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Abstract 

This paper reviews the existing literature on the uses of snake venom in the treatment of 

rheumatoid arthritis and pain management.  Venom from the families Elapidae and Viperidae 

have been shown to have anti-inflammatory and analgesic effects.  The analgesic findings of 

research on arthritis murine models are discussed, and the existing uses of snake venom in 

medicine on the therapeutic potential of venom in the pain management of rheumatoid arthritis 

are taken into account.  Snake venom has anti-inflammatory effects by reducing levels of pro-

inflammatory cytokines and increasing levels of anti-inflammatory cytokines.  Additionally, 

snake venom can reduce structural damage from prolonged inflammation by acting as a TNF-

alpha blocker, and by inhibiting the proliferation of fibroblast-like synoviocytes.  The 

mechanisms of snake venom pain modulation seen in murine pain models follow the cholinergic 

and opioidergic systems.  Analgesic findings involving the cholinergic system concluded not 

only that the effects of snake venom have similar effects to morphine, but also that no 

withdrawal symptoms were observed after administration of venom stopped.  Notably, the 

studies that determined opioidergic mechanisms to pain modulation observed that snake venom 

targets kappa and delta opioid receptors instead of the mu receptors, which are more involved in 

addictive behavior.  Tolerance was not observed with intermittent administration of 

venom.  These results show incredible promise for a non-addictive analgesic that could be used 

for pain management in rheumatoid arthritis patients. 

 

 

 

 



Introduction 

Venomous snakes such as those in the viper and elapid families are perceived as 

dangerous animals on a global scale.  While this is not without good reason and snake bites do 

contribute to morbidity in human populations (between 81,000 and 138,000 deaths and around 

three times as many amputations and other permanent disabilities each year (World Health 

Organization [WHO], 2021)), snake venom components have beneficial application in the 

medical world as well.  Ayurveda, a holistic healing system in India that dates back more than 

5,000 years, exemplifies these contrasting properties (Lad, 2006).   Snake venom is mentioned 

not only in Visha Chikitsha (the section of Ayurveda that focuses on treatment of poisoning) in 

regard to antivenom and treating bites, but also as a therapeutic agent for various diseases due to 

its physiologically active components (Sudhakar et al., 2017).  More specifically, cobra venom 

has been used historically in Ayurveda in the treatment of arthritis and other chronic diseases 

(Gomes, 2010).   

Not only does the use of snake venom in medicine have historical context, but it has more 

current applications as well.  Chinese physicians are implementing the use of snake venom 

products to treat stroke patients, and research has been conducted surrounding its analgesic, anti-

cancerous, and anti-inflammatory effects (Sudhakar et al., 2017). Additionally, six venom-based 

drugs have been FDA approved and are utilized for procedures and pathologies such as plastic 

and abdominal surgery, hypertension, heart attacks, and stroke (Abd El-Aziz, 2019).   Ancord, a 

drug that was developed from Malayan pit viper venom and used to treat ischemic attacks due to 

its anti-coagulating and defibrinogenating properties is paving the road for the introduction of 

venom in the pharmaceutical world (Sherman, 2002).   



From an adaptive perspective, snake venom primarily functions as a mechanism with 

which the organism can immobilize/pre-digest prey and defend itself.  There are four families 

that are entirely or at least partly composed of venomous snake species:  Elapidae, Viperidae, 

Hydrophiidae, and Colubridae (Dodd-Butera, 2014).  This review will specifically focus on 

families Elapidae and Viperidae, as a large majority of the research done surrounding the 

medical application of snake venom involves species within these groups.  Both elapids and 

vipers are front fanged snakes that belong to the superfamily Colubroidea.  Notable species of 

the elapid family are cobras of the genus Naja, and a well researched species in the viper family 

is Crotalus durissus terrificus.  Venom from each of these families varies in composition, yet 

shares certain features that make them candidates for successful therapeutics in a variety of 

pathological conditions.   

There are three primary categories of venoms based on their physiological and 

pharmacological effects: hemotoxins, neurotoxins, and cytotoxins.  Hemotoxins act on the 

cardiovascular system, neurotoxins affect the nervous system, and cytotoxins cause damage to 

cells. Snake venom is often described as a complex cocktail of biologically active components 

including enzymes and other proteins, as well as amines, lipids, nucleosides, carbohydrates, and 

metal ions.  The composition of snake venom varies drastically among species and even across 

geographical areas within the same species (Powell, 2005).  Previous studies have found that 

some individual venoms have around 100 components, and it is likely that around 90-95% of the 

dry weight is made up of proteins and peptides (Abd El-Aziz, 2019).  

