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idea of what combinations to try next.  For students in lower level math classes, keeping 

track of their guesses in an organized manner became an important focus in their 

mathematical development of the task.   

 
Figure 9. A table created by a student to keep track of her attempted combinations. 

 

Understanding of organizational strategies developed, starting with numbers 

randomly plugged into calculators, randomly jotting down their calculations on paper, 

creating tables to display possible solutions in a more organized way, and developing 

strategies for which numbers to try next in a series of guesses.  As students begin to 

organize their work, they have to make decisions about what information to display in 
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their tables or charts, how to label their solutions so that other people will understand the 

data that is being shown, and what number combinations should be tried as they build up 

their tables.  Notice how, in figure 9, a student kept track of the combinations she had 

tried in an organized table.  The first three columns identified how many of each case she 

was trying, the fourth column was the sum of the cases, the fifth column was the total 

cost, and the final column noted whether or not the combination worked. 

Because there are so many possible combinations to try, lists of combinations can 

become very cumbersome, sometimes taking up several pages of work.  While in the 

illustration provide, she attempted some patterns to help her look for solutions in a 

consistent manner, such as trying 50 of each case, much of her guesses were fairly 

random.  If she had continued trying to find all six solutions in this manner, she would 

have had a much longer list.  As a result, students developed strategies for limiting the 

combinations that they tried.  Something that some students noticed was that you could 

only have an even number of cases for candy bars.  The reason for this has to do with the 

fact that candy bars were the only item with an even numbered cost ($8).  If there were an 

odd number of candy bar cases, then the combination of chips and soda would 

necessarily be odd too, resulting in an odd total cost.    

 A useful strategy for finding at least one solution that worked well for students 

who were using guess and check strategies was to reduce the number of one type of case 

to zero.  By reducing the types of cases used, the problem of finding a solution that 

worked became simpler.  Students that tried this strategy quickly learned that it was not 

possible to create a working combination with only one type of case because they ended 
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up with either more or less than 50 cases.  For example, there could be no more than 25 

boxes of candy bars because 25 boxes of candy bars at $8.00 a box came to $200, so 

more than 25 candy bar boxes would come to too much money.  Similarly, there could be 

no more than 40 cases of chips because 40 cases of chips at $5/case came to $200.  Also, 

students realized that it was not possible to have all soda cases at $3.00/case because they 

only came to $150.  It was possible, however, to reduce the types of cases to just two.  

Two solutions emerge from this strategy.  One is 25 cases of chips and 25 cases of candy 

bars.  The other is 40 cases of soda and 10 cases of candy bars. 

Finding Solutions by Making Even Trades. While it was very difficult to find a 

working solution using guess and check, it was much easier for students to find a solution 

that satisfied one constraint, but not another.  It was then possible for students to use 

those combinations to strategically adjust the number of cases to get closer to the missing 

constraint while still satisfying the original constraint.  For example, in Teacher 27’s 

class, one student found a combination that added up to a total of 50 cases.  She got 30 

cases of chips which would be $150, 8 cases of soda which comes to $24, and 12 cases of 

candy which costs $96.  While the total number of cases added up to the necessary 50 

cases, the total cost was $270 which was too much money.  In this example where the 

student had found the right number of cases but it cost too much money, it is possible to 

make even trades that would lower the overall cost.   

By swapping out $8.00 cases of candy bars for $3.00 cases of soda, each swap 

would reduce the cost by $5.00 (see table 2 for a summary of these trades).  

Alternatively, swapping out candy bars for chips reduces the cost by $3.00, swapping out 
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chips for soda reduced the cost by $2.00.  Using the example given above of 30 chips, 8 

sodas, and 12 candy bars, the goal is to reduce the overall cost from $270 down to $200.  

This, feasibly, could be down by swapping out 14 cases of candy bars with 14 cases of 

soda because each case swapped would reduce the cost by $5.00.  However, there are 

only 12 candy bars.  Alternatively, suppose only 8 candy bars were swapped out for 8 

sodas (note that I could have swapped out 12 candy bars for 12 sodas, leaving 0 cases of 

candy bars, but we already have seen an example with 0 cases of candy bars).  This trade 

results in 30 chips, 16 sodas, and 4 candy bars.  This still adds up to 50 cases total, but the 

total is now reduced down to $230.  This process of making even trades can now be 

repeated with another even trade.  Since the total cost must be reduced by $30, we could 

either trade 15 chips for 15 soda or 10 candy bars for 10 chips.  Since we only have 4 

candy bar bases left, it only makes sense to trade chips for soda.  This now gives the 

combination of 15 chips, 31 sodas, and 4 candy bars which does add up to $200 ($5 x 15 

chips + $3 x 31 sodas + $8 x 4 candy bars = $200 total).  These trades leading to a correct 

solution are shown in table 2. 

Table 2. demonstration of even trades to reduce cost by $70 while keeping 50 cases 

 Chips 

$5/case 

Soda 

$3/case 

Candy Bars 

$8/case 

Total 

Right number of cases, 

too much money. 

30 

$150 

8 

$24 

12 

$96 

50 cases 

$270 

Swapped 8 candy bars 

for 8 sodas.  

30 

$150 

16 

$48 

4 

$32 

50 cases 

$230 

Swapped 15 chips for 

15 sodas, 

15 

$75 

31 

$93 

4 

$32 

50 cases 

$200 

 

A similar strategy can be used when a combination has been found such that the 

cost is right but the number of cases is not 50.  In Teacher 9’s class, two of his students 
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found a combination that added up to $200.  They had found 12 cases of chips, 10 cases 

of candy bars and 20 cases of soda.  This combination cost a total of $200, but only added 

up to 42 cases.  There is only one possible combination that will increase the number of 

cases while maintaining a cost of $200, which is trading one case of candy bars for both a 

case of chips and a case of soda.  This works because the cost of chips and soda together 

($5+$3) is equivalent to a case of candy bars ($8) which means that every time this trade 

is made, the cost is the same but the number of cases increases by one.  In order to make 

this trade and increase the total number of cases by eight (from 42 cases up to 50 cases), 

it is necessary to trade 8 cases of candy bars for 8 cases, each, of soda and chips.  This 

new combination is 20 cases of chips, 2 candy bars, and 28 cases of soda. 

Using Patterns to Find the Remaining Solutions. Once multiple solutions were 

identified, these solutions were then typically used to find additional solutions.  This was 

most commonly done by putting the found solutions into a table and looking for patterns.  

To illustrate how this was done, observe table 3 containing the four solutions that have 

been identified thus far:   

Table 3. subset of solutions obtained thus far 

Chips Soda Candy 

Bars 

0 40 10 

15 31 4 

20 28 2 

25 25 0 

  

 They have been organized so that chips are in ascending order while soda and candy bars 

are in descending order.  There is a linear relationship between the solutions.  When 

given a subset of the solutions in a table as shown in table 3, students quickly observe 
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that, as you go from one solution to the next, the chips increase by five while the soda 

decreases by three and the candy bars decreases by two.  Once this pattern is observed, 

students can quickly identify two additional solutions: 1) 5 chips, 37 sodas, and 8 candy 

bars; and 2) 10 chips, 34 sodas, and 6 candy bars. 

When asked to justify why this taking away five chips and adding back in three 

cases of soda and 2 cases of candy bars gives another solution, students can explain, first, 

that the number of cases is preserved because five cases are taken away (the five cases of 

chips) while five cases are added back in (the three cases of soda and the two cases of 

candy bars).  Also, the cost is preserved because five cases of chips cost $25 while three 

bases of soda cost $9 and two cases of candy bars cost $16.  As a result, $25 is taken out 

and $9 + $16 = $25 is added back in. 

The next question often asked is: “How do we know that we have found all 

possible solutions?”  Two explanations are commonly given to address this question.  

First, as explained earlier, it is only possible to have an even number of candy bars.  As a 

result, we know that there is, for example, no solution with just one candy bar.  Second, 

because the number of chips on the list of solutions begins at zero and works its way up, 

we know that there can be no solutions with a negative number of chips.  The same thing 

is true for the number of candy bars.  The list has to stop at zero cases of candy bars. 

 Using algebra to find a solution. While the solution strategies described above 

were the most commonly used, it is also possible to find solutions using algebraic 

methods.  Algebraic methods were not commonly used because middle school students 

have had very little, if any, exposure to linear equations.  The use of algebraic 
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expressions were used by Teacher 31’s students to reason through the task and, with 

Teacher 31’s assistance, they were shown a way to find solutions by solving the 

expressions using substitution.  A challenge for many students was to create algebraic 

expressions to show both the number of cases and the total cost of the cases.  One 

misconception that emerged was to use variables A, B, and C to represent both 

50 CBA  and 200 CBA .  In this case, students were letting A, B, and C 

represent, in one equation, the number of cases while in the other equation the variables 

represented the cost of the cases.  It was necessary for students to recognize that A, B, 

and C should always represent the same thing and that, if A, B, and C represented cases 

of chips, soda, and candy bars, respectively then the second equation should be 

200835  CBA .   

Even when students were able to successfully derive these two equations, they 

typically did not know how to use them.  In Teacher 31’s class, there was one student that 

made use of the equations.  In the class, they had already begun to learn about linear 

equations and solving systems of linear equations.  However, they had only seen systems 

of equations with two variables.  In order for this student to be able to apply systems of 

linear equations to the problem, he let the number of cases of candy bars be equal to 0.  In 

this way, he reduced the two equations to equations with two variables and was able to 

find the other variables using the methods he had already learned. 

 During the debrief, Teacher 31 acknowledged this strategy as ‘legitimate’, 

describing it as ‘making the problem simpler’.  He then led the class through a strategy 

that was similar to the student’s, but used all three variables.  He solved the equation 
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50 CBA  for soda: CAB  50  and substituted this into the second equation:  

2008)50(35  CCAA  and simplified the equation to 5052  CA .  Teacher 31 

then explained to his students how, by substituting a value for one of the variables, it is 

possible to find out what the other variable has to be.  For example, if A were equal to 0, 

then C would have to be equal to 10 and these values can then be inserted into the 

equation 4010050  CAB .  He explained to the class that no solution can be 

a fraction and that they would have to use guess and check to find other solutions.  He 

allowed the class some time to try different numbers and they were able to find additional 

solutions.  This particular solution strategy was not one that Teacher 31’s students were 

able to come up with on their own, and their understanding of how to use it to find 

solutions was rudimentary at best.  However, it demonstrates a way that middle school 

students might be able to use algebra to solve this task if they had sufficient pre-requisite 

knowledge (specifically, some experience with solving systems of linear equations). 

 In the next section, I will discuss the Spinner Elimination task. 
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Spinner Elimination 

 

Here’s something to think about… 

 

 
Design a spinner that you think will help you to cross out more squares than your 

opponent on a 50’s chart like the one shown in table 4.  (See rules for the Spinner 

Elimination Game.) After you have played a game with your spinner, decide if you want 

to change the numbers on your spinner. 

 

After you have played several games, answer the following questions: 

 

 Do you think that you have created the best spinner possible or, if you 

were to play the game again, would you change the numbers on your 

spinner?  Why or why not? 

 What advice would you give to someone who wants to cross out the 

most squares on how to choose numbers for their spinner? 
 

 

 

 

Rules for the Spinner Elimination Game 

 

1. Divide your spinner into eight equal sections. 

2. You may choose up to 8 numbers (from zero to nine) to put on your spinner.  

3. You may put them on any space you choose on the spinner and you may use the same 

number as many times as you like. 

4. You eliminate squares on the 50’s chart by spinning your spinner as many times as 

you choose and multiplying the product of the spins (E.g. If you spin three times and 

you spin a 4, then a 3 and then a 4 you would get 43 = 12, 124 = 48.  You would 

eliminate 48 from the 50’s chart.  If choose to spin only one time and get a 4, then 

you would eliminate the 4.).  Each time you eliminate a square counts as one turn. 

5. If your spin creates a product greater than 50 you lose that turn and the next player 

spins.  

6. You can only cross off one number per turn.   

7. After 20 turns, the player with the most squares eliminated on their 50’s chart wins 

the game.  
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1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 Table 4. 50’s chart for Spinner Elimination Game 
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Placement in the curriculum. The Spinner Elimination task asks students to 

create a spinner with some combination of 8 numbers from 0-9.  The spinner is used for a 

game in which the students spin the spinner one or more times and multiply the numbers 

together.  They then cross out a number on a chart numbered from 1-50.  They get 20 

turns, they can’t cross out a number more than once, and if their product is more than 50 

they lose their turn. The goal of the task is to create a spinner that will give them the best 

chance of winning the game.  This task focuses largely on multiples and factors, creating 

opportunities to reason about primes and composites.  It also has some opportunities to 

reason about probability.  Because multiples, factors, primes, and composites are 

concepts that students are expected to already have learned before entry into middle 

school, this task was often used at the beginning of the school year as a way to introduce 

students to reasoning and problem solving as well as to provide students with a review of 

number concepts. 

