
Portland State University Portland State University 

PDXScholar PDXScholar 

University Honors Theses University Honors College 

Spring 2021 

A Comparison of Particulate Matter Deposition onto A Comparison of Particulate Matter Deposition onto 

Green Roof Species and White Roof in Portland, Green Roof Species and White Roof in Portland, 

Oregon Oregon 

Amelia Drake 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses 

 Part of the Environmental Engineering Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Drake, Amelia, "A Comparison of Particulate Matter Deposition onto Green Roof Species and White Roof 
in Portland, Oregon" (2021). University Honors Theses. Paper 1117. 
https://doi.org/10.15760/honors.1145 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/254?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/1117
https://doi.org/10.15760/honors.1145
mailto:pdxscholar@pdx.edu


A Comparison of Particulate Matter Deposition onto Green Roof Species and White 
Roof in Portland, Oregon 

by 

Amelia Drake 

An undergraduate honors thesis submitted in partial fulfillment of the 

requirements for the degree of 

Bachelor of Science 

in 

University Honors 

and 

Environmental Engineering 

Thesis Adviser 

Olyssa Starry, PhD 

Portland State University 

Spring 2021 



Acknowledgements 

This project would not have been possible without the help of Alondra Sotelo Laureano and Tyler 
Robin, who spent hours helping me with the process of measuring leaf area. And of course, Olyssa 
Starry who helped with sample collection, experimentation, and analysis - while motivating and 
guiding me throughout this entire process. Additionally, funding from the National Institutes of 
Health Common Fund and Office of Scientific Workforce Diversity under the following awards: 
UL1GM118964, RL5GM118963, and TL4GM118965 supported this project throughout the entire 
research process. 



Table of Contents 

Abstract .............................................................................................................................................................................. 1 

Introduction .....................................................................................................................................................................2

Methods ............................................................................................................................................................................. 8

Results ............................................................................................................................................................................... 12

Discussion ....................................................................................................................................................................... 15 

Conclusion ....................................................................................................................................................................... 18 

References ....................................................................................................................................................................... 19 

Appendix A. ANOVA Results..................................................................................................................................... 22 



Abstract 

With an increasing percentage of the world’s population living in urban areas, we are 

likewise seeing increasing levels of toxic pollutants found in urban areas. This study explores 

the following question: how do different green roof vegetation species contribute to 

particulate matter deposition relative to a white roof in Portland, Oregon? To answer this 

question, replicate samples of rinse water particulates from two succulent species of 

vegetation - S. kamchaticum and S. rupestre – were compared to rinse water from white roof 

surfaces. Leaf area was then determined in order to calculate the density of particles found 

on     each surface. White roof samples were normalized to the known roof surface and plants 

samples were normalized to leaf area. Values for particle densities were initially similar 

across the surfaces – with the density of 10 µm diameter particles found on S. kamchaticum 

and white roof both in the magnitude of 10-5 g/cm2. However, when taking into account 

leaf area index, a larger density of particles was found to be collected on vegetative surfaces 

as opposed to the surface of the white roof. The density of specific metals present on each 

surface was also determined and compared. Although S. kamchaticum contained a higher 

density of particles, the white roof may be more effective at collecting particular metals such 

as iron and aluminum. It would be beneficial for future research to consider why particular 

metal species are more found at higher densities on specific surfaces.  
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Introduction 

An increased awareness of ambient air quality has been accompanied by increasing 

levels of harmful pollutants in the atmosphere, as a result of rapid urbanization and 

industrialization (Suravarapu, 2016). The Global Burden of Disease     Study conducted in 

2017 shows that environmental factors strongly contribute to the likelihood of disability 

caused by chronic obstructive pulmonary disease - especially within countries whose socio-

demographic index is low (Soriano et al, 2017). Instances of chronic pulmonary disease 

associated with particulate matter emissions account for 250 global deaths per 100,000 

people per day (Soriano et al, 2017). In the western US, recent wildfires as a result of 

climate change have resulted in ambient particulate matter concentrations as high as 490 

µg/m3 - 14 times that of the Environmental Protection Agency’s air quality guidelines for 

24-hour exposure (EPA NAAQS). Particulate matter is often organized into three categories 

based on particle size: PM10 (coarse particles, diameter is ≤ 10 µm), PM2.5 (fine particles, 

diameter is ≤ 2.5 µm), and PM0.1 (ultra-fine particles, diameter is ≤ 0.1 µm). Particles that are 

smaller often pose a greater health risk because they’re able to travel deeper into one’s 

lungs, and PM0.1 is even small enough to enter the bloodstream (Weerakkody, 2017).  

