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ABSTRACT 

An abstract of the dissertation of Douglas Vincent Hall for the Doctor of Philosophy in 

Electrical and Computer Engineering presented December 9, 1994. 

Title: Hardware for Fast Global Operations on Distributed Memory Multicomputers and 

Multiprocessors 

"Grand Challenge" problems such as climate modeling to predict droughts and 

human genome mapping to predict and possibly cure diseases such as cancer require 

massive computing power. Three kinds of computer systems currently used in attempts to 

solve these problems are "Big Iron" multicomputers such as the Intel Paragon, worksta

tion cluster multicomputers, and distributed shared memory multiprocessors such as the 

Cray T3D. Machines such as these are inefficient in executing some or all of a set of 

global program operations which are important in many of the "Grand Challenge" pro

grams. These operations include synchronization, reduction, MAX, MIN, one-to-all 

broadcasting, all-to-all broadcasting, and orderly access to global shared variables. 

My hypothesis was that a secondary network with a wide tree topology and one or 

more centralized processors optimized for these operations could substantially decrease 

their execution time on all three types of systems. To test my hypothesis, I developed the 

secondary network and Coordination Processor(COP) system described in this disserta

tion, modeled the major blocks of the design in VHDL, and simulated these blocks to ver

ify their logic and get realistic timing values. 
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The analyses developed for the COP system clearly demonstrate that it can speed up 

a variety of common global operations by as much as 2-3 orders of magnitude when 

added to any of several current multicomputers and multiprocessors. Examples show that 

this speedup reduces overall execution time for important scientific programs and compu

tational kernels by an average of 25% at an increase in system cost of only about 2%. 

Further analyses show that for these global operations the COP system has a greater com

bination of speed and versatility than any other system. 
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CHAPTER I 

INTRODUCTION 

Grand Challenges - Why We Need Massively Parallel Computers 

One of the main motivations for developing powerful "supercomputers" has been to 

more rapidly solve very large scientific problems. These development efforts have 

become more focused since 1991 when the U.S. Office of Science and Technology's 

Committee on Physical, Mathematical, and Engineering Sciences published a report 

"Grand Challenges: High Performance Computing and Communication." [Physi91 a] The 

HPCC report is basically a "wish list" of important computational problems that scien

tists and engineers would like to be able to solve in the 90's. These problems are not just 

mental exercises. Many of them are vitally important to very large numbers of people. 

Global climate modeling which will make it possible to predict droughts and take 

steps to avoid famines is one of these. Better predicting the path of hurricanes and thus 

saving lives is another. Human genome mapping to predict and possibly cure diseases 

such as cancer is still another. Development of new medicines to replace those which no 

lunger work because disease organisms have become resistant to them is a vitally impor

tant challenge. Simulating the airflow over cars or the wings of airplanes to determine the 

most fuel efficient designs and thus help reduce global wUIming is certainly a valuable 

contribution to the environment. The list goes on. 

All of these "Grand Challenges" require several orders of magnitude more compu

tational power than was available at the time the initial report was written. In an attempt 

to develop systems that meet these goals, various U.S. government agencies such as 
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ARPA, EPA, DOE, NASA, NSF, NIH, !'NIST, NOAA, and NSA have since then supplied 
, 

massive funding to several unive;rsity nesearch teams and computer companies. Yearly 
I 

reports summarize funding and aclhievedlprogress [HPCC94a]. 
I 

The computational needs of the "Grand Challenge" problems are so glCat that a 

massively parallel array of several hundred or several thousand of the fastest currently 
I 

available processors will be required to meet them. 
I 

As documented by Almasi and Gottlieb [Almas94a], and by Bell [BeIl94a] , univer-

sity researchers and computer cornpaniels have experimented with many, many different 
I 

parallel computer architectures and parallel programming paradigms. Based on the many 
I 

different systems currently in existence, it is a difficult task to determine the best way to 
I 

