
Portland State University Portland State University

PDXScholar PDXScholar

University Honors Theses University Honors College

Winter 2020

Experimenting with a Biologically Plausible Neural Experimenting with a Biologically Plausible Neural

Network Network

Dmitri Murphy
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Murphy, Dmitri, "Experimenting with a Biologically Plausible Neural Network" (2020). University Honors
Theses. Paper 944.
https://doi.org/10.15760/honors.967

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/944
https://doi.org/10.15760/honors.967
mailto:pdxscholar@pdx.edu

 Abstract

We present research on an implementation
of a biologically inspired Bayesian Confidence
Propagation Neural Network (BCPNN). Based on
previous work by Christopher Johansson and
Anders Lansner, our implementation seeks to
test and understand the various properties of
this model. The floating-point implementation
we built uses discrete time and bit-vectors as
input/output. We found that the column based
BCPNN model is able to memorize a decent
number of input vectors and is able to restore
noisy versions of these vectors with relatively
high accuracy. We examine the model’s
capacity, noise recovery ability and cross-
column connection influence, among other
attributes. The clearest trends that we found
were in the capacity and noise recovery
properties of the model, while the influence of
cross-column connections was less clear.
Further research and development of this
model implementation is needed to increase
speed, capacity and error correction
capabilities.

1. Background

At present, there has been much research
done on neural network designs that have been
highly abstracted from how biological brains
function, such as research on deep and
convolutional neural networks. These designs
function very well for certain tasks and are
important to develop, but they fail to do some
significant things that biological brains achieve.

For example, one established way that
biological brains learn is a principle called
Hebbian learning, proposed by Donald Hebb in
1949 (Hebb, 1949). This learning theory states
that when neurons are activated or fire at the
same time, the connection between them is
strengthened. However, many modern
machine-learning algorithms instead focus on
non-biological learning methods such as back-
propagation. Even though these learning
methods have been shown to be equivalent in
some ways (Xie et. al, 2003), back-propagation
may not be the best way to achieve advanced
artificial intelligence that mimics human
learning. Biological brains are much better
suited to adaptive learning and pattern
recognition, which makes studying and
emulating them important for advancing the
field long term.

One of the important differences between
standard deep neural networks and the human
brain is the training and learning cycle. The
standard type of deep neural network is trained
on potentially thousands of labeled examples
for multiple epochs, as it builds up an internal
model of a singular pattern or item (Santoro et
al., 2016). This contrasts directly with the way
that biological brains learn, which some
researchers call on-line or one-shot learning.
Humans, for example, don’t have to be shown
tens of thousands of cats to be able to identify a
cat. This discrepancy is where some researchers
think a return to biologically inspired
computational models may be in order for
significant progress in the field. There is
research that has already been done on these

Experimenting with a Biologically Plausible Neural Network
Honors Undergraduate Thesis

Dmitri Murphy, Dr. Dan Hammerstrom (advisor)

quicker kinds of learning and has been
demonstrated to work in Spiking Neural
Networks (Bugmann, 2012), as well as for
extrapolating information from a limited set of
training data (Kimura, 2018). However, some of
this research doesn’t take a biological approach,
which is what we aim to do in this paper.

The second element of our research
concerns the connection pattern of nodes in
neural networks. The standard fully connected
neural networks, with full layers of neurons,
have significant memory and computational
requirements (Lu et. al, 2018). With the end of
Moore’s Law looming, top people in the
industry such as Naveen Rao (currently the vice
president of Intel’s AI division) have expressed
concern that neural networks are quickly
getting too large for what current hardware can
support (Woodie, 2019). Hence, as networks
and models become bigger and more complex,
it will be important to understand where and
how sparse connectivity can be used to improve
them. Sparse connectivity patterns are also
important as they are observed in the way that
biological brains function and transfer
information (Roy, 2019).