The unique composition of snake venom makes it an abundant source of possibilities and 

blueprints for human therapeutics.  One particular region where there is potential is in the 

treatment and symptom management of inflammatory diseases.  Specifically, venom derived 



medications could be an avenue with great potential in the treatment of rheumatoid arthritis 

(RA), due to the anti-inflammatory and analgesic properties that snake venoms have been found 

to possess.    

The purpose of this paper is to review existing literature on the therapeutic potential of 

snake venom components for pain management in rheumatoid arthritis patients.  While there are 

many current therapies targeting inflammation in rheumatoid arthritis patients, very few 

specifically target the alleviation of pain, which is the top priority symptom for improvement in 

most RA patients.  RA pain is multifaceted, and therefore the approach to pain management must 

be as well.  Sources and mechanisms of pain and hence its treatment in RA include 

inflammation, structural damage, pain sensitization, and central pathways like the cholinergic 

and opioidergic systems.  Existing research on snake venom in murine models has offered 

promising outcomes for the alleviation of inflammation and associated pain in arthritis, and other 

research has observed analgesic actions of snake venom in other diseases and areas of human 

health.  The combination of this research provides the framework on which this paper will 

summarize current knowledge and potential avenues of study in the development of pain-

targeting medications for RA patients.  

 

Background Information: Rheumatoid Arthritis Research and Therapeutics 

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease in which the 

immune system primarily attacks healthy tissue of synovial joints (NIH).  The disease affects 

between 0.5-1.0% of the developed world population, and is a significant cause of disability in 

the United States as well as worldwide (Boonen, 2011). The primary characteristic of RA is the 

progressive destruction and inflammation of synovial joints, most commonly in 

metacarpophalangeal, proximal interphalangeal, metatarsophalangeal, wrist, and knee joints 



(Grassi et al., 1998).  Articular manifestations include symmetric joint swelling, tenderness, 

stiffness, and motion impairment, and general symptoms such as fevers, fatigue, weight loss, and 

discomfort are also common (Grassi et al., 1998).    

Of the entire rheumatoid arthritis symptom picture, pain has consistently been the 

primary reason why patients visit a rheumatologist.  A 2005 study found that while the general 

health status of RA patients in Norway improved between the years of 1994 and 2001, 

alleviation of pain remained the highest priority in both cohorts (Heiberg et al., 2005).  In 

another study, 88% of participants selected pain as their top priority for improvement during a 

year of treatment (ten Klooster et al., 2007).  Pain scores are also disproportionately greater in 

women, minorities, and those with lesser levels of education, and pain is a top contributor to 

emotional health in RA patients (Wolfe, 2007; Lee, 2013).    

One of the main treatments for pain in RA patients is the administration of disease 

modifying antirheumatic drugs (DMARDs), which act peripherally to reduce the inflammatory 

response and the pain associated with it.  Additionally, non-steroidal anti-inflammatory drugs 

(NSAIDs) such as ibuprofen and naproxen are often suggested to patients to manage their 

pain.  These medications can be coupled with over the counter medications such as 

acetaminophen to further alleviate pain.  When the combination of NSAID and acetaminophen 

administration has failed to provide relief, weak opioids are considered (Lee, 2013).  Despite the 

analgesic effects that oral opioids provide, adverse reactions such as nausea, vomiting, dizziness, 

and constipation are frequent and may offset the benefits (Whittle et al., 2011).  Additionally, the 

use of opioids poses the risk of dependence on the medication, as well as the development of 

opioid induced hyperalgesia, or enhanced sensitivity to pain (Crofford, 2010).  



Therapies for RA have generally shifted focus from symptom management to the 

treatment of underlying inflammation that causes the symptoms (Colmenga et al., 

2012).  Biologic disease modifying drugs are another ever expanding category of current 

medications available for treatment of RA.  These also act to reduce immune responses in the 

body.  For example, TNF inhibitors are used to block tumor necrosis factor (a proinflammatory 

cytokine) activity.  Similarly, Abatacept prevents the overactivity of T cells, and Tocilluzumab 

inhibits the activity of another proinflammatory protein, IL-6 (Johns Hopkins Arthritis Center, 

2018). 

The development of new biologic disease modifying drugs and other therapies that target 

inflammation offers promise for slowing disease progression and joint damage in RA patients. 

However, even when inflammation has been controlled, patients will often experience flare ups, 

or periods of symptom exacerbation and increased pain.  Additionally, pain flare ups can occur 

without the swelling or warmth that is associated with inflammation (Hewlett et al., 2012).  The 

alleviation of inflammation has not been exactly correlated with the alleviation of pain, 

suggesting the presence of other non-inflammatory contributions to pain in RA patients as 

well.  Although the use of DMARDs is effective in reducing some inflammatory pain, they are 

not made to provide immediate pain relief and many patients will still suffer from at least 

moderate pain alongside adverse effects (which may be amplified by certain analgesic 

medications) while taking these medications (Wolfe, 2007).   

