? Similarities? 

Differences?”  For research sub-question 2, this was coded as two questions.  The first 
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question, “What do you notice about this paper?” was coded as L3, non-mathematical.  

This was because the wording of the question included no criteria for what she wanted 

her students to notice, leaving an open-ended invitation for students to share anything 

they would like.  The second question was “Similarities?  Differences?”  This was coded 

as H4, a request for students to make connections, because it was inviting students to 

compare and contrast the student’s work to the work previously shown.  In the 

implementation of the Snack Shack debrief, teacher 22 asked both of these questions, but 

students only responded to the first question, sharing what they noticed about the 

student’s work, but never connecting it to the other students’ solutions.  Even though she 

sustained the focus on the first question by inviting multiple students to share their 

observations (see transcript 3 in table 26), she did not press her students to make 

connections and rarely pressed them for further thinking.  The way in which she 

followed-up on the planned questions were useful for eliciting more responses from her 

students, but did not support or extend their thinking (Fraivillig, Murphy, & Fuson, 

1999).  As a result, the episodes of sustained focus questions were not useful for creating 

opportunities for students to reason mathematically.   

While Teacher 22’s debriefs were similar in that, for both of them, she planned 

few high-press questions and, in turn, asked few high-press questions, her Design a 

Dartboard debrief was implemented differently from her Snack Shack debrief.  In 

contrast to her Snack Shack debrief, she did not sustain the focus on any questions.  All 

of the questions she addressed were either implemented as telling or drop-in and the two 

high-press questions she had planned in her ISA were implemented as telling.  The nature 

of her questions (mostly low-press) as well as the manner in which she implemented the 
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questions severely limited the opportunities that Teacher 22 created for her students to 

reason mathematically   

The differences in implementation for these two tasks (the use of sustained focus 

questions versus the use of only drop-in and telling questions) resulted in differing levels 

of student engagement for these two problem-solving debriefs.  All of the segments in the 

Snack Shack debrief were assigned a participation code in the IFA (indicating that, within 

those segments, additional students besides the presenting students participated in the 

discussion).  In contrast, all of the segments in Design a Dartboard were assigned a non-

participation code (indicating that the only students to speak during the problem-solving 

debrief were the ones presenting).  While both of these problem-solving debriefs were 

coded as, overall, low-press, the Snack Shack debrief likely afforded more opportunities 

for students to reason about the task given that they were frequently prompted by the 

teacher to verbalize their thinking, even if the teacher was not deliberately pressing their 

thinking.  

In Teacher 22’s ISAs, she planned few high-press questions that might prompt her 

students to reason mathematically.  In her implemented problem-solving debriefs she 

similarly asked a limited number of high-press questions.  The limited number of high-

press questions she planned certainly contributed to the lack of opportunities she created 

for her students to reason mathematically.  This was particularly true in her Design a 

Dartboard debrief in which the issue was further compounded by the ways in which she 

chose to address her planned questions, implementing the high-press questions as telling 

and treating all other questions as drop-in.  In her Snack Shack debrief, although she did 

promote a greater level of student engagement by addressing some questions as sustained 
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focus, this did little to increase the students’ opportunities to reason mathematically 

because she did not sustain the focus using high-press questions.  Instead, she focused on 

inviting more students to share their thinking without holding them accountable for their 

level of mathematical reasoning. 

Teacher 23. Teacher 23 was chosen for further analysis because she both planned 

a large number of high-press questions and asked a large number of high-press questions.  

She actually asked significantly more high-press questions than she had planned.  In her 

Design a Dartboard debrief, Teacher 23 was particularly persistent in asking high-press 

questions as she addressed the questions planned in her ISA.  Teacher 23 implemented 

half of the questions in her ISA as sustained focus.  She sustained focus on these 

questions by asking several high-press questions as follow-up.  These high-press 

questions included asking students to justify why they used certain strategies (H1) and 

prompting students to explain other students’ reasoning (H5).  Teacher 23 also pressed 

students to provide mathematical reasoning with questions that were originally planned 

as low-press questions.  Transcript 6 in table 29 is an example of a low-press question 

that was implemented as sustained focus, with the follow-up questions asked as high-

press questions.  While in her ISA she had simply planned to ask the presenting student 

to share her plan (L1), she further pressed her students to explain why the strategy used in 

her plan made sense (H1).  We also saw, in this same debrief, the example in which a 

planned question started out as an embedded question but she successfully turned it into a 

sustained focus question by drawing everyone’s attention to the important comments 

made by the presenting student and inviting the class to think further about the 

mathematical strategy the student used. 
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In contrast to Teacher 22, Teacher 23 planned more high-press questions and 

asked more high-press questions.  She showed evidence of focusing on pressing her 

students to think about the mathematical reasoning behind their strategies.  In her Snack 

Shack debrief, though, her approach was similar to Teacher 22’s Snack Shack debrief 

with respect to how she tended to sustain focus on low-press questions and the high-press 

questions in the ISA were less likely to be addressed.  The high-press questions that 

Teacher 23 planned in her Snack Shack debrief were either missing or treated as drop-in.  

She planned and implemented many low-press questions that prompted her students to 

share their strategies (L1). When she implemented these low-press questions as sustained 

focus, though, she did ask some high-press questions, which were mostly H5 (requests to 

explain another student’s thinking).  Snack Shack was implemented earlier in the year 

(while her Design a Dartboard debrief was implemented towards the end of the year) and 

she may have still been establishing norms in her class, focusing on getting students to 

listen to one another and understand what the other students in the class were doing and 

thinking.   

We see in Teacher 23’s debriefs that her plans to ask high-press questions were 

useful for creating opportunities for her students to reason mathematically.  However, in 

addition to her plans, her tendency to ask her students high-press questions, in general, 

also contributed to the opportunities that she created for her students to reason 

mathematically.  We saw that, even when she planned low-press questions, she still used 

the implementation of those questions as an opportunity to press her students to reason 

mathematically.  It also appeared that, as the school year progressed, she became 

increasingly comfortable with asking her students high-press questions.   
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 Teacher 9. Teacher 9 was chosen for further analysis because he had 

implemented a debrief in which he had planned a very large number of high-press 

questions, but asked very few high-press questions during the implemented debrief.  

While Teacher 9 planned a large number of high-press questions in his Design a 

Dartboard ISA, his implemented problem-solving debrief did not reflect this.  He had 

planned several high-press questions (five high-press questions total), but asked only one 

high-press question during the entire implemented debrief.  The one high-press question 

he asked was a question he had planned in the ISA (“Why did you use 15 squares?”).  

When he asked this question, the presenting student gave the response of “I had, like 100 

boxes and, so, 15% of that is just 15 boxes, or squares.”  Teacher 9 did not follow up on 

this response, thus implementing the question as a drop-in (see transcript 1 in table 24), 

creating no opportunity for further reasoning around the student’s justification of his 

strategy.  It is possible that, once hearing the student’s response, Teacher 9 did not know 

how to appropriately follow up his statement because it addressed such a simplistic idea 

about percentages, leaving limited opportunity for further discussion.  The other high-

press questions that Teacher 9 had planned to ask were also H1, or requests for 

justification of a strategy (including “Why did you choose the triangle?” and “Why did 

you cut some shapes into 2 different sections?”).  These high-press questions were all 

requests for students to explain the choices they had made in their strategies and did not 

necessarily elicit opportunities for the students to justify why their strategies were 

mathematically valid.  These remaining high-press questions were not implemented in the 

debrief.  In fact, Teacher 9 did not ask any additional questions in this debrief because the 

low-press questions were addressed as embedded questions.  It is possible that, because 
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implementation of the first high-press question failed to elicit useful mathematical 

reasoning, Teacher 9 may have chosen to avoid addressing the remaining high-press 

questions in the ISA because they were similarly simplistic. 