connect a large number of processors and perhaps a more difficult task to write programs 
I 

that efficiently utilize massive hardware parallelism. 
I 

My initial work focused on fitnding icommon parallel program operations that could 
I 

potentially be done much more efficiently by specialized hardware, analogous to the way 
I 

a numeric coprocessor speeds up floating point operations and a graphics coprocessor 

speeds up CRT display operations. This research disclosed that the operations most likely 

to benefit from hardware acceleration were global operations such as synchronization, 
I 

broadcasting, reduction, and shared write+able variable access. 
I 

I then researched previous attempts at hardware assist for these operations and found 
I 

that all of them had serious Iimitati'ons. My hypothesis was that a secondary network with 

a wide tree topology and one or more centralized processors optimized for these opera-

tions could substantially decrease their execution time. To test my hypothesis, I devel

oped the secondary network and Coordination Processor(COP) system described in this 

dissertation, modeled the major t,locks lof the design in VHDL, and simulated these 

blocks to verify their logic and get 'realistic timing values. This COP system can speed up 

a variety of common parallel program global operations by 2-3 orders of magnitude when 
I 
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added to any of several current commercial and research multicomputers or multiproces

sors. This improvement helps increase the number of compute nodes that can be effec

tively applied to a task and/or helps increase the overall speedup available from a given 

number of compute nodes. Both of these are important in the pursuit of the "Grand Chal

lenge" goals and in less ambitious parallel programming tasks. 

I will show that the COP system has a greater combination of speed and versatility 

than any other and that it is very cost effective. To demonstrate the potential benefits of 

the COP system I will use the following standard methodology for evaluating new com

puter architectures. 

To show the types of multicomputers and multiprocessors for which the COP system 

is intended, Chapter II gives brief overviews of the architectures of several current com

mercial and research machines. To give a thorough understanding of the global operations 

improved by the COP system, Chapter III describes in some detail how these operations 

are commonly performed on "Big Iron" multicomputers, on workstation cluster multi

computers, and on massively parallel multiprocessors. In Chapter III I also discuss major 

factors which contribute to the time required for these global operations, and based on 

this discussion I develop the justification of hardware support for global operations. 

Chapter IV starts the detailed analysis of the COP system. This chapter first 

describes in detail the COP network architecture, compute node to COP network inter

face, and the COP itself. A discussion of how the target global operations are performed 

on the COP system follows. Also included in this chapter is an explanation of the soft

ware interface required for the COP system. 

In Chapter V, I first give some COP system global operation performance data, 

based on timing values derived from VHDL modeling and simulation. In the second sec

tion of Chapter V, I compare the global operation performance of the COP system with 

the global operation performance of current commercial and research machines. Where 
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possible, published data is used for these comparisons. Finally in Chapter V, I give exam

ples of the overall speedup that a COP system can provide for some common types of sci

entific programs by decreasing the time required for their global operations. 

Having thoroughly shown the benefits of the COP system, I then in Chapter VI com

pare and contrast other attempts to improve the efficiency of global operations on "Big 

Iron" multicomputers, workstation cluster multicomputers, and distributed shared mem

ory mUltiprocessors. Finally, in Chapter VII, I give my conclusions and suggest some 

directions for my future work. 



CHAPTER II 

OVERVIEW OF SOME COMMON MIMD MACHINE ARCHITECTURES 

SISD, SIMD, MISD, And MIMD Machines 

The purpose of this chapter is to describe the architectures and network topollogies 

of the types of computers for which the COP system is intended. Flynn's [Flynn72a] four 

categories for computer architectures are based on the number of concurrent instruction 

streams and the number of concurrent data streams. Single Instruction Single Data 

(SISD) includes the standard uniprocessor. The Single Instruction Multiple Data (SIMD) 

category includes machines such as the CM-2 or a systolic array in which the same 

instructions are broadcast to each processor in parallel. Each processor then syn

chronously executes these instructions on different data. The Multiple Instruction Single 