While the pathways are complex and not entirely understood, it is agreed that different 

types of pain mechanisms all contribute to chronic pain experienced by rheumatoid arthritis 

patients, including peripheral and central mechanisms of pain.  There have been few clinical 

trials examining the efficacy of treatments specifically targeting pain mechanisms, and further 



research in this area is needed to discover effective methods of managing pain on both the 

peripheral and central level (Lee, 2013).   

 

Pain Mechanisms and Venom Effects 

The current understanding of rheumatoid arthritis pain divides pathways into 

inflammatory and non-inflammatory pain, and these categories can further be divided into 

varying peripheral and central mechanisms.  The majority of current therapies target peripheral 

inflammatory pain, and further research is needed on the CNS pain processing abnormalities in 

rheumatoid arthritis. This paper will outline these pain mechanisms and describe the existing 

evidence of, and potential future directions for, therapeutic application of venom on each 

category of pain.  

Inflammation is an important contributor to pain in RA, and has acute, immediate effects 

as well as long term effects that lead to pain even in the absence of the inflammation.  Chemical 

mediators of inflammation including cytokines contribute to pain, and venom components have 

been found to reduce inflammatory cytokine levels and increase anti-inflammatory cytokine 

levels.  Persistent inflammation can lead to structural changes of the joint and bone, further 

contributing to pain.  Reductions in certain pro-inflammatory cytokines have been shown to 

decrease not only the inflammatory response but also the structural damage associated with 

it.  Additionally, pathological activity of fibroblast-like synoviocytes which lead to bone erosion 

and pain could be reduced by snake venom.   

Sensitization is also a key component of pain in RA.  Sensitization can occur peripherally 

leading to primary hyperalgesia, or centrally causing secondary hyperalgesia, both of which refer 

to an increased sensitivity to stimuli and greater transmission of pain signals (Vardeh & Naranjo, 

2017).   Mechanical and thermal hyperalgesia have been found to be suppressed in several 



murine models with the administration of snake venom.  Inflammation can also affect central 

pain processing, so a decrease in inflammation with snake venom could positively affect central 

pain and sensitization as well.  

The effect of snake venom from elapids and vipers on cholinergic and opioidergic 

mechanisms of pain are arguably the most promising relevant to treating non-inflammatory pain 

in diseases such as rheumatoid arthritis.  In one study, snake venom acting on cholinergic 

receptors to produce analgesia was found to be just as effective as morphine, with a longer 

lasting effect (Cheng et al., 2009).  Additionally, several studies have found that snake venom 

targets opioid receptors, but not necessarily the subtype that is most involved in addictive 

behavior and response.  This finding could warrant further research to establish whether snake 

venom could be as effective as opioid analgesics without the negative effects of tolerance and 

addiction.   

The effects of snake venom will now be highlighted and explained in further detail as 

they apply to specific pain pathways relevant to rheumatoid arthritis.  The majority of the papers 

discussed describe studies on murine models, though human trials with snake venom have been 

conducted and are introduced later in the paper.  

 

Peripheral Inflammation and Pain 

 Peripheral inflammation has generally been described as the main cause of pain in RA 

patients, and pain is considered to be one of the four cardinal signs of inflammation.  During 

inflammation, chemical mediators such as bradykinin and prostaglandins are released to heal 

tissue damage, and subsequently cause pain and hyperalgesia by opening TRP channels and 

reducing the threshold at which they open.  Additionally, swelling and tissue buildup associated 



with inflammation can compress nerve endings, sending pain signals to the brain.  Reducing 

inflammation is undoubtedly associated with the reduction of peripheral pain caused by it.   

Proinflammatory cytokines, chemical messengers produced by activated macrophages, 

play a significant role in both the initiation and persistence of pain in autoimmune diseases such 

as RA by upregulating inflammatory responses.  These include several interleukins (IL), 

including IL-1β, IL-6, IL-8, and IL-17, as well as tumor necrosis factor alpha (TNF-α).  IL-1β 

has been found to produce hyperalgesia by increasing the production of substance P (a 

neurotransmitter involved in nociception) and prostaglandin E2, a mediator in RA inflammation 

and pain (Zhang, 2007).  This pronociceptive action is likely mediated by signaling cascades that 

lead to bradykinin, prostaglandin, and nitric oxide production (Sommer & Kress, 2004).  TNF-α 

stimulates the production of other proinflammatory cytokines in a positive feedback manner, 

creating a cytokine cascade which activates cyclooxygenase enzyme conversion of arachidonic 

acid to prostaglandin, decreasing pain thresholds.    