While his ISA initially appeared to have the potential to create many opportunities 

to press students to reason mathematically through justification of their strategies, the 

way in which he implemented the problem-solving debrief failed to create these 

opportunities.  Even though his Design a Dartboard debrief was implemented faithfully 

according to the Implementation Fidelity Analysis, the level of fidelity that was 

demonstrated during the debrief was largely due to the presence of embedded questions.  

That is, as students were explaining their work, they inadvertently addressed all of the 

low-press questions that Teacher 9 had planned such as “What is the area of the big and 

middle sections?” and “Does the middle section area include the yellow small section?”  

These embedded questions led to Teacher 9’s Design a Dartboard debrief being, overall, 

faithfully implemented because the criteria for faithfully implemented questions in an 

ISA was that the students addressed at least half of the questions within a segment 

(regardless of whether the teacher had asked the question).  However, despite the fact that 

more than half of the questions planned in the debrief were addressed by the students, 

only one of the high-press questions Teacher 9 had planned in his ISA was addressed.  

This provides an example of how the literal lesson in an ISA might appear to be faithfully 

implemented, according to the objective criteria of the IFA used in research sub-question 

1, even though the intended lesson was not faithfully implemented.  That is, the number 

of high-press questions planned in the ISA and the number of high-press questions asked 

by the teacher in the implemented problem-solving debrief were radically different due to 



 246 

the fact that the teacher chose not to address the majority of the planned high-press 

questions.  This shows how when at least half, but not all, of the planned questions are 

addressed, drastic differences can occur between what is planned and what actually takes 

place, especially when the high-press questions are not being addressed. 

In Teacher 9’s Snack Shack debrief, he once again chose to not ask some of the 

high-press questions that he had planned.  However, there was an exception to Teacher 

9’s tendency to avoid high-press questions when he implemented the planned high-press 

question of “How can the numbers be adjusted to increase or decrease cases?” as a 

sustained focus question (see transcript 7 in table 30).  By adequately focusing the class’s 

attention on the question, providing them with time to think about an answer to the 

question, and then following up their explanations with additional questions, Teacher 9 

orchestrated an engaging discussion for his students.  During that episode in which he 

addressed the planned question, he asked 3 high-press questions in addition to the 

planned high-press question. 

In addition to this high-press question from Snack Shack being different from the 

example in his Design a Dartboard debrief because it was implemented as sustained focus 

rather than drop-in, the nature of the question was also different.  Rather than vaguely 

requesting the presenting student to explain why they made a certain decision in his 

strategy, the question asked in the Snack Shack debrief focused the entire class on a 

particular mathematical idea.  This question was well-placed because, before the debrief, 

many students were close to finding a solution, but were not sure how to use their nearly 

correct solutions to help them find a correct solution.  This example demonstrates how an 

appropriately planned question that is given adequate attention on the part of the teacher 
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can lead to an engaging discussion in which the students are afforded opportunities to 

reason mathematically.  By sustaining the focus on this high-press question, that 

particular segment was implemented faithfully with respect to both the literal lesson as 

well as the intended lesson. 

 Teacher 27. Teacher 27 was partially faithful for the majority of Snack Shack, 

not because he wasn’t following his plan, but because he was choosing to address the 

questions himself (telling) rather than giving his students an opportunity to answer the 

questions he planned in the ISA.  His use of the selected pieces of student work was to 

provide his students with examples of particular features of student solutions that would 

be helpful for the class to generate a complete solution set together.  For example, he 

showed some work to demonstrate that it would be easier to start with 50 cases rather 

than $200, he also chose some solutions to demonstrate how they organized their 

solutions. Finally, he showed some solutions that used strategies of trading certain cases 

for others.  Once teacher 27 shared these solutions with the class, addressing the 

questions through telling, he proceeded with guiding his class through a discussion of 

how to use systematic lists to come up with all of the possible solutions.  Teacher 27 was 

only partially faithful in his implementation of the Snack Shack ISA.  However, it may be 

argued that, although he did not use the ISA as intended by the MPSM, he did use all of 

the ISA to guide his lesson.  The difference was that his use of the planned questions was 

limited to keeping track of the points that he intended to make for his students and not for 

engaging his students in discourse around the mathematical ideas in the task.  I might 

speculate that, in this debrief, he chose to not ask his students the planned questions 

because he preferred to move quickly through the demonstration of student work in order 
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to spend more time discussing with his class how to generate new solutions.  During the 

presentation of student work, no high-press questions occurred because Teacher 27 was 

not creating opportunities for students to share.  During the follow-up discussion, after 

the presentation of student work, he asked the students more high-press questions.  These 

questions were mostly H3, requests to generate new strategies, which opened up 

opportunities for the students to think about the task in a new way.   

 Teacher 27’s Design a Dartboard debrief was distinct from his other problem-

solving debriefs because, while in both of his other debriefs he had asked more high-

press questions than he had planned, in his Design a Dartboard debrief he actually asked 

fewer high-press questions than he had planned, even though the debrief was, overall, 

faithfully implemented.  If Teacher 27 had implemented this debrief faithfully, with all of 

his questions identified as high-press, then how did he end up with so few high-press 

questions asked in the problem-solving debrief?  One reason for this discrepancy has to 

do with the way that he implemented the planned questions.  His first two planned 

questions were asked as planned in the ISA, and elicited appropriate responses from the 

presenting students, but he then followed up the questions he asked by rephrasing his 

students’ responses, rather than engaging the class in further discussion about the ideas 

presented by the students.  He also changed the press of a planned question from high-

press to low-press. The question was worded to be asked as an opportunity for the other 

students to explain the presenting students’ strategy (H5), but was redirected to the 

presenting students rather than the class and became an opportunity for them to share 

their strategy (L1).  Finally, Teacher 27 did not ask the last question in his ISA, which 

was intended to create an opportunity for his students to make generalizations.   
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Teacher 27’s Design a Dartboard debrief was also distinct from his other two 

debriefs in that, with the other two problem-solving debriefs, he had some specific 

learning goals in mind for his students which heavily influenced how he orchestrated the 

discourse.  In contrast, his primary goal for Design a Dartboard was to show his class a 

variety of solutions with no evidence of any other mathematical learning goal.  As a 

result, his Design a Dartboard Debrief took the form of one solution demonstration after 

another without much deviation or opportunities for students to reason about the 

mathematics in the task.  This lack of a mathematical focus was also evident in Teacher 

9’s Design a Dartboard debrief as well as Teacher 22’s.  This suggests that the Design a 

Dartboard task may not have been an appropriate task for eliciting opportunities for 

students to reason mathematically. 

 In summary, the level of mathematical discourse in Teacher 27’s problem-solving 

debriefs was more dependent upon Teacher 27’s lesson plans for the discourse rather than 

the types of questions he had recorded in the ISA.  He demonstrated a higher incidence of 

high-press questions when he had a clear learning goal in mind (in Snack Shack and 

Spinner Elimination), as opposed to when he was simply planning on students sharing 

their solutions (in Design a Dartboard).  However, in general, Teacher 27 did not create 

very many opportunities for students to reason mathematically during the problem-

solving debriefs because his teaching style tended to be more teacher-focused rather than 

focused on generating student discourse. 

