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Abstract

As a part of the overall program in the Grandy laboratory at Oregon Health & Sci-

ence University (OHSU), studying the underlying chemical biology of metham-

phetamine (Meth) addiction, this dissertation reports on the development of six 

new thyronamine analogs which were synthesized and assayed against trace amine 

associated receptor 1 (TAAR1), giving preliminary results consistent with the ana-

logs being inverse agonists. Due to highly variable TAAR1 expression levels in the 

assays, based on inter-assay response to control Meth stimulation as well as other 

possible factors, kinetic models were developed to qualitatively explain the assay 

results. The models set approximate limits on the analogs’ binding and disassocia-

tion rates relative to those of Meth. Analysis of the assays also provides more evi-

dence of TAAR1’s basal activity. Based on the models, the conversion rate of 

ligand-free inactive TAAR1 to ligand-free active TAAR1 is less than 6% of the 

binding rate of Meth to TAAR1. The models also suggest that the inverse agonists 

bind to the inactive ligand-free form of TAAR1 between 10 and 100 times faster 

than Meth binds to the inactive ligand-free form of TAAR1. Three of the new ana-

logs, G5-110s8, G5-112s5, and G5-114s5, bind to the ligand-free active form of 

TAAR1 faster than they bind to the inactive ligand-free form of TAAR1. The mod-

els do not suggest an upper limit on the binding rate of those 3 analogs to the 

ligand-free active form of TAAR1. A control assay lacking TAAR1 revealed an 

electrophysiological off-target effect caused by G5-109s8. Also, a novel synthetic 
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route was developed for ET-92, the lead compound for this project, which reduced 

the number of synthetic steps from 14 to 5 and improved the overall yield from 

15.3% to 18.3% (77.4 mg) with the hope that further improvements in yield are 

possible.
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CHAPTER 1 A New Approach for Treating Methamphetamine Addiction

For the past 30+ years, the paradigm of methamphetamine’s (Meth) mechanism 

of action (MOA)1 has been that it blocks the uptake of extracellular dopamine 

(DA) and interferes with the vesicular monoamine transporters (VMAT) causing 

an increase in intracellular (cytosol) DA. Once intracellular levels of DA are high 

enough, the DA gradient-dependent dopamine transporter (DAT) allows the DA to 

move out of the neuron. Meth effects the release of serotonin and norepinephrin in 

similar ways. Due to dopamine’s2,3 association with pleasure, particularly the 

anticipation of pleasure, the dopamine hypothesis of addiction has been the basis 

for trying to develop treatments for Meth addiction. There is a membrane-bounded 

receptor, the Trace Amine Associated Receptor 1 (TAAR1), which is activated by 

Meth, that is a new potential target for treating Meth addiction.4,5

1.1 Background on Trace Amine Associated Receptor 1 (TAAR1) 

A good review of the current TAAR1 literature was written by Gregory 

Miller.6 TAAR1 was discovered in 20014,7 and is a G-protein coupled receptor 

(GPCR) widely distributed throughout the body and is activated by a variety of 

substrates (FIGURE 1.1) including the neurotransmitter dopamine (DA); the biogenic 

trace amines: E-phenylethylamine (PEA), p-tyramine, octopamine, synephrine, and 
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Background on Trace Amine Associated Receptor 1 (TAAR1)

thyronamines. TAAR1 is also affected by exogenous drugs of abuse (FIGURE 1.1), 

such as: amphetamine, N-methamphetamine (Meth) and methylenedioxymethamphet-

amine (MDMA, AKA: Ecstasy).4 Of particular importance for this work, TAAR1 is 

co-expressed with the dopamine transporter (DAT) and the dopamine receptors as part 

of the dopaminergic system in the ventral tegmental area (VTA), which is a major 

part of the brain’s reward circuitry. As part of the dopaminergic system, TAAR1 is 

suspected to be involved in depression, addiction attention-deficit/hyperactivity disor-

der, Parkinson’s disease, schizophrenia,8 and anxiety.9-11 There is also evidence that 

links TAAR1 to fibromyalgia12 and B-cell pathologies (lymphomas).13 TAAR1 is 

largely expressed on intracellular membranes.4,6,8-11,14

FIGURE 1.1: TAAR1 agonists.

FIGURE 1.2 shows the sequence of the TAAR1 signaling pathway starting 

with Meth binding to the TAAR1- GDs/GE/J complex (1). Once activated by Meth, 

TAAR1 stimulates GDs to exchange GDP15,16 for GTP (2). The TAAR1- GDs/GE/J 

complex disassociates, and GDs binds to adenylyl cyclase (3). At this stage, the   

GE/J subunit could modulate the activity of effectors (enzymes, ion channels, etc). 
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Background on Trace Amine Associated Receptor 1 (TAAR1)

In step 4, adenylyl cyclase converts ATP to cAMP. From that point, signaling pro-

ceeds through the cAMP/ protein kinase A (PKA)/cAMP response element bind-

ing protein (CREB) pathway.10 Also, activated TAAR1 signals through the protein 

kinase C (PKC)/Ca+2/nuclear factor of activated T-cells (NFAT) pathway.10 The 

literature clearly indicates a connection between TAAR1 and the NFAT pathway, 

however the precise mechanism by which they are connected was not proposed. 

One possible way for them to be connected is through a Ca+2 cyclic nucleotide-

gated ion channel (CNG). Both the CREB and NFAT pathways lead to the block-

ing of monoamine uptake.

There is evidence that TAAR1 tonically activates inwardly rectifying K+ chan-

nels, presumably by Kir3-type K+ channels via activated GE/J. TAAR1 inhibition 

increases affinity of dopamine to the D2-receptor (D2R) and reduces the desensiti-

zation rate of D2R.11 Furthermore, TAAR1-D2R heterodimers have been 

observed.14 Early work with the thyronamine family of compounds, including 

their analogs developed by Dr. Edwin Tan,17,18 implicated TAAR1 in the thermo-

regulatory processes, but that has since been challenged.10,19 Basal (constitutive) 

or tonic activity of TAAR1 has been hypothesized9,11 and research in this area is 

on going. 
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Background on Trace Amine Associated Receptor 1 (TAAR1)
FIGURE 1.2: The known signaling pathway of TAAR1. (1) System at rest until Meth binds to TAAR1. (2) 
Activated TAAR1 stimulates GDs to exchange GDP for GTP. GDP is then recycled into GTP by nucleoside 
diphosphate kinase. The literature has little information about other effects this GDP might have. (3) The 
TAAR1-GDs/GE/J complex disassociates and GDs binds to adenylyl cyclase (AC). (4) AC converts ATP to 
cAMP. It is then possible that cAMP activates the PKC/NFAT regulatory pathway via a calcium ion cyclic 
nucleotide-gated ion channel. cAMP also activates the CREB regulatory pathway via PKA. Additionally, the 
cAMP produced by the TAAR1 pathway may affect other pathways. Also, TAAR1 releases the Meth 
(shown in step 4 but could happen in step 3). (5) GDs disassociates from AC, and GTP is hydrolyzed to GDP. 
The system is now ready to reset. Original artwork by Troy Wahl. 
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Methamphetamine
FIGURE 1.3: Structures of ATP, cAMP, GTP and GDP.

1.2 Methamphetamine

Methamphetamine (Meth), FIGURE 1.1, is a psychostimulant that effects the 

Dopamine Transporter (DAT), Norepinephrine Transporter (NET), Serotonin 

Transporter (SERT), Vesicular Monoamine Transporters (VMAT)20,21 and 

TAAR1.4 By inhibiting VMAT, Meth causes DA to accumulate in the cytosol until 

the concentration of DA is high enough that gradient dependent DAT allows a net 

flow of DA out of the neuron and into the synaptic cleft. In the parlance of chemi-

cal biology, Meth blocks the re-uptake of neurotransmitters and thus elevates sig-

naling. Meth affects norepinephrine and serotonin in a similar manner as DA.

Dopamine3 is part of the reward system and is associated with pleasant or 

excited feelings, which in part, is why it is implicated in addiction. DA is consid-

ered to modulate prediction error,2 which is the difference between an expected 

outcome and the actual outcome of an event. When an expectation is met, dopa-

mine levels increase, reinforcing the expectation/lesson, otherwise dopamine lev-

els drop. DA, also, is associated with seeking behaviors.22-27 In general, 

medications that increase DA in the synaptic cleft, such as amphetamine and meth-
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ylphenidate,28 are effective attention deficit hyperactive disorder (ADHD) medica-

tions. Finally, DA is associated with agitation and anxiety (worry/anxiety can be 

described, in part, as the expectation of negative or undesirable outcomes).29

Norepinephrine30 is part of the fight-or-flight response (adrenergic system) and 

increases heart rate, blood pressure and the release of glucose into the blood. Nor-

epinephrine is also involved in attention, wakefulness (arousal) and alertness. Ato-

moxetine (Strattera)31 is a selective norepinephrine reuptake inhibitor (4 nM Ki) 

prescribed to treat ADHD, it is also weak serotonin reuptake inhibitor (77 nM Ki). 

Both epinephrine (adrenaline) and norepinephrine are associated with the panic 

symptoms of anxiety. 

Serotonin32 is involved in mood regulation with low levels being associated 

with depression. Extremely high levels of serotonin results in serotonin syn-

drome,33 which is potentially fatal.

Overall Meth, like all the amphetamines, increases alertness, wakefulness, and 

attention (particularly to repetitive tasks) but decreases appetite and is a euphoric. 

Side-effects include addiction, high blood pressure, irritability, aggression, hyper-

thermia and anxiety-like symptoms (especially paranoia and obsessive-compulsive 

disorder). Due to its benefits, Meth might appeal to those seeking to reduce stress 

due to fatigue, those with excessive time demands (long work hours or multiple 
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jobs or overbooked social commitments), excessive deadlines, who need to focus 

on highly repetitive tasks, who are bored, depression or who perceive the needed 

to get a competitive edge over others. 

1.3 Justification for targeting TAAR1

TAAR1 was chosen as the target receptor for treating methamphetamine 

(Meth) addiction because TAAR1 is activated by Meth in a dose (concentration * 

1.5 minutes * 4±1 mL/minute) dependent manner (FIGURE 1.4A). In an experi-

ment with an oocyte that was not injected with hTAAR1 encoding RNA, Meth 

caused a drop in transmembrane conductance (FIGURE 1.4B, red shaded region). 

While this small drop in transmembrane conductance, which has been observed 

only once, needs to be verified before considered as solid evidence for an new 

Meth target, it is clearly different than the response to Meth when TAAR1 is pres-

ent. Also, in vivo mouse studies, FIGURE 1.6, show how the dose-dependent inhi-

bition of TAAR1 by ET-9217 and EPPTB34 (FIGURE 1.5) reduces Meth 

stimulated locomotion. These results represent the strongest type of justification 

for a medicinal chemistry project, namely a desired phenotypical response (block-

ing the effects of Meth) due to the action of a known molecular target (TAAR1).
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FIGURE 1.4: A) Two electrode voltage clamp (TEVC) methamphetamine dose (concentration * 1.5 minutes 
* 4±1 mL/minute) response from Xenopus Laevis frog oocyte injected with hTAAR1 and hCFTR encoding 
RNA (n=1). The doses, indicated on the graph, of Meth in Frog Ringer’s solution (red bars) were pulsed for 
1.5 minutes. At all other times the oocyte was washed with Frog Ringer’s solution. The experiment (n=1) 
was done by Dr. Yohei Noramatsu, OHSU. The red line is an approximate baseline. B) TEVC Meth response 
in an oocyte injected with hCFTR encoding RNA. Meth (10 µM, red region) in Frog Ringer’s solution was 
pulsed for 1.5 minutes followed by washing with Frog Ringer’s solution (n=1). The horizontal lines are 
visual aids.

In FIGURE 1.4, the two electrode voltage clamp (TEVC) results are shown 

from dosing frog oocytes injected with hTAAR1 and hCFTR encoding RNA (FIG-

URE 1.4A) or just hCFTR encoding RNA (FIGURE 1.4B) with Meth, both with 

n=1. CFTR (cystic fibrosis transmembrane conductance regulator)35 is a chloride 

channel that is activated by cAMP. By pairing TAAR1, whose activation results in 

increased cAMP production, and CFTR in an oocyte, a biological circuit is made 

for assaying the activity of TAAR1 via monitoring the oocytes transmembrane 

conductance. An oocyte just injected with hCFTR encoding RNA served as the 

control experiment. In the absence of TAAR1, Meth caused a drop in transmem-

brane conductance in this single run. It is unlikely that the drop was caused by the 

effects of Meth on any of the dopamine, norepinephrine, serotonin receptors or 

transporters as the oocytes do not express them. The drop in transmembrane con-
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ductance might involve a hitherto unknown target of Meth as a literature survey 

has not revealed any such reports. Confirmation of this result will be needed.

FIGURE 1.5: Structures of EPPTB and ET-92 (racemic)

The in vivo results for ET-92, FIGURE 1.6A-C, were known at the start of the 

project but those of EPPTB, FIGURE 1.7D-F, were not as EPPTB was still fairly 

new.11 Both of these compounds, which were designed to be TAAR1 antagonists, 

reduce Meth stimulated locomotion in mice in a dose-dependent manner thus vali-

dating that TAAR1 plays a significant role in Meth signaling and potentially a tar-

get for treating Meth addiction. Meth self-administration experiments with EPPTB 

or ET-92 treatments have yet to be done. Such experiments would demonstrate 

whether or not TAAR1 antagonists modulate the motivation to acquire or self-

administer Meth. However, their lack does not diminish the potential of treating 

Meth addiction by targeting TAAR1 as self-administration experiments, and other 

animal model testing, are usually done fairly late in pre-clinical development. Ani-

mal efficacy testing late in the project development may seem counter-intuitive but 

the expense of animal testing is great enough that a viable drug-candidate (potent, 

bioavailable, low toxicity, etc.) is desired before proceeding to test efficacy.
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FIGURE 1.6: Mouse in vivo studies of the effects of ET-92 (A-C) or EPPTB (D-F) in reducing Meth 
stimulated locomotion. From these studies it is clear that both ET-92 and EPPTB inhibit Meth stimulated 
locomotion in a dose-dependent manner. The thick lines are cubic polynomial least-squares models of the 
data, with the exception of the model for the acclimation data which is a linear least-squares model. The 
shaded regions are the model lines’ 95% confidence intervals for their respected model. The modeling 
provides a very quick check for statistical difference - the less overlap between the confidence intervals, the 
greater the probability that the data sets are statistically different. In all cases, the vehicle was DMSO. Data 
was provided by Madeline Grandy, Ashley Kimbell, and Katie Tallman and the statistical modeling was 
done by Troy Wahl.36
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1.4 Overview of Current TAAR1 Medicinal Chemistry

TAAR1 binds a variety of biogenic trace amines, as have been previously 

listed (FIGURE 1.1),5,6 it also binds a wide range of synthetic analogs of 

phenethylamine (PEA), some of which are shown in FIGURE 1.7. However 

Simmler20 reported that cathinones (E-keto amphetamines, FIGURE 1.8) have 

poor binding affinities to TAAR1. Guanabenz, FIGURE 1.9, an antihypertensive D2-

adrenergic agonist is also a highly potent TAAR1 agonist.14 The first synthetic TAAR1 

ligands were those of Tan17 and are analogs of thyronamine, FIGURE 1.10. The prob-

lem with all of these compounds, as indicated in the above citations, is that they lack 

TAAR1 specificity, except perhaps the thyronamines. The lack of specificity is not nec-

essarily a problem for a drug so long as side-effects are minimal. However, the lack of 

specificity becomes a major problem for the development of tool kits to study TAAR1 

in vivo because side-effects can confound the interpretation of experimental results.

FIGURE 1.7: Racemic mixtures of some phenethylamine (PEA) analogs that bind to TAAR1.

FIGURE 1.8: Racemic mixtures of some cathinone analogs.
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FIGURE 1.9: Guanabenz

FIGURE 1.10: Analogs of thyronamine. ET-13 is a TAAR1 agonist, while ET-92 is an antagonist. ET-13 and 
ET-92 are racemic mixtures. 

Currently, the only documented TAAR1 specific compounds are from Hoff-

mann-LaRoche, FIGURE 1.11. These compounds range from antagonist, EPPTB, 

to partial agonists, RO5203648, and full agonists, RO5073012 and 

RO5166017.9,10,34,37 Selectivity of these compounds were determined by screen-

ing against over 100 receptors, ion channels, transporters and enzymes, with the 

most problematic off-target being the D2-adrenergic receptor. In the course of 

developing these compounds Hoffmann-LaRoche created an extensive patent 

library,8,34,38-56 which greatly restricts the development of new compounds target-

ing TAAR1.

FIGURE 1.11: TAAR1-specific compounds from Hoffmann-LaRoche.
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As seen in FIGURE 4.6, ET-92 is more efficacious in vivo in mice than EPPTB 

by a molar ratio greater than 10.7:1, which made it an attractive lead for further 

development. Furthermore, Oregon Health & Science University (OHSU) owns 

the patent on the thyronamine family,57 and there is substantial room for further 

SAR (structure-activity-relationship) development in Tan’s work.17 At the outset 

of the project, the thyronamines, ET-92 in particular, had 3 liabilities: poor drug-

like properties (high lipophilicity, poor solubility and a hydroquinone core, which 

has known toxicity issues), thermoregulatory side-effects and a lengthy synthetic 

route.



14

CHAPTER 2 New ET-92 Synthesis

2.1 Cost-effective synthetic route to ET-92 and its analogs

The original synthesis of ET-92,17 FIGURE 2.1, is fourteen steps starting from 

2,5-dihydroxybenzaldehyde with an overall yield of 15.3%, and involves multiple 

protecting groups with steps 4 ĺ 5 and 9 ĺ 10 taking up to 7 days each to com-

plete. In order to develop ET-92, or closely related analogs, into an FDA approved 

drug, large batches of cGMP grade material would need to be produced. Based on 

an old estimate of $10,000 per day58 in a process plant for facility charges, that 

might not include the costs of setting-up or clean-up, original ET-92 synthesis 

would be expensive (minimum facility charges: $150K - $410K) even before the 

cost of reagents and waste disposal are considered. Finally, the length of the syn-

thesis would make rapid develop of ET-92 analogs difficult. For these reasons, a 

new cost-effective synthetic route was developed, FIGURE 2.2.
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FIGURE 2.1: The original ET-92 synthetic route17 starting with 2,5-dihydroxybenzaldehyde (1) or with the 
alternative starting material, methyl 2,5-dihydroxybenzoate (D1), involves fourteen steps from 1 with an 
overall yield of 15.3%.
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FIGURE 2.2: The new synthetic route to ET-92. Most steps are complete in less than 4 hours and are in high 
yield. Further optimization of 14 ĺ 15 and 17 ĺ ET-92 is needed as well as improved purification (likely 
via distillation).

A new 5 step synthetic route was developed for ET-92 starting with the alkyla-

tion of 5-bromosalicylaldehyde, 13 ĺ 14, which is quantitatively complete within 

4 hours and resulting in a 97.3% isolated yield. In order to produce a publication 

quality NMR, 14 was vacuum distilled (46 mTorr, bp 104-130 °C at 46 mTorr, 

85.6% total yield). However, distillation at this step is not necessary as the crude 

product is pure enough to use in the next reaction.

FIGURE 2.3: The Miyaura boration reaction did not work with this substrate.
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2.4), a traditional boronic acid synthesis followed by Cham-Lam reaction (FIG-

URE 2.4) and finally the modified Ullmann reaction (14 ĺ 15 in FIGURE 2.2). 

The use of copper catalyzed reactions (Chan-Lam and Ullmann) was preferred to 

palladium catalyzed reactions (Miyaura and Buchwald-Hartwig) for economic rea-

sons, copper catalysts being much less expensive than palladium ones. If the 

Miyaura boration had worked, then there was the possibility of immediately fol-

lowing it with a Buchwald-Hartwig reaction to synthesis 15 in a one-pot reaction. 

It was for that reason that the Miyaura boration reaction was tried first. The 

Miyaura boration also served as an indicator for other palladium catalyzed reac-

tions, failure of this reaction lead to the conclusion not to pursue other palladium 

catalyzed reactions. Although the Miyauara boration is known to work with 5-

bromo-2-(methoxymethoxy)benzoic acid,63 5-bromo-2-(methoxymethoxy)benzal-

dehyde67 and 5-bromosalicylaldehyde under microwave reaction conditions,68 it 

produced no detectable product using 14 and PdCl2(dppf)·DCM as the catalyst. 

In the more traditional boronic acid synthesis (19 ĺ 20 in FIGURE 2.4) two 

issues were encountered: the acetal (19) appears to coordinate water, which in turn 

hydrolyzes the acetal over time; also, the boronic acid tended to form mixed anhy-

drides which did not react well in the Chan-Lam step. This is a stark contrast to the 

results achieved in previous work at Celera Genomics with 2-benzyloxy-3-bromo-

benzaldehyde. 
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FIGURE 2.4: A traditional boronic acid synthesis followed by a Chan-Lam reaction to make 15. Although 
this route did work, yields of the boronic acid, 20, were very inconsistent.

With poor results through the Chan-Lam route, it was decided to try the modi-

fied Ullmann ether synthesis (14 ĺ 15 in FIGURE 2.2).69,70 Although the Ull-

mann ether synthesis is air sensitive like the Buchwald-Hartwig reaction, the 

reagents are less expensive and are easy to remove during the work-up. After an 

initial screen of ligands (2,2’-bipyridine, phenanthroline, N,N-dimethylglycine, 

N,N,N’,N’-tetramethylethane-1,2-diamine, and tributylphosphine) and anhydrous 

solvents (DMF, DMSO, and dioxane), qualitatively TLC spot intensity indicated 

that phenanthroline in either DMF or DMSO worked best. It was also found that 

all combinations of solvent and ligands worked to some extent except for tributyl-

phosphine and N,N-dimethylglycine in dioxane. Further screening found that a 1:1 

ratio of phenanthroline to CuI produced the same result as the literature standard 

ratio of 2:1. Also, the use K3PO4 instead of K2CO3 decreased reaction yields. 

Among the conditions tested the highest yield occurred with two equivalents of 

CuI and phenanthroline and 4 equivalents of phenol slowly added to the reaction. 

The addition of KI to the reaction results in a modest improvement of the yield. In 

the final reaction toluene, about 10% total volume, was added to azeotrope off any 
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water present. That addition clearly does not reduce the reaction yield, but it is 

unclear whether or not it improves. As phenanthroline monohydrate was initially 

used successfully, this reaction is tolerant of some water. The major side-product 

of this reaction is 2-(hexyloxy)benzaldehyde, which co-elutes with 15 on silica and 

must be removed before continuing the synthesis. As 15 is a liquid, vacuum distil-

lation would be a inexpensive purification method. Due to the high viscosity and 

expected boiling point of 15, multistage vacuum falling film distillation71 would 

be a good technique to use as it would reduce the hold-up. Since 15 was prepared 

on a small and micro-scale vacuum distillation equipment was not available, 15 

was purified by C-18 rpHPLC.

While working on the reaction of 14 to 15, several experiments lead to notable 

observations. Acetonitrile does work as a reaction solvent, though poorly (<25% 

yield), and yields large amounts of an orange powder that could be nano-copper 

particles, since the powder dissolved in aqueous HCl producing a blue-green solu-

tion that was visually similar to solutions of CuCl2. Also, Cu(OAc)2, instead of 

CuI works, but very poorly (<10% yield); however the addition of KI greatly 

improves the reaction yield. Conventional wisdom holds that the Ullmann reaction 

proceeds by oxidative addition of Cu+1 to the arylhalide resulting in a Cu+3 species 

or by transmetallization with Cu+2, however neither of these explain why 

Cu(OAc)2 works (Cu+4 is unknown and there were no other metal species present 
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for Cu+2 to transmetalate with). One possible explanation is ı-bond metathesis,72 

which was an unknown reaction when most of the mechanistic research was done 

on the Ullmann reaction. The improved yield upon addition of KI to Cu(OAc)2 

reaction mixture, is most probably due to a redox reaction:

(EQ 2.1)

The Grignard reaction, 15 ĺ 16, FIGURE 2.2, is very clean and straight for-

ward. A chiral variation has been reported by Fan73 which if followed by a Mitsu-

nobo with HCN could produce chiral ET-92 (FIGURE 2.5). However, these 

reactions were not pursued due to a desire to first develop an achiral ET-92 synthe-

sis then use that route to develop new thyronamine analogs.

FIGURE 2.5: A possible route to chiral ET-92. 

The nitrilation of 16, FIGURE 2.2, has been attempted with pTosCl and thionyl 

chloride followed by KCN before settling on the TMSCN/InBr3 catalyzed reac-

tion.74 When the test reaction 23 ĺ 24 (FIGURE 2.6) was purified by basic alu-

mina chromatography eluting with hexanes and EtOAc, which removed the sole 

major by-product, 4-bromo-2-((hexyloxy)-(phenyl)methyl)phenol, 1H-NMR of 24 

in DMSO-d6 revealed that the proton next to the nitrile has a chemical shift of 5.78 
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ppm which previously had been mistaken as residual DCM (5.76 ppm) due the use 

of house vacuum and the inability to completely remove solvents from samples. 

Armed with that information, samples of 17 made with pTosCl and thionyl chlo-

ride were repurified on basic alumina, confirming that those reactions had also 

worked but were not as pure nor as high yielding as the TMSCN/InBr3 catalyzed 

reaction. Another advantage of the TMSCN/InBr3 reaction is that it is so fast that it 

might be complete within seconds of mixing the reagents, thus allowing for the 

reaction to be done in a continuous flow reactor with an inline basic alumina plug 

filtration, and significant cost savings.

FIGURE 2.6: Nitrilation reaction confirmed the feasibility of the new ET-92 route. This reaction is complete 
in less than 30 minutes, possibly seconds, with only one major side product: 4-bromo-2-((hexyloxy)-
(phenyl)methyl)phenol at 16%.

The reduction of 17 to ET-92 proved to be problematic, with the highest yield 

to date being 53.9% using BH3·DMS in refluxing THF overnight.75 When the hard 

reducing agents (LiAlH4 and Dibal-H) were used, the yields are very low (~10%) 

with large amounts of side-products. Reduction with Pd/C had no effect.

