
Portland State University Portland State University

PDXScholar PDXScholar

Engineering and Technology Management
Student Projects Engineering and Technology Management

Fall 2017

Data Envelopment Analysis using glpkAPI in R Data Envelopment Analysis using glpkAPI in R

Konrad Miziolek
Portland State University

Jordan Beary
Portland State University

Shreyas Vasanth
Portland State University

Surekha Chanamolu
Portland State University

Rudraxi Mitra
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/etm_studentprojects

 Part of the Categorical Data Analysis Commons, and the Technology and Innovation Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Miziolek, Konrad; Beary, Jordan; Vasanth, Shreyas; Chanamolu, Surekha; and Mitra, Rudraxi, "Data
Envelopment Analysis using glpkAPI in R" (2017). Engineering and Technology Management Student
Projects. 1174.
https://pdxscholar.library.pdx.edu/etm_studentprojects/1174

This Project is brought to you for free and open access. It has been accepted for inclusion in Engineering and
Technology Management Student Projects by an authorized administrator of PDXScholar. Please contact us if we
can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/etm_studentprojects
https://pdxscholar.library.pdx.edu/etm_studentprojects
https://pdxscholar.library.pdx.edu/etm
https://pdxscholar.library.pdx.edu/etm_studentprojects?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F1174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/817?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F1174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F1174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/etm_studentprojects/1174
https://pdxscholar.library.pdx.edu/etm_studentprojects/1174?utm_source=pdxscholar.library.pdx.edu%2Fetm_studentprojects%2F1174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

 ETM OFFICE USE ONLY
Report No.:
Type: Student Project
Note:

Title: Data Envelopment

Analysis using glpkAPI in R

Course Title: ETM – Operations Research
Course Number: 540
Instructor: Dr. Tim Anderson
Term: Fall
Year: 2017
Author(s): Konrad Miziolek, Jordan Beary, Shreyas Vasanth, Surekha Chanamolu,
Rudraxi Mitra

Abstract

The work done here is primarily a wrapper function written to separate some of the more
difficult-to-use glpkAPI functionality from the end-user. The user, when prompted,
selects the appropriate configuration of the .mod file to the task (for example, output-
oriented CRS), and the data file, as a .dat. The function then loads the required glpkAPI
library, and carries forward the model. It allocates the problem and workspace, reads the
model file and data file the user selects, builds the problem, and solves it. The function
returns primal values, and, if dual = TRUE is selected, also returns dual weights.

Using R package glpkAPI for Data Envelopment
Analysis
Konrad Miziolek, Jordan Beary, Shreyas Vasanth, Surekha
Chanamolu, Rudraxi Mitra
Thursday, December 7 2017

GitHub

For all project materials please visit our GitHub1 1 Download Materials GitHub

Purpose:

The purpose for this project was to use the R package ‘glpkAPI’ for
DEA models which have been programmed in gmpl. This library is
optimal for DEA models using .mod files; using glpkAPI for manually
building the model and data from scratch is an arduous task better
suited for other packages such as Benchmarking. Likewise, editing
the model is easier done by editing the .mod file in an editor such as
Gusek, or even R, than it is through glpkAPI.

The wrapper function we have created allows for gmpl DEA models
to use the glpkAPI interface to be solved by GLPK.

However, our wrapper function enables one to input data into an
R dataframe for inputs and outputs and calculate the efficiencies and
dual weights by modifying the associated .mod and .dat files.

The .mod files are separate from the data, specified in a .dat for-
mat. This decoupling allows for a general-use .mod file for running
the same DEA problem with different datasets by specifying the data
and permutations of the model (IE input-oriented VRS, input-oriented
CRS, etc). The user will specify which permutations are to be used.

The work done here is primarily a wrapper function written to sep-
arate some of the more difficult-to-use glpkAPI functionality from the
end-user. The user, when prompted, selects the appropriate configura-
tion of the .mod file to the task (for example, output-oriented CRS),
and the data file, as a .dat. The function then loads the required glp-
kAPI library, and carries forward the model. It allocates the problem
and workspace, reads the model file and data file the user selects,
builds the problem, and solves it. The function returns primal values,
and, if dual = TRUE is selected, also returns dual weights.