 

  



 250 

Summary and Implications 

When a teacher plans a question for a classroom discussion, what actually 

happens when the question is addressed can vary significantly.  In this qualitative 

analysis of four teachers implementing problem-solving debriefs, I identified four 

variations on how the teachers addressed the questions they had planned in their ISA’s.  

Teachers sometimes would ask a planned question with little attention to how the 

question is impacting the preceding and following discourse.  That is, it appears that they 

would ask the question because it was part of the ISA, but then they would move on as 

soon as a suitable response was provided.  These drop-in questions typically took the 

form of IRE discourse in which the teacher would ask the question, a student (or multiple 

students) would respond, and then the teacher would evaluate or summarize their 

responses.  When a high-press question is implemented in this way, the opportunity to 

reason mathematically is typically lost.  Some of the examples of drop-in questions from 

this analysis felt disconnected from the regular flow of the classroom discourse, as if the 

teacher asked the question because it was written in the ISA and not because it was an 

appropriate question to ask to move forward the classroom discourse.  This suggests a 

possible dilemma with preplanning questions for a whole-class discussion because the 

questions may not tie in directly with how the students are thinking about the task. 

When students addressed the ideas in a planned question without the teacher 

asking the question, this form of implementation was referred to as embedded, because 

the relevant ideas were embedded in the discussion rather than being made explicit by the 

teacher’s questions.  While I conjecture that the teachers often chose not to ask a question 

already addressed by a student because they did not want to be redundant, I also argue 
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that this type of implementation of a planned question can be risky because the students 

are not given any cues from the teacher that the ideas present in the question are 

important.  Research has shown that students can be intellectually autonomous, drawing 

on their own intellectual capabilities when making mathematical decisions and judgments 

as they participate in mathematical discourse with their peers and they can share 

mathematical authority with their teacher (Yackel & Cobb, 1996).  In classrooms where 

such norms are practiced, a student may provide input and its usefulness will be 

evaluated by his peers without it necessarily being identified as such by the teacher.  

However, in classes where such norms are not established, teachers may choose to follow 

up on the independently offered mathematical ideas, guaranteeing that sufficient attention 

is drawn to the ideas in the planned question.  An example of this was demonstrated in 

transcript 9 in table 33.   

A third type of implementation that occurred was when the teacher chose not to 

ask a planned question but, instead, addressed the important ideas to the class by telling 

the class the desired responses.  While it may be effective for guaranteeing that the class 

hears an accurate mathematical explanation from the teacher, it is not useful for 

generating discourse.  Teachers may have certain reasons for choosing to tell the class the 

important ideas in a question rather than posing the question to the class.  For example, if 

the teacher is more concerned with moving on to the latter part of a debrief, because that 

is where, in the teacher’s opinion, the most important ideas emerge, they may ‘tell’ a 

response to a planned question in order to move on to other aspects of the debrief.  

Alternatively, a teacher might choose to ‘tell’ a question to the class because they suspect 
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their students are not capable of providing a reasonable answer to the question and would 

prefer to simply allow the class to hear an appropriate response. 

The last type of question implementation that I observed was sustained focus.  In 

this form of implementation, the teacher maintains focus on the question in various ways, 

including eliciting multiple responses from multiple students, asking clarifying questions 

or asking for more detail in the form of explanation and justification.  Also, when a 

teacher sustains the focus on a question, they may ask additional questions in order to 

extend the discussion further.  While sustained focus on a question may occur in many 

different ways, I observed four teacher moves that frequently occurred in a sustained 

focus question that were contributive to allowing the students to respond successfully to 

the planned question.  These four teacher moves were (1) contextualizing the question, 

that is, providing background information that made the question understandable; (2) 

problem-posing, or asking the question in a way that was understandable for the class; (3) 

providing think-time so that everyone has an opportunity to think through the question 

before responses are elicited; and, finally,  (4) the teacher provides follow-up questions 

that presses students for understanding. 

I propose that the sustained focus implementation of a planned question has the 

potential to be the most productive implementation approach of the four described here.  

However, sustained focus varies significantly depending upon how the teacher is 

sustaining the focus.  The amount of press that the teacher puts on the students is also 

going to vary and will affect the quality of the discourse.  We have seen for example, a 

sustained-focus question in which, despite repeated efforts to press for thinking from her 

students, the teacher was unable to elicit high-level discourse from her students and 
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resorted to asking low-press questions (transcript 6 in table 29).  Also, we saw an 

example in which a teacher attempted to implement a question as a sustained focus, but 

when her students were not providing the response she was hoping for, she resorted to 

telling the desired response to her students (transcript 10 in table 34).  While these 

examples demonstrate that implementing a question as sustained focus will not guarantee 

that students will successfully engage with the ideas in a planned question, I propose that 

posing a question using contextualization, problem-posing, think-time, and follow-up (the 

four moves of a sustained-focus question), a teacher is going to have greater success 

getting students to provide mathematical explanations and arguments.  An explicit focus 

on these four teacher moves may be a useful way for teachers to enhance their 

questioning strategies in their classrooms. 

Future research is necessary to better understand the decisions that teachers are 

making when they implement planned questions in these various ways.  How are these 

teachers’ improvisational moves connected to their beliefs about the teaching of 

mathematics?  What are teachers’ motivations behind implementing planned questions in 

these ways?   Future research would be warranted to investigate the value behind the four 

teacher moves that were observed when teachers implemented sustained focus questions.  

Are these moves consistently useful for improving the nature of discourse?  How would 

the nature of a planned question (high-press versus low-press) have on attempting to 

address a question using the four teacher moves?  In the following and final chapter I 

summarize the findings from this research study; I discuss the implications from my 

research study for researchers and practitioners; and I discussion some of the limitations 

of this study as well as offer recommendations for future research. 
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Chapter 9. Conclusion 

 

 In this conclusion of my study, I will begin by reviewing the findings of my 

study, providing an overview of what was learned from the data analysis that was 

conducted to address my three sub-questions.  I then go on to discuss the implications of 

my study, both with respect to research on mathematics education and implications for 

practitioners.  I conclude this chapter, and my dissertation, with a discussion of some of 

the limitations of this study and some suggestions for future research that would both 

help to address these limitations as well as move forward with research on teachers 

planning for discourse around mathematical problem-solving tasks. 

 

Summary of Findings 

Mathematics educators promote the use of problem-solving tasks as an effective 

medium for teaching students problem-solving skills, mathematical reasoning and 

argumentation, and mathematical concepts and ideas.  To accomplish this, the use of a 

whole-class discussion following implementation of a cognitively demanding task is 

promoted as a useful way to bring the class together to discuss students’ solution methods 

and to reason about the important mathematical ideas within the task.  By taking the time 

to plan how such a discussion will be orchestrated, the teacher can more effectively lead 

the discussion in mathematically productive ways.  One way that this can be 
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accomplished is by selecting specific pieces of student work to be shared, sequencing the 

student work to progress the discussions in a productive way, and planning what 

questions to ask in order to help make connections to important mathematical ideas.  The 

opportunities that emerge for students to reason mathematically are going to be 

influenced by the nature of questions that the teacher asks.  I assume in this study that 

questions which promote mathematical reasoning have the potential to create more 

opportunities for students to reason mathematically than questions that prompt students to 

share thinking without attention to the mathematical nature of their ideas.  In this research 

study, I analyzed teachers’ implementation of their self-written plans for problem-solving 

debriefs, focusing on the teachers’ use of planned questions, with a particular focus on 

questions intended to prompt students to reason mathematically. 