In summery, a novel synthetic route was developed for ET-92, the lead com-

pound for this project, which reduced the number of synthetic steps from 14 to 5 
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and improved the overall yield from 15.3% to 18.3% (77.4 mg). Although this was 

not a production this sets the table for future scale-up work.
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CHAPTER 3 New ET-92 Analogs

With the working hypothesis that TAAR1 activation by Meth is significantly 

responsible for desirable characteristics of Meth intoxication, the development of 

TAAR1 inverse agonists (basal inhibitors) as treatments for Meth addiction may 

not be possible, since they could push the Meth user further away from how they 

want to feel. However, the development of selective TAAR1 antagonists are 

needed to pharmacologically determine the role of TAAR1-mediated signaling in 

vitro and in vivo. In future work, the development of partial or fully agonists could 

provide effective treatments.

3.1 Initial attempts to synthesize new analogs

Once the new ET-92 synthetic route had been developed, ET-92 analogs were 

postulated that had greater water solubility and further explored the structure-

activity-relationships (SAR) of the thyronamine family. Thus, the synthesis of 

compounds 1-2 (FIGURE 3.1) was begun.

FIGURE 3.1: First new analog targets to be synthesized.
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To make compounds 1 and 2, the Ullmann reaction between 3 and either meta- 

or para-nitrophenol was attempted, FIGURE 3.2. Unfortunately, the reactions did 

not produce a detected amounts of product, probably due to increased acidity of 

para- and meta-nitrophenol (pka 7.12 and 8.36 respectfully) compared to 4-fluoro-

phenol (pka 9.81) and phenol (pka 10.02). Ullmann reaction works best with 

amines, then amides and finally alcohols but not at all with carboxylic acids.69 In 

other words, reaction yields decrease as acidity of the nucleophile increases. After 

several attempts with no evidence of the desired products, compounds 1 and 2 

were triaged to low priority. 

FIGURE 3.2: The first step in synthesizing compounds 1 and 2.

3.2 Change in strategy and targets

Due to the synthetic difficulties outlined above, and the desire to have target 

compounds with improved water solubility, syntheses of the molecules depicted in 

FIGURE 3.3 were pursued next. Although the 4-aminophenol76 core of 6 - 14 may 

have similar toxicity issues to the hydroquinone77 core of 1, 2, and ET-92, it 

allows one to develop different chemistries to explore the SAR.
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FIGURE 3.3: New targets and ET-92

Starting with 5-nitrosalicylic acid, 15, the synthesis proceeded smoothly 

through three steps, FIGURE 3.4. An attempt to couple 4-pyridylboronic acid and 

17 under Chan-Lam conditions did not work, but that was not especially surprising 

as pyridylboronic acids are known to be difficult coupling partners. Yields on the 

Chan-Lam reactions, 19a-c, were ~35-42% while the reductive aminations, 18a-d 

and 32, were ~53 - 61%. In going from 16 to 17, acetic acid was added to the reac-

tion mixture to promote hydrogen transfer in the aprotic ethyl acetate and to pre-

vent the amine from chelating the palladium, which can be an issue. Later work 

demonstrated that addition of acid was not needed during the hydrogenation. 
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FIGURE 3.4: The first steps towards the new analogs.

Reduction of the esters to aldehydes followed, and, although showing promise, 

only resulted in ~10% yields by 1H-NMR, FIGURE 3.5. The Et2NH, LiAlH4 and 

hexanes were premixed, then the ester was added.78 Since no benzyl alcohols nor 

carboxylic acids were detected by 1H-NMR, there was simply not enough reducing 

agent present to drive the reaction to completion. The aniline amine may have also 

reacted with some of the reducing agent, limiting the effectiveness of the reaction. 

With more development this reaction could prove useful, however further develop-

ment was set aside. 

FIGURE 3.5: Reduction of ester to aldehyde.
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3.3 Another strategy change

Since the reduction of the esters did not immediately result in high yields of the 

corresponding aldehydes, the synthetic route was once again changed. The plan 

became to form a tertiary amide then convert the amide to a ketone by reacting it 

with a Grignard reagent.

Starting with 5-nitrosalicylic acid and pyrrolidine, the amide (22) was formed 

with the use of either EDCI, DCC, or DCC and HOBT·H2O, FIGURE 3.6. In all 

cases, the yields were highly variable (~20 - 91% by mass) with no obvious reason 

for the differences. A survey of SciFinder results for amide formation with various 

salicylic acids revealed a similar range of yields. Although the use of HOBT pro-

duced the highest yield, the product contained impurities that were difficult to 

remove. The rest of the sequence to 24 is straightforward.

FIGURE 3.6: Synthesis of a key intermediate.

As before, the amine of 24 was functionalized through either reductive amina-

tion or the Chan-Lam reaction, FIGURE 3.7. When the Grignard reaction of 25a, 

FIGURE 3.8, was attempted, nothing happened despite using 5 equivalents of 

phenylmagnesiumbromide. The large amount of Grignard reagent was sufficient to 
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react with the residual water in the THF, deprotonate the amine, and yet leave 

enough to react with the amide. The amide’s lack of reactivity maybe the result of 

steric hindrance, as 1H-NMR reveals that the pyrroldinamide exists as a rotamer 

with the pyrrolidine ring askew, but not perpendicular, to the central phenyl as evi-

denced by the ~0.32 ppm 1H-NMR shift difference between the methylene protons 

on either side of the pyrrolidine’s nitrogen. However, one might think that with the 

amide being co-planar with the adjacent phenyl ring that the Grignard reagent 

would have a clear path for a facial attack on the amide.

FIGURE 3.7: Functionalizing the amine.

FIGURE 3.8: A failed Grignard reaction.
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3.4 Final attempt to synthesize 6 - 14

FIGURE 3.9: The final synthesizes of thyronamine analogs.

Upon acquiring 5-nitrosalicylaldehyde, 15, the final synthesis, shown in FIG-

URE 3.9, was started. The reaction sequence worked well except for the last step. 

The nitrilation reaction might not have worked well due to the amine in 32a-c 

forming a salt with cyanide or the amine forming a complex with indium. There 

was 1H-NMR evidence that some TMS ether of 32a-c formed, indicating that 

extraneous water was probably not the cause of the poor yield. In the future, one 

might attempt to form the nitrile by reacting 32a-c with either p-toslyl chloride or 

thionyl chloride followed by displacement with KCN. An attempt to methylate the 

amine had been made after the Chan-Lam reaction, 31, but was unsuccessful. Not 

shown in FIGURE 3.9, was the unsuccessful attempt to reductively aminate 30 

with various aldehydes, which was not considered significant since the equivalent 

products could be made in the future with the appropriate benzyl halides. 
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At this point, it was decided to assay G5-109s8 through G5-114s5 in oocytes 

injected with hTAAR1 and hCFTR encoding RNA. Although these compounds 

were synthesized as intermediates to 6, 7, 8, 12, 13, and 14, they comprise interest-

ing SAR in their own right. (S)-sulpiride (FIGURE 3.10, a D2 and D3 receptor 

antagonist approved in several countries outside the USA for use as an antipsy-

chotic) was considered a template molecule during the original TAAR1 ligand 

development project,17 however the only compounds synthesized in that project 

that contained an amide group were analogs of ET-10, so G5-109s8 through G5-

114s5 explore a gap in the TAAR1 SAR. Also, G5-109s8 through G5-114s5 con-

tain similar peripheral SAR as ET-92: the consistent 2-hexyl ether; and the vari-

able SAR aromatic group at the 5 position, as well as a rigid cyclic functional 

group one carbon off the 1 position of the core phenyl ring.
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FIGURE 3.10: SAR comparison between (S)-sulpiride (a D2 and D3 receptor antagonist), ET-10 (a TAAR1 
agonist), ET-92 and G5-109s8 through G5-114s5. Although (S)-sulpiride was considered a template 
molecule during the original TAAR1 ligand development project,17 analogs of ET-10 were the only one 
made that contained amides. G5-109s8 has the same 1, 2, 5 substitution pattern as (S)-sulpiride and ET-92. 
It also similar peripheral SAR as ET-92: the hexyl ether; fluorinated aromatic; and rigid third cyclic 
functional group, pyrrolidine instead of the phenyl ring of ET-92. Thus, even though G5-109s8 was 
synthesized as an intermediate to 24, it has SAR worth testing in its own right. 
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CHAPTER 4 Biological Results

The compounds shown in FIGURE 4.1 were evaluated for TAAR1 activity by 

monitoring the transmembrane conductance of Xenopus Laevis (frog) oocytes 

injected with hTAAR1 and hCFTR35 encoding RNA or just hCFTR encoding 

RNA as the control via two electrode voltage clamp (TEVC). The oocytes were 

harvested and prepared by Dr. Yohei Norimatsu according to the procedure in 

Chapter 7.2. As stated in Chapter 1.1, a downstream effect of TAAR1 activation is 

increased production of cAMP, where as CFTR is activated by cAMP and upon 

activation increases the transmembrane conductance by allowing chloride ions to 

cross the cell’s plasma membrane. Thus an oocyte expressing both TAAR1 and 

CFTR acts as a biological circuit for measuring the activity of TAAR1.

FIGURE 4.1: Compounds tested

These compounds could be evaluated by fluorescent cellular assays sensitive 
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quality of results from this type of cellular assay depend on the accuracy and con-

sistency of one’s pipetting, and the stability of the cell line. Other draw backs of 

this technique are that it only provides one type of data (cAMP concentrations) and 

the fact that the project is to treat human Meth addiction not mouse Meth addic-

tion. The fluorescent assays have the advantage of being well suited for high-

through-put screening, especially if one has access to robotic pipetting systems.

Although highly automated TEVC systems exist, including machines that 

inject oocytes, the system used for this work was manual with computerized data 

collection, please see Chapter 7.2.3 for more details. Also, the oocytes were manu-

ally injected, Chapter 7.2.2. The advantages of TEVC are that the oocytes are pre-

pared weekly, eliminating potential cell-line stability problems though expression 

levels can still be an issue; both transmembrane conductance and potential can be 

monitored independent of what causes the changes. Finally, TEVC allows one to 

conduct many different variations of steady-state or time-dependent response 

experiments. Also, by monitoring transmembrane conductance and potential, 

TEVC allows one to detect off-target effects mechanistically unrelated to cAMP 

levels, a significant advantage over cAMP fluorescent assays, which only assay 

cAMP concentrations.

4.1 The experiments

All assays were preformed once as first pass activity screens.
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For all oocytes injected with both hTAAR1 and hCFTR encoding RNA, 10 

times more hTAAR1 cRNA, by mass, was injected into the oocytes than hCFTR 

cRNA. This was a deliberate attempt to observe basal activity of TAAR1, as the 

unperturbed transmembrane conductance of the oocyte would increase as the 

expression of TAAR1 increased if TAAR1 had basal activity.

FIGURE 4.2: (A) Dose (concentration * 1.5 minutes * 4 ± 1 mL/minute) response testing of Meth in oocytes 
injected with hTAAR and hCFTR cRNA. The dose, indicated by the labeled red regions, was perfused for 
1.5 minutes followed by perfusing with Frog Ringer’s solution until the next dose (n=1). The red line is an 
approximate baseline. (B) Dose response curve for (A). The experiment was performed by Dr. Yohei 
Norimatsu, who provided the data to the author. 

The Meth dose (concentration * 1.5 minutes * 4 ±1 mL/minute) response 

experiment in FIGURE 4.2 was performed by Dr. Yohei Norimatsu, using an 

oocyte injected with hTAAR1 and hCFTR encoding RNA, and using 1 µM, 5 µM, 

10 µM, 50 µM, 100 µM and 200 µM Meth in FR pulses (red shaded regions) fol-

lowed by washing with FR. Integration of the area under the curves show that the 

10 µM Meth peak has an area of ~18% of the 200 µM Meth peak and the 100 µM 

Meth peak is about equal to the 200 µM Meth peak. The EC50 for Meth in this 

experiment is ~50 µM Meth. The choice to go with Dr. Norimatsu’s recommenda-
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tion of using 10 µM Meth for the compound assays was made prior to analyzing 

this data.

A 100 mM stock solution of each test compound, in DMSO, was made, and 

then used to make the test solutions.

With the exception of the first and last compound assay (FIGURE 4.4 and 

4.6(1), respectfully), all assays followed a head-to-head competition assay para-

digm where a 1.5 minute pulse of 10 µM Meth in Frog Ringer’s solution (FR) was 

perfused over an oocyte, injected with hTAAR1 and hCFTR encoding RNA, fol-

lowed by a wash-out period with FR. After the initial Meth pulse and wash-out, a 

series of 1.5 minute pulse of 10 µM Meth and test compound (1 nM to 10 µM) in 

FR was followed by FR wash-out cycles were preformed. At the end of each 

experiment, a 1.5 minute pulse of 10 µM forskolin79 and 10 µM of the test com-

pound in FR followed by a FR wash-out period. The wash-out periods lasted 

between 15 and 25 minutes (long enough for the conductance to stabilize). The 

application of forskolin and test compound at the end of the experiments served as 

a control to demonstrate that the test compound was not blocking either CFTR or 

adenylyl cyclase. Although some may criticize these experiments because they did 

not follow the common practice of pretreating with the test compound followed by 

agonist, the shape of the response curves provide kinetic information. These head-
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to-head competition experiments were designed by analogy to stopped-flow chem-

ical kinetics experiments.80

FIGURE 4.3: Structure of Forskolin.

In the first assay, FIGURE 4.4, an oocyte injected with hTAAR1 and hCFTR 

encoding RNA was used. The Meth pulses were 1.5 minutes long and at 100 µM 

concentration in FR. Each Meth pulse was followed by a 15 minute FR wash-out 

period. After the second pulse of Meth, 20 µM G5-109s8 in FR was applied imme-

diately followed by a Meth pulse. No forskolin control was done in this experi-

ment.

For the last assay, FIGURE 4.6(1), an oocyte injected with hCFTR encoding 

RNA was used. Between each pulse of testing solution, the oocyte was washed 

with FR. The 1.5 minute pulses used were: 5 µM forskolin, 10 µM G5-109s8, 10 

µM Meth, and a combination of 5 µM forskolin and 10 µM G5-109s8. All of these 

solutions were made using FR.

The TEVC used in these experiments required that the siphon from the solu-

tion reservoirs to the recording chamber to be manually pinched closed before it 

was transferred between reservoirs. The manual transfer had the potential to create 

HO
OO

H

OH O

OH

O

Forskolin
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air bubbles in the siphon (uncertainty in the volume of solution applied) and timing 

uncertainty leading to errors estimated at ±10%. Both of those issues could be 

reduced or eliminated through the use of an automated multi-valved perfusion sys-

tem, such as the Octaflow II™ from ALA Scientific Instruments.81 Another source 

of error in the analysis of these experiments was the need to estimate the observed 

peaks’ baselines before integrating their areas, which is a subjective process. The 

final concern with these assays was the variability of expression levels of hTAAR1 

and hCFTR in the oocytes. The variability could be due to variance in cRNA injec-

tion volumes. Since these experiments were intended to be initial compound activ-

ity screens and concerns of measurement uncertainties, the results will be 

discussed qualitatively.

4.2 Results

4.2.1 Testing G5-109s8

Of the compounds to be tested, G5-109s8 was the purest by 1H-NMR, which is 

why it was the most heavily tested in the limited time available. Also, being an oil, 

it dissolved into DMSO faster than the other test compounds, and thus it was the 

first tested.

In the first experiment, FIGURE 4.4, 20 µM G5-109s8 (green shaded region) 

caused the rapid drop in transmembrane conductance. The pulse of Meth (peak C) 

immediately following the pulse of G5-109s8 is visibly smaller than all other 
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peaks, including peak A, which was the result of a fumbled siphon transfer result-

ing in less than the full 1.5 minute pulse of Meth. Although peak F is smaller then 

E-G, the difference is not large enough for a single trial to be confident that it is not 

the result of some error. The small size of peak C is strong evidence that G5-109s8 

is blocking the TAAR1 pathway, if not TAAR1 itself. This experiment was origi-

nally envisioned as part of a series of experiments to determine the Kd and IC50 of 

each test compound, however upon realizing how time consuming that was going 

to be a head-to-head competition assay was designed for the rest of the testing.

FIGURE 4.4: Pretreatment with 20 µM G5-109s8 (magenta region) for 1.5 minutes followed by 1.5 minute 
pulses of 100 µM Meth (red regions). Although the original intent was to measure the off-rate of G5-109s8, 
peak C is visibly smaller than all others indicating that G5-109s8 inhibited Meth binding to TAAR1. The 
gray line segments are the approximate baseline. It is worth noting that G5-109s8 caused a drop in the 
baseline. Peak A represents a fumbled siphon transfer, so a second Meth control stimulation, B, was 
preformed. This experiment was preformed once.

In FIGURE 4.5, one sees the dose response curves for the head-to-head compe-

tition assay between G5-109s8 and 10 µM Meth (each pulse, B-F and I-L, was a 

mixture of both compounds). In FIGURE 4.5 the doses of G5-109s8 were B: 1 nM, 

C: 10 nM, D: 100 nM, E: 1 µM, F: 10 µM, I: 1 µM, J: 3 µM, K: 5 µM and L: 7 µM. 

The weak response to Meth, peak H, in the experiment shown in FIGURE 4.5(2) 
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indicates that the oocyte was not expressing a lot of TAAR1 but there was enough 

to establish that G5-109s8 inhibits Meth stimulation of the TAAR1 pathway in a 

dose dependent manner. Since G5-109s8 caused a maximal depression of trans-

membrane conductance ~4.5 minutes after the end of pulse F, and the transmem-

brane conductance took ~17 minutes to return to basal levels after pulse F but only 

~10 minutes after pulse A (just Meth), then G5-109s8 must have a slower off-rate 

than Meth.

FIGURE 4.5: Heads up competition between Meth and G5-109s8 (n=1 for both assays). Pulses were 1.5 
minutes in duration. Grey line segments are the approximate baseline. (1) A) 10 µM Meth, B) 10 µM Meth 
& 1 nM G5-109s8, C) 10 µM Meth & 10 nM G5-109s8, D) 10 µM Meth & 100 nM G5-109s8, E) 10 µM 
Meth & 1 µM G5-109s8, F) 10 µM Meth & 10 µM G5-109s8, G) 10 mM G5-109s8 & 10 mM forskolin. (2) 
H) 10 mM Meth, I) 10 mM Meth & 1 mM G5-109s8, J) 10 mM Meth & 3 mM G5-109s8, K) 10 mM Meth 
& 5 mM G5-109s8, L) 10 mM Meth & 7 mM G5-109s8.

For G5-109s8 to cause sub-basal transmembrane conductance as in FIGURE 

4.5(G, J, K, and L) the TAAR1 pathway must have basal activity, and G5-109s8 

must be bound to nearly all free binding sites of whatever it is binding to in the 

pathway. If G5-109s8 only prevented Meth from reaching TAAR1 (by inhibiting 

DAT, for example), then G5-109s8 would have no effect on the TAAR1 pathway’s 
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basal activity. Therefore G5-109s8 must be binding to either TAAR1, GDs, GE/J, 

adenylyl cyclase or CFTR. 

From the response to forskolin and G5-109s8 (10 µM each) in FIGURE 4.5G, 

it can be concluded that neither adenylate cyclase nor CFTR were blocked by G5-

109s8. Although there is initially a large drop in conductance for pulse G, the 

trough is considerably narrower than the one in F and appears to be the indepen-

dent sum of fast TAAR1 inhibition by G5-109s8 followed by a slower but strong 

activation of adenylyl cyclase by forskolin. This conclusion is consistent with 

Occam’s razor (explanations with the fewest assumptions are preferred), since G5-

109s8 is an analog of a family known to inhibit TAAR1. If G5-109s8 was inhibit-

ing adenylyl cyclase or even one of the G-protein subunits instead of TAAR1, then 

G5-109s8 would have unacceptable off-target effects as a treatment for addiction - 

both adenylyl cyclase and the G-proteins are involved in too many other regulatory 

pathways to be safely inhibited for this application. However, inhibiting adenylyl 

cyclase or the G-proteins might be acceptable for something like chemotherapy. 

Similarly, an argument that G5-109s8 is inhibiting CFTR is an argument for an 

unacceptable off-target effect (in this case, one that would resemble cystic fibro-

sis). Before one spends more time developing analogs like G5-109s8, experiments 

that definitely rule out the inhibition of adenylyl cyclase, the G-proteins and CFTR 

by G5-109s8 should be done. One possible experiment could be a TEVC experi-

ment with a hTAAR1 and hCFTR expressing oocyte where one perfused 10 µM 
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G5-109s8 until the transmembrane conductance was constant, then perfused with a 

1.5 minute pulse of 10 µM G5-109s8 and 10 µM forskolin solution followed by 

washing with 10 µM G5-109s8. If that experiment had a forskolin response equal 

to a TAAR1 and CFTR expressing oocyte assayed with a 1.5 minute pulse of 10 

µM forskolin, then neither adenylyl cyclase nor CFTR can be inhibited.

In FIGURE 4.5, one begins to see a general trend followed by the rest of the 

assays, namely the increase in transmembrane conductance as the experiments 

proceed. Not shown, but observed, was the time-dependent, and possibly dose-

dependent, drop of the transmembrane potential, typically about 50% by the end of 

the experiment. Currently, it is not clear how much of the long-term changes in the 

conductance and potential are the result of the oocytes response to stress or some 

auxiliary effect of the compounds being tested. 

FIGURE 4.6: (1) CFTR only control experiment to detect off-target effects. Pulses were 1.5 minutes in 
duration. A) 5 µM forskolin, B) 10 µM G5-109s8, C) 10 µM Meth, D) 10 µM G5-109s8 & 5 µM forskolin. 
Grey lines are visual aids. (2) CFTR only control experiment to detect off-target effects. This experiment 
was a prior result from the Grandy lab (n=1). Unfortunately, the notes about it how it was performed were a 
bit ambiguous, but it appears from them that the compounds were perfused over the oocyte for the entire 
period of the compound’s shaded region. However, the response to ET-92 looks like the response one would 
expect from a minute or so application. The concentration of the forskolin used was not recorded. 
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FIGURE 4.6(1) shows a control experiment done with an oocyte injected with 

hCFTR encoding RNA alone. Here 5 µM forskolin was applied (A) then 10 µM 

G5-109s8 (B). Upon seeing the drop in conductance after applying G5-109s8, 10 

µM Meth was applied to demonstrate that a TAAR1/CFTR expressing oocyte had 

not been used by mistake. Finally a combination of G5-109s8 and forskolin was 

applied (D) resulting in a response between A and B. Overall, this oocyte had an 

unexpectedly weak response to forskolin and Meth depressed the conductance 

(maximum change in conductance ), which may signal a hitherto unknown 

target of Meth. The response to pulse D is difficult to explain as it does not look 

like a simple sum of response to A and B. The response to D could indicate that 

G5-109s8 weakly inhibits GDs or adenylyl cyclase. It could also indicate that G5-

109s8 affects a pathway involving CFTR.

Although the off-target drop in transmembrane conductance caused by G5-

109s8 (FIGURE 4.6(1)) needs to be confirmed, it is very troubling, as it is the 

result of unknown electrophysiological changes. Those changes could be detri-

mental to many systems, such as: the central nervous system, cardiovascular sys-

tem and mucus membranes. Thus this off-target effect could be evidence for major 

or even fatal toxic side-effects such as: psychosis, heart failure and ulcers. The cri-

teria of the FDA, and organizations like it around the world, to approve a new 

pharmaceutical agent is that the agent must be both efficacious and reasonably 

safe. In order to prove that G5-109s8 is reasonably safe and continue developing 

1 µS–|
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the thyronamine family of compounds as pharmaceuticals, the cause of this off-tar-

get effect needs to be identified, evaluated for toxicity, and then new compounds in 

the thyronamine family would need to be screened against it. The identification of 

the mechanism for the electrophysiological off-target effect of G5-109s8 is a 

major biochemistry or chemical biology project and is beyond the scope of this 

drug discovery project. 

With n=1 for the control assay, it is reasonable for one to ask whether or not the 

off-target effect is experimentally reproducible, and whether or not the off-target 

effect is experimentally valid (or real, if one prefers). Reproducibility is an issue of 

how frequent a result occurs, whereas validity is an issue of experimental accuracy. 

Strictly as a point of logic, a valid result maybe difficult to reproduce due to low 

frequency of occurrence. If the off-target effect seen in FIGURE 4.6(1) is suffi-

ciently infrequent, then G5-109s8 can be used in chemical biology studies of 

TAAR1 with few complications. However, for the purpose of drug discovery a 

compound’s safety is a function of how frequently the compound causes adverse 

effects and their severity. Validating the off-target effect (again, off-target because 

TAAR1 was not present in the assay) could be complicated by the possibility that 

the oocytes have a heterogeneous (i.e.: poly-modal) response to G5-109s8 due to 

genetic variability of the oocytes where some of the modes are rare.

Assuming the off-target effect in FIGURE 4.6(1) is valid, it can not account for 

the depressed conductance seen in FIGURE 4.5F unless the off-target effect is the 
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result of inhibiting adenylyl cyclase, the G-proteins, or CFTR. If G5-109s8’s only 

mode of action was through this off-target effect, and was completely independent 

of the TAAR1 pathway, then one would add the 10 µM Meth response curve in 

FIGURE 4.5A (maximum change in conductance ) to the off-target effect 

(maximum change in conductance ) in order to get the response to a com-

bination of 10 µM Meth and 10 µM G5-109s8. When that is done, the result is not 

FIGURE 4.5F. Therefore G5-109s8 must effect the TAAR1 pathway.

Upon seeing the G5-109s8 off-target effect, evidence was sought for a similar 

effect from ET-92. FIGURE 4.6(2) shows an experiment, done previously by the 

Grandy lab, dosing an oocyte injected with hCFTR encoding RNA alone. In the 

experiment, 10 µM PEA, 100 µM Meth, 10 µM EPPTB, 10 µM ET-92 and an 

unidentified concentration of forskolin were applied to the oocyte. In this experi-

ment there appears to be a weak response to ET-92, maximum change in conduc-

tance , and the possibility of very weak response to Meth and EPPTB. If 

this is not convincing, a comparison between the mouse in vivo data for ET-92/

vehicle and EPPTB/vehicle trials, FIGURE 1.6, clearly shows a dose-dependent 

drop in locomotion for ET-92/vehicle, especially from 5 mg/kg to 10 mg/kg, but 

no such effect for the selective EPPTB. In addition to the ET-92 effect on locomo-

tion, when ET-92 was first studied in vivo (mice) a 20 mg/kg dose of ET-92 caused 

the mice to be hypothermic for 4 days after injection, thus requiring the mice to be 

euthanized.82 Taken together, the possible electrophysiological observation (FIG-

70 µS|

5 µS–|

1 µS–|
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URE 4.6(1)), thermoregulatory loss, and locomotion effects of the thyronamine 

family of analogs renders them a potentially risky class of compounds for further 

pharmaceutical development without first evaluating the actual risk posed by these 

effects. 