Zero is problematic. Most students quickly recognized that you would never 

want to put zero on a spinner because any number multiplied by zero is zero.  As a result, 

once zero is spun, every additional spinner during that turn is going to result in another 

zero.  Many students, though, did not realize this would happen.  These students made the 

initial assumption that having a zero on your spinner would allow you to start over 

because they saw it as causing them to go back down to zero.  What they did not realize 

was that in order to ‘start over’ they would have to some have ‘get back down’ to 1, 

which is not possible. 
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Should the number one go on the spinner? While students were all able to 

agree that you would never want a zero on your spinner, the number one was more 

debatable.  When the number one was spun, the result would be no change on the value.  

For example, if the player had spun a five and then a one, they would still be at five.  

Because of this, many students saw this as a wasted spin and preferred not to have it on 

their spinner, while others perceived a one as a free spin in which they did not have to 

worry about going over 50.  While everyone generally agreed that a one on the spinner 

had no impact on the outcomes of the game, there was one exception to this, which was if 

the one was spun during the first spin.  In this case, since it was not a requirement to spin 

the spinner more than once, this would make it possible to cross of a one on the 50’s 

chart.  Students had mixed feelings about whether or not this made having a one on the 

spinner worth it.  While many students argued that it wasn’t worth it, other students 

recognized that since it counted as one more number that could be crossed of, it would be 

worth having on your spinner. 

 Using a wide variety of numbers and avoiding high numbers. After 

recognizing the role that one and zero play on the spinner, the two most common 

strategies that students used were to use a wide variety of number and to avoid high 

numbers.  Students often tried all the numbers from one to eight or two to nine on their 

first spinners.  This tended to be a logical first step for this game because it allowed 

students to see what would happen when they used all of the possible numbers on their 

spinner.  Usually, after trying this initial strategy students would then choose to eliminate 

the high numbers on their spinner.  This was because having large numbers like seven, 



121 

 

eight, and nine on a spinner made it more likely to get more than 50 on a turn.  In 

particular, eight and nine were recognized as the most problematic because if you spun, 

for example, an eight twice in a row, then the resulting number would be 64, which is 

more than 50, resulting in a lost turn.  Whether or not seven should be counted as a ‘high’ 

number was debated.  If seven were spun twice in a row, it only results in 49, which is 

still less than 50.  However, there were some students that felt that seven was too high to 

have on the spinner.  Others, though, recognized that seven could be a worthwhile 

number to have on the spinner because it creates more multiples that could be crossed off 

since it’s a prime.  This will be discussed in further detail later. 

 Sticking with very low numbers: A common misconception. When students 

saw the risks of going over 50 with the larger numbers, some of them attempted to 

remedy this dilemma by using only very low numbers.  For example some students tried 

making spinners with either just the number two or only the numbers two and three on it.  

These students reasoned that if they were less likely to go over 50, they would have more 

opportunities to cross of multiples.  More specifically, a misconception that occurred here 

was that students believed they would be able to get all even numbers if they had just a 

two on their spinner.  What these students discovered was that by limiting the variety of 

numbers, they were limiting the possible combinations they could make.  Students who 

tried only two on the spinner quickly realized this problem because they could only cross 

off the exponents of two (2, 4, 8, 16, and 32).  While the students that tried only two on 

their spinner recognized that they could not make enough combinations, the students that 

tried just two and three were not able to recognize this limitation as easily because there 
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were 15 possible combinations.  In Teacher 27’s debrief, he led them through a 

discussion that allowed them to see this problem.  He asked them to list out all of the 

possible combinations that could be made with the numbers two and three and then count 

how many combinations they got.  This allowed them to recognize that they would only 

ever be able to cross off 15 numbers on the 50’s chart. 

   
Figure 10. Spinners designed by students with just 1, 2, 3 and 1, 2, 3, 4, respectively. 

  

Reasoning with primes and composites. When students saw that putting only 

very low numbers on the spinner limited the number of combinations they could spin, 

they would still want to avoid the higher numbers and, as a result, they would try to 

compromise by adding another number that is also low.  In Teacher 27’s class, a student 

tried a spinner with the numbers one, two, three, and four (see figure 10).  This spinner 

actually has the exact same problem as the spinner with just two’s and three’s because 

four is created by multiplying two by itself twice.  Consequently, any combinations that 

are possible with a two, three, and four are also possible with just a two and three.  In 

Teacher 27’s class, he exposed this relationship between these two spinners by asking his 

students to once again list out all of the possible combinations, but this time using the 

numbers two, three, and four.  When the students saw that they were making all of the 
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same combinations, they were able to reason that, because four was a composite of two, 

they would not have any more combinations with the second spinner.  While four does 

not make any additional combinations because it is a composite of two, adding a five or a 

seven to the spinner is going to create new combinations.  This is because they are prime 

numbers. 

Reasoning through the task in this way allowed students to see an important 

distinction between prime number and composite numbers.  A central idea that students 

explored was that they could not cross certain numbers off of the 50’s chart unless their 

prime factors were on the spinner.  For example, you cannot cross off a 25 unless you 

have a 5 on the spinner.  A similar realization was that, it is not always necessary to have 

composite numbers on the spinner because the prime numbers may be used instead.  

Reasoning for this idea connects to the concept of prime factorization.  For example, a 

four is not necessary on the spinner because the two may be used in place of the four by 

spinning a two twice.  Although 16 = 4x4 means that 16 can be crossed off by spinning a 

four twice, it is also true that 16 = 2x2x2x2, so the 16 may also be crossed off by 

spinning two four times.  Similarly, 24 = 4x6 = 2x2x2x3.   

Students further recognized that there were some numbers on the 50’s chart that 

could never be crossed off, even if you have all numbers from two to nine on the spinner.  

This was because they were either prime numbers greater than nine (like 17) or numbers 

with prime factors greater than nine (like 22 = 2x11).  While students were capable of 

understanding these concepts related to primes and composites with respect to the task, 
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many students did not make these connections on their own.  It was typically necessary 

for the teachers to draw their students’ attention to these ideas.  

 Spinning strategies and probabilities on the spinner. While the purpose of this 

activity was to select a spinner that would help you win, most students recognized that 

there were also appropriate strategies for playing the game that were important for 

increasing your chances of winning the game.  Specifically, students had to make 

decisions about when to stop spinning the spinner.  In some cases, students would 

continue to spin the spinning even if they had opportunities to cross off a square on the 

50’s chart.  For example, when a student spins once, and spin, for example, a 5, they 

could choose to cross that number off of the board, or they could choose to spin again.  

Some students would choose to spin again, wanting to cross off some of the bigger 

number first.  Most students, though, agreed that it was best to cross off a number as soon 

as one became available.  As a result, if a student spun a 3 in their first turn they would 

immediately cross off the 3 on the 50’s chart.  During their next turn, they might spin a 3 

again and they would not be able to cross off the 3, but they would just spin again.  They 

then might spin a 5, giving them 3x5 = 15 as an option to cross off on the board.  If this 

spot were available, most students would choose to cross it off.  Other students, though, 

would consider choosing to spin again.  At this point, depending upon what is on their 

spinner, they would have a varying probability of going over 50. 

 In some classes, students reasoned about the probability of going over 50 after 

spinning a certain combination.  For example, if a student spins a 5 first, they know it is 

safe to spin again because they have a 0% probability of going over 50.  This is because 
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the largest number they could spin was a 9 which would result in 45.  In contrast, if a 

student had already spun up to a number greater than 25, like 27, they have a 100% 

probability of going over 50 because on their next spin because the smaller number they 

could spin was a 2 which would give them 54.  Students could reason further about the 

probabilities of going over 50 if, for example, they have a spinner from 2 through 9 with 

one of each number on the spinner.  Then if they had spun a 15, the numbers 2 and 3 

would not cause them to go over 50 (giving them the products 30 and 45 respectively) 

while landing on any of the remaining numbers on the spinner would cause them to go 

over 50.  As a result, they can determine that they have a 2/8 chance of staying under 50, 

or a 25% chance and a 6/8 chance of going over 50, or a 75% chance.  Teacher 27 

discussed these types of probabilities with his students because some of his students 

chose to keep spinning even if they had blank spots on their 50’s chart that they could 

have cross out.  They reasoned about how the decision of when to stop spinning would 

depend upon the individual and that some students would want to risk it, while others 

would prefer to be safe.  

 In the next chapter, I describe the methods used in my study including a 

description of the participating teachers, data collection methods, and a description of the 

research designs for my three sub-questions. 
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Chapter 5. Method 

 

Participants and Context 

The participants in my research study were drawn from the middle school 

mathematics teachers that were involved in the Mathematics Problem Solving Model 

professional development program.  The professional development program ran for a 

total of four years with teachers participating in the program for one year.  The total 

number of teachers who participated in the Mathematics Problem Solving Model 

professional development program over the four years was about 50.  For this research 

study I used data collected from 12 teachers from cohorts 2 and 3.  Nine of the 

participants were from cohort 2 and three of the participants were from cohort 3.  I did 

not use data collected from cohort 1 because the data collected from cohort 1 was 

different from the remaining years.  The teachers that participated in this study from 

cohorts 2-4 were selected based upon the availability of complete data sets.  For a 

complete description of the professional development program and information 

pertaining to the demographics of the teachers, see Chapter 3, Professional Development 

Description.  Below, I provide a description of the teachers who participated in the 

professional development program.  The information given includes years of experience, 
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both as a licensed teacher and as a middle school mathematics instructor; grade levels 

taught; school settings, percent free and reduced lunch, percentage of schools that met 

adequate yearly progress in the year prior to the professional development; and 

availability of reform curricular materials.  This information is provided for each cohort 

and then I provide a summary for the teachers whose data was used in my study. 

Summary of cohort 1 treatment group. Ten middle school teachers participated 

in the professional development in the 2006-2007 school year (cohort 1).  Years of 

experience as licensed teachers ranged from a minimum of five years teaching experience 

to a maximum of 29 years.  The average number of years of experience as a licensed 

teacher was approximately 12 years.  Within the area of teaching math in the middle 

schools, these teachers averaged a total of 10 years of experience, ranging from two to 

20.  Two teachers taught 6
th

 grade math, two taught 7
th

 grade math, two taught 8
th

 grade 

math, and four taught 7
th

/8
th

 grade math. 

Five of these teachers taught in an urban setting, four taught in towns with 

populations less than 50,000, and one taught in a rural setting.  Percent of students 

receiving free and reduced lunch ranged from 20.2% to 64.3%, with an average of 

41.35%.  Seventy percent of the teachers participating in the professional development 

program came from schools that did not meet criteria for adequate yearly progress in the 

previous school year.  Fifty percent of the treatment teachers used at least some reform-

based materials in their classrooms. 

Summary of Cohort 2 Treatment Group.  Eleven middle school teachers 

participated in the professional development in the 2007-2008 school year (cohort 2).  
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Years of experience as licensed teachers ranged from a minimum of one year of teaching 

experience to a maximum of 28 years.  The average numbers of years of experience as a 

licensed teacher was approximately nine years.  Within the area of teaching math in the 

middle schools, these teachers averaged a total of approximately five years.  Years of 

experience within the field of math in the middle schools ranged from one to 10 years.  

Three teachers taught 6
th

 grade math, six taught 7
th

 grade math, and two taught 8
th

 grade 

math. 

Five of these teachers taught in an urban setting, one taught in a town with a 

population less than 50,000, and four taught in a rural setting.  One of the schools was a 

private prep school.  Percent of students receiving free and reduced lunch ranged from 

0% to 70.2%, with an average of 33%.  It is worth noting that four of the teachers taught 

at schools with over 59% percent of students receiving free and reduced lunch while the 

remaining seven teachers taught at schools with less than 22% of students receiving free 

and reduced lunch.  55% of the teachers participating in the professional development 

program came from schools that did not meet criteria for adequate yearly progress in the 

previous school year.  20% of the treatment teachers used at least some reform-based 

materials in their classrooms (one teacher was not included in this number as the type of 

curriculum used by the teacher was not made available to us). 

Summary of cohort 3 treatment group. Seventeen middle school teachers 

participated in the professional development in the 2008-2009 school year (cohort 3).  

Years of experience as licensed teachers ranged from a minimum of three years teaching 

experience to a maximum of 33 years.  The average numbers of years of experience as a 
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licensed teacher was approximately 13 years.  Within the area of teaching math in the 

middle schools, these teachers averaged eight years.  Years of experience within the field 

of math in the middle schools ranged from one to 20.  Two teachers taught 6
th

 grade 

math, eight taught 7
th

 grade math, six taught 8
th

 grade math, and one teacher taught 8
th

 

grade content to 6
th

 grade students. 