Finally, the third part of this research
concerns how neural networks are structured
(e.g. with cortical columns). Like sparse
connectivity, cortical columns are a biological
concept that comes from the cortical structures
in biological brains (Figure 1). The idea of more
biologically plausible networks having
architectures that use cortical columns with
more sparse connectivity between them has
been raised by Christopher Johansson and
Anders Lansner (Johansson and Lansner, 2007).
More specifically, they discuss minicolumns and
hypercolumns as the two types of cortical
columns present in biological brains. In the
minicolumns, neuron density is higher
(especially near the center of the column). The
hypercolumns are then made up of many

minicoulumns. These types of architectures
more closely follow the biological structure of
mammal brains (Johansson and Lansner, 2007).
In addition to possibly improving computational
speed and power, implementing cortical
structures found in the brain may help improve
other properties of artificial neural networks.
For example, the human brain has built-in
redundancy, where other areas of the brain can
take over tasks that an injured section used to
do (Johansson and Lansner, 2007). In this way,
modeling networks after cortical structures
could improve redundancy for certain tasks, as
well as build networks that can be more
adaptive to new information.

Speaking more generally, many biological
concepts can be used in further developing
neural networks. For the cortical columns
mentioned previously, Johansson and Lansner
(2007) note that, for humans, these kinds of
columns in our visual cortex can function as a
winner-take-all construct for the neurons they
contain. In other words, the winning (or most
active) neuron sets the output value for the
entire column of neurons. Similarly, patterns of
inhibitory and excitatory connections between
columns can be created to mimic the kinds
input that these columns and neurons receive in
biological brains. Figure 1 provides a good
visualization of two columns, their internal
structure, and the types of connections
between them.

Figure 1: Two Hypercolumns
 (Johansson and Lansner, 2007)

2. Model

We will now describe the BCPNN model
that we adapted from “Towards Cortex Sized
Artificial Neural Systems” by Christopher
Johansson and Anders Lansner (2007). The
model uses several of the techniques that we
have discussed previously, including neural
columns, sparse connectivity between columns,
and winner takes all (WTA) functionality. These
are the techniques described by Johansson and
Lansner (2007). However, we adapt their
implementation to function in a more relaxed
computing environment – allowing the use of
floating-point numbers and floating-point
computations in the model’s calculations.

The following training algorithm was used:

1. Present an input vector to the model.
2. Model splits the input vector into equal

sections and presents each section to a
network column.

3. The network columns compute their initial
activation and probability values given the
input.

4. The network then computes the final
activation values for each node, taking into
account the cross-column connections and
node bias values.

5. The WTA approach is applied to the output
of each column, setting the node with the
highest activation value as the winning node
of the column.

2.1 Model Equations

The equations for our model are based on
the ones described by Johansson and Lansner
(2007). Some slight changes have been made
for readability, such as the equations assuming
that they are being performed at a timestep t. A

glossary of terms is below, followed by the
model equations.

Z Units per column
Pi Current probability of node i
V Input vector to the network

Vk
Bit k from the input vector to the
network

τp Memory plasticity control (constant)
β Bias of a node

Wij Weight between nodes i and j
Ok Activation value of node k

Cij
Cross-column connection weight
between nodes i and j

Initial Values

𝑃! =	
1
𝑍

𝑃!" =	
1
𝑍#

Node Probability Equation

𝜕𝑃!
𝜕𝑡

=
𝑉! − 𝑃! 	
𝜏"

All of the values above, such as Pi , are taken to
be the values in the network at the current
timestep/cycle. In this case, #$!

#%
	is the change in

the probability, which is applied before the next
cycle.

Node Co-Activation Probability Equation

𝜕𝑃!&
𝜕𝑡

=
𝑉!𝑉& − 𝑃!& 	

𝜏"

Node Bias Equation

𝛽! = 𝑙𝑜𝑔'((𝑃!)

Weight Update Equation

𝑤!& = 𝑙𝑜𝑔'((
𝑃!&
𝑃!	𝑃&

)

Node Activation Value Equation

𝑂& =	𝛽& +	2𝑤!& ∙
*

!

𝑜!