The primal values are formatted as a list of thetas and as a lambda
matrix, and duals as a list of duals and a dual matrix. These objects
are returned to the user as dataframes.

https://github.com/JordanBeary/glpkAPI.DEA

using r package glpkapi for data envelopment analysis 2

DEA - Brief Review

Data Envelopment Analysis (DEA) is a non-parametric analytical
methodology used for efficiency analysis. The primary elements of
DEA are a set of decision making units (DMUs) along with their mea-
sured inputs and outputs. In addition to the efficiency value of each
Decision-Making Units (DMU), DEA also provides benchmarking in-
formation, which can be used to improve the efficiency of the DMU.
The DMUs may be different branches of the small large bank or differ-
ent hospitals or a project.

DEA produces a single comprehensive measure of performance for
each of DMUs. The best ratio among all the DMUs is the benchmark-
ing target, which is the most efficient one and it would identify other
DMUs that would be rated by comparing the ratio to the best one.
The two kinds of information, the efficiency level and the benchmark-
ing information, are inseparable. The efficiency is measured based
on the distance between the observed DMU and the reference DMU,
which serves as a benchmarking target.

Writing .mod and .dat files in GMPL

GNU Mathematical Programming Language or MathProg is the native
language of GLPK. GMPL is a flexible language and gives the pro-
grammer the ability to write low and high-level math programs. This
is simple example to get familiar with GMPL syntax.

var x1;
var x2;
maximize obj: 0.6 * x1 + 0.5 * x2;
s.t. c1: x1 + 2 * x2 <= 1;
s.t. c2: 3 * x1 + x2 <= 2;
solve;
display x1, x2;
end;

For more insight into programming with GMPL please refer to
Andrew Makhorin’s GMPL Introductory Manual2 as we will only be 2 See Makhorin GMPL manual PDF
discussing the specifics of our DEA mod and dat files.

.mod file

The mod file is written in a way that the user does not need to edit
to fit their specific DEA problem. However, if adjustments need to
be made it is important you, as a user, understand how this file is
structured. The model is comprised of five objects: sets, parameters,
variables, constraints, and objectives.

https://www.cs.unb.ca/~bremner/docs/glpk/gmpl.pdf

using r package glpkapi for data envelopment analysis 3

There are two different kinds of statements in GMPL - declaration
and functional. The set statement is written first and sets are always
the declaration type. We name the objects of a DEA problem: DMUs,
inputs, and outputs. These are symbolic names for the actual field
names. For example ‘baseball players’ are DMUs, ‘at bats’ are inputs,
and ‘number of hits’ are outputs.

Parameter statements are also always declaration type. In the
mod file the parameters are generalized to ‘input_data’ and ‘out-
put_data’ inluding the units referenced for each - {dmus,inputs} and
{dmus,outputs}. Parameters always include an expression to satisfy.
In our model the input and output data must be greater than zero.

The program follows the parameter statements, which holds the
variables, objective function, and set of constraints. Thetas and lamb-
das are the result variables involved in a DEA problem and they must
be declared before the objective function. We have created two ver-
sions of the mod file depending on whether the user’s specific problem
is input-oriented or output-oriented. The constraints subject the ob-
jective function to benchmarking between the DMUs and finish with
a returns-to-scale (RTS) statement. Our wrapper function injects the
correct RTS depending on the users specification in R.

.dat file

Compared to the mod file the dat files are simple to structure. Similar
to declaring the sets in the mod file, set statements are the first decla-
ration in a dat file. Currently a number is assigned to each DMU - the
number of DMUs in the user data is stated in the set for dmus. For
now it is a vector of numbers, but for future work we will be able to
use the DMU’s natural name. set dmus := 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15;
For inputs and outputs the user must declare the field names in-

cluding in each set. Continuing with the baseball example - ‘atbats’
and ‘numberofhits’ are the input and output sets. We found errors
when there was whitespace in the set names. set inputs := AvailableTonKm Oper-

atingCost NonflightAssets ;

set outputs := RevenuePassengerKm
NonpassengerRevenue ;

The same parameters declared in the mod file are referenced again
before each input and output data list.

Warnings

This function is dependent on glpkAPI continuing to return primal
values as a list of thetas and lambda matrix. If that is changed down-
stream, this function will need to be edited.

Mod files require a DMU number in each row with the data, while
Benchmarking, TFDEA (and possibly other packages) treat those as
inputs, causing results to not match. Input data for those libraries
with a column for DMU number will work, but outputs with a column

using r package glpkapi for data envelopment analysis 4

for DMU number will not work.
(

data ex.JPG data ex.bb

Figure 1: wrong DMU format

)
Above is an example in the dat file of DMU’s (player names) that

are in their own column before input/output values, which will cause
errors in the final output values.