Data (M1SD) category is mainly good for generating philosophical arguments because 

there seem to be no actual examples of this kind of machine. Finally, the Multiple Instruc

tion Multiple Data (MIMD) category includes machines with mUltiple processors which 

can each execute independent instructions streams. As shown in Figure I, the MIMD cat

egory can be further divided into three sub-categories: shared memory machines or multi

processors, distributed memory machines or scalable multicomputers, and distriibuted 

shared memory machines or scalable multiprocessors. The COP system is applicable to 

distributed memory and to distributed shared memory systems, but for comparison I will 

briefly describe the characteristics of all three, give commercial and/or research examples 

of each type, and discuss some of the trade-off's in each type. 
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Figure I. MIMD machine sub-categories and example systems 

Shared Memory MIMD Machines 

6 

Figure 2 shows a block diagram for a simple shared memory MIMD machine such 

as the Sequent Balance. In this kind of machine processors access the shared memory 

over a common parallel bus. To reduce bus traffic to and from the shared main memory, 

each processor has a local cache which holds its current code and data sets. The single, 

global address space of this kind of machine makes it relatively easy to program because 

each processor can directly access all data. However, these machines have a several basic 

problems. 

One problem is maintaining coherence of shared write-able variables. The ideal per

haps would be to have a separate memory for storage of just these variables. Assuming 

only one processor at a time could access this special memory, then strict coherence 

would be guaranteed because each processor would always see the last value written. An 

approximation to this is to declare shared variables non-cachable so that each processor 

always goes to main memory to access them. A difficulty with this approach is that it 
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decreases the cache hit rate and thereby increases the average memory access time. 

Another difficulty with this approach is that it increases traffic and congestion on the 

main memory bus. 

If shared write-able variables are allowed to be cached, then the main memory val

ues and any copies in other caches must be invalidated or updated so that no processor 

uses stale values of the variables. Archibald [Archi86a] describes in detail many schemes 

for doing this. Common to several of these is to have the cache controllers monitor or 

"snoop" bus transactions. When a cache controller detects a write to a variable contained 

in its cache. it either invalidates or updates its copy of the variable. Invalidation is the 

simplest to implement, but invalidation means that each processor must read the value of 

the variable from main memory again when needed. An alternative is to in some way 

broadcast the new value of a variable to all the caches which hold copies of it. 

Another major problem of simple bus-based shared memory machines is caused by 

the fact that main memory requests must be serviced sequentially. Thus as the number of 

processors in a system is increased, the average time that each processor has to wait for 

service also increases. This memorylbus contention reduces the time that each processor 

is doing useful work and thereby reduces the benefits of increasing the number of proces

sors. Another way of expressing this is that bus and/or memory access saturation limits 

the ability of simple bus-based shared memory MIMD machines to scale to a large num

ber of processors. Although they are relatively easy to program, the difficulty of scaling 

simple shared memory MIMD machines to large numbers of processors motivated devel

opment of the distributed memory MIMD machines discussed next. 

Distributed Memory MIMD Machines 

In a distributed memory MIMD machine each compute node has a processor and an 

independent memory. Compute nodes communicate with each other by passing messages 

~- --~-- --~ ~-~---
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p p p 

Cache Cache Cache 

BUS 

MO MI M2 

Figure 2. Common bus shared memory MIMD architecture 

over some type of interconnection network. This kind of machine is often called a scal

able multicomputer(sMC) or just a multicomputer(MC) because each node can execute 

programs independently. 

As shown in Figure I, there are two basic multicomputer categories. The first cate

gory is the so-called "Big Iron" machine where all the compute nodes are in one or sev

eral large. adjacent cabinets. The second category represents multicomputers consisting 

of a group of independent workstations connected by a network. In this type the compute 

nodes(workstations) may form a Local Area Network(LAN) based cluster within a room 

or building, or a Wide Area Network(WAN) based system spread around the whole 

world. Since my work relates closely to both "Big Iron" multicomputers and LAN based 

workstation cluster multicomputers, I will give a brief overview of some common multi

computer architectures and comment on their tradeoffs. 