Cross-Column Connection Equation

Cross column connections were handled
specially, with the connection weights (Cij) being
tuned based on if both of the connected nodes
won their respective columns at the same
timestep. The equations for these updates
were:

	

𝐶&! =	 5
		1.05𝐶&! 					𝑖𝑓	𝑂& 	𝑤𝑜𝑛	𝑎𝑛𝑑	𝑂! 	𝑤𝑜𝑛
0.95𝐶&!																																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2.2 Discrete vs. Continuous Time

One important change that we made in this
model, when compared with the one described
by Johansson and Lansner (2007), is the use of
discrete instead of continuous time. This
decision primarily served to reduce model
complexity. However, to preserve the
functionality of the model, we still simulate
continuous time in the implementation. This is
done using a set of “cycles” in each epoch for
the input. Each input vector is run through the
model for n cycles (per epoch) in order to
simulate it being presented to a continuous
model for some amount of time.

Given this adjustment, we have not needed
to make large changes to the core model
equations. However, we did make minor ones
to approximate the derivative equations, as we
were no longer in a continuous environment. To
approximate the first order derivatives, we used
finite difference equations. We do not think

that this approximation impacts the model in a
substantial way, as the model still converges.
Further research could investigate whether
using a better derivative approximation method
would improve this model’s performance.

2.3 Model Design and Layout

In the structural layout of this model, we
arrange neurons in a set number of neural
columns. Since the columns function as a
winner-take-all environment designed to work
as a unit, all of the nodes within these neural
columns are fully connected. To provide some
information transfer between columns, a set
number of connections between columns are
also randomly assigned. These connections
connect various neurons in different columns,
providing sparse cross-column connectivity.

Figure 2: Cross-Column Connectivity

As the above visualization demonstrates,
this network is essentially a slightly simplified
version of the BCPNN that is presented by
Johansson and Lansner (2007). In our model,
the cross-column connections between the
neurons are implemented differently than
described by Johansson and Lansner, but still
serve the same purpose of allowing information
transfer between the different columns of the
network.

3. Model Performance

Our implementation of this model had 100
columns with 10 neurons per column, and was
created to work with bit vectors (𝑉𝑒𝑐𝑡𝑜𝑟	𝑉! 	 ∈
[0,1]). This allows us to simplify some of the
model properties, while still evaluating other
important ones such as capacity and error
correction. Vectors of 1000 bits were used for
the tests described in this section. Each of these
vectors had 100 sequences of 10 bits where a
single “active” or 1 bit was set, while the rest of
the bits were set to 0. These 10-bit sequences in
the input were created to match the columnar
layout of the network. This type of input, with a
single active bit, was also reflective of the
model’s the winner take all approach in each
column. An analysis of the Hamming distance of
the training vectors showed most were
relatively distinct from each other, with a
majority having approximately 10 active bits in
common.

To evaluate this model, we will examine
some of its properties, including how many bit
vectors it can fully retain, how well it can
restore noisy versions of these vectors, and how
the number of cross-column connections affects
the model. The test vectors for this model were
created by taking each of the training vectors
and then flipping a certain number of bits
randomly to add noise.

3.1 Network Capacity

We will start with our examination of how
many bit-vectors the model could retain. For
this test, all of the network properties were
held constant, other than the number of vectors
the network was trained on. The constant
properties included: using 5 epochs per model
run and 5 cycles per epoch, each column having
10 cross-column connections to other columns,

and the test vectors having 5 bits of noise
randomly added to them.

Figure 3: Network Capacity – holding cross-

column connections, noise and epochs/cycles
constant.

From the results of this test, we can see

that the network does very well up until
approximately 15 training vectors. Given
previous research on Hopfield networks, which
showed that their maximum capacity was 15%,
this result makes sense in our columnar model
(Takasaki, 2007). We have 100 columns in the
model, indicating that this result is the 15%
threshold that has been established previously.
It is important to note that it therefore appears
the number of columns, not the total number of
neurons, determine network capacity.