Anti-inflammatory cytokines such as IL-4, IL-10, IL-11, and IL-13 are molecules that 

mediate the pro-inflammatory cytokine response.  For example, IL-10 decreases the expression 

of the pro-inflammatory cytokines mentioned above, and inhibits macrophage activity and 

activation, which are processes that promote inflammation (Zhang, 2007; Gomes et al., 

2010).  Shifting the balance from greater levels of pro-inflammatory cytokines to increased anti-

inflammatory cytokines in RA patients could reduce inflammation and the pain associated with 

it.  The following studies have observed the anti-inflammatory effects of snake venom 

components on murine arthritis models, and many have produced results suggesting that venoms 

can produce this positive shift from proinflammatory to anti-inflammatory cytokines.   



A handful of studies have utilized venom from elapids, particularly the species Naja 

kaouthia and Naja naja, in murine arthritis models to study the anti-inflammatory and anti-

arthritic properties of the venom or its specific components.  Gomes et al. (2014) observed the 

effects of NN-32, a cytotoxic protein from Naja naja venom, on arthritic rats.  It was found that 

while arthritic rats showed significantly increased levels of inflammatory cytokines TNF-α, IL-

17, and cytokine-induced neutrophil chemoattractant 1 (CINC-1, a rat cytokine (homolog of IL-

8) with hyperalgesic properties) compared to non-arthritic control rats, NN-32 treatment 

significantly decreased levels of these cytokines.  Another study by the same researchers found 

that IL-10 levels were decreased in adjuvant induced arthritic rats, but the levels were 

significantly restored when treated by Naja kaouthia venom (Gomes et al., 2010).  

Liu et al. (2009) produced similar results using cobratoxin, a neurotoxin from a Naja 

cobra, on complete Freund’s adjuvant (CFA) induced arthritis rats.  The arthritic rats showed 

increased serum levels of TNF-α, IL-1, and IL-2, and decreased levels of IL-10.  With the 

cobratoxin treatment, the rats exhibited lower proinflammatory cytokine levels, and a reversal of 

the CFA induced IL-10 decrease.  Ruan et al. (2013) found similar results with neurotoxin-NNA, 

another peptide from Naja naja atra: Treatment with the peptide exhibited a dose dependent 

decrease in TNF-α and IL-1β levels in rat models of inflammation.  These studies add to the 

evidence that cobra venom could modulate the production of inflammatory cytokines in RA and 

subsequently reduce inflammatory pain.   

A study by Zhu et al. (2016) compared the effects of cobratoxin from Naja naja atra to 

dexamethasone, a corticosteroid that relieves inflammation.  Dexamethasone administered to 

arthritic rats showed greater effects on acute inflammation than the cobrotoxin, but inhibition of 



the long-term inflammatory process (observed by a decrease of cytokines IL-6, TNF-α, and IL-

1β) was strong in both dexamethasone and cobratoxin treated rats.    

Another experiment that orally administered cardiotoxin (CTX) from Naja naja atra to 

adjuvant-induced arthritic rats showed that CTX treatment significantly lowered serum IL-6 and 

IL-17 levels compared to those without treatment (Chen et al., 2015).  The study found no 

difference in IL-10 levels between control and arthritic rats, regardless of whether they were 

treated with CTX.  The maintenance of the levels suggests that orally administered CTX has 

anti-inflammatory properties by decreasing pro-inflammatory cytokine levels and maintaining 

pro-inflammatory cytokine levels.  This study specifically assessed the analgesic effects of CTX 

by using the formalin and acetic acid writhing tests, and compared the effects of CTX to that of 

aspirin (used as a positive control in the model).  Rats treated with CTX showed slightly greater 

anti-inflammatory and analgesic effects, suggesting the potential for components of venom to 

function as NSAIDs (Chen et al., 2015).  

 

Joint Destruction 

 Prolonged inflammation of the joint in result of an autoimmune response causes synovial 

membrane alteration and bone destruction, both of which subsequently lead to pain.  Several 

studies have confirmed that arthroplasty significantly reduces pain in patients with arthritis, 

indicating that structural changes due to inflammatory damage persist beyond the inflammatory 

pain caused from the initial autoimmune attack (McWilliams & Walsh, 2017).   

The use of tumor necrosis factor (TNF) blockers, a more recent therapeutic option for 

RA, provides a correlation between the cytokine TNF-α and bone erosion.  Several studies have 

found that the five TNF blockers that are currently in use have all been correlated with continued 

inhibition of bone erosion (Schett, 2011).  The positive effect of TNF inhibitors provides 



evidence that a decrease in the cytokine TNF-α could have beneficial effects on reducing not 

only initial inflammatory pain but also pain induced by bone erosion and other structural 

changes.  Therefore, snake venom components that have been found to decrease inflammatory 

cytokine levels, including TNF-α, could play a role in decreasing pain in RA patients.   