Common "Big Iron" Multicomputer Topologies 

In an attempt to optimize message-passing efficiency, scalability, and program

machine compatibility, commercial companies and researchers have tried many different 
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multicomputer topologies. For the sake of brevity, I will mostly confine my discussion to 

topologies that have enjoyed some commercial success and/or are directly relevant to my 

work. For a more extensive survey, see Almasi and Gottlieb [Almas94a]. 

One common multicomputer topology is the binary hypercube topology shown in 

Figure 3. Commercial systems which use this topology include the Intel iPSC/2, the Intel 

iPSC/860, and the nCube-2S [Zorpe92a]. Both the strength and the weakness of this 

topology are that the number of nearest neighbors for any processor is equal to the 

log~ (N) where N is the number of processors. This is a strength because the interconnec

tion richness means that the diameter of the network, 0, or the maximum number of mes

sage "hops" between any two nodes is just log:! (N). It is a weakness because the number 

of connections to each node must increase as N is increased. In a 64 node hypercube, for 

example, each node requires connections to 6 neighbors, but in a 1024 node hypercube 

each node requires connections to 10 neighbors. Because of this difficulty in scaling 

hypercubes to very large N, several recent systems such as the Intel Delta and the Intel 

Paragon [Zorpe92a] use a two dimensional mesh topology such as that shown in Figure 4. 

The advantage of the 2-D mesh topology is that the maximum number of connec

tions to neighboring nodes is 4 for any N. This makes system hardware design much eas

ier because the number of network connections on each node does not have to change as 

the system is scaled to large values of N. Also, with a 2-D mesh, a relatively small num

ber of additional nodes is needed to incrementally increase the size of a system while 

maintaining symmetry. 

A disadvantage of the 2-D mesh topology is that the diameter of the network, 0, is 

greater than that for an equivalent size hypercube. In a rectangular 2-D mesh where L is 

the number of nodes along one edge and W is the number of notes along an orthogonal 

edge, 0 = (L-I)+(W -I) and the number of nodes, N, is equal to L x W. In a square 2-D 

mesh, Land W are equal so 0 is 2..fN - 2. For a 32x32 node 2-D mesh, the maximum 
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Figure 3. Hypercube multicomputer topology 

I -e 
Figure 4. 2D-Mesh multicomputer topology 

]0 

number of hops is then 2" \ 024 - 2 = 60. This is much greater than the number for a 1024 

node hypercube where the maximum number of hops is \og2(l024) = 10. However, Dally 

[Dally90a] and Chittor [Chitt90a] have shown that in large multicomputers mesh inter-

connection networks can have wider and faster bandwidth channels than hypercubes, if 

wire density limitations are considered. They further demonstrated that these higher 

bandwidth channels allow a mesh interconnection network to outperform a hypercube 

network. if contention for network channels is low. The "if' in this statement implies that 



11 

to realize the benefit of the mesh topology, the contention for channels must be kept low. 

As we show later, the addition of our secondary network and coordination processors to a 

mesh connected MIMD machine reduces message traffic on the main interconnection net

work and thereby helps maintain the speed advantage of the more easily scalable mesh 

topology. 

Another interesting commercial multicomputer topology is the "fat tree" topology 

used in the Thinking Machines CM-5 [Leise92a]. The term "fat" refers to the fact that 

the bandwidth is greater in the connecting links closer to the root. Kwan [Kwan93a] has 

shown that that this topology, or at least the CM-5 implementation of it, is communica

tion limited for some common scientific applications such as two-dimensional FFf and 

Gaussian elimination, so the long range potential of this topology is perhaps in doubt. 