Examining the results after 15 vectors, we
see that performance degrades slightly up to 23
vectors and falls off more sharply afterwards. In
terms of the test vector accuracy, the model
maintained a test vector restoration accuracy
level above 95% up until 24 vectors. We note
that this number is an average, and that the
network was able to fully restore some training
vectors in testing, but struggled more with
others.

The full capacity of the model is dependent
on various factors, but given the results of this
test, it could fully memorize a maximum of
approximately 23-bit vectors (1000 bits in
length), while retaining an average test

accuracy greater than 95%. This network
capacity could be increased, but at the cost of
worse noise recovery for the bit vectors. This
makes sense from a theoretical standpoint, as
adding more vectors to the network requires
the network to store and recall additional
information.

3.2 Noise Recovery

We will next examine the noise recovery
properties of the network. In this context, noise
was added to the test vectors by inverting a
number of randomly selected bits in the vector.
The amount of noise added refers to this
number of randomly selected bits. In most
cases, this meant additional active bits were set
in the test vectors. However, there were also
some cases where the active bit in a column
flipped from being active to being inactive. For
this test, the model was trained with 6 epochs
and 5 cycles per epoch, each column had 10
cross-column connections to other columns,
and 10 training input vectors. The amount of
noise in the test vectors was varied for this test.
As is common with BCPNNs, this model was
relatively robust in terms of filtering out the
additional noise being added to the bit vectors.

Figure 4: Test Vector Noise – holding cross-

column connections, training vector number and
epochs/cycles constant.

As could be expected, we can see a
general downward trend in the ability of the
model to recover the original vector as more
noise is added. The model has a relatively good
recovery rate, which stays above 96% with less
than 10 vector bits flipped. However, we can
see that overall there were several factors that
impacted the ability of the network to recover
the original vector when given a noisy one.
From the capacity graph (Figure 3) and the
noise graph (Figure 4), we can see that both of
these factors had some impact on the ability of
the network to recover the original vector. The
number of training vectors especially seemed
important. Given that, as mentioned previously,
when the network is required to remember
more vectors, it is harder for it to clearly restore
an original vector from a noisy version.

3.3 Cross Column Connections

For examining the cross-column

connections in this model, we followed the
same approach as with the other tests. The
model was trained for 5 epochs and 5 cycles per
epoch, with 5 bits of noise were added to
generate the test vectors, and 10 total training
input vectors. The number of cross-column
connections was varied for this test. The results
of this examination are below.

Figure 5: Cross-Column Connections – holding
test vector number, noise and epochs/cycles

constant.

From the graph of the results, we cannot
see a clear pattern in how the number of cross
column connections affects the network. We
can see that the network test accuracy
increases from 0 to 5 connections per column
(500 total) and peaks at 6 connections per
column (600 total). The network accuracy then
drops down slightly and has minimal variation
for the rest of the test. This is an unexpected
result, as we would expect that the more
connected the network is, the better its test
accuracy would be.

3.4 Number of Epochs

Lastly, we examined how varying the
number of epochs affected the model. The
model was trained with 10 vectors, 5 bits of
noise in each test vector, and 10 total training
input vectors. The number of cycles per epoch
was set to 5 cycles.

Figure 6: Epoch Impact on Training – all
attributes other than epoch number were held

constant.

As can be seen in the graph above, this
network was able to achieve a preliminary
training accuracy very quickly. In fact, it appears
to do so almost instantly, achieving 100%
accuracy on the 10 different bit-vectors used for
training in the first epoch. However, the test
vector accuracy takes several epochs to peak –

achieving a maximum value around 6 epochs.
Past 10 epochs, the network also experiences a
rapid decline in both training and test vector
accuracy. This is an unexplained effect and
might indicate a problem with the model. More
research is needed to determine the root cause
of this issue and correct it.

3.5 Hyper-Parameter Tuning

In addition to testing the other parameters
of the network, we also ran tests to verify the
best hyper-parameters to use with the bit-
vector tests that we were conducting. These
included the multiplier for the bias value of the
nodes and the various τp time constants.