Nine of these teachers taught in an urban setting, four taught in towns with 

populations less than 50,000, and four taught in a rural setting.  Percent of students 

receiving free and reduced lunch ranged from 25.5% to 65.9%, with an average of 

39.28%.  88% of the teachers participating in the professional development program 

came from schools that did not meet criteria for adequate yearly progress in the previous 

school year.  71% of the treatment teachers used at least some reform-based materials in 

their classrooms (three teachers were not included in this number as the type of 

curriculum they used was not made available to us). 

Summary of cohort 4 treatment group. Twelve middle school teachers 

participated in the professional development in the 2009-2010 school year (cohort 4).  Of 

those 12 teachers, five completed the program, providing us with data.  Of those teachers 

that completed the program, years of experience as licensed teachers ranged from a 

minimum of two years teaching experience to a maximum of 25 years.  The average 

numbers of years of experience as a licensed teacher was approximately 10.4 years.  

Within the area of teaching math in the middle schools, these teachers averaged three 

years.  Years of experience within the field of math in the middle schools ranged from 
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two to four.  Two teachers taught 6
th

 grade math, two taught 7
th

 grade math, and one 

taught 8
th

 grade math. 

One of these teachers taught in an urban setting, one taught in a suburban setting, 

two taught in towns with populations less than 50,000, and one taught in a rural setting.  

Percent of students receiving free and reduced lunch ranged from 14.2% to 61.7%, with 

an average of 40.34%.  50% of the teachers participating in the professional development 

program came from schools that did not meet criteria for adequate yearly progress in the 

previous school year.  50% of the treatment teachers used at least some reform-based 

materials in their classrooms (This data was not available from one of these teachers). 

Summary of teachers  used in this study. The data collected from 12 of the 

middle school teachers who had participated in the professional development were used 

in my study.  Nine of these teachers completed the professional development in the 2007-

2008 school year (cohort 2).  Three of these teachers participated in the 2008-2009 school 

year.  Years of experience as licensed teachers ranged from a minimum of one year of 

teaching experience to a maximum of 33 years.  The average numbers of years of 

experience as a licensed teacher was approximately 11.25 years.  Within the area of 

teaching math in the middle schools, these teachers ranged from 1-12 years of experience 

and averaged a total of approximately 5.5 years.  Four teachers taught 6
th

 grade math, five 

taught 7
th

 grade math, and three taught 8
th

 grade math. 

The teachers in my study taught in 8 schools, with four pairs of teachers working 

the same school.  Two teachers taught in an urban setting, four taught in a suburban 

setting, and six taught in a rural setting.  One of the schools was a private prep school 
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while the remaining schools were public schools.  Percent of students receiving free and 

reduced lunch ranged from 0% to 70.2%, with an average of 29.3%.  Three of the 

teachers taught at schools with over 59% percent of students receiving free and reduced 

lunch while the remaining teachers taught at schools with less than 30% of students 

receiving free and reduced lunch.  50% of the teachers came from schools that did not 

meet criteria for adequate yearly progress in the previous school year.  33% of the 

teachers reported using at least some reform-based materials in their classrooms. 

 

Data Collection 

As part of their participation in the MPSM professional development program, 

teachers were required to implement 5 cognitively demanding problem-solving tasks 

during the school year, orchestrating a problem-solving debrief with the students, and/or 

providing written feedback after students had an opportunity to work on the tasks.  

During the four years that the program was implemented, the requirements changed as to 

which tasks the teachers were required to implement and whether they were to give 

written feedback on students work or orchestrate a problem-solving debrief as their 

follow-up instruction.  In year 1, all teachers were required to implement the same five 

MPSM tasks, chosen by the researchers, and to both orchestrate a problem-solving 

debrief with the students and provide written feedback for all five tasks
4
.  In year 2, the 

teachers were required to implement three MPSM tasks chosen by the researchers and 

two tasks of their own choosing.  They were also required to provide written feedback 

                                                           
4
 Because year 1 was a pilot year for the program and because of how many changes were made to the 

professional development experience from year 1 to year 2, I chose not to use the data collected in year 1 

for my study.   
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and orchestrate a problem-solving debrief for all five tasks.  In year 3, the teachers were 

required to implement three MPSM tasks chosen by the researchers and two of their own 

choosing; they were required to implement a problem-solving debrief for three of the 

tasks (two MPSM and one of their own choosing) and to provide written feedback on the 

other two tasks.  In year 4, the teachers were required to implement three MPSM tasks 

chosen by the researchers, one task of their own choosing, and one task of their own 

choosing from a collection of tasks designed by Lesh and his colleagues (Lesh, Cramer, 

Doerr, Post, & Zawojewski, 2003).  In year 4, teachers were required to orchestrate 

problem-solving debriefs for two MPSM tasks and the Lesh et al. task.  For the remaining 

two tasks, they were required to provide written feedback.  Teachers were expected to 

implement the tasks at a time during the school year when the task would fit 

appropriately with the content that was being covered in their curriculum at the time of 

implementation.   

 For the tasks in which the teachers orchestrated a problem-solving debrief, once 

the task had been at least partially completed by the students, the teachers collected the 

student work and used it to complete a debrief planning form, called an Instructional 

Sequence Analysis (ISA).  To see an example of a blank Instructional Sequence Analysis, 

see Appendix A.  The teachers chose two to six pieces of student work to be shared 

during the problem-solving debrief which was implemented on a later class day.  

Teachers implemented their ISAs as early as the next class day, but teachers sometimes 

delayed the problem-solving debrief as much as two weeks later.  In the ISA, the teacher 

wrote down (1) the order of the students whose work was to be shared with the class, (2) 
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the ideas the teacher wished to highlight for each piece of student work, and (3) questions 

planned by the teacher to help make the mathematics salient to the students.  The teacher 

was also required to give a rationale for the selection and sequencing made in the 

Instructional Sequence Analysis.   

As part of the research project, the teachers submitted student solutions and the 

ISA they had completed for the task (when they orchestrated a debrief).  The problem-

solving debriefs were audio-recorded.  Whenever possible, two audio-recorders were 

used.  One audio-recorder was placed to pick up the teacher’s voice (often wore around 

the teacher’s neck or attached to her lapel) and the other was placed somewhere else in 

the classroom to pick up students’ voices.  In years 1 and 2, a researcher was always 

present for the problem-solving debrief to assist with the audio-recorder and to collect 

data.  In years three and four, the teachers were given the audio recorders to run during 

the debriefs and asked to submit their data online through a secure website. 

For my research study, I analyzed the debriefs that were implemented for the 

three MPSM tasks.  I used two data sources for this research study.  These were (1) the 

Instructional Sequence Analysis, and (2) audio recordings of the implementation of the 

ISAs (which were transcribed with time stamps on all teacher utterances).  The students’ 

work was occasionally used as a resource for making sense of the data, but was not 

explicitly used for the study.   

Not all data sets of the problem-solving debriefs for the MPSM tasks were 

useable for my analysis due to issues with the data collected.  These issues primarily 

included the teacher forgetting to turn on the audio-recorder, the audio recorder 
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malfunctioning, or the audio-recording being inaudible.  Sometimes a teacher would 

misplace their ISA, so it would not get turned in.  There was also evidence that a couple 

ISAs were written following the implemented problem-solving debrief and these data sets 

were consequently not used in my analysis since my study is looking at how teachers 

used the ISAs to implement their debriefs and if they completed the ISA after the debrief, 

then it may have been written as a report of what happened, not what was planned.  Once 

I eliminated incomplete data sets for this study, I had a total of 25 problem-solving 

debriefs to analyze.  These came from 12 teachers: nine from cohort 2 and three from 

cohort 3.  There was no useable data from cohort 4.  Three teachers had one complete 

data set (these were all from the three teachers in cohort 3), five teachers had two 

complete data sets, and four teachers had data sets for all three of the MPSM tasks.   

There is a noteworthy discrepancy between how much data was useable from year 

2 in comparison to years three and four.  One reason why so little of the data was 

available from cohorts 3 and 4 was because the teachers were only required to implement 

two problem-solving debriefs for the MPSM tasks, making less data available to begin 

with.  Also, in year 2, somebody from the research team was present for every problem-

solving debrief, assisting the teachers with the audio-recorders and collecting the data 

from the teachers at the end of the debriefs, while in years 3 and 4 the teachers were 

responsible for recording their own classes and submitting the data themselves.  Because 

the teachers were required to run the audio-recorders themselves, they were only given 

one (as opposed to each researcher always having two), which meant that if they had 

trouble with the recorder there was no backup.  Also, it was easy for the teachers to forget 
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to turn on the recorders in the midst of teaching and they sometimes ran into difficulties 

with downloading the audio recordings online.  The research team has also speculated 

that the most motivated middle school teachers joined the MPSM program in the first 

couple years that it was offered and that, by the final year, the teachers participating in 

the program took the requirements of the professional development and research program 

less seriously and, consequently, did not implement all of their tasks as required. 

 

Research Design 

In this section, I will briefly describe the data analysis I did for each research sub-

question with a particular focus on how, for each sub-question, I made use of the data to 

address a particular element of my theoretical framework.  I conclude this section with a 

discussion of how these sub-questions worked together to address my primary research 

question.  A more detailed description of the data analysis tools I used to answer each 

sub-question is given within their respective chapters. 

Research Sub-question 1: Fidelity to the Literal Lesson. My first sub-question 

(Do teachers enact their written plans for problem-solving debriefs in the classroom as 

they had planned prior to implementation?) is intended to address the extent to which 

teachers are following the literal lesson.  In the ISA, the teachers planned for certain 

pieces of student work to be shared in a particular order, planned to highlight specific 

ideas in the students’ solutions, and wrote down specific questions to ask to help make 

the mathematics salient to the students
5
.  For my study, I considered these three pieces of 

                                                           
5
 For an example of an ISA, see Appendix A 
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the ISA to represent the literal lesson because they represented a specific agenda that the 

teachers were supposed to follow as they implemented their problem-solving debriefs.    

In my analysis of the literal lesson in research sub-question 1, I further specify the steps 

of the literal lesson in an ISA as follows: 

1. The teacher will provide an opportunity for a piece of student work to 

be shared with the class either by allowing the student to present his or 

her work, or the teacher, herself, showing the work to the class. 

2. The teacher will ask the questions, or a close approximation of the 

questions, identified in the ISA.  A question might alternatively be 

addressed if a student provides a “response” to the question without 

having to be prompted by the teacher. 

3. The teacher scaffolds the sharing of the piece of student work to 

ensure that the mathematical ideas proposed by the teacher in the ISA 

surrounding the piece of student work emerge during the segment.   

4. Repeat steps 1-3 for the next piece of student work. 

The framework used for this study, as depicted in figure 2 in Chapter 1, is useful 

for making sense of the relationship between what teachers plan and what actually takes 

place during implementation of the lesson.  When a teacher selects pieces of student work 

to be shared and plans questions to ask during that student’s presentation (the literal 

lesson), the teacher has made some pedagogical decisions about what content to focus on 

and how to engage the students in thinking about the content (the intended lesson).  Since 

my research question is focusing on the effect that the planned questions have on the 
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enacted lesson, it is necessary to assess whether the teachers are simply asking those 

questions.  That is, whether the teacher’s literal lesson is enacted as stated in the ISA.  If 

the answer to this question is yes, then it may be assumed that what was recorded in the 

literal lesson impacted what took place in the enacted lesson.  If the teacher did not 

follow the literal lesson, then it cannot be assumed that the ISA impacted what took place 

during the problem-solving debrief. 

Research Sub-Question 2: Fidelity to the Intended Lesson.  I considered the 

types of questions the teachers planned to ask in their ISAs to be an indication of the 

level of mathematical reasoning they would be encouraging their students to engage in.  

A primary assumption underlying this study is that the types of questions teachers ask 

during discourse centered on mathematical problem solving will influence the 

opportunities students have to engage in discourse around mathematical problem solving.  

I used Kazemi and Stipek’s conceptualization of high-press versus low-press (2001) to 

guide the development of a coding scheme to differentiate between questions that prompt 

students to engage in mathematical reasoning and those that do not.  The discussion of 

the coding scheme may be found in the Chapter 6 and a complete description of the 

coding scheme may be found in Appendix C. 

Sub-question 2 asks: “Is there a correlation between the number of questions 

teachers plan that promote mathematical reasoning around the problem-solving task and 

those that they actually ask during the whole-class discussion?”  To answer this question, 

I analyzed the questions planned by the teacher, differentiating between high-press 

questions and low-press questions to identify the opportunities the teachers had planned 
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for students to engage in mathematical reasoning and subsequently assess whether the 

teachers utilized these opportunities to engage their students in mathematical discourse 

during the enacted lesson.  Further details on how I conducted this analysis and the 

results will be given in Chapter 6. 