Workstation Cluster Multicomputers 

In the past, large scientific computations have been relegated to vector supercomput

ers such as CRAY Y-MPs, or the "big iron" multicomputers such as the Intel Paragon, 

Thinking Machines CM-5, and the N-Cube 2S machines that we described in the preced

ing section. Recently, however, considerable research effort has been directed toward 

using clusters of workstations connected by Ethernet or some other network to perform 

these computations. Ewing [Ewing93a] for example, has experimented with simulating 

the propagation of seismic waves on a network or IBM RS/6000 workstations, Manjikian 

fManji 16a] has successfully run large logic simulations on a network of Sun IPC work

stations, and Castagnera [Casta94a] reports extensive work implementing the NAS 

benchmarks and other scientific programs on a cluster of Silicon Graphics, Inc. systems. 

The advantages of using clusters of networked workstations as multicomputers are: 

1. General purpose workstations can perform many different functions and because of 

this, realize an economy of scale from a cost standpoint. 
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2. The cumulative memory, disk space, compute power, and 110 capability of a worksta-

tion cluster can be very large. 

3. Otherwise unused workstation clock cycles can be harvested for productive work. 

Based on these advantages, Gordon Bell [BeIl94a] predicts that, as the hardware and s0ft

ware problems of networked clusters are solved, clusters will in many cases replace the 

"Big Iron" multicomputers. 

A major software factor which limits the performance of workstation cluster sys

tems is the software "protocol stacks" which must be traversed in order to send a mes

sage on one machine and receive the message on another machine. 

The major hardware based problem to overcome in developing this type system is 

low interconnection network performance. Many existing LANs still use Ethernet net

works that have maximum bandwidths of only 10 Mbits/sec or 1.25 Mbytes/sec. In addi

tion to its relatively low hardware bandwidth, a further limitation of Ethernet is its com

mon bus topology which requires that workstations compete for network access. As the 

number of nodes on the network and/or the amount of message traffic increases, the 

effective bandwidth of the network decreases. FDDI increases the hardware bandwidth to 

100 Mbits/sec or 12.5 Mbytes/sec, but the FDDI token ring topology suffers the same 

decrease in effective bandwidth as the number of nodes is increased. These bandwidths 

are much less than the bandwidth of current "Big Iron" multicomputer networks. For a 

bandwidth comparison, according to Rosing [Rosin94a] , the Intel Paragon multicom

puter network currently has a node-to-node maximum message bandwidth of 200 

Mbytes/sec. 

One approach currently used to improve the communication performance of a work

station cluster is to connect the nodes in a mesh or similar topology with high

performance worm-hole routers similar to those used in "big iron" multicomputers. The 
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SHRIMP [Blumr93a] system, in fact, uses an Intel Paragon router backplane to connect a 

cluster of workstations in a 2-D mesh topology. Another example of a cluster system that 

uses a high-performance router based network is the Tandem Computer [94a] system. As 

still another example of this approach, the ATOMIC system [Cohen94a] at USC uses Cal

tech Mosaic [CLSei93a] smart router chips to implement a crossbar switch based network 

for a cluster of workstations. Carnegie-Mellon's Nectar system [Kung91 a] and DEC's 

Autonet system [Rodeh93a] also use high performance crossbar switches to implement 

workstation networks. 

Workstation cluster systems seem to be evolving toward networks and network 

topologies similar to those of some of the "Big Iron" machines. Later I show that the 

COP system is applicable and beneficial to both types of systems. 

Distributed Shared Memory MIMD Machines 

Simple shared memory mUltiprocessors such as that shown in Figure 2 are relatively 

easy to program because each processor has direct access to all data. However, their scal

ability is limited to a few tens of processors by bus saturation. Distributed memory multi

computers such as those discussed in the preceding section scale to thousands of compute 

nodes, but they are somewhat difficult to program. The reason for this is that, at the low

est level, a programmer must send and receive explicit messages for all remote data trans

fers, global operations, synchronization, etc. A great many attempts have been made to 

ease the task of programming distributed memory machines or at least to some degree 

insulate the programmer from the low level details of message passing. These efforts fall 

easily into four general categories: libraries of message-passing based functions that pro

grammers can call, programming environments that use higher level constructs to make 

programming easier, programming languages or systems that implement a shared

memory programming paradigm on top of message passing. and machines that 

-~---- -----
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implement distributed shared memory in hardware. 