The architecture of this function will need to be changed once this
is built into a package. At the moment, there is only one mod file
that is overwritten between uses; for robustness, a local copy of the
model should be made to avoid the possibility of corruption of the file.
Without this package, it is not possible to write out the file locally.
With a package, one could save a new copy of the file in the folder.

Likewise, if there is a need for future users to type in the data with
R, the simplest method we could come up with is typing in the data
as a dataframe and writing it out locally. Then, using the readLines
function and adding the necessary lines for a .dat file, it can be again
written out locally, then passed in to our glpkAPIDEA function.

Therefore, we suggest not using this function for that purpose.
Instead, it is simpler to create the data in a text editor or spreadsheet
software (Excel, Google Sheets) and copying the data over into a .dat
file.

glpkAPI Wrapper Function (glpkAPIDEA).

glpkAPI arguments:

1. Mod_path, the file path to the mod file

2. Data_path, the file path to the data file

3. Returns To Scale (RTS): One of

• “crs”
• “vrs”
• “irs” (not tested yet)
• “drs” (not tested yet)

Arguments are case-insensitive. More RTS possibilities can be
added later without much difficulty.

4. Orientation: Specify whether this is an input or output-oriented
model. One of

• “in”
• “out” (not tested yet)

Arguments are case-insensitive.

using r package glpkapi for data envelopment analysis 5

5. Dual: Whether to extract the dual weighs (shadow prices).

Default is FALSE.

Required libraries:

glpkAPI (loaded by our function, but not installed)

Required inputs:

1. .mod file: one of the input-oriented or output-oriented .mod files.
2. .dat file (included, or made by the user). This file needs to include

both inputs and outputs for the DEA analysis. Text files can be
saved as .dat, and aside from a bare skeleton set of required text in
the file, they are easy to run.

These files are specified by the user but can also be done with a
file.choose() call.

glpkAPIDEA outputs:

Currently, the function supports efficiency scores, the lambda matrix,
and dual weights.

Extracting input and output weights from the glplAPI model object
may be possible; we didn’t look at this.

glpkAPIDEA <- function(Mod_path, Data_path, RTS, Orientation, Dual = FALSE)
{
Steps:
#
1. Data Handling
#
a. If X and Y are null (data is in a .dat file somewhere)
User chooses the .dat file
b. If X and Y are not null (user wants to pass in their dataframe)
Have the user choose the default .dat file
Read in the .dat file and replace a string with the data
Write the data to the default file
#
Note: 1. a. is currently done outside of this wrapper function
to ensure the data is read in properly.
Note: 1. b. is not yet supported.
#
2. Model Building
#
a. Read in the .mod file (input vs output mod files)

using r package glpkapi for data envelopment analysis 6

b. Check which type of parameter RTS is desired
Replace the string in .mod file that affects which set of constraints are used
#
3. Model Running
#
* Create the problem and workspace (see glpkAPI vignette)
* Load the model
* Load the data
* Solve the problem

4. Results
#
* Check if Dual = TRUE
* If yes, get dual weights
#
* Get the Primal values
* Decompose into Thetas and lambda matrix

Step 1
a.
b.

Step 2

mod_filepath <- Mod_path #User passes in the mod and .dat filepaths.
data_filepath <- Data_path

rts_string <<- toupper(RTS) #provides some robustness against user inputs
orientation_string <- toupper(Orientation)

Returns to Scale strings to replace the "### RTS" character string in our mod file

if (rts_string == "CRS")
{
rts_replace_string <<- "s.t. PI1{td in dmus}: sum{d in dmus} lambda[d,td] >= 0;"

}

if (rts_string == "VRS")
{
rts_replace_string <<- "s.t. PI1{td in dmus}: sum{d in dmus} lambda[d,td] = 1;"

}

if (rts_string == "DRS")
{

using r package glpkapi for data envelopment analysis 7

rts_replace_string <<- "s.t. PI1{td in dmus}: sum{d in dmus} lambda[d,td] >= 1;"
}

if (rts_string == "IRS")
{
rts_replace_string <<- "s.t. PI1{td in dmus}: sum{d in dmus} lambda[d,td] <= 1;"

}

Step 2

Read in the file

mod_file <- readLines(mod_filepath)
mod_file <- gsub(pattern = "### RTS Constraint", replace = rts_replace_string, x = mod_file)
writeLines(mod_file, con= mod_filepath)

Step 3.