Bias Results

From all of the various bias weights that we

tested in this model, it appears that not having
any bias multipliers is the best option. A
multiplier of 1 faired the best in our testing.
Small multipliers (below 1) decreased test
accuracy performance but didn’t have a major
impact. Larger multipliers greater than 2 had a
much larger impact on performance, degrading
the number of vectors the network was able to
fully retain.

Tau Constants

Examining the tau constants, we wanted to

find values that allowed the network to be able
to train at a reasonable pace. These
adjustments were mainly done manually, so we
do not have a relationship graph. However, we
found that the following time constants worked
the best.

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑇𝑎𝑢:	80	
𝐶𝑟𝑜𝑠𝑠 − 𝐶𝑜𝑙𝑢𝑚𝑛	𝑇𝑎𝑢:	250		
𝑊𝑒𝑖𝑔ℎ𝑡	𝑈𝑝𝑑𝑎𝑡𝑒	𝑇𝑎𝑢:	1250	

4. Summary

We have provided a general overview of a
floating point, discrete time, bit-vector
implementation of a Bayesian Confidence
Propagation Neural Network based on previous
work by Christopher Johansson and Anders
Lansner. In general, we found the biologically
inspired BCPNN design to be able to learn up to
24 bit-vectors and recover them with a 96%
accuracy from a moderate amount of noise (5
bits).

We found clear trends in our examination
of the capacity and noise recovery of the model
but failed to determine good explanations for
the results when varying the number of cross
column connections and when running the
model at higher epoch values. Future work may
focus on addressing the unexpected behavior of
the model when varying the number of cross-
column connections and increasing the number
of epochs.

It may also be beneficial for future work to
make other improvements to the model or to
integrate this model into another system for
more practical applications. The applications of
the model presented here mostly include being
used as a component of a larger system, given
its unsupervised style of Hebbian learning. This
may involve developing this model into a
spiking model or changing it to be
heteroassociative. There are many avenues that
are possible using this research as a starting
point.

Code Repository

https://github.com/Dmitri-2/BCPNN-Sim-Python

References

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza

Kheradpisheh, Timothée Masquelier, Anthony
Maida. (2019). “Deep learning in spiking neural
networks.” Neural Networks, Volume 111, Pages
47-63, ISSN 0893-6080.

Bugmann, Guido. (2012). One-shot pattern
recognition learning in a deep multilayer neural
network of biological inspiration. Perception. 41.
1273-1274.

Bullinaria, John. (2015). “Hebbian Learning and
Gradient Descent Learning.” Neural
Computation : Lecture 5, The University of
Birmingham,
https://www.cs.bham.ac.uk/~pxt/NC/l5_JB.pdf.

Fei Fei, Li. (2006). Knowledge Transfer in Learning to
Recognize Visual Object Classes. University of
Illinois Urbana-Champaign,
http://vision.stanford.edu/documents/Fei-
Fei_ICDL2006.pdf.

Hammerstrom, Dan. (2019). “The Cortical Graph
(CorGraph) Project – An Investigation Into the
Representation of Complex Contextual
Relationships Based on the Structure of Cerebral
Cortex – Year 2.” AFRL (Grant) Proposal. Portland
State University.

Hebb, Donald Olding. (1949). The Organization of
Behavior: A Neuropsychological Theory. John
Wiley & Sons.

Hsu, Jeremy. (2015). “Estimate: Human Brain 30
Times Faster than Best Supercomputers.” IEEE
Spectrum: Technology, Engineering, and Science
News, IEEE, https://spectrum.ieee.org/tech-
talk/computing/networks/estimate-human-
brain-30-times-faster-than-best-supercomputers.

Johansson, Christopher and Lansner, Anders. (2007).
Towards cortex sized artificial neural
systems. Neural Networks. 20, 1 (January 2007),
48-61.
DOI=http://dx.doi.org/10.1016/j.neunet.2006.05.
029

Kimura, Akisato et al. (2018). “Few-shot learning of
neural networks from scratch by pseudo example
optimization.” BMVC.