Research Sub-Question 3: Transformation of the Enacted Lesson.  My third 

research sub-question, “How do teachers’ improvisational moves during whole-class 

discussions influence the enactment of the questions that were planned by the teacher 

prior to implementation?” is intended to take a closer look at the teachers’ discourse 

moves during their problem-solving debriefs; that is, the enacted lesson.  While research 

sub-questions 1 and 2 both analyzed the enacted lesson through the lens of how teachers 

were implementing their literal lessons (the steps laid out in the ISAs) and the intended 

lessons (the level of discourse planned in the ISA), research sub-question 3 is included in 

this research study to take into account the many factors that can transform an enacted 

lesson such as teachers’ beliefs and knowledge about mathematics, teachers’ professional 

identity, and classroom structure and norms, among other contributing factors (Stein et al, 

2007).   

While I did not analyze these contributing factors, since that was outside of the 

scope of this research study, I analyzed the audio-recording and transcripts of the 

implemented problem-solving debriefs using grounded theory (Strauss & Corbin, 2007) 

with the understanding that what took place during the enacted lesson (the implemented 

problem-solving debrief) was only partially influenced by the literal and intended lessons 

(the ISAs) and that there are other, invisible factors, modifying what took place during 
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the debriefs.  My intention in this final stage of my analysis was to gain an understanding 

of how the teachers might be implementing the questions from their ISAs in ways that 

might modify the opportunities the teachers are creating for the students to reason about 

the mathematics in the tasks.  I argue that these transformations of the questions have the 

potential to either diminish the opportunities for students to reason mathematically or 

afford the students more opportunities to reason mathematically. 

The Primary Research Question: The Big Picture. The analyses for these three 

sub-questions is intended to support the analysis for my primary research question which 

is “How do teachers’ written plans for orchestrating mathematical discourse around 

problem-solving tasks influence the opportunities teachers create for students to reason 

mathematically?”  My research is focused on the relationship between what the teachers 

planned in their ISAs and how they implemented those plans, with a particular eye on 

teacher moves.  By breaking this analysis into three sub-questions, I focused on different 

aspects of teacher implementation.  That is, using my framework as a guideline, I focused 

on teachers’ implementation of the literal lesson (the steps in the ISA) and the intended 

lesson (the level of mathematical reasoning the teacher planned for their students to be 

engaged in) as well as how those plans played out during the implemented lesson (taking 

into account that outside factors can transform what actually takes place during lesson 

implementation).  

These three viewpoints on lesson implementation provided a picture of what 

happened as the teachers are implementing their ISAs.  Research sub-questions 1 and 2 

allow us to see whether or not faithful enactment of the literal lesson (i.e. the steps in the 



140 

 

ISA) ensured that the opportunities the teachers designed for students to reason 

mathematically through the planning of high-press questions led to an increase in the 

opportunities for students to reason mathematically in the enacted lesson.  Alternatively, 

the analysis in research sub-question 3 investigates how on-the-fly decisions about 

implementation of an ISA can also impact the opportunities the teachers created for 

students to engage in mathematical discourse (either positively or negatively).  By 

conducting both a quantitative analysis of the types of questions the teachers asked in 

relation to the types of questions they planned (research sub-question 2) and a qualitative 

analysis of how the teachers were implementing the questions they planned (research 

sub-question 3), this analysis offers a more robust picture of how teachers implemented 

their ISAs. 

At the conclusion of my analysis of research sub-question 3, I include a 

discussion of the four teachers, focusing on how they implemented their ISAs overall.  

The intention of this discussion is to provide a synthesis of my research, focusing on how 

each aspect of my research contributes to an understanding of how these four teachers 

implemented their ISAs and how these variations in implementation impacted the 

opportunities these teachers created for their students to reason mathematically.   

The next three chapters are a discussion of my analysis and results, starting with 

research sub-question 1. 
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Chapter 6. Research Sub-Question 1 

 

The purpose of this chapter is to address research sub-question 1: Do teachers 

enact their written plans in the classroom as they had planned prior to implementation?  

This part of my data analysis is focused on the teachers’ implementation of the literal 

lesson, as described in my theoretical framework in Chapter 1.  To answer this question, I 

developed a data analysis tool called the Implementation Fidelity Analysis Tool (IFA). In 

this chapter, I will discuss the IFA by explaining how it is useful for addressing the 

teachers’ fidelity to the literal lesson in their ISAs, describing the data analysis tool itself, 

including a description of the different levels of fidelity to the literal lesson, the criteria 

for which these levels were assigned, and the specific processes of data analysis that were 

used to assign these levels.  Next, I will provide examples from the data to describe how 

the data analysis tool is used.  This is followed by a discussion of the inter-rater reliability 

of the tool.  Finally, I share the results of my analysis along with a discussion of the 

findings for my study and how these contribute to my main research question. 
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Method: Implementation Fidelity Analysis Tool 

The Implementation Fidelity Analysis tool measures the extent to which the 

teachers followed their Instructional Sequence Analysis (ISA) during implementation of 

their problem-solving debriefs.  The key elements of the ISA is the selection and 

sequencing of student work to be presented, the identification of the main ideas the 

teacher wishes to highlight within each chosen piece of student work, and questions 

planned to help make the mathematics salient within the debrief.  See figure 11 for an 

example of a blank ISA and table 7 for an example of an ISA completed by one of the 

participating teachers (a larger example of a blank ISA is shown in Appendix A and 

additional examples of completed ISAs are given in Appendix F). 

 

Figure 11.  Blank ISA 
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Fidelity to the Literal Lesson. With respect to my theoretical framework, this 

data analysis tool is intended to measure fidelity to the literal lesson, or the extent to 

which the enacted lesson resembles the literal lesson, where the literal lesson is the steps 

laid out in the written lesson plan (Brown, 2009).  While every ISA completed by a 

participating teacher is going to be different with respect to what ideas will be highlighted 

and what questions the teacher plans to ask, the general format of the ISA assumes the 

teachers will follow certain steps as they implement each the ISA.  The steps of the literal 

lesson are: 

1. The teacher will provide an opportunity for the piece of student work 

to be shared with the class, either by allowing the student to present his 

or her work, or the teacher, herself, showing the work to the class. 

2. The teacher will ask the questions (or an approximate variation of the 

questions) that they identified in the ISA.  A question might 

alternatively be considered addressed if a student provides a 

“response” to the question before the teacher asks it. 

3. The teacher scaffolds the sharing of the piece of student work to 

ensure that the mathematical ideas proposed by the teacher in the ISA 

surrounding the piece of student work emerge during the segment.   

4. Repeat steps 1-3 for the next piece of student work. 

The Implementation Fidelity Analysis identifies the extent to which the teachers followed 

these steps as they implemented their ISAs. 
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Fidelity to the literal lesson is measured for each piece of student work identified 

by the teacher in the ISA.  According to the format of the ISAs, the planned debrief is 

broken up by segments in which one segment is characterized by a selected piece of 

student work to be demonstrated accompanied by an identified Idea to Highlight and 

some questions the teacher plans to ask.  Within the enacted debrief, a segment refers to 

the time spent during the debrief focused on the selected piece of student work previously 

identified in the ISA.  A segment begins when a piece of student work is brought forth to 

be shared (either by the student or the teacher) and a segment ends when another piece of 

student work is brought forward to be shared or the focus of the discussion is no longer 

related to that student’s work.  These segments are delineated by time stamps from the 

audio-recording and breaking points from one segment to the next are also labeled in the 

transcripts.  Breaking down the whole-class discussions by these segments is reasonable 

as the teachers were requested to structure their problem-solving debriefs around the 

sequential demonstration of student work (Stein, Smith, et al., 2009).   

 Levels of fidelity. For each segment, one of three levels of fidelity to the literal 

lesson is assigned, with two of the three levels broken down into two sub-levels.  Fidelity 

level 1 is considered to be faithful implementation to the literal lesson.  During a faithful 

implementation of a segment of a debrief, the teacher clearly followed the ISA, sharing 

the selected pieces of student work, addressing the questions identified in the ISA, and 

addressing the mathematical ideas proposed by the teacher in the ISA.  Levels 2a and 2b 

are considered to be a partially faithful implementation of the literal lesson.  If a segment 

of a debrief is partially faithful then there is evidence that the teacher was attempting to 
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follow the ISA, but either the questions were not addressed but the Idea to Highlight was 

(level 2a), or the proposed Idea to Highlight did not emerge even though the questions 

were asked (level 2b).  Finally, levels 3a and 3b are considered to be non-faithful 

implementation of the literal lesson.  Either the student work was never presented (level 

3b) or the student did present, but the planned questions were never addressed and the 

Idea to Highlight did not emerge (level 3a).  While these three levels of fidelity point to a 

hierarchy of fidelity to the literal lesson in which the levels range from more to less 

faithful implementation, level 2a is not necessarily intended to indicate a more faithful 

implementation of the ISA than level 2b.  In both cases, a certain element of the ISA was 

not being addressed during the segment of the problem-solving debrief. 

In addition to these levels of fidelity, a participation code of + or – will be 

assigned to the segments indicating evidence of participation from the class.  A code of + 

is given to a segment in which students other than the presenting student spoke up during 

the segment.  A code of – is given to segments in which only the teacher and/or the 

presenting student spoke.  This code serves the purpose of distinguishing between 

discussions that are limited to the teacher and presenting student talking about the 

student’s work and those in which there is evidence of participation from other members 

of the classroom.  In the case where a segment is assigned a level 3b, a participation code 

is not assigned because the segment is essentially missing from the debrief. 

Assigning a Level of Fidelity.  In order to identify the level of fidelity, the audio 

recordings of the debriefs were transcribed and broken up into segments as described 

above.  A level of fidelity was assigned to each segment by answering a series of yes or 
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no criteria questions with respect to the proposed mathematical ideas and the planned 

questions as identified by the teacher in the ISA.  The questions are: 

1. Was the identified student’s work shown?   

2. Were the planned questions addressed by a student (either as a result of the teacher 

asking the question, or unprompted)?  

3. Were the important ideas surrounding this piece of student work, as proposed by 

the teacher in the ISA, evident in the segment? 

4. Did at least one other student, other than the presenting student, contribute to the 

discussion? 

These questions are used to assign one of the levels of fidelity to each segment.  See table 

5 for a summarized description of these levels and the criteria used to assign levels of 

fidelity. 

Table 5. Implementation Fidelity Analysis Tool: Four Levels of Fidelity 

Level Description Criteria 

1 The student work was shared.  The questions were asked 

and the proposed mathematical ideas were addressed 

during the debrief.   

Questions 1-3 are 

answered yes 

2a The student work was shared.  The questions were not 

addressed, but the proposed mathematical ideas emerged 

as planned. 

Questions 1 and 3 are 

yes, but Question 2 is 

no 

2b The student work was shared.  The questions were 

addressed by the students, but the proposed mathematical 

ideas were either not addressed or inadequately addressed.  

Questions 1 and 2 are 

yes, but Question 3 is 

no. 

3a The student work was shared, but the proposed 

mathematical ideas were not addressed and the questions 

planned by the teacher were never asked. 

Question 1 is yes, but 

Questions 2 and 3 are 

both no. 

3b The student’s work was never shared Question 1 is no. 

Participation Code: In addition to the assignment of one of the four levels described above, 

each segment will be assigned a participation code. 

+ 

 

At least one other student other than the presenting 

student made a verbal contribution to the discussion. 

Question 4 is 

answered yes. 

- Only the student whose work was being presented spoke 

during the segment 

Question 4 is 

answered no. 
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Data analysis procedures.  To assign the levels of fidelity to each segment 

within a debrief, I created a Microsoft Word document for every debrief.  In that 

document, a template was created for each segment in which I kept track of my responses 

to the four criteria questions along with an explanation for my responses and relevant 

time stamps. (See table 6 for a blank version of the implementation fidelity template and 

see table 10 for a completed example).  I completed these tables by listening to the audio 

recording and simultaneously reading the completed transcripts.  As I listened, I was 

looking for evidence of the planned questions and ideas to highlight being addressed.  In 

the template, I recorded the necessary yes/no responded to the criteria questions, the time 

stamps from the transcript for the times in which these episodes took place, and a brief 

description of how these events were taking place in the debrief.  (Note that, while the 

time stamps are not necessary for the assignment of a level of fidelity, they are recorded 

for future reference when answering research sub-question 3).  In the case of criteria 

question 2 (Were any of the planned questions addressed?), I answered the question 

(yes/no) for each planned question and, if at least half of the planned questions were 

addressed during the segment, then an overall response of yes was assigned for that 

segment.  Once all of the criteria questions were answered for a segment, a level of 

fidelity was assigned to that segment based upon the responses to the criteria questions 

(see table 5).  
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Table 6. Template Used for Analysis of Research Sub-Question 1 

Task: _________________________ Segment #: 
Teacher’s plan for the instructional segment as 

described in the ISA including questions. 

