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 Abstract   
 

We present research on an implementation 
of a biologically inspired Bayesian Confidence 
Propagation Neural Network (BCPNN). Based on 
previous work by Christopher Johansson and 
Anders Lansner, our implementation seeks to 
test and understand the various properties of 
this model. The floating-point implementation 
we built uses discrete time and bit-vectors as 
input/output. We found that the column based 
BCPNN model is able to memorize a decent 
number of input vectors and is able to restore 
noisy versions of these vectors with relatively 
high accuracy. We examine the model’s 
capacity, noise recovery ability and cross-
column connection influence, among other 
attributes. The clearest trends that we found 
were in the capacity and noise recovery 
properties of the model, while the influence of 
cross-column connections was less clear. 
Further research and development of this 
model implementation is needed to increase 
speed, capacity and error correction 
capabilities.  

 
1. Background  
 

At present, there has been much research 
done on neural network designs that have been 
highly abstracted from how biological brains 
function, such as research on deep and 
convolutional neural networks. These designs 
function very well for certain tasks and are 
important to develop, but they fail to do some 
significant things that biological brains achieve. 

For example, one established way that 
biological brains learn is a principle called 
Hebbian learning, proposed by Donald Hebb in 
1949 (Hebb, 1949). This learning theory states 
that when neurons are activated or fire at the 
same time, the connection between them is 
strengthened. However, many modern 
machine-learning algorithms instead focus on 
non-biological learning methods such as back-
propagation. Even though these learning 
methods have been shown to be equivalent in 
some ways (Xie et. al, 2003), back-propagation 
may not be the best way to achieve advanced 
artificial intelligence that mimics human 
learning. Biological brains are much better 
suited to adaptive learning and pattern 
recognition, which makes studying and 
emulating them important for advancing the 
field long term.  

One of the important differences between 
standard deep neural networks and the human 
brain is the training and learning cycle. The 
standard type of deep neural network is trained 
on potentially thousands of labeled examples 
for multiple epochs, as it builds up an internal 
model of a singular pattern or item (Santoro et 
al., 2016). This contrasts directly with the way 
that biological brains learn, which some 
researchers call on-line or one-shot learning. 
Humans, for example, don’t have to be shown 
tens of thousands of cats to be able to identify a 
cat. This discrepancy is where some researchers 
think a return to biologically inspired 
computational models may be in order for 
significant progress in the field. There is 
research that has already been done on these 
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quicker kinds of learning and has been 
demonstrated to work in Spiking Neural 
Networks (Bugmann, 2012), as well as for 
extrapolating information from a limited set of 
training data (Kimura, 2018). However, some of 
this research doesn’t take a biological approach, 
which is what we aim to do in this paper.  

The second element of our research 
concerns the connection pattern of nodes in 
neural networks. The standard fully connected 
neural networks, with full layers of neurons, 
have significant memory and computational 
requirements (Lu et. al, 2018). With the end of 
Moore’s Law looming, top people in the 
industry such as Naveen Rao (currently the vice 
president of Intel’s AI division) have expressed 
concern that neural networks are quickly 
getting too large for what current hardware can 
support (Woodie, 2019). Hence, as networks 
and models become bigger and more complex, 
it will be important to understand where and 
how sparse connectivity can be used to improve 
them. Sparse connectivity patterns are also 
important as they are observed in the way that 
biological brains function and transfer 
information (Roy, 2019).  

Finally, the third part of this research 
concerns how neural networks are structured 
(e.g. with cortical columns). Like sparse 
connectivity, cortical columns are a biological 
concept that comes from the cortical structures 
in biological brains (Figure 1). The idea of more 
biologically plausible networks having 
architectures that use cortical columns with 
more sparse connectivity between them has 
been raised by Christopher Johansson and 
Anders Lansner (Johansson and Lansner, 2007). 
More specifically, they discuss minicolumns and 
hypercolumns as the two types of cortical 
columns present in biological brains. In the 
minicolumns, neuron density is higher 
(especially near the center of the column). The 
hypercolumns are then made up of many 

minicoulumns. These types of architectures 
more closely follow the biological structure of 
mammal brains (Johansson and Lansner, 2007). 
In addition to possibly improving computational 
speed and power, implementing cortical 
structures found in the brain may help improve 
other properties of artificial neural networks. 
For example, the human brain has built-in 
redundancy, where other areas of the brain can 
take over tasks that an injured section used to 
do (Johansson and Lansner, 2007). In this way, 
modeling networks after cortical structures 
could improve redundancy for certain tasks, as 
well as build networks that can be more 
adaptive to new information.  