The previously mentioned papers from Gomes et al., Zhu et al., and Ruan et al. all found 

a decreased level of TNF-α with snake venom treatment on rat models.  Additionally, Zhu et al. 

(2016) found that cobrotoxin from Naja naja atra venom inhibited the activation of nuclear 

factor kappa B (NF-κB). NF-κB is a transcriptional factor that plays a role in inflammation by 

expressing pro-inflammatory cytokines, including TNF-α, and inhibition of NF-κB has been 

shown to delay progression of joint destruction in animal arthritis models. Another study also 

found that cobrotoxin has an inhibitory effect on NF-κB activation, which led to decreased levels 

of TNF-α (Park et al., 2005).  These studies indicate that cobra venom can decrease 

proinflammatory cytokine levels, affecting not only inflammatory pain but also pain associated 

with physical destruction of the joint.  

Fibroblast-like synoviocytes (FLS) significantly contribute to the pathogenesis of 

RA.  They reside in the intimal lining of the synovium, producing and recruiting inflammatory 

cytokines and proteolytic enzymes that cause destruction to the extracellular matrix.  FLS 

activity causes further joint damage by expanding the intimal lining from the normal 1-2 cells to 

10-20 cells deep and forming a pannus, which subsequently erodes the bone and causes pain 

(Bartok & Firestein, 2011).  Bartok and Firestein (2011) propose that targeting FLS could 

produce positive clinical outcomes in RA without compromising systemic immunity.  Zhu et al. 

(2016) assessed the effects of cobrotoxin extracted from Naja naja atra venom on the 

proliferation of FLS. It was found that cobrotoxin had an inhibitory effect on the proliferation of 



FLS through the inhibition of the NF-kb signaling pathway.  Pannus formation was also 

significantly alleviated by cobratoxin, a neurotoxin from the Thailand cobra (Liu et al., 2009). 

 

Peripheral Pain Sensitization  

In addition to structural changes seen in RA, long term inflammation alters nociceptive 

signaling and these long lasting effects result in peripheral pain sensitization, which refers to an 

increased sensitivity of nerve fiber endings residing outside of the central nervous system. 

(Biddle & Sofat, 2020).  Peripheral sensitization plays a significant role in chronic RA pain, and 

results in primary hyperalgesia (Prescott, 2017).  In addition to prostaglandins and bradykinin, 

other inflammatory mediators and factors such as cytokines, serotonin, and histamine are 

released during an inflammatory response.  These components affect primary afferent neurons by 

binding to their corresponding receptors at nociceptive terminals.  Sustained inflammation 

upregulates ion channels that leads those neurons to become more sensitive to the inflammatory 

mediators (Schaible, 2002).  Consequently, these neurons exhibit an increased rate of action 

potential firing, thus resulting in local pain hypersensitivity (Prescott, 2017).   

Zhu et al. (2013) studied murine rheumatoid arthritis models, finding that Naja naja atra 

venom exhibited dose-dependent analgesic effects and inhibited mechanical hyperalgesia.  Ruan 

et al. (2013) found similar results, showing that the Naja naja atra venom peptide Neurotoxin-

Nna reduced CFA-induced tactile hyperalgesia. A 2009 study observing the effects of cobratoxin 

on Freund’s adjuvant-induced arthritis in rats found that arthritis symptoms were suppressed, and 

CFA-induced mechanical and thermal hyperalgesia were inhibited with daily administration of 

cobratoxin 11-19 days after CFA administration (Liu et al., 2009).   

 

Central Inflammatory Pain and Central Sensitization 



A central inflammatory component to pain in RA also accompanies the peripheral 

causes.  Synovitis generates bioactive substances that sensitize peripheral nerves.  Additionally, 

the generation of pro-inflammatory cytokines contributes to central sensitization by elevating 

levels in the central nervous system.  Central sensitization causes pain hypersensitivity by 

increasing the excitability of afferent sensory neurons and hence transmission of pain 

signals.  This often occurs at the level of the spinal cord, where an enhanced release of 

glutamate, an excitatory neurotransmitter, and substance P (a neuropeptide involved in pain) 

causes hyperalgesia and allodynia (Lee, 2011).  

Cytokines circulating in the body can enter the central nervous system likely due to a 

compromised blood brain barrier during chronic inflammation, and have central effects on pain 

processing (McWilliams, 2017).  One study found that in the early phase of the collagen induced 

arthritis model in rats, mechanical allodynia (the pathological experience of pain with non-

noxious stimuli that normally do not produce a pain response) and hyperexcitability in the spinal 

cord was associated with an increase in CSF IL-1β levels, prior to the onset of clinical signs of 

arthritis (Nieto et al., 2016).  This suggests a causal relationship between inflammatory arthritis 

and central sensitization.  Similarly, inflammatory cytokines such as tumor necrosis factor-a, IL-

1β, and IL-6 act directly on nociceptive nerve cells in the dorsal root ganglion of the spinal cord 

and induce allodynia and diffuse hyperalgesia (Schaible et al., 2010).   