 

 

Idea to Highlight:  

Planned question(s)  

 Answer and explanation Times 

1. Was the identified student’s work shown?   

2. Were any of the planned questions 

addressed?  

 

 

 

3. Did the mathematical idea as proposed by 

the teacher become evident in the discussion?  

At some point was it the focus of the 

discussion? 

  

4. Did at least one other student, other than the 

presenting student contribute to the 

discussion? 

 

 

 

 

Level of Fidelity  

 

Once a level of fidelity was assigned to all segments in all debriefs, the data were 

consolidated into an excel spreadsheet with a column created for each task implemented 

by each teacher (grouped first by teacher, then by task).  In that column, the levels of 

fidelity were listed for every segment in the order in which they had been planned.  As a 

result, each implemented task was assigned from 2 to 6 levels of fidelity assigned, 

depending upon how many segments had been planned.  See Appendix B for the 

complete results of my analysis.  In the next section, I will provide two examples of how 

I used the IFA to assign levels of fidelity to the segments implemented from an ISA. 

Table 7. Teacher 3’s ISA for Spinner Elimination 

Student  Ideas to Highlight Questions to make the math salient 
1. Jake Change of numbers on spinner 

used bigger values.   
“Your advice to choose new numbers was to 

“spread them out”.  Does your work show this?  

Explain your thinking.” 
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2. Jeff -Uncover the issue with using 

numbers like 7 and 9. 
What did you discover in your experiment with 

using spinner number 2 numbers? 
3. Tara -Only 2s lead to even number 

choices 
What did you discover happens when using all 

similar numbers? 
4. Jenny -Using numbers higher than 4 

more likely to lose a turn. 
Relay your conclusion about using numbers less 

than 4.  What did two ones do to your products? 
5. 

Brian 
-Students should recognize 

that spinner numbers are low 

prime numbers. 

Can you think of a number to replace the 4 that 

would work just as well? 

Rationale:  My choices show a slight development in thinking about using small prime 

numbers for the spinner.  I used some samples (initially) that would not prove overly 

successful 7s, 9s, only 2s.  I ended with 2 sample papers that came the closest to using all 

prime factors. 

Mathematical Learning Goal: "Students will recognize prime numbers (or their multiples) 

connect to all numbers." 

 

Examples of the Implementation Fidelity Analysis  

In this section, I discuss two examples of the Implementation Fidelity Analysis 

applied to two segments from the same debrief
6
. Table 7, above, shows the ISA that 

Teacher 3 completed following implementation of the Spinner Elimination task and prior 

to implementation of the Spinner Elimination debrief.  The segments that I will be 

discussing in further detail are in bold print.  For a complete description of the Spinner 

Elimination task, please refer to Chapter 4, Task Analysis.  Below is a discussion of the 

IFA for segments 2 (student Jeff) and 5 (student Brian).  Along with an explanation for 

how the levels of fidelity were assigned to these two segments, I also include the 

transcripts of these segments (tables 9 and 12) and the document used to assign the 

appropriate level of fidelity to these segments (tables 10 and 13). 

 Discussion of Segments 2 and 3.  In segment 2 (Jeff’s work), Teacher 3 chose to 

focus on the difficulties that can arise from selecting large numbers to go on the spinner.  

                                                           
6
 The names of the students have been changed.  The teachers have been given numbers as identifiers; this 

allowed me to either identify a teacher as, for example, Teacher 3 when referencing the teacher in text and 

as T3 when identifying a teacher in a table or a graph where space was limited. 
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In particular, if a large number is spun more than once in a single turn, then the player 

will get a product that is greater than 50, causing him or her to lose a turn.  For example, 

if the 9 is spun twice in a row, the product is 81 and the player cannot cross the number 

off of the 50s chart and he or she will lose a turn.  In segment 5 (Brian’s work), the 

teacher planned to lead students to recognize that Brian was using not just low numbers, 

but low prime numbers.  Teacher 3 planned on having the class recognize that if they had 

at least one 2 on their spinner, then it was not absolutely necessary to have a 4 on the 

spinner because multiples of 4 will come up when a 2 is spun twice in one turn. 

 Example 1: Segment 2. In order to demonstrate how the IFA tool is used to assign 

a level of fidelity, I show how a level of fidelity was assigned to segment 2 of Teacher 

3’s Spinner Elimination debrief.  Table 8 shows an excerpt from Teacher 3’s Spinner 

Elimination ISA, identifying what she had planned for this portion of her debrief, 

including an excerpt from her rationale that was relevant to segment 2.  Immediately 

following that, in table 9, I show the transcript of the portion of the implemented debrief 

in which segment 2 was being addressed.  In the following paragraph, I discuss my 

rationale for how I assigned a level of fidelity to this segment.   

Table 8. Excerpt 1 from Teacher 3’s Spinner Elimination ISA 

Order of 

sharing 
Student 

name 
Ideas to Highlight Questions to make the math salient 

2 Jeff Uncover the issue with 

#s like 7 and 9. 
“What did you discover in your experiment 

with using spinner #2 #s?” 

Rationale: I used some samples (Initially) that would not prove overly successful 7s, 9s. 

 
Table 9. Teacher 3 Spinner Elimination Segment 2 Transcript 

Teacher3 All right.  I would like Jeff.  Would you bring yours up, please? 

Jeff For the first one, I did just as an experiment 1, 2, 3, 4, 5, 6, 7, 8. 

Teacher3 And how did your experiment go? 

Jeff That was okay, but I think I started out and once I got a low number like 8 or 
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something I spun again and went over, so that was my problem, not the 

spinner's problem.  And, yeah, that one worked out pretty well, but then for 

the second one I tried to switch it up as an experiment and I did 1, 1, 2, 2, 7, 

7, 9 and 9 and I spread them out more on the spinner, so there's like 1 and 1, 9 

and 9, 2 and 2, and 7 and 7. 

Teacher3 How did you choose doubles, you know, 1, 1, 2, 2.  How did you pick 7 and 

9?  How did you pick those numbers? 

Jeff Um, I wanted to do the extreme high and the extreme low and then… 2, I like 

2 for some reason so I just did that and then 7 was 9 minus 2, I guess, and it 

was kind of in the middle between 2 and 9, so I picked that and that one didn't 

work so well because I just went over every time like Jake said, so I said have 

at least 6 different numbers and keep those numbers below 8. 

Teacher3 So that was your final conclusion there, have at least 6 different numbers.  By 

that you mean 1, 2, 3, 4, 5, 6.  Are those different? 

Jeff Yeah.  Those are all different numbers.  So don't have only 4 different 

numbers. 

Teacher3 And keep them below 8.  So you would still have 7, and 6, and… 

Jeff Yeah. 

Teacher3 Okay.   Any questions for Jeff? 

Teacher3 Thank you. 

 

 In segment 2 of the ISA, the teacher planned to ask “What did you discover in 

your experiment with using spinner #2 numbers?”  In the implemented debrief, the 

teacher does not directly ask this question (she did ask a similar question with respect to 

the student’s first spinner when she asks him “And how did your experiment go?” but not 

the student’s second spinner as originally planned).  However, in this debrief, the planned 

question is considered to be addressed because the student stated, with respect to his 

second spinner, “that one didn't work so well because I just went over every time like 

Jake said”, essentially reporting that he discovered that the larger numbers on his second 

spinner were causing him to go over 50.  This statement about his spinner also served to 

address the teacher’s proposed mathematical idea that the larger numbers on a spinner 

were problematic.  The student went on to say that, in response to this dilemma, he 
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concluded that his next spinner would only have numbers less than 8.  Since the question 

was address and the proposed Idea to Highlight came up during the discussion, this 

segment was assigned a level 1.  Also, because Jeff was the only student speaking during 

this entire segment, a – code was assigned for student participation.  Below, in table 10, is 

the completed Implementation Fidelity Analysis for segment 2.   

Table 10. Implementation Fidelity Analysis for Segment 2 of Teacher 3’s Spinner Elimination debrief  

Teacher’s plan for the instructional segment as 

described in the ISA including questions. 

Jeff – Uncover the issue with using #’s like 7 & 9.     

 “What did you discover in your ‘experiment with 

using spinner #2 #’s’?” 

 

Idea to Highlight: Uncover the issue with using #’s like 7 and 9 

Planned question(s) What did you discover in your experiment with 

using spinner number 2’s numbers? 

 Answer and explanation Times 

1. Was the identified student’s work shown? yes 6:15-

8:26 

2. Were any of the planned questions addressed? 

Identify the times in which the questioning 

occurred. 

Yes 

Jeff said “that didn’t work so well b/c I 

just went over every time like Jake 

said.” 

7:19 

3. Did the mathematical idea as proposed by the 

teacher become evident in the discussion?  At 

some point was it the focus of the discussion? 

Yes 

Jeff identified that the large numbers 

were causing him to go over 50.  His 

conclusion was to keep the numbers 

below 8. 

7:19 

4. Did at least one other student, other than the 

presenting student contribute to the discussion? 

No  

Level of Fidelity 1- 

 

 Example 2: Segment 3.  My second example is the fifth and last segment of 

Teacher 3’s debrief for Spinner Elimination.  I selected this segment of this debrief as an 

example because it is in this segment that the teacher finally addresses the goal of her 

lesson which was: “Students will recognize prime numbers (or their multiples) connect to 

all numbers”, as stated in her Ideas to Highlight section of segment 5 (see Table 11).  She 

planned to ask the question of “Can you think of a number to replace the 4 that would 
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work just as well?”  This question could potentially allow her students to recognize that 

having 2’s on a spinner would potentially allow the player to cross off all multiples of 4 

on the 50’s chart by spinning the 2 at least twice in one turn.  See table 11 for the excerpt 

of segment 5 from Teacher 3’s Spinner Elimination ISA and see table 12 for the 

transcript of the implementation of segment 5.  Below I discuss the assignment of fidelity 

for this segment. 

Table 11. Excerpt 2 from Teacher 3’s Spinner Elimination ISA (Segment 5) 

Order of 

sharing 

Student 

name 

Ideas to Highlight Questions to make the math salient 

5 Brian -Students should 

recognize that spinner 

numbers are low prime 

numbers. 

Can you think of a number to replace the 4 that 

would work just as well? 

Rationale: I ended with 2 sample papers that came the closest to using all prime factors. 

 
Table 12. Teacher 3 Spinner Elimination Segment 5 Transcript 

Teacher 3:  And Brian.  Would you mind?  Thank you.  Talking about you and your 

partner's thinking. 

Brian: Me and my partner, Jordan, did different things.  But, um, I mostly chose 

on the lower side of numbers. 1, 5, 2, 2, 3, 5, 4, 3. 

Teacher 3: Why? 

Brian: The one was like a safety net in case I spun again because I wanted to.  

It's like a safety net.  I thought it might help me.  Um, 5s I figured that if I 

get anything times 5 I've got a pretty good range.  I've got 20 numbers I 

could have with 5s. [inaudible].  And 2, is just a good number.  It's got 25 

multiples in 50 and then, um, 3 and 4 are just lower numbers and they've 

got a lot of multiples and so that worked. 

Teacher 3: I noticed that with your first guess you almost followed Jenny's 

recommendation of picking all the numbers less than six with two repeats. 

Brian: I did pretty good on that turn.  I got 8 only.  That's pretty good.  And 

possibly, I had a pretty good score but I think I would switch a 5 with a 4 

and it might make my score a bit better because a 5 I ended up busting.  

That's the only time I busted with the 5, so I went 15223243 instead of, I 

didn't do that. 

Teacher 3: So you changed your five to a two.  Looks like.  Is that the only change 

you made?  Any just random low numbers?  Could you leave your paper 

up there for a second.  Class, if you were looking at Brian's spinner 2 

selections, most of those numbers on spinner 2 are what type of numbers? 

Stud. prime 
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Teacher 3: Why?…. Why, Jordan? 

Jordan: Because if you have like a lot of prime numbers it won't usually like go 

over.  Because if you multiply a lot with something like 6 or 7 it could go 

over.  But if you use a lot of prime numbers you could get a different 

variety on the chart. 

Teacher 3: Of what type of number? 

Jordan: Prime. 

Teacher 3: But get a different variety on the chart of what type of number? 

Jason Composite. 

Teacher 3: Yeah.  Because composite numbers are all products of prime numbers.  

And possibly, Brian, if you could change one number on spinner number 

two for your third assessment what would they be? 

Brian: I'd probably change a 1 to a 2. 

Teacher 3: Why? 

Brian I'd change it because the 1 really didn't help me at all.  It didn't give me 

any points.  I got maybe 1 point off of it.  It's not really worth anything. 

Teacher 3: Right.  Because you could just stop and get the same answer as if you 

spun a one. 