Speaking more generally, many biological 
concepts can be used in further developing 
neural networks. For the cortical columns 
mentioned previously, Johansson and Lansner 
(2007) note that, for humans, these kinds of 
columns in our visual cortex can function as a 
winner-take-all construct for the neurons they 
contain. In other words, the winning (or most 
active) neuron sets the output value for the 
entire column of neurons. Similarly, patterns of 
inhibitory and excitatory connections between 
columns can be created to mimic the kinds 
input that these columns and neurons receive in 
biological brains. Figure 1 provides a good 
visualization of two columns, their internal 
structure, and the types of connections 
between them.  

 
 

 
 

Figure 1: Two Hypercolumns 
 (Johansson and Lansner, 2007) 

 



2. Model 
 

We will now describe the BCPNN model 
that we adapted from “Towards Cortex Sized 
Artificial Neural Systems” by Christopher 
Johansson and Anders Lansner (2007). The 
model uses several of the techniques that we 
have discussed previously, including neural 
columns, sparse connectivity between columns, 
and winner takes all (WTA) functionality. These 
are the techniques described by Johansson and 
Lansner (2007). However, we adapt their 
implementation to function in a more relaxed 
computing environment – allowing the use of 
floating-point numbers and floating-point 
computations in the model’s calculations.  
 
The following training algorithm was used:  
 
1. Present an input vector to the model.  
2. Model splits the input vector into equal 

sections and presents each section to a 
network column.  

3. The network columns compute their initial 
activation and probability values given the 
input.  

4. The network then computes the final 
activation values for each node, taking into 
account the cross-column connections and 
node bias values. 

5. The WTA approach is applied to the output 
of each column, setting the node with the 
highest activation value as the winning node 
of the column.  

 
2.1 Model Equations  
 

The equations for our model are based on 
the ones described by Johansson and Lansner 
(2007). Some slight changes have been made 
for readability, such as the equations assuming 
that they are being performed at a timestep t. A 

glossary of terms is below, followed by the 
model equations.  
 

Z Units per column  
Pi Current probability of node i 
V Input vector to the network 

Vk 
Bit k from the input vector to the 
network 

τp Memory plasticity control (constant) 
β Bias of a node 

Wij Weight between nodes i and j 
Ok Activation value of node k 

Cij 
Cross-column connection weight 
between nodes i and j 

 
Initial Values  
 

𝑃! =	
1
𝑍 

 

𝑃!" =	
1
𝑍# 

 
 
Node Probability Equation  
 

𝜕𝑃!
𝜕𝑡

=
𝑉! − 𝑃! 	
𝜏"

 

 
All of the values above, such as Pi , are taken to 
be the values in the network at the current 
timestep/cycle. In this case, #$!

#%
	is the change in 

the probability, which is applied before the next 
cycle.  
 
 
Node Co-Activation Probability Equation  
 

𝜕𝑃!&
𝜕𝑡

=
𝑉!𝑉& − 𝑃!& 	

𝜏"
 

 
 
Node Bias Equation  
 

𝛽! = 𝑙𝑜𝑔'((𝑃!) 
 
 
 



Weight Update Equation 
 

𝑤!& = 𝑙𝑜𝑔'((	
𝑃!&
𝑃!	𝑃&

	) 

 
 
Node Activation Value Equation  
 

𝑂& =	𝛽& +	2𝑤!& ∙
*

!

𝑜!  

 
Cross-Column Connection Equation 
 
Cross column connections were handled 
specially, with the connection weights (Cij) being 
tuned based on if both of the connected nodes 
won their respective columns at the same 
timestep. The equations for these updates 
were:  

	

𝐶&! =	 5
		1.05𝐶&! 					𝑖𝑓	𝑂& 	𝑤𝑜𝑛	𝑎𝑛𝑑	𝑂! 	𝑤𝑜𝑛
0.95𝐶&!																																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
2.2 Discrete vs. Continuous Time  
 

One important change that we made in this 
model, when compared with the one described 
by Johansson and Lansner (2007), is the use of 
discrete instead of continuous time. This 
decision primarily served to reduce model 
complexity. However, to preserve the 
functionality of the model, we still simulate 
continuous time in the implementation. This is 
done using a set of “cycles” in each epoch for 
the input. Each input vector is run through the 
model for n cycles (per epoch) in order to 
simulate it being presented to a continuous 
model for some amount of time.  

Given this adjustment, we have not needed 
to make large changes to the core model 
equations. However, we did make minor ones 
to approximate the derivative equations, as we 
were no longer in a continuous environment. To 
approximate the first order derivatives, we used 
finite difference equations. We do not think 

that this approximation impacts the model in a 
substantial way, as the model still converges. 
Further research could investigate whether 
using a better derivative approximation method 
would improve this model’s performance.  
 