Creating the glpkAPI model, as in the glpkAPI vignette.

mip <- initProbGLPK()
setProbNameGLPK(mip, "DEA Example")
dea <- mplAllocWkspGLPK()
Since the model and data are in separate files, it is necessary
to read in both.
result <- mplReadModelGLPK(dea, mod_filepath, skip=0)
mplReadDataGLPK(dea, data_filepath)

result <- mplGenerateGLPK(dea)
result <- mplBuildProbGLPK(dea, mip)

solveSimplexGLPK(mip)
mplPostsolveGLPK(dea, mip, GLP_MIP)
solution_list <- getColsPrimGLPK(mip)

mod_file <- readLines(mod_filepath)

mod_file[25] <- "### RTS Constraint" # Based on our file structure,
line 25 is where our RTS constraint is.

writeLines(mod_file, mod_filepath)

using r package glpkapi for data envelopment analysis 8

Step 4.

solution list returned by glpkAPI as list where first x elements are DMUs and the
next x^2 elements are the lambda matrix as a list.
To get the number of DMUs, one needs to solve a simple quadratic equation
of the form x^2 + x = c for the positive root of x. x^2 + x = length of solution, so
for a = 1, b = 1, -c = length of solution. x = (-b + sqrt (b^2 - (4 *1 * -c)) / 2a

c <- length(solution_list)
dmus <- (-1 + sqrt(1 + 4*c))/2

if (Dual == "TRUE")
{
duals_solution_list <- getColsDualGLPK(mip)

duals <- duals_solution_list[1:dmus]
duals_mat_list <- round(duals_solution_list[dmus+1:length(duals_solution_list)], 6)

duals_list <<- data.frame(c(1:dmus), duals_solution_list)
duals_matrix <<- data.frame(matrix(duals_solution_list, nrow = dmus, ncol = dmus))

}

#first n elements are efficiency scores
theta_list <<- solution_list[1:dmus]

#rest next n^2 elements belong to n x n lambda matrix
lambda_list <<- round(solution_list[dmus+1:length(solution_list)], 6)

thetas <<- data.frame(c(1:dmus), theta_list)
colnames(thetas) <<- c("DMU", "Efficiency")

lambdas <<- data.frame(matrix(lambda_list, nrow = dmus, ncol = dmus))
colnames(lambdas) <<- 1:dmus
rownames(lambdas) <<- 1:dmus

}

Reproducible examples

Benchmarking package produces the same results as our use of the
glpkAPI model.

Code and associated files will probably be moved to GitHub for the
final report.

using r package glpkapi for data envelopment analysis 9

Airline efficiency scores (PDX ETM Data Repository)

mod_filepath <- source_mod_file_from_github
data_filepath <- source_airline_dat_file_from_github

glpkAPIDEA(mod_filepath, data_filepath, RTS = "crs", Orientation = "in", Dual = FALSE)

airline_inputs <- source_airline_inputs_from_github
airline_outputs <- source_airline_outputs_from_github

benchmarking_dea <- dea(airline_inputs, airline_outputs, RTS = "crs", ORIENTATION = "in")
tfdea_dea <- DEA(airline_inputs, airline_outputs, rts = "crs", orientation = "input")

Warning, data has DMU's with outputs that are zero, this may cause numerical problems

results <- cbind(thetas, benchmarking_dea$eff, tfdea_dea$eff)
colnames(results) = c("DMU", "Our Tool", "Benchmarking", "TFDEA")
results

DMU Our Tool Benchmarking TFDEA
1 1 0.8542026 0.8542026 0.8542026
2 2 0.8444781 0.8444781 0.8444781
3 3 0.9475184 0.9475184 0.9475184
4 4 0.9417881 0.9417881 0.9417881
5 5 1.0000000 1.0000000 1.0000000
6 6 0.9765782 0.9765782 0.9765782
7 7 1.0000000 1.0000000 1.0000000
8 8 0.9030706 0.9030706 0.9030706
9 9 0.7793639 0.7793639 0.7793639
10 10 0.7855413 0.7855413 0.7855413
11 11 0.9080609 0.9080609 0.9080609
12 12 0.9348293 0.9348293 0.9348293
13 13 0.9215399 0.9215399 0.9215399
14 14 1.0000000 1.0000000 1.0000000
15 15 1.0000000 1.0000000 1.0000000

