
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 6-10-2013

Equivalence Checking for High-Assurance Behavioral Equivalence Checking for High-Assurance Behavioral

Synthesis Synthesis

Kecheng Hao
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Hardware Systems Commons, and the Other Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hao, Kecheng, "Equivalence Checking for High-Assurance Behavioral Synthesis" (2013). Dissertations and
Theses. Paper 1066.
https://doi.org/10.15760/etd.1066

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1066&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1066&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1066&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/1066
https://doi.org/10.15760/etd.1066
mailto:pdxscholar@pdx.edu

Equivalence Checking for High-Assurance Behavioral Synthesis

by

Kecheng Hao

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Feng Liu

Sandip Ray

Bryant York

Fu Li

Portland State University

2013

i

ABSTRACT

The rapidly increasing complexities of hardware designs are forcing design method-

ologies and tools to move to the Electronic System Level (ESL), a higher ab-

straction level with better productivity than the state-of-the-art Register Transfer

Level (RTL). Behavioral synthesis, which automatically synthesizes ESL behav-

ioral specifications to RTL implementations, plays a central role in this transition.

However, since behavioral synthesis is a complex and error-prone translation pro-

cess, the lack of designers’ confidence in its correctness becomes a major barrier

to its wide adoption. Therefore, techniques for establishing equivalence between

an ESL specification and its synthesized RTL implementation are critical to bring

behavioral synthesis into practice.

The major research challenge to equivalence checking for behavioral synthesis is

the significant semantic gap between ESL and RTL. The semantics of ESL involve

untimed, sequential execution; however, the semantics of RTL involve timed, con-

current execution. We propose a sequential equivalence checking (SEC) framework

for certifying a behavioral synthesis flow, which exploits information on successive

intermediate design representations produced by the synthesis flow to bridge the se-

mantic gap. In particular, the intermediate design representation after scheduling

and pipelining transformations permits effective correspondence of internal opera-

tions between this design representation and the synthesized RTL implementation,

enabling scalable, compositional equivalence checking. Certifications of loop and

ii

function pipelining transformations are possible by a combination of theorem prov-

ing and SEC through exploiting pipeline generation information from the synthesis

flow (e.g., the iteration interval of a generated pipeline). The complexity brought

by bubbles in function pipelines is creatively reduced by symbolically encoding all

possible bubble insertions in one pipelined design representation. The result of

this dissertation is a robust, practical, and scalable framework for certifying RTL

designs synthesized from ESL specifications. We have validated the robustness,

practicality, and scalability of our approach on industrial-scale ESL designs that

result in tens of thousands of lines of RTL implementations.

iii

DEDICATION

To my parents, Fengming and Fanying

To my wife, Kai

To my daughter, Sophia

iv

ACKNOWLEDGMENTS

It has been a long journey to finish this dissertation research. During my research,

I got help from many people, including my teachers, collaborators, friends, and

family, therefore I would like to take this opportunity to thank all of them.

First and foremost, I wish to express my thanks and great appreciation to my

advisor Prof. Fei Xie for his patient guidance, enthusiastic encouragement and

useful critiques. He is a wonderful advisor. He guided me to learn how to identify

critical problems and resolve them, which is invaluable to my research. He is also

an amazing researcher. His rare combination of strengths in both the practical

and the theoretical has been a continuous inspiration to me. Without his help, I

do not believe I can accomplish this dissertation.

I would also like to thank Dr. Sandip Ray for his enormous amount of time

and effort that he spent on my research. All my papers related to this dissertation

are finished by collaborating with Sandip. He is a great collaborator and an out-

standing researcher. He has always helped me with my research through email and

phone, even in weekends. My thanks to Dr. Jin Yang and Dr. Naren Narasimhan

for generously providing feedback and discussing future work from an industrial

point of view.

I am grateful to my other committee members, Prof. Fu Li, Prof. Feng Liu,

and Prof. Bryant W. York, for inspiration in many ways and valuable feedback on

my research proposal and dissertation. Thank Prof. Xiaoyu Song, who initially

brought me on board to electronic design automation.

v

The dissertation also benefits from various discussion with from current and

former lab members: Yan Chen, Ping Hang Cheung, Nicholas T. Pilkington, Jun-

cao Li, Sharookh Daruwalla, Zhenkun Yang, and Disha Gandhi. I also would like

to thank my colleagues at Xilinx for exchanging knowledge of high-level synthesis,

including Dr. Yiping Fan, Dr. Zhiru Zhang, Dr. Peichen Pan, and Dr. Guoling

Han.

Finally, I must acknowledge my family for supporting me all the time. Thank

you to my parents for always being supportive. Especially thanks to my lovely

wife, Kai, for her love, patience, encouragement, and immense personal sacrifice.

vi

TABLE OF CONTENTS

Abstract . i

Dedication . iii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

Chapter 1 INTRODUCTION . 1

1.1 Motivation and Problem Statement 1

1.1.1 Motivation . 1

1.1.2 Problem Statement . 2

1.2 Contribution . 3

1.3 Related Work . 5

1.4 Dissertation Outline . 7

Chapter 2 BACKGROUND . 8

2.1 Behavioral Synthesis . 8

2.2 Solver Technology . 11

2.2.1 Binary Decision Diagram . 11

2.2.2 Boolean Satisfiability Problem 13

2.2.3 Satisfiability Modulo Theories 15

2.3 Scalable Verification Techniques . 16

2.3.1 Symbolic Simulation . 16

2.3.2 Equivalence Checking for Logic Synthesis 17

Chapter 3 EQUIVALENCE CHECKING 19

3.1 Clocked Control/Data Flow Graphs 19

3.2 Circuit Model . 21

3.3 Correspondence between CCDFGs and Circuits 22

vii

3.4 Dual-Rail Simulation for Equivalence Checking 23

3.5 Tool Implementation . 25

3.6 Experimental Results . 27

Chapter 4 OPTIMIZATIONS . 29

4.1 Motivation and Overview . 29

4.2 Cut-points . 29

4.3 Cut-loop Optimization . 30

4.4 Modular Analysis . 33

4.5 Experimental Results . 35

Chapter 5 SEC FOR SYNTHESIZED LOOP PIPELINES 38

5.1 Motivation and Overview . 38

5.2 Challenges with Loop Pipelines . 39

5.3 SEC with Reference Model . 40

5.4 Experimental Results . 49

Chapter 6 SEC FOR SYNTHESIZED FUNCTION PIPELINES . 51

6.1 Motivation and Overview . 51

6.2 Challenges with Function Pipelining 53

6.3 SEC for Function Pipelining . 55

6.3.1 Algorithm to build Reference Model 57

6.3.2 SEC between CCDFGs and the RTL 70

6.4 Experimental Results . 71

Chapter 7 CONCLUSION AND FUTURE WORK 74

7.1 Summary of Contributions . 74

7.2 Future Research Directions . 75

7.2.1 Hierarchical Function Pipelines 75

7.2.2 Verification of Behaviorally Synthesized Interfaces 76

7.2.3 SEC for Compiler Transformations in Behaviorial Synthesis . 76

References . 77

viii

LIST OF TABLES

3.1 Bit-level equivalence checking statistics 27

3.2 Word-level equivalence checking statistics 28

4.1 Designs, features, and optimizations 35

4.2 Word-level equivalence checking statistics 36

5.1 Loop pipelining experimental results 50

6.1 Function fipelining experimental results 73

ix

LIST OF FIGURES

2.1 Input and output of behavioral synthesis 10

2.2 Decision tree representation . 12

2.3 BDD transformations . 13

2.4 Simple cut-point example . 18

3.1 CCDFGs for the TEA encryption function 20

3.2 Operation mapping between CCDFG and circuit 22

3.3 Dual-rail simulation scheme for equivalence checking between CCDFG

and circuit. 24

3.4 Framework of equivalence checker 26

4.1 C source code and CCDFG for GCD 31

4.2 Cut-loop optimization for GCD example 32

4.3 Modular SEC for 3DES . 33

5.1 Example of loop pipeline . 39

5.2 Input and output CCDFGs of loop pipelining transformation 42

5.3 Construction of scheduling steps . 44

5.4 Construction of edges . 45

5.5 Pipeline registers and forwarding 48

6.1 Example of function pipeline . 52

6.2 Difference between un-pipelined version and pipelined version . . . 53

6.3 Hardware interface . 54

6.4 Pipelined CCDFGs for different bubble insertion scenarios 56

6.5 Input and output CCDFGs of function pipelining transformation . . 59

6.6 Generate pipeline registers . 61

6.7 Construction of scheduling steps and edges 64

6.8 Insert guard variables and assignment 65

6.9 Final pipelined CCDFG . 68

x

6.10 Waveform of pipeline forwarding . 69

1

Chapter 1

INTRODUCTION

1.1 MOTIVATION AND PROBLEM STATEMENT

1.1.1 Motivation

Recent years have seen increasingly higher complexities in hardware designs, re-

sulting from advances in VLSI technology as well as growing demands on perfor-

mance and power imposed by modern applications. Such complexities, in addition

to stringent time-to-market requirements, make it challenging to develop reliable,

high-quality systems through hand-crafted Register Transfer Level (RTL) imple-

mentations. This underlines the needs for modeling, synthesis, and validation of

hardware at higher levels of abstraction and has motivated a gradual migration

away from RTL towards Electronic System Level (ESL) which allows design func-

tionality to be described abstractly in high-level languages such as SystemC or

C/C++. However, practicality of ESL designs crucially depends on reliable tools

for behavioral synthesis, that is, automated synthesis of a hardware circuit from its

ESL description. Behavioral synthesis tools apply a sequence of transformations

to compile the behavioral description to an RTL implementation.

Several behavioral synthesis tools are available today, e.g., AutoESL [72], Cat-

apultC [54], C-to-Silicon [11], Cynthesizer [23], Spark [25], and LegUp [13]. Nev-

ertheless, and despite a great need, behavioral synthesis has not yet found wide

acceptance in current industrial practice. A major barrier to its adoption is the

2

lack of designers’ confidence in correctness of synthesis tools themselves. The large

semantic gap between a synthesized implementation and its behavioral description

makes it hard to ensure that the synthesized implementation indeed conforms to

its behavioral description. On the other hand, many employed behavioral synthesis

transformations include complex optimizations to satisfy the growing demands of

performance and power. Consequently, current synthesis tools are often either (a)

error-prone or (b) overly conservative, thus often producing circuits of poor quality

and performance. Therefore, developing tools and technologies to ensure correct-

ness of behavioral synthesis tools is a critical issue to bring behavioral synthesis

into practice. This is the main motivation of this dissertation research.

1.1.2 Problem Statement

To ensure correctness of behavioral synthesis, we employ a formal verification tech-

nique called sequential equivalence checking (SEC). We need to address the fol-

lowing three key research challenges brought about by the semantic gap between

ESL and RTL descriptions of the same hardware:

• How can we build a practical sequential equivalence checking framework? The

significant semantic gap makes the direct equivalence checking between ESL

and RTL impractical. The challenge is to effectively close the semantic gap

and build a practical checking framework.

• How can we scale to industry designs? The scale of real-world industrial de-

signs synthesized by a state-of-the-art behavioral synthesis tool is typically

tens of thousands of lines of RTL. The running time for equivalence checking

is exponential in the size of a design. Due to the semantic gap, the ex-

isting optimizations for traditional hardware verification cannot be directly

applied. To make our approach scalable, we need to develop optimizations

that specially target equivalence checking for behavioral synthesis.

3

• How can we verify the correctness of overlapping executions introduced by

pipelines? Loop pipelining and function pipelining are key transformations

to improve the quality of results (QoR) of RTL implementations generated

by behavioral synthesis. Loop pipelining reduces the latency of synthesized

designs by concurrently executing operations in successive loop iterations.

Function pipelining improves the throughput by allowing operations from

successive invocations of a function to execute in parallel. However, they are

complex transformations involving aggressive scheduling strategies to allow

overlapping executions and careful control generation to eliminate hazards.

This makes formal equivalence checking even more challenging.

1.2 CONTRIBUTION

We developed a scalable SEC framework for certifying behavioral synthesis flows,

that makes use of the intermediate design representation from the synthesis tool

as well as other synthesis information to achieve scalability. We defined a graph-

based representation of the ESL specification, namely Clocked Control/Data Flow

Graph (CCDFG) as the intermediate design representation. In particular, this

dissertation makes the following contributions:

• A scalable SEC algorithm based on symbolic simulation for comparing CCD-

FG and RTL. Equivalence checking involves a word-level dual-rail symbolic

simulation, which simulates two design representations simultaneously. In

our approach, we simulate the CCDFG and the RTL implementation, re-

spectively, and their simulations are synchronized by clock cycle.

• A set of key optimizations, which exploit the close correspondence between

CCDFGs and their synthesized RTL designs. Cutpoints reduce lengths of

symbolic expressions by replacing verified sub-circuits by new symbol values.

4

Cut-loop partitions SEC for a loop into three checks to avoid expensive fix-

point computation. Modular analysis optimizes SEC by replacing verified

sub-modules by uninterpreted functions.

• An approach to certifying behaviorally synthesized loop pipelines. Our ap-

proach works by (1) constructing a provably correct loop pipeline reference

model from the ESL specification, and (2) applying sequential equivalence

checking between this reference model and synthesized RTL. The key in-

sight is that a parameterized, synthesis-guided reference transformation on

CCDFG permits comparison with RTL even after mappings with the original

ESL specification have been destroyed by an aggressive transformation such

as pipelining. Furthermore, the approach permits smooth integration with

pipeline-oblivious optimizations such as cut-loop.

• An approach to certifying function pipelining in behavioral synthesis. We

develop a reference function pipelining transformation, which takes certain

pipeline parameters from behavioral synthesis to generate a pipeline reference

model. The key is that bubble insertion is faithfully captured by symboli-

cally encoding bubbles in the reference model. We check the equivalence

between the reference model and the RTL implementation. The mapping

between behavioral level operations and RTL functional units are still pre-

served, therefore some key optimizations, such as cutpoints, are applicable.

Note that certification with our approach assumes that the high-level trans-

formations performed by behavioral synthesis before pipelining are correct. Such

transformations are typically compiler transformations (e.g., loop unrolling, code

motion, dead code elimination, etc.) and scheduling. Certainly many of these

transformations are complex, and a complete certification of the synthesis flow re-

quires certification of these high-level transformations as well. We do not address

5

certification these high-level transformations for this dissertation for several reason-

s. First, these transformations are generic compiler transformations. For instance,

AutoESL, a widely used commercial synthesis tool, and LegUp, an academic syn-

thesis tool, make use of the open-source LLVM compiler transformations [50]. As

such they are more trusted than the low-level transformations which often involve

manual tweaks to squeeze out extra efficiency. Second, these transformations are

already being studied elsewhere in the context of compiler verification [48, 67, 74].

Finally, related efforts at the University of Texas and the Portland State Universi-

ty are focused on the use of theorem proving techniques for certification of many

of the high-level transformations necessary. When combined with their certified

transformations, our framework can be used to certify an entire synthesis flow.

1.3 RELATED WORK

Several early approaches have been proposed to verify the correctness of the pio-

neering behavioral synthesis tools. An early effort on verification of high-level syn-

thesis targeting the behavioral portion of VHDL was proposed by Chapman [14],

which aimed to verify parts of a high-level synthesis system by giving semantics to

the representation languages used. A translation from behavioral VHDL to depen-

dence flow graphs [36] was verified by structural induction based on the CSP [32]

semantics. There has been research on certified synthesis of hardware from for-

mal languages such as HOL [28] in which a compiler that automatically translates

recursive function definitions in HOL to clocked synchronous hardware has been

developed. A certified hardware synthesis from programs in Esterel (a synchronous

design language) has also been developed [61] in which a variant of Esterel was

embedded in HOL to enable formal reasoning.

There has been much research on sequential equivalence checking between RTL

and gate-level hardware designs [4, 38]. Research has also been done on combina-

tional equivalence checking between high-level designs in software-like languages

6

(e.g., SystemC) and RTL designs [33]. There has also been effort for SEC between

software specifications and hardware implementations [21]: GSTE assertion graph-

s [73] were extended so that an assertion graph edge have pre and post condition

labels, and also associated assignments that update state variables. There has also

been work on equivalence checking with other graph representations, e.g., Signal

Flow Graph [17].