2.3 Model Design and Layout  
 

In the structural layout of this model, we 
arrange neurons in a set number of neural 
columns. Since the columns function as a 
winner-take-all environment designed to work 
as a unit, all of the nodes within these neural 
columns are fully connected. To provide some 
information transfer between columns, a set 
number of connections between columns are 
also randomly assigned. These connections 
connect various neurons in different columns, 
providing sparse cross-column connectivity. 
 

 
 

Figure 2: Cross-Column Connectivity 
 

As the above visualization demonstrates, 
this network is essentially a slightly simplified 
version of the BCPNN that is presented by 
Johansson and Lansner (2007). In our model, 
the cross-column connections between the 
neurons are implemented differently than 
described by Johansson and Lansner, but still 
serve the same purpose of allowing information 
transfer between the different columns of the 
network.  
 



3. Model Performance  
 

Our implementation of this model had 100 
columns with 10 neurons per column, and was 
created to work with bit vectors (𝑉𝑒𝑐𝑡𝑜𝑟	𝑉! 	 ∈
[0,1]). This allows us to simplify some of the 
model properties, while still evaluating other 
important ones such as capacity and error 
correction. Vectors of 1000 bits were used for 
the tests described in this section. Each of these 
vectors had 100 sequences of 10 bits where a 
single “active” or 1 bit was set, while the rest of 
the bits were set to 0. These 10-bit sequences in 
the input were created to match the columnar 
layout of the network. This type of input, with a 
single active bit, was also reflective of the 
model’s the winner take all approach in each 
column. An analysis of the Hamming distance of 
the training vectors showed most were 
relatively distinct from each other, with a 
majority having approximately 10 active bits in 
common.  

To evaluate this model, we will examine 
some of its properties, including how many bit 
vectors it can fully retain, how well it can 
restore noisy versions of these vectors, and how 
the number of cross-column connections affects 
the model. The test vectors for this model were 
created by taking each of the training vectors 
and then flipping a certain number of bits 
randomly to add noise. 

 
3.1 Network Capacity  
 

We will start with our examination of how 
many bit-vectors the model could retain. For 
this test, all of the network properties were 
held constant, other than the number of vectors 
the network was trained on. The constant 
properties included: using 5 epochs per model 
run and 5 cycles per epoch, each column having 
10 cross-column connections to other columns, 

and the test vectors having 5 bits of noise 
randomly added to them.  

 

 
Figure 3: Network Capacity – holding cross-

column connections, noise and epochs/cycles 
constant.  

 
From the results of this test, we can see 

that the network does very well up until 
approximately 15 training vectors. Given 
previous research on Hopfield networks, which 
showed that their maximum capacity was 15%, 
this result makes sense in our columnar model 
(Takasaki, 2007). We have 100 columns in the 
model, indicating that this result is the 15% 
threshold that has been established previously. 
It is important to note that it therefore appears 
the number of columns, not the total number of 
neurons, determine network capacity.  

Examining the results after 15 vectors, we 
see that performance degrades slightly up to 23 
vectors and falls off more sharply afterwards. In 
terms of the test vector accuracy, the model 
maintained a test vector restoration accuracy 
level above 95% up until 24 vectors. We note 
that this number is an average, and that the 
network was able to fully restore some training 
vectors in testing, but struggled more with 
others.  

The full capacity of the model is dependent 
on various factors, but given the results of this 
test, it could fully memorize a maximum of 
approximately 23-bit vectors (1000 bits in 
length), while retaining an average test 



accuracy greater than 95%. This network 
capacity could be increased, but at the cost of 
worse noise recovery for the bit vectors. This 
makes sense from a theoretical standpoint, as 
adding more vectors to the network requires 
the network to store and recall additional 
information.  
 
3.2 Noise Recovery  
 

We will next examine the noise recovery 
properties of the network. In this context, noise 
was added to the test vectors by inverting a 
number of randomly selected bits in the vector. 
The amount of noise added refers to this 
number of randomly selected bits. In most 
cases, this meant additional active bits were set 
in the test vectors. However, there were also 
some cases where the active bit in a column 
flipped from being active to being inactive. For 
this test, the model was trained with 6 epochs 
and 5 cycles per epoch, each column had 10 
cross-column connections to other columns, 
and 10 training input vectors. The amount of 
noise in the test vectors was varied for this test. 
As is common with BCPNNs, this model was 
relatively robust in terms of filtering out the 
additional noise being added to the bit vectors. 

 

 
Figure 4: Test Vector Noise  – holding cross-

column connections, training vector number and 
epochs/cycles constant.  