Implementation fidelity.  The findings from this study showed that teachers, in 

general, followed what they had planned in the planning forms for their problem-solving 

debriefs.  Teachers were fairly consistent about sharing the student work they had 

identified and addressing the questions and mathematical ideas they had planned.  For the 

remainder of my research, it was helpful to know that the teachers were consistent about 

implementing their ISAs.  While there were a few examples in which the teacher ignored 

most of the ISA, in most cases the teachers implemented their ISAs faithfully, with only a 

few deviations from the original plan. 

For my analysis to the teachers’ fidelity to their instructional sequence analyses, I 

developed the Implementation Fidelity Analysis (IFA) tool.  This tool allowed me to 

objectively compare the steps laid out in the ISA to what actually took place during the 

debrief.  Based upon my analysis of the teachers’ implementation of their completed 
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ISAs, this tool consisted of a series of objective questions to ask with respect to the 

teachers’ lesson plans and clearly defined criteria for the assignment of the levels of 

fidelity.  This tool, or an adaptation of this tool, may be useful in future analyses of 

teachers implementing plans for discourse around problem-solving tasks. 

Implementation of high-press questions.  In order to investigate the intended 

lesson in the ISA, I developed question codes that differentiated between high-press 

questions (questions that promote mathematical reasoning) and low-press questions 

(questions which promote communication, but not mathematical thinking).  This 

particular coding scheme was useful for assessing the potential level of reasoning present 

within the questions that the teachers had planned for discourse around a problem-solving 

task.  I was able to use this coding scheme to assess the press of questions that the 

teachers were planning in their ISAs and compare it to the frequency with which the 

teachers were asking high-press questions in their implemented debriefs. 

Despite the consistencies present between what the teachers had planned in their 

ISAs and what they did during the implementation of their ISAs, there was not a clear 

correlation between the number of high-press questions that were planned in the ISAs 

and the number of high-press questions that the teachers asked during implementation.  

My hypothesis for this study was that the more high-press questions the teachers planned 

in their ISAs, the more high-press questions they would ask in the implemented debrief, 

creating more opportunities for their students to reason mathematically.  However, my 

analysis of the relationship between the number of planned high-press questions and the 

number of asked high-press questions showed that the number of high-press questions 

planned was not a useful predictor for how many high-press questions the teachers would 
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ask.  While some teachers seemed to ask more high-press questions during the problem-

solving debriefs when they planned more high-press questions in their ISAs, there were 

also examples in which teachers asked significantly fewer high-press questions during the 

implemented debriefs in comparison to what they had planned in their ISAs and teachers 

that planned very few high-press questions, but still asked a lot of high-press questions 

during the implemented debrief.   

While my findings investigating a correlation between the number of high-press 

questions planned in an ISA and the number of high-press questions asked by the teacher 

in the implemented debrief did not show any trends, there was statistically significant 

evidence that teachers were more likely to ask high-press questions when they 

implemented the segments in their debriefs in which at least one high-press question was 

planned in contrast to the segments of their debriefs in which no high-press questions 

were planned.  However, planning more than one high-press question in a segment did 

not necessarily lead to an increase in the number of high-press questions asked during a 

debrief. 

Teachers’ improvisational moves.  In order to better understand how the 

teachers in this study were implementing the questions they had planned in their ISAs, I 

selected a subset of four teachers who had planned and implemented a varying range of 

high-press questions.  I analyzed the transcripts of the problem-solving debriefs for these 

teachers, focusing on the teachers’ utterances during the episodes in the debriefs where 

the questions from their ISAs were being addressed.  The purpose of this analysis was to 

better understand the improvisational moves of the teachers as they were implementing 

the questions in their ISAs, with a focus on how those moves might influence the 
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opportunities the teachers created for students to reason mathematically in their ISAs.  I 

identified four different ways that these teachers addressed the questions from the ISAs: 

drop-in, in which the teachers asked the question and then moved on as soon as a student 

has offered a response; telling, in which the teachers chose to address the ideas in the 

question rather than giving the students a chance to reason about the question; embedded, 

in which the teachers never asked the question but it was inadvertently addressed by a 

student or students that were sharing their problem-solving strategies; and sustained focus 

in which the teachers asked the question and then followed up with additional questions 

to sustain attention on the ideas within the question.   

My analysis of the four teachers found that how these teachers implemented their 

planned questions, using these four different types of question implementation as my 

focus, influenced the opportunities for students to reason mathematically.  For example, 

when the teachers chose to tell the information pertaining to a planned question to their 

students rather than addressing the questions to the students, the students were given no 

opportunity to reason about the question.  Similarly, when a question was implemented as 

drop-in, only the student to whom the question was addressed had an opportunity to 

express their thinking about the question and, even then, without any additional press, the 

student who answered the question is afforded no opportunity to think any more deeply 

about the question than how they initially answered the question.  On the other hand, by 

sustaining the focus on a question, the teachers had the opportunity to press multiple 

students to think and reason about the ideas in the question and to provide better 

explanations of their thinking.  Franke et al.’s study on the questioning strategies of 

teachers following up on students’ initial explanations (2009) supports the finding that 
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sustaining the focus on a question can beneficial for creating more opportunities for 

students to reason mathematically.  They found that when teachers asked a series of 

probing questions (as opposed to a single question), it helped students to make 

connections between their own ideas and the mathematics; helped students to identify 

errors and clarify misunderstandings; and helped students to connect their own thinking 

to the thinking of others. 

In a closer analysis of some of the sustained focus questions that seemed 

particularly well-implemented, I identified four steps that the teachers were using as the 

addressed their planned questions which led to even greater opportunities for their 

students to reason mathematically.  These were contextualization, in which the teacher 

provided sufficient background information, as well as motivation, for students to clearly 

understand the question about to be addressed; problem-posing, in which the teacher 

carefully explained the planned question to the students to ensure that everyone 

understands what is being asked of them; think-time, in which the students were allowed 

time to think about the question either on their own or in small groups; finally, the 

teacher asked follow-up questions that further pressed students to clearly explain their 

solutions and to further reason about the ideas present within the question.  These four 

teacher moves were useful for useful for identifying what caused a planned question to be 

successfully implemented. 

 

Implications for Researchers 

This research study contributed to research on the teachers’ role in orchestrating 

classroom discourse by analyzing the impact of planned questions on the opportunities 
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teachers create for students to reason mathematically.  This study shows that, while 

planning high-press questions may have some influence on the opportunities teachers 

create for students to reason mathematically, the improvisational moves of the teacher 

during implementation of the problem-solving debrief can significantly impact the 

opportunities for students to reason mathematically, regardless of the nature of the 

planned question.  While planning for discourse around a problem-solving task may be 

helpful for focusing the discourse on particular mathematical ideas and giving teachers an 

idea of how they would like their students to reason about the task, teachers are still 

responsible for making on-the-spot decisions with respect to orchestrating the discourse 

in ways that promote students’ mathematical reasoning. 

