
Portland State University Portland State University

PDXScholar PDXScholar

University Honors Theses University Honors College

5-22-2020

Facilitating Mixed Self-Timed Circuits Facilitating Mixed Self-Timed Circuits

Alexandra R. Hanson
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses

 Part of the Computer Sciences Commons, and the Digital Circuits Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hanson, Alexandra R., "Facilitating Mixed Self-Timed Circuits" (2020). University Honors Theses. Paper
855.
https://doi.org/10.15760/honors.876

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/260?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/855
https://doi.org/10.15760/honors.876
mailto:pdxscholar@pdx.edu

Facilitating Mixed Self-Timed Circuits

by
Alexandra Hanson

An undergraduate honors thesis submitted in partial fulfillment of the

requirements for the degree of
Bachelor of Science

in

University Honors

and

Computer Science

Thesis Adviser

Professor Marly Roncken, M.Sc.

Portland State University

2020

1

Facilitating Mixed Self-Timed Circuits
Alexandra Hanson

Department of Computer Science
Portland State University

Portland, OR
aleh2@pdx.edu

Abstract—Designers constrain the ordering of computation events in self-timed circuits to
ensure the correct behavior of the circuits. Different circuit families utilize different constraints
that, when families are combined, may be more difficult to guarantee in combination without
inserting delay to postpone necessary events. By analyzing established constraints of different
circuit families like Click and GasP, we are able to identify the small changes necessary to either
1) avoid constraints entirely; or 2) decrease the likelihood of necessary delay insertion. Because
delay insertion can be tricky for novice designers and because the likelihood of its requirement
increases when mixing different self-timed circuit families, we seek to identify simple circuit
changes to facilitate the correct mixing of these families.

Index Terms—asynchronous circuits, Click, GasP, NuSMV model-checking, relative timing,
self-timed circuits

2

I. INTRODUCTION
Asynchronous circuits, or self-timed circuits, are circuits that complete their operations

independent from a clock signal. Rather than relying on a global signal to coordinate actions like
traditional synchronous systems, self-timed circuits utilize local validity signals to indicate
operation completion and successful data transfer. Self-timed circuits offer many advantages,
such as: low power, low energy, and low electromagnetic radiation, as well as high speed, high
delay-tolerance, and high scalability. However, a lack of design tools and insufficient education
on asynchronous systems are impediments to their wide adoption, and despite the many benefits
of self-timed designs, synchronous circuits are more commonly used in current digital
technology [1].

While self-timed circuits do have a high delay tolerance as a benefit, they can still have
delay assumptions. These delay assumptions can be validated and implemented using static
timing analysis and delay insertion methods similar to those used in traditional synchronous
circuits. However, there is a key difference in the nature of the delay assumptions for
synchronous versus self-timed systems. In synchronous systems, delay assumptions constrain the
ordering of computation events relative to the global clock. In contrast, self-timed systems lack
such a global clock, and their delay assumptions thus constrain the ordering of computation
events relative to each other. In this thesis, we will model delay assumptions in self-timed
systems using the theory of Relative Timing or RT [2]–[4].

Different self-timed circuit families utilize different RT constraints. We have found that it
is generally much easier to satisfy RT constraints by the delays of the gates already present in the
design when the design is based on a single circuit family. When different self-timed circuit
families are mixed in the same design, it is more likely that the combination of such different RT
constraints can be met only by inserting extra delay. This makes mixing self-timed circuits more
challenging and impedes exchange and reuse of self-timed solutions between different design
groups.

This thesis seeks to facilitate mixing, matching, and reuse of self-timed solutions by
reducing the likelihood of delay insertion. Specifically, this thesis seeks to analyze the
established constraints of the asynchronous circuit families Click [5] and GasP [6], in the context
of Roncken’s Link and Joint Model [7]-[9]. While previous models for asynchronous design
placed the bulk of a system’s work onto a single component, the Link and Joint Model instead
assigns computation and flow control responsibilities to the “Joint” components and
transportation and communication duties to the “Link” components. This model hides circuit
details and unifies many of the existing self-timed circuit families with a single model.

By examining the known constraints of Click and GasP, we are able to identify small
design changes necessary to either 1) avoid RT constraints entirely; or 2) decrease the likelihood
of delay insertion in practice. Because delay insertion can be tricky for novice designers and
because the likelihood of its requirement increases when mixing different self-timed circuit
families, this thesis identifies the simple circuit changes that can be made to facilitate and

3

streamline the correct mixing of these families. The NuSMV model-checker [10] is used to
examine the validity and completeness of RT constraints for a given Link or Joint design. We
outline our process for modeling and refinement in four distinct sections:

(1) MODELING THE FIFO BUFFER AND ITS COMPONENTS, in which we present
and discuss a simple Link-Joint-Link buffer model and describe its components.
(2) MIXED CIRCUIT FAMILIES AND THEIR RELATIVE TIMING (RT)
CONSTRAINTS, in which we describe the necessary event orderings for our models
given in the Relative Timing formalism.
(3) IMPLEMENTATION OF MODELS AND RT CONSTRAINTS IN NUSMV, in
which we present the implementation of our models in the symbolic model-checker
NuSMV by example of the Joint component.
(4) MINIMAL CIRCUIT DESIGN CHANGES, in which we propose and discuss the
small circuit changes that minimize the amount of delay insertion required.
The NuSMV model-checker code is contained in the attached appendixes A, B, and C.

Appendix A contains the NuSMV implementation and results of the mixed FIFO model of
section II. Appendixes B and C contain the NuSMV implementation and results of two minimal
circuit changes that we propose in section V.

4

II. MODELING THE FIFO BUFFER AND ITS COMPONENTS

Fig. 1: A First-In-First-Out (FIFO) Buffer, LinkIN-Joint-LinkOUT.

The simple FIFO buffer in Fig. 1 illustrates a high-level dataflow pipeline for the Link

and Joint Model. In this example, we have components LinkIN, Joint, and LinkOUT, with
Boolean interface signals fill, drain, FULL, and EMPTY [7]-[9].

fill: an active high (1/true) signal issued by a Joint to communicate to a
receiving Link that the Joint has newly computed data for the Link.

drain: an active high (1/true) signal issued by a Joint to communicate to a
sending Link that the Joint no longer needs the Link’s data.

FULL: an active high (1/true) signal issued by a Link to a receiving Joint that the
Link has valid data for the next computation by the Joint.

EMPTY: an active high (1/true) signal issued by a Link to a sending Joint that the
Link is ready to receive new data.

Note: Joints fill only their EMPTY receiving Links and drain only their FULL sending Links.

In Fig. 1, when LinkIn is filled with data it declares itself FULL by raising its FULL
signal. Likewise, when LinkOUT is drained and thus its data are no longer useful, it declares
itself EMPTY by raising its EMPTY signal. When the Joint sees that LinkIn is FULL and
LinkOUT is EMPTY, it performs its computation on the data and simultaneously drains LinkIN
and fills LinkOUT by raising its drain signal to LinkIN and raising its fill signal to LinkOUT.
LinkOUT accepts the computed data, and will now simultaneously output a low EMPTY signal
to the sending Joint and a high FULL signal to the (implied) receiving Joint. Likewise, LinkIN
will simultaneously output a low FULL signal to the receiving Joint and a high EMPTY signal to
the (implied) sending Joint. When the Joint sees that LinkIN is no longer FULL and LinkOUT is
no longer EMPTY, it stops the computation and its fill and drain actions by lowering its drain
signal to the LinkIN and by lowering its fill signal to LinkOUT.

Although more generally a Joint can have zero or more input Links and zero or more
output Links, we use this simple FIFO example for simplicity and understandability. Modeling
the high-level behavior of this FIFO in NuSMV requires modeling distinct Link and Joint
components before we model them in combination. Because we seek to demonstrate that the

5

different Link control circuitries of the Click and GasP circuit families are interchangeable, our
models for these Link components reflect both the distinct implementations of these families as
well as their overall identical function as Links. A discussion of the circuit models for the Joint,
Click Link, and GasP Link follows in subsections II-A, II-B, and II-C respectively. Click and
GasP use similar circuits for data storage and computation. Because this study focuses on where
they differ, Fig. 1 ignores the data signals as does the rest of this thesis.

II-A. The Joint Model

Fig. 2: Joint Model.

The Joint circuit model is pictured in Fig. 2. It consists of the following components:
- Two input signals FULL and EMPTY with respective associated buffers postFULL and

postEMPTY.
- An AND gate to perform the logical conjunction of the two inputs a (corresponding to

signal FULL) and b (corresponding to signal EMPTY).
- An output of the AND gate that propagates through buffer y to signal fire, and from there

through buffers prefill and predrain to output signals fill and drain , respectively.

Note: The buffers in Fig. 2 serve to model wire and amplification delays.

6

The FULL and EMPTY signals come from an implied LinkIN and LinkOUT (see Fig. 1).
The two dotted lines in Fig. 2 represent the interface between these implied Link components
and the Joint. When both EMPTY and FULL signals are high, both fill and drain will go high.
When either or both EMPTY and FULL are low, fill and drain will go low.

II-B. The Click Link Model

Fig. 3: Click Link Model.

The Click Link circuit model is pictured in Fig. 3. It consists of the following components:

- Two input signals fill and drain with respective associated buffers postfill and postdrain.
- Two flip-flops FFreq and FFack to generate and store the state of the Link. Additional

buffer FFreqtoFFreq is associated with flip-flop FFreq while buffer FFacktoFFack is
associated with flip-flop FFack.

- An XNOR gate taking as inputs the output of flip-flop FFreq through buffer
FFreqtoreqnear and the output of flip-flop FFack through buffer FFacktoackfar .

- An XOR gate taking as inputs the output of flip-flop FFreq thorough buffer
FFreqtoreqfar and the output of flip-flop FFack through buffer FFacktoacknear.

- The output signal EMPTY associated with the XNOR gate and the output signal FULL
associated with the XOR gate.

Note: As before in Fig. 2, the buffers model wire and amplification delays.

7

The fill and drain signals come from implied sending and receiving Joints; the two dotted
lines in Fig. 3 represent the interface between the implied Joint components and the Click Link.
The behavior of the two flip-flop components FFreq and FFack are identical. Each flip-flop
receives two inputs: an enabling input fill or drain and an inversion of the given flip-flop’s
previous output. Upon a rising edge of the enabling input, the output of the flip-flop will flip.
The new output is also used as an input to both the XNOR and XOR gate.

FFreq and FFack encode a two-signal state, typical of Click. FFreq controls signal req
(“request”). FFack controls signal ack (“acknowledge”). Fig. 3 encodes EMPTY as “ req = ack”
or XNOR(req, ack), and FULL as “req != ack” or XOR(req, ack). Thus when req and ack are
both low or both high, the Click Link is EMPTY, and otherwise the Click Link is FULL.
Specifically, an enabling input signal fill (on an EMPTY Click Link) to flip-flop FFreq will
produce an output value that differs from the output of FFack , while an enabling input signal
drain (on a FULL Click Link) to flip-flop FFack will produce an output value that is the same as
the output of FFreq. The XNOR and XOR gates generate the FULL or EMPTY state of the Link
by determining whether or not the req and ack associated inputs to these gates differ. If the req
and ack input signals are the same (both high or both low), then the XNOR gate will output a
high EMPTY signal and the XOR gate will output a low FULL signal—the Link is EMPTY. In
contrast, if the req and ack input signals differ (one is high and one is low), then the XNOR gate
will output a low EMPTY signal and the XOR gate will output a high FULL signal—the Link is
FULL.

II-C. The GasP Link Model

Fig. 4: GasP Link Model.

8

The GasP Link model is pictured in Fig. 4. It consists of the following components:
- Two input signals fill and drain with respective associated buffers postfill and postdrain.
- A module driveHIkeepLO that abstracts out the CMOS logic circuit responsible for

driving the state of the Link high (FULL) and keeping the state of the Link low
(EMPTY).

- A module driveLOkeepHI that abstracts out the CMOS logic circuit responsible for
driving the state of the Link low (EMPTY) and keeping the state of the Link high
(FULL).

- Two buffers swtokeepLO and swtokeepHI which serve as inputs to respective modules
driveHIkeepLO and driveLOkeepHI.

- A module SW (“statewire”) responsible for interpreting the outputs of the driveHIkeepLO
and driveLOkeepHI modules .

- The output signal EMPTY associated with inverter swtoEMPTY and the output signal
FULL associated with buffer swtoFULL .

Note: As before, in Fig. 2 and Fig. 3, the buffers model wire and amplification delays.

Like the Click Model, the fill and drain signals of the GasP Model come from implied
sending and receiving Joints, and the two dotted lines in Fig. 4 represent the interface between
the implied Joint components and the GasP Link. Modules driveHIkeepLO and driveLOkeepHI
simplify the necessary CMOS logic into two distinct components which determine the current
state of the Link. The input fill to module driveHIkeepLO drives the state of the Link high, while
the combination of inverted inputs ! fill and !swtokeepLO keep the state of the Link low. The
input drain to module driveLOkeepHI drives the state of the Link low, while the combination of
inverted input ! drain and signal swtokeepHI keep the state of the Link high.

GasP uses a one-signal state. Fig. 4 encodes EMPTY as “!SW” or SW is low, and FULL
as “SW” or SW is high. Specifically, module SW generates the current state of the Link (FULL
or EMPTY) by interpreting its inputs from modules driveHIkeepLO and driveLOkeepHI. SW is
also responsible for monitoring correct communication between modules driveHIkeepLO and
driveLOkeepHI by checking whether their outputs conflict or “float”, i.e., neither module drives
the state of the Link.

The output of SW propagates to buffers swtoFULL , swtokeepHI , swtokeepLO, and
inverter swtoEMPTY. If SW generates a high signal, buffer swtoFULL outputs a high FULL
signal and buffer swtokeepHI outputs a high signal to keep the state of the Link FULL;
simultaneously, inverter swtoEMPTY outputs a low EMPTY signal and the high signal of buffer
swtokeepLO is also inverted to stop the keepLO circuitry from keeping the state EMPTY.
Likewise, if SW generates a low signal, inverter swtoEMPTY outputs a high EMPTY signal and
the low signal of buffer swtokeepLO is also inverted so that the state of the Link is kept EMPTY.

9

Additionally, buffer swtoFULL outputs a low FULL signal and buffer swtokeepHI outputs a low
signal to stop the keepHI circuitry from keeping the state FULL.

10

III. MIXED CIRCUIT FAMILIES AND THEIR RELATIVE TIMING (RT) CONSTRAINTS

Fig. 5: The mixed Family FIFO model “Click Link - Joint - GasP Link.”