Koch, G., Zemel, R. & Salakhutdinov, R. (2015).
“Siamese Neural Networks for One-shot Image
Recognition.” Department of Computer Science,
University of Toronto.

Krotov, Dmitry. (2019). “Biologically Inspired Neural
Networks: A Biologically Plausible Learning
Algorithm for Neural Networks” MIT/IBM Watson
AI Lab Guest Lecture. https://youtu.be/4lY-
oAY0aQU

Kurzweil, Ray. (2000). The Age of Spiritual Machines:
When Computers Exceed Human Intelligence.
Penguin.

Lansner, Anders. (2009). “Associative memory
models: from the cell-assembly theory to
biophysically detailed cortex simulations.” Trends
in Neurosciences 32: 178-186.

Lecun, Yann & Bottou, Leon & Bengio, Y. & Haffner,
Patrick. (1998). Gradient-Based Learning Applied
to Document Recognition. Proceedings of the
IEEE. 86. 2278 - 2324. 10.1109/5.726791.

Lu, Y., Wang, C., Gong, L. et al. Int J Parallel Prog
(2018) 46: 648. https://doi.org/10.1007/s10766-
017-0528-8

Palm, Günther & Schwenker, Friedhelm & Sommer,
Friedrich & Strey, Alfred. (1997). Neural
Associative Memories. Department of Neural
Information Processing. University of Ulm,
Germany.

Pedro Domingos. (2012). A few useful things to know
about machine learning. Commun. ACM 55, 10
(October 2012), 78-87. DOI:
https://doi.org/10.1145/2347736.2347755

Raschka, Sebastian. (2015). Single-Layer Neural
Networks and Gradient Descent.
sebastianraschka.com/Articles/2015_singlelayer_
neurons.html.

Rumelhart, D.E., Hinton,G. E.,Williams, R. J. (1986).
Learning Representations By Back−Propagating
Errors. Nature. Pgs. 323,533.

Roy, K., Jaiswal, A. & Panda, P. (2019). Towards
spike-based machine intelligence with
neuromorphic computing. Nature 575, 607–617
doi:10.1038/s41586-019-1677-2

Schuman, Catherine & Potok, Thomas & Patton,
Robert & Birdwell, J. & Dean, Mark & Rose,
Garrett & Plank, James. (2017). A Survey of
Neuromorphic Computing and Neural Networks
in Hardware. arXiv:1705.06963 [cs.NE].

Sremath Tirumala, Sreenivas & Ali, Shahid &
Ramesh, Phani. (2016). Evolving Deep Neural
Networks : A New Prospect.
10.1109/FSKD.2016.7603153

Sheridan, Patrick et al. (2017). “Sparse coding with
memristor networks.” Nature nanotechnology 12
8: 784-789.

Santoro, Adam, et al. (2016). “One-Shot Learning
with Memory-Augmented Neural
Networks.” ArXiv:1605.06065 [Cs].

Takasaki, Kevin. (2007). “Critical Capacity of Hopfield
Network.” Department of Physics, MIT.

Woodie, Alex. (2019). “Deep Learning Has Hit a Wall,
Intel’s Rao Says.” Datanami, Accessed 13 Nov.
2019,

https://www.datanami.com/2019/11/13/deep-
learning-has-hit-a-wall-intels-rao-says/

Xie, Xiaohui, Seung, Hyunjune. (2003). Equivalence
of Backpropagation and Contrastive Hebbian
Learning in a Layered Network. Neural
computation. 15. 441-54.
10.1162/089976603762552988.

Zhu, Shaojuan. (2008). "Associative Memory as a
Bayesian Building Block," PhD Dissertation, OGI
School of Science & Engineering at Oregon Health
& Science University.

	Experimenting with a Biologically Plausible Neural Network
	Let us know how access to this document benefits you.
	Recommended Citation

	Honors Thesis Final