In recent years, promising progress on equivalence verification between system-

level models and RTL has been made in both academia and industry [53]. Kundu

et al. [46] presents an approach to validate the result of behavioral synthesis us-

ing insights from translation validation, automated theorem proving and relational

approaches to reasoning about programs. This approach targeted compiler trans-

formations, so it cannot verify the correctness of scheduling, binding and finite

state machine (FSM) generation. Clark et al. [18] proposed an algorithm that

checks behavioral consistency between an ANSI-C program and a circuit given in

Verilog using Bounded Model Checking. Both the circuit and the program are un-

wound and translated into a formula that represents behavioral consistency. The

formula is then checked using a SAT solver. Kroening [44] has further enhanced

this algorithm by using predicate abstraction and induction. These approaches

aim to check if the RTL holds the same property as the corresponding ANSI-C

program, not equivalence checking. The Sequential Logic Equivalence Checker

(SLEC) from Calypto [12] can verify RTL implementations using system mod-

els written in C/C++ or SystemC, without requiring additional testbenches or

assertions. SLEC utilizes a novel technique to reduce the SEC problem to a cycle-

accurate designs from the original designs, on which standard equivalence checking

techniques can then be deployed [15]. Hector [42] from Synopsys is a formal equiv-

alence checking framework to address the system level to RTL formal verification

problem, which integrates multiple bit-level and word-level equivalence checking

7

techniques. It employs an efficient formal model constructed from high-level de-

scriptions using symbolic simulation [43]. Several optimizations can be applied to

minimize the size of the formal model to reduce the complexity. Furthermore, an

approach has been proposed to handle memory interfaces by using memory map-

ping provided by the user as invariants for an induction proof [41]. However, these

two industrial tools do not have published benchmarks for comparison.

There is a significant literature on verifying pipelined microprocessors [10, 37,

49, 69], which has parallels with our work. Comparing function pipelines generat-

ed by behavioral synthesis with pipelines in microprocessors, certifying pipelines

generated by behavioral synthesis is more challenging due to: (1) pipelines can be

very deep; (2) each pipeline stage can be quite complex. There has been very little

published work on formal verification of pipelines generated by behavioral synthe-

sis. Nevertheless, any viable SEC framework for behavioral synthesis must handle

pipelining transformations. To our knowledge current implementations either in-

volve cost-prohibitive input-output comparison or require the user to provide the

requisite mappings.

1.4 DISSERTATION OUTLINE

The rest of this dissertation is organized as follows. In Chapter 2, we give a

brief overview of background including behavioral synthesis flows and verification

technologies. In Chapter 3, we present our intermediate representation and dis-

cuss in detail our approach to equivalence checking based on word-level symbolic

simulation. In Chapter 4, we discuss three optimizations targeting different de-

sign features. We illustrate our approach to equivalence checking for behaviorally

synthesized loop pipelines and function pipelines in Chapter 5 and Chapter 6, re-

spectively. In Chapter 7, we summarize the contribution and discuss future work.

8

Chapter 2

BACKGROUND

2.1 BEHAVIORAL SYNTHESIS

With the rapid increase of complexity in System-on-Chip (SoC) designs, the Elec-

tronic Design Automation (EDA) community is becoming more interested in de-

signing hardware with a behavioral level model, rather than an RTL description.

This and the increased use of high-level languages in behavioral modeling has led to

a renewed interest in behavioral synthesis, both in industry and in academia [70].

A behavioral synthesis tool accepts a behavioral description, together with a

library of hardware resources; it performs a sequence of transformations on the de-

scription to generate an RTL implementation. The transformations can be roughly

partitioned into the following three phases.

• The first phase involves compiler transformations. These include loop un-

rolling, common subexpression elimination, etc. Furthermore, expensive op-

erations (e.g., division) are often replaced with simpler ones (e.g., subtrac-

tion).

• The second phase is scheduling, which determines the clock step for each oper-

ation. The ordering between operations is constrained by the data and con-

trol dependencies. Scheduling transformations include chaining operations

across conditional blocks and decomposing one operation into a sequence of

multi-cycle operations based on resource constraints.

9

• The third phase is resource binding and control synthesis, which binds op-

erations to functional units, allocates and binds registers, and generates the

control circuit to implement the schedule.

After these transformations, the RTL implementation is generated, which is

subjected to further manual optimizations to fine-tune for performance and pow-

er. Each synthesis transformation is non-trivial. The result of their composition

is a hardware implementation with large semantic distance from its input descrip-

tion. As an example, consider the synthesis of the Tiny Encryption Algorithm

(TEA) [71]. Figure 2.1 shows a high-level C specification and the circuit synthe-

sized by AutoESL. TEA, of course, is only a pedagogical algorithm, and indeed,

rather weak in cryptographic strength; nevertheless, the example highlights some

transformations involved in behavioral synthesis. The following transformations

are involved in synthesis of the circuit.

• In the first phase, constant propagation removes unnecessary variables and

operations.1 For instance, variable delta is replaced by constant value.

• In the second phase, a key scheduling transformation performed is pipelining,

to enable overlapping execution of operations from different loop iterations.

• In the third phase, operations are bound to hardware resources (e.g., the

“+” operation to a hardware adder); furthermore, a finite-state machine is

generated to control circuit operations.

Each synthesis transformation must respect a number of implicit design invari-

ants. For instance, paralleling operations along different loop iterations must avoid

race conditions, and scheduling must respect underlying data dependencies. Since

such considerations are entangled with low-level optimization heuristics, it is easy

1Another compiler transformation that could be performed is loop unrolling. We avoided it
for presentation simplicity.

10

vo id en c r yp t (u i n t 3 2 t ∗ v , u i n t 3 2 t ∗ k) {

u i n t 3 2 t v0=v [0] , v1=v [1] , sum=0, i ;

u i n t 3 2 t d e l t a=0x9e3779b9 ;

u i n t 3 2 t k0=k [0] , k1=k [1] , k2=k [2] , k3=k [3] ;

f o r (i = 0 ; i < 32 ; i++) {

sum += de l t a ;

v0 += ((v1 << 4)+ k0) ˆ (v1 + sum) ˆ((v1 >> 5) + k1) ;

v1 += ((v0 << 4)+ k2) ˆ (v0 + sum) ˆ((v0 >> 5) + k3) ;

}

v [0]= v0 ; v [1]= v1 ;

}

(A) C code for TEA

V1_0p

tmp39

Phi
newPhi

newbin

1

Phi
V1_0

== 32

sum0

0x
9e

37
7

9b
9

Phi
V0_0

tmp26

tmp49

tmp41

out = ((i0<<4) +i1)̂ i2
i0 i1 i2

out

FSM

0

out =(i0+i1)̂ ((i0>>5)+i2)
i0 i1 i2

out

V[1]k2

k0 k1

k3

V[0]

V[1]

V[0]

Pipeline
logic

out = ((i0<<4)
+i2)̂ (i0+i1)̂ ((i0>>5)+i3)

i0 i1 i2 i3

out

(B) Schema of RTL

Figure 2.1: Input and output of behavioral synthesis

11

to have errors in the synthesis tool itself, leading to synthesis of buggy designs. On

the other hand, the semantic distance pointed to above makes direct comparison

of executions of the synthesized RTL and its input description very challenging if

not infeasible. Indeed, attempts to perform such comparison through sequential

equivalence checking requires full, cost-prohibitive symbolic co-simulation between

the C and the RTL to check their input/output correspondence [33].

2.2 SOLVER TECHNOLOGY

2.2.1 Binary Decision Diagram

Binary Decision Diagrams (BDDs) have been widely employed in many applica-

tions. Though BDDs are not new [47], Bryant’s pioneering work renewed the

interest of many researchers [8]. He proposed Reduced Ordered Binary Decision

Diagrams (ROBDDs, or OBDDs for short). The key insight is that reduced and

ordered binary decision diagrams are a canonical representation of Boolean func-

tions. Canonicity reduces the semantic notion of equivalence to the syntactic notion

of isomorphism. Thus, checking the equivalence of two Boolean formulas can be

reduced to comparisons of BDDs which can be checked in constant time.

Given a Boolean function, it can be represented as a rooted, directed acyclic

graph, which is actually a tree. Figure 2.2 (b) illustrates a representation of func-

tion f(x1, x2, x3) defined by the truth table given in Figure 2.2 (a). The variable

ordering is given as x1 < x2 < x3. Each nonterminal vertex v has arcs directed to-

ward two children: lo(v) (shown as a dashed line) corresponding to the case where

v is assigned 0, and hi(v) (shown as a solid line) corresponding to the case where

v is assigned 1. Each terminal vertex is labeled 0 or 1. For a given assignment to

the input variables of f , the return value of f can be determined by a path from

the root to a terminal vertex, following the branches indicated by the values of

nonterminal vertices.

12

x1 x2 x3 f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

0 0 0 1 0 1 0 1

x1

x2 x2

x3 x3 x3 x3

(a) (b)

Figure 2.2: Decision tree representation

A decision tree can be reduced to a BDD by applying the following three trans-

formations: (1) Remove duplicate terminals. This transformation eliminates all

but one terminal vertex with a given label and redirects all arcs into the eliminat-

ed vertices to the remaining one (shown in Figure 2.3 (a)). (2) Remove duplicate

nonterminals. In this step, if nonterminal vertices u and v have lo(u) = lo(v),

and hi(u) = hi(v), then one of the two vertices can be eliminated. All incoming

arcs to the eliminated one are redirected to the other vertex (shown in Figure 2.3

(b)). (3) Remove redundant tests. If nonterminal vertex v has lo(v) = hi(v), then

this vertex can be eliminated. All incoming arcs to v are redirected to one of its

children (shown in Figure 2.3 (c)).

BDDs have proven to be a successful representation for model checking on

many practical applications. However one limitation of BDD-based approaches is

that the size of the BDD heavily depends on the variable ordering. For instance,

given a Boolean expression a1 · b1 + a2 · b2 . . . + an · bn, ordering variables as a1 <

b1 < . . . < an < bn yields an BDD with 2n nonterminal vertices. On the other

hand, ordering variables as a1 < . . . an < b1 < . . . < bn yields an BDD with

2(2n−1) nonterminal vertices. For large values of n, the exponential growth of the

13

x3

0 1

x1

x2 x2

x3 x3 x3

(a)

0 1

x1

x2 x2

x3 x3

(b)

0 1

x1

x2

x3

(c)

Figure 2.3: BDD transformations

second ordering has a dramatic effect on runtime and memory usage comparing

with the first linear growth. Unfortunately, finding the best variable ordering is an

NP-complete problem. In practice, the ordering is chosen either manually or by a

heuristic analysis of the particular system to be represented [24, 51, 35].

2.2.2 Boolean Satisfiability Problem

Boolean Satisfiability (SAT) is a decision problem of determining if there exist

suitable value assignments to the variables to satisfy the propositional logic formu-

la. SAT is the first known example of NP-complete decision problem [19], which

means that, unless P = NP , all SAT algorithms require worst-case exponential

time. Modern SAT algorithms are effective to deal with large search spaces by ex-

ploiting the structure of the problem [65, 55, 27]. SAT techniques are widely used

in a number of areas, such as combinational equivalence checking [7], model check-

ing [6, 63], automatic test pattern generation (ATPG) [16], FPGA routing [56] and

planning [40].

14

Currently, most state-of-the-art SAT solvers require the propositional formu-

las to be represented in Conjunctive Normal Form (CNF) as defined in Defini-

tion 3 [34]. A CNF formula may be viewed as a set of clauses and a clause may be

viewed as a set of literals.

Definition 1 Literal. A literal is either a variable p or its negation ¬p. The first

case is called a positive literal; the second is called a negative literal.

Definition 2 Clause. A clause is a finite disjunction of literals, e.g., l1∨ l2∨ l3 . . .,

where li is a literal.

Definition 3 Conjunctive Normal Form. A propositional formula is in Con-

junctive Normal Form (CNF) if it is a finite conjunction of clauses, e.g., C1 ∧C2 ∧

C3 . . ., where Ci is a clause.

An assignment A for a set of variables X is a function A : X → {0, u, 1}, where

0 ≤ u ≤ 1. Here, 0 and 1 represent false and true, respectively. Given an as-

signment, clauses and CNF formulas can be characterized as unsatisfied, satisfied,

or unresolved [64]. The SAT problem for a CNF formula φ consists in deciding

whether there exists an assignment to the problem variables, such that φ is sat-

isfied, or proving that no such assignment exists. An assignment that satisfies a

formula φ is called a satisfying assignment.

A combinational circuit can be translated into some intermediate representa-

tion, which can be used to generate CNF formulas. Combinational Boolean cir-

cuits [6] is one of the most accepted intermediate representations. Combinational

Boolean circuits are composed of gates and connections between gates. In Combi-

national Boolean circuits, the notation y = Op(x1, x2) denotes a gate which has two

inputs x1 and x2 and single output y, and Op is one of the basic logic operations,

such as AND, OR, etc. Converting Boolean circuits to CNF is straightforward,

and follows the procedure first outlined by G. Tseitin [68].

15

2.2.3 Satisfiability Modulo Theories

Although SAT solvers have achieved success in many practical applications, some

applications require greater modeling flexibility than plain SAT; for instance, a

theory of array of integers is more effective in modeling memory usage of a pro-

gram. On the other hand, general-purpose first-order theorem provers are typically

not able to solve such formulas directly. The main reason for this is that many ap-

plications require not only general first-order satisfiability, but rather satisfiability

with respect to some background theory, which fixes the interpretations of certain

predicate and function symbols [2].

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfia-

bility of a first-order formula with respect to some decidable first-order theory T .

It requires deciding the satisfiability of formulae which are Boolean combinations

of atomic Boolean propositions and atomic propositions in T , so that Boolean

reasoning is carried out by powerful SAT solvers while reasoning in the theory T

is carried out by efficient theory-specific decision procedures.

Most SMT solvers use Nelson-Oppen [57] method which combines decision

procedures for different decidable theories under certain conditions to generate a

decision procedure for their composition. These solvers support the theories of inte-

gers, reals, lists, arrays, bit vectors, etc. Therefore, it allows us to model hardware

circuits at word-level rather than bit-level. SMT solvers also support uninterpret-

ed functions. For instance, an SMT solver can determine whether f(x) = f(y), if

x = y. This allows us to model the hierarchies in hardware circuits by modeling a

lower-level circuit as an uninterpreted function.

Currently there are two main approaches to SMT solving: eager and lazy [42].

Eager SMT solvers first try to solve the word-level problem by employing pre-

processing, rewrites and abstraction. If the rewrites are not sufficient, the word-

level formula is translated into a bit-level formula and use a SAT solver to determine

the satisfiability. One of the advantages of eager SMT solvers is that they can

16

directly leverage any efficient SAT solver. Some eager SMT solvers are BAT [52]

and STP [26]. In contrast, lazy SMT solvers integrate theory specific procedures

for the background theory with a SAT-solver. A given formula ϕ is abstracted to

a Boolean formula ϕb. The abstraction is generated by replacing all atomic theory

predicates in ϕ by Boolean variables. The Boolean variables of the abstracted

formula ϕb are sub-formulas of formula ϕ corresponding to sub-formulas of the

background theory. The satisfiability of ϕb is checked using a SAT solver. If ϕb is

unsatisfiable, then ϕ is also unsatisfiable. Some lazy SMT solvers are Yices [20]

and CVC3 [3].

In this research, we employ CVC3, one of the most successful SMT solvers,

which is being developed at New York University and University of Iowa. CVC3

provides several different user interfaces including high-level APIs for both C and

C++, an interactive command-driven interface, and a file interface.

2.3 SCALABLE VERIFICATION TECHNIQUES

2.3.1 Symbolic Simulation

Simulation is the most common method for testing and debugging hardware design-

s. But the problem is that one simulation run can only validate one test case. To

fully verify a hardware design, engineers must exhaustively simulate the entire set

of test cases to explore the whole state space, which is extremely time-consuming.

Symbolic simulation allows us to compute information on the entire set of values

in a single simulation run, because the set of test vectors is encoded symbolical-

ly, instead of using a specific element of the set [9]. This approach dramatically

improves the efficiency of design validation.