 

 In this second example, the teacher had planned to ask “Can you think of a 

number to replace the 4 that would work just as well?” but nowhere in this segment did 

anyone discuss the possibility of replacing a 4 with a different number.  An appropriate 

response to this question would have been to replace the 4 with a 2 because, if the spinner 

landed on the 2 twice, it would be the same as spinning a 4 once.  This idea was never 

brought up during the segment.  However, the proposed mathematical idea, that she 

wanted her students to recognize that the presenting student’s spinner contained low 

prime numbers, did come up during the debrief.  The teacher directed the class’s attention 

to the fact that his spinner contained mostly prime numbers when she asked “most of 

those numbers on spinner two are what type of numbers?”  A student in the class 

responded that they were mostly prime numbers and, with the teacher’s prompting, 

explained that having mostly primes was beneficial because it could potentially give you 

a wider variety of composite numbers on the 50’s chart.  The teacher closed this 
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discussion by stating that “composite numbers are all products of prime numbers.”  

Analysis of this segment, as shown in table 13, resulted in the assignment of level 2a+ to 

the segment because, although the planned question was never addressed, the proposed 

mathematical idea did emerge.  The + was assigned because an additional student shared 

during the discussion.  Below is the Implementation Fidelity Analysis completed for this 

segment. 

Table 13. Implementation Fidelity Analysis for Segment 5 of Teacher 3’s Spinner Elimination debrief 

Teacher’s plan for the instructional segment as 

described in the ISA including questions. 

Brian – Students should recognize that spinner 

numbers are low prime #’s. 

 “Can you think of a # to replace the 4 that would 

work just as well?” 

 

Idea to Highlight: Students should recognize that spinner numbers 

are low prime #’s. 

Planned Question: Can you think of a number to replace the 4 that 

would work just as well? 

 Answer and explanation Times 

1. Was the identified student’s work shown? Yes 13:55-

18:08 

2. Were any of the planned questions addressed?  No.  Nowhere in the segment did 

anyone discuss replacing a 4 with 

another number. 

 

3. Did the mathematical idea as proposed by the 

teacher become evident in the discussion?  At 

some point was it the focus of the discussion? 

Yes.  Teacher 3 focused the class’s 

attention on the fact that most of 

Brian’s numbers on his second spinner 

were low prime numbers.  With a little 

prompting, a student in the class stated 

that this would lead to a variety of 

composite numbers on the 50’s Chart. 

16:00-

16:48 

4. Did at least one other student, other than the 

presenting student contribute to the discussion? 

Yes 16:14-

16:48 

Level of convergence 2a+ 

 

 Discussion of the Two Examples. It is important to be clear that the purpose of the 

Implementation Fidelity Analysis is not to analyze the mathematical nature of the 

problem-solving debrief.  Rather, the tool is simply intended to determine the extent to 

which the discussion was implemented as intended by the teacher.  What we learn from 
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this tool is that, in the first example, the segment was well aligned with the ISA as the 

planned question was addressed by the student and the proposed idea to highlight was 

evident.  In the second example, although the teacher was successful in focusing the 

discussion on the proposed idea to highlight, this was not done with the help of the 

planned question.  It is clear here that the teacher stuck to her plan of focusing the class’s 

attention on the fact that the student was using low prime numbers on his spinner, but this 

was not done with the help of the question the teacher planned. 

What we may observe from these two examples is that the teacher is not 

consistently using the planned questions to focus the discussion on the planned ideas to 

highlight.  Particularly in the second example, Teacher 3 disregarded her planned 

question and chose a different approach for bringing out the planned idea to highlight.  

This raises questions about the relationship between the nature of the teacher’s plans and 

the outcomes of the problem-solving debrief.  For example, are segments more likely to 

be faithfully implemented if there is a clear relationship between the planned questions 

and the planned ideas to highlight?  Also, does the way that a question from the ISA is 

addressed affect the opportunities for the students to think and reason about the question? 

Notice that, although a lower level of fidelity was assigned in the second example, 

this does not necessarily reflect the strength or weakness of the segment with respect to 

the mathematical content of the discussion within the segments.  The first segment may 

be considered weak with respect to its mathematical content because it was only useful 

for drawing attention to the idea that larger numbers on the spinner are more likely to 

cause the player to go over fifty.  In contrast, mathematical concepts were more evident 
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in the second example because, in the second segment, the class’s attention was drawn to 

the fact that the student’s spinner contained mostly prime numbers and that the prime 

numbers were useful for creating a wide variety of composite numbers on the chart.  

While this tool is helpful for demonstrating the relationship between the ISA and the 

implemented debrief, more analysis is required to understand the quality and nature of the 

discourse.  This further analysis is reserved for research sub-questions 2 and 3. 

Inter-Rater Reliability of the Implementation Fidelity Analysis Tool 

After I developed the Implementation Fidelity Analysis tool, I collaborated with 

another member of the MPSM research team to assess the inter-rater reliability of the 

tool.  After collaborating together on the analysis of a couple of debriefs, allowing me to 

share the Implementation Fidelity Analysis tool and to make sure that the other coder 

understood how to respond to the questions designed to lead to the designation of a level 

of fidelity, we each completed an analysis of three debriefs from three different teachers 

from cohort 2.  Between the three teachers, there was a total of 14 segments, giving us a 

segment population of n=14.  Because we both agreed that one of the 14 segments was 

never implemented (giving that segment a fidelity level of 3b, the majority of the results 

shown below were for a population of n=13).  Below, I share the percentage of agreement 

for each of the four questions from the Implementation Fidelity Analysis tool and then 

discuss the overall outcome that our responses to these questions had on the assignment 

of the levels of fidelity. 
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Question 1: Was the identified student’s work shown?  Of the 14 segments 

identified in the ISAs by the three teachers, we demonstrated 100% agreement.  Of the 14 

segments identified in the teachers’ lesson plans, all but one of the students’ work were 

shared.  Because no discourse took place around that student’s work, the remaining 

questions will be analyzed with a population of 13 segments.  See table 14 for a summary 

of our analysis for question 1.   

     Table 14. Inter-rater reliability comparison for question 1 of IFA 

(A1 = my responses, B1 = colleague’s responses, 1 = yes, 0 = no) 

TeacherID Segment A1 B1 Agreement? 

23 1 1 1 1 

23 2 0 0 1 

23 4
7
 1 1 1 

31 1 1 1 1 

31 2 1 1 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 1 1 1 

31 6 1 1 1 

3 1 1 1 1 

3 2 1 1 1 

3 3 1 1 1 

3 4 1 1 1 

3 5 1 1 1 

    %agreement:100% 

 

Question 2: Were any of the planned questions addressed by a student (either as 

a result of the teacher asking the question, or unprompted)?  We agreed on 11 out of 13 

of the segments, yielding 84.6% consistency (see table 15).  In both cases, the other 

researcher thought that the planned questions were addressed by the student, while I did 

not. 

 

                                                           
7
 Data skips from segment 2 to segment 4 because the data for segment 3 of Teacher 23’s debrief is 

missing. 



159 

 

Table 15. Inter-rater reliability comparison for question 2 of IFA 

(A2 = my responses, B2 = colleague’s responses, 1 = yes, 0 = no) 

TeacherID Segment A2 B2 Agreement? 

23 1 1 1 1 

23 2 NA NA  

23 4 0 1 0 

31 1 1 1 1 

31 2 1 1 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 1 1 1 

31 6 1 1 1 

3 1 1 1 1 

3 2 1 1 1 

3 3 1 1 1 

3 4 1 1 1 

3 5 0 1 0 

    %Agreement:84.6% 

     

Question 3: Was the mathematical idea as proposed by the teacher evident in 

the segment?  We agreed upon 12 out of 13 of the segments, yielding 92.3% reliability.  

In the instance that we did not agree, the other researcher thought that the mathematical 

idea as proposed by the teacher was not evident, while I did (see table 16).   

Table 16. Inter-rater reliability comparison for question 3 of IFA 

(A3 = my responses, B3 = colleague’s responses, 1 = yes, 0 = no) 

TeacherID Segment A3 B3 Agreement? 

23 1 1 1 1 

23 2 NA NA  

23 4 1 1 1 

31 1 1 1 1 

31 2 0 0 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 1 1 1 

31 6 1 1 1 

3 1 1 1 1 

3 2 1 1 1 

3 3 1 1 1 

3 4 1 0 0 

3 5 1 1 1 

    %Agreement:92.3% 
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Levels of fidelity. The levels of fidelity that are assigned to the segments in a 

debrief are completely dependent upon the responses given to the three questions (see 

Table 5 above for the criteria used to assign these questions).  Recall that the levels of 

fidelity are ranked as faithful implementation (1), partially faithful implementation 

(2a/2b), and non-faithful implementation (3a/3b).  Within these parameters and based 

objectively on the responses to criteria questions 1-4, we agreed on 11 out of the 14 

segments, showing a 78.6 % rate of consistency (see table 17).  Because our inconsistent 

results from criteria questions 2 and 3 were never from the same segment, the overall 

fidelity is less consistent than the results for each individual criteria question. 

  Table 17. Inter-rater reliability comparison for assignment of fidelity 

(AL = level of fidelity assigned based upon me, BL = level of fidelity assigned by colleague) 

TeacherID Segment A1 B1 A2 BT2 A3 B3 AL* BL* Agreement? 

23 1 1 1 1 1 1 1 1 1 1 

23 2 0 0  NA NA  NA  NA  3b 3b 1 

23 4 1 1 0 1 1 1 2a 1 0 

31 1 1 1 1 1 1 1 1 1 1 

31 2 1 1 1 1 0 0 2b 2b 1 

31 3 1 1 1 1 1 1 1 1 1 

31 4 1 1 1 1 1 1 1 1 1 

31 5 1 1 1 1 1 1 1 1 1 

31 6 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

3 2 1 1 1 1 1 1 1 1 1 

3 3 1 1 1 1 1 1 1 1 1 

3 4 1 1 1 1 1 0 1 2b 0 

3 5 1 1 0 1 1 1 2b 1 0 

          %agreement:78.6% 

 

Question 4: Did at least one other student, other than the presenting student 

contribute to the discussion?  The last question in the Implementation Fidelity Analysis 

does not affect the levels of fidelity shown above.  Rather, this is a separate analysis that 
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simply rates the level of participation of the class during the segment.  Of the 13 

segments, we agreed upon 11 out of 13 of the segments, yielding 84.6% consistency (see 

table 18).  In both cases of disagreement, I said that there were contributions from other 

students and the other researcher did not.  Part of the reason for the inconsistencies here 

is because I originally tried to require that the contributions from the students were of 

some value to the discussion.  This meant that when students made minor contributions to 

the discussion, such as answering a short-response question, this was not necessarily 

counted.  Because this was producing inconsistent results, I later changed this criteria to 

simply require that students were contributing to the discussions, whether the 

contributions were significant or not. 

Table 18. Inter-rater reliability comparison for question 4 of IFA 

(S4 = my responses, T4 = Colleague’s responses, 1 = yes, 0 = no) 

TeacherID Student S4 T4 Agreement? 

23 1 1 0 0 

23 2 NA NA NA 

23 4 1 0 0 

31 1 1 1 1 

31 2 0 0 1 

31 3 1 1 1 

31 4 1 1 1 

31 5 0 0 1 

31 6 1 1 1 

3 1 0 0 1 

3 2 0 0 1 

3 3 0 0 1 

3 4 0 0 1 

3 5 1 1 1 

    %Agreement:84.6%  

 

 Based upon the results from the inter-rater reliability analysis, it may be 

concluded that the Implementation Fidelity Analysis yields reasonably consistent results. 
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Results 

 Twenty-five debriefs were planned and implemented by twelve teachers for this 

analysis.  Within these twenty-five debriefs, a total of 107 segments were planned.  

Grouping all 107 segments together, disregarding which teacher or task the segments 

belonged to, 67 of the 107 (about 63%) were implemented faithfully (level 1), in which 

the student’s work was presented, the planned questions were addressed, and the 

identified ideas to highlight was discussed.  15 of the 107 segments (or about 14%) were 

not implemented faithfully either because the student’s work was not presented (level 3a) 

or because the teacher presented the student’s work without addressing either the ideas to 

highlight or the planned questions (level 3b).  This left 25 of the 107 segments (about 

23%) that were implemented partially faithfully, with the student’s work being addressed 

and either the ideas to highlight being addressed or the planned questions being 

addressed, but not both.  See table 19 and figure 12 for a summary of this data.  The 

complete set of results may be found in Appendix B.   