This study also contributes to research on enacted curriculum.  Research has 

shown that when teachers implement curricular materials, such as textbook lessons, they 

can significantly alter the intended curriculum (Brown, Pitvorec, Ditto, & Kelso, 2009; 

Remillard, 1999).  This study is unique from research on curriculum implementation in 

that it analyzes how teachers implement their own lesson plans, rather than lessons 

provided with curricular materials.  This study shows that, in a manner similar to how 

teachers implement curricular materials, teachers also implement their own lesson plans 

in ways that may vary from their intended lesson.  Even when the teachers implemented 

most of the steps in their ISAs, the questions were sometimes addressed in ways that 

were not consistent with the intended lesson.  This study represents an important 

reminder to researchers that, as teachers are implementing their own lesson plans, the 

researcher cannot assume that the lesson is being implemented as intended, just the same 

as it cannot be assumed that curricular materials (in a textbook, for example) are being 
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implemented as intended by the authors.  The quality of a teacher’s written lesson plans 

should be assessed by both the contents of the lesson as well as the manner in which it 

was implemented. 

While professional developers have been encouraging teachers to plan for 

discourse around problem-solving tasks as a way to orchestrate mathematically 

productive discourse (Stein, Engle, Smith, & Hughes, 2008; Stein, Smith, Henningsen, & 

Silver, 2009) no research had been conducted explicitly examining the relationship 

between the plans that teachers make for orchestrating discourse around problem-solving 

tasks and the outcomes of implementation of those plans.  My research study is intended 

to open this door to research on planning for discourse around problem-solving tasks.  In 

my study, I specifically examined the impact that teachers’ planned questions for 

promoting mathematical reasoning had on the opportunities the teachers created for 

students to reason mathematically during the implemented discussions.  My hope is that 

this study will serve as a catalyst for furthering research on the impact that planning for 

discourse around problem-solving tasks can have on opportunities for students to reason 

mathematically.  Below, I provide some suggestions for further research on teacher 

planning for discourse around problem-solving tasks. 

 

Implications for Practitioners and Professional Developers 

Building an understanding of high-press questions. While this research study 

showed that there was no clear correlation between the overall number of high-press 

questions a teacher plans and the number of high-press questions the teacher asks in the 

implemented debrief, there was evidence that teachers do tend to ask more high-press 
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questions when they have planned at least one high-press question for a piece of student 

work.  This finding is something that may be useful for practitioners and could be applied 

to professional development.  As teachers are learning to prepare for classroom 

discussions surrounding problem-solving tasks, they should be encouraged to identifying 

not only a mathematical learning goal but also goals with respect to mathematical 

practices or goals for developing suitable sociomathematical norms.  Once such goals are 

identified, the teachers should be encouraged to identify at least one high-press question 

to ask with respect to each piece of student work being shared that would be helpful for 

moving forward their goals.  By doing so, teachers may be more likely to provide 

opportunities for their students to reason mathematically as they are sharing their 

problem-solving strategies.   

In order for teachers to include high-press questions in their plans for discourse 

around problem-solving tasks, the teachers will also need to have an understanding of the 

difference between a high-press question and a low-press question.  While the question 

codes that I developed for this research study were originally created for data analysis 

purposes, these codes may also serve as a framework to share with teachers, helping them 

to identify questions that press students to reason mathematically (high-press) and to 

differentiate such questions from those that merely prompt students to share what they 

already did or tell information that they already know (low-press).  This coding scheme 

could be used as a tool to help teachers develop questions they could ask their students, 

evaluate whether or not the questions they have planned to ask will create opportunities 

for students to reason mathematically, or use it as a tool to evaluate their on-the-spot 
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discourse moves.  Teachers also should consider the norms that need to be in place in 

order for students to feel comfortable with high-press questions (Kazemi & Stipek, 2001).   

Recognizing differences in implementation. Another product of this research 

study that could be helpful for teachers is the framework describing the four different 

ways that teachers address planned questions.  This has potential to be useful for teachers 

to use, as a tool, to think about how they are addressing the questions they have planned.  

Even a well-planned question is less likely to create opportunities for students to reason 

mathematically when insufficient attention is drawn to the question.  When a question is 

“dropped” into a discussion, students lose an opportunity to reason about the ideas 

potentially present in the question because the discussion moves on too quickly.  When 

the ideas in a question are embedded in the discourse, addressed by students without 

being prompted, a teacher may feel that they do not need to address the question because 

it has already been, in a sense, answered by a student.  However, when this happens, 

some of the ideas that the teacher considers important may be missed by other students 

because they were not highlighted as important by the teacher.  Finally, when a teacher 

chooses to address a planned question by telling the class the information they need to 

know, the information the teacher wishes to pass on may be presented more clearly than 

if a student had said it, but, when this happens, students miss out on the opportunity to 

reason for themselves. 

These three approaches to question implementation mentioned above may 

diminish the opportunities for students to reason mathematically.  However, this analysis 

showed examples from multiple teachers of question implementation in which sustaining 

the focus on a question with the use of follow-up questions supported students to reason 
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mathematically by giving adequate attention to the ideas present within a planned 

question.  An appropriately planned question with sufficient focus on the ideas in the 

question has the potential to generate worthwhile discourse in which multiple students are 

reasoning mathematically.  Not all questions implemented as sustained focus resulted in 

meaningful mathematical discourse, though.  At times, a sustained focus question led to 

little more than students offering surface level responses and meaningful discourse did 

not emerge.  Alternatively, a teacher may be trying to sustain the focus on a question by 

asking high-press questions as follow-up, but the students were not prepared to provide 

adequate responses and it resulted in a guessing game in which the students were trying 

to provide the responses they thought their teacher was looking for. 

I identified four teacher moves that were present in the implementation of some 

questions addressed as sustained focus that were helpful for increasing students’ ability to 

engage meaningfully with the ideas within the planned question.  First, by providing 

contextualization leading up to asking the question, it ensured that students were on the 

same page with respect to the context of the problem.  This involved demonstrating a 

particular representation or strategy that was used to solve the task, or discussing a 

problematic element of the task that students were struggling with.  Second, by clearly 

posing the problem to the whole class, the question was set up so that everyone 

understood both the question they were supposed to address and that they were expected 

to try to address the question.  Third, teachers provided think-time so that everyone had 

time to think about how they might address the question.  Finally, once the teachers had 

set up the question in this way, it was easier for them to then follow-up students’ initial 

responses with additional pressing questions because the students were better prepared to 
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reason about the mathematical ideas in the question.  These four teacher moves could be 

used in the context of any whole-class discussion, but they have the potential to be 

particularly useful in the context of a problem-solving debrief because it can create 

opportunities for students to reason mathematically instead of the class simply listening 

to the presenting students’ strategies and then assuming that the responsibility of 

addressing questions falls to the presenting student. 

I propose that these frameworks for question implementation (drop-in, embedded, 

telling, and sustained focus) and the moves for successfully sustaining focus on a 

question (contextualizing, problem-posing, think time, and follow-up) could be used in 

teacher professional development as a way to help teachers better understand the different 

ways that they are implementing questions in their classrooms.  Giving teachers an 

awareness of how they are implementing questions, and encouraging them to implement 

questions in ways that promote student engagement and mathematical reasoning may 

help teachers to orchestrate discourse that is mathematically productive. 