Consider a 2-bit AND operator which has two 2-bit inputs A and B and a 1-bit

output C. In order to fully verify this operator, a conventional simulator must try

all 16 possible test vectors. But for symbolic simulation, we treat the inputs as

17

two 2-bit symbols A and B and the output of the simulation is C = A∧B by only

one simulation run.

However, symbolic simulation also has two main bottlenecks when applying to

verify large designs [33]. First, because symbolic simulation enumerates all possi-

ble execution paths, the number of paths to be explored may grow exponentially.

Second, the terms representing the symbolic values of variables may also blow-up

exponentially. Moreover, symbolic exploration of loops may lead to long execu-

tions, which may cause further blow-up. Although modern SMT solvers are able

to handle such blow-ups to a certain extent, the performance is reduced signifi-

cantly [66].

2.3.2 Equivalence Checking for Logic Synthesis

Our research leverages the success of equivalence checking for logic synthesis [33,

5, 7], and employs these ideas for equivalence checking for behavioral synthesis.

Next, we provide an overview of the equivalence checking concepts.

Equivalence checking between RTL descriptions and gate-level implementations

of combinational circuits is a mature field with decades of research [38, 4]. To check

whether two combinational circuits are functionally equivalent, we need to prove

that, for all possible inputs, both combinational circuits have the same outputs.

Hardware circuits are modeled as Boolean expressions, so the problem of checking

whether two circuits are equivalent is converted to the problem of determining

whether two Boolean expressions are equivalent.

Consider the simple example in Figure 2.4. We can use symbolic simulation

to compute the relationship between inputs and outputs. Given the two circuits

and the same input symbols, the outputs are symbolic expressions in terms of the

inputs. For the left-hand circuit in Figure 2.4, the value of the final output f is

a ⊕ ((b ∧ c) ∧ d). Similarly, we can compute that the output of the right-hand

circuit is a⊕ (b ∧ (c ∧ d)). To verify the equivalence of these two circuits, we just

18

f

d

c
b

a

x

f

d
d
c

a

xb

Figure 2.4: Simple cut-point example

need to verify whether these two expressions are equivalent.

As discussed above, one bottleneck of symbolic simulation is the exponential

blow-up of the expression lengths. The major practical reduction technique for

combinational equivalence checking is cut-points [5, 7]. The main idea is to look

for the corresponding points in the two circuits that can be proven to be equivalent;

then the equivalent circuits can be cut out of circuits and replaced by new primary

symbols. For instance, in Figure 2.4, to introduce cut-point x, we first verify that

(b∧c)∧d is equivalent to b∧(c∧d). Then we cut the sub-circuits off and introduce

new symbol x to represent the equivalent circuits. Then we can verify that f is

equivalent to g because they are both equal to a⊕x. Therefore, the complexity of

verification is reduced. In general, the method is conservative: if the proof fails,

we cannot conclude that the two circuits are inequivalent. The reason is that when

we introduce new symbols for cut-points, we may lose constraints. The situation

that two circuits are equivalent but equivalence checker reports inequivalence is

called false negative. In general, the solution to this problem is to re-introduce

constraints on the cut-points [33, 7].

19

Chapter 3

EQUIVALENCE CHECKING

In this charpter, we present a graph-based design representation, called Clock

Control/Data Flow Graph (CCDFG), as our intermediate representation. Our e-

quivalence checking between a CCDFG and its synthesized RTL implementation

is based on dual-rail symbolic simulation. The checking approach has been imple-

mented to be fully automatic.

3.1 CLOCKED CONTROL/DATA FLOW GRAPHS

A CCDFG can be viewed as a formal control/data flow graph (CDFG) — used as

internal representation in most synthesis tools — augmented with a schedule. The

semantics of CCDFG are formalized in the logic of the ACL2 theorem prover [39].

Figure 3.1 shows two CCDFGs for the TEA encryption function: an initial CCDFG

derived from the C code, and its successive transformation after pipelining. This

section briefly discusses the formulation of a CCDFG; for a more complete account,

see [59].

The formalization of CCDFG assumes that the underlying language provides

the semantics for primitive operations (e.g., arithmetic operations, comparison,

etc.). The key components of the formalization are (1) control and data flow

graphs, (2) microstep partition, and (3) schedule. Following standard conventions,

the control flow is broken up into of basic blocks; correspondingly data dependen-

cies follow the “read after write” paradigm: opj is dependent on opi if opj occurs

after opi in a control path and computes an expression over some variable v that is

20

newPhi = phi (0, newbin);
v1_0 = phi (v[1], tmp56);
v0_0 = phi (v[0], tmp41)

newPhi == 32

Input

newbin = newPhi + 1

sum0 = newPhi*delta0

v[0] = v0_0;
v[1] = v1_0

return

tmp26 = sum0+delta0

tmp39 = (v1_0 << 4) + k0) ̂
(tmp26 + v1_0) ̂ ((v1_0>>5)

+ k1))

tmp41 = tmp39+v0_0

tmp49 = (tmp41+tmp26)
^((tmp41>>5)+k3)

tmp54 = ((tmp41 << 4 + k2) ̂
tmp49)

tmp56 = tmp54+v1_0

Y

N

Scheduling
Step

Microstep delta0 = 0x9e3779b9
pl_start = 0

tmp54 = (tmp41 << 4 + k2) ̂
tmp49

tmp56 = tmp54 + v1_0

newPhi = phi (0, newbin);
v1_0 = phi (v[1],tmp56);
v0_0 = phi (v[0], tmp41)

newPhi == 32

newbin = newPhi + 1

sum0 = newPhi*0x9e3779b9

pl_start = 1

tmp26 = sum0+0x9e3779b9

tmp39 = ((v1_0 << 4) + k0) ̂
(tmp26 + v1_0) ̂ ((v1_0>>5)

+ k1))

tmp41 = tmp39 + v0_0

tmp49 = (tmp41 + tmp26) ̂
((tmp41 >> 5) + k3)

v[0] = v0_0
v[1] = v1_0

return

pl_start == 1

Input

N

Y

Y

N

(A) Initial CCDFG of TEA (B) CCDFG after pipelining.

Figure 3.1: CCDFGs for the TEA encryption function

assigned most recently by opi in the path. A microstep partition is a partitioning

of operations in a basic block such that if opi and opj are in the same partition

then their execution order is irrelevant to control and data dependencies. Each

component of a microstep partition is a microstep. A schedule is a grouping of mi-

crosteps; informally, if m0 and m1 belong to the same scheduling step then they are

executed within the same clock cycle. A CCDFG execution is formalized through

state-based semantics. A CCDFG state (resp., CCDFG input) is a valuation of

the state (resp., input) variables. Given a sequence of inputs, an execution of a

CCDFG G with microstep partition M and schedule T is a sequence of CCDFG

states that corresponds to an evaluation of the microsteps of M respecting T .

Remark Conventions. For a given CCDFG G , ⟨GCD,M, T ⟩ and a set t ∈ T , we

21

use the term “projection of G on t” to mean the CCDFG Gt , ⟨G′
CD,M

′, {t}⟩

where G′
CD and M ′ contain only the operations in GCD and M respectively, that

are members of t. For a set T0 ⊆ T , we use “projection of G on T0” to denote the

following graph G′. The nodes of G′ are given by the set N , {Gt : t ∈ T0}; given

g0, g1 ∈ N , there is an edge from g0 to g1 if there are operations o1 and o2 such

that o1 ∈ g0, o2 ∈ g1 and there is an edge from o1 to o2 in GCD.

Since a schedule is a partition of microsteps, T0 induces a partition of GCD

such that if t0 ̸= t1 the partition induced by t0 is disjoint from that induced by t1.

Given a set T of scheduling steps, one can describe the CCDFG G , ⟨GCD,M, T ⟩

uniquely as the triple ⟨S,E,M⟩ where S and E denote the nodes and edges of the

projection of G on T , and M is the set of microstep partitions refined by T . We

use this view in the rest of the dissertation.

3.2 CIRCUIT MODEL

We represent a circuit as a Mealy machine specifying the updates to the state

elements (latches) in each clock cycle. Our formalization of circuits is typical in

traditional hardware verification, but we make combinational nodes explicit to

facilitate the correspondence with CCDFGs. A circuit is a tuple M = ⟨I,N, F ⟩

where I is a vector of inputs; N is a pair ⟨Nc, Nd⟩ where Nc is a set of combinational

nodes and Nd is a set of latches; and F is a pair ⟨Fc, Fd⟩ where Fc maps each

combinational node c ∈ Nc to an expression over Nc ∪ Nd ∪ I and for each latch

d ∈ Nd, Fd maps each latch d to n ∈ Nc ∪ Nd ∪ I where Fd is a delay function

which takes the current value of n to be the next-state value of d.

A circuit state is an assignment to the latches in Nd. Given a sequence of valuations

to the inputs i0, i1, . . ., a circuit trace ofM is the sequence of states s0, s1, . . ., where

(1) s0 is the initial state and (2) for each j > 0, the state sj is obtained by updating

the elements in Nd given the state valuation sj−1 and input valuation ij−1. The

22

pl_start = 0

tmp54 = (tmp41 << 4 + k2) ^

tmp49

tmp56 = tmp54 + v1_0

newPhi = phi (0, newbin);

v1_0 = phi (v[1],tmp56);

v0_0 = phi (v[0], tmp41)

newPhi == 32

newbin = newPhi + 1

sum0 = newPhi*0x9e3779b9

pl_start = 1

tmp26 = sum0+0x9e3779b9

tmp39 = ((v1_0 << 4) + k0) ^

(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39 + v0_0

tmp49 = (tmp41 + tmp26) ^

((tmp41 >> 5) + k3)

v[0] = v0_0;

v[1] = v1_0

return

pl_start == 1

V1_0p

tmp39

Phi

newPhi

newbin

1

Phi

V1_0

== 32

sum0

0
x
9
e
3
7
7
9
b
9

Phi

V0_0

tmp26

tmp49

tmp41

out = ((i0<<4) +i1)^i2

i0 i1 i2

out

FSM

0

out =(i0+i1)^((i0>>5)+i2)

i0 i1 i2

out

V[1]k2

k0 k1

k3

V[0]

V[1]

V[0]

Input

Pipeline

logic
N

Y

Y

N

out = ((i0<<4)

+i2)^(i0+i1)^((i0>>5)+i3)

i0 i1 i2 i3

out

Figure 3.2: Operation mapping between CCDFG and circuit

observable behavior of the circuit is the sequence of valuations of the outputs which

are a subset of latches and combinational nodes.

3.3 CORRESPONDENCE BETWEEN CCDFGS AND CIRCUITS

Given a CCDFG G and a synthesized circuit M , it is tempting to define a notion of

correspondence as follows: (1) establish a fixed mapping between the state variables

of G and the latches in M , and (2) stipulate an execution of G to be equivalent

to an execution of M if they have the same observable behavior. However, this

does not work in general since the mappings between state variables and latches

may be different in each clock cycle. To address this, we introduce EMap : ops→

Nc, mapping CCDFG operations to the combinational nodes in the circuit: each

operation is mapped to the combinational node that implements the operation;

23

the mapping is independent of clock cycles. Figure 3.2 shows the mapping for

the synthesized circuit of TEA. Recall from Section 2.1 that the FSM decides the

control signals for the circuit; the FSM is thus excluded from the mapping.

We now define the equivalence between G and M . A CCDFG state x of G is

equivalent to a circuit state s of M with respect to an input i and a microstep

partition t, if for each operation op in t, the inputs to op according to x and i are

equivalent to the inputs to EMap(op) according to s and EMap(i), i.e., the values

of each input to op and the corresponding input to EMap(op) are equivalent, and

the outputs of op are equivalent to the outputs of EMap(op).

Given a CCDFG G and a circuit M , G is equivalent to M if and only if for

any execution [x0, x1, x2, . . .] of G generated by an input sequence [i0, i1, i2, . . .] and

by microstep partition [t0, t1, . . .] of G, and the state sequence [s0, s1, s2, . . .] of M

generated by the input sequence [EMap(i0), EMap(i1), EMap(i2), . . .], xk and sk

are equivalent with respect to tk under ik, k ≥ 0.

3.4 DUAL-RAIL SIMULATION FOR EQUIVALENCE CHECKING

We check equivalence between CCDFG G and circuit M by dual-rail symbolic

simulation (Figure 3.3); the two rails simulate G and M respectively, and are

synchronized by clock cycle. The equivalence checking in clock cycle k is conducted

as follows:

1. The current CCDFG state xk and circuit state sk are checked to see whether

for the input ik, the inputs to each operation op in the scheduling step tk are

equivalent to the inputs to EMap(op). If yes, continue; otherwise, report

inequivalence.

2. G is simulated by executing tk on xk under ik to compute xk+1 and recording

the outputs of each op ∈ tk. M is simulated for one clock cycle from sk under

input EMap(ik) to compute sk+1. The outputs for each op are checked for

24

or Execution up to Given BoundMapping
Eqivalence

Constraints
Input Yes. Fixed Point Computation No

CCDFG
Simulation of CCDFG

Single Clock Cycle

Simulation of Circuit
Single Clock Cycle

Equivalent?

Circuit

Figure 3.3: Dual-rail simulation scheme for equivalence checking between CCDFG and

circuit.

equivalence with the outputs of EMap(op). If yes, continue; otherwise, report

inequivalence.

3. The next scheduling step tk+1 is determined from control flow. If tk has

multiple outgoing control edges, the last microstep of tk executed is identified.

The outgoing control edge from this microstep whose condition evaluates to

true leads to tk+1.

We permit both bounded and unbounded (fixed-point) simulations. In particular,

the simulation proceeds until (i) the equivalence check fails, (ii) the end of a bound-

ed input sequence is reached, or (iii) a fixed point is reached for an unbounded

input sequence.

The bit-level and word-level checkers are complementary. The bit-level checker

ensures that the equivalence checking is decidable, while the word-level checker

provides the optimizations which are crucial to scalability. The word-level checker

can make effective use of results from bit-level checking in many cases. One typical

scenario is as follows. Suppose M is a design module of modest complexity but

25

is awkward to check at word-level. Then the bit-level checker is used to check

the equivalence of the CCDFG of M with its circuit implementation; when the

word-level checker is used for equivalence checking of a module that calls M , it

skips the check of M , treating the CCDFG of M and its circuit implementation

as equivalent black boxes.

3.5 TOOL IMPLEMENTATION

We first implemented the dual-rail simulation on bit-level in the Intel Forte envi-

ronment [62], where symbolic states are represented using BDDs. However, exper-

imental results clearly show that bit-level checking does not scale (cf. Section 3.6).

Therefore, we re-implemented our equivalence checker on word-level in OCaml [58].

This is viable since word-level mappings between operations and circuit nodes are

explicit. We use bit-vectors to encode the variables in the CCDFG and the circuit;

the SMT engine checks input/output equivalence and determines control path-

s. Our word-level checker employs CVC3 SMT engine [3]. Figure 3.4 shows the

framework of our equivalence checker. Behavioral synthesis generates RTL circuits

in terms of Hardware Description Languages (HDLs), such as Verilog or VHDL.

Currently, we only developed the parser for Verilog, but we can easily extend our

HDL parser to support VHDL. Our HDL parser parses HDL files into an inter-

mediate representation for symbolic simulation. Our HDL parser and simulator

support a synthesizable subset of HDL. This subset of HDL can be synthesized

into gate-level. The CCDFG parser parses CCDFG files generated by our certi-

fied compiler. The RTL and CCDFG symbolic simulators simulate circuits and

CCDFGs simultaneously, synchronized by clock cycle following our dual-rail simu-

lation scheme. The state checker check the equivalence of the outputs of symbolic

simulators by utilizing SMT solvers.

Our checker provides three optimizations targeting different circuit features

(see Chapter 4). Users can specify which optimizations are involved in a particular

26

Circuits

(Generated by

behavioral

synthesis)

CCDFGs

(Generated by

certified

compiler)

User

Configuration

HDL Parser
CCDFG

Parser

RTL

Symbolic

Simulator

CCDFG

Symbolic

Simulator

State Cheker

SMT Solver

C
o
n
fi
g
u
ra
ti
o
n

Simulation Constraints

Dual-rail Simulator

Equivalence Checker

Figure 3.4: Framework of equivalence checker

27

Table 3.1: Bit-level equivalence checking statistics

Bit Width # of Circuit Nodes Time (Sec.) BDD Nodes

2 96 0.02 503

3 164 0.05 4772

4 246 0.11 42831

5 342 0.59 16244

6 452 12.50 39968

7 576 369.31 220891

8 714 6850.56 1197604

check. The dual-rail simulator will be automatically configured according to the

user’s specification.