Table 19. Summary of Results from Implementation Fidelity Analysis Tool 

Level of Fidelity #segments (%) 
Level 1 67 (62.62%) 
Level 2 
     Level 2a 
     Level 2b 

25 (23.36%) 
         23 (21.495%) 
         2   (1.869%) 

Level 3 
     Level 3a 
     Level 3b 

15 (14.02%) 
         7 (6.54%) 
         8 (7.48%) 

Total 107 

 

Interestingly, 23 of the 25 segments that were implemented partially faithfully 

were because the teacher never addressed the planned questions but still addressed the 
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ideas to highlight.  This may be because the teachers tended to plan their questions such 

that if the question was addressed, then the Ideas to Highlight would consequentially be 

highlighted, which would result in level 1 fidelity.   

 

 
 Figure 12. Distribution of segments by levels of fidelity 

 

 It is important for this overall research study to know that the teachers were using 

their ISAs in their classrooms.  Since partially faithful implementation shows that the 

teacher used at least part of the ISA in their debrief (either addressing the ideas to 

highlight or asking the planned questions), which allows us to consider both faithful and 

partially faithful segments as being implemented by the teacher with some attention to 

the ISA.  We see that 92 of the 107 segments (or about 86%) were implemented as 

described in the ISA.  Also, 90 of the 107 segments (about 84%) were implemented 

faithfully with respect to the mathematics identified in the Ideas to Highlight.  This 

suggests that, overall, the teachers were following the ISAs as they were implementing 

their debriefs.  One possible explanation for these high levels of consistency is that the 

teachers knew that they were expected by the research team to follow the ISA during the 
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debriefs, as both the ISA and the audio-recording of the debrief would be collected.  It 

would also be hoped, though, that the act of writing up an ISA would be helpful for 

developing in the teacher’s mind what he or she wishes to address with the students 

during the debrief and that they would, in turn, find it useful and natural to follow along 

with ISA to keeps those important ideas in focus. 

 It is also possible that so many of the partially faithful segments were due to the 

teachers addressing their identified ideas to highlight without asking the planned 

questions (23 out of 25) was because it was easier for the teachers to remember what the 

big ideas were in the ISAs, but may have had a harder time remembering what the 

questions were that they were going to ask.  If they were running their debriefs without 

holding the ISA directly in front of them, they may have failed to follow the ISA exactly 

as planned simply because they couldn’t remember all of the details. 

 When looking at the data grouped by debrief, we see further evidence that the 

teachers were committed to using the ISAs. Findings showed that all of the teachers were 

using the ISA to some extent during their problem-solving debriefs.  Specifically, of the 

25 debriefs implemented by the 12 teachers, only eight of those 25 debriefs had been 

identified as having any non-faithfully implemented segments in them (levels 3a or 3b).  

Looking at the same data by teacher, these eight debriefs containing non-faithful 

segments were implemented by the same four teachers.  Also, of the 15 segments that 

were implemented non-faithfully, 11 were implemented by the same two teachers.  While 

these two teachers had a strongly tendency towards non-faithfully implementing their 

ISAs as planned (implementing two to three segments non-faithfully for each ISA), the 
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other two teachers only ever had one non-faithfully implemented segment per debrief.  

Interestingly, the teachers with a high tendency towards non-faithfully implementing a 

debrief worked at the same school, although they both reported never having time to 

work together.  It is possible, though, that norms or policies within the school encouraged 

teachers to adapt instruction. 

Regardless of the inclusion of segments that were not faithfully implemented, 

even those debriefs showed some evidence of faithful implementation as all eight of the 

debriefs with at least one non-faithful segment also had at least one other segment that 

was identified as faithfully implemented.  This suggests that, while these teachers were 

neglecting some parts of their ISAs, they were attentive to other parts of the tool.  

Generally speaking, 24 of the 25 total debriefs had at least one level 1 segment.  The one 

debrief that was lacking a level 1 segment contained only two segments, both of which 

were assigned level 2a, suggesting that the teacher was following the big ideas of the 

ISA, but was neglecting the planned questions.   

 
Figure 13. Distribution of fidelity of segments by debrief (organized from more to less faithfully 

implemented) 
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Figure 13 shows the distribution of faithful, partially faithful, and non-faithful 

segments within each debrief.  The debriefs in this table are roughly organized from more 

to less faithful to demonstrate the overall trend for teachers to follow the ISA they created 

for their debriefs.  Note that four of the debriefs were implemented completely faithfully, 

eight of the debriefs were implemented faithfully, with the exception of one partially 

faithful segment, and two debriefs were implemented faithfully with the exception of one 

non-faithful segment (both Teacher 23).  This shows 15 of the 25 debriefs implemented 

with a strong tendency towards faithful implementation.   

 
Figure 14. Distribution of fidelity of segments by debrief (grouped by teacher) 

 

 Figure 14 also shows the distribution of faithful, partially faithful and non-faithful 

segments within each debrief, but the segments have been grouped by teachers.  This 

table allows us to see the individual tendencies of the teachers to be more or less faithful 

when implementing their problem-solving debriefs.  Notice, in particular, teacher 3’s 

tendency to faithfully implement her debriefs with two of her debriefs containing four out 

of five segments faithfully implemented (80%) and a third debrief faithfully implemented 

with all four segments (100%).  In contrast, teachers 25 and 26 have an unusually strong 
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tendency to not faithfully implement their debriefs.  Out of teacher 25’s two implemented 

debriefs, she implemented two out of five (40%) and three out of four (75%) of her 

planned segments non-faithfully.  Similarly, teacher 26 implemented three out of six 

(50%) and three out of five (60%) of his debriefs non-faithfully. These findings for 

teachers 25 and 26 particularly stand out because they were the only teachers that 

implemented more than one non-faithful segment in a single debrief and they did it for all 

of their debriefs.  It is interesting to note that teachers 25 and 26 are both from the same 

school, although during the time that this data was collected, they had both mentioned 

that they rarely had time to collaborate.   

 While teachers 3, 25, and 26 all showed consistencies with the fidelity or lack of 

fidelity with which they implemented their debriefs, some teachers showed some 

surprising difference in how they faithfully implemented their debriefs.  Teachers 27 and 

31 each implemented two debriefs that were, for the most part, faithfully implemented 

(75%-100% of their segments were faithfully implemented), but they each had a third 

debrief that was not implemented faithfully (20% and 0% faithful, respectively).  This 

raises the question of what made those debriefs that were less faithfully implemented 

different from the faithfully implemented ones.  In particular, did the nature of the plans 

they wrote in their ISAs have an impact on the level of fidelity with which they 

implemented those debriefs?  I look more closely at teacher 27’s debrief and discuss 

further the discrepancies between his ISA and the enacted debrief when I address 

research sub-question 3. 
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 Participation codes. Along with the levels of fidelity, each segment was also 

assigned a participation code.  Each segment was assigned a code of ‘+’ or ‘–’ based 

upon whether or not there was evidence of participation from the rest of the class (that is, 

other than the presenting student).  A code of ‘+’ (referred to below as a participation 

code) was assigned if a student other than the presenting student made a contribution to 

the segment.  A code of ‘–’ (referred to below as a non-participation code) was assigned 

if no student other than the presenting student made a contribution to the discussion.  This 

code was not assigned to segments that were coded as 3b because, if the student work 

was never presented, then there was no discussion around which students might 

participate.  As a result, the participation/non-participation codes were assigned to a total 

of 99 segments.  See a breakdown of these participation codes in Table 20. 

Table 20.  Breakdown of Participation Codes by Level of Fidelity 

 Faithful Partially Faithful Non-Faithful Total 

Participation 45 (67%) 14 (56%) 4 (57%) 63(63.6%) 

Non-Participation 22 (33%) 11 (44%) 3 (43%) 36 (36.4%) 

Total 67 25 7 99 

 

 Out of a total of 99 segments, 63 segments were given a participation code 

(63.6%) and 36 segments were given a non-participation code (36.4%).  The percentage 

distribution of these codes within the partially faithful and non-faithful segments was 

very similar with 56% of the partially faithful segments and 57% of the non-faithful 

segments being assigned the participation code.  In contrast, the faithful segments had a 

slightly higher level of participation with 67% of these segments being assigned the 
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participation code.  This suggests that either the teachers have an easier time engaging the 

class when they use their plans from the ISA, or they have an easier time following the 

ISA when their students are willing to participate. 

 
Figure 15. Evidence of participation per segment, grouped by debrief from most to least 

participation. 

  

Figure 15 shows the distribution of participation levels within each debrief.  The 

chart is roughly organized according to the number of segments assigned a participation 

code and the number of segments assigned a non-participation code (the third bar 

represents segments that were assigned a code of 3b and, thus, could not be given a 

participation code).  The table demonstrates teachers’ tendencies to either run their class 

so that students are regularly contributing or to run their class so that students are almost 

never participating.  Notice how there are six debriefs in which students were 

participating for all segments.  Conversely, there are four segments in which students 

were never found to be participating.   
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Figure 16. student participation in debriefs, grouped by teachers 

 

 Figure 16 shows the same data grouped by teachers.  Note that teachers 22 and 27 

each have a debrief in which someone is participating in every segment and a debrief in 

which no students were observed participating other than, possibly, the presenting 

student.  (Teacher 27 also had a debrief in which the students were contributing half the 

time and the other half of the time they were not.).  This would suggest that something 

was different about their debriefs that affected the level of participation of the students.  

On the other hand, there was also a teacher (teacher 24) who had two debriefs in which 

students were regularly participating and a teacher (teacher 3) who had two debriefs in 

which no students ever participated.  This suggests that these teachers may be following a 

pattern of instruction that either gives opportunities for students to share or fails to give 

opportunities to allow students to share.  These patterns are worth investigating to see 

whether or not there is a relationship between the teachers’ plans that is affecting the 

outcomes of their debriefs, or if it is the improvisational moves of the teachers that are 

causing more or less participation from the class.  These are questions that will be 

investigated further in research sub-question 3. 
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Conclusions 

 The Implementation Fidelity Analysis tool was designed to answer research sub-

question 1 (Do teachers enact their written plans in the classroom as they had planned 

prior to implementation?).  The quick answer to this question is that, yes, teachers did 

show a tendency to implement at least part of their ISAs as planned.  Nearly two thirds of 

all the segments planned by the teachers were faithfully implemented and 86% of all the 

segments were implemented with at least partial fidelity.  An examination of the 

segments grouped within their respective debriefs also supported the conclusion that most 

of the teachers were implementing their problem-solving debriefs with at least some 

fidelity to the ISAs.  In particular, more than half of the problem-solving debriefs were 

implemented in such a way that no more than one segment was implemented unfaithfully.  

Also, twenty-four of the twenty-five debriefs in the study were implemented with at least 

one of the segments implemented faithfully.  This suggests that, even if there wasn’t 

perfect fidelity to the ISAs, all of the teachers at least attempted to implement their 

debriefs according to their written plans. 

 There was, however, some exceptions to this trend to implement the ISAs 

faithfully.  Two teachers demonstrated a very strong tendency to not faithfully follow the 

plans they documented in their ISAs.  Both of these teachers failed to faithfully 

implement either two or three of their segments for each debrief they implemented.  

These were the only teachers to show non-faithful implementation on more than one 

segment within a debrief.  Also, there were two teachers that showed a strong tendency to 

faithfully implement their ISAs for two of the three debriefs they implemented, but they 
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then demonstrated an, overall, less faithful implementation on a third debrief.  These 

examples suggest that teachers’ improvisational moves may continue to heavily impact 

the outcomes of a lesson despite the use of a lesson plan. 

 In addition to analyzing the extent to which the teachers were addressing their 

planned questions and ideas to highlight, the IFA tool also examined whether or not 

students other than the presenting student were contributing to the discussion.  The results 

showed some tendency for the students to participate in the debriefs (63.6% of the 

segments were assigned the participation code).  Interestingly, students were more likely 

to participate when the ISA was being implemented faithfully (67% of the segments 

identified as faithfully implemented were assigned a participation code versus 56% and 

57% for the partially faithful and non-faithful segments, respectively).  It is difficult to 

say, however, why this trend towards greater participation in the faithful segments exists.  

It might be that when teachers are following the ISA they have an easier time engaging 

their students in the discussion, or it might be that the teachers have an easier time 

following the ISA when their students are willing to participate.    

Application of the Implementation Fidelity Analysis to the Research 

Questions.  The levels of the Implementation Fidelity Analysis tool were intended to 

capture the extent to which the teachers were implementing the questions and ideas they 

had identified in the ISA.  It does not address how they engaged students in mathematical 

discourse.  The Implementation Fidelity Analysis only captures fidelity to the literal 

lesson.  That is, it measures the extent to which the teachers followed the steps in their 

ISAs, regardless of the mathematical content that was developed in the plan.  This data 
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analysis tool was used to answer research sub-question 1 (Do teachers enact their written 

plans in the classroom as they had planned prior to implementation?).  This is an essential 

question to ask when studying the impact that a written lesson plan has on the enacted 

lesson because, if a teacher fails to adhere to the basic steps in the lesson plan, then it is 

difficult to attribute the outcomes of the debrief to the written lesson plan.   