As discussed earlier, snake venom and its components have been shown to produce anti-

inflammatory effects by decreasing the levels of pro-inflammatory cytokines, which could be 

promising in relieving inflammatory pain not only peripherally but also pain on a central level.   

Suppression of joint inflammation is often not correlated to a remission in pain, however, 

suggesting that central sensitization cannot be entirely reversed by the treatment of inflammation 



(McWilliams, 2017).   Inflammation is undoubtedly a contributor to RA pain, but as a 2015 

study found, changes in inflammation explained less than half of changes in pain (Druce, 2015). 

The bilateral characteristics and autonomic pathologies associated with RA indicate that there is 

a central component to pain in chronic diseases such as rheumatoid arthritis in which changes in 

the central nervous system lead to an alteration in the processing of signals coming from 

damaged and inflamed joints, even when inflammation has subsided (Meeus et al., 2012).  Zhang 

et al. (2006) assessed the analgesic effects of crotoxin (a neurotoxin isolated from Crotalus 

durissus terrificus venom) in mice models, finding that it exhibited dose-dependent analgesic 

action, likely mediated both peripherally and centrally.  The study concluded that the action of 

the toxin is mediated by the central nervous system because both intracerebral ventricular and 

periaqueductal gray area administration of the venom produced significant analgesic 

effects.  The study confirmed this by drawing from previous evidence that analgesia in response 

to hotplate and tail-flick tests in mice has a central action, which was also seen in the Zhang et al. 

study.  Notably, no neuronal damage was seen in the murine models receiving central crotoxin 

injections (Zhang et al., 2006).   

 

Cholinergic Pain Modulation 

Neurotoxins in cobra venom have been found to target nicotinic and muscarinic 

acetylcholine receptors, which are expressed readily throughout the peripheral and central 

nervous system and are involved in the regulation of pain  (Liu et al., 2009).  Acetylcholine 

receptor agonists are emerging as promising agents in treating chronic and inflammatory pain 

(Bagdas, 2019).  

Several studies have identified that the analgesic effects of snake venom could be 

mediated by blocking the transmission of nerve impulses before they have reached the central 



nervous system.  Postsynaptic alpha neurotoxins inhibit ion channel activity and block synaptic 

transmission, and postsynaptic muscarinic receptors have been found to be involved in 

antinociception (Cheng et al., 2009; Bartolini, 1992).  Cheng et al. (2009) found that cobratoxin 

from Naja kaouthia inhibited pain-evoked discharge of neurons in the central nervous system in 

rats.  The effect was attributed to the involvement of muscarinic cholinergic receptors, because 

the pre-administration of atropine (a muscarinic cholinergic antagonist) blocked the anti-

nociceptive response (Cheng et al., 2009).  Additionally, the authors concluded that nicotinic 

cholinergic receptors may also be involved in nociception, because peripheral antinociceptive 

and anti-inflammatory effects were antagonized by methyllycaconitine, an alpha-7 nicotinic 

receptor antagonist (Liu et al., 2009).  Interestingly, the inhibition of pain responses with 

cobratoxin persisted for at least 2 hours, while morphine administration only produced anti-

nociceptive effects for less than thirty minutes (Cheng et al., 2009).   

  Ruan et al. (2013) studied the anti-inflammatory effects of neurotoxin-Nna, a peptide 

from Naja naja atra venom, finding that it displayed analgesic properties by binding to the alpha 

subunit of the nicotinic acetylcholine receptor, blocking transmission of the nerve impulse. The 

study also concluded that treatment with neurotoxin-Nna reduced tactile hyperalgesia induced by 

complete Freund′s adjuvant in the murine inflammatory model.  Najanalgesin, another 

component of Naja naja atra venom, elicited an antinociceptive effect in a rodent model that 

lasted for 6 hours after the intraperitoneal injection (Jiang et al., 2008).   Similar to the Cheng et 

al. findings, pre-treatment with atropine blocked the antinociceptive effect, suggesting 

cholinergic mechanisms responsible for the pain relief.  Postmortem exams of the rodents 

revealed no internal damage, nor was locomotion impaired during the study, suggesting that 

there were minimal adverse effects to the najanalgesin administration (Jiang et al., 2008).   



Opioidergic Pain Pathways 

Pain is perceived via ascending pain pathways that are mediated at several varying 

levels.  The ascending pain pathway involves a first order sensory neuron (in the peripheral 

nervous system) that fires action potentials in response to a noxious stimulus and synapses on a 

second order neuron in the dorsal horn of the spinal cord.  This neuron decussates and travels up 

the spinal cord contralaterally in the spinothalamic tract until it synapses in the thalamus with the 

third order neuron that will send the signal to the somatosensory cortex of the cerebrum.   