Depending on the composition     of the particulate matter, this risk can be carcinogenic 

or fatal. Heavy metals can enter the body through inhalation from the ambient air and 

through ingestion – or from particulate matter that has deposited onto the produce that 

we harvest (Suravarapu, 2016). Although the human body can tolerate - and oftentimes 

requires - small amounts of particular metals, larger levels of toxic pollutants, such as 

Chromium IV or lead, can be lethal (Artwell, 2017). Environmental levels are increasing - 

this can be seen by the increase in the concentration    of these pollutants that deposit onto 

the surface of vegetation (Tomašević et al, 2005). Traffic emissions are regarded as being 
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one of the greatest promoters for these increased levels; it is widely understood that 

exposure to traffic emissions increases the risk of health effects for those living or working 

near roadways (Baldauf, 2017). In fact, in several epidemiological studies, there were less 

accounts of doctors’ visits during periods of decreased traffic levels (Bell et al, 2011). 

Exposure to traffic-related emissions are greatest in urban areas - wherein 68% of the 

population is projected to live by 2050 (UN DESA, 2018). Researchers found increasing 

levels of heavy metals on tree leaves in Belgrade as the population of the city increased 

(Tomašević et al, 2005) and shocking combinations of metals found in pine needles near a 

petrochemical plant - both suggesting that our growing proximity to industrial activities 

may heed some negative consequences (Bosco et al, 2005). 

Despite the growing concerns regarding the health of city-dwellers and cities, many 

studies have shown that air pollution is not necessarily an irremediable issue. Air quality 

measurements taken along the height of a 60-story building in downtown Chicago found 

that both PM1 and PM2.5 concentrations tended to decrease with building height (Stephens 

et al, 2019). Urban street canyons occur when tall buildings adjacent to a street result in a 

lack of air dispersion, therefore causing a “canyon” of poorer air quality. However, it has 

been shown that NO2 and PM10 concentrations can be reduced by as much as 40% and 60% 

respectively, by the addition of vegetation to these microenvironments (Pugh et al, 2012). 

Vegetation as a form of air pollution remediation is not a new idea - a study conducted in 

1997 showed that although it can have toxic effects on the trees, urban woodlands are 

effective at capturing particulate matter due to the large surface area contained therein 

(Beckett et al, 1998). Later on, additional research suggested that different species of 

shrubs also function as bioremediators - and are potentially more effective than trees (Chen 

et al, 2016). Other studies have looked at roadside barriers as effective forms of vegetative 
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remediation (Tong et al, 2016 and Brantley et al, 2014). In their study done on the 

effectiveness of roadside barriers to reduce air pollution, Tong et al found that although 

solid-barriers provide a large concentration drop across the barrier, a vegetation-solid 

combination barrier provides a higher reduction in downwind PM concentrations (Tong et 

al, 2016). 

To utilize green infrastructure as a remediation method for air pollution, we must also 

take into account evidence that suggests differences in particulate matter deposition 

depending on surface characteristics - such as leaf micromorphology. Similarly to how 

different plant families - like shrub-like plants versus trees - may be more effective, different 

species may also have different levels of effectiveness in retaining particles (Chen et al, 2016). 

For example, it was found that “the dust-retaining capability of any given tree species is 

significantly different in the same [geographical] place” (Liu et al, 2012). Many studies have 

illustrated that particular micromorphological characteristics, like “vegetation   with rough 

surfaces & fine hairs or raised veins”, are often more effective at capturing and retaining 

particles (Moya et al, 2018). A study using synthetic leaves as a way of exploring these 

characteristics found that smaller leaves tend to be more efficient at capturing particles, 

which they suggested was due to the large edge effect of smaller leaves (Weerakkody et al, 

2018). These micromorphological characteristics can vary widely and because they often 

impact the efficacy of green infrastructure, they are considered to be one of the most 

important design factors in considering vegetation as a bioremediator (Saebo et al, 2012). 
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Several studies have questioned the notion that vegetation can serve as a 

bioremediator of urban particulate matter pollution. In evaluating the efficacy of vegetative 

roadside barriers in traffic pollution mitigation, researchers saw a “modest improvement in 

near-road concentrations of PM” in some cases. However, they also saw an increase in PM 

concentrations in other cases - due to the recirculation zones created by the boundary edge 

effects of the barrier (Brantley et al, 2014). These unintended consequences of vegetative 

barriers bring attention to the fact that not all green infrastructure is created equal. There 

is also emerging evidence to suggest that “trees do not necessarily improve air quality in 

near-road environments”, due to the fact that dense vegetation near roads may result in 

reduced ventilation and therefore worsen air quality (Viippola et al, 2020). From the lack of 

consensus in the literature, one must agree with Janhall et al, that “we do not yet 

understand all the parameters influencing the effects of vegetation on air pollution” 

(Janhall et al, 2015). 