3.6 EXPERIMENTAL RESULTS

To establish a baseline, we use the bit-level checker on a set of CCDFGs for GCD

and the corresponding circuits synthesized by AutoESL. The experiments were

conducted on a workstation with 3GHz Intel Xeon processor with 2GB memory.

The checking time bound is set up to 4 hours.

Table 3.1 shows the results of bit-level SEC for GCD. GCD contains a loop

whose number of iterations depends on the inputs. Since all operations are de-

composed into bit-level, the running time grows exponentially with bitwidth. For

8-bit GCD, SEC takes about 2 hours. Pure bit-level SEC is thus not feasible for

more complex designs.

To experiment with our word-level checking scheme, we have checked several

designs which have different design features. The statistics are shown in Table 3.2.

“-” signifies “out of time or memory”. DCT (Discrete Cosine Transform) is a widely

used algorithm in image processing domain, which contains sequential computation

28

Table 3.2: Word-level equivalence checking statistics

Design GCD TEA DCT 3DES

C Code Size (# of Lines) 14 12 52 325

RTL Size (# of Lines) 364 1001 688 18053

Time (Seconds) - - 30.1 -

Memory (Megabytes) - - 49.2 -

without loop. SEC for DCT only takes half a minute. Unfortunately, we cannot

finish the checking for GCD, TEA, and 3DES. These designs either requires a very

expensive fix-point computation or have complex modular hierarchies. Next, we

present how to further optimize our checking scheme in Chapter 4.

29

Chapter 4

OPTIMIZATIONS

4.1 MOTIVATION AND OVERVIEW

In Chapter 3, we proposed a framework for certifying behaviorally synthesized

RTL through SEC with our CCDFG representation. However, we realized that

naive word-level checking ran into scalability issues. In this chapter, we present

a suite of optimizations for the SEC step above, which exploit both the explicit

control and data flow representations in the CCDFG and the module structures

in the ESL description. We have applied these optimizations in verification of

RTL synthesized by AutoESL Our experiments show that they scale SEC to tens

of thousands of lines of synthesized RTL from complex behavioral specifications

(e.g., unbounded loops, modules, etc.), making it viable for industrial designs. We

know of no other SEC framework that can handle behaviorally synthesized RTL

of such complexity.

4.2 CUT-POINTS

The cutpoint optimization involves pre-verifying comparison of specific CCDFG

operations and their circuit implementations off-line. Subsequently, during SEC,

these operations are replaced in the CCDFG and RTL by equivalent symbols. Note

that only the equivalences (not computations) are relevant to SEC; if the inputs

to a cutpoint are equivalent, their outputs can be replaced by equivalent symbols,

causing only equivalences (not outputs themselves) to be propagated.

30

We utilize two types of cutpoints, combinational and sequential. Combinational

cutpoints are applicable to combinational portions, and have been studied exten-

sively [45]. RTL designs with complex combinational circuits are generated due

to transformations such as loop unrolling: in the TEA example, the behavioral

synthesis tool can fully unroll the for loop, creating complex combinational cir-

cuits by aggregating operations from different iterations. Sequential cutpoints cut

sequential circuits and keep complex expressions from propagating across clock

cycles.

In the TEA example (Figure 3.2), the scheduling step starting with the condi-

tional pl start==1 and ending with the assignment pl start=1 is implemented as

a combinational block that can be cut at all operations, e.g., the one computing

tmp54; the equivalence of this operation with the corresponding RTL is certified

separately (e.g., by theorem proving). On the other hand, the operation that com-

putes tmp49 can be used as a sequential cutpoint since it connects two scheduling

steps.

To explain the role of post-scheduling CCDFGs in cutpoint optimization, note

that the ESL specification is unclocked while the RTL is clocked. Furthermore,

after application of high-level transformations, the RTL has little correspondence

in internal operations with the behavioral description, making it difficult to iden-

tify cutpoints. However, this problem is eliminated in our framework since there

is a readily available correspondence with the post-scheduling CCDFG, e.g., the

operation-to-resource mapping, which provides natural candidates for cutpoints.

4.3 CUT-LOOP OPTIMIZATION

A major challenge in SEC is termination, which typically requires expensive fixed-

point computation. Termination becomes a problem when the input description

contains unbounded loops. Consider the CCDFG of the Greatest Common Divisor

(GCD) algorithm shown in Figure 4.1. The bit-level symbolic simulation for GCD,

31

i n t gcd (i n t a , i n t b)

{

i n t t ;

do {

i f (a >= b) a=a−b ;

e l se { t=a ; a=b ; b=t ;}

} while (b != 0) ;

return a ;

}

t=a;a=b;b=t

a=A

b=B

a=a-b

True

False

a >= b

return a

b!=0

False

True

Micro Step

Scheduling

Step

Figure 4.1: C source code and CCDFG for GCD

even for 8-bit integers, involves more than 6850 seconds and 1197606 BDD nodes

(cf. Section 3.6). A naive fixed-point computation at word-level is also expen-

sive. Even for designs with deep bounded loops (e.g., TEA), full unrolling is too

expensive for both bit-level and word-level simulations.

Our solution is the cut-loop optimization, which “cuts” the loop, reducing the

fixed-point computation to three checks, i.e., at the entry, body, and exit. The

idea is inspired by theorem proving approaches to verifying software loops. At

entry, we check equivalence between the CCDFG and the RTL for the path to the

initial loop entry. For the body, we check that if (1) equivalence is maintained at

the loop join point, and (2) the loop does not exit, then equivalence is maintained

after one iteration. For the exit, we check that if (1) equivalence is maintained

at the loop join point, and (2) the loop exits, then equivalence is maintained

at the loop exit. The loop structure and entry point information are available

from the synthesis tool. The checks above are inspired by inductive assertions in

software verification [22, 31]: the three checks are essentially the proof obligations

32

t=a; a=b; b=t

a=A
b=B

a=a-b

True

False

a >= b

return a

b!=0

False

True

a=A
b=B

t=a; a=b; b=t

a=a-b

True

False

a>=b

b!=0

t=a; a=b; b=t

b!=0

a=a-b

True

False

a >= b

return a

False

Loop Entry

Loop Body

Loop Exit

True

Figure 4.2: Cut-loop optimization for GCD example

discharged by a verification condition generator, if we think of equivalence with

RTL as the invariant maintained by the loop. Using ACL2, we proved that the

checks guarantee word-level equivalence over the entire loop execution. The proof

follows a reasoning analogous to that used in justifying the use of loop invariants

to cut loops for program verification using inductive assertions.

We illustrate cut-loop optimization on the GCD example in Figure 4.2. At

the loop entry, the check that a and b are equivalent to their RTL counterparts

is trivially true since they are inputs. For the body check the condition b ̸= 0 is

applied to ensure the iteration does not exit, and for the exit check the condition

b = 0 is applied to ensure the loop exits. For both body and exit checks, the

condition being checked is that if a and b are equivalent before executing a ≥ b

then they are equivalent after one iteration. With this optimization, word-level

SEC on GCD finishes within two seconds. The cut-loop optimization is also useful

33

des_crypt

FSM

data_control s
ta

rt

re
s
e
t

d
o
n
e

tmp12

data_out

data_in

key

data_out

FSM

start

reset

start

reset

done

IP f InvIP
data_out

done

data_control

key

date_in

des_crypt

three_des_crypt

Input

tmp12 = data_in | tmp13

data = call des_crypt (tmp12, key)

Input

tmp32= data_in^ tmp56

tmp15 = call IP (key, tmp32)

..
.

..
.

three_des_crypt

des_crypt

CCDFG Circuit

Figure 4.3: Modular SEC for 3DES

for deep bounded loops, e.g., we achieved major speed-up for word-level SEC on

TEA (cf. Section 4.5).

Note that loop detection is greatly simplified since CCDFGs are derived from

ESL designs by applying primitive transformations.

4.4 MODULAR ANALYSIS

Synthesized RTL is often large and complex, e.g., for 3DES design, the behav-

ioral synthesis tool generates 18053 lines of Verilog. Behavioral synthesis reduces

RTL size via modular reuse: without modules, the RTL for 3DES would be 128K

lines.Modules may be present in input description or introduced by behavioral

synthesis. To support modules, CCDFGs are extended with function calls. An

example function invocation in the 3DES CCDFG is shown in Figure 4.3.

With modules, a given behavioral description corresponds to several CCDFGs

34

(each corresponding to a module). A module can be either combinational or se-

quential. A combinational module returns in the same clock cycle in which it is

invoked, while a sequential module takes several cycles. Note that the top-level

CCDFG may not capture all the scheduling steps since some are in other sequen-

tial modules. In the synthesized RTL, there is a module for each CCDFG. In

addition to RTL code implementing functionality, there is additional code for in-

terfaces, e.g., a module commonly needs reset, start, and allow signals besides

input/output data signals.

One naive approach to handle modules is to unfold them, causing each module

to be analyzed at each invocation. We prefer compositional analysis of each module

separately. Our scheme works as follows.

• For each module M , the CCDFG and RTL for M are checked for equivalence

separately.

• When verifying a module M ′ that invokes M , the invocation of M in the

CCDFG and RTL of M ′ are replaced by equivalent uninterpreted functions.

The equivalence between function invocation in CCDFG and module interfacing

mechanism in RTL is pre-certified. Modular analysis is possible because of explicit

correspondence between the CCDFG and the RTL of a module: since we use the

same module structure used in the synthesis, the decomposition does not introduce

over-approximations.

Currently, we do not handle recursive modules since recursions in ESL descrip-

tions are typically removed by compiler transformations; however, modular analysis

can be extended to recursion by replacing the callee with a “module summary”,

analogous to procedure summaries in software verification [1].

35

Table 4.1: Designs, features, and optimizations

Designs Features Optimizations

GCD Unbounded Loop Cut-Loop

DCT Sequential without Loop Cutpoint

TEA Bounded Loop Cut-Loop

Unrolled Loop Cutpoint

DES Bounded Loop Cut-Loop

Unrolled Loop Cutpoint

High Sequential Complexity

3DES Bounded Loop Cut-Loop

Unrolled Loop Cutpoint

High Sequential Complexity Modular Analysis

3DES key Bounded Loop Cut-Loop

Unrolled Loop Cutpoint

High Sequential Complexity Modular Analysis

High Combinational Complexity

4.5 EXPERIMENTAL RESULTS

Table 4.1 illustrates the designs used to evaluate our optimizations. Each design is

synthesized by a behavioral synthesis tool. The designs are selected carefully to ex-

ercise different facets of our framework. Encryption algorithms, e.g., TEA, DES,

3DES, and 3DES key (3DES with key generation). DES, 3DES and 3DES key

contains bounded loops and benefit from cut-loop; their sequential and combina-

tional complexities also illustrate the role of cutpoints. 3DES and 3DES key have

modular structures and modular analysis is vital to discharge their SEC. DES was

deliberately synthesized without modules to further investigate the role of modular

analysis. All experiments were conducted on a workstation with 3GHz Intel Xeon

36

Table 4.2: Word-level equivalence checking statistics

Design RTL Size (# Lines) Optimizations Time (Secs) Memory (MB)

GCD 364

NO - -

CP - -

CP + CL 2 4.1

DCT 688

NO 71 92.16

CP 30.1 49.2

TEA 1001

NO - -

CP 116 141.3

CP + CL 15.6 24.6

DES 11520

NO - -

CP 5896 614.4

CP + CL 1482 426.4

3DES 18053

NO - -

CP + MA 872.5 114.7

CP + MA + CL 355.7 59.4

3DES key 79976

NO - -

CP + MA 2868.5 307.2

CP + MA + CL 2351.7 307.2

processor with 2GB memory.

Table 4.2 shows the results of word-level SEC for all the designs from Table 4.1.

Here, “-” signifies “out of time or memory”, “CP” for cutpoints, “CL” for cut-loop,

and “MA” for modular analysis. The “NO” column represents “no optimizations”:

it is clear that without the optimizations, SEC cannot handle long computation

sequences or loops. Since DCT contains only sequential computations and no

modules, cut-loop and modular analysis are not applicable; however, cutpoint

optimization reduces the symbolic simulation cost to about half, in both time

37

and memory usage. Cutpoints, together with modular analysis, can handle long

computation sequences and bounded loops, (e.g., TEA, 3DES, and 3DES key), but

blows up on fixed-point computation for unbounded loops (e.g., GCD), underlining

the need for cut-loop. The cut-loop optimization handles unbounded loops, while

also reducing the time and memory usage for designs with bounded loops. The

savings from cut-loop are relatively less for 3DES key since the design contains

large combinational computations (for generating the key) which overshadow loop

unrolling cost. The results on DES highlight the importance of modular analysis

when possible: although the RTL is smaller than 3DES and 3DES key, the time and

memory usage is higher due to lack of modules (and hence, modular analysis); for

3DES and 3DES key, even the behavioral synthesis tool fails without modules. The

results indicate that word-level SEC with our optimizations can scale to realistic

designs. Note that each of DES, 3DES, and 3DES key is over 10, 000 lines of

RTL, and 3DES key (even with modules) involves about 80, 000 lines. We know of

no other framework that can apply SEC on behaviorally synthesized RTL at this

scale.

38

Chapter 5

SEC FOR SYNTHESIZED LOOP PIPELINES

5.1 MOTIVATION AND OVERVIEW

Loop pipelining is a critical transformation in behavioral synthesis to reduce the

latency of designs with loop structure by producing temporal overlap of successive

loop iterations. It is available in most state-of-the-art tools, (e.g., AutoESL). How-

ever, it induces retiming and out-of-order executions; furthermore, the mapping

of internal operations is lost between the sequential description and the pipelined

RTL. This rules out standard SEC techniques for their comparison. In particular,

some key optimizations (e.g., cutloop) become inapplicable.

In this chapter, we discuss the challenges with loop pipelines and present an

equivalence checking approach for certifying synthesized hardware designs in the

presence of loop pipelining transformations. We have applied our approach on

industrial-size designs with thousands of lines of RTL, synthesized by AutoESL.

This scalability is derived from tight integration with the synthesis flow. Instead

of directly comparing the synthesized RTL with the sequential description, we de-

velop an intermediate pipeline reference model. This model provably preserves the

semantics of the sequential description. However, our model generation algorith-

m is parameterized by pipeline parameters, whose values are obtained from the

synthesis tool; this ensures that the structure of the generated model is similar to

that of the synthesized RTL, and enables internal operation mapping between the

reference model and the RTL.

39

#def ine N 100

i n t p i p e (i n t a [N]) {

i n t i ;

i n t r e s u l t = 0 ;

f o r (i = 0 ; i < N; ++i) {

i n t tmp1 = r e s u l t + a [i] ;

a [i] = tmp1 ;

r e s u l t = tmp1 + 1 ;

}

return r e s u l t ;

}

S2 S3 S4

Execution order before pipelining

Execution order after pipelining

S2 S3 S4 S2 S3 S4

S2 S3 S4

S2 S3 S4

S2 S3 S4

S2 S3 S4

(a) C code with loop (b) Execution before and after pipelining

Figure 5.1: Example of loop pipeline

5.2 CHALLENGES WITH LOOP PIPELINES

Loop pipelining allows multiple successive iterations of a loop to operate in parallel

by executing a new iteration before the previous iteration completes. Consider

pipelining the loop in Figure 5.1 (a). Figure 5.1 (b) shows the execution orders of

the scheduling steps in the loop body before and after pipelining. In the sequential

design, execution of iteration i involves reading the value of a[i] from the memory in

S2, adding i and a[i] in S3, and storing new value to the memory and computation

of result in S4. However, with pipelining, iteration i+1 is initiated before iteration

i completes.

The result of overlapping executions is a significant difference in the schedule

of operations between the CCDFG of the sequential design and the RTL generated

from the pipeline. Each scheduling step of the pipeline is composed of a number

of scheduling steps of the sequential design; there is no longer a direct operation

mapping between the CCDFG and RTL. Furthermore, due to the difference in the

40

execution order of the scheduling steps, the controlling finite-state machines are

also different. A direct SEC between the two reduces to comparison of their input-

output relations, which is prohibitively expensive for loops with many iterations.