In order to accurately answer research sub-question 2 (Is there a correlation 

between the number of questions teachers plan that promote mathematical reasoning and 

argumentation and those that they actually ask during the whole-class discussion?), it is 

necessary to know the level at which the teacher adhered to the lesson plan during 

implementation.  Research sub-question 2 addresses the influence that the types of 

questions the teachers planned to ask had on the nature of the discourse.  If a teacher was 

not using the questions from the ISA in his or her debrief, then we cannot assume any 

connections exist between the types of questions the teacher planned to ask and the nature 

of the discourse that subsequently took place.   

A faithful implementation of the ISA does not necessarily imply that what took 

place during the problem-solving debrief was a perfect reflection of what the teacher had 

intended in the write-up of an ISA.  For research sub-question 3 (“How do teachers’ 

improvisational moves during whole-class discussions influence the enactment of the 

questions that were planned by the teacher prior to implementation?”) I analyzed the 

episodes in the debriefs in which the planned questions were being addressed.  The 

purpose of this analysis was to gain a better understanding of how a question that was 

planned in the ISA can change as it is being implemented by the teacher.  In particular, I 
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examined the teachers’ moves that impacted how a planned question was addressed.  I 

continue this discussion of my research analysis and results in the following chapter in 

which I discuss the analysis and results for research sub-question 2.
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Chapter 7. Research Sub-Question 2 

 

 This chapter is devoted to the analysis of research sub-question 2, the part of the 

analysis focused on the intended lesson, or the opportunities to reason mathematically, 

that were identified in the lesson plan.  This portion of the analysis addresses the nature 

of questions that the teachers planned with a particular focus on whether or not the 

planned questions were intended to create opportunities for students to reason 

mathematically.  In this chapter, I will describe the coding scheme that I developed to 

differentiate between questions that promote mathematical reasoning (high-press) and 

those that do not (low-press).  My description of the coding scheme includes a discussion 

of Kazemi and Stipek’s (2001) conceptualization of a high-press mathematics classroom 

and a low-press mathematics classroom and how this framework was used to develop my 

codes.  I include a discussion of my coding scheme, including a discussion of inter-rater 

reliability.  The analysis section of this chapter includes a description of how I used this 

coding scheme to analyze my data, the results from this analysis, and I conclude with a 

discussion of how these findings contribute to the larger study. 
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Development of the Question Codes 

To answer research sub-question 2 (Is there a correlation between the number of 

questions teachers plan that promote mathematical reasoning and argumentation and 

those that they actually ask during the whole-class discussion?), I developed a coding 

scheme to analyze teacher questions from the Instructional Sequence Analysis (ISA) and 

their implemented debriefs (see Appendix A to see an example of the ISA).  My primary 

goal for developing this coding scheme was that the codes differentiated the questions as 

either high-press (promoting thinking and reasoning about the mathematics in the task) or 

low-press (promoting communication, but not necessarily mathematical reasoning).  To 

define what I mean by high-press and low-press, I used Kazemi and Stipek’s concept of 

high-press and low-press teacher-student interactions as a basis for my coding scheme 

(2001).  In their analysis of four upper-elementary classrooms that were characterized as 

having positive social norms, that is, characterized by students working together and 

sharing their problem-solving strategies with one another, they found that, in two of the 

classrooms, students were engaged in richer mathematical discussions than in the other 

classrooms.  They identified four sociomathematical norms that differentiated the high-

press classes from the low-press classes:   

(a) an explanation consists of a mathematical argument, not simply a 

procedural description or summary;  

(b) mathematical thinking involves understanding relations among 

multiple strategies;  

(c) errors provide opportunities to reconceptualize a problem, explore 

contradictions in solutions, or pursue alternative strategies; and 



 177 

(d) collaborative work involves individual accountability and reaching 

consensus through mathematical argumentation. (Kazemi & 

Stipek, 2001, 64). 

This conceptualization of high-press and low-press discourse was helpful for 

developing a coding scheme that clearly distinguished between high-level and low-level 

mathematical discourse because their characterizations of low-press versus high-press 

were primarily developed in the context of students sharing out their problem-solving 

strategies in a manner similar to the debriefs I am analyzing.  Below is an overview of the 

final coding scheme developed for my analysis.  See Appendix C for a complete 

description of the codes and examples of coded questions from the data. 

Question Codes 

High Press- 

H1. Reasoning and Justification 

H2. Addressing Errors and Misconceptions, Verifying a Solution 

H3. Generalizations, Conjectures, New Strategies 

H4. Making Connections 

H5. Clarifying other Students’ Thinking 

Low-Press- 

L1. Sharing and Explaining 

L2. Short-Answer Questions, Recall Facts, Procedural Answer 

L3. Non-Mathematical Questions 

While my coding scheme was inspired by Kazemi and Stipek’s high-press versus 

low-press teacher-student interactions, my codes were not meant to be a perfect match 

between these norms.  Table 21 shows the relationship between my codes and the 

characterizations of high-press and low-press identified in Kazemi and Stipek’s study.  In 
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this table, the first column contains my question codes with a brief description of the 

code, the second column gives both references to the sociomathematical norms given in 

the quotation above as well as additional quotes from Kazemi and Stipek’s article 

describing characteristics of the high-press and low-press classrooms.  I also include a 

third column that includes additional references to educational research that further 

support these categories of questions as promoting mathematical reasoning (high-press) 

or not (low-press). 

Table 21 Relating Question Codes to Kazemi and Stipek’s high-press/low-press framework (2001) 

The Question Codes Sociomathematical Norm Other Supporting 

References 

H1 Reasoning and 

Justification. Questions that 

create an opportunity for 

students to provide rationale to 

support their reasoning and/or 

solution 

An explanation consists of a 

mathematical argument 

“In high-press interactions, students 

learned that they could justify their 

actions by triangulating verbal, 

graphical, and numerical strategies” 

(67) 

Ball & Bass (2003) 

Yackel & Cobb (1996) 

Wood & Turner-

Vorbeck (2001) 

H2 Addressing Errors and 

Misconceptions, Verifying a 

Solution. Prompts students to 

verify whether or not a solution 

is correct or discussing what 

makes a solution, or part of a 

solution, incorrect or 

problematic 

Errors provide opportunities to 

reconceptualize a problem, explore 

contradictions in solutions, or pursue 

alternative strategies.   

 “ Verification was an integral part of 

group activities during the lesson” 

(66) 

Baxter & Williams 

(2010) 

Fraivillig and Murphy 

(1999) 

Hiebert et al (1997) 

H3 Generalizations, 

Conjectures, and New 

Strategies. Prompt students to 

move forward with their 

thinking on the task by coming 

up with new ideas on how to 

solve the task or exploring the 

mathematical ideas surrounding 

the task 

“the teacher pressed them to think 

how else they could conceptualize 7/6” 

(68) 

 

Fraivillig & Murphy 

(1999) 

Hiebert et al (1997) 

Jansen (2009) 

Rasmussen & 

Marrongelle (2006) 

H4 Making Connections. 

Prompts students to make 

connections between strategies, 

representations, other 

mathematics (besides that which 

is central to solving the task), or 

real-world context. 

Mathematical thinking involves 

understanding relations among multiple 

strategies 

“The teacher initiated a discussion 

that required students to 'focus on the 

mathematical concept of equivalence 

and its relation to the process of 

adding fractional parts.” (70) 

 

Hiebert & Wearne 

(1993) 

Fraivillig & Murphy 

(1999) 

Carpenter, Ansell, & 

Levi (2001) 

H5 Clarifying other Students’ Collaborative work involves individual O’Connor (1998) 
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Thinking. Prompt students to 

make sense of what other 

students are saying or thinking. 

accountability 

“She invited everyone, not just the 

students at the board, to think about 

how the students had solved the 

problem.” 

 “both [high-press teachers] invited all 

members of the group to contribute to 

the explanation of their group's 

work.” (77) 

Hiebert et al. (1997) 

L1 Sharing and Explaining a 

request for the presenting 

student to describe the work that 

they did, or explain their 

thinking on the task. 

An explanation … [is] not simply a 

procedural description or summary 

“In low-press exchanges …Students 

described solutions primarily by 

summarizing the steps they took to 

solve a problem” (68) 

Ball, Lubienski, & 

Mewborn (2001) 

Cobb, Wood, & Yackel 

(1993) 

L2 Short-Answer Questions, 

Recall Facts, Procedural 

Answer there is only one 

appropriate answer and/or these 

questions would be evaluated as 

right or wrong based upon text-

book knowledge 

 “[in the low-press classes] there was 

no evidence that the teachers were 

looking for detailed responses” (69) 

“Ms. Reed called on one student after 

another until she called on a student 

who provided the correct solution” 

Cazden (2001) 

L3 Non-Mathematical 

Questions questions that fail to 

focus on the mathematical 

content. 

“In low-press exchanges, connections 

were limited to nonmathematical 

aspects of students' strategies.” 

“both [low-press teachers] were 

primarily concerned with managerial 

and procedural instructions” 

 

 

The codes L2 (Short-Answer Questions, Recall Facts, Procedural Answer) and H3 

(Generalizations, Conjectures, and New Strategies) do not have a clear connection to the 

Kazemi and Stipek framework.  L2 questions (Short-Answer Questions, Recall Facts, 

Procedural Answer) were not something that was explicitly addressed in Kazemi and 

Stipek’s framework, although they did characterize the teachers in low-press questions as 

focusing on correct solutions over detailed solutions (see quotes in table 21 for L2).  

These types of questions occurred frequently in the teacher’s ISA’s.  Because these types 

of questions are closed-ended, they are not useful for promoting mathematical reasoning 

and/or argumentation which is why they are labeled as low-press questions.  I included 

H3 (Generalizations, Conjectures, and New Strategies) in the high-press category because 

I consider these types of questions important for generating discourse focused on 



 180 

reasoning and argumentation because generating new ideas is an important step towards 

creating opportunities for students to reason mathematically (Jansen, 2009; Rasmussen & 

Marrongelle, 2006).  In a research study that analyzed the practices of a successful 

elementary school teacher, they found that she frequently supported students in thinking 

about the mathematics in their problem-solving tasks by encouraging them to make 

generalizations and conjectures as well as try alternate solutions methods and look for 

more efficient solution methods (Fraivillig & Murphy, 1999).  Also, a primary goal in 

discourse around student-generated problem-solving solutions is to make the methods 

more powerful and efficient (Hiebert et al, 1997).  In order to do this, students should be 

thinking about new strategies beyond their initial attempts to solve the task.  I found in 

the data for this research study that it was common for teachers to plan questions that 

prompted their students to think about the task in a new way.  That is, asking them to 

develop new strategies or look for additional solutions.  The complete question coding 

which I used for my data analysis may be found in Appendix C.  

 

Inter-rater Reliability 

 To assess the inter-rater reliability of the question codes, I brought in a secondary 

coder who was also a mathematics education PhD student.  To train the secondary coder, 

I shared the coding scheme, going over the codes with her.  Then, we reviewed several 

ISA’s, individually coding each question and then sharing our codes, discussing why we 

coded them as we had.  In this process, we were working to build a mutual understanding 

of what each code represented.  Following this training session, the secondary coder and I 

individually coded four other Instructional Sequence Analyses, different from the ones 
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that we had trained with.  There were a total of 26 questions that we coded.  Overall, our 

codes were 77% consistent.  Because I will only be utilizing this coding scheme to 

differentiate between high-press questions and low-press question, I also compared our 

codes by whether they were high-press or low-press.  In other words, I reanalyzed the 

consistency of our codes, counting a code as consistent between coders if we both coded 

a question as high-press or both coded a question as low-press.  For example, I counted a 

question as consistent because we both coded it as high-press, even though I coded it as 

H2 (reasoning through errors) and the secondary coder coded it as H1 (providing 

justification). A comparison of our codes for high-press versus low press were 85% 

consistent.   

 

Analysis and Results 

The data used for the analysis of research sub-question 2 included the ISAs of all 

the teachers and the audio-recordings of their problem-solving debriefs for the three 

MPSM problem-solving tasks.  There were a total of 12 teachers whose data were used 

and a total of 25 problem-solving debriefs that were analyzed.  Four teachers turned in 

complete data sets for all three of the tasks, five teachers turned in complete data sets for 

two of the tasks, and three teachers turned in a complete data set for only one of the tasks.  

The three teachers who submitted complete data sets for just one of the problem-solving 

tasks were all from cohort 3 while the remaining teachers were all from cohort 2.  Of the 

25 implemented problem-solving debriefs, seven were Snack Shack tasks, ten were 

Design a Dartboard tasks, and eight were Spinner Elimination tasks.  For a full 

description and analysis of these tasks, refer to Chapter 4, Task Analysis.  For a full 