The mixed family FIFO model pictured in Fig. 5 is a combination of our Joint, Click

Link, and GasP Link models. Fig. 5 lacks the buffers prefill and predrain present in Fig. 2. Their
functions, representing the individual wire and amplification delays in signals fill and drain , are
already included in Fig. 5 with the buffers postfill in Click Link (see Fig. 3) and postdrain in the
GasP Link (see Fig. 4). The Link and Joint components require unique timing constraints to
ensure correct behavior. Relative Timing (RT) Constraints [2]-[3] are explicit event orderings
not enforced by the design but required to ensure correct behavior. Not enforcing these
constraints by design often simplifies the circuit implementation of a component. The RT
constraints that follow in this thesis are of the form:

e0 → e1 ≺ e2

This can be read as “if event e0 happens, then event e 1 must happen before event e 2.” Given this
constraint, it will be necessary to postpone event e 2 in the real circuit if it occurs between events
e0 and e1 by inserting physical delay. Event e 0 is called the point of divergence (POD), e1 the
early event , and e2 the late event.

Our work with RT constraints for the mixed family FIFO model extends the work of
Hoon Park [4], [11]. Park determined the RT constraints of asynchronous Click circuits prior to
the development of the Link and Joint Model [7] and tied the verified constraints to Static
Timing Analysis code in the ARCwelder compiler. By applying Park’s work and methodology to
Link and Joint components, we can understand the consequences of mixing different Link
control circuits and ultimately identify simple circuit changes that can be made to ease the
challenge of delay insertion for the Link and Joint Model.

11

III-A. RT Constraints associated with the Joint

The Joint component’s RT constraints ensure that signals reset appropriately to avoid
duplicate or missed computations. We prevent the FULL and EMPTY signals at the Joint’s
interface from becoming “mismatched.” For example, a newly high EMPTY signal cannot be
paired with the previous FULL signal as this would result in a duplicate computation. Similarly,
a newly high FULL signal cannot be paired with the previous EMPTY signal as this would result
in a missed computation. Two constraints are assigned to the Joint to relate the events of LinkIN
to those of LinkOUT and to prevent erroneous behavior.

Note: See Fig. 2 for the signal names associated with the following RT constraints.

Joint-RT1:

We would like to “reset” an action only when the Joint has observed that LinkIN
and LinkOUT have both successfully fulfilled their minimally necessary state
storage and transportation duties, namely updating their state information. We
require that once signal fire has gone high, signals FULL and EMPTY will both
go low before signal fire can go low again. This is expressed by the following RT
constraint:

fire+ → {EMPTY-, FULL-} ≺ fire-
Joint-RT2:

We would like to prevent new inputs related to FULL+ and EMPTY+ until the
Joint’s current action has properly reset. We require that once signal fire has gone
high, signals a , b, fire, fill , and drain , as well as their derived signals into the
Links, will all go low before signals a and b can go high again. By causality this
can be simplified to a, b, and Link contributions from postfill and postdrain go
low before either a or b can go high again. See Fig. 3 and Fig. 4 for buffer signals
postfill and postdrain . The RT constraint is:

fire+ → {a-, b-, LinkIN.postdrain-, LinkOUT.postfill-} ≺ a+, b+

III-B. RT constraints associated with the Click LinkIN

Firstly, the RT constraints of the Click Link component ensure that its internal flip-flops
perform their flipping action only once per enabling input.

Note: see Fig. 3 for the signal names associated with the following RT constraints.

12

Click-RT1:
We require that if the output of flip-flop FFreq goes high (or low), then the
related buffer FFreqtoFFreq must go high (or low) before the flip-flop’s enabling
input, postfill, can go high again.

a. If FFreq.Q goes high, then buffer FFreqtoFFreq must go high before the
buffer postfill can go high again.

FFreq.Q+ → FFreqtoFFreq+ ≺ postfill+
b. If FFreq.Q goes low, then buffer FFreqtoFFreq must go low before the

buffer postfill can go high again.
FFreq.Q- → FFreqtoFFreq- ≺ postfill+

Click-RT2:
We require that if the output of the flip-flop FFack goes high (or low), then the
related buffer FFacktoFFack must go high (or low) before the flip-flop’s enabling
input, postdrain , can go high again.

a. If FFack.Q goes high, then buffer FFacktoFFack must go high before the
buffer postdrain can go high again.

FFack.Q+ → FFacktoFFack+ ≺ postdrain+
b. If FFack.Q goes low, then buffer FFacktoFFack must go low before the

buffer postdrain can go high again.
FFack.Q- → FFacktoFFack- ≺ postdrain+

Additional RT constraints of the Click Link component ensure that there is no conflict
over the FULL or EMPTY state of the Link. To discuss the prevention of a Link state conflict,
we distinguish the two ends of the Link as near-end and far-end in relation to the Joint that
began the current Link operation. We specify that the near-end must complete its task before the
far-end can begin its own; for example, a Link must be fully drained before it can be filled again.
This avoids a conflict between the two ends because it prevents them from entering a logical
fight over an XOR or XNOR gate where both ends drive the inputs at the same time.

Note: See Fig. 2 for the signal names a and b associated with the following RT constraints.

Click-RT3:

We would like the near-end action to be performed before the far-end response
arrives at the XOR or XNOR gates.

a. We require that a high fill signal will propagate sufficiently far into an
implied JointIn as a low EMPTY signal through the XNOR gate before a
drain signal arrives at the XNOR to drive the EMPTY signal high again.
Specifically, if the fill signal goes high, signal b of some implied JointIn
must go low before buffer FFacktoackfar can go high.

fill+ → impliedJointIn.b- ≺ FFacktoackfar+

13

b. We require that a high drain signal will propagate far enough into the
Joint as a low FULL signal through the XOR gate before a fill signal
arrives at the XOR gate to drive the FULL signal high again. Specifically,
if the drain signal goes high, signal a of the Joint must go low before
buffer FFreqtoreqfar can go high.

drain+ → Joint.a- ≺ FFreqtoreqfar+

III-C. RT constraints associated with the GasP LinkOUT

The first two RT constraints of the GasP Link component ensure that the appropriate
FULL or EMPTY state is maintained. This is guaranteed by activating the far-end keep signal
and deactivating the near-end keep signal before the current driving signal goes low.

Note: see Fig. 4 for the signal names associated with the following RT constraints.

GasP-RT1:

We require that the far-end keepers are activated sufficiently soon to maintain the
appropriate FULL or EMPTY state.

a. If the fill signal goes high, buffer swtokeepHI must go high before buffer
postfill can go low.

fill+ → swtokeepHI+ ≺ postfill-
b. If the drain signal goes high, buffer swtokeepLO must go low before

buffer postdrain can go low.
drain+ → swtokeepLO- ≺ postdrain-

GasP-RT2:
We require that the near-end keepers are deactivated to avoid a fight between
near- and far-end keepers.

a. If the fill signal goes high, buffer swtokeepLO must go high before buffer
postfill can go low.

fill+ → swtokeepLO+ ≺ postfill-
b. If the drain signal goes high, buffer swtokeepHI must go low before buffer

postdrain can go low.
drain+ → swtokeepHI- ≺ postdrain-

Like the Click LinkIN, the additional RT constraints of the GasP Link component ensure
that there is no conflict over the FULL or EMPTY state of the Link. Two related constraints
guarantee that modules driveHIkeepLO and driveLOkeepHI do not simultaneously attempt to
drive the state of the Link FULL or EMPTY respectively. Again, like the previous Click-RT3
example, a Link must be fully drained before it can be filled again and vice versa.

GasP-RT3:

14

We would like for the current driveHIkeepLO or driveLOkeepHI module to
propagate its signal far enough into the Joint and stop driving before the opposite
driveLOkeepHI or driveHIkeepLO module starts driving.

a. Once the fill signal goes high, both buffer postfill and signal b of the Joint
must go low before buffer postdrain can go high.

fill+ → {postfill-, Joint.b-} ≺ postdrain+
b. Once the drain signal goes high, both buffer postdrain and signal a of

some implied JointOut must go low before buffer postfill can go high.
drain+ → {postdrain-, impliedJointOut.a-} ≺ postfill+

15

IV. IMPLEMENTATION OF MODELS AND RT CONSTRAINTS IN NUSMV
The mixed family FIFO model, along with its associated relative timing constraints, has

been implemented and formally verified using the symbolic model checker NuSMV. Because
our circuit models are finite state systems and can be described in propositional calculus,
NuSMV is an effective choice of model checker [10], [12]. For our purposes, we have used
NuSMV version 2.5.4, the same version used by Hoon Park et al. [4], [11]. NuSMV’s model of
execution requires a formal description of our circuit and runtime properties that we want
NuSMV to verify for all circuit executions.

The formal circuit description consists of gate definitions, connections between these
gates, and the circuit’s relative timing constraints. Because the behavior of our mixed family
FIFO model has simple flow control, we consider semimodularity properties sufficient to verify
this behavior. Here, semimodularity means that an enabled signal change must occur before it
becomes disabled [13]. We apply Park’s updated definition of this paradigm, which considers
semimodularity in the context of RT constraints, where “enabled” implies that none of the RT
constraints block the signal change. Our circuit is correct if it is semimodular. Semimodularity
checks are built into our NuSMV gate models such that the properties are either achieved in the
circuit by design or associated with an RT constraint. If a gate model fails a semimodularity
check, NuSMV generates an appropriate counterexample that can be remediated with a new RT
constraint.

Our model is run with an interleaving semantics, which models parallel execution by
interleaving individual actions. In this execution model, time is partitioned in steps and execution
occurs at the gate level, where at most one gate is selected per step. Upon selecting a gate, the
gate will either (1) be unready and unable to change because the gate’s output already matches
what the input requests; (2) be ready to change, but unable to do so because the gate is blocked
by an RT constraint; or (3) be ready and able to change, in which case its output signal will
change in this step. Fairness conditions [12] are introduced to ensure that each gate will be
selected within a finite number of steps at each stage in the execution.

In the following subsections, we will present and discuss the NuSMV implementation of
the Joint model and its associated relative timing constraints. See Appendix A for the NuSMV
implementations of Click and GasP, as well as their associated RT constraints.

IV-A. NuSMV implementation for the Joint Model

The Joint model has been implemented in NuSMV via a module declaration to
encapsulate its components and constraints. This implementation is included below. Note how
closely it follows the Joint in Fig. 5.

MODULE Joint (FULL, EMPTY, stopfall_fire, stoprise_andin)

 VAR

 buf_postfull : process cgate (FULL, FALSE,

16

stoprise_andin, FALSE);

 buf_postempty : process cgate (EMPTY, FALSE,

stoprise_andin, FALSE);

 and : process cgate (andin1 & andin2, FALSE,

FALSE, FALSE);

 buf_postand : process cgate (and.val, FALSE, FALSE,

stopfall_fire);

 DEFINE

 andin1:= buf_postfull.val;

 andin2:= buf_postempty.val;

 fire := buf_postand.val;

 fill := fire;

 drain := fire;

 --PROPERTIES

 FAIRNESS running

--END MODULE Joint

Module Joint is instantiated with inputs FULL, EMPTY, stopfall_fire , and

stoprise_andin . Its instantiation within Module main will be discussed in Section IV-B.
In the above implementation,

FULL: a Boolean from the input Link (LinkIN)
EMPTY: a Boolean from the output Link (LinkOUT)
fill : a Boolean to the output Link (LinkOUT)
drain: a Boolean to the input Link (LinkIN)

The stopfall_fire and stoprise_andin are Boolean imported RT constraint stops. These

constraints will be discussed at length in Section IV-B.
Under the VAR declaration, state variables buf_postfull , buf_postempty, and, and

buf_postand are each declared as an additional instantiated module cgate. These state variables
correspond respectively to the buffers postFULL, postEMPTY, the AND gate, and the y buffer
as seen in the abstract circuit model of Fig. 5. In Fig. 5, the need to distinguish drain from fill is
already achieved by the two inverters present in the drain and fill signals in LinkIN and
LinkOUT. The cgate module is a model for any combinational gate. It produces an output val,
and takes as inputs:

set : a Boolean function specifying the desired output of the gate.
init_val: an initial Boolean value for val.
stoprise: a Boolean function indicating whether or not (a low) val is permitted to

rise. This is an RT constraint that blocks a low to high transition of output

17

val . The Joint module uses stoprise_andin to block low to high output
transitions of buffers postFULL and postEMPTY.

stopfall : a Boolean function indicating whether or not (a high) val is permitted to
fall. This is an RT constraint that blocks a high to low transition of output
val . The Joint module uses stopfall_fire to block high to low output
transitions of gate buf_postand.

Note: Please see Appendix A1 for the implementation of module cgate .

In the DEFINE declaration of module Joint, concise identifiers are associated with
expressions that we will use in the RT constraints, which follow in Section IV-B. The interest
points a and b of Fig. 5 are identified as andin1 and andin2, while the other relevant signals and
interest points retain the same names: fire, fill, and drain . Interest point andin1 is assigned the
output val of buffer buf_postfull , while interest point andin2 is assigned the output val of buffer
buf_postempty. Interest point fire is assigned the output val of buffer buf_postand , and the
signals fill and drain are assigned the value of fire .

Finally, fairness conditions are verified with the constraint FAIRNESS running , which
ensures that each gate will be selected for execution within a finite number of steps.

IV-B. NuSMV implementation of Joint RT Constraints

Module Joint is instantiated in the Module main as thisJoint (see Appendix A2 for further
detail). It’s instantiated with signal FULL from LinkIN, signal EMPTY from LinkOUT, and the
stopfall_fire and stoprise_andin RT constraints that are defined within main.

thisJoint : process Joint (FULL, EMPTY, stopfall_fire,

stoprise_andin);

As can be seen in the previous Section IV-A, buffer buf_postand utilizes the stopfall_fire

constraint to indicate whether its val output is permitted to transition from a high to low signal
(i.e. stopping its fall). The Boolean stop stopfall_fire implements the RT constraint Joint-RT1
found in Section III-A. The NuSMV definition of the stopfall_fire constraint follows and reads
as “After fire rises, both EMPTY and FULL must be low before fire may fall.”