4.2.2 Testing the other compounds
Since the original intent of making these compounds, G5-110s8 through G5-

114s5, was for use as intermediates in the synthesis of other compounds, not all of 

them were as pure as G5-109s8, but they were deemed sufficiently pure (>95% by 

1H-NMR excluding residual solvents) for a first pass activity screen. The testing 

for G5-110s8 through G5-114s5 followed the procedure outlined in Chapter 7.2. 

FIGURE 4.8, and 4.11 do not all show the full forskolin response range because it 

is off the scale in comparison to the other peaks. FIGURE 4.10, a repeat of an ear-

lier experiment, omitted repeating the 10 µM forskolin and 10 µM G5-113s5 

pulse. None of the assayed compounds blocked forskolin activity.   

All of the compounds show sub-basal transmembrane conductance for at least 

part of the response curve F. Only G5-114s5 (FIGURE 4.11) showed any reliable 

effect at 1 µM. G5-111s8 (FIGURE 4.8F) shows complete sub-basal conduc-

tance. G5-113s5 (FIGURE 4.10F) shows a peak followed by a sub-basal trough 

with the possibility of a brief sub-basal trough before the peak (this observed dip in 

conductance is small enough that it might be the result of an air bubble). G5-

110s8, G5-112s5 and G5-114s5 (FIGURE 4.7F, 4.9F, and 4.11E-F respectfully) 

d
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show a sub-basal trough then peak followed by another sub-basal trough. The only 

way to produce a trough-peak-trough pattern in this system is if TAAR1 has basal 

activity, the compounds bind to TAAR1, and the compounds bind the ligand-free 

active form of TAAR1 faster than they bind the ligand-free inactive form of 

TAAR1 (this claim will be fully justified by kinetic analysis in Chapter 5). The 

peaks are the result of Meth stimulation, since Meth does not stimulate the G-pro-

teins, adenylyl cyclase nor CFTR (FIGURE 4.6). If G5-110s8, G5-112s5 and G5-

114s5 inhibited the G-proteins, adenylyl cyclase or CFTR sufficiently to block the 

basal signal of TAAR1 then the TAAR1 Meth stimulated signal would also be 

blocked; therefore by elimination TAAR1 must be inhibited. Since all of the tested 

compounds are structurally very similar to G5-110s8, G5-112s5 and G5-114s5, it 

is logical to conclude by reason of similarity83 that their primary method of action 

is the inhibition of TAAR1 and not the inhibition of the G-proteins, adenylyl 

cyclase or CFTR. Since the compounds suppress TAAR1 activity to sub-basal lev-

els, the compounds are inverse agonists.84 Going back to FIGURE 4.3, one might 

estimate that TAAR1 basal activity is about 5% of its total possible activity (deter-

mined by dividing the basal level by the maximum Meth response). Using that 

estimation all the compounds are around IC90 at 10 µM, otherwise there would be 

enough TAAR1 available for Meth to bind for the total activity to remain above the 

baseline. More justification for this claim will be provided in the next chapter.
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FIGURE 4.7: Heads up competition between Meth and G5-110s8 (n=1). Pulses were 1.5 minutes in 
duration. A) 10 µM Meth, B) 10 µM Meth & 1 nM G5-110s8, C) 10 µM Meth & 10 nM G5-110s8, D) 10 
µM Meth & 100 nM G5-110s8, E) 10 µM Meth & 1 µM G5-110s8, F) 10 µM Meth & 10 µM G5-110s8, G) 
10 µM G5-110s8 & 10 µM forskolin. Grey line segments are the approximate baseline.

FIGURE 4.8: Heads up competition between Meth and G5-111s8 (n=1). Pulses were 1.5 minutes in 
duration. A) 10 µM Meth, B) 10 µM Meth & 1 nM G5-111s8, C) 10 µM Meth & 10 nM G5-111s8, D) 10 
µM Meth & 100 nM G5-111s8, E) 10 µM Meth & 1 µM G5-111s8, F) 10 µM Meth & 10 µM G5-111s8, G) 
10 µM G5-111s8 & 10 µM forskolin (off-scale). Grey line segments are the approximate baseline.
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Results
FIGURE 4.9: Heads up competition between Meth and G5-112s5 (n=1). Pulses were 1.5 minutes in 
duration. A) 10 µM Meth, B) 10 µM Meth & 1 nM G5-112s5, C) 10 µM Meth & 10 nM G5-112s5, D) 10 
µM Meth & 100 nM G5-112s5, E) 10 µM Meth & 1 µM G5-112s5, F) 10 µM Meth & 10 µM G5-112s5, G) 
10 µM G5-112s5 & 10 µM forskolin. Grey line segments are the approximate baseline.

FIGURE 4.10: Heads up competition between Meth and G5-113s5 (n=1). Pulses were 1.5 minutes in 
duration. A) 10 µM Meth, B) 10 µM Meth & 1 nM G5-113s5, C) 10 µM Meth & 10 nM G5-113s5, D) 10 
µM Meth & 100 nM G5-113s5, E) 10 µM Meth & 1 µM G5-113s5, F) 10 µM Meth & 10 µM G5-113s5. 
Grey line segments are the approximate baseline.
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Concluding remarks about the assays
FIGURE 4.11: Heads up competition between Meth and G5-114s5 (n=1). Pulses were 1.5 minutes in 
duration. A) 10 µM Meth, B) 10 µM Meth & 1 nM G5-114s5, C) 10 µM Meth & 10 nM G5-114s5, D) 10 
µM Meth & 100 nM G5-114s5, E) 10 µM Meth & 1 µM G5-114s5, F) 10 µM Meth & 10 µM G5-114s5, G) 
10 µM G5-114s5 & 10 µM forskolin (off-scale). Grey line segments are the approximate baseline.

4.3 Concluding remarks about the assays

Although one can draw conclusions from these assay results, it would be best 

to repeat the experiment at least 3 times with oocytes that express hTAAR1 and 

hCFTR more consistently then the ones used here. Doing so would both verify the 

results and allow quantification. Having to make decisions based on minimal, poor 

quality or incomplete data is not uncommon in industrial research, where the focus 

is on following up on promising leads and quickly moving away from unfavorable 

ones. That said, one tries to be as thorough as possible. The industrial research 

model is not prefect; false leads get followed and promising ones accidentally get 

discarded. Also, industrial research can seldom afford to treat every lead as thor-

oughly as is often done in academic research. In the end, industrial research must 

produce a marketable product. Although done in an academic setting, the assaying 

and subsequent analysis follow the industrial research model. At this time, the thy-
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Concluding remarks about the assays

ronamine family of compounds appear to be high risk for further pharmaceutical 

development.
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CHAPTER 5 Kinetic Modeling

Starting from first principles,85 a series of kinetic models were developed to 

explain the observed biological data in Chapter 4. 

5.1 Quick review of kinetics

Unimolecular kinetics ( , intramolecular conformation changes, disasso-

ciations, radioactive decay, etc.) are modeled by equations in the form of

(EQ 5.1)

and bimolecular kinetics ( , reactions between two chemicals, etc.) are 

modeled by equations in the form of

(EQ 5.2)

In EQ 5.1 - 5.2, [F] is the concentration or activity of F (similarly for <), and k 

is the rate constant (positive when creating a chemical species and negative when 

destroying a chemical species). To model more complex systems, one builds rate 

equations by adding terms for each reaction that occurs in the system. Each chem-

ical species involved in the system requires its own rate equation. Also, mass bal-

ance equations and initial conditions are needed, both of which serve as constraints 

on the system. For example, EQ 5.4 - 5.7 are the complete set of equations needed 

A Bo

td
d F[ ] k F[ ]=

A B+ Co

td
d F[ ] k F[ ] <[ ]=
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TAAR1 Kinetics

to model a simple irreversible bimolecular reaction (EQ 5.3) with initial concentra-

tions given by A0, B0, and C0.

(EQ 5.3)

(EQ 5.4)

(EQ 5.5)

(EQ 5.6)

(EQ 5.7)

Since this example is a simple single step reaction, one only needs to solve for 

[C] and then plug-in [C] into EQ 5.4 - 5.5 to get [A], and [B].

5.2 TAAR1 Kinetics

Receptors with basal activity, such as TAAR1, exist in an equilibrium between 

a ligand-free active form and a ligand-free inactive form. The interconversion 

between the two forms is a unimolecular process. Once ligands are introduced to 

the receptor, the ligands could potentially bind to either ligand-free form of the 

receptor creating either an active ligand-receptor complex or an inactive ligand-

receptor complex. The ligand and the receptor bind in a bimolecular process. Inter-

conversion between the active ligand-receptor complex and the inactive ligand-

receptor complex is possible (a unimolecular process). Lastly, both forms of the 

ligand-receptor complex can disassociate in a unimolecular process. 

A B+ Co

A[ ] A0 C[ ]–=

B[ ] B0 C[ ]–=

C0 0=

td
d A[ ]–

td
d B[ ]–

td
d C[ ] k A[ ] B[ ] k A0 C–[ ] B0 C–[ ]= = = =
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FIGURE 5.1A shows all possible pathways for TAAR1 to interact with Meth 

(an agonist) and an inhibitor [as short-hand, inhibitor = inverse agonist]. Such a 

model has 22 rate constants, and with enough work one probably could make such 

a model fit most data. FIGURE 5.1B shows a simplified kinetic scheme where the 

inhibitor-TAAR1 complex can only exist in an inactive state (IRi) and Meth only 

forms an active Meth-TAAR1 complex (MRa). In FIGURE 5.1C, the equilibrium 

between the ligand-free inactive receptor (Ri) and its active form (Ra) is extremely 

fast compared to all other rate constants. Model C is also equivalent to Model B 

when k3 = k2, k-3 = k-2, k4 = k5, k-4 = k-5 and the equilibrium between Ri and Ra is 

very slow compared to all other processes in the model. Included in Model C is a 

gross simplification leading to the production of cAMP followed by the activation 

of CFTR. In all three models, arrows indicating either agonist/inhibitor binding or 

disassociation have been omitted for clarity.
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TAAR1 Kinetics
FIGURE 5.1: Kinetic Schemes for TAAR1: A) All possible pathways for the basally active TAAR1 to 
interact with Methamphetamine (Meth) and an Inhibitor. The 22 rate constants have been omitted for clarity 
as have the arrows for binding and unbinding of both Meth and the Inhibitor. B) Simplified scheme 
assuming the Meth-TAAR1 complex is always active and the Inhibitor-TAAR1 complex is always inactive. 
C) When k1 and k-1 are much faster than any of the other rate constants, then the total ligand-free TAAR1 
can be treated as a single pool with active and inactive forms held at a fixed ratio. A step for the formation of 
cAMP and another for the CFTR cycle were added to model the oocyte data. Original artwork by Troy Wahl.

When one is trying to fit a reaction kinetic model to data, it is vital to have 

either accurate concentration or activity data for all chemical species in the model. 

Since neither the TAAR1 nor the CFTR expression levels were available nor were 

they consistent, qualitative agreement between the models and the data was 

sought. If the oocytes had had consistent hTAAR1 and hCFTR expression levels, 

then the total concentration of each could have been set to 1, allowing the rate con-

stants to act as scaling factors, and the data fit. Once the data was fit, the rate con-

stants could have been used to calculate IC50 values for each assayed compound.

Ri

Ra

MRi

MRa

IRi

IRa

Ri

Ra

k1 k-1

MRa

IRi

k3 k-3k5k-5

k-2

k2

k-4

k4

Ri

Ra

k1 k-1 MRaIRi
k-α

kαkβ

k-β

cAMP

kγ CFTRi

CFTRa
kδ

Ra/i

k-δ

A) B)

C) Key

Ri            Inactive Ligand-Free TAAR1
Ra           Active Ligand-Free TAAR1
Ra/i          Total Ligand-Free TAAR1
MRi         Inactive Meth-TAAR1 Complex
MRa        Active Meth-TAAR1 Complex
IRi           Inactive Inhibitor-TAAR1
IRa          Active Inhibitor-TAAR1
CFTRi     Inactive CFTR
CFTRa    Active CFTR
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Model B: Modeling TAAR1 equilibria

In all the simulations, the rate constants k1 and k-1 were chosen to produce an 

Ra:Ri ratio of 1:19 at equilibrium. Also, the concentrations for TAAR1, Meth and 

inhibitor used in the models are arbitrary. As long as the rate constant are scaled 

inversely, the concentrations can be changed without changing the results.

5.3 Model B: Modeling TAAR1 equilibria

Due to the kinetic complexity of basally active systems, the kinetic models 

were used to explore how TAAR1 might behave by varying rate constants and 

receptor concentration. The later variation could reveal some potential complica-

tions in interpreting in vivo overexpression studies. For the purpose of modeling 

the binding kinetics of Meth to TAAR1, in vivo experiments where Meth is admin-

istered to mice, the mice can be approximated as a closed system since the biolog-

ical half-life (metabolism and excretion) of Meth is approximately 13 hours yet the 

effects of Meth on mice are noticeable within minutes. Chemical reactions in 

closed systems result in equilibria and are simpler to model than ones in open sys-

tems, so a TAAR1 equilibrium model will be the first one examined. 

Using the kinetic scheme shown in FIGURE 5.1B, the mass balance equations 

for a closed system are given by EQ 5.8 - 5.10, and the rate equations are listed in 

EQ 5.11 - 5.13.

(EQ 5.8)

(EQ 5.9)

RT[ ] Ri[ ] Ra[ ] MRa[ ] IRi[ ]+ + +=

MT[ ] M[ ] MRa[ ]+=
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(EQ 5.10)

(EQ 5.11)

(EQ 5.12)

(EQ 5.13)

The equations form a non-linear system of differential equations that does not 

have a closed form analytical solution, so numerical integration is needed to solve 

them. The equations were programed into Mathematica using the Runge-Kutta 

numerical method (this is not a built in function) with a step size, h, of 10-4 min-

utes. Runge-Kutta has an error in calculation on the order of h5, so at that step size 

the calculations had an error on the order of 10-20, which was smaller then the pre-

cision of the calculations (~16 digits). Thus round-off error was the largest source 

of error in the simulations, being on the order of 10-16 times the number of steps 

need to get to a particular time point in the simulation. Since the simulations used a 

maximum of 200,000 steps, the maximum error in the simulations was on the 

order of 10-10.

InhT[ ] Inh[ ] IRi[ ]+=

td
d Ra[ ] k1 Ri[ ] k 1– k2 M[ ] k5 Inh[ ]+ +( ) Ra[ ]– k 2– MRa[ ] k 5– IRi[ ]+ +=

k1 RT[ ] Ra[ ]– MRa[ ]– IRi[ ]–( ) k 1– k2 MT[ ] MRa[ ]–( ) k5 InhT[ ] IRi[ ]–( )+ +( ) Ra[ ]–=

k 2– MRa[ ] k 5– IRi[ ]+ +

td
d MRa[ ] k3 Ri[ ] k2 Ra[ ]+( ) M[ ] k 2– k 3–+( ) MRa[ ]–=

k3 RT[ ] Ra[ ]– MRa[ ]– IRi[ ]–( ) k2 Ra[ ]+( ) MT[ ] MRa[ ]–( ) k 2– k 3–+( ) MRa[ ]–=

td
d IRi[ ] k4 Ri[ ] k5 Ra[ ]+( ) Inh[ ] k 4– k 5–+( ) IRi[ ]–=

k4 RT[ ] Ra[ ]– MRa[ ]– IRi[ ]–( ) k5 Ra[ ]+( ) InhT[ ] IRi[ ]–( ) k 4– k 5–+( ) IRi[ ]–=
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Model B: Modeling TAAR1 equilibria
FIGURE 5.2: The model is very sensitive to rate of equilibrium between Ri and Ra. The only difference 
between A and B are the values of k1 and k-1, with the values in A 5 times those in B. These simulations 
show the expected effects of Meth, an agonist, in that total TAAR1 activity increases above the basal 
activity. Due to the slow equilibrium between Ri and Ra, the disassociation of the Meth-TAAR1 complex 
leads to an increase in active ligand-free TAAR1 (Ra), which is the opposite of effect seen in A.

FIGURE 5.2 shows the simulation of Meth binding to TAAR1. The only differ-

ence between simulation A and B is that K1 and K-1 are 5 times faster in FIGURE 

5.2A then in FIGURE 5.2B. By slowing the rate at which Ra and Ri reach equilib-

rium, the concentrations active ligand-free TAAR1 (Ra), and total active TAAR1 

increase compared to the faster equilibrium in FIGURE 5.2A. This is the result of 

the Meth-TAAR1 complex (MRa) disassociation rate into Ra, determined by k-2, 

causing Ra to accumulate faster than Ra can be converted into the inactive form of 

TAAR1, Ri.
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When Meth and Inhibitor are added to TAAR1, it is not difficult to suppress 

total TAAR1 activity below its basal level, FIGURE 5.3. In order to do so, k4 and 

k5 (the inhibitor rate binding constants) must be much faster than the rate binding 

constants for Meth, k2 and k3. This should not be surprising as it only takes a little 

Meth activation to increase the total activity of TAAR1 above the basal level, but 

the inhibitor must block nearly all of TAAR1 to suppress the activity of the basal 

level. Also, in the case of a slow equilibrium between Ri and Ra, the inhibitor must 

rapidly bind Ra to produce a rapid drop in total activity below the basal level. 

When the Ri and Ra equilibrium is fast, a drop in [Ri] is quickly matched by a drop 

in [Ra].

FIGURE 5.3: Simulation of competition between Meth and Inhibitor. It is fairly easy to suppress TAAR1 
below its basal activity, but to do so the inhibitor must bind to both inactive TAAR1 (Ri) and active TAAR1 
(Ra) much faster than Meth. 

A counter-intuitive result is shown in FIGURE 5.4B, where an “overexpres-

sion” of TAAR1, simulated by the use of 4 M TAAR1 instead of the 1 M used in 

FIGURE 5.4A, results in Meth causing a drop in total activity. For the simulations 
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in FIGURE 5.4, the rate constants have been set so that the fastest reactions pro-

ceeds from Meth binding the active form of TAAR1 (Ra), to the Meth-TAAR1 

complex disassociating into the inactive form of TAAR1 (Ri), resulting in the 

accumulation of Ri due of the slow equilibrium between Ri and Ra. In the non-

overexpression case, FIGURE 5.4A, despite the fact Ra is depleted, there is enough 

unbound Meth to create an equilibrium between Meth and MRa that results in a net 

increase of TAAR1 activity. That is not the case with the TAAR1 overexpression, 

FIGURE 5.4B. In Revel’s in vivo study of TAAR1 overexpressing mice,86 conclu-

sions are drawn based on the fact that Meth does not produce much stimulation in 

the overexpressing mice, however the result shown in FIGURE 5.4B requires extra 

caution when considering those conclusions. 
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FIGURE 5.4: Receptor overexpression can lead to counter-intuitive results when the receptor has basal 
activity. The only difference between A and B is the concentration of TAAR1. In this example, the fastest 
path is Meth binding to active TAAR1 (Ra) to form the active Meth-TAAR1 complex (MRa) which in turn 
releases Meth and inactive TAAR1 (Ri). (A) Although Ra is depleted, there is enough unbound Meth to 
create an equilibrium between Meth and MRa that results in a net increase of TAAR1 activity. That is not the 
case with the TAAR1 overexpression, B. 

5.4 Model C: Modeling the oocyte data

In order to model the oocyte data, one must address the fact that the experi-

ments were not closed systems as the solutions with the test compounds flowed to 

the oocytes, where the oocytes respond to some of the molecules while the remain-

der flows past, never to interact with the oocyte again. Likewise, when the oocyte 

releases a molecule into the solution, that molecule is washed away. Model B 

could be used, but the mass balance equations for both Meth and the inhibitor 

would have to keep track of how many molecules of each compound flowed past 

the oocyte, and how much was bound to TAAR1, otherwise model would lack suf-
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ficient constraints to work properly. To do that, one would have to accurately know 

the quantities, in moles, of each chemical species present in the model, which was 

not the case. Fortunately, there is a work-around. While the test compounds are 

being applied, the incoming stream has a constant concentration and one can treat 

the oocyte as a point or infinitely thin membrane in the flow. This approximation 

allows one to disregard the molecules that either flowed past or were released by 

the oocyte. With this approximation, the mass balance equations are

(EQ 5.14)

(EQ 5.15)

(EQ 5.16)

Before the model can be constructed, the rate of equilibrium between Ri and Ra 

must be set either much faster or much slower (with k3 = k2, k-3 = k-2, k4 = k5, and 

k-4 = k-5) than any other process in the model. Doing this converts Model B into 

the TAAR1 portion of Model C. A very rapid equilibrium between Ri and Ra 

means that no matter what the other rate constants are, the ratio between [Ri] and 

[Ra] will be constant. With the other extreme, the system decouples into two lin-

early independent systems. With the equilibrium between Ri and Ra set to be very 

fast, one only need to keep track of the total amount of ligand-free TAAR1, Ra/i, 

1 Ra i⁄[ ] MRa[ ] IRi[ ]+ +=

M[ ]
0
1
0¯

°
®
°
­

=
t 0<

0 t 1.5<d
1.5 td

Inh[ ]
0
1
0¯

°
®
°
­

=
t 0<

0 t 1.5<d
1.5 td
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during the simulation then, afterwards, partition out Ri and Ra according to EQ 

5.17 - 5.18. 

(EQ 5.17)

(EQ 5.18)

(EQ 5.19)

(EQ 5.20)

(EQ 5.21)

In order to couple TAAR1 to CFTR, the model must produce cAMP which in 

turn activates CFTR. Model C (FIGURE 5.1C) treats cAMP production as an uni-

molecular process dependent on the concentration of all active TAAR1 species. In 

reality, the production of cAMP is the result of a sequence of reactions; however, 

for a crude qualitative model, the treatment is sufficient. Although it might be 

tempting to eliminate cAMP from the model by having active TAAR1 directly 

drive CFTR, doing so would be a mistake as cAMP serves as a capacitor, both cre-

ating a time delay and smoothing out sharp transitions. Putting this all together 

with the initial conditions, EQ 5.19 - 5.21, the rate equations for Model C are

(EQ 5.22)

(EQ 5.23)

Ra[ ]
k1 Ra i⁄[ ]
k1 k 1–+
---------------------=

Ri[ ]
k 1– Ra i⁄[ ]
k1 k 1–+

-----------------------=

MRa[ ]t 0= IRi[ ]t 0= 0= =

cAMP[ ]t 0=
k1kJk G–

k G– k1 k 1–+( ) k1kJkG–
------------------------------------------------------=

CFTR[ ]t 0=
k1kJkG

k G– k1 k 1–+( )
--------------------------------=

td
d MRa[ ] kD M[ ] Ra i⁄[ ] k D– MRa[ ]–=

kD M[ ] 1 MRa[ ] IRi[ ]––( ) k D– MRa[ ]–=

td
d IRi[ ] kE Inh[ ] Ra i⁄[ ] k E– IRi[ ]–=

kE Inh[ ] 1 MRa[ ] IRi[ ]––( ) k E– IRi[ ]–=
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(EQ 5.24)

(EQ 5.25)

Instead of using concentrations in this model, the relative activities of the com-

pounds will be used thus forcing the rate constants to contain information about 

the maximum concentration of the compounds. A convenient feature of Model C is 

that the rate equations for the TAAR1 portion, EQ 5.22 - 5.23, have exact solu-

tions, though they are very long. In order to calculate the values for cAMP and 

CFTR, EQ 5.24 - 5.25, one takes the exact solutions for MRa and IRi from EQ 

5.22 - 5.23 as input for a Runge-Kutta numerical calculation with step size, h, 

equal to 10-4 minutes.

After setting the basal activity, Ra = 0.05, kD and k-D were adjusted until Meth 

produced a maximum total TAAR activity peak intensity of 0.2 and a profile simi-

lar to the oocytes response to 10 µM Meth, FIGURE 5.5A. Once these values for 

kD and k-D were found they were used for all the remaining Model C simulations. 

An interesting result is that in order to get the peak profile to match that in the bio-

logical data, kD < k-D and kD § k-D must be true. This makes sense from a biologi-

td
d cAMP[ ] kJ MRa[ ] Ra[ ]+( ) kG cAMP[ ] CFTRi[ ]–=

kJ MRa[ ]
k1 Ra i⁄[ ]
k1 k 1–+
---------------------+© ¹

§ · kG cAMP[ ] 1 CFTRa[ ]–( )–=

kJ MRa[ ]
k1 1 MRa[ ] IRi[ ]––( )

k1 k 1–+
------------------------------------------------------+© ¹

§ · kG cAMP[ ] 1 CFTRa[ ]–( )–=

kJ k 1– MRa[ ] k1 1 IRi[ ]–( )+( ) kG cAMP[ ] 1 CFTRa[ ]–( )–=

td
d CFTRa[ ] kG cAMP[ ] CFTRi[ ] k G– CFTRa[ ]–=

kG cAMP[ ] 1 CFTRa[ ]–( ) k G– CFTRa[ ]–=
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cal perspective as receptors controlling neural activity must respond quickly to 

signals then reset, ready for the next signal.

Next came adjusting the values for kE and k-E. In FIGURE 5.5B - C, kȕ was 

chosen to give strong TAAR1 inhibition, kE/kD = 21.9, and k-E chosen to producing 

a rapid disassociation of the inhibitor, k-E/k-D = 1.37. The kE/kD and k-E/k-D ratios 

determine the shape of the response curves when both Meth and inhibitor are 

applied. The ratios in FIGURE 5.5C yield weak initial sub-basal response followed 

by a weak stimulation. Essentially nearly all TAAR1 was inhibited but due to the 

inhibitor’s fast off-rate enough Meth-TAAR1 complex remained to give some 

stimulatory effect before it too disassociated. If one were to drop kE/kD much lower 

than ~20 while holding k-E/k-D constant, one would only see a stimulatory 

response (a peak).
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Model C: Modeling the oocyte data
FIGURE 5.5: Oocyte response to various stimuli: A) Meth only, B) Inhibitor only with a fast off-rate, k-E, C) 
a combination of both Meth and Inhibitor. All the response curves been have normalized to their respective 
basal activities. The gap seen in C for the Total Active TAAR1 is a graphing artifact.