More work is needed to understand how low impact designs, such as green roofs, 

can affect urban air quality. Green roofs have gained popularity in recent years as an 

effective form of bioremediation infrastructure and a possible solution to a myriad of 

environmental issues. Temperature regulation has been promoted as a promising benefit 

of green roofs. Green roofs are able to facilitate cooling by offering shade, by absorbing 

thermal energy through the process of photosynthesis and by the process of 

evapotranspiration; in fact “green roofs reflect between 20% and 30% of solar radiation, 

and absorb up to 60% of it through photosynthesis” (Berardi et al, 2014). Compared to 

other forms of vegetative infrastructure, one of the obvious advantages of green roofs is 

that they can be built onto a pre-existing landscape, while planting street trees - for 

example - often requires a disruption of the urban environment (Speak et al, 2012). As is 
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generally true about vegetation as a bioremediation solution, the characteristics of green 

roofs and green roof vegetation impact the efficacy of these projects as well. One of the 

few studies that looks at PM deposition onto green roofs argues that while green roofs are 

“an effective option to mitigate air pollution as well as other environmental problems”, 

they should not be the only method (Yang et al. 2008). It was estimated that approximately 

2.3% of inputted PM10 in the area surrounding green roofs was captured by a collection of 

green roofs studied in a UK city - making them “less effective than street trees” (Speak et 

al, 2012). However, it appears that choice of species will affect this efficacy - for example, 

the high leaf roughness of Sedum album makes it much more effective when compared to 

other common green roof species (Viecco et al, 2018). Furthermore, proximity to the 

source of pollution also has an effect on deposition rates seen in vegetation in general - 

where deposition rates are greater on vegetation that is closer to sources of pollution 

(Janhall et al, 2015). This is another trend that likely impacts green roof vegetation and 

should be accounted for.  

In judging the efficacy of green roofs as a form of environmental bioremediation, one 

must consider the other logical option - white roofs. White roofs - also known as cool roofs - 

essentially increase the albedo of a roof, thereby reducing temperatures of the building and 

potentially the surrounding environment. Albedo is a unitless quantity that represents the 

reflectiveness of a surface. On average, white roofs are able to achieve a near-surface air 

temperature reduction of 0.2 Kelvin per 0.1 increase in roof albedo (Wang et al, 2020). 

Previous research has indicated that pollutant uptake is much greater by vegetative walls 

compared to hard surfaces like concrete facades (Joshi & Ghosh, 2014), however there is a 

need for a direct comparison of white roofs to ecoroof vegetation - which is the goal of the 

study at hand. Furthermore, it has been determined that a non-green roof would need to 

have an albedo of at least 0.7 in order to achieve the same reduction in surface temperature 6



as a green roof (Li et al, 2014). This implies that if white roofs are in fact collecting and 

retaining particulate matter, this may actually result in a loss     of efficacy to reflect solar 

radiation and act as a thermal regulator. 

The question being asked in this study is how do different green roof vegetation 

species contribute to particulate matter deposition relative to a white roof in Portland, 

Oregon? Previous research indicates that we will find a variation in the particle 

concentrations among green roof species. We will also look at differences between 

particulate matter concentration of leaf surface with the PM concentration of the surface of 

a white roof at the same location - we believe we will find a higher concentration 

 of PM on the sampled vegetative surfaces. Additionally, this study will look at the specific 

composition of metals captured on each respective surface. Using inductively coupled 

plasma mass spectrometry to determine the masses of particular metals present, we want 

to determine 1) if vegetation is more effective than white roofs at collecting particles, but 

more importantly 2) variations in the composition of the particles collected on vegetation 

versus white roofs because as previously illustrated, not all particles have the same effects 

on human health. 
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Methods 

Site Characteristics 

The roof sampled in this study was located on a Walmart in NE Portland, Oregon. 

The same roof was used to sample both ecoroof vegetation and white roof. We intentionally 

chose to sample in late fall, after a long dry summer, in order to capture maximum loading 

conditions. 