 

As could be expected, we can see a 
general downward trend in the ability of the 
model to recover the original vector as more 
noise is added. The model has a relatively good 
recovery rate, which stays above 96% with less 
than 10 vector bits flipped. However, we can 
see that overall there were several factors that 
impacted the ability of the network to recover 
the original vector when given a noisy one. 
From the capacity graph (Figure 3) and the 
noise graph (Figure 4), we can see that both of 
these factors had some impact on the ability of 
the network to recover the original vector. The 
number of training vectors especially seemed 
important. Given that, as mentioned previously, 
when the network is required to remember 
more vectors, it is harder for it to clearly restore 
an original vector from a noisy version.  
 

3.3 Cross Column Connections  
 
For examining the cross-column 

connections in this model, we followed the 
same approach as with the other tests. The 
model was trained for 5 epochs and 5 cycles per 
epoch, with 5 bits of noise were added to 
generate the test vectors, and 10 total training 
input vectors. The number of cross-column 
connections was varied for this test. The results 
of this examination are below.  

 

 
Figure 5: Cross-Column Connections – holding 
test vector number, noise and epochs/cycles 

constant.  



From the graph of the results, we cannot 
see a clear pattern in how the number of cross 
column connections affects the network. We 
can see that the network test accuracy 
increases from 0 to 5 connections per column 
(500 total) and peaks at 6 connections per 
column (600 total). The network accuracy then 
drops down slightly and has minimal variation 
for the rest of the test. This is an unexpected 
result, as we would expect that the more 
connected the network is, the better its test 
accuracy would be.  

 

3.4 Number of Epochs 
 

Lastly, we examined how varying the 
number of epochs affected the model. The 
model was trained with 10 vectors, 5 bits of 
noise in each test vector, and 10 total training 
input vectors. The number of cycles per epoch 
was set to 5 cycles.  

 

 
 

Figure 6: Epoch Impact on Training – all 
attributes other than epoch number were held 

constant.  
 

As can be seen in the graph above, this 
network was able to achieve a preliminary 
training accuracy very quickly. In fact, it appears 
to do so almost instantly, achieving 100% 
accuracy on the 10 different bit-vectors used for 
training in the first epoch. However, the test 
vector accuracy takes several epochs to peak – 

achieving a maximum value around 6 epochs. 
Past 10 epochs, the network also experiences a 
rapid decline in both training and test vector 
accuracy. This is an unexplained effect and 
might indicate a problem with the model. More 
research is needed to determine the root cause 
of this issue and correct it.  

 

3.5 Hyper-Parameter Tuning  
 

In addition to testing the other parameters 
of the network, we also ran tests to verify the 
best hyper-parameters to use with the bit-
vector tests that we were conducting. These 
included the multiplier for the bias value of the 
nodes and the various τp time constants.  

 
Bias Results  

 
From all of the various bias weights that we 

tested in this model, it appears that not having 
any bias multipliers is the best option. A 
multiplier of 1 faired the best in our testing. 
Small multipliers (below 1) decreased test 
accuracy performance but didn’t have a major 
impact. Larger multipliers greater than 2 had a 
much larger impact on performance, degrading 
the number of vectors the network was able to 
fully retain.  

 
Tau Constants  

 
Examining the tau constants, we wanted to 

find values that allowed the network to be able 
to train at a reasonable pace. These 
adjustments were mainly done manually, so we 
do not have a relationship graph. However, we 
found that the following time constants worked 
the best.  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑇𝑎𝑢:	80	 
𝐶𝑟𝑜𝑠𝑠 − 𝐶𝑜𝑙𝑢𝑚𝑛	𝑇𝑎𝑢:	250		 
𝑊𝑒𝑖𝑔ℎ𝑡	𝑈𝑝𝑑𝑎𝑡𝑒	𝑇𝑎𝑢:	1250	 

 



4. Summary  
 

We have provided a general overview of a 
floating point, discrete time, bit-vector 
implementation of a Bayesian Confidence 
Propagation Neural Network based on previous 
work by Christopher Johansson and Anders 
Lansner. In general, we found the biologically 
inspired BCPNN design to be able to learn up to 
24 bit-vectors and recover them with a 96% 
accuracy from a moderate amount of noise (5 
bits).  

We found clear trends in our examination 
of the capacity and noise recovery of the model 
but failed to determine good explanations for 
the results when varying the number of cross 
column connections and when running the 
model at higher epoch values. Future work may 
focus on addressing the unexpected behavior of 
the model when varying the number of cross-
column connections and increasing the number 
of epochs.  

It may also be beneficial for future work to 
make other improvements to the model or to 
integrate this model into another system for 
more practical applications. The applications of 
the model presented here mostly include being 
used as a component of a larger system, given 
its unsupervised style of Hebbian learning. This 
may involve developing this model into a 
spiking model or changing it to be 
heteroassociative. There are many avenues that 
are possible using this research as a starting 
point.  
 
 
 
 
 
 
Code Repository 
 

https://github.com/Dmitri-2/BCPNN-Sim-Python 
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