In moving to FIGURE 5.6, the only change made was to slow the inhibitor off-

rate (kE/kD = 21.9). With k-E/k-D = 0.60, the inhibitor completely suppressed Meth 

stimulation. At this ratio, the response curve recovers to the basal level at about the 

same rate as seen in the biological data when the Meth response is completely sup-

pressed. Increasing kE/kD = 29.2, FIGURE 5.7, just deepens the trough. However, 

decreasing kE/kD = 11.68, FIGURE 5.8, results in an initial Meth stimulation fol-

lowed by a shallow sub-basal tough; not enough TAAR1 was inhibited. If kE/kD 

was reduced below ~10, then the sub-basal trough disappeared. 
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In the biological data there was little evidence that the 1 µM test compounds 

inhibited 10 µM Meth stimulation of TAAR1 and this model starts to reveal the 

reason. Since 

(EQ 5.26)

appears to be the lower limit at which a trough forms, except for possibly G5-

114s5, the upper limit on kE/kD < 100 or the 1 µM test compounds would produced 

a trough. Furthermore, limiting the estimate of kE/kD < 30 is reasonable or the 1 

µM test compounds would produced obvious inhibition of the Meth stimulated 

peak. Since all 10 µM test compounds produced a sub-basal trough, a estimate on 

the lower limit of kE/kD >15 is also reasonable.

kE Inh[ ]
kD Meth[ ]
------------------------ 10|
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Model C: Modeling the oocyte data
FIGURE 5.6: Slowing the inhibitor off-rate results in a total sub-basal response when both Meth and 
inhibitor are applied.

FIGURE 5.7: Increasing the inhibitor on-rate results just deepens the trough when both Meth and inhibitor 
are applied.
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Stop Flow Model; a hybrid approach
FIGURE 5.8: Decreasing the inhibitor on-rate too much prevents the complete inhibition of Meth 
stimulation when both Meth and inhibitor are applied.

5.5 Stop Flow Model; a hybrid approach

The only response curve profile that proved elusive using Model C was the 

trough-peak-trough pattern. Considering how basic Model C was, it is not surpris-

ing that Model C can not produce the full range of data observed. After pondering 

the situation for awhile, it was realized that a hybrid model combing the TAAR1 

kinetics of Model B, EQ 5. 8 - 5.13, and cAMP/CFTR kinetics of Model C, EQ 

5.24 - 5.25, would work to produce this last profile, if the oocyte was immersed in 

a closed system for the duration of the compound application and then washed for 

the remaining duration of the simulation. This is not an accurate model for the 

experiments performed, but by having a more limited supply of Meth and inhibitor 

than the actual experiments, it serves as a conservative model. The closed system 
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Stop Flow Model; a hybrid approach

makes the equilibrium equations valid. Once washing begins the Meth and Inhibi-

tor concentrations are set to zero, and at that point the TAAR1 kinetics have an 

exact solution.

In order to produce the trough-peak-trough pattern seen in the response curves 

of G5-110s8, G5-112s5 and G5-114s5, the inhibitor must rapidly bind to Ra, k5/k3 

> ~60, with a slower binding to Ri, k4/k3 § 15. If k4/k3 is much above 15, the Meth 

response will be completely inhibited. The other requirement for this response pro-

file is that the equilibrium between Ri and Ra must be slow, k1/k3 < ~0.06. The first 

trough in FIGURE 5.9B can be deepened by either increasing k5/k3 (not vary effec-

tive) or increasing k4/k3, which also reduces the size of the peak.
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Concluding remarks
FIGURE 5.9: By combining the TAAR1 components from Model B with the cAMP/CFTR components 
from Model C and using a stop-flow paradigm it is possible to produce the trough-peak-trough response 
profile seen from G5-110s8, G5-112s5 and G5-114s5.

5.6 Concluding remarks

By modeling TAAR1 as a basally active receptor it was possible to qualita-

tively reproduce all the oocyte response curve profiles produced by the inhibitors 

tested. If TAAR1 was not basally active, it would not have been possible for an 

inhibitor to sub-basally suppress activity. Since a trough-peak-trough profile was 

observed with some of the tested inhibitors, the hybrid model suggests that the 

conversion rate of inactive to active TAAR1 is less than 6% of the binding rate of 

Meth to inactive-TAAR1. The models also suggest that the tested inhibitors are 

binding inactive TAAR1 at rates between 10 and 100 times faster than Meth binds. 

0 5 10 15 200.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time!minutes"

Co
nc
en
tra
tio
n

Pulse of Inhibitor and Meth with Inhibitor Binding
Active TAAR1 much faster than Inactive TAAR1

Active Ligand!Free TAAR1

Active Meth!TAAR1 Complex

Total Active TAAR1

Basal TAAR1 Activity

CFTR

Total TAAR1 " 1 M

Total Meth " 1.25 M

Total Inhibitor " 1.25 M

k1 " 0.0125 k!1 " 0.2375

k2 " 0.0001 k!2 " 0.00001

k3 " 0.2 k!3 " 0.75

k4 " 3 k!4 " 0.9

k5 " 12 k!5 " 0.00001

kΓ " 0.05 k∆ " 1 k!∆ " 100

0 5 10 15 20
0

50

100

150

Time!minutes"

#
Ba
sa
lA
ct
iv
ity

Hybrid Model: 1.5 Minute Pulse of Meth and InhibitorA B



71

Concluding remarks

The models do not suggest upper limits on the inhibitor binding rate to active 

TAAR1.

It is possible to fit the oocyte data with these models, but would require a spe-

cial non-linear regression program to be written. Writing such a program can be 

done but it would not be a trivial task. Also, the resulting program would be slow. 

The simulations presented here took up to 20 minutes to run, although with optimi-

zation the code could run much faster. To find the best fit with a non-linear regres-

sion, one might have to run up to a thousand simulations. So even at 1.5 minutes 

per simulation, it could take a day to fit this type of data. A different experimental 

design, perhaps a steady-state one, could produce data that was easier to fit and use 

commercial software to do so.
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CHAPTER 6 Conclusions

As more research is done on TAAR1, it is becoming increasingly clear that it is 

an important player in many neurological disorders, including addiction. The 

approval of any pharmaceutical targeting TAAR1 is years away, with the closest 

candidates (from Hoffmann-LaRoche) just entering phase 1 clinical trials. Since 

TAAR1 is activated by Meth and inhibiting it blocks Meth signaling, there is rea-

son to hope that a pharmaceutical will be developed to help in the treatment of 

Meth addiction. 

During an assay of G5-109s8 with an oocyte injected only with CFTR encod-

ing RNA, G5-109s8 caused a drop in transmembrane conductance. Since TAAR1 

was not present in the oocyte (10 µM Meth produced an ~ 1µS drop in transmem-

brane conductance during this assay instead of the normal increase in conductance 

when TAAR1 is present), G5-109s8 produced an electrophysiological off-target 

effect. In order to further develop the thyronamine family of analogs the cause of 

the electrophysiological off-target effect observed in the oocyte, if confirmed by 

replicate experiments, will have to be identified. This off-target effect is particu-

larly troubling as it may indicate potential adverse central nervous system, cardio-

vascular or mucus membrane (ulcers, diarrhea, cystic fibrosis, etc.) events in vivo. 

At a minimum, the identification project will require using G5-109s8 in a selectiv-
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ity and toxicity screen against ion channels, neurotransmitter receptors and trans-

porters, hERG, and the superfamily of cytochrome P450 (CYP P450). A good list 

to start from would be the CEREP panel used by Revel, et al., consisting of 149 

target proteins, transporters, ion channels, and receptors.9 The afore mentioned 

selectivity and toxicology screen can serve as a further test for any potential off-

target effects. Furthermore, as part of due diligence in a medicinal chemistry proj-

ect, a screen needs to be done.

Since the ultimate goal is to develop a TAAR1 ligand for the treatment of Meth 

addiction and not to develop a member of the thyronamine family into such a phar-

maceutical, one could start a new hit generation program under the assumption that 

a random hit will have a different selectivity profile. As was done here, a TEVC 

oocyte control experiment can be used to detect electrophysiological off-target 

effects associated with the new TAAR1 hits. Under this approach, one would keep 

developing new hits until one was found that did not have electrophysiological off-

target effects. Another option is to bust Hoffmann-LaRoche’s TAAR1 patents (i.e.: 

develop analogs of their compounds that exploit loopholes in their patents).

Although the oocyte assays were performed only once as first pass activity 

screens, more evidence was found that TAAR1 has basal activity (constitutively 

active, for those who prefer that term) and 6 new TAAR1 inhibitors (inverse ago-

nists) were developed. Also, although 32a-c (FIGURE 6.9) would have to be re-
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synthesized, they would also be interesting compounds to assay as they would 

explore the SAR necessity of the terminal amine found in ET-92. By testing the 

compounds in oocytes injected with hTAAR1 and hCFTR encoding RNA and 

qualitatively comparing the response curves to the results of kinetic simulations 

based on three models, estimates of several kinetic parameters were found relative 

to the binding rate of Meth to inactive TAAR1. By approximating the basal activ-

ity of TAAR1 to be 5% of the total ligand-free TAAR1, the conversion rate of inac-

tive TAAR1 to active TAAR1 is less than 6% of the binding rate of Meth to 

inactive TAAR1. It is also estimated that the inhibitors bind to inactive TAAR1 

between 10 and 100 times faster than Meth. Based on this work there is no upper 

rate limit for the inhibitors binding to active TAAR1.
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Chapter 7 Methodology

7.1 Synthetic Methods

7.1.1 Equipment and Chemicals
NMR spectroscopy was performed on either a Bruker Avance II+ 400 MHz 

NMR Spectrometer or a Bruker Avance III 600 MHz NMR Spectrometer, both 

equipped with Bruker 5mm BBO probes, running Topspin software. 

HPLC performed on Agilent (Varian) prep HPLC with 25 mL pumpheads, run-

ning Galaxy Star software. Flash chromatography used a Teledyne Isco Combi-

Flash Rf-200 psi, model 68-5230-008. 

Chemicals were bought from Sigma-Aldrich, TCIAmerica, Fisher Scientific or 

EMD and used as is.

7.1.2 Compounds
IUPAC compound names were generated by ChemDraw Ultra 11.0. 

GX-YsZ refers to laboratory notebook, first page number of the procedure and 

step number of the final product. The G is shorthand Grandy, X is 1-5, Y is 001-

150 and Z is 1-50. For example, G4-120s5 is the 5th step of the procedure begin-

ning on page 120 in the laboratory notebook Grandy4.
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7.1.2.1 5-bromo-2-(hexyloxy)benzaldehyde: G4-12s16
5-bromo-2-hydroxybenzaldehyde (26.69 g, 132.77 mmol), K2CO3 (20.179 g, 

146 mmol) and anhydrous dimethylformamide (200 mL) were combined in a 

round bottom flask. While stirring, 1-bromohexane (24.108 g, 20.5 mL, 146 

mmol) was added, then the reaction was stirred for 18 hours. The reaction was 

worked-up by adding water (500 mL), then extracting with hexanes (4 x 250 mL). 

The combined hexane phases were extracted with 0.05 M NaOH (2 x 500 mL), 

then dried with MgSO4. After filtering off the MgSO4, the filtrate was concen-

trated via rotary evaporation to a yellow oil (36.8359 g, 97.3% yield). 

Optional: The oil was then distilled under vacuum (46 mTorr, bp 104-130 °C) 

using an unjacketed shortpath distillation head with Vigreux indentations. Color-

less oil (31.2881 g, 82.6% yield).

Note: The product tends to exist as a supercooled liquid but under just the right 

conditions, it will crystallize (mp >23 °C) however it will melt if disturbed (for 

example by the applied pressure of a spatula attempting to remove the solid). Also, 

as the product ages it tends to slowly turn yellow. 

1H-NMR į (ppm)(DMSO-d6): 10.286 (s, 1H), 7.790 (dd, J = 9.0 Hz, 3.0 Hz, 

1H), 7.724 (d, J = 3.0 Hz, 1H), 7.225 (d, J = 9.0 Hz, 1H), 4.126 (t, J = 6.6 Hz, 2H), 

1.73-1.79 (m, 2H), 1.41-1.46 (m, 2H), 1.26-1.34 (m, 4H), 0.870 (t, J = 6.9 Hz, 3H). 
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13C-NMR į (ppm)(DMSO-d6): 187.99, 160.08, 138.45, 129.69, 125.7, 116.33, 

112.23, 68.82, 30.87, 28.28, 25.02, 21.98, 13.84. 

7.1.2.2 Hexyl 2-(hexyloxy)-5-nitrobenzoate: G5-047s10
2-hydroxy-5-nitrobenzoic acid (30 mmol, 5.4963 g), K2CO3 (12.4389 g, 90 

mmol) and anhydrous dimethylformamide (50 mL) were combined in a round bot-

tom flask. While stirring, 1-bromohexane (14.8563 g, 12.63 mL, 90 mmol) was 

added, then the reaction was stirred for 25 hours at 80 °C. The reaction was 

worked-up by adding water (250 mL), then adjusting the pH =2 with 12 M HCl (~ 

6 mL). The mixture was extracted with hexanes (2 x 100 mL). The combined hex-

ane phases were washed with water (2 x 100 mL), and dried with MgSO4. After 

filtering off the MgSO4, the solution was concentrated by rotatory evaporation 

(10.23 g, 97.1% yield). 

1H-NMR į (ppm)(DMSO-d6): 8.45 (1 H, d, J = 2.95 Hz), 8.39 (1 H, dd, J = 

9.24, 2.98 Hz), 7.38 (1 H, d, J = 9.29 Hz), 4.27 (2 H, t, J = 6.54 Hz), 4.20 (2 H, t, J 

TABLE 7.1: High resolution mass spectrum (ESI) of 5-bromo-2-(hexyloxy)benzaldehyde (G4-012s16)

Species Chemical Formula Calculated m/z Observed m/z

[ M + H ]+ C13H18BrO2
+ 285.04847 285.04869

[ M + Na]+ C13H17BrNaO2
+ 307.03041 307.03115

[ M + CH3 ]+ C14H20BrO2
+ 299.06412 299.06453

[ M + CH3 + H + Na]+ C14H21BrNaO2
+ 323.06171 323.02624

[ M + MeOH + Na ]+a

a. This is the sodium cation form of the hemiacetal with MeOH.

C14H21BrNaO3
+ 339.05663 339.05742
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= 6.28 Hz), 1.64-1.80 (4 H, m), 1.35-1.50 (4 H, m), 1.25-1.35 (6 H, m), 0.84-0.92 

(6 H, m). 

7.1.2.3 (2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methanone: G5-090s11
(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methanone (G5-088s8, 0.897 g, 2.8 

mmol), K2CO3 (0.580 g, 4.2 mmol) and anhydrous dimethylformamide (5 mL) 

were combined in a round bottom flask. While stirring, 1-bromohexane (0.693 g, 

0.590 mL, 4.2 mmol) was added, then the reaction was stirred for 10 hours at 80 

°C. The reaction was worked-up by adding 2 M HCl (6 mL), then extracting with 

hexanes (3 x 5 mL). The combined hexane phases were washed with water (2 x 5 

mL), then filtered through a fine sintered glass funnel, and the filtrate dried with 

MgSO4. After filtering off the MgSO4, the solution was concentrated by rotatory 

evaporation to an oil.

1H-NMR į (ppm)(DMSO-d6): 8.28 (1 H, dd, J = 9.19, 2.90 Hz), 8.06 (1 H, d, J 

= 2.89 Hz), 7.31 (1 H, d, J = 9.24 Hz), ###5.76 (0 H, s), 4.18 (2 H, t, J = 6.27 Hz), 

3.46 (2 H, t, J = 6.55 Hz), 3.13 (2 H, t, J = 6.55 Hz), 1.76-1.92 (4 H, m), 1.67-1.76 

(2 H, m), 1.35-1.45 (2 H, m), 1.26-1.35 (4 H, m), 0.88 (3 H, t, J = 6.83 Hz).

13C-NMR į (ppm)(DMSO-d6): 163.9, 159.4, 140.4, 128.1, 126.3, 123.3, 

112.8, 69.0, 46.9, 45.3, 30.8, 28.2, 25.4, 24.9, 24.1, 22.0, 13.8. 
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7.1.2.4 2-(hexyloxy)-5-nitrobenzaldehyde: G5-120s11
2-hydroxy-5-nitrobenzaldehyde (30 mmol, 5.0136 g), K2CO3 (60 mmol, 

8.2926 g) and anhydrous dimethylformamide (100 mL) were combined in a round 

bottom flask. While stirring, 1-bromohexane (60 mmol, 9.9042 g, 8.422 mL) was 

added, then the reaction was stirred for 18 hours at 80 °C. The reaction was 

worked-up by adding water (250 mL), then extracting with ethyl acetate (50 mL). 

The aqueous phase was extracted with ethyl acetate (EtOAc, 3 x 100 mL). The 

ethyl acetate phases were combined then extracted with 0.6 M HCl (100 mL), then 

brine (50 mL). The organic phase was dried with MgSO4. After filtering off the 

MgSO4, the solution was concentrated by rotatory evaporation to an oil. The oil 

was purified by plug filtration through silica in a 150 mL sintered glass funnel, 

eluting with hexanes (150 mL) followed by dichloromethane (DCM, 500 mL), and 

collecting the hexanes and DCM eluants as separate fractions. The DCM fraction 

was concentrated by rotatory evaporation to a tan solid. The solid was dissolved in 

hexanes (100 mL) and DCM (10 mL), and the resulting solution was concentrated 

by rotatory evaporation at 40 °C until the DCM was removed. As the mixture 

cooled, crystals formed, which were filtered off using a medium sinter glass funnel 

and washed with hexanes (8.00 g, 53% yield). 

1H-NMR į (ppm)(DMSO-d6): 10.35 (1 H, s), 8.49 (1 H, dd, J = 9.23, 2.99 Hz), 

8.42 (1 H, d, J = 2.97 Hz), 7.48 (1 H, d, J = 9.27 Hz), 4.30 (2 H, t, J = 6.43 Hz), 
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1.78-1.87 (2 H, m), 1.42-1.52 (2 H, m), 1.30-1.36 (4 H, m), 0.89 (3 H, t, J = 6.84 

Hz).

13C-NMR į (ppm)(DMSO-d6): 187.9, 165.0, 140.6, 130.9, 123.9, 123.5, 

114.7, 69.8, 30.8, 28.2, 24.9, 22.0, 13.8. 

7.1.2.5 (5-bromo-2-(hexyloxy)phenyl)(phenyl)methanol: G4-19s13
In a 20 mL vial with a septum cap, 5-bromo-2-(hexyloxy)benzaldehyde (G4-

012s16, 0.5 g, 1.75 mmol) was dissolved in anhydrous tetrahydrofuran (THF, 10 

mL), and the resulting solution cooled to 0 °C. To the solution, phenylmagnesium-

bromide (1.0 M in THF, 2.6 mL, 2.6 mmol) was added dropwise, and the reaction 

was allowed to warm to room temperature over 4 hours. The reaction was acidified 

to pH 6 with 0.1 M HCl (~50 mL), then extracted with ethyl acetate (EtOAc, 3 x 

20 mL). The combined EtOAc phases were washed with water (2 x 25 mL), dried 

over MgSO4. After filtration, silica gel (~ 1 g) was added to the filtrate, then con-

centrated by rotatory evaporation to a powder. The powder was used as a dry-load 

for silica chromatography (FIGURE 7.1). Fractions 15-18 were combined and con-

centrated by rotatory evaporation to a white solid (0.4333 g, 68.2% yield).

1H-NMR į (ppm)(DMSO-d6): 7.6384 (d, J = 2.5 Hz, 1H), 7.3478 (dd, J = 8.7 

Hz, 2.5 Hz, 1H), 7.24 - 7.33 (m, 4H), 7.16 - 7.22 (m, 1H), 6.8906 (d, J = 8.7 Hz), 
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5.902 (d, J = 4.4 Hz, 1H), 5.835 (d, J = 4.4 Hz, 1H), 3.87-3.94 (m, 2H), 1.60-1.71 

(m, 2H), 1.30-1.38 (m, 2H), 1.23-1.30 (m, 4H), 0.874 (t, J = 6.76 Hz, 3H). 

TABLE 7.2: High resolution MS (ESI) of (5-bromo-2-(hexyloxy)(phenyl))(phenyl)methanol (G4-019s13)

Species Chemical Formula Calculated m/z Observed m/z

[ M - OH ]+ C19H22BrO+ 345.08485 345.08485

[ M + Na]+ C19H23BrNaO2
+ 345.08485 345.08485
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FIGURE 7.1: Chromatographic purification of G4-019s9.
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RediSep Column: Silica 40g
SN: E041039E8B947 Lot: 1920177010W
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A1 hexane
Solvent: B1 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Liquid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A1 hexane B1 ethyl acetate
1.0 0.0 A1 hexane B1 ethyl acetate
8.0 100.0 A1 hexane B1 ethyl acetate
1.0 100.0 A1 hexane B1 ethyl acetate
0.0 0.0 A1 hexane B1 ethyl acetate
1.0 0.0 A1 hexane B1 ethyl acetate
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7.1.2.6 (5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-74s14
Under an N2 atmosphere and in a round bottom flask, 5-(4-fluorophenoxy)-2-

(hexyloxy)benzaldehyde (1.5150 g, 4.79 mmol) was dissolved in anhydrous tetra-

hydrofuran (THF, 50 mL), then cooled to 0 °C. Phenylmagnesiumbromide (1.0 M 

in THF, 9.5 mL, 9.5 mmol, 2 eq) was added dropwise to the reaction. The reaction 

was allowed to warm to room temperature over at least 4 hours. The reaction was 

added to 2.4 M HCl (100 mL), then extracted with ethyl acetate (EtOAc, 3 x 25 

mL). The combined EtOAc phases were washed with water (2 x 100 mL), brine (1 

x 25 mL), and then dried over MgSO4. After filtration, silica gel (~5 g) was added 

to the filtrate, and then concentrated by rotatory evaporation to a powder. The 

powder was used as a dry-load for silica chromatography (see FIGURE 7.2). Frac-

tions 24-40 combined and concentrated by rotatory evaporation to a pale yellow 

oil (1.6727 g, 88.5% yield).

1H-NMR į (ppm)(DMSO-d6): 7.24 - 7.31 (m, 4H), 7.228 (d, J = 3.0 Hz, 1H), 

7.16 - 7.22 (m, 3H), 6.95 - 7.00 (m, 2H), 6.922 (d, J = 9.0 Hz, 1H), 6.848 (dd, J = 

9.0 Hz, 3.0 Hz, 1H), 5.912 (d, J = 9.3 Hz, 1H), 5.730 (d, J = 9.3 Hz, 1H), 3.85-3.93 

(m, 2H), 1.62-1.70 (m, 2H), 1.32-1.39 (m, 2H), 1.26-1.32 (m, 4H), 0.881 (t, J = 6.9 

Hz, 3H). 

13C-NMR į (ppm)(DMSO-d6): 157.64 (d, J = 239.9 Hz), 153.94, 151.09, 

149.73, 144.80, 135.38, 127.82, 126.65, 126.54, 119.20 (d, J = 7.5 Hz), 117.92, 
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117.16, 116.33 (d, J = 22.6 Hz), 112.58, 68.22, 67.90, 30.93, 28.69, 25.22, 22.03, 

13.8.

19F-NMR į (ppm)(DMSO-d6, with C6F6 as reference at -164.9 ppm): -123.37 

to -123.47. 

TABLE 7.3: High resolution MS (ESI) of 5-(4-fluorophenoxy)-2-(hexyloxy)(phenyl)methanol (G4-074s14)

Species Chemical Formula Calculated m/z Observed m/z

[ M + H ]+ C19H22FO3
+ 317.15475 371.16291

[ M + Na]+  C19H21FNaO3
+ 339.13669 339.13728

[ M + MeOH + Na ]+a

a. This is the sodium cation form of the hemiacetal with MeOH.

C20H25FNaO4
+ 371.16291 371.16289
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FIGURE 7.2: Chromatographic purification of G4-074s12.
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Run Length 24.0 CV (28.8 Min)

RediSep Column: Silica 40g
SN: E04103BAEBBF Lot: 1922189010X
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A1 hexane
Solvent: B1 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A1 hexane B1 ethyl acetate
1.0 0.0 A1 hexane B1 ethyl acetate

20.0 30.0 A1 hexane B1 ethyl acetate
2.0 30.0 A1 hexane B1 ethyl acetate
0.0 0.0 A1 hexane B1 ethyl acetate
1.0 0.0 A1 hexane B1 ethyl acetate

Peak # Start Tube End Tube
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2 A:19 A:23
3 A:24 A:40

Sample: grandy4-074s12 Rf 200 : OHSU COHEN RF200#1 Thursday 12 April 2012 09:36AM
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7.1.2.7 (2-(hexyloxy)-5-(phenylamino)phenyl)(phenyl)methanol: G2-100s9
In a 20 mL vial, 2-(hexyloxy)-5-(phenylamino)benzaldehyde (G5-135s7, 

0.309 g, 0.90 mmol) was dissolved in anhydrous tetrahydrofuran (THF, 5 mL). To 

the solution, phenylmagnesiumbromide (1.0 M in THF, 5 mL, 5 mmol) was added, 

and the reaction was stirred for an hour. Celite (~1 g) and 1 M NaOH (5 mL) was 

added to the reaction. The mixture was throughly mixed, filtered through a sin-

tered glass funnel, and washed with ethyl acetate (EtOAc, 15 mL). The filtrate was 

extracted with brine (50 mL). The brine phase was extracted with EtOAc (30 mL). 

The combined EtOAc phases were dried with MgSO4, and after filtering silica gel 

(~1 g) was added to the filtrate. This mixture was concentrated by rotatory evapo-

ration to a powder, which was used as a dry-load for silica chromatography (FIG-

URE 7.3). Fractions 17-49 were combined and concentrated by rotatory 

evaporation (0.2880 g, 89.5% yield).