Sampling 

We sampled two different species of plants from this ecoroof in order to encompass 

any variations in PM concentration caused by variation in micromorphological 

characteristics. For both plant species there were four replicates. The species sampled were 

Sedum kamchaticum and Sedum rupestre. For both the leaves and white roof, composite 

samples were taken along four evenly spaced transect lines. For the plants, multiple samples 

were taken from ten plus locations - because many plants were entering winter dormancy. 

To obtain a sample from the white roof, we placed a rim on the surface of the white roof, 

added a known volume of water, agitated the water and then retrieved the water sample 

using a baster. For the white roof, four composite samples were taken 20 ft apart along the 

transect. Sampling two different species of vegetation was valuable because it has allowed 

us to look at the variation among species compared to the observable differences between 

white roofs and vegetation.  

Measurement of Particulate Matter 

The gravimetric method employed by Dzierżanowski et al was used to obtain values 

for the mass of deposited particulate matter on the vegetation samples. The mass of 

particulate matter per leaf was determined gravimetrically using a Buchner funnel, filter 

and vacuum pump system (Figure 1), and then the particulate matter density was 
8



calculated by normalizing the mass values by the surface area of the leaves. Previous 

studies have already shown that this method is successful in obtaining a reasonable 

estimation for the amount of deposited particulate matter for other forms of urban 

vegetation such as urban forests (Dzierżanowski et al, 2011). This method involved 

agitating the sampled leaves in rinse water in order to suspend the particles within the 

water so they can then be filtered, captured and weighed. We decided to sample for only the 

surface particulate matter - sampling the PM concentration of the in-wax layer would 

require rinsing in chloroform rather than water - because it has been shown that the in-wax 

PM concentration is often negligible compared to the surface concentration (Chen et al, 

2017). To measure the particulate matter concentration of the white roof “sample”, we 

agitated water within a known roof surface area and then processed that rinse water the 

same way as the leaf rinse water. 

Figure 1. Buchner funnel and vacuum pump used to filter rinse water.
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Surface Area Measurement 

In addition to collecting leaf rinse water, we measured the surface area of the leaves 

so we could obtain a mass per unit area measurement for particulate matter concentration. 

For the flat leaf species we sampled - Sedum kamchaticum - we measured leaf area using an 

LI-3100 area machine and then we tested the accuracy of the machine using an additional

method, namely a pixel counting process shown in several other studies (Chen et al, 2016 

and Chen et al, 2017). This process consisted of us laying each leaf out flat, taking a photo, 

and then using a combination of Adobe Photoshop and ImageJ to obtain a pixel-count 

(Figure 2). 

For the smaller, more rounded leaf species - Sedum rupestre - we used the 

relationship between volume and surface area of a cylinder in order to determine the 

surface area per leaf (Starry, 2013). Surface area of the white roof was a known value, 

determined by the   surface area of the rim used to obtain the sample. 

Figure 2. Sedum kamchaticum leaves photographed, edited in Adobe Photoshop -  we 
then used ImageJ to determine the total leaf area present in each image 
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Analysis of Metals 

After a mass measurement was obtained, the filters were sent to Pennsylvania State 

University, where they offered to digest our filters and conduct a metals analysis using 

inductively coupled plasma mass spectrometry (ICP-MS).  

Data Processing 

To account for the layering effect of vegetation, we needed to consider the Leaf Area 

Index (LAI) of the vegetation species sampled. When we measured the total area of the 

leaves in the sample, we assumed that the leaves were lying flat on a surface; but this does 

not accurately represent the natural position of the leaves on the ecoroof. To accurately 

represent the density of particulate matter on the leaf surfaces, we multiplied the 

calculated density values by the LAI for each species. Both the corrected and uncorrected 

values are included in the Results section of this study. Leaf Area Index is a constant that 

varies from species to species - for Sedum kamchaticum and Sedum rupestre the LAI values 

are 5.93 and 10.45, respectively. These values were determined in a previous study looking 

at ecoroof vegetation (Starry, 2013) - these constants represent the amount of layering that 

is occurring in the plant’s growing pattern.  

The ICP-MS analysis was conducted by Pennsylvania State University and the mass 

values were provided in units of milligrams of metals per sample. In order to meaningfully 

compare these values for the three different surfaces, we took the concentration in 

mg/sample and divided it by the area    of the sample - to obtain a value of the density of 

metal particles in each sample. 