VAR

 -- fire+ -> EMPTY-, FULL- < fire-

 Joint-RT1a : process rt (fire, !EMPTY, GREEN);

 Joint-RT1b : process rt (fire, !FULL, GREEN);

DEFINE

 stopfall_fire := Joint-RT1a.stop | Joint-RT1b.stop;

18

This definition of stopfall_fire , like the definition for the stroprise_andin constraint
shown further on, declares an additional instantiated module rt. The rt module, included in
Appendix A1, encapsulates the logic necessary to implement relative timing constraints on given
events. Module rt contains an internal state variable stop, responsible for preventing a late event
via the formal stop_rise or stop_fall parameters associated with relevant modules. When true,
stop_rise prevents a rising output transition of the constrained gate. Likewise, when true,
stop_fall prevents a falling transition of the constrained gate. We use stop_rise and stop_fall as
input parameters of the gate that produces the late event. The inputs of rt are:

eventPOD: the Boolean function specifying the point of divergence for the constraint
eventEARLY : the Boolean function specifying the early event that releases the constraint
init_rt : the initialization state for the internal state variable stoplight

A process rt is instantiated as process rt (eventPOD, eventEARLY, init_rt) .

In constraint Joint-RT1a, the point of divergence is a rising fire signal, the early event releasing
the constraint is a falling EMPTY signal, and the initialization state for stoplight is GREEN (i.e.,
Joint-RT1a.stop is false). Similarly, in constraint Joint-RT1b, the point of divergence is a rising
fire signal, the early event releasing the constraint is a falling FULL signal, and the initialization
state for stoplight is also GREEN. Because the stopfall_fire constraint consists of a disjunction of
Joint-RT1a and Joint-RT1b, the stop state variables of Joint-RT1a and Joint-RT1b must both be
false for stopfall_fire to be false so as to allow the late event—here, a high to low transition of
signal fire during execution.

Buffers buf_postempty and buf_postfull of the Joint module (see Section IV-A) utilize the
stroprise_andin constraint to indicate whether their respective val outputs are permitted to
transition from a low to high signal (i.e., stopping their rise). The Boolean stop stoprise_andin
implements the RT constraint Joint-RT2 found in Section III-A. The NuSMV definition of the
stoprise_andin constraint is as follows:

VAR

 -- fire+ ->

 -- {andin1-, andin2-, LinkIN.postdrain-, LinkOUT.postfill-}

 -- < andin1+, andin2+

 Joint-RT2a: process rt (fire, !thisJoint.andin1, GREEN);

 Joint-RT2b: process rt (fire, !thisJoint.andin2, GREEN);

 Joint-RT2c: process rt (fire, !LinkIn.postdrain, GREEN);

 Joint-RT2d: process rt (fire, !LinkOut.postfill, GREEN);

DEFINE

 stoprise_andin :=

 Joint-RT2a.stop | Joint-RT2b.stop | Joint-RT2c.stop |

Joint-RT2d.stop;

19

The stoprise_andin constraint consists of the four RT constraints Joint-RT2a , Joint-RT2b,

Joint-RT2c, and Joint-RT2d, and, like the previous stopfall_fire constraint, the stop state
variables of all four constraints must be false for stoprise_andin to be false so as to allow both
late events—here, rising outputs of buf_postfull and buf_postempty.

20

V. MINIMAL CIRCUIT DESIGN CHANGES
Once individual Link and Joint models and their RT constraints were implemented and

verified in NuSMV [10], we created a FIFO with mixed families as in Fig. 5 with its RT
constraints as in Section III.

Pictured below in Fig. 6 is the pipeline of our modeling and verification process. We used
this approach to identify and introduce simple circuit design changes to either 1) avoid some of
the mixed FIFO RT constraints entirely; or 2) minimize the likelihood and amount of required
delay to insert into the circuit when implemented on silicon or otherwise.

Fig. 6: Modeling and verification approach.

As presented in Sections II through IV, we created abstract circuit diagrams for the FIFO
buffer and implemented our models in NuSMV (Steps 1 and 2 in Fig. 6). Model-checking the
FIFO buffers generated counterexamples as in Step 3 in Fig. 6. This step required the following
additional cycle: (a) Run NuSMV; (b) As long as there are counterexamples, pick a
counterexample and generate an RT constraint to address it such that the counterexample no

21

longer exists; and (c) Add the new RT constraint to the NuSMV model. We remained on Step 3.
above and looped through steps (a) through (c) until (a) no longer generated counterexamples.

Once we successfully verified the RT constraints presented in Section III for the mixed
FIFO buffer, such that these constraints no longer generated counterexamples, we moved on to
Step 4 in Fig. 6. After evaluating the circuit to identify where delay could be inserted, we
selected the RT constraint which most restricted the circuit in order to redesign or eliminate the
necessary delay insertion (Step 5 in Fig. 6). From here, we made adjustments to our abstract
circuit diagrams as appropriate and began the Fig. 6 cycle again until we were satisfied with our
redesigns.

This thesis investigates two adjustments to the model in particular: one specific to the
GasP Link and the other specific to the Joint. Both of these modifications have broader
implications than the simple mixed family FIFO model discussed in this work. The adjustment to
the GasP Link component applies to multiple circuit families that work with latch-based designs
rather than flip-flops—i.e., circuit families that are similar to GasP and unlike Click. The Joint
adjustment applies to other Joints, with more complex flow control than the First-In-First-Out
control flow of the Joint example presented in this thesis. The GasP Link and Joint redesigns, as
well as the motivations behind them, are described in Section V-A and Section V-B respectively.

V-A. Making the GasP Link Edge-Triggered

The adjustment to the GasP Link was motivated by a comparison of RT constraints
Click-RT1 and Click-RT2 to constraints GasP-RT1 and GasP-RT2. Both of these different RT
constraint sets have a similar purpose: maintain the appropriate FULL or EMPTY Link state.
However, Click-RT1 and Click-RT2 are dependent on rising late signals from postfill and
postdrain, reflecting the edge-triggered nature of the flip-flops that store the Click Link state. In
contrast, GasP-RT1 and GasP-RT2 are dependent on falling late signals from postfill and
postdrain, reflecting the level-triggered nature of the DriveHIkeepLO and DriveLOkeepHI
modules that represent the latches storing the GasP Link state.

The fill signal that begins each Link action by going high and ends each Link action by
going low will ultimately cause each postfill and postdrain that it steers to first rise and then
fall—and then rise and fall again at the next action. GasP-RT1 and GasP-RT2 must be satisfied
by the time postfill and postdrain fall, while the similar Click constraints Click-RT1 and
Click-RT2 have until the next action raises postfill and postdrain. This gives the Click RT
constraints more time to be fulfilled.

Although the extra time afforded to the Click Link is significant, a more critical
consideration is that the local state maintenance in the GasP Link is tightly coupled to the
self-resetting cycle of the Joint. The modification we introduce in this section decouples the
GasP’s local management from the Joint’s local management so that each individual GasP Link
gains the freedom to drive its statewire as long or as short as its physical Link implementation
requires.

22

Fig. 7: The LinkOUT and Joint components of the “Click Link - Joint - GasP Link” Model with
an edge-triggered GasP (eGasP) Link.

Fig. 7 shows the new Joint-LinkOUT portion of Fig. 5, after replacing the GasP Link

with an edge-triggered version called eGasP. The new eGasP Link uses three extra gates at each
end: an asymmetric C-element, a Proebsting pulse generator, and a buffer. In Fig. 7, C-element
Cfill receives its input from buffers postfill and swtoCfill. The output of Cfill drives Proebsting
pulse generator PGfill. Likewise, C-element Cdrain receives its inputs from buffers postdrain
and swtoCdrain, and drives Proebsting pulse generator PGdrain . The NuSMV implementation of
module eGasP can be found in Appendix B1.

By driving each Proebsting pulse generator with its own asymmetric C-element Cfill and
Cdrain, the internal Link action is sheltered from any external restrictions imposed by the Joint’s
self-resetting cycle (with the exception of the Joint’s RT constraints). Pulse generators drive the
eGasP Link for just as long as it needs to perform its state and data actions. The RT Constraints
from Section III-C are updated as follows.

eGasP-RT1:
We require that the far-end keepers are activated in time to maintain the
appropriate FULL or EMPTY state between fills and drains.

a. If the fill signal goes high, buffer swtokeepHI must go high before PGfill
ends its (HI) pulse, i.e., goes low again.

fill+ → swtokeepHI+ ≺ PGfill-
b. If the drain signal goes high, buffer swtokeepLO must go low before

PGdrain ends its (HI) pulse, i.e., goes low again.
drain+ → swtokeepLO- ≺ PGdrain-

23

eGasP-RT2:
We require that the near-end keepers are deactivated to avoid a fight between the
near- and far-end keepers.

a. If the fill signal goes high, buffer swtokeepLO must go high before PGfill
goes low again.

fill+ → swtokeepLO+ ≺ PGfill-
b. If the drain signal goes high, buffer swtokeepHI must go low before

PGdrain goes low again.
drain+ → swtokeepHI- ≺ PGdrain-

As before, we require that there is no conflict over the FULL or EMPTY state of the
Link. To achieve this, the output of the Proebsting pulse generator must go low before the output
of the opposite pulse generator can go high – as in Link GasP, this is to avoid a state fight. Also
as before in Link GasP, the influence of the prior state to the Joint must be disabled by making
the corresponding AND input, a or b , to the Joint low. Finally, and this is a new requirement for
Link eGasP, gates Cfill and Cdrain must be deactivated by making the corresponding postfill and
postdrain low before swtoCfill and swtoCdrain rise again.

eGasP-RT3:
We require that the HI pulses of the two pulse generators do not overlap.

a. Once the fill signal goes high, the output of the Proebsting pulse generator
PGfill, the signal b of the Joint, and buffer postfill must all go low before
the output of the opposite pulse generator PGdrain can go high.

fill+ → {PGfill-, Joint.b-, postfill-} ≺ PGdrain+
b. Once the drain signal goes high, the output of the Proebsting pulse

generator PGdrain , the signal a of some implied JointOut, and buffer
postdrain must all go low before the output of the opposite pulse generator
PGfill can go high.

drain+ → {PGdrain-, impliedJointOut.a-, postdrain-}
 ≺ PGfill+

In addition to these updated RT constraints, a new RT constraint is needed to guarantee
that the Proebsting’s input is used to propagate exactly one cycle of action, preventing a
“mismatch” of fill and drain signals similar to the Joint’s FULL and EMPTY signals in Section
III-A.

eGasP-RT4:
We require that a Proebsting pulse generator’s input is reset before its output is
reset to ensure its signal propagates a single cycle of action.

a. If the fill signal goes high, the output signal of C-element Cfill must go
low before PGfill can go low again.

fill+ → Cfill- ≺ PGfill-

24

b. If the drain signal goes high, the output signal of C-element Cdrain must
go low before PGdrain can go low again.

drain+ → Cdrain- ≺ PGdrain-
If these updated constraints seem more elaborate than the original RT constraints for the

GasP Link, then this is only because this thesis does not yet include the final modification:
turning swtoCfill-Cfill-PGfill and swtoCdrain-Cdrain-PGdrain each into a single gate module
with internal RT constraints. In this final modification, the majority of the RT constraints
eGasP-RT1 to eGasP-RT4 can be adjusted automatically.

The flip-flops in Click are a partial example of such a modification. The RT constraints
related to their edge-triggered behavior are invisible to the designer, as are the internal circuits
and assumptions that make the flip-flops edge-triggered [14]. As a result, the designer may be
required to satisfy minimum pulse widths on the flip-flop’s enable signals, but that is all. Under
an assumption that we have this final modification for swtoCfill-Cfill-PGfill and
swtoCdrain-Cdrain-PGdrain in eGasP, the designer sees only their input signals, postfill and
postdrain, and thus must satisfy only the minimum pulse widths on these input signals. Now,
these updated constraints with their final (mostly hidden and automated) modifications are
indeed simpler than the original RT constraints for the GasP Link. By making GasP Links
edge-triggered with modified component eGasP, both Link families now have the time they need
to maintain their states. The eGasP Link can be driven as long or short as needed, independent of
the self-resetting cycle time in the Joint. The eGasP version increases the Link's modularity and
flexibility.

V-B. Synchronizing the Joint reset action with both Links

The adjustment to the Joint was motivated by analyzing its RT constraints in the context
of mixed Link circuit families. In particular, Joint-RT1 assumes tightly coupled action reset
responses from its Links. This is less of an issue when the LinkIN and LinkOUT are of the same
or similar circuit types because, when their activation times coincide, they are also likely to
respond at similar times. However, for mixed circuit families, their blueprints may be sufficiently
different such that satisfying Joint-RT1 requires extra delay insertion. To avoid this potential
required delay insertion, we eliminate the need for RT constraint Joint-RT1 by postponing the
Joint reset action until both LinkIn and LinkOUT have responded to the Joint, communicating
their new internal states.

25

Fig. 8: The LinkOUT and Joint components of the “Click Link - Joint - GasP Link” Model with
AND-replacing symmetric C-element in the Joint component and an edge-triggered GasP Link.

Following the eGasP modification, the mixed family FIFO model from Fig. 5 is further

updated to reflect the replacement of the AND gate by a symmetric C-element in the Joint
component. In its NuSMV implementation, the C-element rises at the conjunction of a and b
(which respectively correspond to signals FULL and EMPTY), and it falls at the conjunction of
their inversions ! a and !b . When a and b differ, the output of the C-element remains unchanged.
The NuSMV implementation of the Joint with the C-element can be found in Appendix C1.

Now, by design, the Joint resets only after the Links show evidence that they are
fulfilling their necessary transportation duties. The RT constraint Joint-RT1 in Section III-A is
now implemented by design, i.e., it is vacuously true. The C-element ensures that once signal fire
has gone high, signals FULL and EMPTY will both go low before signal fire can go low again.
In addition to guaranteeing Joint-RT1, the C-element allows us to simplify Joint-RT2 to
Joint-RT2’ by removing a- and b- from the early events.

Joint-RT2’:
We require that once signal fire has gone high, signals postdrain from LinkIN and
postfill from LinkOUT go low before both signals a and b can go high again.

fire+ → {LinkIN.postdrain-, LinkOUT.postfill-} ≺ a+, b+
Because the output of the C-element in the Joint only changes when both its Link inputs

have communicated their appropriate new states, it is sufficient to simply constrain that once the
Joint has performed its action, it must reset the postdrain and postfill signals going into LinkIN
and LinkOUT respectively before it can begin a new action.

26

V-C. Next steps for the model modifications
Looking forward beyond the modifications discussed in Section V-A and Section V-B,

we further propose implementing both the Click and eGasP Links with four-phase handshake
protocols. If we imagine our model to extend as a finite chain of Links and Joints such that each
Joint is followed by a Link and each Link is followed by a Joint, we can picture a Link with a
near-end Joint and far-end Joint FIFO buffer as in Fig. 9.