 

Limitations and Future Research 

 In this section, I address some aspects of this research study and some features of 

the professional development that put limitations on the findings in this study.  I include 

some thoughts on how these features may have impacted the findings of this study as 

well as provide some suggestions for future research that would be helpful for addressing 

these aspects of the professional development and/or data analysis and how they would 

be helpful for further contributing to this area of research. 



 266 

 Further analysis of teachers’ use of high-press questions.  In my analysis of 

teachers’ intended lessons, I compared the frequency with which teachers planned high-

press questions in their ISAs to the frequency with which teachers asked high-press 

questions in their enacted debrief.  The findings in this analysis showed that there was no 

correlation between these two variables.  I mentioned that there were many influencing 

factors that would also impacted the frequency with which teachers planned and asked 

high-press questions.  These included the teachers’ knowledge and beliefs, the structure 

and norms in the classroom, the teacher’s professional identity, and features of the 

curriculum.  A multivariable analysis would be useful for taking into account these 

additional variables to determine whether or not the frequency with which teachers ask 

high-press questions may be predicted given the number of high-press questions planned 

as well as some other contributing factor(s).  For example, if both the number of high-

press questions planned and the teachers’ math knowledge scores were taken into 

account, would we see a higher correlation between the data sets?  While this analysis has 

potential to yield some interesting results, a larger sample size than what I used in this 

study would likely be necessary to obtain valid results. 

Further analysis of four types of question implementation.  In this research 

study, I identified four types of question implementation (drop-in, embedded, telling, and 

sustained-focused).  These were identified through the analysis of the problem-solving 

debriefs implemented by four of the 12 teachers from the research study.  A logical next 

step would be to categorize questions implemented by other teachers from this study in 

order to provide a quantitative analysis of how a larger set of teachers were implementing 

the questions they planned in the debrief.  In order to accurately assess how teachers’ 
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planned question were implemented, it would be necessary to clearly define each type of 

implementation, identifying the key features that would place an implemented question 

into a specific category, as well as define characteristics that would specify when an 

implemented question would either fit into multiple categories or not fit into any 

categories.  If some of the implemented questions do not fit into any of these categories, 

it would be necessary to determine if these non-conforming examples of question 

implementation should form additional categories.  Conducting such an analysis would 

make it possible to determine if, for example, high-press questions are more likely to be 

implemented as sustained-focus compared to low-press questions, or if low-press 

questions are more likely to be implemented as drop-in questions.  Also, it would be 

possible to see if teachers are more likely to address their questions one way over another 

(e.g. addressing most questions as telling, or addressing most questions as drop-in).  

While this would make for interesting future analysis, as mentioned above, this would be 

outside of the scope of my research. 

Realistic planning practices.  One of the limitations of this study was that the 

data collected for this study was not collected from a typical classroom environment.  

This research study analyzed the planning forms completed by teachers participating in a 

professional development research program.  The teachers in the program were required 

to collect the students’ work, read through their solutions, and base their plans on the 

information they gleaned from these solutions.  While I believe that these are valuable 

planning practices and that it would be beneficial for teachers to set aside time for this 

type of planning, it is not feasible for teachers to plan for problem-solving debriefs in this 

way on a regular basis, given the limited time for planning that teachers are typically 
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allotted.  Rather than completion of the ISA being considered a regular part of their 

planning practices, the extra time that the teachers in this study spent analyzing student 

solutions and planning for the problem-solving debrief was considered a part of their 

professional development experience.  By devoting extra time to planning for a problem-

solving debrief, the teachers were allowed to reflect upon how they would like to 

orchestrate these whole-classroom discussions.  This was particularly important because 

implementing a problem-solving debrief was a new experience for these teachers.   

This practice of taking time outside of class to plan for a problem-solving debrief 

is not something that one would expect to see routinely in a typical mathematics class.  It 

was not assumed that the teachers participating in this professional development would 

necessarily continue to use the ISA to plan for every single problem-solving debrief that 

they implement in their classroom (although I do believe that planning with time to 

reflect is ideal).  In this study, the ISA was used as both a professional development tool 

and a data collection tool.  A more common approach when selecting and sequencing 

student work in preparation for a problem-solving debrief is for teachers to navigate 

around the classroom while their students work on the task, mentally planning whose 

work will be shared and in what order.  In this way, the teacher would be prepared to 

orchestrate a problem-solving debrief with their students before the end of that class 

(Smith & Stein, 2011).  Teachers that participated in the MPSM professional 

development program would, ideally, plan for a debrief in a manner similar to how they 

complete the ISA, whether they completed the form on-the-spot, or made mental plans, 

noting who would share, what ideas would be highlighted, and what questions would be 

asked. 



 269 

The benefit of collecting data from teachers who were completing planning forms 

was that it was possible to gain access to the planning decisions that the teachers made in 

preparation for their problem-solving debriefs.  While this did make data collection and 

analysis easier, there were limitations to this approach.  In particular, teachers may plan 

differently for debriefs when they create a written lesson plan outside of class, when they 

have time to reflect on their decisions, compared to when they prepare for a problem-

solving debrief on the spot, without documenting their decisions.  When teachers have to 

bring their class together for a whole-class discussion during the same class period that 

they implemented a task, they might not explicitly think about what questions they are 

going to ask until they are actually leading the discussion.  Further research on teachers’ 

in-class planning practices would help to clarify what types of questions teachers plan 

prior to a problem-solving debrief (if any) and how this impacts the outcomes of the 

discussion.  Such an analysis could be done using on-the-spot interviews, or a variation of 

the ISA could be used by the teachers as a format for recording their on-the-spot 

decisions. 

Training teachers to recognize high-press questions.  While my research study 

focused specifically on the teachers’ use of questions that promote mathematical 

reasoning (high-press questions), the teachers participating in this research study did not 

receive explicit training on high-press questions.  In Chapter 3, Professional 

Development Description, I included a table of teacher questions from Boaler and 

Humphrey’s Connecting Mathematical Ideas (2005) that was shared with the 

participating teachers during the summer seminars in the professional development 

program.  The purpose of the table of questions was to show the different types of 
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questions that a teacher might ask for different reasons during a whole-class discussion 

around a problem-solving task.  While some of the questions listed would be useful for 

creating opportunities for students to reason mathematically (high-press) such as the 

question type of exploring mathematical meanings and relationships, none of the question 

types were deliberately highlighted as more or less useful for pressing students to reason 

mathematically.  Also, during the coaching sessions, the professional developer 

encouraged the teachers to be deliberate and thoughtful about the types of questions they 

ask.   

While asking good questions was emphasized through the professional 

development, a framework like the one I developed for this study that differentiated 

between high-press questions and low-press questions was not available for the teachers.  

It is possible that, if the teachers were more aware of the differences between high-press 

and low-press questions, as developed for this research study, when they were completing 

their ISAs, the high-press questions may have had a greater influence on the enactment of 

the ISA.  That is, the teachers possibly would have been more deliberate about 

implementing the high-press questions in their ISA if they were more aware of their 

potential influence on creating opportunities for their students to reason mathematically.  

I recommend future research studying the impact of training teachers to differentiate 

between high-press and low-press questioning practices for the purpose of creating 

opportunities for students to reason mathematically.  A study analyzing how such training 

influences their ability to create and implement ISAs would be informative.  In particular, 

do teachers, who receive training in the use of high-press questions as a way to create 
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opportunities for students to reason mathematically, plan and ask more high-press 

questions during a problem-solving debrief than those who do not? 