1H-NMR į (ppm)(DMSO-d6): 7.85 (1 H, s), 7.29-7.35 (3 H, m), 7.23-7.29 (2 

H, m), 7.11-7.17 (3 H, m), 6.88-6.94 (3 H, m), 6.83 (1 H, d, J = 8.71 Hz), 6.66-6.72 

(1 H, m), 5.95 (1 H, d, J = 4.10 Hz), 5.64 (1 H, d, J = 4.08 Hz), 3.87 (2 H, td, J = 

6.28, 2.99 Hz), 1.62-1.72 (2 H, m), 1.34-1.42 (2 H, m), 1.26-1.34 (4 H, m), 0.88 (4 

H, t, J = 7.08 Hz).
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FIGURE 7.3: Chromatographic purification of G2-100s8.
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Run Length 22.5 CV (27.0 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

All Wavelength (orange): 200nm - 360nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
2.0 0.0 A2 hexane B2 ethyl acetate

12.5 50.0 A2 hexane B2 ethyl acetate
5.0 100.0 A2 hexane B2 ethyl acetate
2.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:11
2 A:12 A:16
3 A:17 A:21
4 A:22 A:49

Sample: grandy2-100 Rf 200 : OHSU COHEN RF200#1 Wednesday 31 October 2012 07:39PM
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7.1.2.8 (5-((4-fluorophenyl)amino)-2-(hexyloxy)phenyl)(phenyl)methanol: G2-
101s9
In a 20 mL vial with a septum cap, 5-((4-fluorophenyl)amino)-2-(hexy-

loxy)benzaldehyde (G5-136s7, 0.228 g, 0.72 mmol) was dissolved in anhydrous 

tetrahydrofuran (THF, 5 mL). To the solution, phenylmagnesiumbromide (1.0 M in 

THF, 5 mL, 5 mmol) was added, and the reaction was stirred for an hour. Celite 

(~1 g) and 1 M NaOH (5 mL) was added to the reaction. The mixture was 

throughly mixed, filtered through a sintered glass funnel, and washed with ethyl 

acetate (EtOAc, 15 mL). The filtrate was extracted with brine (50 mL). The brine 

phase was extracted with EtOAc (30 mL). The combined EtOAc phases were dried 

with MgSO4, and after filtering silica gel (~1 g) was added to the filtrate. This 

mixture was concentrated by rotatory evaporation to a powder, which was used as 

a dry-load for silica chromatography (FIGURE 7.4). Fractions 17-36 were com-

bined and concentrated by rotatory evaporation (0.2377 g, 83.9% yield).

1H-NMR į (ppm)(DMSO-d6): 7.81 (1 H, s), 7.30-7.34 (2 H, m), 7.23-7.29 (3 

H, m), 7.14-7.19 (1 H, m), 7.00 (2 H, t, J = 8.81 Hz), 6.85-6.93 (3 H, m), 6.81 (1 H, 

d, J = 8.76 Hz), 5.94 (1 H, d, J = 4.09 Hz), 5.64 (1 H, d, J = 4.09 Hz), 3.86 (2 H, td, 

J = 6.32, 3.30 Hz), 1.62-1.71 (2 H, m), 1.33-1.42 (2 H, s), 1.26-1.33 (4 H, m), 0.88 

(3 H, t, J = 6.58 Hz). 
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FIGURE 7.4: Chromatographic purification of G2-101s8.
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Run Length 14.5 CV (17.5 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

All Wavelength (orange): 200nm - 360nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
2.0 0.0 A2 hexane B2 ethyl acetate

12.5 50.0 A2 hexane B2 ethyl acetate
0.0 50.5 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:10
2 A:11 A:14
3 A:15 A:36

Sample: grandy2-101 Rf 200 : OHSU COHEN RF200#1 Wednesday 31 October 2012 08:24PM
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7.1.2.9 (5-((3-fluorophenyl)amino)-2-(hexyloxy)phenyl)(phenyl)methanol: 
G2-102s9
In a 20 mL vial with a septum cap, 5-((3-fluorophenyl)amino)-2-(hexy-

loxy)benzaldehyde (G5-137s7, 0.3480 g, 1.10 mmol) was dissolved in anhydrous 

tetrahydrofuran (THF, 5 mL). To the solution, phenylmagnesiumbromide (1.0 M in 

THF, 5 mL, 5 mmol) was added, and the reaction was stirred for an hour. Celite 

(~1 g) and 1 M NaOH (5 mL) was added to the reaction. The mixture was 

throughly mixed, filtered through a sintered glass funnel, and washed with ethyl 

acetate (EtOAc, 15 mL). The filtrate was extracted with brine (50 mL). The brine 

phase was extracted with EtOAc (30 mL). The combined EtOAc phases were dried 

with MgSO4, and after filtering, silica gel (~1 g) was added to the filtrate. This 

mixture was concentrated by rotatory evaporation to a powder, which was used as 

a dry-load for silica chromatography (FIGURE 7.5). Fractions 17-28 were com-

bined and concentrated by rotatory evaporation (0.3374 g, 78.0% yield).

1H-NMR į (ppm)(DMSO-d6): 8.14 (1 H, s), 7.39-7.41(2 H, m), 7.31-7.36 (4 

H, m), 7.13-7.15 (1 H, m), 6.95 (1 H, dd, J = 8.68, 2.80 Hz), 6.86 (1 H, d, J = 8.76 

Hz), 6.66-6.71 (1 H, m), 6.60 (1 H, dt, J = 12.24, 2.31 Hz), 6.45 (1 H, td, J = 8.20, 

2.48 Hz), 5.95 (1 H, d, J = 4.17 Hz), 5.68 (1 H, J = 4.16 Hz), 3.89 (2 H, td, J = 6.39, 

2.78 Hz), 1.64-1.72 (2 H, m), 1.33-1.42 (2 H, m), 1.27-1.33 (4 H, m), 0.88 (3 H, t, 

J = 6.64 Hz). 
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FIGURE 7.5: Chromatographic purification of G2-102s8.
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Run Length 17.6 CV (21.2 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

All Wavelength (orange): 200nm - 360nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
2.0 0.0 A2 hexane B2 ethyl acetate

12.5 50.0 A2 hexane B2 ethyl acetate
3.1 81.1 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:10
2 A:11 A:14
3 A:15 A:40
4 A:41 A:51
5 A:52 A:67

Sample: grandy2-102s8 Rf 200 : OHSU COHEN RF200#1 Wednesday 31 October 2012 08:55PM
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7.1.2.10 Hexyl 2-(hexyloxy)-5-(phenylamino)benzoate: G5-059s9
In a round bottom flask equipped with a drying tube open to the air, hexyl 5-

amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 mass% w/EtOAc, 3 mmol, 1.163 

g), phenylboronic acid (12 mmol, 1.4692 g), Cu(OAc)2 (6.9 mmol, 1.253 g), tri-

ethylamine (22.5 mmol, 2.277 g, 3.136 mL), powdered vacuum oven dried 4 Å 

molecular sieves (3 g) and anhydrous dichloromethane (DCM, 30 mL) were com-

bined. After stirring for 2 days, the reaction mixture was filtered through packed 

celite (~2 cm in a 60 mL sintered glass funnel), and washed with DCM. The fil-

trate was extracted with 5 M NH4OH (2 x 75 mL) followed by an extraction with 

water (50 mL). The DCM phase was dried with MgSO4, and after filtering, silica 

gel (~5 g) was added to the filtrate. This mixture was concentrated by rotatory 

evaporation to a powder, which was used as a dry-load for silica chromatography 

(FIGURE 7.6). Fractions 15-24 were combined and concentrated by rotatory evap-

oration (0.492 g, 41.3% yield).

Notes: In climates drier than Portland, Oregon, 1 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment at the same scale 

and using 3 g of powdered molecular sieves, increasing the amount of DCM used 

would improve the stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 8.01 (1 H, s), 7.36 (1 H, d, J = 2.90 Hz), 7.16-

7.24 (3 H, m), 7.05 (1 H, d, J = 8.92 Hz), 6.95 (2 H, dt, J = 7.96, 1.12 Hz), 6.77 (1 
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H, tt, J = 7.30, 1.00 Hz), 4.20 (2 H, t, J = 6.47 Hz), 3.96 (2 H, t, J = 6.32 Hz), 1.60-

1.74 (4 H, m), 1.36-1.49 (4 H, m), 1.23-1.36 (8 H, m), 0.82-0.93 (6 H, m).

13C-NMR į (ppm)(DMSO-d6): 166.1, 151.8, 144.2, 136.1, 129.2, 123.1, 

121.2, 120.1, 119.0, 115.5, 115.1, 68.8, 64.4, 31.0, 30.9, 28.8, 28.2, 25.2 (2 C), 

22.1, 22.0, 14.1, 13.9. 
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FIGURE 7.6: Chromatographic purification of G5-059s7.
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Run Length 34.0 CV (32.6 Min)

RediSep Column: Silica 24g
Flow Rate: 35 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 254nm
    Peak Width: 1 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes: self-packed column, 50g

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

20.0 25.0 A2 hexane B2 ethyl acetate
10.0 100.0 A2 hexane B2 ethyl acetate
2.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:4
2 A:5 A:11
3 A:12 A:33
4 A:34 A:34
5 A:35 A:41

Sample: grandy5-059s7 Rf 200 : OHSU COHEN RF200#1 Wednesday 22 August 2012 03:08PM
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7.1.2.11 Hexyl 5-((4-fluorophenyl)amino)-2-(hexyloxy)benzoate: G5-060s9
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, hexyl 5-amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 mass% w/EtOAc, 1 

mmol, 0.3960 g), 4-fluorophenylboronic acid (4 mmol, 0.5629 g), Cu(OAc)2 (2.3 

mmol, 0.313 g), triethylamine (7.5 mmol, 0.759 g, 1.045 mL), powdered vacuum 

oven dried 4 Å molecular sieves (1 g) and anhydrous dichloromethane (DCM, 10 

mL) were combined. After stirring for 2 days, the reaction mixture was filtered 

through packed celite (~2 cm in a 60 mL sintered glass funnel), and washed with 

DCM. The filtrate was extracted with 5 M NH4OH (2 x 75 mL) followed by an 

extraction with water (50 mL). The DCM phase was dried with MgSO4, and after 

filtering, silica gel (~5 g) was added to the filtrate. This mixture was concentrated 

by rotatory evaporation to a powder, which was used as a dry-load for silica chro-

matography (FIGURE 7.7). Fractions 7-20 were combined and concentrated by 

rotatory evaporation (0.1435 g, 34.5% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 7.96 (1 H, s), 7.30 (1 H, d, J = 2.91 Hz), 7.18 (1 

H, dd, J = 8.88, 2.93 Hz), 7.01-7.09 (3 H, m), 6.93-6.99 (2 H, m), 4.19 (2 H, t, J = 
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6.53 Hz), 3.95 (2 H, t, J = 6.33 Hz), 1.60-1.74 (4 H, m), 1.35-1.48 (4 H,m), 1.26-

1.34 (8 H, m), 0.83-0.91 (6 H, m).

13C-NMR į (ppm)(DMSO-d6): 166.1, (157.2 & 154.8 (1 C, d, J = 235.40 Hz), 

151.6, 140.6, 136.6, 122.4, 121.3, 119.4, 117.45 (1 C, d, J = 7.58 Hz), 115.7 (1 C, 

d, J = 22.33 Hz), 115.3, 68.9, 64.4, 31.0, 30.9, 28.8, 28.2, 25.2, 22.4, 22.1, 22.0, 

13.9 (2 C). 
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FIGURE 7.7: Chromatographic purification of G5-060s7.
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Run Length 34.3 CV (41.2 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes: self-packed column, 50g

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

20.0 25.0 A2 hexane B2 ethyl acetate
10.0 100.0 A2 hexane B2 ethyl acetate
2.5 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
0.8 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:6
2 A:7 A:20
3 A:21 A:36
4 A:37 A:45

Sample: grandy5-060s7 Rf 200 : OHSU COHEN RF200#1 Wednesday 22 August 2012 04:10PM
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7.1.2.12 Hexyl 5-((3-fluorophenyl)amino)-2-(hexyloxy)benzoate: G5-061s9
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, hexyl 5-amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 mass% w/EtOAc, 1 

mmol, 0.3909 g), 3-fluorophenylboronic acid (4 mmol, 0.5549 g), Cu(OAc)2 (2.3 

mmol, 0.313 g), triethylamine (7.5 mmol, 0.759 g, 1.045 mL), powdered vacuum 

oven dried 4 Å molecular sieves (1 g) and anhydrous dichloromethane (DCM, 10 

mL) were combined. After stirring for 2 days, the reaction mixture was filtered 

through packed celite (~2 cm in a 60 mL sintered glass funnel), and washed with 

DCM. The filtrate was extracted with 5 M NH4OH (2 x 75 mL) followed by an 

extraction with water (50 mL). The DCM phase was dried with MgSO4, and after 

filtering, silica gel (~5 g) was added to the filtrate. This mixture was concentrated 

by rotatory evaporation to a powder, which was used as a dry-load for silica chro-

matography (FIGURE 7.8). Fractions 7-21 were combined and concentrated by 

rotatory evaporation (0.1487 g, 35.8% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 8.27 (1 H, s), 7.38 (1 H, d, J = 2.88 Hz), 7.28 (1 

H, dd, J = 8.88, 2.88 Hz), 7.16-7.23 (1 H, m), 7.09 (1 H, d, J = 8.96 Hz), 6.71-6.75 

(1 H, m), 6.64 (1 H, dt, J = 11.92, 2.24 Hz), 6.49-6.55 (1 H, m), 4.20 (2 H, t, J = 
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6.44 Hz), 3.98 (2 H, t, J = 6.32 Hz), 1.61-1.75 (4 H, m), 1.35-1.49 (4 H, m), 1.26-

1.35 (8 H, m), 0.83-0.93 (6 H, m).

13C-NMR į (ppm)(DMSO-d6): 166.0, 163.2 (1 C, d, J = 240.83 Hz), 152.6, 

146.7 (1 C, d, J = 10.86 Hz), 134.8, 130.7 (1 C, d, J = 9.87 Hz), 124.5, 121.6, 

121.2, 115.0, 110.7, 104.7 (1 C, d, J = 21.35 Hz), 100.9 (1 C, d, J = 24.99 Hz), 

68.7, 64.5, 31.0, 30.9, 28.8, 28.2, 25.2 (2 C), 22.1, 22.0, 13.9 (2 C).
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FIGURE 7.8: Chromatographic purification of G5-061s7.
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Run Length 19.4 CV (23.3 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes: self-packed column, 50g

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

18.4 23.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:6
2 A:7 A:21

Sample: grandy5-061s7 Rf 200 : OHSU COHEN RF200#1 Wednesday 22 August 2012 05:13PM
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7.1.2.13 (2-(hexyloxy)-5-(phenylamino)phenyl)(pyrrolidin-1-yl)methanone: G5-
112s5
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone (G5-106s7, 0.99 

mmol, 0.2880 g), phenylboronic acid (1.5 mmol, 0.1859 g), Cu(OAc)2 (2.3 mmol, 

0.313 g), triethylamine (7.5 mmol, 0.759 g, 1.045 mL), powdered vacuum oven 

dried 4 Å molecular sieves (1 g) and anhydrous dichloromethane (DCM, 10 mL) 

were combined. After stirring for 4 days, the reaction mixture was filtered through 

a cotton ball packed into a 10 mL syringe body, and washed with DCM. Silica gel 

(~5 g) was added to the filtrate, and the resulting mixture was concentrated by 

rotatory evaporation to a powder, which was used as a dry-load for silica chroma-

tography (FIGURE 7.9). Fractions 1-19 were combined and concentrated by rota-

tory evaporation to an oil that later crystallized (0.1646 g, 44.9% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 7.92 (1 H, s), 7.16-7.22 (2 H, m), 7.07 (1 H, dd, 

J = 8.82, 2.78 Hz), 6.92-7.00 (3 H, m), 6.87 (1 H, d, J = 2.76 Hz), 6.72-6.78 (1 H, 

m), 3.94 (2 H, t, J = 6.23 Hz), 3.42 (2 H, t, J = 6.68 Hz), 3.11-3.21 (2 H, m), 1.74-
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1.89 (4 H, m), 1.60-1.69 (2 H, m), 1.35-1.44 (2 H, s), 1.24-1.35 (4 H, m), 0.88 (3 

H, t, J = 6.62 Hz).
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FIGURE 7.9: Chromatographic purification of G5-112s4.
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Run Length 19.0 Min

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 240.0 ml
Initial Waste: 0.0 ml
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes: self-packed column

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

14.0 100.0 A2 hexane B2 ethyl acetate
3.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:19

Sample: grandy5-112s4 Rf 200 : OHSU COHEN RF200#1 Monday 08 October 2012 02:32PM
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7.1.2.14 (5-((4-fluorophenyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-
yl)methanone: G5-113s5
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone (G5-106s7, 1.06 

mmol, 0.3065 g), 4-fluorophenylboronic acid (1.5 mmol, 0.2128 g), Cu(OAc)2 

(2.3 mmol, 0.313 g), triethylamine (7.5 mmol, 0.759 g, 1.045 mL), powdered vac-

uum oven dried 4 Å molecular sieves (1 g) and anhydrous dichloromethane (DCM, 

10 mL) were combined. After stirring for 4 days, the reaction mixture was filtered 

through a cotton ball packed into a 10 mL syringe body, and washed with DCM. 

Silica gel (~5 g) was added to the filtrate, and the resulting mixture was concen-

trated by rotatory evaporation to a powder, which was used as a dry-load for silica 

chromatography (FIGURE 7.10). Fractions 23-28 were combined and concentrated 

by rotatory evaporation to an oil that later crystallized (0.1578 g, 38.7% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 7.87 (1 H, s), 6.92-7.08 (6 H, m), 6.81 (1 H, d, J 

= 2.69 Hz), 3.93 (2 H, t, J = 6.22 Hz), 3.41 (2 H, t, J = 6.80 Hz), 3.12-3.19 (2 H, 

m), 1.74-1.90 (4 H, m), 1.60-1.69 (2 H, m), 1.33-1.44 (2 H, m), 1.26-1.33 (4 H, m), 

0.88 (3 H, t, J = 6.52 Hz). 
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FIGURE 7.10: Chromatographic purification of G5-113s4.
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Run Length 19.0 Min

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 240.0 ml
Initial Waste: 0.0 ml
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes: self-packed column

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

14.0 100.0 A2 hexane B2 ethyl acetate
3.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:18
2 A:23 A:38

Sample: grandy5-113s4 Rf 200 : OHSU COHEN RF200#1 Monday 08 October 2012 01:45PM
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7.1.2.15 (5-((3-fluorophenyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-
yl)methanone: G5-114s5
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone (G5-106s7, 0.83 

mmol, 0.2406 g), 3-fluorophenylboronic acid (1.5 mmol, 0.1396 g), Cu(OAc)2 

(2.3 mmol, 0.313 g), triethylamine (7.5 mmol, 0.759 g, 1.045 mL), powdered vac-

uum oven dried 4 Å molecular sieves (1 g) and anhydrous dichloromethane (DCM, 

10 mL) were combined. After stirring for 4 days, the reaction mixture was filtered 

through a cotton ball packed into a 10 mL syringe body, and washed with DCM. 

Silica gel (~5 g) was added to the filtrate, and the resulting mixture was concen-

trated by rotatory evaporation to a powder, which was used as a dry-load for silica 

chromatography (FIGURE 7.11). Fractions 1-15 were combined and concentrated 

by rotatory evaporation to an oil that later crystallized (0.1897 g, 59.4% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 8.19 (1 H, s), 7.15-7.23 (1 H, m), 7.12 (1 H, dd, 

J = 8.80, 2.72 Hz), 7.02 (1 H, d, J = 8.83 Hz), 6.90 (1 H, d, J = 2.74 Hz), 6.70-6.74 

(1 H, m), 6.63 (1 H, dt, J = 12.01, 2.29 Hz), 6.46-6.54 (1 H, m), 3.96 (2 H, t, J = 

6.23 Hz), 3.42 (2 H, t, J = 6.67 Hz), 3.12-3.20 (2 H, m), 1.75-1.89 (4 H, m), 1.61-

1.71 (2 H, m), 1.34-1.44 (2 H, m), 1.26-1.34 (4 H, m), 0.88 (3 H, t, J = 6.68 Hz). 
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FIGURE 7.11: Chromatographic purification of G5-114s4.
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Run Length 19.0 Min

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 240.0 ml
Initial Waste: 0.0 ml
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

14.0 100.0 A2 hexane B2 ethyl acetate
3.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:15
2 A:16 A:29

Sample: grandy5-114s4 Rf 200 : OHSU COHEN RF200#1 Tuesday 09 October 2012 02:37PM
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7.1.2.16 3-(1,3-dioxolan-2-yl)-4-(hexyloxy)-N-phenylaniline: G5-125s6
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, 3-(1,3-dioxolan-2-yl)-4-(hexyloxy)aniline (G5-124s5, 2.2 mmol, 0.582 g), 

phenylboronic acid (3.3 mmol, 0.4024 g), Cu(OAc)2 (4.8 mmol, 0.8718 g), tri-

ethylamine (16.5 mmol, 1.670 g, 2.3 mL), powdered vacuum oven dried 4 Å 

molecular sieves (1 g) and anhydrous dichloromethane (DCM, 10 mL) were com-

bined. After stirring for 3 days, the reaction mixture was slurried with 1:3 mixture 

of silica gel and celite (~5 g total), and DCM. The slurry was filtered through a sin-

tered glass funnel, and washed with DCM. Silica gel (~5 g) was added to the fil-

trate, and the resulting mixture was concentrated by rotatory evaporation to a 

powder, which was used as a dry-load for silica chromatography (FIGURE 7.12). 

Fractions 17-37 were combined and concentrated by rotatory evaporation to an oil 

that later crystallized (0.3039 g, 37.7% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 7.89 (1 H, s), 7.13-7.21 (3 H, m), 7.08 (1 H, dd, 

J = 8.74, 2.86 Hz), 6.94 (1 H, d, J = 8.80 Hz), 6.88-6.93 (2 H, m), 6.69-6.75 (1 H, 

m), 5.96 (1 H, s), 4.00-4.04 (2 H, m), 3.88-3.99 (4 H, m), 1.65-1.75 (2 H, m), 1.38-

1.48 (2 H, m), 1.28-1.35 (4 H, m), 0.89 (3 H, t, J = 6.77 Hz).
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13C-NMR į (ppm)(DMSO-d6): 151.3, 144.9, 135.9, 129.1, 126.6, 120.4, 

118.4, 117.9, 114.9, 113.5, 98.1, 68.5, 64.6, 30.9, 28.7, 25.1, 22.1, 13.9. 
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FIGURE 7.12: Chromatographic purification of G5-125s5.
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Run Length 23.7 CV (28.5 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

All Wavelength (orange): 200nm - 360nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes: self-packed column

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
2.0 0.0 A2 hexane B2 ethyl acetate

12.5 50.0 A2 hexane B2 ethyl acetate
5.0 100.0 A2 hexane B2 ethyl acetate
2.0 100.0 A2 hexane B2 ethyl acetate
2.2 100.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:5
2 A:6 A:16
3 A:17 A:47
4 A:55 A:57
5 A:58 B:1

Sample: grandy5-125s5 Rf 200 : OHSU COHEN RF200#1 Tuesday 23 October 2012 11:15AM
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7.1.2.17 3-(1,3-dioxolan-2-yl)-N-(4-fluorophenyl)-4-(hexyloxy)aniline: G5-126s6
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, 3-(1,3-dioxolan-2-yl)-4-(hexyloxy)aniline (G5-124s5, 2.66 mmol, 0.7052 g), 

4-fluorophenylboronic acid (4.05 mmol, 0.5667 g), Cu(OAc)2 (6 mmol, 1.090 g), 

triethylamine (20.25 mmol, 2.049 g, 2.822 mL), powdered vacuum oven dried 4 Å 

molecular sieves (1 g) and anhydrous dichloromethane (DCM, 10 mL) were com-

bined. After stirring for 3 days, the reaction mixture was slurried with 1:3 mixture 

of silica gel and celite (~5 g total), and DCM. The slurry was filtered through a sin-

tered glass funnel, and washed with DCM. Silica gel (~5 g) was added to the fil-

trate, and the resulting mixture was concentrated by rotatory evaporation to a 

powder, which was used as a dry-load for silica chromatography (FIGURE 7.13). 

Fractions 22-37 were combined and concentrated by rotatory evaporation to an oil 

that later crystallized (0.3211 g, 32.3% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 7.84 (1 H, s), 7.12 (1 H, d, J = 2.84 Hz), 6.99-

7.06 (3 H, m), 6.88-6.95 (3 H, m), 5.95 (1 H, s), 4.00-4.04 (2 H, m), 3.90-3.96 (4 

H, m), 1.65-1.73 (2 H, m), 1.37-1.48 (2 H, m), 1.28-1.35 (4 H, m), 0.85-0.92 (3 H, 

m). 
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FIGURE 7.13: Chromatographic purification of G5-126s5.
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Run Length 15.7 CV (18.8 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

All Wavelength (orange): 200nm - 360nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
2.0 0.0 A2 hexane B2 ethyl acetate

12.5 50.0 A2 hexane B2 ethyl acetate
1.2 61.7 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:6
2 A:7 A:21
3 A:22 A:45
4 A:46 A:69

Sample: grandy5-126s Rf 200 : OHSU COHEN RF200#1 Wednesday 24 October 2012 01:21PM
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7.1.2.18 3-(1,3-dioxolan-2-yl)-N-(3-fluorophenyl)-4-(hexyloxy)aniline: G5-127s6
In a 20 mL vial with a septum cap and equipped with a drying tube open to the 

air, 3-(1,3-dioxolan-2-yl)-4-(hexyloxy)aniline (G5-124s5, 2.64 mmol, 0.7011 g), 

3-fluorophenylboronic acid (4.05 mmol, 0.5667 g), Cu(OAc)2 (6 mmol, 1.090 g), 

triethylamine (20.25 mmol, 2.049 g, 2.822 mL), powdered vacuum oven dried 4 Å 

molecular sieves (1 g) and anhydrous dichloromethane (DCM, 10 mL) were com-

bined. After stirring for 3 days, the reaction mixture was slurried with 1:3 mixture 

of silica gel and celite (~5 g total), and DCM. The slurry was filtered through a sin-

tered glass funnel, and washed with DCM. Silica gel (~5 g) was added to the fil-

trate, and the resulting mixture was concentrated by rotatory evaporation to a 

powder, which was used as a dry-load for silica chromatography (FIGURE 7.14). 

Fractions 22-37 were combined and concentrated by rotatory evaporation to an oil 

that later crystallized (0.4405 g, 44.7% yield).

Notes: In climates drier than Portland, Oregon, 0.3 g of powdered molecular 

sieves should suffice. Also, if one were to repeat this experiment using 1 g of pow-

dered molecular sieves, increasing the amount of DCM used would improve the 

stirrability of the reaction.