Fig. 9: A First-In-First-Out (FIFO) Buffer, Near-End Joint - Link - Far-End Joint.

A concern with this model is that a far-end Joint may interfere with the near-end Joint

action because both Click and GasP Links make the near-end FULL or EMPTY signal low in
parallel to making the far-end EMPTY or FULL signal high. Thus, like in Section III-A with the
Joint, the signals may become mismatched if a far-end Joint attempts to drain the Link before it
has been filled by the near-end Joint. Similarly, a mismatch may also occur if a near-end Joint
attempts to fill the Link before it has been drained by the far-end Joint. However, by making the
Click and eGasP Link four-phase, we can execute the near- and far-end Joint actions in series
rather than in parallel. The near-end EMPTY signal is made low first (when fill and drain signals
of the near-end Joint go high), and then the far-end FULL signal can go low (when the fill and
drain signals of the near-end Joint go low, signifying that all Link inputs to the near-end Joint’s
action have reset.)

These four-phase communication changes will make it easier to satisfy Joint-RT2’
because of the extra time available to reset both postfill and postdrain before the next action
becomes enabled. Four-phase handshaking will also facilitate the near-to-far-end relations
expressed by RT3 for Click, GasP, and eGasP. Although we theorize that this additional
modification will provide further design advantages, implementing the Click and eGasP models
as four-phase protocols is outside the scope of this thesis and has been left for future work.

27

VI. SUMMARY AND CONCLUSION
This thesis presented an abstract circuit model for a simple Link-Joint-Link FIFO buffer

with mixed link control circuitry implemented in NuSMV, as well as the relative timing
constraints necessary to ensure the correct ordering of computation events for this model. We
have analyzed our initial implementations and their respective relative timing constraints to
determine the appropriate modifications to help facilitate and simplify the correct mixing of the
Click and GasP circuit families. By verifying our new constraints mathematically in NuSMV, we
have demonstrated the validity and efficacy of our adjusted models.

Our goal with this project was to ease the design challenge of delay insertion for the Link
and Joint Model by incrementally introducing small changes to our FIFO buffer models. To this
end, mixing the link control circuitry of Click and GasP is advantageous because these families
are so dissimilar. While the GasP circuitry is fast, it can be difficult to work with using standard
tools because GasP uses latches and custom-designed logic gates. Click in contrast is slower but
much easier to work with because it uses standard logic gate designs. Because Click and GasP lie
at the extreme-standard versus extreme-custom ends of the design spectrum of self-timed circuit
families, we expect that our work can be ported to other commonly used self-timed circuit
families.

With this work, we aim to help facilitate the mix, match, and reuse of existing self-timed
solutions between different research teams. Specifically, this thesis enables the reuse of designs
independent of the family in which they were implemented. Although our focus for this project
was exemplifying reuse and portability for Click and GasP, our position statement is that this
work can be broadened and extended to other families.

28

REFERENCES
[1] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A Systems

Perspective. Kluwer Academic Publishers, 2001.
[2] K. Stevens, R. Ginosar, and S. Rotem, “Relative timing,” in Proceedings - International

Symposium on Asynchronous Circuits and Systems , 1999, pp. 208–218.
[3] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative timing,” IEEE Trans. Very Large

Scale Integr. Syst. , vol. 11, no. 1, pp. 129–140, Apr. 2003.
[4] H. Park, “Formal Modeling and Verification of Delay-Insensitive Circuits,” PhD Thesis,

Portland State University, Portland, OR, 2015.
[5] A. Peeters, F. te Beest, M. De Wit, and W. Mallon, “Click elements: An implementation

style for data-driven compilation,” in Proceedings - International Symposium on
Asynchronous Circuits and Systems, 2010, pp. 3–14.

[6] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in Proceedings -
International Symposium on Asynchronous Circuits and Systems , 2001, pp. 46–53.

[7] M. Roncken, S. Mettala Gilla, H. Park, N. Jamadagni, C. Cowan, and I. Sutherland,
“Naturalized communication and testing,” in Proceedings - International Symposium on
Asynchronous Circuits and Systems, 2015, pp. 77–84.

[8] M. Roncken et al., “How to think about self-timed systems,” in Conference Record of
51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017, 2018, vol.
2017-October, pp. 1597–1604.

[9] M. Roncken and I. Sutherland, “Design and test of high-speed asynchronous circuits,”
Chapter 7 in Asynchronous Circuit Applications, J. Di and S. Smith, Eds. Institution of
Engineering & Technology, 2019.

[10] NuSMV 2.5.4. (2011). [Online]. Available: http://nusmv.fbk.eu/
[11] H. Park, A. He, M. Roncken, X. Song, and I. Sutherland, “Modular Timing Constraints

for Delay-Insensitive Systems,” Journal of Computer Science and Technology , vol. 31,
no. 1, pp. 77–106, Jan. 2016.

[12] R. Cavada et al. NuSMV 2.5 User Manual , 2.5 ed. (2010). Accessed: May 20, 2020.
[Online]. Available: http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf

[13] H. Park, A. He, M. Roncken, and X. Song, “Semi-modular delay model revisited in
context of relative timing,” Electronic Letters , vol. 51, no. 4, pp. 332–334, Feb. 2015.

[14] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed.
Addison-Wesley Publishing Company, 2011.

29

http://nusmv.fbk.eu/
http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf

Appendix A

NuSMV Implementation and Results of Fig. 5: The Mixed
Family FIFO Model

“Click Link - Joint - GasP Link”

This Appendix consists of the following components:

A1: the library containing the NuSMV code for all of the gates and modules in Fig. 5.
pg. 31 - 37

A2: the main program representing the FIFO in Fig. 5 using the library in A1.
pg. 38 - 40

A3: NuSMV results of running our Click Link - Joint - GasP Link model with wall-clock
execution time, reachable state space (complexity of design), and showing that the design
is correct (i.e. all properties are TRUE).
pg. 41

30

1 -------------------BEGIN LIBRARY
2 --BEGIN NuSMV Library
3 --Allie pre_MixMadeEasy_changes
4 --Honors Thesis May 2020
5
6
7 -- Library modules in here are formally instantiated as follows:
8 -- process cgate (set, init_val, stop_rise, stop_fall)
9 -- process cgate_lazyHI (set, init_val, stop_rise, stop_fall)
10 -- process FF (en, set, init_val)
11 -- process DHKL (inHI, inLO, init_val)
12 -- process DLKH (inHI, inLO, init_val)
13 -- process SW (inDHKL, inDLKH, init_val)
14 -- process rt (eventPOD, eventEARLY, init_rt)
15 -- process Joint (FULL, EMPTY, stopfall_fire, stoprise_andin)
16 -- process Link_Click (fill, drain, init_state,
17 -- stoprise_postfill, stoprise_postdrain,
18 -- stop_xnorinfar, stop_xorinfar)
19 -- process Link_GasP (fill, drain, init_val,
20 -- stoprise_postfill, stoprise_postdrain,
21 -- stopfall_postfill, stopfall_postdrain)
22
23
24
25 MODULE cgate (set, init_val, stop_rise, stop_fall)
26 --Model for any combinational gate
27 --set: Boolean function
28 -- specifying what val wants to be in terms of the present inputs
29 --val: Boolean output
30 --init_val: initial Boolean value for val
31 --stop_rise: Boolean function indicating whether or not (a low) val can rise;
32 -- val can rise only if stop_rise is FALSE
33 --stop_fall: Boolean function indicating whether or not (a high) val fall;
34 -- val can rise only if stop_fall is FALSE
35 --semimodular: Boolean function tracking if changes are done before being disabled
36 --
37 --NOTE:
38 --Difference between using ASSIGN versus VAR for changing module variables:
39 -- ASSIGN is for initialization
40 -- and for private module variables that change only
41 -- when the module is selected for evaluation
42 -- uses :=
43 -- TRANS is for monitor or random variables
44 -- that must be evaluated each step in the system execution
45 -- uses =
46 --
47 VAR
48 val : boolean;
49 semimodular : boolean;
50 ASSIGN
51 init(val) := init_val;
52 init(semimodular) := TRUE;
53 next(val) := case
54 --if the val:=set change is unconstrained by a stop, then change
55 (!stop_rise & set & !val) | (!stop_fall & !set & val): set;
56 --otherwise don't change
57 TRUE: val;
58 esac;
59 TRANS
60 next(semimodular) = case
61 --if a val change is disabled by "bullying the change away"
62 --i.e., by only changing inputs
63 --then the semimodular property is ruined
64 ((!stop_rise & set & !val) & next(!(!stop_rise & set) & !val))
65 |
66 ((!stop_fall & !set & val) & next(!(!stop_fall & !set) & val)) : FALSE;

Appendix A1

31

67 TRUE : semimodular;
68 esac;
69 --PROPERTIES
70 --safety
71 CTLSPEC AG semimodular
72 --progress
73 --every module instance is selected for evaluation within finite time
74 FAIRNESS running
75 --END MODULE cgate
76
77
78
79 MODULE cgate_lazyHI (set, init_val, stop_rise, stop_fall)
80 --Model for combinational gate where output may never go HI
81 --set: Boolean function specifying what the result wants to be
82 -- in terms of the present inputs
83 -- When set!=val, changing val takes finite time for !set,
84 -- but may take infinite time for set.
85 --val: Boolean output
86 --init_val: initial Boolean value for val
87 --stop_rise: Boolean function
88 -- indicating whether or not (a low) val cannot yet rise
89 -- val can rise only if stop_rise is FALSE
90 --stop_fall: Boolean function
91 -- indicating whether or not (a high) val cannot yet fall
92 -- val can rise only if stop_fall is FALSE
93 --semimodular: Boolean function
94 -- tracking if changes are done before being disabled
95 --
96 VAR
97 val : boolean;
98 semimodular : boolean;
99 ASSIGN
100 init(val) := init_val;
101 init(semimodular) := TRUE;
102 next(val) := case
103 --if the val:=set change is unconstrained by a stop, then change
104 !stop_rise & set & !val : {FALSE, TRUE};
105 --but allow a val:=HI change to take forever
106 !stop_fall & !set & val : FALSE;
107 --otherwise don't change
108 TRUE: val;
109 esac;
110 TRANS
111 next(semimodular) = case
112 --if a val change is disabled by "bullying the change away"
113 --i.e., by only changing inputs
114 --then the semimodular property is ruined
115 ((!stop_rise & set & !val) & next(!(!stop_rise & set) & !val))
116 |
117 ((!stop_fall & !set & val) & next(!(!stop_fall & !set) & val)) : FALSE;
118 TRUE : semimodular;
119 esac;
120 --PROPERTIES
121 --safety
122 CTLSPEC AG semimodular
123 --if set!=val and set holds,
124 --then there is a future where changing val takes finite time
125 --and there is a future where changing val takes infinite time,
126 --i.e., where !val holds forever
127 CTLSPEC AG ((!stop_rise & set & !val) -> (EX val))
128 CTLSPEC AG ((!stop_rise & set & !val) -> (EX !val))
129 --progress
130 --every module instance is selected for evaluation within finite time
131 FAIRNESS running
132 --END MODULE cgate_lazyHI

Appendix A1

32

133
134
135
136 MODULE FF (en, set, init_val)
137 --Model for edge-triggered flipflop
138 --en : Boolean function whose rising edge enables the flipflop
139 --set : Boolean function specifying what the result wants to be
140 -- in terms of the present inputs
141 --Q : Boolean output
142 --init_val : initial Boolean value for Q
143 --
144 VAR
145 Q : boolean;
146 ASSIGN
147 init(Q) := init_val;
148 TRANS
149 next(Q) = case
150 !en & next(en): set;
151 TRUE: Q;
152 esac;
153 --PROPERTIES
154 --safety
155 --Semimodularity is achieved by design (TRANS)
156 --progress
157 --Fairness running is automatic
158 --because Q is evaluated each step by design (TRANS)
159 --END MODULE FF
160
161
162
163 MODULE DHKL (inHI, inLO, init_val)
164 --Model for GasP pull-oneway-keep-theotherway gate
165 --inHI : Boolean function for driving val HI
166 --inLO : Boolean function for keeping val LO
167 --val : {driveHI, keepLO, tristate}
168 --init_val : Boolean function indicating an initial value for val
169 --
170 VAR
171 val : {driveHI, keepLO, tristate};
172 ASSIGN
173 init(val) := case
174 init_val : tristate; --some other module in the design keeps HI
175 TRUE : keepLO;
176 esac;
177 TRANS
178 next(val) = case
179 --the ordering assumes that inHI and inLO
180 --are never TRUE at the same time
181 --(this will be checked in PROPERTIES)
182 inHI : driveHI;
183 inLO : keepLO;
184 TRUE: tristate;
185 esac;
186 --PROPERTIES
187 --safety
188 --Semimodularity is achieved by design (TRANS)
189 --Check that inHI and inLO are never TRUE at the same time
190 CTLSPEC AG !(inHI & inLO)
191 --progress
192 --Fairness running is automatic
193 --because val is evaluated each step by design (TRANS)
194 --END MODULE DHKL
195
196
197
198 MODULE DLKH (inHI, inLO, init_val)

Appendix A1

33

199 --Model for GasP pull-oneway-keep-theotherway gate
200 --inHI : Boolean function for keeping val HI
201 --inLO : Boolean function for driving val LO
202 --val : {driveLO, keepHI, tristate}
203 --init_val : Boolean function indicating an initial value for val
204 --
205 VAR
206 val : {driveLO, keepHI, tristate};
207 ASSIGN
208 init(val) := case
209 init_val : keepHI;
210 TRUE : tristate; --some other module in the design keeps LO
211 esac;
212 TRANS
213 next(val) = case
214 --the ordering assumes that inHI and inLO
215 --are never TRUE at the same time
216 --(will be checked in PROPERTIES)
217 inHI : keepHI;
218 inLO : driveLO;
219 TRUE : tristate;
220 esac;
221 --PROPERTIES
222 --safety
223 --Semimodularity is achieved by design (TRANS)
224 --Check that inHI and inLO are never TRUE at the same time
225 CTLSPEC AG !(inHI & inLO)
226 --progress
227 --Fairness running is automatic
228 --because val is evaluated each step by design (TRANS)
229 --END MODULE DLKH
230
231
232
233 MODULE SW (inDHKL, inDLKH, init_val)
234 --Model for GasP statewire
235 --inDHKL : {driveHI, keepLO, tristate}
236 --inDLKH : {driveLO, keepHI, tristate}
237 --val : Boolean output
238 --init_val : initial Boolean value for val
239 --noFight : Boolean tracking that the inputs never conflict
240 --noFloat : Boolean tracking that the inputs never both float
241 --
242 VAR
243 val : boolean;
244 noFight : boolean;
245 -- monitors if inDHKL and inDLKH never have conflicting HI-LO indicators
246 noFloat : boolean;
247 -- monitors if inDHKL and inDLKH never both float at the same time
248 DEFINE
249 goHI := (inDHKL=tristate & inDLKH=keepHI)
250 | (inDHKL=driveHI & inDLKH=tristate)
251 | (inDHKL=driveHI & inDLKH=keepHI);
252 goLO := (inDHKL=tristate & inDLKH=driveLO)
253 | (inDHKL=keepLO & inDLKH=tristate)
254 | (inDHKL=keepLO & inDLKH=driveLO);
255 ASSIGN
256 init(val) := init_val;
257 init(noFight) := TRUE;
258 init(noFloat) := TRUE;
259 TRANS
260 next(val) = case
261 goHI: TRUE;
262 goLO: FALSE;
263 TRUE: val;
264 --val value doesn't matter for TRUE,