Mathematical learning goals and planning questions.  This research study 

focused on the nature of questions that teachers planned and asked in their problem-

solving debriefs.  While I assessed the quality of the teachers’ planned questions based 

upon whether or not the question had the potential to press students to reason 

mathematically, another possible avenue for assessing teachers’ questions in an ISA 

would be to connect the questions planned in an ISA to the mathematical learning goals 

identified by the teacher.  A teacher may identify mathematical learning goals with 

respect to the curricular goals at the time of task implementation, the learning goals for 

the problem-solving task, and the specific learning goals for the problem-solving debrief.  

The questions in an ISA that clearly addresses any of these learning goals may be more 

productive and create better learning opportunities for students than a question that is 

planned out of context.   

Analyzing the planned questions with respect to the teachers’ learning goals was 

outside the scope of this research study.  I recommend further research on teachers’ 

planned questions, but with a particular focus on teachers’ learning goals.  I believe this 

would provide more insight into the opportunities that planned questions can generate for 

students to reason mathematically.  My hypothesis would be that, when those questions 

are clearly linked to learning goals and those learning goals are clearly connected to the 

curriculum, greater opportunities will emerge for productive mathematical discourse.   
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Concluding Remarks 

Whole-class discussions around a cognitively demanding problem-solving task 

have the potential to be a valuable arena for mathematical reasoning to take place.  By 

pre-planning who will share their strategies, what ideas are worth highlighting in their 

strategies, and what questions to ask to make the mathematics salient, the teacher is well 

situated to create more opportunities for students to reason mathematically.  What we 

have learned from this research study is that, it not only matters whether or not a teacher 

plans for a whole-class discussion with questions that prompt students to reason 

mathematically, or that the teacher implements such plans for a problem-solving debrief 

faithfully, it also matters how those plans are implemented.  Depending upon how a 

teacher implements a planned question, the opportunities for students to reason 

mathematically will either be constrained or afforded.  This research study is beneficial 

for providing some insight into how some of the different ways that teachers 

implemented their planned questions hindered or supported students’ opportunities to 

reason mathematically. 
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Appendix A Instructional Sequence Analysis 
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Appendix B Results from Implementation Fidelity Analysis Tool 
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Appendix C Question Codes with Descriptions 

High-Press Questions 

A high-press question is one in which the students are given opportunity to 

deepen their understanding of mathematical concepts through mathematical inquiry.  This 

happens through mathematical argumentation, analysis of errors, the development of new 

mathematical ideas, building connections between mathematical ideas, and analysis and 

interpretation of other students’ thinking. 

 

H1. Reasoning and Justification. These questions create an opportunity for 

students to provide rationale to support their reasoning and/or solution.  An answer to this 

type of question requires that evidence be provided for either a pre-existing idea, an idea 

proposed by the teacher, or an idea formulated by a student.  A question is coded as H1 

even if the teacher is asking a student to share reasoning or justification that they already 

provided in their written work.  Some examples of Reasoning and Justification questions 

that were planned by actual teachers from the MPSM professional development program 

are listed below. 

 What was your reasoning for choosing the smaller numbers? 

 What is your rationale for choosing the smaller numbers first?  How does this 

benefit you? 

 Explain why this might be a good strategy. 

 Why put a 5 or a 7 on your spinner? 

 Why are some numbers on the chart impossible? 

 How do you know you have all solutions? 

 

H2. Addressing Errors and Verifying Solutions.  This type of question includes 

prompting students to verify whether or not a solution is correct and discussing what 

makes a solution, or part of a solution, incorrect or problematic.  Also, these questions 

lead students to discuss how to correct an error (if, however, one is correcting the error by 

completely throwing it out and trying a new approach, it falls under the category of 

Generalizations, Conjectures, and New Strategies, code H3).  Note that a teacher may ask 

a short-answer question for the purpose of exposing an error.  This type of question 

would be coded as L2 because the students are not being asked to reason about the error. 

Some examples of Addressing Errors and Verifying Solutions that were planned by 

actual teachers from the MPSM professional development program are listed below. 

 Why doesn’t zero work? 

 How does [choosing all the same number] affect the possible results? 

 What went wrong with your second set of numbers? 
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 Why did the first table not work? 

 What could you do after discovering that your table might not be useful? 

 How can we be sure the percents are accurate? 

 

H3. New strategies, Generalizations, and Conjectures.  These are questions 

that prompt students to move forward with their thinking on the task by coming up with 

new ideas on how to solve the task or exploring the mathematical ideas surrounding the 

task.  These questions do not require a definitive answer and responses should elicit 

opportunities for elaboration and justification. These questions might actually be short-

answer questions as long as the response does not require a definitive answer and there is 

potential for elaboration and justification following the response. Some examples of New 

Strategies, Generalizations, and Conjectures questions that were planned by actual 

teachers from the MPSM professional development program are listed below. 

 Focus on the 2 solutions that worked – can you “see” a number for your next 

guess? 

 How can you go forward in an organized way? 

 What should be our next step to solve the problem? 

 Is it best to have all different numbers? 

 Is a 4 necessary? 

 Can you think of a number to replace the 4 that would work just as well? 

 Could we start with a different size for the inner section and still use this 

approach? 

 

H4. Making Connections. These are questions that prompt students to make 

connections between strategies, representations, other mathematics (besides that which is 

central to solving the task), or real-world context.  This may include requests for students 

to compare and contrast the strategies that have been presented, including discussions of 

how they are mathematically different as well has what makes on solutions method more 

efficient than another.  Also, connections includes making connections between the 

strategies the students are developing and the mathematical ideas that are being implicitly 

used in their strategies.  Some examples of Making Connections questions that were 

planned by actual teachers from the MPSM professional development program are listed 

below. 

 How does the number of squares in each section relate to the percent required? 

 How is this different from Baylee’s [strategy]? 

 Which strategy do you think is more efficient/easier? 
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H5. Clarifying Other Students’ Thinking.  These are questions that prompt 

students to make sense of what other students are saying or thinking.  This may mean 

interpreting the presenting student’s written work or restating something they said.  H5 is 

assigned when the teacher asks for explanation of an aspect of the presenting student’s 

work, but the question is not explicitly addressed to the presenting student. Some 

examples of Clarifying Other Students’ Thinking questions that were planned by actual 

teachers from the MPSM professional development program are listed below. 

 Why do you think this person started with the number of cases that they did? 

 Would someone else explain what this student did? 

 How did they determine base and height? 

 Why did Peter add 15+25? 

 Where did the 300 come from?  

 

Low-Press Questions 

A low-press question is one in which students are not led to engage in new 

thinking.  This may be because they are reporting out on something they already did (they 

may even be able to do this by reading directly from their paper), they are providing 

answers to questions in which there is only one appropriate response, or because they are 

regurgitating information that they are already supposed to know (such as text-book 

knowledge).  Also in this category is a code for questions that are non-mathematical in 

nature and questions that are too ambiguous to be appropriately coded. 

 

L1. Reporting and Explaining.  These questions are a request for the presenting 

student to describe the work that they did, or explain their thinking on the task.  This code 

should only be applied when the wording of the question indicates that the presenting 

student is being addressed.  If the teacher is requesting that a student share a reasoning or 

justification, it should be assigned as H1. Some examples of Reporting and Explaining 

questions that were planned by actual teachers from the MPSM professional development 

program are listed below. 