1H-NMR į (ppm)(DMSO-d6): 8.17 (1 H, s), 7.10-7.21 (3 H, m), 6.98 (1 H, d, J 

= 8.75 Hz), 6.66-6.71 (1 H, m), 6.59 (1 H, dt, J = 12.09, 2.30 Hz), 6.44-6.51 (1 H, 

m), 5.97 (1 H, s), 3.89-4.04 (6 H, m), 1.66-1.75 (2 H, m), 1.38-1.49 (2 H, m), 1.31-

1.32 (4 H, m), 0.89 (3 H, t, J = 6.74 Hz). 
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FIGURE 7.14: Chromatographic purification of G5-127s5.
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Run Length 12.3 CV (14.7 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

All Wavelength (orange): 200nm - 360nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
2.0 0.0 A2 hexane B2 ethyl acetate

10.3 41.1 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:5
2 A:6 A:15
3 A:16 A:18
4 A:19 A:48

Sample: grandy5-127s5 Rf 200 : OHSU COHEN RF200#1 Wednesday 24 October 2012 01:52PM
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7.1.2.19 Hexyl 5-(benzylamino)-2-(hexyloxy)benzoate: G5-049s10
In a 20 mL vial, hexyl 5-amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 

mass% w/EtOAc, 3 mmol, 1.1669 g), and benzaldehyde (3 mmol, 0.3184 g, 0.305 

mL) were dissolved in methanol (10 mL). The solution was stirred for 15 minutes, 

then NaBH3CN (3.3 mmol, 0.2135 g) was slowly added, and the reaction stirred 

for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 mL), 

then extracting with hexanes (2 x 3 mL). The combined hexane phases were 

washed with water (3 mL), then dried with MgSO4. After filtering, basic alumina 

(~2 g) was added to the filtrate. The mixture was concentrated by rotatory evapora-

tion to a powder, which was used as a dry-load for silica chromatography (FIG-

URE 7.15). Fractions 3-8 were combined and concentrated by rotatory evaporation 

(0.6768 g, 54.7% yield).

1H-NMR į (ppm)(DMSO-d6): 7.28-7.37 (4 H, m), 7.19-7.25 (1 H, m), 6.82-

6.89 (2 H, m), 6.71 (1 H, dd, J = 8.83, 3.08 Hz), 6.10 (1 H, t, J = 6.10 Hz), 4.23 (2 

H, d, J = 6.09 Hz), 4.15 (2 H, t, J = 6.48 Hz), 3.84 (2 H, t, J = 6.42 Hz), 1.58-1.68 

(4 H, m), 1.34-1.43 (4 H, m), 1.25-1.34 (8 H, m), 0.84-0.91 (6 H, m).

13C-NMR į (ppm)(DMSO-d6): 166.6, 148.7, 142.5, 140.1, 128.2, 127.1, 

126.6, 121.6, 116.7, 115.9, 113.8, 69.4, 64.2, 46.9, 31.0, 30.9, 28.9, 28.2, 25.2 (2 

C), 22.1, 22.0, 13.9 (2 C).
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FIGURE 7.15: Chromatographic purification of G5-049s7.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

0

10

20

30

40

50

60

70

80

90

100

0.000.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

Absorbance Percent B

1 23 5 89 11 13 15 16 18 20 22 24 26 28 3132 34 36 38 40 42 45

Run Length 16.8 CV (16.1 Min)

RediSep Column: Silica 24g
Flow Rate: 35 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 254nm
    Peak Width: 1 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

15.8 78.9 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:2
2 A:3 A:8
3 A:9 A:15
4 A:16 A:31
5 A:32 A:45

Sample: grandy5-049s7 Rf 200 : OHSU COHEN RF200#1 Thursday 16 August 2012 02:04PM
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7.1.2.20 Hexyl 2-(hexyloxy)-5-((4-fluorobenzyl)amino)benzoate: G5-050s10
In a 20 mL vial, hexyl 5-amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 

mass% w/EtOAc, 3 mmol, 1.1674 g), and 4-fluorobenzaldehyde (3 mmol, 0.3723 

g, 0.3218 mL) were dissolved in methanol (10 mL). The solution was stirred for 15 

minutes, then NaBH3CN (3.3 mmol, 0.2101 g) was slowly added, and the reaction 

stirred for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 

mL), then extracting with hexanes (2 x 3 mL). The combined hexane phases were 

washed with water (3 mL), then dried with MgSO4. After filtering, basic alumina 

(~2 g) was added to the filtrate. The mixture was concentrated by rotatory evapora-

tion to a powder, which was used as a dry-load for silica chromatography (FIG-

URE 7.16). Fractions 12-25 were combined and concentrated by rotatory 

evaporation to an oil (0.6987 g, 54.2% yield).

1H-NMR į (ppm)(DMSO-d6): 7.34-7.40 (2 H, m), 7.10-7.17 (2 H, m), 6.86 (1 

H, d, J = 8.88 Hz), 6.83 (1 H, d, J = 2.96 Hz), 6.70 (1 H, dd, J = 8.92, 3.00 Hz), 

6.11 (1 H, t, J = 6.12 Hz), 4.21 (2 H, d, J = 6.04 Hz), 4.15 (2 H, t, J = 6.48 Hz), 3.84 

(2 H, t, J = 6.44 Hz), 1.58-1.68 (4 H, m), 1.33-1.43 (4 H, m), 1.23-1.33 (8 H, m), 

084-0.90 (6 H, m). 

13C-NMR į (ppm)(DMSO-d6):166.6, 161.0 (1 C, d, J = 241.76 Hz), 148.6 (1 

C, d, J = 44.51 Hz), 142.3, 136.2 (1 C, d, J = 2.89 Hz), 129.0 (1 C, d, J = 8.03 Hz), 

121.6, 116.7, 115.9, 115.0, 114.8, 113.9, 69.3, 64.2, 46.2, 31.0, 30.9, 28.9, 28.2, 

25.2 (2 C), 22.1, 22.0, 13.9 (2 C).
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FIGURE 7.16: Chromatographic purification of G5-050s7.
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Run Length 19.8 CV (19.0 Min)

RediSep Column: Silica 24g
SN: E041039E8A1DA Lot: 1920177010W
Flow Rate: 35 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 1 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

18.8 23.5 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:7
2 A:8 A:11
3 A:12 A:25
4 A:26 A:44
5 A:45 A:50

Sample: grndy5-050s7 Rf 200 : OHSU COHEN RF200#1 Thursday 16 August 2012 03:51PM
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7.1.2.21 Hexyl 2-(hexyloxy)-5-((pyridin-2-ylmethyl)amino)benzoate: G5-051s10
In a 20 mL vial, hexyl 5-amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 

mass% w/EtOAc, 3 mmol, 1.1627 g), and picolinaldehyde (3 mmol, 0.3213 g, 

0.2854 mL) were dissolved in methanol (10 mL). The solution was stirred for 15 

minutes, then NaBH3CN (3.3 mmol, 0.2215 g) was slowly added, and the reaction 

stirred for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 

mL), then extracting with hexanes (2 x 3 mL). The combined hexane phases were 

washed with water (3 mL), then dried with MgSO4. After filtering, silica (~2 g) 

was added to the filtrate. The mixture was concentrated by rotatory evaporation to 

a powder, which was used as a dry-load for silica chromatography (FIGURE 7.17). 

Fractions 31-54 were combined and concentrated by rotatory evaporation to an oil 

(0.68 g, 55.0% yield).

1H-NMR į (ppm)(DMSO-d6): 8.50-8.54 (1 H, m), 7.73 (1 H, td, J = 7.67, 1.82 

Hz), 7.35 (1 H, d, J = 7.86 Hz), 7.22-7.27 (1 H, m), 6.87 (1 H, d, J = 8.92 Hz), 6.85 

(1 H, d, J = 3.00 Hz), 6.71 (1 H, dd, J = 8.87, 3.02 Hz), 6.21 (1 H, t, J = 6.16 Hz), 

4.32 (2 H, d, J = 6.11 Hz), 4.15 (2 H, d, J = 6.48 Hz), 3.84 (2 H, t, J = 6.38 Hz), 

1.59-1.68 (4 H, m), 1.33-1.43 (4 H, m), 1.24-1.33 (8 H, m), 0.84-0.90 (6 H, m).

13C-NMR į (ppm)(DMSO-d6): 166.6, 159.7, 148.9, 142.3, 136.6, 122.0, 

121.7, 121.0, 116.7, 115.9, 113.8, 69.3, 64.2, 49.0, 31.0, 30.9, 28.9, 28.2, 25.2, 

25.1, 22.1, 22.0, 13.9 (2 C). 
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FIGURE 7.17: Chromatographic purification of G5-051s7.
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Run Length 25.3 CV (30.4 Min)

RediSep Column: Silica 40g
SN: E04103BADFD88 Lot: 1922189010X
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
2.0 0.0 A2 hexane B2 ethyl acetate

20.0 100.0 A2 hexane B2 ethyl acetate
2.5 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
0.8 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:7
2 A:8 A:14
3 A:15 A:19
4 A:20 A:30
5 A:31 A:54

Sample: grandy5-051s7 Rf 200 : OHSU COHEN RF200#1 Friday 17 August 2012 02:18PM
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7.1.2.22 Hexyl 5-((2-fluorobenzyl)amino)-2-(hexyloxy)benzoate: G5-052s10
In a 20 mL vial, hexyl 5-amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 

mass% w/EtOAc, 3 mmol, 1.1617 g), and 2-fluorobenzaldehyde (3 mmol, 0.3723 

g, 0.316 mL) were dissolved in methanol (10 mL). The solution was stirred for 15 

minutes, then NaBH3CN (3.3 mmol, 0.2070 g) was slowly added, and the reaction 

stirred for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 

mL), then extracting with hexanes (2 x 3 mL). The combined hexane phases were 

washed with water (3 mL), then dried with MgSO4. After filtering, basic alumina 

(~2 g) was added to the filtrate. The mixture was concentrated by rotatory evapora-

tion to a powder, which was used as a dry-load for silica chromatography (FIG-

URE 7.18). Fractions 13-31 were combined and concentrated by rotatory 

evaporation to an oil (0.7858 g, 61.0% yield).

1H-NMR į (ppm)(DMSO-d6): 7.39 (1 H, t, J = 7.72 Hz), 7.25-7.33 (1 H, m), 

7.11-7.21 (2 H, m), 6.88 (1H, d, J = 8.92 Hz), 6.87 (1 H, d, J = 3.00 Hz), 6.73 (1 H, 

dd, J = 8.88, 3.04 Hz), 6.07 (1 H, t, J = 6.18 Hz), 4.27 (2 H, d, J = 6.12 Hz), 4.15 (2 

H, t, J = 6.52 Hz), 3.85 (2 H, t, J = 6.34 Hz), 1.58-1.69 (4 H, m), 1.33-1.44 (4 H, 

m), 1.22-1.33 (8 H, m), 0.81-0.93 (6 H, m).

13C-NMR į (ppm)(DMSO-d6): 166.6, 160.3 (1 C, d, J = 243.65 Hz), 148.9, 

142.2, 129.3 (1 C, d, J = 4.55 Hz), 128.6 (1 C, d, J = 8.16 Hz), 126.6 (1 C, d, J = 

14.64 Hz), 124.3 (1 C, d, J = 3.20 Hz), 121.6, 116.6, 115.9, 115.0 (1 C, d, J = 21.31 
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Hz), 113.7, 69.3, 64.2, 40.4 (1 C, d, J = 3.88 Hz), 31.0, 30.9, 28.9, 28.2, 25.2 (2 C), 

22.1, 22.0, 13.9 (2 C). 
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FIGURE 7.18: Chromatographic purification of G5-052s7.
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Run Length 18.9 CV (18.1 Min)

RediSep Column: Silica 24g
SN: E041039E8CEB1 Lot: 1920177010W
Flow Rate: 35 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 254nm
    Peak Width: 1 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

17.9 22.4 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:2
2 A:3 A:8
3 A:9 A:12
4 A:13 A:31
5 A:32 A:58

Sample: grandy5-052s7 Rf 200 : OHSU COHEN RF200#1 Thursday 16 August 2012 03:11PM
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7.1.2.23 Hexyl 5-((3-fluorobenzyl)amino)-2-(hexyloxy)benzoate: G5-053s10
In a 20 mL vial, hexyl 5-amino-2-(hexyloxy)benzoate (G5-047s9, 82.95 

mass% w/EtOAc, 3 mmol, 1.1658 g), and 3-fluorobenzaldehyde (3 mmol, 0.3723 

g, 0.3182 mL) were dissolved in methanol (10 mL). The solution was stirred for 15 

minutes, then NaBH3CN (3.3 mmol, 0.20 g) was slowly added, and the reaction 

stirred for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 

mL), then extracting with hexanes (2 x 3 mL). The combined hexane phases were 

washed with water (3 mL), then dried with MgSO4. After filtering, basic alumina 

(~2 g) was added to the filtrate. The mixture was concentrated by rotatory evapora-

tion to a powder, which was used as a dry-load for silica chromatography (FIG-

URE 7.19). Fractions 11-26 were combined and concentrated by rotatory 

evaporation to an oil (0.7699 g, 59.7% yield).

1H-NMR į (ppm)(DMSO-d6): 7.32-7.40 (1 H, m), 7.19 (1 H, d, J = 7.68 Hz), 

7.11-7.17 (1 H, m), 7.04 (1 H, td, J = 8.61, 2.57 Hz), 6.87 (1 H, d, J = 8.86 Hz), 

6.84 (1 H, d, J = 2.96 Hz), 6.70 (1 H, dd, J = 8.87, 2.98 Hz), 6.17 (1 H, t, J = 6.21 

Hz), 4.26 (2 H, d, J = 6.16 Hz), 4.15 (2 H, t, J = 6.49 Hz), 3.84 (2 H, t, J = 6.37 Hz), 

1.58-1.68 (4 H, m), 1.33-1.43 (4 H, m), 1.24-1.33 (8 H, m), 0.83-0.90 (6 H, m).

13C-NMR į (ppm)(DMSO-d6): 166.6, 162.3 (1 C, d, J = 243.38 Hz), 148.9, 

143.5 (1 C, d, J = 6.75 Hz), 142.2, 130.1 (1 C, d, J = 8.24 Hz), 123.0 (1 C, d, J = 

2.34 Hz), 121.6, 116.3 (1 C, d, J = 88.03 Hz), 113.9, 113.7, 113.5 (1 C, d, J = 8.78 
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Hz), 113.2, 69.3, 64.2, 46.4, 31.0, 30.9, 28.9, 28.2, 25.2, 25.1, 22.1, 22.0, 13.9 (2 

C). 
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FIGURE 7.19: Chromatographic purification of G5-053s7.
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Run Length 22.6 CV (21.7 Min)

RediSep Column: Silica 24g
SN: E041037FE8E71 Lot: 1916333010W
Flow Rate: 35 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 1 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

20.0 25.0 A2 hexane B2 ethyl acetate
1.6 36.9 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:5
2 A:6 A:10
3 A:11 A:26
4 A:27 A:41
5 A:42 A:57

Sample: grandy5-053s7 Rf 200 : OHSU COHEN RF200#1 Thursday 16 August 2012 02:33PM
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7.1.2.24 (5-(benzylamino)-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone: G5-
103s10
In a 20 mL vial, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone 

(G5-101s5, 1 mmol, 0.290 g), and benzaldehyde (1 mmol, 0.1061 g, 0.102 mL) 

were dissolved in methanol (10 mL). The solution was stirred for 15 minutes, then 

NaBH3CN (1.1 mmol, 0.0691 g) was added, and the reaction stirred for another 18 

hours. The reaction was worked-up by adding 1 M NaOH (3 mL), then extracted 

with hexanes (5 x 3 mL). The combined hexane phases were washed with water (3 

mL), then dried with MgSO4. The hexane extractions were not effective, so the 

aqueous phase was diluted with water (15 mL), then extracted with ethyl acetate 

(EtOAc, 3 x 10 mL), and finally dried with MgSO4. After filtering, the haxene and 

EtOAc solutions were combined, and concentrated by rotatory evaporation to a 

yellow oil, which was purified by silica chromatography (FIGURE 7.20). Fractions 

15-30 were combined and concentrated by rotatory evaporation.

1H-NMR į (ppm)(DMSO-d6): 7.29-7.38 (4 H, m), 7.19-7.25 (1 H, m), 6.79 (1 

H, d, J = 8.83 Hz), 6.54 (1 H, dd, J = 8.83, 2.88 Hz), 6.40 (1 H, d, J = 2.86 Hz), 

5.95 (1 H, t, J = 6.06 Hz), 4.21 (2 H, d, J = 6.01 Hz), 3.82 (2 H, t, J = 6.22 Hz), 3.38 

(2 H, t, J = 6.82 Hz), 3.06 (2 H, m), 1.70-1.87 (4 H, m), 1.54-1.63 (2 H, m), 1.32-

1.39 (2 H, m), 1.23-1.32 (4 H, m), 0.84-0.90 (3 H, t, J = 6.66 Hz). 
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FIGURE 7.20: Chromatographic purification of G5-103s8.
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Run Length 24.2 CV (29.0 Min)

RediSep Column: Silica 40g
SN: E0410597A508F Lot: 2112259020X
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A1 hexane
Solvent: B1 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A1 hexane B1 ethyl acetate
0.8 0.0 A1 hexane B1 ethyl acetate

20.0 100.0 A1 hexane B1 ethyl acetate
2.5 100.0 A1 hexane B1 ethyl acetate
0.0 0.0 A1 hexane B1 ethyl acetate
0.8 0.0 A1 hexane B1 ethyl acetate

Peak # Start Tube End Tube
1 A:17 A:26

Sample: grandy5-103s8 Rf 200 : PDX-PEYTON RF200#1 Monday 01 October 2012 11:13AM

Page 1 of 1

1 2 3 4 5

678910

11 12 13 14 15

1617181920

21 22 23 24 25

2627282930

31 32 33 34 35

3637383940

41 42 43 44 45

4647484950

51 52 53 54 55

5657585960

61 62 63 64 65

6667686970

71 72 73 74 75

17181920

21 22 23 24 25

26

Rack A

16 mm x 150 mm Tubes

Product



129

Synthetic Methods

7.1.2.25 (5-((4-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-
yl)methanone: G5-108s10
In a 20 mL vial, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone 

(G5-106s7, 1 mmol, 0.2889 g), and 4-fluorobenzaldehyde (1 mmol, 0.1241 g, 

0.1073 mL) were dissolved in methanol (10 mL). The solution was stirred for 15 

minutes, then NaBH3CN (1.59 mmol, 0.10 g) was added, and the reaction stirred 

for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 mL), 

then extracted with ethyl acetate (EtOAc, 2 x 5 mL), and finally dried with 

MgSO4. After filtering, silica gel (~2 g) was added to the filtrate. The mixture was 

concentrated by rotatory evaporation to a powder, which was used as a dry-load for 

by silica chromatography (FIGURE 7.21). Fractions 1-27 were combined, using 

dichloromethane to aid the transfer, and concentrated by rotatory evaporation 

(0.4902 g gross, 42.9 mol% w/EtOAc by NMR, 77.23 mass%, ~ 0.3786 g net, 

~95% yield).

1H-NMR į (ppm)(DMSO-d6): 7.35-7.41 (2 H, m), 7.10-7.17 (2 H, m), 6.79 (1 

H, d, J = 8.83 Hz), 6.53 (1 H, d, J = 8.86, 2.90 Hz), 6.39 (1 H, d, J = 2.86 Hz), 5.96 

(1 H, t, J = 6.12 Hz), 4.20 (2 H, d, J = 6.14 Hz), 3.82 (2 H, t, J = 6.26 Hz), 3.37 (2 

H, t, J = 6.78 Hz), 3.00-3.13 (2 H, m), 1.70-1.83 (4 H, m), 1.54-1.65 (2 H, m), 

1.30-1.39 (2 H, m), 1.22-1.30 (4 H, m), 0.87 (3 H, t, J = 6.73 Hz). 
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FIGURE 7.21: Chromatographic purification of G5-108s7.
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Run Length 19.0 Min

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 240.0 ml
Initial Waste: 0.0 ml
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

14.0 100.0 A2 hexane B2 ethyl acetate
3.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:27

Sample: grandy5-108s7 Rf 200 : OHSU COHEN RF200#1 Wednesday 10 October 2012 02:52PM
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7.1.2.26 (5-((3-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-
yl)methanone: G5-109s8
In a 20 mL vial, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone 

(G5-106s7, 1 mmol, 0.2990 g), and 3-fluorobenzaldehyde (1 mmol, 0.1241 g, 

0.1061 mL) were dissolved in methanol (10 mL). The solution was stirred for 15 

minutes, then NaBH3CN (1.59 mmol, 0.10 g) was added, and the reaction stirred 

for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 mL), 

then extracted with ethyl acetate (EtOAc, 2 x 5 mL), and finally dried with 

MgSO4. After filtering, silica gel (~2 g) was added to the filtrate. The mixture was 

concentrated by rotatory evaporation to a powder, which was used as a dry-load for 

by silica chromatography (FIGURE 7.22). Fractions 1-18 were combined, using 

dichloromethane to aid the transfer, and concentrated by rotatory evaporation.

1H-NMR į (ppm)(DMSO-d6): 7.31-7.40 (1 H, m), 7.17-7.21 (1 H, m), 7.12-

7.17 (1 H, m), 7.00-7.07 (1 H, m), 6.80 (1 H, d, J = 8.84 Hz), 6.53 (1 H, dd, J = 

8.83, 2.89 Hz), 6.39 (1 H, d, J = 2.86 Hz), 6.02 (1 H, t, J = 6.23 Hz), 4.24 (2 H, d, J 

= 6.18 Hz), 3.82 (2 H, t, J = 6.22 Hz), 3.38 (2 H, t, J = 6.80 Hz), 3.06 (2 H, m), 

1.71-1.87 (4 H, m), 1.54-1.64 (2 H, m), 1.31-1.39 (2 H, m), 1.23-1.31 (4 H, m), 

0.87 (3 H, t, J = 6.72 Hz). 
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FIGURE 7.22: Chromatographic purification of G5-109s7.
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Run Length 19.0 Min

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 240.0 ml
Initial Waste: 0.0 ml
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

14.0 100.0 A2 hexane B2 ethyl acetate
3.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:18

Sample: grandy5-109s7 Rf 200 : OHSU COHEN RF200#1 Wednesday 10 October 2012 03:27PM
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7.1.2.27 (5-((2-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-
yl)methanone: G5-110s8
In a 20 mL vial, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone 

(G5-106s7, 1 mmol, 0.2857 g), and 2-fluorobenzaldehyde (1 mmol, 0.1241 g, 

0.1053 mL) were dissolved in methanol (10 mL). The solution was stirred for 15 

minutes, then NaBH3CN (1.59 mmol, 0.10 g) was added, and the reaction stirred 

for another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 mL), 

then extracted with ethyl acetate (EtOAc, 2 x 5 mL), and finally dried with 

MgSO4. After filtering, silica gel (~2 g) was added to the filtrate. The mixture was 

concentrated by rotatory evaporation to a powder, which was used as a dry-load for 

by silica chromatography (FIGURE 7.23). Fractions 1-19 were combined, using 

dichloromethane to aid the transfer, and concentrated by rotatory evaporation.

1H-NMR į (ppm)(DMSO-d6): 7.37-7.43 (1 H, m), 7.25-7.33 (1 H, m), 7.12-

7.21 (2 H, m), 6.81 (1 H, d, J = 8.82 Hz), 6.56 (1 H, dd, J = 8.82, 2.89 Hz), 6.42 (1 

H, d, J = 2.85 Hz), 5.91 (1 H, t, J = 6.15 Hz), 4.25 (2 H, d, J = 6.08 Hz), 3.83 (2 H, 

t, J = 6.20 Hz), 3.38 (2 H, t, J = 6.74 Hz), 3.03-3.12 (2 H, m), 1.71-1.88 (4 H, m), 

1.54-1.64 (2 H, m), 1.31-1.40 (2 H, m), 1.23-1.31 (4 H, m), 0.87 (3 H, t, J = 6.53 

Hz).
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FIGURE 7.23: Chromatographic purification of G5-110s7.
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RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 240.0 ml
Initial Waste: 0.0 ml
Air Purge: 1.0 min
Solvent: A2 hexane
Solvent: B2 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

14.0 100.0 A2 hexane B2 ethyl acetate
3.0 100.0 A2 hexane B2 ethyl acetate
0.0 0.0 A2 hexane B2 ethyl acetate
1.0 0.0 A2 hexane B2 ethyl acetate

Peak # Start Tube End Tube
1 A:1 A:19

Sample: grandy5-110s7 Rf 200 : OHSU COHEN RF200#1 Wednesday 07 November 2012 02:28PM
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7.1.2.28 (2-(hexyloxy)-5-((pyridin-2-ylmethyl)amino)phenyl)(pyrrolidin-1-
yl)methanone: G5-111s8
In a 20 mL vial, (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone 

(G5-106s7, 1 mmol, 0.2919 g), and picolinaldehyde (1 mmol, 0.1071 g, 0.0951 

mL) were dissolved in methanol (10 mL). The solution was stirred for 15 minutes, 

then NaBH3CN (1.59 mmol, 0.10 g) was added, and the reaction stirred for 

another 18 hours. The reaction was worked-up by adding 1 M NaOH (3 mL), then 

extracted with ethyl acetate (EtOAc, 2 x 5 mL), and finally dried with MgSO4. 

After filtering, silica gel (~2 g) was added to the filtrate. The mixture was concen-

trated by rotatory evaporation to a powder, which was used as a dry-load for by sil-

ica chromatography (FIGURE 7.23). Fractions 14-45 were combined, using 

dichloromethane to aid the transfer, and concentrated by rotatory evaporation.

1H-NMR į (ppm)(DMSO-d6): 8.52 (1 H, ddd, J = 4.82, 1.72, 0.90 Hz), 7.73 (1 

H, td, J = 7.66, 1.83 Hz), 7.36 (1 H, d, J = 7.86 Hz), 7.22-7.27 (1 H, m), 6.80 (1 H, 

d, J = 8.82 Hz), 6.54 (1 H, dd, J = 8.80, 2.95 Hz), 6.40 (1 H, d, J = 2.89 Hz), 6.08 (1 

H, t, J = 6.16 Hz), 4.31 (2 H, d, J = 6.12 Hz), 3.82 (2 H, t, J = 6.23 Hz), 3.03-3.09 

(2 H, m), 1.70-1.87 (4 H, m), 1.54-1.63 (2 H, m), 1.29-1.38 (2 H, m), 1.22-1.29 (4 

H, m), 0.87 (3 H, t, J = 6.67 Hz).