Gusek DEA Example

data_filepath <- source_dea_dat_file_from_github

glpkAPIDEA(mod_filepath, data_filepath, RTS = "vrs", Orientation = "in", Dual = FALSE)

dea_inputs <- source_dea_inputs_from_github
dea_outputs <- source_dea_outputs_from_github

benchmarking_dea <- dea(dea_inputs, dea_outputs, RTS = "vrs", ORIENTATION="in")

using r package glpkapi for data envelopment analysis 10

tfdea_dea <- DEA(dea_inputs, dea_outputs, rts = "vrs", orientation = "input")

results <- cbind(thetas, benchmarking_dea$eff, tfdea_dea$eff)
colnames(results) = c("DMU", "Our Tool", "Benchmarking", "TFDEA")
results

DMU Our Tool Benchmarking TFDEA
DMU1 1 1.0000000 1.0000000 1.0000000
DMU2 2 0.9860181 0.9860181 0.9860181
DMU3 3 0.8523087 0.8523087 0.8523087
DMU4 4 1.0000000 1.0000000 1.0000000
DMU5 5 1.0000000 1.0000000 1.0000000
DMU6 6 1.0000000 1.0000000 1.0000000
DMU7 7 1.0000000 1.0000000 1.0000000
DMU8 8 1.0000000 1.0000000 1.0000000
DMU9 9 1.0000000 1.0000000 1.0000000
DMU10 10 0.7965913 0.7965913 0.7965913
DMU11 11 0.8959897 0.8959897 0.8959897
DMU12 12 1.0000000 1.0000000 1.0000000
DMU13 13 1.0000000 1.0000000 1.0000000
DMU14 14 1.0000000 1.0000000 1.0000000
DMU15 15 0.6152070 0.6152070 0.6152070
DMU16 16 0.9678167 0.9678167 0.9678167
DMU17 17 1.0000000 1.0000000 1.0000000
DMU18 18 1.0000000 1.0000000 1.0000000
DMU19 19 0.6957355 0.6957355 0.6957355
DMU20 20 1.0000000 1.0000000 1.0000000
DMU21 21 1.0000000 1.0000000 1.0000000
DMU22 22 0.8057353 0.8057353 0.8057353
DMU23 23 0.4363224 0.4363224 0.4363224
DMU24 24 0.8185575 0.8185575 0.8185575
DMU25 25 0.8370609 0.8370609 0.8370609
DMU26 26 1.0000000 1.0000000 1.0000000
DMU27 27 0.6857021 0.6857021 0.6857021
DMU28 28 0.7994826 0.7994826 0.7994826
DMU29 29 1.0000000 1.0000000 1.0000000
DMU30 30 1.0000000 1.0000000 1.0000000
DMU31 31 0.8188357 0.8188357 0.8188357
DMU32 32 0.7338936 0.7338936 0.7338936
DMU33 33 1.0000000 1.0000000 1.0000000
DMU34 34 0.7501900 0.7501900 0.7501900
DMU35 35 1.0000000 1.0000000 1.0000000
DMU36 36 0.7754417 0.7754417 0.7754417
DMU37 37 1.0000000 1.0000000 1.0000000

using r package glpkapi for data envelopment analysis 11

DMU38 38 0.8398729 0.8398729 0.8398729
DMU39 39 0.7928489 0.7928489 0.7928489
DMU40 40 0.8307721 0.8307721 0.8307721
DMU41 41 1.0000000 1.0000000 1.0000000
DMU42 42 0.8330071 0.8330071 0.8330071
DMU43 43 0.9686677 0.9683243 0.9683243
DMU44 44 1.0000000 1.0000000 1.0000000
DMU45 45 0.8211967 0.8211967 0.8211967
DMU46 46 0.8538798 0.8538798 0.8538798
DMU47 47 0.4605260 0.4605260 0.4605260
DMU48 48 0.6651606 0.6651606 0.6651606
DMU49 49 1.0000000 1.0000000 1.0000000
DMU50 50 0.6897815 0.6897815 0.6897815
DMU51 51 0.6163303 0.6163303 0.6163303
DMU52 52 0.6557960 0.6557960 0.6557960
DMU53 53 1.0000000 1.0000000 1.0000000
DMU54 54 0.8641071 0.8641071 0.8641071
DMU55 55 1.0000000 1.0000000 1.0000000
DMU56 56 0.6903551 0.6887150 0.6887150
DMU57 57 0.6333229 0.6333229 0.6333229
DMU58 58 1.0000000 1.0000000 1.0000000
DMU59 59 0.8827931 0.8827931 0.8827931
DMU60 60 0.9004117 0.9004117 0.9004117
DMU61 61 0.7986199 0.7986199 0.7986199
DMU62 62 0.7983280 0.7983280 0.7983280
DMU63 63 0.9769562 0.9769562 0.9769562
DMU64 64 0.6980224 0.6944621 0.6944621
DMU65 65 1.0000000 1.0000000 1.0000000
DMU66 66 0.5498293 0.5498293 0.5498293
DMU67 67 1.0000000 1.0000000 1.0000000
DMU68 68 0.5451632 0.5451632 0.5451632
DMU69 69 1.0000000 1.0000000 1.0000000