Appendix A1

34

265 --because we never want to get here (fight or float)
266 esac;
267 TRANS
268 next(noFight) = case
269 (inDHKL=driveHI & inDLKH=driveLO)
270 | (inDHKL=keepLO & inDLKH=keepHI): FALSE;
271 TRUE: noFight;
272 esac;
273 TRANS
274 next(noFloat) = case
275 inDHKL=tristate & inDLKH=tristate : FALSE;
276 TRUE: noFloat;
277 esac;
278 --PROPERTIES
279 --safety
280 CTLSPEC AG noFight;
281 CTLSPEC AG noFloat;
282 --progress
283 --Fairness running is automatic
284 --because val is evaluated each step by design (TRANS)
285 --END MODULE SW
286
287
288
289 MODULE rt (eventPOD, eventEARLY, init_rt)
290 --eventPOD : Boolean function
291 -- specifying the point of divergence for this constraint
292 --eventEARLY: Boolean function
293 -- specifying the early event, releasing the constraint
294 --init_rt : {GREEN, RED} initialization state for stoplight
295 --stoplight : {GREEN, RED} rt state
296 --stop : Boolean function that can be used to prevent the late event
297 -- via stop_rise or stop_fall
298 -- in library gates with these formal parameters
299 --NOTE:
300 --Simplifying assumption for Allie's circuits
301 --so we don't have to use the more complex rt from Hoon's thesis:
302 --ASSUMPTION:
303 -- Per rt, the three POD/early/late functions
304 -- differ with at least one state distance
305 --
306 VAR
307 stoplight : {GREEN, RED};
308 ASSIGN
309 init(stoplight) := init_rt;
310 TRANS
311 next(stoplight) = case
312 myEARLY : GREEN;
313 stoplight=GREEN & myPOD : RED;
314 TRUE : stoplight;
315 esac;
316 DEFINE
317 myPOD := !eventPOD & next(eventPOD);
318 --looks for a low to high level change
319 myEARLY := !eventEARLY & next(eventEARLY);
320 --looks for a low to high level change
321 stop := (stoplight=RED);
322 --PROPERTIES
323 --safety
324 --Semimodularity is achieved by design (TRANS)
325 --progress
326 --Fairness running is automatic
327 --because val is evaluated each step by design (TRANS)
328 --END MODULE rt
329
330

Appendix A1

3535

331
332 MODULE Joint (FULL, EMPTY, stopfall_fire, stoprise_andin)
333 --FULL : Boolean from input Link
334 --EMPTY : Boolean from output Link
335 --fill : Boolean to output Link
336 --drain : Boolean to input Link
337 --stop* : Boolean imported RT constraint stops
338 --NOTE:
339 -- assume that everything is reset initially,
340 -- no new communications have come in yet
341 VAR
342 buf_postfull : process cgate (FULL, FALSE, stoprise_andin, FALSE);
343 buf_postempty : process cgate (EMPTY, FALSE, stoprise_andin, FALSE);
344 and : process cgate (andin1 & andin2, FALSE, FALSE, FALSE);
345 buf_postand : process cgate (and.val, FALSE, FALSE, stopfall_fire);
346 DEFINE
347 andin1:= buf_postfull.val;
348 andin2:= buf_postempty.val;
349 fire := buf_postand.val;
350 fill := fire;
351 drain := fire;
352 --PROPERTIES
353 --safety
354 --semimodularity is checked within each cgate
355 --progress
356 --every module instance is selected for evaluation within finite time
357 FAIRNESS running
358 --END MODULE Joint
359
360
361
362 MODULE Link_Click (fill, drain, init_state,
363 stoprise_postfill, stoprise_postdrain,
364 stop_xnorinfar, stop_xorinfar)
365 --fill : Boolean input from sending Joint
366 --drain : Boolean input from receiving Joint
367 --init_state: TRUE for FULL with req=1 and ack=0,
368 -- FALSE for EMPTY with req=0 and ack=0
369 --EMPTY : Boolean output to sending Joint
370 --FULL : Boolean output to receiving Joint
371 --stop* : Boolean imported RT constraint stops
372 VAR
373 buf_postfill : process cgate
374 (fill, FALSE, stoprise_postfill, FALSE);
375 buf_postdrain : process cgate
376 (drain, FALSE, stoprise_postdrain, FALSE);
377 xnor_gate : process cgate
378 (buf_FFreqtoreqnear.val xnor buf_FFacktoackfar.val,
379 !init_state, FALSE, FALSE);
380 xor_gate : process cgate
381 (buf_FFreqtoreqfar.val xor buf_FFacktoacknear.val,
382 init_state, FALSE, FALSE);
383 --
384 FFreq : process FF
385 (buf_postfill.val, !buf_FFreqtoFFreq.val, init_state);
386 buf_FFreqtoFFreq : process cgate
387 (FFreq.Q, init_state, FALSE, FALSE);
388 buf_FFreqtoreqnear : process cgate
389 (FFreq.Q, init_state, FALSE, FALSE);
390 buf_FFreqtoreqfar : process cgate
391 (FFreq.Q, init_state, stop_xorinfar, stop_xorinfar);
392 --
393 FFack : process FF
394 (buf_postdrain.val, !buf_FFacktoFFack.val, FALSE);
395 buf_FFacktoFFack : process cgate
396 (FFack.Q, FALSE, FALSE, FALSE);

Appendix A1

36

397 buf_FFacktoacknear : process cgate
398 (FFack.Q, FALSE, FALSE, FALSE);
399 buf_FFacktoackfar : process cgate
400 (FFack.Q, FALSE, stop_xnorinfar, stop_xnorinfar);
401 DEFINE
402 EMPTY := xnor_gate.val;
403 FULL := xor_gate.val;
404 postfill := buf_postfill.val;
405 postdrain:= buf_postdrain.val;
406 --PROPERTIES
407 --progress
408 --every module instance is selected for evaluation within finite time
409 FAIRNESS running
410 --END MODULE Link_Click
411
412
413
414 MODULE Link_GasP (fill, drain, init_val,
415 stoprise_postfill, stoprise_postdrain,
416 stopfall_postfill, stopfall_postdrain)
417 --fill : Boolean input from sending Joint
418 --drain : Boolean input from receiving Joint
419 --init_val : TRUE for FULL, FALSE for EMPTY
420 --EMPTY : Boolean output to sending Joint
421 --FULL : Boolean output to receiving Joint
422 --stop* : Boolean imported RT constraint stops
423 VAR
424 buf_postfill : process cgate
425 (fill, FALSE, stoprise_postfill, stopfall_postfill);
426 buf_postdrain : process cgate
427 (drain, FALSE, stoprise_postdrain, stopfall_postdrain);
428 --
429 driveHIkeepLO : process DHKL
430 (postfill, !postfill & !swtokeepLO, init_val);
431 driveLOkeepHI : process DLKH
432 (!postdrain & swtokeepHI, postdrain, init_val);
433 statewire : process SW
434 (driveHIkeepLO.val, driveLOkeepHI.val, init_val);
435 --
436 buf_swtokeepLO : process cgate (sw, init_val, FALSE, FALSE);
437 buf_swtokeepHI : process cgate (sw, init_val, FALSE, FALSE);
438 buf_swtoEMPTY : process cgate (!sw,!init_val, FALSE, FALSE);
439 buf_swtoFULL : process cgate (sw, init_val, FALSE, FALSE);
440 DEFINE
441 sw := statewire.val;
442 EMPTY := buf_swtoEMPTY.val;
443 FULL := buf_swtoFULL.val;
444 swtokeepHI := buf_swtokeepHI.val;
445 swtokeepLO := buf_swtokeepLO.val;
446 postfill := buf_postfill.val;
447 postdrain := buf_postdrain.val;
448 --PROPERTIES
449 --progress
450 --every module instance isselected for evaluation within finite time
451 FAIRNESS running
452 --END MODULE Link_GasP
453 -------------------END LIBRARY
454
455

Appendix A1

37

1 ----------------BEGIN MAIN PROGRAM Click-Joint-GasP
2 MODULE main
3 VAR
4 thisJoint : process Joint
5 (FULL, EMPTY, Joint_stopfall_fire, Joint_stoprise_andin);
6 --starts reset
7
8 LinkIn : process Link_Click
9 (ENV_fill, drain, TRUE,
10 LinkIn_stoprise_postfill, LinkIn_stoprise_postdrain,
11 LinkIn_stop_xnorinfar, LinkIn_stop_xorinfar);
12 --starts FULL
13
14 LinkOut : process Link_GasP
15 (fill, ENV_drain, FALSE,
16 LinkOut_stoprise_postfill, LinkOut_stoprise_postdrain,
17 LinkOut_stopfall_postfill, LinkOut_stopfall_postdrain);
18 --starts EMPTY
19
20 ENVIn : process cgate_lazyHI
21 (ENV_EMPTY, FALSE, FALSE, FALSE);
22 --starts reset
23
24 ENVOut : process cgate_lazyHI
25 (ENV_FULL, FALSE, FALSE, FALSE);
26 --starts reset
27 DEFINE
28 fire := thisJoint.fire;
29 fill := thisJoint.fill;
30 drain := thisJoint.drain;
31 FULL := LinkIn.FULL;
32 EMPTY := LinkOut.EMPTY;
33 ENV_FULL := LinkOut.FULL;
34 ENV_EMPTY := LinkIn.EMPTY;
35 ENV_fill := ENVIn.val;
36 ENV_drain := ENVOut.val;
37
38 --PROPERTIES
39 --safety
40 --Semimodularity and other properties are checked within each process
41 --progress
42 --every module instance is selected for evaluation within finite time
43 FAIRNESS running
44 --there's real action!
45 CTLSPEC AG (fill -> (EF !fill));
46 CTLSPEC AG (!fill -> (EF fill));
47 CTLSPEC AG (drain -> (EF !drain));
48 CTLSPEC AG (!drain -> (EF drain));
49
50
51
52 --RT constaints for thisJoint:
53 --
54 --(1) Joint-RT1:
55 -- fire+ -> !EMPTY, !FULL < fire-
56 VAR
57 Joint-RT1a : process rt (fire, !EMPTY, GREEN);
58 Joint-RT1b : process rt (fire, !FULL , GREEN);
59 DEFINE
60 Joint_stopfall_fire := Joint-RT1a.stop | Joint-RT1b.stop;
61 --
62 --(2) Joint-RT2:
63 -- fire+
64 -- -> thisJoint.andin1-, thisJoint.andin2-,
65 -- LinkIn.postdrain-, LinkOut.postfill-
66 -- < thisJoint.andin1+, thisJoint.andin2+

Appendix A2

38

67 VAR
68 Joint-RT2a: process rt (fire, !thisJoint.andin1, GREEN);
69 Joint-RT2b: process rt (fire, !thisJoint.andin2, GREEN);
70 Joint-RT2c: process rt (fire, !LinkIn.postdrain, GREEN);
71 Joint-RT2d: process rt (fire, !LinkOut.postfill, GREEN);
72 DEFINE
73 Joint_stoprise_andin := Joint-RT2a.stop | Joint-RT2b.stop |
74 Joint-RT2c.stop | Joint-RT2d.stop;
75
76
77
78 --RT constraints for LinkIn (Click):
79 --
80 --(1) Click-RT1:
81 -- LinkIn.FFreq.Q+ -> LinkIn.buf_FFreqtoFFreq.val+ < LinkIn.postfill+
82 -- LinkIn.FFreq.Q- -> LinkIn.buf_FFreqtoFFreq.val- < LinkIn.postfill+
83 VAR
84 Click-RT1a : process rt (LinkIn.FFreq.Q, LinkIn.buf_FFreqtoFFreq.val, GREEN);
85 Click-RT1b : process rt (!LinkIn.FFreq.Q, !LinkIn.buf_FFreqtoFFreq.val, GREEN);
86 DEFINE
87 LinkIn_stoprise_postfill := Click-RT1a.stop | Click-RT1b.stop;
88 --
89 --(2) Click-RT2:
90 -- LinkIn.FFack.Q+ -> LinkIn.buf_FFacktoFFack.val+ < LinkIn.postdrain+
91 -- LinkIn.FFack.Q- -> LinkIn.buf_FFacktoFFack.val- < LinkIn.postdrain+
92 VAR
93 Click-RT2a : process rt (LinkIn.FFack.Q, LinkIn.buf_FFacktoFFack.val, GREEN);
94 Click-RT2b : process rt (!LinkIn.FFack.Q, !LinkIn.buf_FFacktoFFack.val, GREEN);
95 DEFINE
96 LinkIn_stoprise_postdrain := Click-RT2a.stop | Click-RT2b.stop;
97 --
98 --(3) Click-RT3:
99 -- ENV_fill+ (i.e., LinkIn.fill+)
100 -- -> LinkIn.ImpliedJointIn.andin2-
101 -- i.e., here propagation stops at LinkIn.postfill-
102 -- < LinkIn.buf_FFacktoackfar+
103 --
104 -- drain+ -> thisJoint.andin1- < FFreqtoreqfar+
105 VAR
106 Click-RT3a: process rt (ENV_fill, !LinkIn.postfill, GREEN);
107 Click-RT3b: process rt (drain, !thisJoint.andin1, GREEN);
108 DEFINE
109 LinkIn_stop_xnorinfar := Click-RT3a.stop;
110 LinkIn_stop_xorinfar := Click-RT3b.stop;
111
112
113
114 --RT constraints for LinkOut (GasP)
115 --
116 --(1) GasP-RT1:
117 -- fill+ -> LinkOut.swtokeepHI+ < LinkOut.postfill-
118 -- ENV_drain+ -> LinkOut.swtokeepLO- < LinkOut.postdrain-
119 VAR
120 GasP-RT1a: process rt (fill, LinkOut.swtokeepHI, GREEN);
121 GasP-RT1b: process rt (ENV_drain, !LinkOut.swtokeepLO, GREEN);
122 --
123 --(2) GasP-RT2:
124 -- fill+ -> LinkOut.swtokeepLO+ < LinkOut.postfill-
125 -- ENV_drain+ -> LinkOut.swtokeepHI- < LinkOut.postdrain-
126 VAR
127 GasP-RT2a: process rt (fill, LinkOut.swtokeepLO, GREEN);
128 GasP-RT2b: process rt (ENV_drain, !LinkOut.swtokeepHI, GREEN);
129 --
130 DEFINE
131 LinkOut_stopfall_postfill := GasP-RT1a.stop | GasP-RT2a.stop;
132 LinkOut_stopfall_postdrain := GasP-RT1b.stop | GasP-RT2b.stop;