5.3 SEC WITH REFERENCE MODEL

Our solution to the above problem is to develop a reference pipelining transforma-

tion on CCDFGs [29]. Given a CCDFG G and certain pipeline parameters (see

below), we generate a new CCDFG G′ by pipelining the loops. Note that our

transformation is different from that used by the synthesis tool to generate the

pipelined RTL. The synthesis tool transformation includes algorithms and heuris-

tics to determine how many iterations to pipeline, etc.; on the other hand, our

algorithm merely takes such information as parameters to create G′. In fact, we

obtain this information from the synthesis tool itself. Thus the output CCDFG G′,

if successfully generated by our algorithm,1 is guaranteed to have close structural

correspondence with the synthesized RTL. On the other hand, irrespective of the

actual value of these parameters, G′ is guaranteed to be semantically equivalent

to G and can therefore be soundly used instead of G for SEC.

The following definition characterizes the loops handled by the algorithm.

Definition 4 Pipelinable Loop. For a CCDFG G , ⟨GCD,M, T ⟩ and for T0 ⊆

T , we say that T0 induces a “pipelinable loop” if (1) the projection of G on T0 is

a cycle C, and (2) in the projection of G on T there is a unique node (called the

“entry node”) in C with a predecessor outside C and a unique node (called the

“exit node”) in C with a successor outside C.

1Our algorithm does not use semantic invariants of the program being transformed. Thus we
may fail to pipeline a loop for a given number of iterations (and report a spurious hazard) when
in fact such a pipeline is hazard-free. However, in practice we have not seen a case where the
synthesis tool generates a pipeline with specific parameters and our algorithm reports a spurious
hazard on those parameters.

41

Remark. The notion of pipelinable loops is more restrictive than the common loop

definition in programming languages. In particular, a pipelinable loop has a single

exit and loop nesting is disallowed. Our definition is based on the kind of loops

that are actually pipelined by behavioral synthesis tools. For instance, if a design

contains nested loops, then the inner loop can be unrolled completely (possibly by

compiler transformations) before the outer loop can be pipelined.

Algorithm 1 PIPELINELOOP(L = ⟨S,E,M⟩, I, N)

1: S ′
1 ← GenerateSchedulingSteps(S, I,N)

2: ⟨S ′
2,M

′
1⟩ ← GenerateP ipelineRegs(S ′

1,M,E, I)

3: E ′
1 ← GenerateEdges(S ′

2, E, I,N)

4: ⟨S ′
3,M

′
2⟩ ← GenerateForwarding(S ′

2,M
′
1, E

′
1, I)

5: return ⟨S ′
3, E

′
1,M

′
2⟩

Given CCDFG G, our reference transformation replaces each loop L in G with

the pipelined refinement of L as described in Algorithm 1. Here I is iteration

interval, which indicates how many clock cycles later a new iteration is to be “fed”

into the pipeline, and N is the number of scheduling steps in L. Values of these

parameters are readily available from behavioral synthesis. Figure 5.2 illustrates

the use of the algorithm on our simple example. We now discuss the different steps

of the algorithm in greater detail.

Algorithm 2 describes the construction of scheduling steps of the pipelined C-

CDFG. The algorithm simulates the process of “feeding” a new loop iteration into

the pipeline until the pipeline is full. Consider the sequence of iterations shown in

Figure 5.3. The output is an array (initially empty) of graphs. Each graph repre-

sents the projection of the reference pipeline CCDFG at a single scheduling step.

We first build the nodes of each graph in the array (Lines 3-6); we then compute

the edges within each graph (Lines 8-14). The set of nodes of each graph in SG

is determined by I and N . The algorithm updates SG for every iteration. If the

42

S’2

S’3

S’5

S’6

CCDFG after pipelining

S2

S3

S4

S2

S3 S2

S4 S3 S2

Pipeline

 Prologue

Pipeline

 Full

Pipeline

 Epilogue
S4

S’4

CCDFG before pipelining Pipelined CCDFG construction

S5 S5

(a) (b) (c)

Figure 5.2: Input and output CCDFGs of loop pipelining transformation

pipeline is not yet full, i.e., can accept a new iteration but no iteration is completed

yet (Line 3), then a new iteration is introduced and merged with the existing iter-

ations in the pipeline by subroutine mergeIteration. Subroutine mergeIteration

merges each scheduling step in the new iteration with the corresponding steps al-

ready in pipeline, returns new scheduling steps as shown in Figure 5.3 (b), (c),

(d). To model the exit, the pipeline enters the “flushing” stage in which iterations

are completed without new iteration being introduced. The pipeline full stage cor-

responds to the new loop body for the pipelined CCDFG while the prologue and

epilogue correspond to the entry and exit.

We now build the edges for each graph in SG. The goal is to ensure that the

new control flow respects that of the input loop. The process is demonstrated in

Figure 5.4 (a). Recall that a scheduling step of the pipeline involves a number of

scheduling steps of the original CCDFG (across several iterations). To ensure that

the original control flow is respected, a scheduling step s′ of the pipeline is executed

43

following the iteration order. This is achieved by adding edges enforcing the eval-

uation of microsteps from left to right. For instance, in S ′
4 shown in Figure 5.4 (a),

an edge is created to connect S4 and S3. Since S4 is from an earlier iteration, the

direction is from S4 to S3. The edge condition !exitcond states that loop does not

exit. If the loop exits at iteration i, all iterations from (i+1) must be skipped: this

is ensured by inserting the exit condition on all such edges. Subroutine buildEdge

creates the correct edge condition according to the control flow.

Algorithm 2 GenerateSchedulingSteps (S, I, N)

1: SG ← ∅;

2: iter ← 0 /*loop iteration*/

3: while iter ∗ I < N do

4: SG ← mergeIteration(SG, S, I, iter)

5: iter ← iter + 1

6: end while

7: /*build new edges within one single scheduling step */

8: for each step s′ in SG do

9: for each step pair (s′[pos], s′[pos+ 1]) in s′ do

10: e′ ← buildEdge(s′[pos], s′[pos+ 1])

11: s′ ← append(s′, e′)

12: end for

13: end for

14: return SG

Algorithm 3 inserts “pipeline registers” between iterations to facilitate correct

data flow and prevent variables from being overwritten before being consumed. In

a CCDFG, the effect of pipeline registers is mimicked using temporary variables

as follows. We first compute all program variables that may be overwritten before

being consumed (Line 2); this constitutes the variables that potentially require

44

S2

S3

S4

Iter = 0; Iter = 1 Iter = 2

Scheduling step

before pipelining
Scheduling step

after pipelining

S2

S3

S4

S2

S3

S4

S2

S3 S2

S4 S3

S4

S2

S3

S4

Legend:

(a) (b) (c) (d)

S’2

S’3

S’4

S’5

S’6

S’2

S’3

S’4

S’5

S’6

S’2

S’3

S’4

S’5

S’6

S’2

S’3

S’4

S’5

S’6

Figure 5.3: Construction of scheduling steps

pipeline registers. To find such variables, we compare the distance between the

producer msp and the last consumer msc; if the distance is greater than I, v is

assigned the new data value of the next iteration before current iteration’s val-

ue has been fully consumed; this warrants insertion of pipeline variables in every

scheduling step between msp and msc. The value is propagated every clock cycle

following the CCDFG data flow. In Figure 5.5, variable %a addr is computed in

S2 and the last use scheduling step is S4. The distance is greater than I = 1,

therefore, temporary variables a addr pipe1 and a addr pipe2 are inserted. Sub-

routine addP ipelineReg generates new microsteps for assignments of the pipeline

variables, create new edges to integrate these microsteps into the data path, and

updates the schedule.

45

S2

S3 S2

S4 S3 S2

S3S4

S4

S2

S3 S2

S4 S3 S2

S3S4

S4

build the new edges within

one single scheduling step

build the new edges between

scheduling steps and back edges

! exitcond TRUE

! exitcond

Loop Exit

e
x
it
c
o
n
d

! exitcond

e
x
it
c
o
n
d

e
x
it
c
o
n
d

! exitcond

TRUE

exitcond

Dead Edges

(a) (b)

S’2

S’3

S’4

S’5

S’6

S’5

S’6

TRUE

S’2

S’3

S’4

Figure 5.4: Construction of edges

Algorithm 3 GeneratePipelineRegs (S, M , E, I)

1: S ′ ← S;M ′ ←M

2: Vpr ← getP ipelineRegisterV ars(S,M,E, I)

3: for each variable v in Vpr do

4: msp ← getProducer(v)

5: msc ← getLastComsumer(v)

6: ⟨S ′,M ′⟩ ← addPipelineReg(S ′,M ′, E,msp,msc)

7: end for

8: return ⟨S ′,M ′⟩

Algorithm 5.3 shows the construction of edges governing the control flow of the

pipelined CCDFG. Figure 5.4 (b) shows how to build edges between new scheduling

steps (Lines 3-6). One example is the edge from S2 in S ′
2 to S4 in S ′

3. Because the

pipeline is still in prologue stage, the edge condition is that loop does not exit.

46

Algorithm 4 GenerateEdges (S, E, I, N)

1: E ′ ← ∅

2: /*build the edges between new scheduling steps*/

3: for each step pair(S[i], S[i+ 1]) in S do

4: e′ ← buildEdge(S[i], S[i+ 1])

5: E ′ ← append(E ′, e′)

6: end for

7: /*build the back edge*/

8: ssrc ← S[N − 1]; sdst ← S[N − I]

9: ebackedge ← buildEdge(ssrc, sdst)

10: E ′ ← append(E ′, ebackedge)

11: /*build the early exit edge*/

12: i← N − 1

13: while i < sizeof(S)− 1 do

14: e′ ← buildEdge(S[i], sloopexit)

15: E ′ ← append(E ′, e′)

16: i← i+ I

17: end while

18: return ⟨E ′⟩

The back edge of the new loop connects the last scheduling step of the pipeline

full stage to the first one. S ′[N − 1] is the last one and S ′[N − I] is the first step

in the pipeline full stage. Finally, for an unbounded loop, exit can occur in any

iteration. Thus, we must allow the pipeline to start flushing in any iteration, even

when the pipeline is not full (Lines 12-17). In the example shown in Figure 5.4 (b),

the exit point of the loop is in S2, therefore in pipeline epilogue, the edge from

S4 to S3 will never be valid. This is because the loop would have already exited

and the S3 and S4 of the new iteration will not execute. The dead edges will be

47

removed to simplify the final CCDFG.

Algorithm 5 GenerateForwarding (S, M , E, I)

1: /*find all loop carried dependencies*/

2: Dlc ← getCarriedDependencies(S,M,E)

3: S ′ ← S;M ′ ←M

4: for each pair (ow, or) in Dlc do

5: if checkForwarding(or, I, S
′) then

6: ⟨S ′,M ′⟩ ← moveOp(ow, or, S
′, E,M ′)

7: else

8: return ERROR

9: end if

10: end for

11: return ⟨S ′,M ′⟩

A critical puzzle is computation of data forwarding paths along pipeline itera-

tions (Algorithm 5). Data forwarding is critical to achieving aggressive pipelining

and eliminating data hazards. The first key observation is that forwarding is only

necessary for loop carried dependencies, which extend back to the previous itera-

tion. Dlc denotes a list of dependencies and Subroutine getCarriedDependencies

finds all loop carried dependencies. Each dependency is pair of operations (ow, or),

ow is the last write operation in the loop body and or is the first read operation.

Subroutine checkForwarding checks if the data forwarding is possible (i.e.,

whether the value is computed before use) for these variables in the scheduling

steps of the pipeline. We then implement forwarding using so-called “Φ nodes”.

Φ nodes are special operators in compiler transformations and are widely used in

resolving conditional branches in a number of compilers, and are used to postpone

computation of control flow until run time. In particular, a Φ node is introduced in

a basic block which has multiple predecessors; the values of variables in a Φ node

48

%i = phi (0, %indvar);

%result = phi (0, %result_1)

%exitcond = icmp eq %i 100

%a_load = load %a_addr

%a_load = load %a_addr

Store %tmp1 %a_addr_pipe2

Y

N

indvar = add %i 1

%exitcond == 1

%a_addr = getelemtptr %A %i

%tmp1 = add %a_load %result

%result_1 = add %tmp1 1

S2

S3

S4
%a_load = load %a_addr

%tmp1 = add %a_load %reslult

S3

%result = phi(0, %result_1)

Forwarding

Next iteration

%i = phi (0, %indvar);

%result = phi (0, %result_1)

%exitcond = icmp eq %i 100

%a_load = load %a_addr

Y

N

indvar = add %i 1

%exitcond == 1

%a_addr = getelemtptr %A %i

S2

%a_addr_pipe1 = load %a_addr

%a_addr_pipe_1 = load %a_addr

%a_addr_pipe2 = %a_addr_pipe1

%a_addr_pipe2 = %a_addr_pipe1

Figure 5.5: Pipeline registers and forwarding

for a specific execution are given by the specific block which actually precedes the

node in that execution. To understand its utility for data forwarding, consider

Figure 5.5. In the non-pipelined design Φ operators can occur only in schedul-

ing step S2. The valid value of variable %result is computed by the Φ node in

scheduling step S2. Since we desire to execute scheduling steps S2 and S3 within a

single scheduling step, we move the Φ from S2 to S3 and forward the value directly

from the producer to the consumer. In general, to implement pipeline forwarding,

we need to relocate the position of the Φ operator for a variable to immediately

49

before its first consumer, also update the assignment of Φ node according to the

new control flow. The “move” is implemented in moveOp, which will generate a

new scheduling S ′ and a new microstep partition M ′.

5.4 EXPERIMENTAL RESULTS

We implemented the loop pipelining algorithm on top of our certification frame-

work for behavioral synthesis. We ran our tool on a collection of pipelined designs

synthesized by AutoESL.

Table 5.1 shows the results. Our framework successfully handled SEC for syn-

thesized designs with pipelined loops involving several thousand lines of RTL with-

in a reasonable time and memory bounds. Note that this success on pipelines

depends on the applicability of other optimizations during SEC. The reason is

that because of the presence of non-trivial loops, SEC without cut-loop optimiza-

tion requires an expensive fixed-point computation which runs out of memory and

time. For all designs, brute-force SEC between the unpipelined CCDFG and the

RTL times out. SEC between the pipelined CCDFG and the RTL can mostly

finish. With the optimizations applied, SEC finishes with reduced memory and

time usages. The results thus support our preference to compare the RTL with

a closely resembling pipelined CCDFG that facilitates the optimizations, rather

than develop a specialized SEC algorithm for pipelines.

50

T
ab

le
5.
1:

L
o
op

p
ip
el
in
in
g
ex
p
er
im

en
ta
l
re
su
lt
s

D
es
ig
n

R
T
L

A
p
p
.
D
om

ai
n

L
o
op

In
fo
.

P
ip
el
in
e
In
fo
.

W
it
h
ou

t
O
p
t.

W
it
h
O
p
t.

#
li
n
e

In
te
r-

D
ep
th

O
p
er
-

F
or
w
-

P
ip
el
in
e

M
em

.
T
im

e
M
em

.
T
im

e

va
l

at
io
n
s

ar
d
in
g

R
eg
is
te
r

(M
B
)

(S
ec
)

(M
B
)

(S
ec
)

M
em

or
y
O
p

29
1

M
em

or
y
op

er
at
io
n

1
4

18
2

2
24

38
4

0.
3

T
E
A

38
3

C
ry
p
to
gr
ap

h
y

1
4

28
4

2
-

-
40

6.
2

X
T
E
A

48
3

C
ry
p
to
gr
ap

h
y

1
3

37
4

1
-

-
52

7.
8

C
O
R
D
IC

48
5

D
at
a
p
ro
ce
ss
in
g

1
3

31
4

0
38

7.
9

5
0.
9

S
m
it
h
W
at
er

51
7

D
at
a
p
ro
ce
ss
in
g

2
3

73
3

0
-

-
13
4

50
.2

F
IR

61
0

S
ig
n
al

p
ro
ce
ss
in
g

3
5

27
3

1
76
3

12
7.
4

63
10
.8

Y
U
V
T
oR

G
B

75
6

Im
ag
e
p
ro
ce
ss
in
g

2
6

77
1

5
-

-
33
5

12
8.
9

M
ot
io
n
C
om

p
12
48

Im
ag
e
p
ro
ce
ss
in
g

1
3

53
3

0
43
4

13
2.
2

50
11
.4

D
E
S

32
92

C
ry
p
to
gr
ap

h
y

1
3

17
2

2
46
8

36
4.
7

25
7

16
3.
3

51

Chapter 6

SEC FOR SYNTHESIZED FUNCTION PIPELINES

6.1 MOTIVATION AND OVERVIEW

Function pipelining (a.k.a. system-level pipelining) is an important and subtle

optimization. It aims to improve the quality of synthesized RTL implementations,

by allowing multiple successive transactions of a function to execute concurrently.