Pain perception can be modulated by several mechanisms, arguably the most relevant to 

venom analgesia findings being the opioid peptidergic system.  Peripheral sensory neurons 

express opioid receptors on their terminals that, when activated by endogenous or exogenous 

opioids, inhibit the pain signal from being transmitted to the second order neuron (Stein et al., 

2009).  There are three subtypes of opioid receptors in the body - delta, kappa, and mu - and 

different ligands show varying affinities for the three types.  It is well understood that the mu 

receptor is responsible for analgesic effects but also plays a large role in the reward system and 

addictive opioid-related behaviors (Le Merrer et al., 2009).  Mu receptor agonists are widely 

used in pain management but also have the greatest potential for abuse and addiction (Albert‐

Vartanian, 2016).  In fact, in mice lacking the mu opioid receptor gene, analgesia, reward effect, 

and withdrawal symptoms were abolished (Matthes et al., 1996).  Kappa opioid receptors are 

also involved in pain regulation, and peripherally restricted kappa opioid receptor agonists have 

been found to relieve inflammatory, visceral, and chronic pain (Vanderah, 2010).  Delta opioid 

receptors also mediate inhibition of pain, and delta receptor agonists are effective in relieving 

chronic pain, inflammatory pain, and malignant bone pain (Pradhan et al., 2011; Vanderah, 

2010).  Kappa and delta opioid agonists have been shown to produce impressive analgesic 



effects with a potentially lower risk of abuse than those analgesic targeting mu opioid receptors 

(Vanderah, 2010).  

It is for this reason that the use of snake venom for pain management in diseases such as 

rheumatoid arthritis is so promising.  Multiple studies have attributed the antinociceptive effects 

of snake venom with targeting opioid receptors, and while the findings regarding tolerance build 

up with continued administration have varied, there is still promising evidence for the use of 

venom for pain management via opioidergic pathway mechanisms.   

Najanalgesin isolated from Naja naja atra venom was found to induce an antinociceptive 

effect lasting up to 6 hours after injection in a murine model, and pretreatment with atropine, a 

muscarinic antagonist, and naloxone, an opioid receptor antagonist, blocked the pain-relieving 

effect.  This suggests that the mechanisms for pain relief include both cholinergic and 

opioidergic pathways (Jiang et al., 2008).  A study by Mancin et al. (1998) administered 

crotamine, a neurotoxin derived from Crotalus durissus terrificus venom (Cdtv), via 

intraperitoneal injection to murine models and found that the dose-dependent analgesic activity 

of the neurotoxin was also inhibited by naloxone, suggesting that the mechanism of action was 

opioidergic.  This study determined that the antinociceptive effect of crotamine is 30-fold greater 

than that of morphine, respective to their dosage, and did not have any negative effects on 

internal organs. It was also concluded that the analgesic activity involves both central and 

peripheral mechanisms.   

Several studies have gone further and have identified the specific opioid receptors on 

which venom components are acting.  Konno et al. (2008) determined that crotalphine, another 

analgesic peptide from Crotalus durissus terrificus, suppressed hyperalgesia and induced 

antinociception mediated by kappa opioid receptors.  Notably, the long-lasting antinociceptive 



effects did not cause development of peripheral tolerance or withdrawal symptoms.  The study 

also assessed the efficacy of synthetic crotalphine as an analgesic, and found that it had dose 

dependent antinociceptive effects similar to the crude crotalphine.   

Another study found similar results that Ctdv exerts its antinociceptive effects by acting 

upon kappa opioid receptors.  While tolerance to the effect was observed when administering the 

venom for 14 days, the effect was reestablished 7 days after the administration was stopped.  The 

administration of the venom every 5 days for 65 days did not lead to tolerance build 

up.  Additionally, symptoms of abstinence syndrome or withdrawal were not observed.  It is 

possible that this finding is due to the venom exerting its effects on kappa opioid receptors, 

rather than the mu receptors that are more involved in addiction.  No histopathological or 

locomotive changes were observed in the mice (Brigatte et al., 2001).      

Conversely, another study by Picolo et al. (2000) concluded that delta opioid receptors, 

rather than kappa opioid receptors, act to mediate the analgesic effect of Cdtv, as antagonists of 

delta opioid receptors stopped the antinociceptive effects.  Similar to the findings of Konno et al, 

prolonged administration of the venom did not lead to tolerance, and locomotion in the rat 

models was not affected, suggesting minimal neurological side effects (Picolo et al., 2000).  