13C-NMR į (ppm)(DMSO-d6): 166.7, 159.8, 148.8, 145.4, 142.7, 136.6, 

128.6, 121.9, 121.1, 114.5, 113.2, 111.3, 68.7, 49.1, 46.8, 45.0, 30.9, 28.9, 25.4, 

25.2, 24.1, 22.1, 13.8.
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FIGURE 7.24: Chromatographic purification of G5-111s7.
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Run Length 17.8 CV (21.4 Min)

RediSep Column: Silica 40g
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A1 ethyl acetate
Solvent: B1 methanol

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

All Wavelength (orange): 200nm - 360nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes: self-packed column

Duration %B Solvent A Solvent B
0.0 0.0 A1 ethyl acetate B1 methanol
2.0 0.0 A1 ethyl acetate B1 methanol

12.5 12.5 A1 ethyl acetate B1 methanol
2.5 12.5 A1 ethyl acetate B1 methanol
0.0 0.0 A1 ethyl acetate B1 methanol
0.8 0.0 A1 ethyl acetate B1 methanol

Peak # Start Tube End Tube
1 A:1 A:13
2 A:14 A:19
3 A:20 A:45

Sample: grandy5-111s7 Rf 200 : OHSU COHEN RF200#1 Friday 09 November 2012 12:41PM
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7.1.2.29 Hexyl 5-amino-2-(hexyloxy)benzoate: G5-048s10
In a 75 mL #25 bushing pressure vessel (ChemGlass: CG-1880-43 with CG-

364-62) connected to a Parr hydrogenator, a solution of ethyl acetate (EtOAc, 30 

mL) and glacial acetic acid (60 mmol, 3.603 g, 3.43 mL) was added to hexyl 2-

(hexyloxy)-5-nitrobenzoate (G5-047s10, 29.1 mmol, 10.23 g) and 10% Pd/C 

(0.25 g). The vessel was sealed, then evacuated and filled with H2 to 55 PSI three 

times. The reaction mixture was stirred until the pressure ceased to drop. The mix-

ture was filtered through a packed plug of celite (~5 cm thick), and the plug 

washed with EtOAc (~30 mL) and water (~20 mL). Water (200 mL) was added to 

the filtrate, and the pH was adjusted with NaHCO3 until the pH = 8. After mixing 

throughly, the phases were separated, and the aqueous phase was extracted with 

EtOAc (2 x 50 mL). The combined EtOAc phases were washed with brine (100 

mL), then dried with MgSO4. After filtering, the filtrate was concentrated by rota-

tory evaporation to an oil. A 1H-NMR spectrum of the oil revealed that it was 

82.95 mass% product with the remainder EtOAc.

Note: Later experiments revealed that the use of acid was unnecessary.

1H-NMR į (ppm)(DMSO-d6): 6.85 (1 H, d, J = 2.88 Hz), 6.83 (1 H, d, J = 8.76 

Hz), 6.70 (1 H, dd, J = 8.73, 2.89 Hz), 4.86 (2 H, s), 4.16 (2 H, t, J = 6.52 Hz), 3.84 

(2 H, t, J = 6.34 Hz), 1.59-1.70 (4 H, m), 1.34-1.45 (4 H, m), 1.22-1.34 (8 H, m), 

0.82-0.93 (6 H, m). 
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7.1.2.30 (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone : G5-106s7
In a 75 mL #25 bushing pressure vessel (ChemGlass: CG-1880-43 with CG-

364-62) connected to a Parr hydrogenator, ethanol (30 mL) was added to (2-(hexy-

loxy)-5-nitrophenyl)(pyrrolidin-1-yl)methanone (G5-099s8, 7.27 mmol, 2.3298 

g) and 10% Pd/C (0.2387 g). The vessel was sealed, then evacuated and filled with 

H2 to 55 PSI three times. The reaction mixture was stirred until the pressure ceased 

to drop. The mixture was filtered through a packed plug of celite (~2 cm thick), 

and the plug washed with ethanol (~10 mL). The filtrate was concentrated by rota-

tory evaporation to an oil. The oil was dissolved in ethyl acetate (EtOAc, 10 mL), 

and the solution was extracted with water (2 x 5 mL). The EtOAc phase was dried 

with MgSO4. After filtering, the filtrate was concentrated by rotatory evaporation 

to an oil. A 1H-NMR spectrum of the oil revealed that it was 86.83 mass% product 

with the remainder EtOAc (2.1567 g gross, 1.8727 g net product, 88.7% yield).

1H-NMR į (ppm)(DMSO-d6): 6.75 (1 H, d, J = 8.70 Hz), 6.54 (1 H, dd, J = 

8.68, 2.80 Hz), 6.38 (1 H, d, J = 2.78 Hz), 4.74 (2 H, s), 3.82 (2 H, t, J = 6.23 Hz), 

3.39 (2 H, t, J = 6.88 Hz), 3.08-3.17 (2 H, m), 1.73-1.88 (4 H, m), 1.55-1.65 (2 H, 

m), 1.31-1.40 (2 H, m), 1.24-1.31 (4 H, m), 0.87 (3 H, t, J = 6.72 Hz). 

7.1.2.31 3-(1,3-dioxolan-2-yl)-4-(hexyloxy)aniline: G5-124s5
In a 75 mL #25 bushing pressure vessel (ChemGlass: CG-1880-43 with CG-

364-62) connected to a Parr hydrogenator, a solution of ethyl acetate (EtOAc, 20 

mL) and ethanol (5 mL) was added to 2-(2-(hexyloxy)-5-nitrophenyl)-1,3-dioxol-
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ane (G5-122s6, 5.73 g, 19.4 mmol) and 10% Pd/C (0.8 g). The vessel was sealed, 

then evacuated and filled with H2 to 55 PSI three times. The reaction mixture was 

stirred until the pressure ceased to drop. The mixture was filtered through a packed 

plug of celite (~5 cm thick), and the plug washed with EtOAc (~20 mL). The fil-

trate was concentrated by rotatory evaporation to an oil. A 1H-NMR spectrum of 

the oil revealed that it was 90.0 mass% product with the remainder EtOAc (5.28 g 

gross, 4.752 g net product, 92.3%).

1H-NMR į (ppm)(DMSO-d6): 6.72(1 H, d, J = 8.64 Hz), 6.69 (1 H, d, J = 2.84 

Hz), 6.52 (1 H, dd, J = 8.60, 2.89 Hz), 5.89 (1 H, s), 4.68 (2 H, s), 3.86-4.07 (4 H, 

m), 3.83 (2 H, m), 1.60-1.69 (2 H, m), 1.33-1.44 (2 H, m), 1.26-1.33 (4 H, m), 0.88 

(3 H, t, J = 6.58 Hz).

13C-NMR į (ppm)(DMSO-d6): 148.2, 142.2, 126.6, 115.4, 114.4, 113.3, 112.7, 

98.3, 69.1, 31.0, 30.9, 29.0, 28.9, 25.3, 25.2, 22.1, 16.0, 13.9 (2 C). 

7.1.2.32 2-(5-bromo-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-026s10
A 20 mL vial was charged with InBr3 (0.0117 g, 0.033 mmol), evacuated and 

filled with N2 followed by the addition of anhydrous dichloromethane (DCM, 2.5 

mL) and trimethylsilylcyanide (TMSCN, 0.069 mL, 54.5 mg, 0.550 mmol). In a 

round bottom flask, and under N2 atmosphere, (5-bromo-2-(hexyloxy)phe-

nyl)(phenyl)methanol (G4-019s14, 100 mg, 0.275 mmol) was dissolved in anhy-

drous DCM (2.5 mL). The solution containing G4-019s14 was added dropwise to 
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the InBr3/TMSCN solution at a rate of 2-3 drops per second to ensure no color 

change occurred, which is an indication of a side reaction that results in the trans-

fer of the n-hexyl group from the phenolic oxygen to the methanolic oxygen. After 

the addition of G4-019s14 was complete, the reaction was stirred for an additional 

30 minutes. Basic alumina (~1 g) was added to the reaction mixture, then the sol-

vent was removed by rotatory evaporation. The resulting powder was used as a dry 

load for basic alumina chromatography (FIGURE 7.25). Fraction 11 was concen-

trated by rotatory evaporation to a colorless oil that slowly crystallized to a white 

solid (0.0749 g, 73.2% yield).

Notes: Using silica, instead of basic alumina, as the stationary phase during 

chromatograpghy results in an impure product. Also, the use of a gradient is 

required to remove residual TMSCN (UV inactive at 254 nm and 280 nm).

1H-NMR į (ppm)(DMSO-d6): 7.50-7.65 (2 H, m), 7.30-7.42 (5 H, m), 7.03 (1 

H, d, J = 8.41 Hz), 5.77 (1 H, s), 3.90-4.00 (2 H, m), 1.59-1.68 (2 H, m), 1.21-1.36 

(6 H, m), 084-0.90 (3 H, m).

13C-NMR į (ppm)(DMSO-d6): 155.0, 135.1, 132.5, 131.3, 128.8, 127.9, 

127.4, 126.4, 119.4, 114.7, 111.6, 68.3, 36.4, 30.9, 28.3, 25.0, 22.0, 13.9. 

HRMS (ESI) m/z for C20H22BrNNaO+ [M+ Na]+: calcd, 394.07770; found, 

394.07787.
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FIGURE 7.25: Chromatographic purification of G4-026s8.
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RediSep Column: Al2O3 pH=7 24g
SN: E0410597B6D1A Lot: 2115308090W
Flow Rate: 30 ml/min
Equilibration Volume: 3.0 CV
Initial Waste: 0.0 CV
Air Purge: 0.5 min
Solvent: A1 hexane
Solvent: B1 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Liquid
Wavelength 1 (red): 254nm
    Peak Width: 1 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A1 hexane B1 ethyl acetate
2.0 0.0 A1 hexane B1 ethyl acetate

10.0 20.0 A1 hexane B1 ethyl acetate
2.0 20.0 A1 hexane B1 ethyl acetate
0.0 0.0 A1 hexane B1 ethyl acetate
1.0 0.0 A1 hexane B1 ethyl acetate
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1 A:11 A:13
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7.1.2.33 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-
079s9
A round bottom flask was charged with InBr3 (0.1496 g, 0.422 mmol), evacu-

ated and filled with N2, followed by the addition of anhydrous dichloromethane 

(DCM, 35 mL) and trimethylsilylcyanide (TMSCN, 1.056 mL, 0.837 g, 8.44 

mmol). In a separate round bottom flask, and under N2 atmosphere, (5-(4-fluoro-

phenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol (G4-074s14, 1.6659 g, 4.22 

mmol) was dissolved in anhydrous DCM (35 mL). The solution containing G4-

074s14, was added dropwise to the InBr3/TMSCN solution at a rate of 2-3 drops 

per second to ensure no color change occurred, which is an indication of a side 

reaction that results in the transfer of the n-Hexyl group from the phenolic oxygen 

to the methanolic oxygen. Towards the end of the reaction, additional TMSCN (0.5 

mL, 0.3965 g, 4.00 mmol) was added because a color change was occurring 

despite the slow rate of addition of G4-074s14. After the addition of G4-074s14 

was complete, the reaction was stirred for an additional 30 minutes. Basic alumina 

(~5 g) was added to the reaction mixture, then the solvent was removed by rotatory 

evaporation. The resulting powder was used as a dry load for basic alumina chro-

matography (see FIGURE 7.26). Fractions 1-51 were combined and concentrated 

by rotatory evaporation to a pale yellow oil (1.7027 g, 88.5% yield).

Notes: Using silica, instead of basic alumina, as the stationary phase during 

chromatograpghy results in an impure product (mixture of regenerated starting 

material (G4-074s14), the desired product and a side-product: 4-(4-fluorophe-
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noxy)-2-((hexyloxy)(phenyl)methyl)phenol). Also, the use of a gradient is 

required to remove residual TMSCN (UV inactive at 254 nm and 280 nm).

1H-NMR į (ppm)(DMSO-d6): 7.30 - 7.41 (m, 5H), 7.19 - 7.24 (m, 2H), 7.094 

(d, J = 3.0 Hz, 1H), 7.060 (d, J = 9.0 Hz, 1H), 7.04 - 7.005 (m, 2H), 6.994 (dd, J = 

9.0 Hz, 3.0 Hz, 1H), 5.748 (s, 1H), 3.90 - 3.96 (m, 2H), 1.61-1.67 (m, 2H), 1.30 - 

1.36 (m, 2H), 1.22-1.30 (m, 4H), 0.874 (t, J = 7.5 Hz, 3H). 

13C-NMR į (ppm)(DMSO-d6): 157.88 (d, J = 239.9 Hz), 153.47 (d. J = 1.5 

Hz), 151.86, 149.74, 135.37, 128.76, 127.75, 127.41, 125.37, 119.79, 119.76, 

119.62. 119.53 (d, J = 7.5 Hz), 116.47 (d, J = 22.6 Hz), 113.67, 68.33, 36.61, 

30.94, 28.50, 25.04, 21.99, 13.86.

19F-NMR į (ppm)(DMSO-d6, with C6F6 as reference at -164.9 ppm): -122.84 

to -122.94. 

HRMS (ESI) m/z for C26H26FNNaO2
+ [M+ Na]+: calcd, 426.18398; found, 

426.18435.
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FIGURE 7.26: Chromatographic purification of G4-079s8.
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RediSep Column: Al2O3 pH=7 160g
Flow Rate: 60 ml/min
Equilibration Volume: 3.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent: A1 hexane
Solvent: B1 ethyl acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.05 AU
Wavelength 2 (purple): 280nm

Run Notes:

Duration %B Solvent A Solvent B
0.0 0.0 A1 hexane B1 ethyl acetate
2.0 0.0 A1 hexane B1 ethyl acetate
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7.1.2.34 2-(5-bromo-2-(hexyloxy)phenyl)-1,3-dioxolane: G1-130s5
In a round bottom flask, equipped with a Dean-Stark trap and a reflux con-

denser, 5-bromo-2-(hexyloxy)benzaldehyde (25 mmol, 7.130 g), ethylene glycol 

(50 mmol, 3.105 g, 2.790 mL) and p-toluenesulfonic acid monohydrate (0.25 

mmol, 0.0475 g) were dissolve in toluene (100 mL). The reaction mixture was 

refluxed at 150 °C (pot temperature) for 18 hours. The reaction mixture was 

extracted with 0.1 M Na2CO3 (3 x 100 mL), and the toluene phase was dried with 

MgSO4. After filtering, the filtrate was concentrated by rotatory evaporation to an 

oil that smelled of toluene (8.3989 g). 

1H-NMR į (ppm)(CH2Cl2-d2): 7.64 (1 H, d, J = 2.62 Hz), 7.44 (1 H, dd, J = 

8.76, 2.63 Hz), 6.83 (1 H, d, J = 8.78 Hz), 6.11 (1 H, s), 3.98-4.18 (6 H, m), 1.78-

1.87 (2 H, m), 1.45-1.55 (2 H, m), 1.35-1.44 (4 H, m), 0.96 (3 H, t, J = 6.66 Hz). 

7.1.2.35 2-(2-(hexyloxy)-5-nitrophenyl)-1,3-dioxolane: G5-122s6
In a round bottom flask, equipped with a Dean-Stark trap and a reflux con-

denser, 2-(hexyloxy)-5-nitrobenzaldehyde (G5-120s11, 8.00 g, 31.57 mmol), eth-

ylene glycol (35 mmol, 2.1725 g, 1.95 mL) and p-toluenesulfonic acid 

monohydrate (0.0475 g) were dissolve in toluene (50 mL). The reaction mixture 

was refluxed at 150 °C (pot temperature) for 48 hours. Basic alumina (~5 g) was 

added to the reaction mixture, which was then concentrated by rotatory evapora-

tion to a paste. The paste was used as a dry-load for basic alumina chromatography 
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(FIGURE 7.27). Fractions 19-87 were combined, and concentrated by rotatory 

evaporation (5.73 g). 

1H-NMR į (ppm)(DMSO-d6): 8.27 (1 H, dd, J = 9.08, 3.00 Hz), 8.22 (1 H, d, J 

= 2.92 Hz), 7.28 (1 H, d, J = 9.14 Hz), 6.01 (1 H, s), 4.18 (2 H, t, J = 6.41 Hz), 

3.93-4.15 (4 H, m), 1.71-1.80 (2 H, m), 1.38-1.49 (2 H, m), 1.26-1.38 (4 H, m), 

0.88 (3 H, t, J = 6.75 Hz).

13C-NMR į (ppm)(DMSO-d6): 162.0, 140.2, 127.0, 126.6, 122.4, 112.7, 97.4, 

69.0, 64.9, 30.8, 28.2, 24.9, 22.0, 13.8. 
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FIGURE 7.27: Chromatographic purification of G5-122s5.
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7.1.2.36 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine 
hydrochloride: ET-92 (G4-091s14 and G5-002s12)
In a round bottom flask equipped with a reflux condenser, 2-(5-(4-fluorophe-

noxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile (G4-079s9, 0.0574 g, 0.142 

mmol) was dissolved in anhydrous tetrahydrofuran (THF, 5 mL). The reaction ves-

sel was evacuated and filled with N2, then 1 M BH3·DMS in THF (0.145 mL, 

0.145 mmol) was slowly added by syringe. The reaction was refluxed for 2.5 

hours, and then cooled to room temperature. Methanol (MeOH, 0.25 mL, 6.17 

mmol) was slowly added by syringe. After H2 evolution stopped, 3.0 M HCl in 

EtOAc (0.05 mL, 0.15 mmol) was added, and the mixture was heated to 40 °C for 

15 minutes. The mixture was then concentrate by rotatory evaporation, chasing 

with MeOH (3 x 5 mL) and ethyl acetate (1 x 2 mL). Next, diethyl ether (2 mL) 

was added, and the solution was then cool to -68 °C. After a precipitate form, the 

mixture was centrifuged, and the supernatant was decanted off. The white solid 

was dried under vacuum for 12 hours (0.0246 g, 38.9% yield).

1H-NMR į (ppm)(DMSO-d6): 7.895 (bs, 3H), 7.30 - 7.33 (m, 4H), 7.224 (d, J 

= 3.0, 1H), 7.23 -7.25 (m, 1H), 7.16 - 7.21 (m, 2H), 6.96 - 7.00 (m, 2H), 6.960 (d, 

J = 9.0 Hz, 1H), 6.841 (dd, J = 9.0 Hz, 3.0 Hz, 1H), 4.619 (t, J = 8.1 Hz, 1H), 3.83 

- 3.94 (m, 2H), 3.46 - 3.54 (m, 2H), 1.66-1.72 (m, 2H), 1.35 - 1.42 (m, 2H), 1.26-

1.35 (m, 4H), 0.891 (t, J = 6.9 Hz, 3H). 
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13C-NMR į (ppm)(DMSO-d6): 157.61 (d, J = 238.4 Hz), 154.04 (d. J = 22.2 

Hz), 152.46, 149.56, 140.32, 130.33, 128.48, 128.03, 126.90, 119.36, 118.92 (d, J 

= 9.1 Hz), 118.38, 116.29 (d, J = 24.1 Hz), 113.12, 68.07, 41.63, 42.08, 31.00, 

28.74, 25.21, 22.04, 13.91.

19F-NMR į (ppm)(DMSO-d6, with C6F6 as reference at -164.9 ppm): -123.54 

to -123.65.

HRMS (ESI) m/z for C26H31FNO2
+ [M+ H]+: calcd, 408.23333; found, 

408.23287.

7.1.2.37 (2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methanone: G5-098s6 and 
G5-088s8 
In a round bottom flask, 2-hydroxy-5-nitrobenzoic acid (30 mmol, 5.4956 g), 

and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (5.751 g, 30 

mmol) were dissolved in anhydrous dichloromethane (DCM, 100mL). The solu-

tion was stirred for 5 minutes, then pyrrolidine (120 mmol, 8.5544 g, 10 mL) was 

added. The reaction was stirred for 2 hours, then extracted with 0.72 M HCl (2 x 

56 mL) then the DCM phase was dried with MgSO4. After filtering, the filtrate 

was concentrated by rotatory evaporator.

1H-NMR į (ppm)(DMSO-d6): 11.56 (1 H, s), 8.16 (1 H, dd, J = 9.06, 2.91 Hz), 

8.06 (1 H, d, J = 2.88 Hz), 7.07 (1 H, d, J = 9.07 Hz), 3.46 (2 H, t, J = 6.74 Hz), 

3.23 (2 H, t, J = 6.74 Hz), 1.79-1.89 (4 H, m).
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13C-NMR į (ppm)(DMSO-d6): 164.5, 159.7, 139.3, 126.3, 125.9, 124.3, 

116.5, 47.0, 45.4, 25.4, 23.9. 

7.1.2.38 5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 and G4-70s6
CuI (6.3595 g, 35.01 mmol), 1,10-phenanthroline (6.3102 g, 35.02 mmol), KI 

(0.292 g, 1.757 mmol) and K2CO3 (9.6753 g, 70.00 mmol) were combined in a 

round bottom flask equipped with a reflux condenser, Dean-Stark trap, addition 

funnel and gas inlet valve. The apparatus was then purged and filled with N2. 

Anhydrous dimethylformamide (DMF, 70 mL) and toluene (20 mL) were added. 

The resulting mixture was stirred for 30 minutes. 5-bromo-2-(hexyloxy)benzal-

dehyde (G4-012s16, 5.0038 g, 17.55 mmol) was dissolved in anhydrous DMF (10 

mL), then added to the reaction vessel. Next, 4-fluorophenol (7.8464 g, 69.99 

mmol) was dissolved in anhydrous DMF (20 mL), then transferred to the addition 

funnel, whereupon one quarter of the solution was added to the reaction. The reac-

tion was heated to 120 °C for 2 hours. The remaining 4-fluorophenol solution was 

added dropwise, and heating was continued for a total of 19 hours. The reaction 

was cooled to room temperature, then water (500 mL) and hexanes (250 mL) were 

added. After mixing and breaking-up the solids, the mixture was filtered through a 

medium sintered glass funnel. The residue was washed with hexanes (200 mL) 

then discarded. The phases of the filtrate were separated. The aqueous phase was 

extracted with hexanes (3 x 250 mL). The combined hexane layers were washed 
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with 0.05 M NaOH (2 x 500 mL), then dried over MgSO4. After filtering, the fil-

trate was concentrated by rotatory evaporator to an oil (5.0759 g). 

The crude product was dissolved in dichloromethane and silica gel (~20 g) was 

added. The mixture was concentrated by rotatory evaporator to a powder. The 

powder was used as a dry load for silica chromatography (FIGURE 7.28). Frac-

tions A1-B73 were combined, then concentrated by rotatory evaporator to an oil 

(3.9806 g, ~75% desired product by NMR). 
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FIGURE 7.28: Chromatographic purification of G4-068s14.
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The final purification was done by 7 reverse phase HPLC (TABLE 7.4) runs, 

were a solution of the crude oil dissolved in methanol (15 mL) was used to load the 

HPLC column. The product was the last major peak observed at ~44 minute mark. 

The HPLC product fractions were combined, then concentrated by rotatory evapo-

rator to an orange oil (2.47 g, 44.5% yield). 

Notes: The toluene was an attempt to azeotropically remove any water in the 

reaction, however the vapor condensed before reaching the Dean-Stark trap, leav-

ing water droplets on the glassware. The toluene definitely doesn’t hurt the reac-

tion but it is unclear if it helps. Also, with a larger batch, it may be possible to 

distill the product under high vacuum. 

1H-NMRį (ppm)(DMSO-d6): 10.337 (s, 1H), į 7.380 (dd, J = 9.0 Hz, 3.0 Hz, 

1H), 7.189 (d, J = 3.0 Hz, 1H), 7.289 (d, J = 9.0 Hz, 1H), 7.210-7.26 (m, 2H), 7.03-

7.08 (m, 2H), 4.132 (t, J = 6.6 Hz, 2H), 1.75-1.81 (m, 2H), 1.42-1.49 (m, 2H), 

1.28-1.36 (m, 4H), 0.885 (t, J = 6.9 Hz, 3H). 

TABLE 7.4: HPLC Conditions used to purify G4-068s16

Column

Supelco 
Discovery 18 
(C18, 25 cm x 
21.2mm, 5µm 
(cat#:569226-

U))
Gradient 

(min.) % B

Flow 20 mL/min 0 50

Ȝ1 254 nm 5 50

Ȝ2 280 nm 55 100

Solvent A: water 60 100

Solvent B: acetonitrile - -
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13C-NMR į (ppm)(DMSO-d6): 188.54, 158.93, 157.36, 152.99, 150.35, 

126.94, 124.83, 120.16, 116.61, 115.96, 115.77, 68.90, 30.90, 28.43, 25.09, 22.00, 

13.86.

19F-NMR į (ppm)(DMSO-d6, with C6F6 as reference at -164.9 ppm): -122.17 

to -122.26. 

7.2 Biological Assays: TEVC Methods

7.2.1 In Vitro Transcription (used with permission from Dr. Yohei Norimatsu)
Human CFTR cDNA was used in a modified pBluescript vector (Agilent Tech-

nologies, Santa Clara, CA) containing T7 promoter and the 5’ untranslated region 

of the Xenopus ȕ-globin gene upstream from the coding sequence of CFTR. 

Human TAAR1 cDNA was used in the pcDNA3.1 vector (Life Technologies, 

Carlsbad, CA). The DNA sequences were confirmed by direct DNA sequencing. 

The cRNAs for Xenopus oocyte injection were synthesized using the mMessage 

mMachine T7-UltraTM in vitro transcription kit from Life Technologies (Carlsbad, 

CA). After transcription, poly(A) tails were added to the transcripts using E. coli 

TABLE 7.5: High resolution MS (ESI) of 5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde (G4-068s20)

Species Chemical Formula Calculated m/z Observed m/z

[ M + H ]+ C19H22FO3
+ 317.15475 371.16291

[ M + Na]+  C19H21FNaO3
+ 339.13669 339.13728

[ M + MeOH + Na ]+a

a. This is the sodium cation form of the hemiacetal with MeOH.

C20H25FNaO4
+ 371.16291 371.16289
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Poly(A) polymerase as described in the mMessage mMachine T7 Ultra transcrip-

tion kit.