Most state-of-the-art behavioral synthesis tools, e.g., AutoESL, CatapultC, and

Cynthesizer, support function pipelining. However, it is a complex transformation

and consequently error-prone. An error in the transformation can manifest itself

as subtle bugs in scheduling, binding, or generation of controlling FSM for the

synthesized design. For instance, incorrect scheduling can cause two operations to

mistakenly overlap in the same clock cycle and data hazards may be introduced

by incorrect pipeline forwarding. Thus, sequential equivalence checking support

for verifying correctness of the synthesized pipelines is critical in enabling wide

adoption of behavioral synthesis.

Function pipelining introduces overlapping execution, which leads to a signif-

icant difference between the behavioral specification and the RTL. Furthermore,

typical bugs are not likely to be exposed by feeding the pipeline with one trans-

action: subtle corner cases typically involve the overlapped execution of multiple

transactions at different pipeline stages. Therefore, SEC for function pipelines

must account for all possible input sequences. Particularly, it must account for

insertion of arbitrary “bubbles”, i.e., pipeline stalls between the input sequences.

A brute-force SEC approach directly comparing the input/output relations of the

52

i n t p i p e (i n t in1 , i n t i n 2)

{

s t a t i c i n t a = 2 ;

i n t b , c ;

b = a ∗ i n 1 ;

a = b + in2 ;

c = a ∗ b ;

return c ;

}

%b = mul %a_1 %in1

%tmp = add %b %in2

%res = mul %tmp %b

ret %res

%a_1 = load @ a

store %tmp @ a

(a) C Source Code of a Function (b) Corresponding CCDFG

Figure 6.1: Example of function pipeline

behavioral specification and the synthesized RTL does not scale.

We present an approach to certifying the synthesized function pipelines. Our

approach is to break the certification into two steps. (1) we develop a reference

function pipelining transformation, which takes certain pipeline parameters from

behavioral synthesis to generate a pipeline reference model. (2) we check the

equivalence between the reference model and the RTL implementation. Our ap-

proach efficiently reduces the complexity brought by bubbles in pipelines. The

mapping between behavioral level operations and RTL functional units is still p-

reserved, therefore some key optimizations, such as cutpoints [30], are applicable.

We demonstrate the efficiency and scalability of our approach on a set of industrial-

strength designs synthesized by AutoESL.

53

MUL ADD MUL

(a) Without Function Pipelining

(b) With Function Pipelining

MUL ADD MUL MUL ADD MUL

MUL ADD MUL

MUL ADD MUL

MUL ADD MUL

3 cycles

1 cycles

Figure 6.2: Difference between un-pipelined version and pipelined version

6.2 CHALLENGES WITH FUNCTION PIPELINING

Function pipelining improves the throughput of the synthesized circuit design by

allowing operations from consecutive transactions of a function to execute concur-

rently. The pipelined function can accept a new input before the previous ones

complete. Figure 6.2 compares the execution between the un-pipelined version and

a pipelined version of the design shown in Figure 6.1. There are three operations:

two multiplies and one add. Without function pipelining, the circuit can accept a

new input every three clock cycles. However, with function pipelining it can accept

a new input every clock cycle: thus, function pipelining can dramatically improve

the circuit throughput. However, the resource usage may increase, since the two

multiply operations cannot share the same multiplier now.

Behavioral synthesis generates handshake signals to implement the synchro-

nization between the synthesized pipeline and its surrounding circuits [60]: these

signals include start, done and allow, as shown in Figure 6.3. The start signal

indicates that there are valid inputs ready for execution in the pipeline and the

54

FSM

start

allow

done

Figure 6.3: Hardware interface

allow signal indicates that the pipeline is ready to start a new transaction in the

next clock cycle. The handshake happens when both start and allow are high. The

done signal indicates that the pipeline produced some valid output data. However,

when the pipeline is ready to accept a new input (i.e., when allow is high), the

upstream circuit may not be able to get the new input data ready (i.e., start is

low); in this case, a bubble is inserted into the pipeline. For instance, consider the

pipeline shown in Figure 6.2 (b). The pipeline can start a new transaction every

cycle. However, since there is no input at the third cycle and a new input comes at

the fourth cycle instead, one bubble is inserted into the pipeline. When there are

bubbles in the pipeline, the pipeline typically disables the corresponding functional

units to save power. Correctly disabling the idle functional unit without effect-

ing the rest of the pipeline is challenging and error-prone. Therefore, equivalence

checking of function pipeline must carefully take bubbles into account.

In addition to bubbles, complexity of SEC in function pipelining comes from

overlapping execution of multiple transactions. It leads to a significant difference

in the schedule of operations between the CCDFG of the sequential design and

the RTL implementing the function pipeline. Furthermore, overlapping execution

55

leads to a different FSM. Function pipelines may have fewer states, but each state

executes more operations. Thus, standard SEC techniques are not effective.

Our top-level approach for function pipeline verification has analogues to pre-

vious SEC approach for loop pipelines [29], viz., developing a reference model for

the pipelined CCDFG that is semantically equivalent to the sequential design and

can be used for SEC with the RTL. However, the reference model generation for

function pipelines is inherently different from loops and involves subtle challenges

not encountered in loop pipelines, leading to drastically different algorithms. A

major difference between loop and function pipelines is that function pipelines

must account for arbitrary bubbles due to non-determinism in function invocation

latency, but loop pipelines do not. In loop pipelines, an FSM controls when to

start a new loop iteration. The FSM is part of the synthesized RTL, and this fixes

the execution of loop iterations. For function pipelines, starting a new transaction

is determined by upstream circuits, and is a runtime decision. To fully certify the

pipeline, all bubble insertion scenarios must be accounted for. A naive approach is

to build one pipelined CCDFG for each such scenario. Therefore, to cover all these

scenarios, we have to construct many pipelined CCDFGs. Figure 6.4 (a) shows

the CCDFG before pipelining, which has three scheduling steps. Figure 6.4 (b),

(c), (d), (e) show the pipelined CCDFGs with different numbers of bubbles in-

serted in different stages. To certify a function pipeline, we have to apply SEC

between all possible pipelined CCDFGs and the synthesized RTL implementation.

Unfortunately, the number of such pipelined CCDFGs is exponential in the num-

ber of scheduling steps of the CCDFG before pipelining, making this approach

impractical.

6.3 SEC FOR FUNCTION PIPELINING

Our approach entails building a pipelined reference model, while still avoiding the

exponential cost due to bubble insertion mentioned above.

56

(a) CCDFG

before pipelining

(b) Pipelined CCDFG

without bubble

(c) Pipelined CCDFG

with one bubble in the

second transaction

(d) Pipelined CCDFG

with two bubbles in the

second transaction

(e) Pipelined CCDFG

with one bubble in

the third transaction

S1

S2 S1

S3 S2 S1

S3 S2

S3

S1

S2

S3

S1

S2

S3 S1

S2

S3

S1

S2

S3

S2

S3

S1

S1

S2 S1

S3 S2

S3 S1

S2

S3

Figure 6.4: Pipelined CCDFGs for different bubble insertion scenarios

57

Our function pipelining transform algorithm takes a CCDFG before pipelining

G and certain pipeline parameters to generate a functional pipelined CCDFG G′.

Checking the equivalence between CCDFG G and RTL is equivalently translated to

equivalence checking between pipelined CCDFG G′ and RTL. CCDFG G′ allows

operations to execute in parallel, closely corresponding with the RTL through

careful modeling of bubble insertion. Thus, we can leverage the existing SEC

approach to check CCDFG G′ and RTL.

We focus on the pipelines which satisfy the following requirements:

• All sub-functions have been fully inlined.

• All loops have been fully unrolled.

• No global variables (other than static variables).

Our framework actually supports loops and sub-functions by extending the ap-

proach discussed here with compositional reasoning; we do not discuss that exten-

sion in the dissertation. Global variables can be avoided by explicitly rewriting as

static variables plus corresponding interfaces.

6.3.1 Algorithm to build Reference Model

As a pedagogical simplification, assume first there is no branch among scheduling

steps, but allow branches inside scheduling steps. Note that if CCDFG G has

branches, we can merge the destination scheduling steps into one single schedul-

ing step; thus the branch between scheduling steps is equivalently converted into

a branch inside a scheduling step. Without considering branches, we can view

CCDFG G as a sequence of scheduling steps from the entry step to the exit step.

Task Interval is an important metric to measure the performance of function

pipelines: it is the number of clock cycles that must elapse between two trans-

actions. We can partition CCDFG G into a sequence of sub-CCDFGs according

58

to task interval I. Each sub-CCDFG is called a pipeline unit, which is defined in

Definition 5. All scheduling steps within one pipeline unit execute sequentially,

and different pipeline units can execute in parallel. In the example shown in Fig-

ure 6.2 (b), because the pipeline can start a new transaction every clock cycle,

each scheduling step is a pipeline unit.

Definition 5 Pipeline Unit. Given a pipeline task interval I and a CCDFG G ,
⟨GCD,M, T ⟩, T can be partitioned into a set of sub-schedule {T0, T1, . . . , Tn}. Each

Ti takes I clock cycles (except possibly the last partitioned schedule Tn which

may be less than I). Therefore, G can be partitioned into a set of sub-CCDFGs

{G0, G1, . . . , Gn}, respectively. Gi , ⟨GCD,M, Ti⟩ is called a pipeline unit.

Algorithm 6 GeneratePipeUnits (G = ⟨S,E,M⟩, I, N)

1: P ← ∅; i← 0

2: while i ≤ N do

3: S ′ ← ∅; pos← 0

4: while i+ pos ≤ N do

5: s← S[i+ pos]

6: S ′ ← S ′ ∪ s; pos← pos+ 1

7: end while

8: p← buildP ipelineUnit(S ′, E,M)

9: P ← P ∪ p; i← i+ I

10: end while

11: return P

Algorithm 6 describes the process of partitioning CCDFG G into a set of

pipeline units P . Here, G is described as the triple ⟨S,E,M⟩ where S and E

denote the nodes and edges of the projection of G on T , and M is the set of mi-

crostep partitions refined by T . Here I is the task interval, and N is the number of

59

S1

S2

S3

S’1

S3 S2 S1

c3 c2 c1

c3 =c2;

c2 = c1;

Y

N

Y Y

N
N

S’1Start

c1= 1 c1= 0

Y

N

exit

Y

N

!c2&!c1

Figure 6.5: Input and output CCDFGs of function pipelining transformation

scheduling steps in G, which is same as pipeline’s latency. We use sk = S[k] to rep-

resent the i-th scheduling step in CCDFG G. The algorithm works by traversing

G from the entry step s0, and creating one pipeline unit p for each group of I con-

secutive scheduling steps. Lines 4-7 implement the process of collecting scheduling

steps for one pipeline unit. Subroutine buildP ieplineUnit creates a pipeline unit

p; this process proceeds until we finish the traversal.

Algorithm 7 shows the sequence of high-level steps steps involved in gener-

ating pipelining reference model. It takes CCDFG G, task interval I, and the

number of scheduling steps N . It involves five steps, viz., (1) inserting pipeline

registers, (2) constructing new scheduling steps, (3) generating new control edges,

(4) restricting control and data flow through guard variables, and (5) implement-

ing data forwarding. We describe these steps in detail below. Figure 6.5 illustrates

the result of applying these steps for our simple example of Figure 6.4(a). The

60

CCDFG on the left is the one before pipelining, the CCDFG on the right is the

generated pipelined reference model, and the figure in the middle shows how the

scheduling steps of the pipeline correspond to those in the original.

Algorithm 7 buildPipeline(G = ⟨S,E,M⟩, I, N)

1: /*first, generate pipeline register*/

2: ⟨S ′
1,M

′
1⟩ ← GenerateP ipelineRegs(S,M,E, I)

3: /*second, build pipelined scheduling steps*/

4: S ′
2 ← GenerateFuncSchedulingSteps(S ′

1, I, N)

5: /*third, generate new control graph edges */

6: E ′
1 ← GenerateFuncEdges(S ′

2, E, I,N)

7: /*fourth, insert pipeline guard variables*/

8: ⟨S ′
3,M

′
2, E

′
2⟩ ← GenerateGuardCond(S ′

2,M
′
1, E

′
1, I)

9: /*fifth, generate forwarding*/

10: ⟨S ′
4,M

′
2⟩ ← GenerateFuncForwarding(S ′

3,M
′
2, E

′
2, I)

11: return G′ = ⟨S ′
4, E

′
2,M

′
2⟩

Inserting Pipeline Registers. Since the pipeline can accept new inputs before

the previous one finishes, it may need extra registers to store the intermediate

value to prevent variables from being overwritten. Algorithm 8 describes how the

pipelined registers are introduced in the pipelined CCDFG. The basic idea is to

insert temporary variables to mimic pipeline registers. Subroutine getAllV ars re-

turns all variables in CCDFG G. Subroutine needP ipelineReg checks the necessity

of all variables by comparing the life time lv for each variable v with I. The life

time of a variable is the distance between its producer msp and the last consumer

msc. If lv is greater than I, pipeline registers for v are required, otherwise, not

necessary. Equivalently, if msp and msc belongs to two different pipeline unit-

s and these two are not consecutive, a pipeline register is required. Subroutine

addP ipelineReg creates pipeline register variables and propagates the value from

61

store %tmp @ a

%res = mul %tmp %pipereg

ret %res

%tmp = add %b %in2

%pipereg = %b

S1

S2

S3

%a_1 = load @ a

%b = mul %a_1 %in1

Figure 6.6: Generate pipeline registers

msp and msc along pipeline register variables. The number of pipeline registers

required is determined by how many pipeline units exist between msp and msc.

Figure 6.6 shows a pipeline register inserted for variable b. The producer is in the

first scheduling step, and the consumer is in the third step; a pipeline register is

required in the middle step to prevent it from being overwritten after pipelining.

62

Algorithm 8 GenerateFuncPipelineRegs (S, M , E, I)

1: V ← getAllV ars(M)

2: for each variable v in V do

3: msp ← getProducer(v)

4: msc ← getLastComsumer(v)

5: if needP ipelineReg(msp,msc, I) then

6: ⟨S ′,M ′⟩ ← addP ipelineReg(S ′,M ′, E,msp,msc)

7: end if

8: end for

9: return ⟨S ′,M ′⟩

Constructing Scheduling Steps. In the pipelined CCDFG G′, a scheduling step

s′ consists of multiple scheduling steps of CCDFG G. All steps in s′ can execute

and finish within one clock cycle. A key step for constructing scheduling steps for

pipelined CCDFG is to correctly group scheduling steps from CCDFG G. The

grouping result, according the pipeline parameters provided by behavioral synthe-

sis, should match the behavior of the synthesized pipeline. To achieve this, for the

ith scheduling step s′ in G′, we collect the ith scheduling step from all pipeline

units. Scheduling step s′ then must maintain the following two properties: (1) Let

α and β be any two scheduling steps in G collected to execute in s′; then α and

β must belong to different pipeline units. (2) Every pipeline unit (except possibly

the last) must have some scheduling step in s′. Algorithm 9 shows our approach to

construct scheduling steps. Subroutine getP ipeUnits returns pipeline units gener-

ated by generateP ipeUnit. Lines 6-10 collect scheduling steps from pipeline units.