Statistical Data Analysis 

An analysis of variance (ANOVA) test and a Tukey’s post-hoc Honestly Significant 

Difference test (Tukey’s HSD) were conducted in order to determine if the differences seen 
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in the results were significantly different.   The result of this statistical analysis can likewise 

be found in the Results section of this paper.  

Results 

This study produced two different types of data. From the rinsing and filtering of the 

leaves, surface particles were collected. The mass of these particles was measured using a 

Buchner funnel, as described above. This value was then normalized to the total area of the 

samples, to obtain a density value (Table 1). 

Table 1. Raw data showing surface area of each sample, particle mass present, and the density of particles found. 
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The samples of Sedum kamchaticum had the greatest density of particles of all three 

surfaces. Additionally, correcting for the Leaf Area Index resulted in an increase in the 

density on the leaf surfaces - because initial area values neglect the fact that leaves are 

stacked upon one another (Table 1). Before the correction factor was implemented, the 

white roof sample shows the largest density of 10 µm diameter particles, and a similar 

density of 0.2 µm particles to that of S. kamchaticum (Figure 3). However, after the Leaf 

Area Index is accounted for, it appears that S. kamchaticum clearly collected the larger 

density of particles (Figure 4). It is worth noting that we did not obtain data for the fraction 

of 0.2 µm particles for S. rupestre, so this is omitted from the bar chart. 

Figure 3. Particulate matter density found on the three different surfaces sampled in this experiment - not corrected 
for Leaf Area Index 
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Figure 4. Particulate matter density found on the three different surfaces sampled in this experiment - corrected 
for Leaf Area Index 

The data on the density of metals per species yielded similar results - S. kamchaticum 

had the largest density of metals of all three surfaces (Figure 5).  

Figure 5. Density of metal species found on each surface 

Additionally, the metals data showed that the most abundant metal found in the samples was 

Fe - in fact the proportions of metals present was similar for all three surfaces (Table 2).
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Table 2. Metals data for each surface showing mass of metal present in units of mg/sample. The percentage of 
each metal compared to the total particle mass is useful in comparing the tendency of different metals to 
attract to particular surfaces. 

An Analysis of Variance (ANOVA) test and a post-hoc Tukey’s Honestly Significant 

Difference (HSD) test were conducted with our particle density values (Table 1) in order to 

determine if the differences shown are statistically different. The result of this statistical 

analysis implied that the particle densities found on the white roof and those found on S. 

kamchaticum were significantly different, and the particle densities found on S. rupestre 

were also significantly different from those found on S. Kamchaticum (Appendix A). 

Discussion 

The results of the gravimetric method employed on the sample rinse water yielded 

information about the total mass of particles deposited onto each surface, which is a value of 

density (Table 1). In comparing these data to our method’s model study - which looked at an 

urban forest in Poland - we can see particle density values with similar orders of magnitude; 

around 10-5 g/cm2 (Dzierżanowski et al, 2011). The results of this study indicate that 

vegetative surfaces hold higher densities of particles (Figure 4). This aligns with the results 

of other studies - which have shown that vegetative surfaces yield lower downwind 

particulate matter concentrations, meaning a larger level of particles deposited onto the 

surface of the vegetation (Tong et al, 2016). A study looking at multiple green roofs in 

London produced values for S. album – a species whose small, cylindrical leaves can be 
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compared to that of S. rupestre - in the range of 10-6. This is a lower density than the 

particles we measured on the vegetative surfaces and more in line with the white roof mass 

values (Speak et al, 2012).  That being said, S. album had the lowest particle density of all the 

species they sampled; some of the other species sampled reached values as high as 0.8 x 10 -5 

g/cm2, which is much closer to the results we got for vegetative surfaces. 

Figure 6. Sedum album (left) and Sedum rupestre (right) [credit: https://mountaincrestgardens.comand 

http://www.consultaplantas.com/] 

With the assistance of Pennsylvania State University, we were able to determine the 

mass of several different metals present on the sampled surfaces (Table 2). Because they 

provided data in units of mass per sample, and we know the total mass of particles in the 

sample, we were able to determine the percentage of metals present. This is a valuable 

result because it  allows us to differentiate between the metal retaining ability of each 

surface. In a majority of the instances, the proportions of metals present were quite similar 

for each sample - iron was the most abundant metal present for all surface types. However, 

it appears that the white roof sample actually had a much larger proportion            of aluminum 

and iron than the vegetative surfaces (Table 2). It may be insightful to consider measuring 

the metals content of the particles found in the wax layer of the leaves to determine if the 

leaves may be absorbing the metals (Dzierżanowski et al, 2011) – which could account for 