Appendix A2

393

133 --
134 -- (3) GasP-RT3:
135 -- fill+ -> LinkOut.postfill-, thisJoint.andin2- < LinkOut.postdrain+
136 --
137 -- ENV_drain+
138 -- -> LinkOut.postdrain-,
139 -- ImpliedJointOut.andin1- (i.e., here again LinkOut.postdrain-)
140 -- < LinkOut.postfill+
141 VAR
142 GasP-RT3a1: process rt (fill, !LinkOut.postfill, GREEN);
143 GasP-RT3a2: process rt (fill, !thisJoint.andin2, GREEN);
144 --
145 GasP-RT3b1: process rt (ENV_drain, !LinkOut.postdrain, GREEN);
146 DEFINE
147 LinkOut_stoprise_postfill := GasP-RT3b1.stop;
148 LinkOut_stoprise_postdrain := GasP-RT3a1.stop | GasP-RT3a2.stop;
149 -- END MODULE main
150 ----------------END MAIN PROGRAM Click-Joint-GasP
151

Appendix A2

40

1 Wall-clock execution time: 6 minutes
2 ##
3 system diameter: 107
4 reachable states: 114984 (2^16.8111) out of 2.65633e+021 (2^71.1699)
5 ##
6
7
8
9 *** This is NuSMV 2.5.4 (compiled on Fri Oct 28 14:15:02 UTC 2011)
10 *** Enabled addons are: compass
11 *** For more information on NuSMV see <http://nusmv.fbk.eu>
12 *** or email to <nusmv-users@list.fbk.eu>.
13 *** Please report bugs to <nusmv-users@fbk.eu>
14 *** Copyright (c) 2010, Fondazione Bruno Kessler
15 *** This version of NuSMV is linked to the CUDD library version 2.4.1
16 *** Copyright (c) 1995-2004, Regents of the University of Colorado
17 *** This version of NuSMV is linked to the MiniSat SAT solver.
18 *** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
19 *** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson
20 WARNING *** The model contains PROCESSes or ISAs. ***
21 WARNING *** The HRC hierarchy will not be usable. ***
22 -- specification AG semimodular IN thisJoint.buf_postfull is true
23 -- specification AG semimodular IN thisJoint.buf_postempty is true
24 -- specification AG semimodular IN thisJoint.and is true
25 -- specification AG semimodular IN thisJoint.buf_postand is true
26 -- specification AG semimodular IN LinkIn.buf_postfill is true
27 -- specification AG semimodular IN LinkIn.buf_postdrain is true
28 -- specification AG semimodular IN LinkIn.xnor_gate is true
29 -- specification AG semimodular IN LinkIn.xor_gate is true
30 -- specification AG semimodular IN LinkIn.buf_FFreqtoFFreq is true
31 -- specification AG semimodular IN LinkIn.buf_FFreqtoreqnear is true
32 -- specification AG semimodular IN LinkIn.buf_FFreqtoreqfar is true
33 -- specification AG semimodular IN LinkIn.buf_FFacktoFFack is true
34 -- specification AG semimodular IN LinkIn.buf_FFacktoacknear is true
35 -- specification AG semimodular IN LinkIn.buf_FFacktoackfar is true
36 -- specification AG semimodular IN LinkOut.buf_postfill is true
37 -- specification AG semimodular IN LinkOut.buf_postdrain is true
38 -- specification AG !(inHI & inLO) IN LinkOut.driveHIkeepLO is true
39 -- specification AG !(inHI & inLO) IN LinkOut.driveLOkeepHI is true
40 -- specification AG noFight IN LinkOut.statewire is true
41 -- specification AG noFloat IN LinkOut.statewire is true
42 -- specification AG semimodular IN LinkOut.buf_swtokeepLO is true
43 -- specification AG semimodular IN LinkOut.buf_swtokeepHI is true
44 -- specification AG semimodular IN LinkOut.buf_swtoEMPTY is true
45 -- specification AG semimodular IN LinkOut.buf_swtoFULL is true
46 -- specification AG semimodular IN ENVIn is true
47 -- specification AG (((!stop_rise & set) & !val) -> EX val) IN ENVIn is true
48 -- specification AG (((!stop_rise & set) & !val) -> EX !val) IN ENVIn is true
49 -- specification AG semimodular IN ENVOut is true
50 -- specification AG (((!stop_rise & set) & !val) -> EX val) IN ENVOut is true
51 -- specification AG (((!stop_rise & set) & !val) -> EX !val) IN ENVOut is true
52 -- specification AG (fill -> EF !fill) is true
53 -- specification AG (!fill -> EF fill) is true
54 -- specification AG (drain -> EF !drain) is true
55 -- specification AG (!drain -> EF drain) is true
56

Appendix A3

41

Appendix B

NuSMV Implementation and Results of Full FIFO of Fig. 7: The
Mixed Family FIFO Model

“Click Link - Joint - eGasP Link”

This Appendix consists of the following components:

B1: the library extension containing the NuSMV code for eGasP.
pg. 43 - 46

B2: the main program representing the full FIFO for Fig. 7 using the library in A1 and library
extension in B1.
pg. 47 - 49

B3: NuSMV results of running our Click Link - Joint - eGasP Link model with wall-clock
execution time, reachable state space (complexity of design), and showing that the
design is correct (i.e. all properties are TRUE).

 pg. 50

42

1 -------------------BEGIN LIBRARY EXTENSION eGasP
2 --BEGIN NuSMV Library
3 --Allie eGasPextension
4 --Honors Thesis May 2020
5
6
7 -- Library modules in here are formally instantiated as follows:
8 -- C (set, reset, init_val, stop_rise, stop_fall)
9 -- ProebstingPulseGen (set, stop_rise, stop_fall)
10 -- Link_eGasP (fill, drain, init_val,
11 -- stoprise_PGfill, stoprise_PGdrain,
12 -- stopfall_PGfill, stopfall_PGdrain)
13
14
15
16 MODULE C (set, reset, init_val, stop_rise, stop_fall)
17 --Model for any symmetric or asymmetric sequential gate.
18 --
19 --NOTE:
20 --When set = !reset, we have a combinational gate, otherwise a sequential gate
21 --So, in principle, we can specify any cgate in the library using C.
22 --We assume that set and reset are mutually exclusive, and will check for this.
23 --
24 --set: Boolean function specifying when val can go high
25 --reset: Boolean function specifying when val can go low
26 --val: Boolean output
27 --init_val: initial Boolean value for val
28 --stop_rise: Boolean function indicating
29 -- whether or not (a low) val can rise;
30 -- val can rise only if stop_rise is FALSE
31 --stop_fall: Boolean function indicating
32 -- whether or not (a high) val can fall;
33 -- val can rise only if stop_fall is FALSE
34 --semimodular: Boolean function tracking
35 -- if changes are done before being disabled
36 --NOTE:
37 --Difference between using ASSIGN versus VAR for changing module variables:
38 -- ASSIGN is for initialization
39 -- and for private module variables that change only
40 -- when the module is selected for evaluation
41 -- uses :=
42 -- TRANS is for monitor or random variables
43 -- that must be evaluated each step in the system execution
44 -- uses =
45 --
46 VAR
47 val : boolean;
48 semimodular : boolean;
49 ASSIGN
50 init(val) := init_val;
51 init(semimodular) := TRUE;
52 next(val) := case
53 --drive HI
54 !stop_rise & set & !val : TRUE;
55 --or LO
56 !stop_fall & reset & val : FALSE;
57 --or maintain current val state
58 TRUE: val;
59 esac;
60 TRANS
61 next(semimodular) = case
62 --if a val change is disabled by "bullying the change away"
63 --i.e., by only changing inputs
64 --then the semimodular property is ruined
65 ((!stop_rise & set & !val) & next(!(!stop_rise & set) & !val))
66 |

Appendix B1

43

67 ((!stop_fall & reset & val) & next(!(!stop_fall & reset) & val)) : FALSE;
68 TRUE : semimodular;
69 esac;
70 --PROPERTIES
71 --safety
72 CTLSPEC AG semimodular
73 --check that drive_HI and drive_LO are mutually exclusive
74 CTLSPEC AG !(set & reset)
75 --progress
76 --every module instance is selected for evaluation within finite time
77 FAIRNESS running
78 --END MODULE C
79
80
81
82 MODULE Proebsting (set, stop_rise, stop_fall)
83 --Proebsting pulsegenerator model
84 --for making level-triggered Links behave edge-triggered,
85 --with a to be determined high pulsewidth,
86 --be it (much) shorter or (much) longer
87 --than filling or draining Joint cycles.
88 --
89 --set: Boolean enable function
90 -- HI makes val HI and then LO within finite time
91 --val: Boolean output
92 --stop_rise: Boolean function indicating
93 -- whether or not (a low) val may rise;
94 -- val can rise only if stop_rise is FALSE
95 --stop_fall: Boolean function indicating
96 -- whether or not (a high) val may fall
97 --semimodular: Boolean function tracking
98 -- if state changes were done before being disabled
99 --NOTE:
100 --Difference between using ASSIGN versus VAR for changing module variables:
101 -- ASSIGN is for initialization
102 -- and for private module variables that change only
103 -- when the module is selected for evaluation
104 -- uses :=
105 -- TRANS is for monitor or random variables
106 -- that must be evaluated each step in the system execution
107 -- uses =
108 --
109 VAR
110 val : boolean;
111 semimodular : boolean;
112 ASSIGN
113 init(val) := FALSE;
114 init(semimodular) := TRUE;
115 next(val) := case
116 --val FALSE to TRUE depends on set
117 !stop_rise & set & !val : TRUE;
118 --val TRUE to FALSE is independent of set
119 !stop_fall & val : FALSE;
120 TRUE: val;
121 esac;
122 TRANS
123 next(semimodular) = case
124 --if a state change is disabled by "bullying the change away"
125 --i.e., by changing inputs only
126 --then semimodularity is ruined
127 (!stop_rise & set & !val) & next(!(!stop_rise & set) & !val) : FALSE;
128 (!stop_fall & val) & next(stop_fall & val) : FALSE;
129 TRUE : semimodular;
130 esac;
131 --PROPERTIES
132 --safety

Appendix B1

44

133 CTLSPEC AG semimodular;
134 --We would like the pulsegenerator to behave like a buffer
135 --so we check that set will become FALSE before val becomes FALSE again
136 --To satisfy, this will require relative timing constraints
137 CTLSPEC AG ((set & val) -> (A [val U !set]));
138 --progress
139 --every module instance must be selected for evaluation within finite time
140 FAIRNESS running
141 --END MODULE Proebsting
142
143
144
145 MODULE Link_eGasP (fill, drain, init_val,
146 stoprise_PGfill, stoprise_PGdrain,
147 stopfall_PGfill, stopfall_PGdrain)
148 --NOTE:
149 --Link_eGasP provides edge-triggered versions of Link_GasP
150 --by using a Proebsting amplifier driven by an asymmetric C element
151 --tied to fill respectively drain at each end.
152 --This solution can drive the link (much) shorter or (much) longer
153 --than the Joint self-resetting cycle at each end permits,
154 --especially when the Joints have different cycle times.
155 --We use it to drive the Link just as long as it needs
156 --to get its state and data across.
157 --
158 --fill : Boolean input from sending Joint
159 --drain : Boolean input from receiving Joint
160 --init_val : TRUE for FULL, FALSE for EMPTY
161 --EMPTY : Boolean output to sending Joint
162 --FULL : Boolean output to receiving Joint
163 --stop* : Boolean imported RT constraint stops
164 VAR
165 buf_postfill : process cgate (fill, FALSE, FALSE, FALSE);
166 C_fill : process C
167 (buf_postfill.val & buf_swtoCfill.val, !buf_swtoCfill.val,
168 FALSE, FALSE, FALSE);
169 PG_fill : process Proebsting
170 (C_fill.val, stoprise_PGfill, stopfall_PGfill);
171 --
172 buf_postdrain : process cgate (drain, FALSE, FALSE, FALSE);
173 C_drain : process C
174 (buf_postdrain.val & buf_swtoCdrain.val, !buf_swtoCdrain.val,
175 FALSE, FALSE, FALSE);
176 PG_drain : process Proebsting
177 (C_drain.val, stoprise_PGdrain, stopfall_PGdrain);
178 --
179 driveHIkeepLO : process DHKL (PG_fill.val, !PG_fill.val & !swtokeepLO, init_val);
180 driveLOkeepHI : process DLKH (!PG_drain.val & swtokeepHI, PG_drain.val, init_val);
181 statewire : process SW (driveHIkeepLO.val, driveLOkeepHI.val, init_val);
182 --
183 buf_swtokeepLO : process cgate (sw, init_val, FALSE, FALSE);
184 buf_swtokeepHI : process cgate (sw, init_val, FALSE, FALSE);
185 buf_swtoEMPTY : process cgate (!sw,!init_val, FALSE, FALSE);
186 buf_swtoCfill : process cgate (!sw,!init_val, FALSE, FALSE);
187 buf_swtoFULL : process cgate (sw, init_val, FALSE, FALSE);
188 buf_swtoCdrain : process cgate (sw, init_val, FALSE, FALSE);
189
190 DEFINE
191 sw := statewire.val;
192 EMPTY := buf_swtoEMPTY.val;
193 FULL := buf_swtoFULL.val;
194 swtokeepHI := buf_swtokeepHI.val;
195 swtokeepLO := buf_swtokeepLO.val;
196 postfill := buf_postfill.val;
197 postdrain := buf_postdrain.val;
198 Cfill := C_fill.val;