We then generate control/data edges between those steps for scheduling step s′ as

shown in line 14-19. The edge is from left to right, because the scheduling steps in

left are running the transaction entered the pipeline early. Subroutine buildEdge

63

creates the edges between two scheduling steps and subroutine appendEdge cre-

ate a new scheduling step which includes edge e. Figure 6.7 show the pipelined

scheduling steps for the simple example. In this example, I equals to one, there-

fore there is only one scheduling step in G′ and this scheduling step consists of all

scheduling steps before pipelining.

Algorithm 9 GenerateFuncSchedulingSteps (S, I, N)

1: P ← getP ipeUnits(); S ′ ← ∅

2: /*collect scheduling steps from pipeline units*/

3: for each i in I do

4: s′i ← ∅

5: for each p in P do

6: if length(p) ≥ i then

7: s′i ← s′i ∪ p[i]

8: end if

9: end for

10: S ′ ← S ′ ∪ s′i

11: end for

12: /*build new edges within one single scheduling step */

13: for each step s′ in S ′ do

14: for each consecutive step pair (s′[k], s′[k + 1]) in s′ do

15: e′ ← buildEdge(s′[k], s′[k + 1])

16: s′ ← appendEdge(s′, e′)

17: end for

18: end for

19: return S ′

Building Edges. Algorithm 10 shows the construction of edges governing the

control flow of the pipelined CCDFG. Lines 3-6 show the construction of edges

64

S1

S2

S3

S3 S2 S1

Figure 6.7: Construction of scheduling steps and edges

between scheduling steps of the pipelined CCDFG G′. Besides, a back edge is

generated from the last scheduling step to the first scheduling step. The pipelined

CCDFG G′ is formed as a loop. Figure 6.7 shows the edges between scheduling

steps in CCDFG G′.

Algorithm 10 GenerateFuncEdges (S ′, E, I, N)

1: E ′ ← ∅

2: /*build the edges between new scheduling steps*/

3: for each consecutive step pair(S ′[i], S ′[i+ 1]) in S ′ do

4: e′ ← buildEdge(S ′[i], S ′[i+ 1])

5: E ′ ← E ′ ∪ e′

6: end for

7: /*build the back edge*/

8: ssrc ← S ′[I − 1]; sdst ← S ′[0]

9: ebackedge ← buildEdge(ssrc, sdst)

10: E ′ ← E ′ ∪ ebackedge

11: return E ′

Generating Guard Variables. Note that the pipelined CCDFG G′ must be a

65

S3 S2 S1

c3 c2 c1

c3 =c2;

c2 = c1;

Y

N

Y Y

N
N

S’1Start

c1= 1 c1= 0

Y

N

exit

Y

N

!c2&!c1

Figure 6.8: Insert guard variables and assignment

loop since it must be able to initiate an arbitrary number of function invocations as

determined by the upstream logic. Guard variables guarantee that the execution

of this loop corresponding to each function invocation follows the control flow of

the original CCDFG G and terminates properly. Algorithm 11 describes details

of guard variable insertion, and Figure 6.8 illustrates it with a simple example.

First, subroutine createGuardV ariable creates guard variables c1, c2, . . . , cn for all

pipeline units. For each scheduling step s in CCDFG G, subroutine insertGuard

inserts a branch operation before entering it. If the guard variable is true, this

scheduling step is enabled, otherwise it is skipped. After executing one pipeline

66

unit, we propagate the value of the guard variable to its successor in the sequence.

Recall from above that G′ is a loop; One loop iteration executes and finishes all

pipeline units simultaneously. The assignment of first guard variable c1 depend-

s on start signal. Guard variables are propagated right before the back edge.

The assignment and prorogation of guard variables are constructed by subroutine

genV arAssign. Figure 6.8 shows the guard variables in an example. We need to

specially handle the exit of pipelined CCDFG. CCDFG G′ can only exit when cn

is true and c1, . . . , cn−1 all are false, which indicates the pipeline only has one last

transaction running and this transaction is going to exit. In pipelined CCDFG,

we refine the semantics of ret operation. Operation ret defines the end of one

transaction instead of whole CCDFG, and generates an output if it is not return-

ing void. We introduce a new operation exit to denote the termination of the

pipelined CCDFG, which is gated by guarded variables. Subroutine insertExitOp

inserts this gated exit operation.

Note that the pipelined CCDFG must permit overlapped execution of all the

pipeline stages. If start asserts, the first guard variable c1 is assigned true when

entering the loop in the pipelined CCDFG. During the execution of the first itera-

tion of the loop body, only those scheduling steps guarded by c1 are enabled. The

other steps are skipped. Consider the example shown in Figure 6.8. In the first

loop iteration, s1 is enabled and s2 and s3 are disabled. At the end of the first loop

iteration, guard variable c2 receives the enable token propagated from c1, c3 remain

false. In the second iteration, c1 still remains true, because there is a second start

request. Both s1 and s2 are enabled in the second iteration. This process proceeds

until all guard variables c1, . . . , c3 are true, pipeline enters a pipeline full stage. In

pipeline full stage, when a new transaction is started, one early transaction finishes

at the same time. When pipeline is in full stage and there is no start signal any

more, the pipeline starts to flush. Guard variable c1 is assigned to false due to no

67

start. Thus, s2 and s3 are enable and s1 is disable. The disable token is propagat-

ed between guard variables every loop iteration. If all guard variables are false,

except the last one c3, the pipelined CCDFG finishes the execution by executing

exit operation. We can easily insert bubbles into pipelines by toggling start signal.

Algorithm 11 GenerateGuardCond (S, E, M)

1: S ′ ← S; E ′ ← E; M ′ ←M

2: P = getP ipeUnits()

3: C = createGuardV ariable(P)

4: /*generate guard condition for each scheduling steps*/

5: for each pipeline unit p in P do

6: for each scheduling step s in p do

7: c← getGuardV ar(p)

8: ⟨S ′,M ′, E ′⟩ = insertGuard(s, p, C, S ′, E ′,M ′)

9: end for

10: end for

11: /*generate assignment for guard variables*/

12: ⟨S ′,M ′, E ′⟩ ← genV arAssign(C, S ′,M ′, E ′)

13: /*insert exit operation*/

14: ⟨S ′, E ′⟩ ← insertExitOp(msret, C, S
′, E ′)

15: return ⟨S ′,M ′, E ′⟩

Implementing Pipeline Forwarding. The last step in the construction is to

implement pipeline forwarding. In function pipelines, the dependencies between

transactions are introduced by global or static variables. The forwarding can be

implicitly implemented by mapping static/global variables to hardware register-

s which form feedback paths. In CCDFG, the operations to fetch or store data

to registers are represented by load and store, respectively. Algorithm 12 de-

scribes details about constructing forwarding for a pipelined CCDFG. Subroutine

68

c1

Start

c1= 1 c1= 0

Y

N

store %tmp @ a

%res = mul %tmp %pipereg %tmp = add %b %in2

%pipereg = %tmp1

S1S2
S3

%a_1 = load @ a

%f = select %c2 %tmp %a_1

c2c3

%b = mul %f %in1

exit

c3 = c2;

c2 = c1;

Y

N
!c2&!c1

Forwarding

Y Y Y

N N N

ret %res

Figure 6.9: Final pipelined CCDFG

findAllForwarding returns all pairs of operations which may need forwarding by

checking load and store pairs. However, in order to achieve the best performance,

behavioral synthesis may generate a combinational path to forward the data di-

rectly. For instance, in the example shown in Figure 6.10, the output of adder

has been directly forwarded to the next transaction’s multiplier without passing

through the register, otherwise the synthesize RTL cannot accept new data every

clock cycle. To mimic this combinational path, we make sure there is a valid da-

ta path from the forwarding source operation to the destination in the pipelined

CCDFG. Absence of such a path is an indication of data hazard. Our checking

reports errors. However, the forwarding path may vary depending on bubbles in

the pipeline. If the adder is disabled due to bubbles , the data forwarded to the

multiplier by the combinational path is invalid. Instead, the correct data should

69

MUL ADD MUL

MUL ADD MUL

Forwarding

Figure 6.10: Waveform of pipeline forwarding

come from the register. To handle this complication, we determine the forward-

ing path by checking whether the source operation is enabled. This check can be

done by checking its guard variable. We insert a select operation to implement

the check. Figure 6.9 shows the details about the forwarding between adder and

multiplier.

Algorithm 12 GenerateFuncForwarding (S, M , E, I)

1: Dlc ← findAllForwarding(S,M,E)

2: S ′ ← S;M ′ ←M

3: for each pair (ow, or) in Dlc do

4: if checkForwarding(or, I, S
′) then

5: ⟨S ′,M ′E ′⟩ ← insertSelect(ow, or, S
′, E,M ′)

6: else

7: return ERROR

8: end if

9: end for

10: return ⟨S ′,M ′⟩

70

6.3.2 SEC between CCDFGs and the RTL

Recall from Section 6.2 that handling bubbles is a major hurdle for certifying

pipelines. Bubbles in pipelines affect the behavior: (1) the idle operations are

disabled; (2) the pipeline forwarding has different paths. These two are modeled

in pipelined CCDFG by introducing guard variables. Recall however, that in order

to fully check the behavior of pipelines with bubbles, we need to run SEC on all

input sequences combinations.

We implement an approach which only runs the check once. We utilize our

guard variables to encode all possible input combinations. This introduces the

proof obligation that the execution of the transactions already in pipeline do not

affect the execution of a new transaction. A new transaction can start at an arbi-

trary state, with the the pipeline full, empty, or containing bubbles. We model the

pipeline at different states by toggling guard variables. For instance, the execution

shown in Figure 6.4 (c) can be modeled as assigning c1 = true, c2 = false, and

c3 = true.

Our SEC then has the following three steps:

• Set the pipelined CCDFG to be a symbolic state which starts a new trans-

action. Setting the pipeline at arbitrary state is done by encoding guard

variables. We set c1 to true and assign symbols to c2, . . . , cn;

• Set the FSM of RTL circuit to the same symbolic state as the CCDFG.

The structure of circuit’s FSM can be obtained from reports obtained from

behavioral synthesis; we analyze these reports to determine the corresponding

symbolic states for CCDFG and RTL.

• Feed the same input symbolic data set on CCDFG and RTL, then run dual-

rail symbolic simulation between them for a single transaction. The proof

obligation is that the output of pipelined CCDFGs and RTL implantations

are equivalent.

71

Before running SEC, we assume the CCDFG and the RTL are equivalent.

SEC checks whether the equivalence is still maintained after executed one trans-

action. The existing SEC approach can be applied directly. Furthermore, because

the mapping between CCDFG’s operation and the RTL’s functional units is still

maintained, we can apply cutpoint to further improve the scalability.

6.4 EXPERIMENTAL RESULTS

We have implemented the reference function pipelining transformation on top of

our framework for behavioral synthesis certification. SEC is implemented by a

cycle-by-cycle dual-rail, word-level symbolic simulation between CCDFG and RTL,

with support for cutpoint optimization. We employ CVC3 as the SMT solver. We

have applied our tool to a collection of function pipelined designs synthesized by

AutoESL. These designs are carefully selected from several different application

domains. For instance, TEA and XTEA are cryptography algorithms, which have

complex bitwise operations, such as shift and bitwise OR. The FIR filter is a signal

processing design with internal feedback. Behavioral synthesis utilizes forwarding

to optimize this feedback path. All loops in these designs have been fully unrolled.

The experiments were conducted on a workstation with 3GHz Intel Xeon processor

with 2GB memory. We set the running time bound to two hours.

Table 6.1 illustrates our experimental results. We first conducted brute-force

SEC between the un-pipelined CCDFG and the RTL on all designs. None of

the runs terminated within the time bound. We then conducted brute-force SEC

between the pipelined CCDFG and the RTL. Only the run on FIR finished while

the others timed out. With the cutpoint optimization applied, SEC succeeded on

all designs with modest time and memory usages. Column Cuts shows the number

of cutpoints identified for each design. The experiments demonstrate our function

pipelining transformation preserved the internal mapping between CCDFG and

RTL which effectively enables cutpoints. Our approach has successfully verified

72

designs with function pipelines involving several thousand lines of synthesized RTL

with reasonable time and memory usages.

As discussed in Section 6.2, a naive solution to handle bubbles is to enumerate

all possible input combinations to build corresponding CCDFGs. Unfortunately,

the number of such CCDFGs is exponential to the number of scheduling steps and

task interval. Given a CCDFG with scheduling steps N , and task interval I. There

exists 2N/I−1 pipelined CCDFGs. This naive approach is clearly impractical. For

instance, TEA has 43 scheduling steps and task interval is 1, we have to build 242

CCDFGs and run SEC this many times. In our approach, we creatively encode

all possible CCDFGs into a single one by assigning symbols to guard variables.

We employ SMT solvers to symbolically explore all possible solutions rather than

explicit enumeration. This dramatically improve the efficiency and scalability.

73

T
ab

le
6.
1:

F
u
n
ct
io
n
fi
p
el
in
in
g
ex
p
er
im

en
ta
l
re
su
lt
s

D
es
ig
n

R
T
L

A
p
p
.
D
om

ai
n

F
u
n
c
In
fo
.

P
ip
el
in
e
In
fo
.

W
it
h
o
u
t
O
p
t.

W
it
h
O
p
t.

#
li
n
e

In
te
r-

D
ep
th

O
p
er
-

F
o
rw

-
P
ip
el
in
e

M
em

.
T
im

e
M
em

.
T
im

e
#
C
u
ts

va
l

a
ti
o
n
s

a
rd
in
g

R
eg
is
te
r

(M
B
)

(S
ec
)

(M
B
)

(S
ec
)

F
IR

43
0

S
ig
n
al

p
ro
ce
ss
in
g

1
5

2
1

1
5

4
3

3
4
.8

3
1

1
1
.5

13

D
C
T

94
1

S
ig
n
al

p
ro
ce
ss
in
g

1
4

4
8

0
1

-
-

1
3
5

2
6.
37

32

C
O
R
D
IC

14
50

D
at
a
p
ro
ce
ss
in
g

1
1
2

1
7
0

0
1
0

-
-

2
2
1

3
8.
83

73

X
T
E
A

17
77

C
ry
p
to
gr
ap

h
y

1
3
2

1
9
2

0
1
4
7

-
-

1
1
4

3
0.
57

32

T
E
A

23
25

C
ry
p
to
gr
ap

h
y

1
4
3

1
9
2

0
2
1
1

-
-

1
0
0

4
0.
39

85

Y
U
V
T
O
R
G
B

24
12

Im
ag

e
p
ro
ce
ss
in
g

1
5

9
6

0
4

-
-

3
3
3

2
5
1
.6
2

48

M
em

or
y
O
p

41
06

M
em

or
y
op

er
at
io
n

2
3
9

9
6

1
7
5

-
-

4
3

8
9.
53

75

74

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 SUMMARY OF CONTRIBUTIONS

Equivalence checking is highly desired to provide confidence in the correctness

of behavioral synthesis. This dissertation research has developed a practical and

scalable SEC framework for certifying behavioral synthesis flows. This framework

successfully addressed the three major challenges: (1) close the significant semantic

gap between ESL and RTL, (2) scale to industry designs, (3) verify the correctness

of loop and function pipelines.

To address the above challenges, we have introduced CCDFG as the intermedi-

ate design representation, which presumes the design’s control and data flow and

augments with a schedule. Our SEC algorithm is based on word-level dual-rail

symbolic simulation for comparing CCDFG and RTL. The scalability has been

dramatically improved by employing SMT solvers as the decision engine. We have

developed three effective optimizations targeting different design features. The

optimizations exploit the high-level structure of the ESL description to further

ameliorate verification complexity. The experimental results have demonstrated

that our optimized SEC framework is capable of verifying designs with tens of t-

housands of lines of RTL synthesized by a state-of-the-art behavioral synthesis tool.

We have also developed approaches to certifying behaviorally synthesized loop and

function pipelines. The crucial steps here are to develop reference pipelining trans-

formations for loop pipelining and function pipelining. Thus, we can apply SEC

between the reference model and synthesized RTL. The key insight is that the

75

parameterized, synthesis-guided pipelining reference transformations on CCDFG

permits comparison with RTL even after mappings with the original sequential

specification has been destroyed by loop and function pipelining. The mapping

between behavioral level operations and RTL functional units is still preserved;

therefore some key optimizations are applicable. To reduce the complexity brought

by “bubbles”, which is a specific difficulty in function pipelines, we have encoded

all possible bubble insertions into one single CCDFG. Therefore, we can employ

SMT solvers to symbolically explore all possible solutions rather than explicit enu-

meration. The experimental results have shown that our approaches are efficient

and scalable to apply on various synthesized pipelines from different application

domains.