Baseball DEA Example (from slides by Robert Vanderbei at Prince-
ton, http://orfe.princeton.edu/~rvdb/307/lectures/lec8_show.
pdf)

data_filepath <- source_baseball_dat_file_from_github

glpkAPIDEA(mod_filepath, data_filepath, RTS = "crs", Orientation = "in", Dual = FALSE)

baseball_inputs <- source_baseball_inputs_from_github

baseball_outputs <- source_baseball_outputs_from_github

http://orfe.princeton.edu/~rvdb/307/lectures/lec8_show.pdf
http://orfe.princeton.edu/~rvdb/307/lectures/lec8_show.pdf

using r package glpkapi for data envelopment analysis 12

benchmarking_dea <- dea(baseball_inputs, baseball_outputs, RTS = "crs", ORIENTATION="in" , DUAL = TRUE)
tfdea_dea <- DEA(baseball_inputs, baseball_outputs, rts = "crs", orientation = "input")

Warning, data has DMU's with outputs that are zero, this may cause numerical problems

results <- cbind(thetas, benchmarking_dea$eff, tfdea_dea$eff)
colnames(results) = c("DMU", "Our Tool", "Benchmarking", "TFDEA")
results

DMU Our Tool Benchmarking TFDEA
DMU1 1 0.9849710 0.9849710 0.9849710
DMU2 2 0.9500546 0.9500546 0.9500546
DMU3 3 1.0000000 1.0000000 1.0000000
DMU4 4 1.0000000 1.0000000 1.0000000
DMU5 5 1.0000000 1.0000000 1.0000000
DMU6 6 0.8397454 0.8397454 0.8397454
DMU7 7 1.0000000 1.0000000 1.0000000
DMU8 8 1.0000000 1.0000000 1.0000000
DMU9 9 0.8704708 0.8704708 0.8704708
DMU10 10 1.0000000 1.0000000 1.0000000
DMU11 11 0.8941253 0.8941253 0.8941253
DMU12 12 0.7466169 0.7466169 0.7466169
DMU13 13 1.0000000 1.0000000 1.0000000
DMU14 14 0.8278968 0.8278968 0.8278968
DMU15 15 0.9179704 0.9179704 0.9179704
DMU16 16 0.8507021 0.8507021 0.8507021

Extensions or future Work

Allow the user to create the data as a datframe in R, then write it
out to a file for glpkAPI. This could be easier when this exists in a
package (so the user doesn’t need to specify where the files will be
written out to). In our opinion, the easiest method of bringing in data
is by copying data from a text editor into the appropriate place in a
.dat file.

Adding a parameter to the gmpl file so that the logical expression
of which RTS constraint to choose is done in the mod file and not in
the wrapper function.

Currently, the file’s RTS is restored to the original after the model
file is done running. Because I couldn’t get the string-substitution
to work on a long string, currently we’re replacing the RTS that the
model runs with the “### RTS Constraint” used for the next .mod
call based on it being in line 25. This is extremely fragile and needs to
be fixed.

using r package glpkapi for data envelopment analysis 13

Creating a copy of the mod file for each DEA run, so that we’re not
relying on using and re-using one file which may become corrupted
downstream.

	Data Envelopment Analysis using glpkAPI in R
	Let us know how access to this document benefits you.
	Citation Details

	glpkAPI Wrapper Function (glpkAPIDEA).
	Reproducible examples