Appendix B1

45

199 Cdrain := C_drain.val;
200 PGfill := PG_fill.val;
201 PGdrain := PG_drain.val;
202 --PROPERTIES
203 --progress
204 --every module instance is selected for evaluation within finite time
205 FAIRNESS running
206 --END MODULE Link_eGasP
207 -------------------END LIBRARY EXTENSION eGasP
208
209

Appendix B1

46

1 ----------------BEGIN MAIN PROGRAM Click-Joint-eGasP
2 MODULE main
3 VAR
4 thisJoint : process Joint
5 (FULL, EMPTY, Joint_stopfall_fire, Joint_stoprise_andin);
6 --starts reset
7
8 LinkIn : process Link_Click
9 (ENV_fill, drain, TRUE,
10 LinkIn_stoprise_postfill, LinkIn_stoprise_postdrain,
11 LinkIn_stop_xnorinfar, LinkIn_stop_xorinfar);
12 --starts FULL
13
14 LinkOut : process Link_eGasP
15 (fill, ENV_drain, FALSE,
16 LinkOut_stoprise_PGfill, LinkOut_stoprise_PGdrain,
17 LinkOut_stopfall_PGfill, LinkOut_stopfall_PGdrain);
18 --starts EMPTY
19
20 ENVIn : process cgate_lazyHI
21 (ENV_EMPTY, FALSE, FALSE, FALSE);
22 --starts reset
23
24 ENVOut : process cgate_lazyHI
25 (ENV_FULL, FALSE, FALSE, FALSE);
26 --starts reset
27 DEFINE
28 fire := thisJoint.fire;
29 fill := thisJoint.fill;
30 drain := thisJoint.drain;
31 FULL := LinkIn.FULL;
32 EMPTY := LinkOut.EMPTY;
33 ENV_FULL := LinkOut.FULL;
34 ENV_EMPTY := LinkIn.EMPTY;
35 ENV_fill := ENVIn.val;
36 ENV_drain := ENVOut.val;
37
38 --PROPERTIES
39 --safety
40 --Semimodularity and other properties are checked within each process
41 --progress
42 --every module instance is selected for evaluation within finite time
43 FAIRNESS running
44 --there's real action!
45 CTLSPEC AG (fill -> (EF !fill));
46 CTLSPEC AG (!fill -> (EF fill));
47 CTLSPEC AG (drain -> (EF !drain));
48 CTLSPEC AG (!drain -> (EF drain));
49
50
51
52 --RT constaints for thisJoint:
53 --
54 --(1) Joint-RT1:
55 -- fire+ -> !EMPTY, !FULL < fire-
56 VAR
57 Joint-RT1a : process rt (fire, !EMPTY, GREEN);
58 Joint-RT1b : process rt (fire, !FULL , GREEN);
59 DEFINE
60 Joint_stopfall_fire := Joint-RT1a.stop | Joint-RT1b.stop;
61 --
62 --(2) Joint-RT2:
63 -- fire+
64 -- -> thisJoint.andin1-, thisJoint.andin2-,
65 -- LinkIn.postdrain-, LinkOut.postfill-
66 -- < thisJoint.andin1+, thisJoint.andin2+

Appendix B2

47

67 VAR
68 Joint-RT2a: process rt (fire, !thisJoint.andin1, GREEN);
69 Joint-RT2b: process rt (fire, !thisJoint.andin2, GREEN);
70 Joint-RT2c: process rt (fire, !LinkIn.postdrain, GREEN);
71 Joint-RT2d: process rt (fire, !LinkOut.postfill, GREEN);
72 DEFINE
73 Joint_stoprise_andin := Joint-RT2a.stop | Joint-RT2b.stop |
74 Joint-RT2c.stop | Joint-RT2d.stop;
75
76
77
78 --RT constraints for LinkIn (Click):
79 --
80 --
81 --(1) Click-RT1:
82 -- LinkIn.FFreq.Q+ -> LinkIn.buf_FFreqtoFFreq.val+ < LinkIn.postfill+
83 -- LinkIn.FFreq.Q- -> LinkIn.buf_FFreqtoFFreq.val- < LinkIn.postfill+
84 VAR
85 Click-RT1a : process rt (LinkIn.FFreq.Q, LinkIn.buf_FFreqtoFFreq.val, GREEN);
86 Click-RT1b : process rt (!LinkIn.FFreq.Q, !LinkIn.buf_FFreqtoFFreq.val, GREEN);
87 DEFINE
88 LinkIn_stoprise_postfill := Click-RT1a.stop | Click-RT1b.stop;
89 --
90 --(2) Click-RT2:
91 -- LinkIn.FFack.Q+ -> LinkIn.buf_FFacktoFFack.val+ < LinkIn.postdrain+
92 -- LinkIn.FFack.Q- -> LinkIn.buf_FFacktoFFack.val- < LinkIn.postdrain+
93 VAR
94 Click-RT2a : process rt (LinkIn.FFack.Q, LinkIn.buf_FFacktoFFack.val, GREEN);
95 Click-RT2b : process rt (!LinkIn.FFack.Q, !LinkIn.buf_FFacktoFFack.val, GREEN);
96 DEFINE
97 LinkIn_stoprise_postdrain := Click-RT2a.stop | Click-RT2b.stop;
98 --
99 --(3) Click-RT3:
100 -- ENV_fill+ (i.e., LinkIn.fill+)
101 -- -> LinkIn.ImpliedJointIn.andin2-
102 -- i.e., here propagation stops at LinkIn.postfill-
103 -- < LinkIn.buf_FFacktoackfar+
104 --
105 -- drain+ -> thisJoint.andin1- < FFreqtoreqfar+
106 VAR
107 Click-RT3a: process rt (ENV_fill, !LinkIn.postfill, GREEN);
108 Click-RT3b: process rt (drain, !thisJoint.andin1, GREEN);
109 DEFINE
110 LinkIn_stop_xnorinfar := Click-RT3a.stop;
111 LinkIn_stop_xorinfar := Click-RT3b.stop;
112
113
114
115 --RT constraints for LinkOut (eGasP)
116 --
117 --(1) eGasP-RT1:
118 -- fill+ -> LinkOut.swtokeepHI+ < LinkOut.PGfill-
119 -- ENV_drain+ -> LinkOut.swtokeepLO- < LinkOut.PGdrain-
120 VAR
121 eGasP-RT1a: process rt (fill, LinkOut.swtokeepHI, GREEN);
122 eGasP-RT1b: process rt (ENV_drain, !LinkOut.swtokeepLO, GREEN);
123 --
124 --(2) eGasP-RT2:
125 -- fill+ -> LinkOut.swtokeepLO+ < LinkOut.PGfill-
126 -- ENV_drain+ -> LinkOut.swtokeepHI- < LinkOut.PGdrain-
127 VAR
128 eGasP-RT2a: process rt (fill, LinkOut.swtokeepLO, GREEN);
129 eGasP-RT2b: process rt (ENV_drain, !LinkOut.swtokeepHI, GREEN);
130 --
131 --(3) eGasP-RT3:
132 -- fill+

Appendix B2

48

133 -- -> LinkOut.PGfill-, (no SW fight)
134 -- LinkOut. postfill-, (disable Cfill before buf_swtoCfill.val+)
135 -- thisJoint.andin2-, (disable EMPTY influence in Joint)
136 -- < LinkOut.PGdrain+
137 --
138 -- ENV_drain+
139 -- -> LinkOut.PGdrain-, (no SW fight)
140 -- LinkOut.postdrain-, (disable Cdrain before buf_swtoCdrain.val+)
141 -- ImpliedJointOut.andin1- (i.e. here, LinkOut.postdrain-)
142 -- < LinkOut.PGfill+
143 VAR
144 eGasP-RT3a1: process rt (fill, !LinkOut.PGfill, GREEN);
145 eGasP-RT3a2: process rt (fill, !LinkOut.postfill, GREEN);
146 eGasP-RT3a3: process rt (fill, !thisJoint.andin2, GREEN);
147 --
148 eGasP-RT3b1: process rt (ENV_drain, !LinkOut.PGdrain, GREEN);
149 eGasP-RT3b2: process rt (ENV_drain, !LinkOut.postdrain, GREEN);
150 --
151 --(4) eGasP-RT4:
152 -- fill+ -> LinkOut.Cfill- < LinkOut.PGfill-
153 -- ENV_drain+ -> LinkOut.Cdrain- < LinkOut.PGdrain-
154 VAR
155 eGasP-RT4a: process rt (fill, !LinkOut.Cfill, GREEN);
156 eGasP-RT4b: process rt (ENV_drain, !LinkOut.Cdrain, GREEN);
157 --
158 DEFINE
159 LinkOut_stoprise_PGfill := eGasP-RT3b1.stop | eGasP-RT3b2.stop;
160 LinkOut_stoprise_PGdrain := eGasP-RT3a1.stop | eGasP-RT3a2.stop |

eGasP-RT3a3.stop;
161 --
162 LinkOut_stopfall_PGfill := eGasP-RT1a.stop | eGasP-RT2a.stop | eGasP-RT4a.stop;
163 LinkOut_stopfall_PGdrain := eGasP-RT1b.stop | eGasP-RT2b.stop |

eGasP-RT4b.stop;
164 -- END MODULE main
165 ----------------END MAIN PROGRAM Click-Joint-eGasP
166

Appendix B2

49

1 Wall-clock execution time: 5 hours 49 minutes
2 ##
3 system diameter: 143
4 reachable states: 1.32923e+006 (2^20.3422) out of 1.74085e+026 (2^87.1699)
5 ##
6
7
8
9 *** This is NuSMV 2.5.4 (compiled on Fri Oct 28 14:15:02 UTC 2011)
10 *** Enabled addons are: compass
11 *** For more information on NuSMV see <http://nusmv.fbk.eu>
12 *** or email to <nusmv-users@list.fbk.eu>.
13 *** Please report bugs to <nusmv-users@fbk.eu>
14 *** Copyright (c) 2010, Fondazione Bruno Kessler
15 *** This version of NuSMV is linked to the CUDD library version 2.4.1
16 *** Copyright (c) 1995-2004, Regents of the University of Colorado
17 *** This version of NuSMV is linked to the MiniSat SAT solver.
18 *** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
19 *** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson
20 WARNING *** The model contains PROCESSes or ISAs. ***
21 WARNING *** The HRC hierarchy will not be usable. ***
22 -- specification AG semimodular IN thisJoint.buf_postfull is true
23 -- specification AG semimodular IN thisJoint.buf_postempty is true
24 -- specification AG semimodular IN thisJoint.and is true
25 -- specification AG semimodular IN thisJoint.buf_postand is true
26 -- specification AG semimodular IN LinkIn.buf_postfill is true
27 -- specification AG semimodular IN LinkIn.buf_postdrain is true
28 -- specification AG semimodular IN LinkIn.xnor_gate is true
29 -- specification AG semimodular IN LinkIn.xor_gate is true
30 -- specification AG semimodular IN LinkIn.buf_FFreqtoFFreq is true
31 -- specification AG semimodular IN LinkIn.buf_FFreqtoreqnear is true
32 -- specification AG semimodular IN LinkIn.buf_FFreqtoreqfar is true
33 -- specification AG semimodular IN LinkIn.buf_FFacktoFFack is true
34 -- specification AG semimodular IN LinkIn.buf_FFacktoacknear is true
35 -- specification AG semimodular IN LinkIn.buf_FFacktoackfar is true
36 -- specification AG semimodular IN LinkOut.buf_postfill is true
37 -- specification AG semimodular IN LinkOut.C_fill is true
38 -- specification AG !(set & reset) IN LinkOut.C_fill is true
39 -- specification AG semimodular IN LinkOut.PG_fill is true
40 -- specification AG ((set & val) -> A [val U !set]) IN LinkOut.PG_fill is true
41 -- specification AG semimodular IN LinkOut.buf_postdrain is true
42 -- specification AG semimodular IN LinkOut.C_drain is true
43 -- specification AG !(set & reset) IN LinkOut.C_drain is true
44 -- specification AG semimodular IN LinkOut.PG_drain is true
45 -- specification AG ((set & val) -> A [val U !set]) IN LinkOut.PG_drain is true
46 -- specification AG !(inHI & inLO) IN LinkOut.driveHIkeepLO is true
47 -- specification AG !(inHI & inLO) IN LinkOut.driveLOkeepHI is true
48 -- specification AG noFight IN LinkOut.statewire is true
49 -- specification AG noFloat IN LinkOut.statewire is true
50 -- specification AG semimodular IN LinkOut.buf_swtokeepLO is true
51 -- specification AG semimodular IN LinkOut.buf_swtokeepHI is true
52 -- specification AG semimodular IN LinkOut.buf_swtoEMPTY is true
53 -- specification AG semimodular IN LinkOut.buf_swtoCfill is true
54 -- specification AG semimodular IN LinkOut.buf_swtoFULL is true
55 -- specification AG semimodular IN LinkOut.buf_swtoCdrain is true
56 -- specification AG semimodular IN ENVIn is true
57 -- specification AG (((!stop_rise & set) & !val) -> EX val) IN ENVIn is true
58 -- specification AG (((!stop_rise & set) & !val) -> EX !val) IN ENVIn is true
59 -- specification AG semimodular IN ENVOut is true
60 -- specification AG (((!stop_rise & set) & !val) -> EX val) IN ENVOut is true
61 -- specification AG (((!stop_rise & set) & !val) -> EX !val) IN ENVOut is true
62 -- specification AG (fill -> EF !fill) is true
63 -- specification AG (!fill -> EF fill) is true
64 -- specification AG (drain -> EF !drain) is true
65 -- specification AG (!drain -> EF drain) is true
66

Appendix B3

50

Appendix C

NuSMV Implementation and Results of Full FIFO of Fig. 8: The
Mixed Family FIFO Model

“Click Link - Joint with C-element - eGasP Link”

This Appendix consists of the following components:

C1: the library extension containing the NuSMV code for JointwC (Joint with C-element).
pg. 52

C2: the main program representing the full FIFO for Fig. 8 using the library in A1 and library
extensions in B1 and C1.
pg. 53 - 55

C3: NuSMV results of running our Click Link - Joint with C-element - eGasP Link model
 with wall-clock execution time, reachable state space (complexity of design), and
 showing that the design is correct (i.e. all properties are TRUE).
 pg. 56