the lower concentration of metals on the surface of the leaves. A study looking at the 
16



concentrations of metals found on tea leaves in Africa likewise found iron to be present in 

the highest proportion out of the metals analyzed (Mahlangeni et al, 2013). Noticeable 

differences among the samples within this study occurred in the proportions of manganese, 

lead and zinc present - all three of these metals       are a particular concern for human health. It 

has also been shown that concentration of particular metals depends heavily on potential 

emitters in the surrounding environment (Artwell, 2017 and Mahlangeni et al, 2013), which 

could explain why our findings differ from those in other similar studies. No arsenic was 

detected in the analysis of our samples, however in similar studies conducted near heavy 

industrial activity, arsenic has been measured at detectable values and has been linked 

directly to nearby emitters of metals (Bosco et al, 2004). 

The high density of metals found on S. kamchaticum (Figure 5) can likely be 

attributed to the fact that this surface simply had a larger mass of deposited particles in 

general - however the larger proportion of particular   metals on the white roof requires a 

novel explanation. Nevertheless, the results of this study propose potential differences 

between the metal deposition tendency of vegetation versus white roofs and this should be 

considered as an important avenue for future research. Despite the potential for white roofs 

to attract a greater level of harmful metals, it is worth noting that the installation of 

ecoroofs is motivated by the promise of a larger variety of benefits. Green roofs have also 

been shown to mitigate stormwater runoff and improve water quality, as well as cool water 

and the surrounding air (Berardi et al, 2013). Along with other sociocultural and 

environmental benefits of ecoroofs, there are many factors in deciding what type of roof 

(green or white) is most suitable for a particular project – this study simply looks at one of 

these many aspects.  

Leaf Area Index (LAI) played an important role in dictating the density values of this 
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study. Before Leaf Area Index was accounted for, the data portrays a larger density of 10 µm 

diameter particles on the white roof compared to both plant species (Figure 3). One major 

reason for this confounding result is due to the fact that it is based on the assumption that 

each leaf received equal levels of particle deposition. Just because a particular leaf area is 

present does not necessarily mean that all of the area is being utilized for surface deposition 

– one major reason for this is because of leaf stacking. LAI is a way of accounting for the

different growth patterns – and the affinity for leaf stacking - of varying species. After 

implementing each species’ respective LAI (Figure 4) the data shows that the S. 

kamchaticum and S. rupestre samples had captured more particles.     

Conclusions 

 An analysis of particles collected on ecoroof vegetation and adjacent white roof

surface has shown that vegetative surfaces collect a larger mass of particles per

surface area (i.e., higher density)

 An inductively coupled plasma mass spectrometry revealed the mass of particular

metals present in these samples - and has shown that although S. kamchaticum

collected a greater density of particles, the white roof sample contained a larger

proportion of specific metals, particularly Al and Fe

 Additional research should be done to explore why we see differences between the

affinity for the deposition of metals onto white roof versus vegetation. The resulting

findings of additional work may greatly influence the decisions made by urban

planners when it comes to the preference of ecoroofs over white roofs
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Appendix A. ANOVA Results 

white roof - S. kamchaticum 

Count Sum Average Variance 
KAM 4 9.98186E-05 2.49547E-05 2.69669E-11 
WR 4 0.000134448 3.36121E-05 7.1113E-11 

SS df MS F P-value F crit 
Between 

Groups 1.49903E-10 1 1.49903E-10 3.056758441 0.130987566 5.987377607 

Within Groups 2.94239E-10 6 4.90399E-11 

Total 4.44143E-10 7 

white roof - S. rupestre 

Count Sum Average Variance 
WR 4 0.000134448 3.36121E-05 7.1113E-11 
RUP 4 2.72472E-05 6.81181E-06 2.75296E-12 

SS df MS F P-value F crit 
Between 

Groups 
1.43651E-09 1 1.43651E-09 38.89514564 0.000786634 5.987377607 

Within Groups 2.21598E-10 6 3.6933E-11 

Total 1.65811E-09 7 

S. rupestre - S. kamchaticum

Count Sum Average Variance 
KAM 4 9.98186E-05 2.49547E-05 2.69669E-11 
RUP 4 2.72472E-05 6.81181E-06 2.75296E-12 

SS df MS F P-value F crit 
Between 

Groups 
6.58326E-10 1 6.58326E-10 44.30214475 0.000555901 5.987377607 

Within Groups 8.91595E-11 6 1.48599E-11 

Total 7.47485E-10 7 
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