 How did you pick your second set of numbers? 

 Did you start with the picture or the math? 

 Where did you start when you built your shape? 

 What led you to list all of the solutions in the order that you did? 

 What is your strategy? 

 Tell us how you chose to solve the problem. 

 Explain what you did. 
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 Relay your conclusion about using numbers less than 4.   

 

L2. Short-answer, Recall, and Procedural.  These questions are defined such 

that there is only one appropriate answer and/or these questions would be evaluated as 

right or wrong based upon text-book knowledge (that is, knowledge learned from a 

textbook or from a previously covered topic).  This includes questions requiring a series 

of predetermined operational steps to be demonstrated to find the solution (i.e. procedural 

responses).  These types of questions may be leading questions.  That is, the appropriate 

response reveals some information that the teacher considers to be important for the class 

to know. Some examples of Short-Answer, Recall, and Procedural questions that were 

planned by actual teachers from the MPSM professional development program are listed 

below. 

 How do we calculate the area of a right triangle?   

 How many sides does a hexagon have? 

 Does it matter whether or not each section is exactly the same shape? (answer: no) 

 Must the number of cases for different items be the same? (answer: no) 

 What is the total amount? 

 How many squares out of 180 is 15% of the whole? 

 Are there numbers you can’t reach? How many multiples? 

 What other multiples can you get using only the prime numbers on your spinner? 

 

L3. Non-Mathematical.  These questions are those that fail to focus on the 

mathematical content, or questions in which, based upon the wording of the question, it is 

impossible to tell what the teacher’s intention was in asking the question.  Non-

mathematical questions include questions pertaining to the organization of the paper that 

are not related to finding a solution. Some examples of Non-Mathematical questions that 

were planned by actual teachers from the MPSM professional development program are 

listed below. 

 Tell us about the picture you drew in the corner of your paper. 

 Describe the color-scheme you chose for your table. 

 Did this student do a good job organizing their work? 

 Which is your favorite dartboard and why? 

 Symmetry of your design? (cannot tell what the intent of the question is). 
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Appendix D Table of Data Analysis Values used for Research Sub-Question 2 
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Appendix E IOTA Codes use for Research Sub-Question 3 

Revoicing (Main code = R) 

Revoicing is broadly defined as reuttering – or saying again (could be verbal, symbolic, 

or gestural) – of someone else’s utterances (symbolizing or gesturing). This may be a 

direct (immediate) restatement or it may involve an adaptation of the original utterance. 

May or may not include a short follow up question to determine if the revoicing was 

consistent with what the student said. R1-R3 occurs in the midst of ongoing exchange 

between the teacher and a student. R1-R3 does NOT have explicit attribution of original 

speaker(s). 

1. Repeating – Teacher repeats a student’s utterance using (essentially) the same 

words or a portion thereof.  

2. Rephrasing – Teacher states a student’s utterance in a new or different way. 

3. Expanding – Teacher adds information to a student’s utterance. This typically (but 

not necessarily) starts as repetition or rephrasing. 

4. Reporting – Teacher attributes an idea, claim, argument to a specific student 

(reporting explicitly attributes ownership of the idea, claim, or argument to a 

specific student or group, versus implicit attribution of ownership in R1, R2, R3).  

Requesting/Questioning (main code = Q) 

Requesting/questioning functions to foster an inquiry oriented learning environment. Q 

codes should be used in cases when there is an expectation that students actually respond.  

1. Evaluating. The intention is to check for understanding against what the teacher 

sees as an expected response. Typically results in teacher affirming or 

disconfirming student response. Could be in question or request form. 

2. Clarifying. Purpose of the request is to seek clarification of detail (either for the 

teacher or for others) what a student is saying. Typically this occurs in the midst 

of a student giving an explanation or justification. (suggests that there is some 

confusion or need to clarify, either for the teacher or for other students). 

a. Request for clarification is directed to the speaker 

b. Request for clarification is direction to someone other than the speaker 

(including the class)  
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3. Explaining. (intention is for student(s) to share ideas however tentative). Could be 

in question or directive form. Results in an immediate voicing. 

a. Requests to explain your thinking or the thinking of your group (could be an 

open call or a call for a particular student). 

b. Requests to explain or comment on another student’s or group’s thinking 

(could be an open call or a call for a particular student). 

4. Justifying. Requests to provide warrants or backing for a some conclusion or 

claim. This could be an open call or a call for a particular student. The intention is 

that the argument provide reasons for why a particular result has to be the case. In 

contrast, requests to explain thinking typically result in elaboration of initial, 

tentative ideas. There is less finality to requests for explanation in comparison to 

requests for warrants and backing. 

Telling (Main code = T) 

1.   Initiating. 

a)  Describing or presenting a new concept, representation, procedure, solution 

method, etc. This discursive move typically brings in new information, 

extends current topics of discussion, or makes connections to other ideas.  

b)  Telling students what the new problem is that they are to work on next. Must 

involve some mathematical contextualization of the next task, in contrast to 

the managing code for students to work on problem x. Mathematical 

contextualization may be in terms of the broader discipline or in terms of the 

intermediate course goals. 

c)   Reminding students of conclusions from a previous problem. This may also 

include remaining open questions regarding that problem.  

2.   Facilitating student progress in the midst of a task. 

a) Providing information that students need in order to test their ideas, generate 

a counterexample, determine if they are correct, offer a way to think about 

an idea, etc. for a task that students are in the midst of working on.  

b)   Reminding students of a conclusion or a way to think about a problem for 

which there has already been some agreement or public voicing or 
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reminding students of a line of questioning that was previously pursued. 

This code is similar to R4, but without the explicit student attribution. 

3.   Responding to student utterances 

a) Answering a direct student question. This discursive move is typically a 

short, direct, mathematical answer to a specific mathematical question.  

b) Evaluating a student utterance with a clear indication of correctness or 

incorrectness. Does not include additional elaboration why the response is 

correct or incorrect. 

c) Evaluating a student utterance with additional reasoning for why the 

statement is correct or incorrect.  

4.   Summarizing/wrapping up. This discursive move typically summarizes 

(selected) ideas, highlights particular mathematics of importance, and/or 

points to next steps related to the summary. These utterances typically come at 

the end of student work on a task. 

Managing (Main Code = M) 

1. Arranging. Classroom management. This type of utterance tells a student(s) to 

carry out a physical action without involving particular mathematical 

concepts. Examples include: “Get in your small groups and work on the next 

problem and discuss the ideas in your group”, “When your group is finished 

write your results on the assigned area of the blackboard.” 

2. Directing. Mathematical management. This type of utterance directs a 

student(s) to carry out a particular mathematical action (e.g., find the x(t) and 

y(t) equations, graph such and such function). In comparison to T7, this type 

of utterance is tightly tied to the current problem.  

3. Motivating. This type of utterance provides encouragement or motivation for 

students. For example, the utterance may indicate that a particular student idea 

is a worthy one (without explicitly stating that it is correct or incorrect as with 

T5), it may indicate that it is an important idea, it may encourage students to 

pursue particular line of inquiry, to follow up on their ideas, etc. 
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4. Checking. Check on student progress (e.g., Have you got to number 2 yet? Do 

you all have the same question?) or student(s) agreement, disagreement, or 

understanding on an issue? (e.g., Does anyone have any questions or 

comments? 
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Appendix F Teachers’ ISAs for Research Sub-Question 3 
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