 

Discussion 

 Snake venom could provide a multi-faceted approach to pain management in rheumatoid 

arthritis patients due to the scope of mechanisms on which it has been found to act regarding 

inflammation and pain.  While inflammation does not comprise the entire picture of pain in RA, 

administration of drugs targeting the underlying inflammation still leads to reductions in pain in 

many patients.  Snake venom, particularly from cobras and elapids, has anti-inflammatory 

properties that could serve as a mechanism by which to reduce the underlying inflammatory 



properties of the disease.  These properties could reduce both peripheral and central 

inflammation, and potentially prevent further joint damage and sensitization of nerves.   

 The discovery that the analgesic effect of snake venom is mediated by cholinergic 

mechanisms is incredibly promising.  Studies have compared the efficacy of venom from species 

such as Naja naja atra to morphine in the treatment of pain, with several cases finding that the 

venom is just as effective as the opioid analgesic.  Most notably, the receptors on which the 

venom is acting do not belong to the opioidergic system, and the analgesic action was not 

accompanied by addiction or withdrawal in murine models.  Findings that associate the analgesic 

effects of snake venom with opioidergic systems are just as promising. Many of the components 

of venom do not act on the mu opioid receptor, which is the most involved with the addictive 

properties and withdrawal associated with opioid analgesics.  The peripheral kappa and delta 

receptors may be downregulated with prolonged exposure, without the withdrawal syndrome of 

central downregulation.  Further research is needed to determine the exact mechanisms by which 

venom acts in the opioidergic system that may cause tolerance but not withdrawal.  Targeting 

kappa opioid receptors for the treatment of pain without the side effect of addiction could be a 

safer method of administering potent analgesics (Beck & Dix, 2019).  

 While the majority of this paper has described findings of snake venom effects on pain in 

murine models, there have been multiple phase I and phase II human trials utilizing venom for 

the treatment of various pathologies and post-operative care, all showing varying levels of 

response (Reid, 2011).  A 2002 phase I trial assessed the effects of crotoxin in patients with 

advanced cancer, and while managing pain was not the primary goal of the study, eighteen of the 

twenty-three participants in the study reported a significant decrease, and even disappearance, of 

pain after several weeks of treatment.  In fact, one patient suspended their regular administration 



of morphine after three weeks.  Several intermittent neurological side effects, including diplopia, 

palpebral ptosis, and strabismus were observed, but disappeared between 15-21 days of 

administration (Cura et al., 2002).  Pure cobrotoxin was also found to be useful in postoperative 

pain management, and its effects lasted twice as long as morphine, despite needing only 150th of 

the amount of drug (per kg) (Wang et al., 1999).   

 

Conclusion 

 Pain has persistently been shown to be the primary concern in individuals with 

rheumatoid arthritis.  Pain impacts quality of life through a myriad of effects including greater 

physiological and psychological distress, hindered social and physical functioning, and greater 

healthcare costs (Biddle & Sofat, 2020).   A 2012 study collected transcripts from patients 

experiencing RA flares, one participant describing how their pain makes them feel: “I’m hurting. 

Help me, I don’t want to feel like this. When I go into my doctor and he says ‘Why are you in 

here today?’ I say ‘Because I can’t function like this. I’m hurting, I want to kill myself’ (Hewlett 

et al., 2012).  Chronic pain has detrimental effects on the individuals experiencing it, their 

families, and their social circles.  

While targeting the underlying inflammatory causes of RA has been shown to provide 

some pain relief, treatments focusing on central mechanisms of pain are yet to be explored in 

depth.  Often, the allopathic approach of treatment with DMARDs, NSAIDs, and other over the 

counter medications reduces pain but does not provide the relief desired in RA 

patients.  However, the use of more effective analgesics such as opioids are usually avoided due 

to their undesirable side effects and risk of addiction.  Components of snake venom could reduce 

pain via both inflammatory and central pain mechanisms, while reducing the risks associated 

with current pain management therapies.   



 The efficacy of snake venom in reducing pain, comparable to that of morphine, could 

offer an alternative solution to the use of opioid analgesics.  With such a high abuse potential, 

prescribed opioids have significantly contributed to the growing concern of opioid related 

disability and mortality in the United States (Brown & Sloan, 2017).  In 2019, 14,139 

prescription opioid related deaths were reported in the US, and addiction to prescribed opioid 

agonists that specifically target mu receptors poses a significant public health threat (National 

Institute on Drug Abuse; Beck & Dix, 2019).  When primary care and chronic pain physicians 

rightfully prioritize mitigating discomfort and pain in patients, prescribing opioids offers an 

effective but dangerous solution.  If snake venom components could produce similar, if not more 

effective, analgesic results without the potential for abuse, tolerance and withdrawal, the 

management of pain in rheumatoid arthritis and other chronic diseases could be drastically 

altered for the better.  
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