51

1 -------------------BEGIN LIBRARY EXTENSION JointwC
2 --BEGIN NuSMV Library
3 --Allie JointwCextension
4 --Honors Thesis May 2020
5
6
7 -- Library modules in here are formally instantiated as follows:
8 -- MODULE JointwC (FULL, EMPTY, stopfall_fire, stoprise_andin)
9
10
11 MODULE JointwC (FULL, EMPTY, stoprise_andin)
12 --FULL : Boolean from input Link
13 --EMPTY : Boolean from output Link
14 --fill : Boolean to output Link
15 --drain : Boolean to input Link
16 --stop* : Boolean imported RT constraint stops
17 --
18 --NOTE:
19 -- assume that everything is reset initially, no new communications have come in yet
20 --
21 VAR
22 buf_postfull : process cgate (FULL, FALSE, stoprise_andin, FALSE);
23 buf_postempty : process cgate (EMPTY, FALSE, stoprise_andin, FALSE);
24 Celt : process C (andin1 & andin2,!andin1 & !andin2, FALSE, FALSE, FALSE);
25 buf_postC : process cgate (Celt.val, FALSE, FALSE, FALSE);
26 DEFINE
27 andin1 := buf_postfull.val;
28 andin2 := buf_postempty.val;
29 fire := buf_postC.val;
30 fill := fire;
31 drain := fire;
32 --PROPERTIES
33 --safety
34 --semimodularity is checked within each cgate and within C
35 --progress
36 --every module instance is selected for evaluation within finite time
37 FAIRNESS running
38 --END MODULE JointwC
39 -------------------END LIBRARY EXTENSION JointwC
40
41

Appendix C1

52

1 ----------------BEGIN MAIN PROGRAM Click-JointwC-eGasP
2 MODULE main
3 VAR
4 thisJoint : process JointwC
5 (FULL, EMPTY, JointwC_stoprise_andin);
6 --starts reset
7
8 LinkIn : process Link_Click
9 (ENV_fill, drain, TRUE,
10 LinkIn_stoprise_postfill, LinkIn_stoprise_postdrain,
11 LinkIn_stop_xnorinfar, LinkIn_stop_xorinfar);
12 --starts FULL
13
14 LinkOut : process Link_eGasP
15 (fill, ENV_drain, FALSE,
16 LinkOut_stoprise_PGfill, LinkOut_stoprise_PGdrain,
17 LinkOut_stopfall_PGfill, LinkOut_stopfall_PGdrain);
18 --starts EMPTY
19
20 ENVIn : process cgate_lazyHI
21 (ENV_EMPTY, FALSE, FALSE, FALSE);
22 --starts reset
23
24 ENVOut : process cgate_lazyHI
25 (ENV_FULL, FALSE, FALSE, FALSE);
26 --starts reset
27 DEFINE
28 fire := thisJoint.fire;
29 fill := thisJoint.fill;
30 drain := thisJoint.drain;
31 FULL := LinkIn.FULL;
32 EMPTY := LinkOut.EMPTY;
33 ENV_FULL := LinkOut.FULL;
34 ENV_EMPTY := LinkIn.EMPTY;
35 ENV_fill := ENVIn.val;
36 ENV_drain := ENVOut.val;
37
38 --PROPERTIES
39 --safety
40 --Semimodularity and other properties are checked within each process
41 --progress
42 --every module instance is selected for evaluation within finite time
43 FAIRNESS running
44 --there's real action!
45 CTLSPEC AG (fill -> (EF !fill));
46 CTLSPEC AG (!fill -> (EF fill));
47 CTLSPEC AG (drain -> (EF !drain));
48 CTLSPEC AG (!drain -> (EF drain));
49
50
51
52 --RT constaints for thisJoint:
53 --
54 --(1) JointwC-RT1: satisfied now by design
55 -- fire+ -> !EMPTY, !FULL < fire-
56 --
57 --(2) JointwC-RT2: simplified by design
58 -- fire+
59 -- -> LinkIn.postdrain-, LinkOut.postfill-
60 -- < thisJoint.andin1+, thisJoint.andin2+
61 VAR
62 JointwC-RT2c: process rt (fire, !LinkIn.postdrain, GREEN);
63 JointwC-RT2d: process rt (fire, !LinkOut.postfill, GREEN);
64 DEFINE
65 JointwC_stoprise_andin := JointwC-RT2c.stop | JointwC-RT2d.stop;
66

Appendix C2

53

67
68
69 --RT constraints for LinkIn (Click):
70 --
71 --(1) Click-RT1:
72 -- LinkIn.FFreq.Q+ -> LinkIn.buf_FFreqtoFFreq.val+ < LinkIn.postfill+
73 -- LinkIn.FFreq.Q- -> LinkIn.buf_FFreqtoFFreq.val- < LinkIn.postfill+
74 VAR
75 Click-RT1a : process rt (LinkIn.FFreq.Q, LinkIn.buf_FFreqtoFFreq.val, GREEN);
76 Click-RT1b : process rt (!LinkIn.FFreq.Q, !LinkIn.buf_FFreqtoFFreq.val, GREEN);
77 DEFINE
78 LinkIn_stoprise_postfill := Click-RT1a.stop | Click-RT1b.stop;
79 --
80 --(2) Click-RT2:
81 -- LinkIn.FFack.Q+ -> LinkIn.buf_FFacktoFFack.val+ < LinkIn.postdrain+
82 -- LinkIn.FFack.Q- -> LinkIn.buf_FFacktoFFack.val- < LinkIn.postdrain+
83 VAR
84 Click-RT2a : process rt (LinkIn.FFack.Q, LinkIn.buf_FFacktoFFack.val, GREEN);
85 Click-RT2b : process rt (!LinkIn.FFack.Q, !LinkIn.buf_FFacktoFFack.val, GREEN);
86 DEFINE
87 LinkIn_stoprise_postdrain := Click-RT2a.stop | Click-RT2b.stop;
88 --
89 --(3) Click-RT3:
90 -- ENV_fill+ (i.e., LinkIn.fill+)
91 -- -> LinkIn.ImpliedJointIn.andin2-
92 -- i.e., here propagation stops at LinkIn.postfill-
93 -- < LinkIn.buf_FFacktoackfar+
94 --
95 -- drain+ -> thisJoint.andin1- < FFreqtoreqfar+
96 VAR
97 Click-RT3a: process rt (ENV_fill, !LinkIn.postfill, GREEN);
98 Click-RT3b: process rt (drain, !thisJoint.andin1, GREEN);
99 DEFINE
100 LinkIn_stop_xnorinfar := Click-RT3a.stop;
101 LinkIn_stop_xorinfar := Click-RT3b.stop;
102
103
104
105 --RT constraints for LinkOut (eGasP)
106 --
107 --(1) eGasP-RT1:
108 -- fill+ -> LinkOut.swtokeepHI+ < LinkOut.PGfill-
109 -- ENV_drain+ -> LinkOut.swtokeepLO- < LinkOut.PGdrain-
110 VAR
111 eGasP-RT1a: process rt (fill, LinkOut.swtokeepHI, GREEN);
112 eGasP-RT1b: process rt (ENV_drain, !LinkOut.swtokeepLO, GREEN);
113 --
114 --(2) eGasP-RT2:
115 -- fill+ -> LinkOut.swtokeepLO+ < LinkOut.PGfill-
116 -- ENV_drain+ -> LinkOut.swtokeepHI- < LinkOut.PGdrain-
117 VAR
118 eGasP-RT2a: process rt (fill, LinkOut.swtokeepLO, GREEN);
119 eGasP-RT2b: process rt (ENV_drain, !LinkOut.swtokeepHI, GREEN);
120 --
121 --(3) eGasP-RT3:
122 -- fill+
123 -- -> LinkOut.PGfill-, (no SW fight)
124 -- LinkOut. postfill-, (disable Cfill before buf_swtoCfill.val+)
125 -- thisJoint.andin2-, (disable EMPTY influence in Joint)
126 -- < LinkOut.PGdrain+
127 --
128 -- ENV_drain+
129 -- -> LinkOut.PGdrain-, (no SW fight)
130 -- LinkOut.postdrain-, (disable Cdrain before buf_swtoCdrain.val+)
131 -- ImpliedJointOut.andin1- (i.e. here, LinkOut.postdrain-)
132 -- < LinkOut.PGfill+

Appendix C2

54

133 VAR
134 eGasP-RT3a1: process rt (fill, !LinkOut.PGfill, GREEN);
135 eGasP-RT3a2: process rt (fill, !LinkOut.postfill, GREEN);
136 eGasP-RT3a3: process rt (fill, !thisJoint.andin2, GREEN);
137 --
138 eGasP-RT3b1: process rt (ENV_drain, !LinkOut.PGdrain, GREEN);
139 eGasP-RT3b2: process rt (ENV_drain, !LinkOut.postdrain, GREEN);
140 --
141 --(4) eGasP-RT4:
142 -- fill+ -> LinkOut.Cfill- < LinkOut.PGfill-
143 -- ENV_drain+ -> LinkOut.Cdrain- < LinkOut.PGdrain-
144 VAR
145 eGasP-RT4a: process rt (fill, !LinkOut.Cfill, GREEN);
146 eGasP-RT4b: process rt (ENV_drain, !LinkOut.Cdrain, GREEN);
147 --
148 DEFINE
149 LinkOut_stoprise_PGfill := eGasP-RT3b1.stop | eGasP-RT3b2.stop;
150 LinkOut_stoprise_PGdrain := eGasP-RT3a1.stop | eGasP-RT3a2.stop |

eGasP-RT3a3.stop;
151 --
152 LinkOut_stopfall_PGfill := eGasP-RT1a.stop | eGasP-RT2a.stop | eGasP-RT4a.stop;
153 LinkOut_stopfall_PGdrain := eGasP-RT1b.stop | eGasP-RT2b.stop |

eGasP-RT4b.stop;
154 -- END MODULE main
155 ----------------END MAIN PROGRAM Click-JointwC-eGasP
156

Appendix C2

55

1 Wall-clock execution time: 2 hours 25 minutes
2 ##
3 system diameter: 143
4 reachable states: 851328 (2^19.6994) out of 1.08803e+025 (2^83.1699)
5 ##
6
7
8
9 *** This is NuSMV 2.5.4 (compiled on Fri Oct 28 14:15:02 UTC 2011)
10 *** Enabled addons are: compass
11 *** For more information on NuSMV see <http://nusmv.fbk.eu>
12 *** or email to <nusmv-users@list.fbk.eu>.
13 *** Please report bugs to <nusmv-users@fbk.eu>
14 *** Copyright (c) 2010, Fondazione Bruno Kessler
15 *** This version of NuSMV is linked to the CUDD library version 2.4.1
16 *** Copyright (c) 1995-2004, Regents of the University of Colorado
17 *** This version of NuSMV is linked to the MiniSat SAT solver.
18 *** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
19 *** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson
20 WARNING *** The model contains PROCESSes or ISAs. ***
21 WARNING *** The HRC hierarchy will not be usable. ***
22 -- specification AG semimodular IN thisJoint.buf_postfull is true
23 -- specification AG semimodular IN thisJoint.buf_postempty is true
24 -- specification AG semimodular IN thisJoint.Celt is true
25 -- specification AG !(set & reset) IN thisJoint.Celt is true
26 -- specification AG semimodular IN thisJoint.buf_postC is true
27 -- specification AG semimodular IN LinkIn.buf_postfill is true
28 -- specification AG semimodular IN LinkIn.buf_postdrain is true
29 -- specification AG semimodular IN LinkIn.xnor_gate is true
30 -- specification AG semimodular IN LinkIn.xor_gate is true
31 -- specification AG semimodular IN LinkIn.buf_FFreqtoFFreq is true
32 -- specification AG semimodular IN LinkIn.buf_FFreqtoreqnear is true
33 -- specification AG semimodular IN LinkIn.buf_FFreqtoreqfar is true
34 -- specification AG semimodular IN LinkIn.buf_FFacktoFFack is true
35 -- specification AG semimodular IN LinkIn.buf_FFacktoacknear is true
36 -- specification AG semimodular IN LinkIn.buf_FFacktoackfar is true
37 -- specification AG semimodular IN LinkOut.buf_postfill is true
38 -- specification AG semimodular IN LinkOut.C_fill is true
39 -- specification AG !(set & reset) IN LinkOut.C_fill is true
40 -- specification AG semimodular IN LinkOut.PG_fill is true
41 -- specification AG ((set & val) -> A [val U !set]) IN LinkOut.PG_fill is true
42 -- specification AG semimodular IN LinkOut.buf_postdrain is true
43 -- specification AG semimodular IN LinkOut.C_drain is true
44 -- specification AG !(set & reset) IN LinkOut.C_drain is true
45 -- specification AG semimodular IN LinkOut.PG_drain is true
46 -- specification AG ((set & val) -> A [val U !set]) IN LinkOut.PG_drain is true
47 -- specification AG !(inHI & inLO) IN LinkOut.driveHIkeepLO is true
48 -- specification AG !(inHI & inLO) IN LinkOut.driveLOkeepHI is true
49 -- specification AG noFight IN LinkOut.statewire is true
50 -- specification AG noFloat IN LinkOut.statewire is true
51 -- specification AG semimodular IN LinkOut.buf_swtokeepLO is true
52 -- specification AG semimodular IN LinkOut.buf_swtokeepHI is true
53 -- specification AG semimodular IN LinkOut.buf_swtoEMPTY is true
54 -- specification AG semimodular IN LinkOut.buf_swtoCfill is true
55 -- specification AG semimodular IN LinkOut.buf_swtoFULL is true
56 -- specification AG semimodular IN LinkOut.buf_swtoCdrain is true
57 -- specification AG semimodular IN ENVIn is true
58 -- specification AG (((!stop_rise & set) & !val) -> EX val) IN ENVIn is true
59 -- specification AG (((!stop_rise & set) & !val) -> EX !val) IN ENVIn is true
60 -- specification AG semimodular IN ENVOut is true
61 -- specification AG (((!stop_rise & set) & !val) -> EX val) IN ENVOut is true
62 -- specification AG (((!stop_rise & set) & !val) -> EX !val) IN ENVOut is true
63 -- specification AG (fill -> EF !fill) is true
64 -- specification AG (!fill -> EF fill) is true
65 -- specification AG (drain -> EF !drain) is true
66 -- specification AG (!drain -> EF drain) is true

Appendix C3

56

	Facilitating Mixed Self-Timed Circuits
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1590188720.pdf.Y1WuQ