7.2 FUTURE RESEARCH DIRECTIONS

This dissertation has developed an SEC framework for certifying behavioral syn-

thesis flows. However, there are many aspects of behavioral synthesis that have

not been explored. This section discusses several future research directions.

7.2.1 Hierarchical Function Pipelines

We have presented our approach to certifying function pipelines generated by be-

haviorial synthesis in Chapter 6. One assumption of our approach is that all

sun-functions have been fully inlined. However, inlining sub-functions brings two

major drawbacks: (1) redundant checks for sub-functions which are invoked mul-

tiple times, (2) the complexity of SEC increases exponentially. An ideal solution

is to enable compositional reasoning. The modular analysis approach proposed in

Section 4.4 is not applicable in function pipelines. The reason is that we repre-

sent the pre-certified sub-functions as uninterpreted functions, which are untimed.

However, in order to verify the overlapping execution of pipelined sub-functions,

76

we need timing information. Therefore, how to introduce a timed uninterpreted

function model is crucial for certifying hierarchical function pipelines.

7.2.2 Verification of Behaviorally Synthesized Interfaces

Behavioral synthesis can automatically translate high-level interfaces into RTL

interfaces which have various communication protocols. For instance, given a ESL

design specified in a synthesizable subsets of C/C++, which has an output pointer

in its parameter list. This pointer can be synthesized into a First In, First Out

(FIFO) interface in the RTL. The FIFO interfaces need to follow the corresponding

protocols, such as the write signal can be asserted until FIFO is not full (full signal

is low). Therefore, certification of the synthesized interfaces is also a key part to

proof the correctness of the synthesized RTL implementation.

7.2.3 SEC for Compiler Transformations in Behaviorial Synthesis

We proposed an approach to certifying compiler transformations in behavioral syn-

thesis once and for all using theorem proving [59]. The cost of a monolithic proof

is mitigated by the reusability of the transformation over different designs. This

approach requires a comprehensive knowledge of the algorithms of transformations

employed by behaviorial synthesis tools. However, they may be not available, espe-

cially for those commercial tools. An alternative solution is to utilize SEC to verify

the correctness of compiler transformations by checking the equivalence between

input and output of each instance. Therefore, we do not need to require internal

algorithms in behavioral synthesis. However, because the variable mappings may

not be preserved between input and output, how to develop effective optimizations

to make this approach scalable is quite challenging.

77

REFERENCES

[1] T. Ball and S. K. Rajamani. Automatically validating temporal safety prop-

erties of interfaces. In Proceedings of the 8th international SPIN workshop on

Model checking of software, SPIN ’01, pages 103–122, New York, NY, USA,

2001. Springer-Verlag New York, Inc.

[2] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo

Theories. IOS Press, 2009.

[3] C. Barrett and C. Tinelli. Cvc3. In Proceedings of the 19th international

conference on Computer aided verification, CAV’07, pages 298–302, Berlin,

Heidelberg, 2007. Springer-Verlag.

[4] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen. S-

calable sequential equivalence checking across arbitrary design transforma-

tions. In Proceedings of the 2006 IEEE/ACM International Conference on

Computer-Aided Design. IEEE Computer Society, 2006.

[5] C. Berman and L. Trevillyan. Functional comparison of logic designs for

vlsicircuits. In International Conference on Computer-Aided Design, pages

456–459, 1989. USA.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking

without bdds. In Proceedings of the 5th International Conference on Tools and

Algorithms for Construction and Analysis of Systems, pages 193–207, London,

UK, 1999. Springer-Verlag.

78

[7] D. Brand. Verification of large synthesized designs. In Proceedings of the

1993 IEEE/ACM international conference on Computer-aided design, pages

534–537, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[8] R. E. Bryant. Symbolic manipulation of boolean functions using a graphical

representation. In Proceedings of the 22nd Design Automation Conference,

pages 688–694. IEEE Computer Society Press, 1985.

[9] R. E. Bryant. A methodology for hardware verification based on logic simu-

lation. Journal of the ACM, 38(2):299–328, 1991.

[10] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor

control. In Proceedings of the 6th International Conference on Computer Aided

Verification, CAV ’94, pages 68–80, London, UK, UK, 1994. Springer-Verlag.

[11] Cadence. C-to-Silicon Compiler User Guide, 2012.

[12] Calypto Design Systems Inc. http://www.calypto.com.

[13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,

S. Brown, and T. Czajkowski. Legup: high-level synthesis for fpga-based

processor/accelerator systems. In Proceedings of the 19th ACM/SIGDA in-

ternational symposium on Field programmable gate arrays, FPGA ’11, pages

33–36, New York, NY, USA, 2011. ACM.

[14] R. O. Chapman. Verified high-level synthesis. PhD thesis, Ithaca, NY, USA,

1994.

[15] P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma. Non-cycle-

accurate sequential equivalence checking. In Proceedings of the 46th Annual

Design Automation Conference, pages 460–465, New York, NY, USA, 2009.

ACM.

79

[16] K.-T. Cheng and V. D. Agrawal. Unified Methods for VLSI Simulation and

Test Generation. Kluwer Academic Publishers, 1989.

[17] L. Claesen, M. Genoe, and E. Verlind. Implementation/specification verifica-

tion by means of SFG-Tracing. In CHARME, 1993.

[18] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of c and verilog

programs using bounded model checking. In Proceedings of the 40th annual

Design Automation Conference, pages 368–371, New York, NY, USA, 2003.

ACM.

[19] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of computing, pages 151–158,

New York, NY, USA, 1971. ACM.

[20] B. Dutertre and L. de Moura. A fast linear-arithmetic solver for dpll(t). In

Proceedings of the 18th international conference on Computer Aided Verifica-

tion, pages 81–94, Berlin, Heidelberg, 2006. Springer-Verlag.

[21] X. Feng, A. J. Hu, and J. Yang. Partitioned model checking from software

specifications. In Proceedings of the 2005 Asia and South Pacific Design Au-

tomation Conference, ASP-DAC ’05, pages 583–587, New York, NY, USA,

2005. ACM.

[22] R. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of

Computer Science, Proc. of Symposia in Applied Mathematics, 1967.

[23] Forte Design Systems. Cynthesizer Manual, 2012.

[24] M. Fujita, H. Fujisawa, and N. Kawato. Evaluations and improvements of a

boolean comparison program based on binary decision diagrams. In Proceed-

ings of the 1988 IEEE/ACM International Conference on Computer-Aided

Design, pages 2–5. IEEE Computer Society Press, 1988.

80

[25] D. Gajski, N. D. Dutt, A. Wu, and S. Lin. High Level Synthesis: Introduction

to Chip and System Design. Kluwer Academic Publishers, 1993.

[26] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In

Proceedings of the 19th international conference on Computer aided verifica-

tion, pages 519–531, Berlin, Heidelberg, 2007. Springer-Verlag.

[27] E. Giunchiglia and A. Tacchella, editors. Theory and Applications of Satisfi-

ability Testing, volume 2919. Springer, 2004.

[28] M. Gordon, J. Iyoda, S. Owens, and K. Slind. Automatic formal synthesis

of hardware from higher order logic. Electron. Notes Theor. Comput. Sci.,

145:27–43, Jan. 2006.

[29] K. Hao, S. Ray, and F. Xie. Equivalence checking for behaviorally synthesized

pipelines. In Proceedings of the 49th Annual Design Automation Conference,

pages 344–349, New York, NY, USA, 2012. ACM.

[30] K. Hao, F. Xie, S. Ray, and J. Yang. Optimizing equivalence checking for

behavioral synthesis. In Proceedings of the Conference on Design, Automation

and Test in Europe, pages 1500–1505, 3001 Leuven, Belgium, Belgium, 2010.

European Design and Automation Association.

[31] C. A. R. Hoare. An axiomatic basis for computer programming. volume 12,

pages 576–580. ACM, New York, NY, USA, Oct. 1969.

[32] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[33] A. J. Hu. High-level vs. RTL combinational equivalence: An introduction. In

Proceedings of the 2006 IEEE/ACM International Conference on Computer-

Aided Design, pages 274–279. IEEE Computer Society, 2006.

81

[34] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University

Press, 2006.

[35] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi. Variable order-

ing and selection for fsm traversal. In Proceedings of the 1991 IEEE/ACM

International Conference on Computer-Aided Design, pages 476–479. IEEE

Computer Society Press, 1991.

[36] R. Johnson and K. Pingali. Dependence-based program analysis. In Pro-

ceedings of the ACM SIGPLAN 1993 conference on Programming language

design and implementation, PLDI ’93, pages 78–89, New York, NY, USA,

1993. ACM.

[37] R. B. Jones, D. L. Dill, and J. R. Burch. Efficient validity checking for pro-

cessor verification. In Proceedings of the 1995 IEEE/ACM international con-

ference on Computer-aided design, ICCAD ’95, pages 2–6, Washington, DC,

USA, 1995. IEEE Computer Society.

[38] D. Kaiss, S. Goldenberg, Z. Hanna, and Z. Khasidashvili. Seqver: A se-

quential equivalence verifier for hardware designs. In Proceedings of the 2006

IEEE/ACM International Conference on Computer-Aided Design, pages 267–

273. IEEE Computer Society, 2006.

[39] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, Boston, MA, June 2000.

[40] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the 10th

European conference on Artificial intelligence, pages 359–363, New York, NY,

USA, 1992. John Wiley & Sons, Inc.

[41] A. Koelbl, J. R. Burch, and C. Pixley. Memory modeling in esl-rtl equivalence

82

checking. In Proceedings of the 44th annual Design Automation Conference,

pages 205–209, New York, NY, USA, 2007. ACM.

[42] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. Solver technology for system-

level to rtl equivalence checking. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’09, pages 196–201, 3001 Leuven,

Belgium, Belgium, 2009. European Design and Automation Association.

[43] A. Koelbl and C. Pixley. Constructing efficient formal models from high-level

descriptions using symbolic simulation. Int. J. Parallel Program., 33(6):645–

666, Dec. 2005.

[44] D. Kroening and E. Clarke. Checking consistency of c and verilog using

predicate abstraction and induction. In Proceedings of the 2004 IEEE/ACM

International conference on Computer-aided design, pages 66–72, Washington,

DC, USA, 2004. IEEE Computer Society.

[45] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps.

In Proceedings of the 34th annual Design Automation Conference, DAC ’97,

pages 263–268, New York, NY, USA, 1997. ACM.

[46] S. Kundu, S. Lerner, and R. Gupta. Validating high-level synthesis. In Pro-

ceedings of the 20th international conference on Computer Aided Verification,

CAV ’08, pages 459–472, Berlin, Heidelberg, 2008. Springer-Verlag.

[47] C. Y. Lee. Binary decision programs. Bell System Technical Journal,

38(4):985–999, 1959.

[48] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,

52(7):107–115, July 2009.

[49] J. Levitt and K. Olukotun. A scalable formal verification methodology for

83

pipelined microprocessors. In Proceedings of the 33rd annual Design Automa-

tion Conference, DAC ’96, pages 558–563, New York, NY, USA, 1996. ACM.

[50] LLVM Project. The LLVM Compiler Infrastructure. http://llvm.org.

[51] S. Malik, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic

verification using binary decision diagrams in a logic synthesis environment. In

Proceedings of the 1988 IEEE/ACM International Conference on Computer-

Aided Design, pages 6–9. IEEE Computer Society Press, 1988.

[52] P. Manolios, S. K. Srinivasan, and D. Vroon. Automatic memory reductions

for rtl model verification. In Proceedings of the 2006 IEEE/ACM international

conference on Computer-aided design, pages 786–793, New York, NY, USA,

2006. ACM.

[53] A. Mathur, M. Fujita, E. Clarke, and P. Urard. Functional equivalence veri-

fication tools in high-level synthesis flows. IEEE Des. Test, 26(4):88–95, July

2009.

[54] Mentor Graphics. Catapult C Reference Manual, 2011.

[55] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

engineering an efficient sat solver. In Proceedings of the 38th annual Design

Automation Conference, pages 530–535, New York, NY, USA, 2001. ACM.

[56] G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar. Satisfiability-based layout

revisited: detailed routing of complex fpgas via search-based boolean sat. In

Proceedings of the 1999 ACM/SIGDA seventh international symposium on

Field programmable gate arrays, pages 167–175, New York, NY, USA, 1999.

ACM.

[57] G. Nelson and D. C. Oppen. Simplification by cooperating decision proce-

dures. ACM Trans. Program. Lang. Syst., 1(2):245–257, Oct. 1979.

84

[58] OCaml. http://caml.inria.fr.

[59] S. Ray, K. Hao, Y. Chen, F. Xie, and J. Yang. Formal verification for high-

assurance behavioral synthesis. In Proceedings of the 7th International Sym-

posium on Automated Technology for Verification and Analysis, ATVA ’09,

pages 337–351, Berlin, Heidelberg, 2009. Springer-Verlag.

[60] P. R. Schaumont. A Practical Introduction to Hardware/Software Codesign.

Springer, 2010.

[61] K. Schneider. A verified hardware synthesis of esterel programs. In Proceedings

of the International Workshop on Distributed and Parallel Embedded Systems:

Architecture and Design of Distributed Embedded Systems, DIPES ’00, pages

205–214, Deventer, The Netherlands, The Netherlands, 2001. Kluwer, B.V.

[62] C. J. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aagaard, C. Bar-

rett, and D. Syme. An industrially effective environment for formal hardware

verification. Trans. Comp.-Aided Des. Integ. Cir. Sys., 24(9):1381–1405, Nov.

2006.

[63] O. Shtrichman. Tuning sat checkers for bounded model checking. In Proceed-

ings of the 12th International Conference on Computer Aided Verification,

pages 480–494, London, UK, 2000. Springer-Verlag.

[64] J. P. M. Silva. Practical applications of boolean satislability. In Proceedings

of the 9th InternationalWorkshop on Discrete Event Systems, pages 74–80.

IEEE, 2008.

[65] J. P. M. Silva and K. A. Sakallah. Grasp: A search algorithm for propositional

satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[66] N. Sinha. Symbolic program analysis using term rewriting and generalization.

In Proceedings of the 2008 International Conference on Formal Methods in

85

Computer-Aided Design, FMCAD ’08, pages 19:1–19:9, Piscataway, NJ, USA,

2008. IEEE Press.

[67] M. Stepp, R. Tate, and S. Lerner. Equality-based translation validator for

llvm. In Proceedings of the 23rd international conference on Computer aided

verification, pages 737–742, Berlin, Heidelberg, 2011. Springer-Verlag.

[68] G. S. Tseitin. On the complexity of derivation in propositional calculus. S-

tudies in Constructive Mathematics and Mathematical Logic, Part II:178–188,

1968.

[69] M. N. Velev and R. E. Bryant. Verification of pipelined microprocessors by

correspondence checking in symbolic ternary simulation. In Proceedings of

the 1998 International Conference on Application of Concurrency to System

Design, CSD ’98, pages 200–, Washington, DC, USA, 1998. IEEE Computer

Society.

[70] K. Wakabayashi and H. Tanaka. Global scheduling independent of control de-

pendencies based on condition vectors. In Proceedings of the 29th ACM/IEEE

Design Automation Conference, DAC ’92, pages 112–115, Los Alamitos, CA,

USA, 1992. IEEE Computer Society Press.

[71] D. J. Wheeler and R. M. Needham. TEA, a tiny encryption algorithm. In

Fast Software Encryption, pages 363–366, 1994.

[72] Xilinx. AutoESL Reference Manual, 2011.

[73] J. Yang and C.-J. H. Seger. Introduction to generalized symbolic trajectory

evaluation. IEEE Trans. Very Large Scale Integr. Syst., 11(3):345–353, June

2003.

[74] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing the

86

llvm intermediate representation for verified program transformations. In Pro-

ceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, pages 427–440, New York, NY, USA, 2012.

ACM.

	Equivalence Checking for High-Assurance Behavioral Synthesis
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1378398609.pdf._Gm9l