7.2.2 Preparation and Microinjection of Oocytes (used with permission from Dr. 
Yohei Norimatsu)

Female Xenopus Laevis frogs were anesthetized by immersion in cold water 

containing Tricaine, 3mg/ml (Sigma Chemical Co., St. Louis, MO). The oocytes 

were removed through a small abdominal incision which was then closed by 4.0 

nylon suture. The follicular membranes were removed by mechanical agitation (1–

2 h) in a Ca2+-free solution containing 82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 

mM HEPES (pH 7.5), and 0.2 Wünsch units/mL Liberase Blendzyme TM (Roche 

Molecular Biochemicals, Indianapolis, IN). We selected Stage V and VI defollicu-

lated oocytes, which were then washed and incubated at 18 °C in a modified 

Barth’s solution (MBSH) containing 88 mM NaCl, 1 mM KCl, 0.82 mM MgSO4, 

0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 2.4 mM NaHCO3, 10 mM HEPES-Hemi-

Na, and 250 mg/L Amikacin with 150 mg/L Gentamicin (pH 7.5) until injection 

the next day. Each oocyte was injected with 50 nl of RNA solution containing 100 

ng/µl hTAAR1 and 10 ng/µl hCFTR cRNA. Injected oocytes were incubated at   

18 °C in 12-well plates containing MBSH. Injection pipettes were pulled from fil-

amented glass capillary tubes (Sutter Instrument, Novato CA) on a P-97 Flaming – 

Brown micropipette puller (Sutter Instrument, Novato CA). Typically, the oocytes 

were used 3 to 7 days after injection.
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7.2.3 Whole Cell Recordings (used with permission from Dr. Yohei Norimatsu)
Individual oocytes were placed in a 500 µL RC-1Z recording chamber (Warner 

Instruments, Hamden CT) and continuously perfused with Frog Ringer’s solution 

(~5 mL/min) via a siphon. The Ringer’s solution contained 98 mM NaCl, 2 mM 

KCl, 1 mM MgCl2, 1.8 mM CaCl2, and 5 mM HEPES (hemi-Na) (pH 7.4). 

Oocytes were initially maintained in the experimental chamber under open circuit 

conditions and experiments began when the transmembrane voltage was between -

25mV and -40 mV. The membrane potential was ramped from í120 mV to +60 

mV in 1.8 s.

Membrane currents were recorded from oocytes with a two-electrode voltage 

clamp using an amplifier (TEV-200; Dagan, Minneapolis, MN) at a room tempera-

ture of ~ 22°C. Current-injecting and potential-measuring electrodes had resis-

tances of ~1.0–3.0 Mȍ, when filled with 3 M KCl. The bath solution was 

connected to the ground via a low-resistance agarose bridge containing 2% aga-

rose in 3 M KCl. Current measurements were low-pass filtered at 0.5 kHz. Data 

acquisition was performed on a Pentium-based microcomputer using pCLAMP 

software and an analog-to-digital converter (Axon Instruments, Foster City, CA).

7.2.3.1 Compound Assays
A 100 mM stock solution of each test compound, in DMSO, was made, and 

then used to make the test solutions.
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With the exception of the first and last compound assay (FIGURE 7.4 and 

7.6(1), respectfully), all assays followed a head-to-head competition assay para-

digm where a 1.5 minute pulse of 10 µM Meth in Frog Ringer’s solution (FR) was 

perfused over an oocyte, injected with hTAAR1 and hCFTR encoding RNA, fol-

lowed by a wash-out period with FR. After the initial Meth pulse and wash-out, a 

series of 1.5 minute pulse of 10 µM Meth and test compound (1 nM to 10 µM) in 

FR followed by FR wash-out cycles were preformed. At the end of each experi-

ment, a 1.5 minute pulse of 10 µM forskolin and 10 µM of the test compound in 

FR followed by a FR wash-out period. The wash-out periods lasted between 15 

and 25 minutes (long enough for the conductance to stabilize).

The assay shown in FIGURE 4.4 used an oocyte injected with hTAAR1 and 

hCFTR encoding RNA. The Meth pulses were 1.5 minutes long and at 100 µM 

concentration in FR. Each Meth pulse was followed by a 15 minute FR wash-out 

period. After the second pulse of Meth, 20 µM G5-109s8 in FR was applied imme-

diately followed by a Meth pulse. No forskolin control was done in this experi-

ment.

The assay shown in FIGURE 4.6(1) used an oocyte injected with hCFTR 

encoding RNA. Between each pulse of testing solution, the oocyte was washed 

with FR. The 1.5 minute pulses used were: 5 µM forskolin, 10 µM G5-109s8, 10 
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µM Meth, and a combination of 5 µM forskolin and 10 µM G5-109s8. All of these 

solutions were made using FR.
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Appendix A NMR Spectra

A.1 5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16

FIGURE A.1: Structure of G4-012s16.

O
O

Br

5-bromo-2-(hexyloxy)benzaldehyde
G4-012s16

O

O

Br

H6
H5

H4

H3

H2
H1

H10 H9

H8
H7

C7
C8

C9

C10
C11

C12
C13

O

O
C6

C5
C4

C3
C2

Br

C1

TABLE A.1: 1H-NMR assignments for G4-012s16, 
600 MHz in DMSO (2.50 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H1 0.870 3 t 6.9

H2 & H3 1.309 4 m

H4 1.435 2 m

H5 1.763 2 m

H6 4.126 2 t 6.6

H7 7.225 1 d 9.0

H8 7.79 1 dd 9.0 3.0

H9 7.724 1 d 3.0

H10 10.286 1 s

TABLE A.2: 13C-NMR assignments for G4-012s16, 
600 MHz in DMSO (39.50 ppm)

Carbon ppm

C1 13.84

C2 21.98

C3 30.87

C4 25.02

C5 28.28

C6 68.82

C7 160.08

C8 116.33

C9 138.45

C10 112.23

C11 129.69

C12 125.7

C13 187.99
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5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16

FIGURE A.2: 1H-NMR of G4-012s16.
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5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16
FIGURE A.3: COSY-NMR of G4-012s16.
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5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16

FIGURE A.4: 13C-NMR of G4-012s16.
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5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16
FIGURE A.5: HSQC-NMR of G4-012s16.
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5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16
FIGURE A.6: HMBC-NMR of G4-012s16.
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5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16
FIGURE A.7: NOESY-NMR of G4-012s16.
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6

A.2 5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6

FIGURE A.8: Structure of G4-070s6.
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TABLE A.3: 1H-NMR assignments for G4-070s6, 
600 MHz in DMSO (2.50 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H1 0.885 3 t 6.9

H2 & H3 1.328 4 m

H4 1.456 2 m

H5 1.779 2 m

H6 4.132 2 t 6.6

H7 7.289 1 d 9.0

H8 7.380 1 dd 9.0 3.0

H9 7.189 1 d 3.0

H10 10.337 1 s

H11 7.231 2 m

H12 7.054 2 m

TABLE A.4: 13C-NMR assignments for G4-070s6, 
600 MHz in DMSO (39.50 ppm)

Carbon ppm

C1 13.86

C2 22.00

C3 30.90

C4 25.09

C5 28.43

C6 68.90

C7 157.36

C8 115.77

C9 126.94

C10 150.35

C11 115.96

C12 124.83

C13 188.54

C14 152.99

C15 116.61

C16 120.16

C17 158.93
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6

FIGURE A.9: 1H-NMR of G4-070s6.
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6
FIGURE A.10: COSY-NMR of G4-070s6.
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6

FIGURE A.11: 13C-NMR of G4-070s6.
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6
FIGURE A.12: HSQC-NMR of G4-070s6.
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6
FIGURE A.13: HMBC-NMR of G4-070s6.
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6
FIGURE A.14: NOESY-NMR of G4-070s6.

p
p

m

1
2

3
4

5
6

7
8

9
1
0

p
p

m1 2 3 4 5 6 7 8 9

1
0

N
A
M
E
 
 
 
 
 
G
r
a
n
d
y
4
-
0
7
0
s
6
 
o
n
 
t
h
e
 
6
0
0
 
M
H
z
 
N
M

E
X
P
N
O
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
5

P
R
O
C
N
O
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

D
a
t
e
_
 
 
 
 
 
 
 
 
 
 
2
0
1
2
0
4
0
9

T
i
m
e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
3
.
5
7

I
N
S
T
R
U
M
 
 
 
 
 
 
 
 
 
 
 
s
p
e
c
t

P
R
O
B
H
D
 
 
 
5
 
m
m
 
P
A
T
X
I
 
1
H
/

P
U
L
P
R
O
G
 
 
 
 
 
 
 
 
 
n
o
e
s
y
p
h

T
D
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
0
4
8

S
O
L
V
E
N
T
 
 
 
 
 
 
 
 
 
 
 
 
D
M
S
O

N
S
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
6

D
S
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4

S
W
H
 
 
 
 
 
 
 
 
 
 
 
 
6
4
9
3
.
5
0
6
 
H
z

F
I
D
R
E
S
 
 
 
 
 
 
 
 
 
3
.
1
7
0
6
5
7
 
H
z

A
Q
 
 
 
 
 
 
 
 
 
 
 
 
0
.
1
5
7
7
4
6
0
 
s
e
c

R
G
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
5
6

D
W
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
7
.
0
0
0
 
u
s
e
c

D
E
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
.
5
0
 
u
s
e
c

T
E
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
9
8
.
2
 
K

D
0
 
 
 
 
 
 
 
 
 
 
 
0
.
0
0
0
0
6
7
3
5
 
s
e
c

D
1
 
 
 
 
 
 
 
 
 
 
 
2
.
0
0
9
4
2
1
1
1
 
s
e
c

D
8
 
 
 
 
 
 
 
 
 
 
 
0
.
3
0
0
0
0
0
0
1
 
s
e
c

I
N
0
 
 
 
 
 
 
 
 
 
 
0
.
0
0
0
1
5
4
0
0
 
s
e
c

=
=
=
=
=
=
=
=
 
C
H
A
N
N
E
L
 
f
1
 
=
=
=
=
=
=
=
=

N
U
C
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
H

P
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
.
5
8
 
u
s
e
c

P
L
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
.
8
0
 
d
B

P
L
1
W
 
 
 
 
 
 
 
 
1
3
.
8
7
4
1
4
6
4
6
 
W

S
F
O
1
 
 
 
 
 
 
 
 
6
0
0
.
0
0
7
3
6
7
2
 
M
H
z

N
D
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

T
D
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
5
6

S
F
O
1
 
 
 
 
 
 
 
 
 
 
 
6
0
0
.
0
0
7
4
 
M
H
z

F
I
D
R
E
S
 
 
 
 
 
 
 
 
2
5
.
3
6
5
2
5
9
 
H
z

S
W
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
0
.
8
2
2
 
p
p
m

F
n
M
O
D
E
 
 
 
 
 
 
S
t
a
t
e
s
-
T
P
P
I

S
I
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
0
2
4

S
F
 
 
 
 
 
 
 
 
 
 
6
0
0
.
0
0
4
0
0
0
0
 
M
H
z

W
D
W
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q
S
I
N
E

S
S
B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2

L
B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
0
0
 
H
z

G
B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0

P
C
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
.
0
0

S
I
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
0
2
4

M
C
2
 
 
 
 
 
 
 
 
 
S
t
a
t
e
s
-
T
P
P
I

S
F
 
 
 
 
 
 
 
 
 
 
6
0
0
.
0
0
4
0
0
0
0
 
M
H
z

W
D
W
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q
S
I
N
E

S
S
B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2

L
B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
.
0
0
 
H
z

G
B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0

G
r
a
n
d
y
4
-
0
7
0
s
6
 
o
n
 
t
h
e
 
6
0
0
 
M
H
z
 
N
M
R

N
O
E
S
Y
 
i
n
 
D
M
S
O
 
(
2
.
5
 
p
p
m
)



180

5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6

FIGURE A.15: 19F-NMR of G4-070s6, 400 MHz with C6F6 (-164.0 ppm). 
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14

A.3 (5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14

FIGURE A.16: Structure of G4-074s14.
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TABLE A.5: 1H-NMR assignments for G4-074s14, 
600 MHz in DMSO (2.51 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H1 0.881 3 t 7.2

H2 & H3 1.289 4 m

H4 1.354 2 m

H5 1.660 2 m

H6 3.888 2 m

H7 6.922 1 d 9.0

H8 6.848 1 dd 9.0 3.0

H9 7.228 1 d 3.0

H10 5.912 1 d 9.3

H11 7.197 2 m

H12 6.974 2 m

H13 7.186 2 m

H14 7.287 2 m

H15 7.265 2 m

H16 5.730 1 d

TABLE A.6: 13C-NMR assignments for G4-074s14, 
600 MHz in DMSO (39.51 ppm)

Carbon ppma

a. Taken at the center of the peak.

Carbon ppma Typeb

b. Singlet unless noted otherwise.

J

C1 13.87 C12 135.38

C2 22.03 C13 68.22

C3 30.93 C14 153.94

C4 25.22 C15 119.20 d 7.5

C5 28.69 C16 116.33 d 22.6

C6 67.90 C17 157.64 d 239.9

C7 151.09 C18 144.80

C8 112.58 C19 126.65

C9 117.92 C20 127.82

C10 149.73 C21 126.54

C11 117.16
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14

FIGURE A.17: 1H-NMR of G4-074s14.
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14
FIGURE A.18: COSY-NMR of G4-074s14.
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14

FIGURE A.19: 13C-NMR of G4-074s14.
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14
FIGURE A.20: HSQC-NMR of G4-074s14.
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14
FIGURE A.21: HMBC-NMR of G4-074s14.
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14
FIGURE A.22: NOESY-NMR of G4-074s14.
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14

FIGURE A.23: 19F-NMR of G4-074s14, 400 MHz with C6F6 (-164.0 ppm).
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9

A.4 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9

FIGURE A.24: Structure of G4-079s9.
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TABLE A.7: 1H-NMR assignments for G4-079s9, 
600 MHz in DMSO (2.51 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H1 0.874 3 t 7.5

H2 & H3 1.269 4 m

H4 1.331 2 m

H5 1.644 2 m

H6 3.929 2 m

H7 7.060 1 d 9.0

H8 6.994 1 dd 9.0 3.0

H9 7.094 1 d 3.0

H10 5.748 1 s

H11 7.210 2 m

H12 7.015 2 m

H13 7.320 2 m

H14 7.385 2 m

H15 7.357 2 m

TABLE A.8: 13C-NMR assignments for G4-079s9, 
600 MHz in DMSO (39.52 ppm)

Carbon ppma

a. Taken at the center of the peak.

Carbon ppma Typeb

b. Singlet unless noted otherwise.

J

C1 13.86 C12 125.37

C2 21.99 C13 36.61

C3 30.94 C14 153.47 d 1.5

C4 25.04 C15 119.53 d 7.5

C5 28.50 C16 116.47 d 22.6

C6 68.33 C17 157.88 d 239.9

C7 151.86 C18 135.37

C8 113.67 C19 127.41

C9 119.76 C20 128.76

C10 149.74 C21 127.75

C11 119.79 C22 119.62
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9

FIGURE A.25: 1H-NMR of G4-079s9.
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9
FIGURE A.26: COSY-NMR of G4-079s9.
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9

FIGURE A.27: 13C-NMR of G4-079s9.
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9
FIGURE A.28: HSQC-NMR of G4-079s9.
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9
FIGURE A.29: HMBC-NMR of G4-079s9.
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9
FIGURE A.30: NOESY-NMR of G4-079s9.
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9

FIGURE A.31: 19F-NMR of G4-079s9, 400 MHz with C6F6 (-164.0 ppm).
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-

A.5 ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine 
hydrochloride: G4-091s14 

FIGURE A.32: Structure of ET-92 (G4-090s14).
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine 
hydrochloride

ET-92
G4-091s14

Cl-

H2+
N

H17

H16
NH2

TABLE A.9: 1H-NMR assignments for G4-090s14, 
600 MHz in DMSO (2.50 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H1 0.891 3 t 6.9

H2 & H3 1.303 4 m

H4 1.384 2 m

H5 1.690 2 m

H6 3.887 2 m

H7 6.690 1 d 9.0

H8 6.841 1 dd 9.0 3.0

H9 7.224 1 d 3.0

H10 4.619 1 t 8.1

H11 7.183 2 m

H12 6.975 2 m

H13 7.239 2 m

H14 & H15 7.314 4 m

H16 3.500 2 m

H17 7.895 3 b.s.

TABLE A.10: 13C-NMR assignments for G4-
090s14, 600 MHz in DMSO (39.52 ppm)

Carbon ppma

a. Taken at the center of the peak.

Carbon ppma Typeb

b. Singlet unless noted otherwise.

J

C1 13.91 C12 130.33

C2 22.04 C13 42.08

C3 31.00 C14 154.04 d 2.2

C4 25.21 C15 118.92 d 9.1

C5 28.74 C16 116.29 d 24.1

C6 68.07 C17 157.61 d 238.4

C7 149.56 C18 140.32

C8 113.12 C19 128.03

C9 118.38 C20 128.48

C10 152.46 C21 126.90

C11 119.36 C22 41.63
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-

FIGURE A.33: 1H-NMR of ET-92 (G4-090s14).
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-
FIGURE A.34: COSY-NMR of ET-92 (G4-090s14).
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-

FIGURE A.35: 13C-NMR of ET-92 (G4-090s14).
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-
FIGURE A.36: HSQC-NMR of ET-92 (G4-090s14).
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-
FIGURE A.37: HMBC-NMR of ET-92 (G4-090s14).
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-
FIGURE A.38: NOESY-NMR of ET-92 (G4-090s14).
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-

FIGURE A.39: 19F-NMR of ET-92 (G4-090s14), 400 MHz with C6F6 (-164.0 ppm).
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8

A.6 (2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8

FIGURE A.40: Structure of G5-088s8.
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methanone
G5-088s8

H0

TABLE A.11: 1H-NMR assignments for G5-088s8, 
400 MHz in DMSO (2.50 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H0 11.56 1 s

H1 7.07 1 d 9.07

H2 8.16 1 dd 9.06 2.91

H3 8.06 1 d 2.88

H4 3.23 2 t 6.74

H5 & H6 1.84 4 m

H7 3.46 2 t 6.74

TABLE A.12: 13C-NMR assignments for G5-088s8, 
400 MHz in DMSO (39.52 ppm)

Carbon ppm

C1 159.74

C2 116.50

C3 126.26

C4 139.33

C5 125.91

C6 124.29

C7 164.47

C8 45.43

C9 23.94

C10 25.38

C11 46.95
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8

FIGURE A.41: 1H-NMR of G5-088s8.
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8
FIGURE A.42: COSY-NMR of G5-088s8.
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8

FIGURE A.43: 13C-NMR of G5-088s8.
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8
FIGURE A.44: HSQC-NMR of G5-088s8.
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8
FIGURE A.45: HMBC-NMR of G5-088s8.
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(2-hydroxy-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-088s8
FIGURE A.46: NOESY-NMR of G5-088s8.
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(2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10

A.7 (2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10

FIGURE A.47: Structure of G5-090s10.
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TABLE A.13: 1H-NMR assignments for G5-
090s10, 400 MHz in DMSO (2.50 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H1 7.31 1 d 9.24

H2 8.28 1 dd 9.19 2.90

H3 8.06 1 d 2.89

H4 3.13 2 t 6.55

H5 & H6 1.84 4 m

H7 3.46 2 t 6.55

H8 0.88 3 t 6.83

H9 & H10 1.30 4 m

H11 1.39 2 m

H12 1.71 2 m

H13 4.18 2 t 6.27

TABLE A.14: 13C-NMR assignments for G5-
090s10, 400 MHz in DMSO (39.52 ppm)

Carbon ppm Carbon ppm

C1 159.38 C10 25.36

C2 112.81 C11 46.85

C3 126.30 C12 13.79

C4 140.42 C13 22.02

C5 123.28 C14 30.77

C6 128.11 C15 24.93

C7 163.89 C16 28.25

C8 45.28 C17 68.99

C9 24.06 - -
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(2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10

FIGURE A.48: 1H-NMR of G5-090s10.
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(2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10
FIGURE A.49: COSY-NMR of G5-090s10.
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(2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10

FIGURE A.50: 13C-NMR of G5-090s10.
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(2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10
FIGURE A.51: HSQC-NMR of G5-090s10.
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(2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10
FIGURE A.52: HMBC-NMR of G5-090s10.
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(2-(hexyloxy)-5-nitrophenyl)(pyrrolidin-1-yl)methone: G5-090s10
FIGURE A.53: NOESY-NMR of G5-090s10.
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(5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-106s7

A.8 (5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-106s7

FIGURE A.54: Structure of G5-106s7.
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N

H1

H2

H3

H4

H5

H6

H7

H13

H12

H11

H10

H9

H8

H2N

(5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methanone
G5-106s7

HN

H14

TABLE A.15: 1H-NMR assignments for G5-106s7, 
400 MHz in DMSO (2.50 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb

H1 6.75 1 d 8.70

H2 6.54 1 dd 8.68 2.80

H3 6.38 1 d 2.78

H4 3.13 2 m

H5 & H6 1.81 4 m

H7 3.39 2 t 6.88

H8 0.87 3 t 6.72

H9 & H10 2.89 4 m

H11 1.36 2 m

H12 1.60 2 m

H13 3.82 2 t 6.23

H14 2 s
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(5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-106s7

FIGURE A.55: 1H-NMR of G5-106s7.
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(5-amino-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-106s7
FIGURE A.56: COSY-NMR of G5-106s7.
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(5-((3-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-109s8

A.9 (5-((3-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone:      
G5-109s8

FIGURE A.57: Structure of G5-109s8.

 
TABLE A.16: 1H-NMR assignments for G5-109s8, 400 MHz in DMSO (2.50 ppm)

Proton ppma

a. Taken at the center of the peak.

Number Type Ja Jb Proton ppma Number Type Ja Jb

H1 6.80 1 d 8.84 H12 1.60 2 m

H2 6.53 1 dd 8.83 2.89 H13 3.82 2 t 6.22

H3 6.39 1 d 2.86 H14 6.02 1 t 6.23

H4 3.06 2 m H15 4.24 2 d 6.18

H5 & H6 1.78 4 m H16 7.15 1 m

H7 3.38 2 t 6.80 H17 7.04 1 m

H8 0.87 3 m 6.72 H18 7.36 1 m

H9 & H10 1.27 4 m H19 7.20 1 m

H11 1.35 2 m - - - - - -
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(5-((3-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-109s8

FIGURE A.58: 1H-NMR of G5-109s9.
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(5-((3-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-109s8
FIGURE A.59: COSY-NMR of G5-109s9.
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(5-((3-fluorobenzyl)amino)-2-(hexyloxy)phenyl)(pyrrolidin-1-yl)methone: G5-109s8

FIGURE A.60: 19F-NMR of G5-109s9, 400 MHz with C6F6 (-164.0 ppm).
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Appendix B High Resolution Mass Spectrum

B.1 5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16

FIGURE B.1: Ionic forms of G4-012s16.

O

O

Br
1

Chemical Formula: C13H18BrO2+
Exact Mass: 285.05

m/z: 285.05 (100.0%), 287.05 (97.7%), 286.05 (14.1%), 288.05 (14.0%

O

O

Br
2

Chemical Formula: C14H20BrO2+
Exact Mass: 299.06

m/z: 299.06 (100.0%), 301.06 (97.3%), 300.07 (15.4%), 302.07 (15.1%)

H

O

O

Br
3

Chemical Formula: C14H21BrNaO3+
Exact Mass: 339.06

m/z: 339.06 (100.0%), 341.06 (99.0%), 340.06 (15.5%), 342.06 (15.2%)

OH Na O

O

Br
4

Chemical Formula: C13H17BrNaO2+
Exact Mass: 307.03

m/z: 307.03 (100.0%), 309.03 (97.3%), 308.03 (14.1%), 310.03 (13.8%)

Na

O

O

Br
5

Chemical Formula: C14H21BrNaO2+
Exact Mass: 323.06

m/z: 323.06 (100.0%), 325.06 (97.3%), 324.07 (15.5%), 326.06 (14.8%)

Na
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5-bromo-2-(hexyloxy)benzaldehyde: G4-012s16
FIGURE B.2: Mass spectrum of G4-012s16. The red numbers refer to the ionic forms in FIGURE B.1.
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6

B.2 5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6

FIGURE B.3: Ionic forms of G4-070s6.

O

O

O

H
O

O

O

Na

O

O

O

Na

F
1

Chemical Formula: C19H22FO3+
Exact Mass: 317.15

m/z: 317.16 (100.0%), 318.16 (20.9%), 319.16 (2.7%)

F
2

Chemical Formula: C19H21FNaO3+
Exact Mass: 339.14

m/z: 339.14 (100.0%), 340.14 (20.9%), 341.14 (2.6%)

F
3

Chemical Formula: C20H25FNaO3+
Exact Mass: 355.17

m/z: 355.17 (100.0%), 356.17 (22.0%), 357.18 (2.3%)
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5-(4-fluorophenoxy)-2-(hexyloxy)benzaldehyde: G4-068s20 & G4-070s6
FIGURE B.4: Mass spectrum of G4-068s20. The red numbers refer to the ionic forms in FIGURE B.3.
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14

B.3 (5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14

FIGURE B.5: Ionic forms of G4-074s14.

O

O

O

O

O

H

Na

F F
1

Chemical Formula: C25H26FO2+
Exact Mass: 377.19

m/z: 377.19 (100.0%), 378.20 (27.4%), 379.20 (4.0)

2
Chemical Formula: C25H27FNaO3+

Exact Mass: 417.18
m/z: 417.18 (100.0%), 418.19 (27.5%), 419.19 (4.2%)
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(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)(phenyl)methanol: G4-074s14
FIGURE B.6: Mass spectrum of G4-074s14. The red numbers refer to the ionic forms in FIGURE B.5.
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9

B.4 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9

FIGURE B.7: Ionic form of G4-079s9.

O

O

F

N Na

1
Chemical Formula: C26H26FNNaO2+

Exact Mass: 426.18
m/z: 426.18 (100.0%), 427.19 (28.5%), 428.19 (4.3%)
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2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylacetonitrile: G4-079s9
FIGURE B.8: Mass spectrum of G4-079s9. The red number refers to the ionic form in FIGURE B.7.
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-

B.5 ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine 
hydrochloride: G4-091s14

FIGURE B.9: Ionic form of ET-92 (G4-090s14).

O

O

F

NH3

1
Chemical Formula: C26H31FNO2+

Exact Mass: 408.23
m/z: 408.23 (100.0%), 409.24 (28.6%), 410.24 (4.3%)
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ET-92: 2-(5-(4-fluorophenoxy)-2-(hexyloxy)phenyl)-2-phenylethanamine hydrochlo-
FIGURE B.10: Mass spectrum of ET-92. The red number refers to the ionic form in FIGURE B.9.
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