Examples of basic message-passing libraries include the Basic Linear Algebra Com

munication Subprograms(BLACS) [Donga93a] and the Message Passing Interface(MPI) 

standard [Tennea]. These libraries are used in essentially the same way as other libraries 

in, for example, Fortran or C programs. 

Higher level environments to assist in writing programs for workstation cluster mul

ticomputers include Parallel Virtual Machine(PVM) [Manch94a], ParaS oft Corporation's 

Express [Ali94a], and p4 [Butle92a]. These environments have callable functions for 

creating, running, and stopping distributed processes, determining process status, syn

chronizing processes, and communicating between processes. They therefore lift the pro

grammer from the basic message passing level to the process level. 

Programming systems that implement a shared-memory programming paradigm on 

top of the message passing layer include Scientific Computing Associates' Linda 

[Carri89a], Kali [Koebe89a], Munin, [Benne90a], and Shiva [Li89a]. Nitzberg and Lo [ 

Nitzb9 I a] give an excellent survey of the issues and tradeoffs involved in implementing 

shared memory on a distributed memory machine and then briefly compare the preceding 

and other approaches. Stumm and Zhou [Stumm90a] analyze the performance of several 

software algorithms for implementing distributed shared memory on message passing 

machines. 

Several programming languages have been created to allow programmers to use a 

shared object-oriented programming model on parallel machines. Examples of this 

approach are Orca [Tanen92a], Emerald [JuI88a], and mentat [Grims93a]. 

The three types of programming aids described above all make the programmer's 

job easier, but they may actually make a program run slower than a program hand-crafted 

with basic message-passing primitives. One reason for this is that the generality required 
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of library routines may introduce extra overhead. Likewise, the extra software layer 

required by high level program constructs or by the shared memory paradigm introduces 

additional execution overhead. To avoid this added overhead, several mUltiprocessor sys

tems implement distributed shared memory directly in hardware. 

An early example of a distributed shared memory machine was the IBM RP3 

[Pfist85a]. Each processor-memory element in this machine contained a processor, a 

cache, some local memory, and a portion of the global memory. The global memories 

were connected to a multi-stage banyan network. Memory references not in a processor's 

local memory were routed through the network to the memory element that contained 

that global address. Memory coherence was maintained by declaring shared write-able 

variables uncachable. As will be discussed later, the RP3 also had a secondary network 

for synchronization and for combining mUltiple simultaneous reads directed at a single 

memory location. 

An example of a commercially available distributed shared memory machine is the 

Kendall Square Research KSR 1 [Saave93a]. The topology for this machine is a hierarchy 

of rings. Each level 0 ring can contain up to 32 processors. Each level 1 ring can have up 

to 34 level 0 rings attached to it. A significant feature of the KSR 1 is its ALLCACHE 

memory hierarchy which includes just a 512 Kbyte first level cache, 32 Mbyte second 

level cache, and disk on each processor. Since processors have no fixed address main 

memory. this hierarchy is referred to as a Cache Only Memory Architecture or COMA. 

The entire memory is managed as one large virtual address space. Directories are used to 

keep track of the location and status of memory pages and maintain cache coherence. If a 

processor addresses a memory location which is not present in its local caches, a high 

speed "search engine" queries the directories around the ring(s) until it finds the desired 

page. The page is then transferred or copied to the cache of the requesting processor. All 

of the queries, copies, and transfers are actually done by passing messages, but a 
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programmer simply sees a multiprocessor machine with a single large virtual address 

space. 

The Stanford DASH Multiprocessor [Lenos93a] is another example of a distributed 

shared memory machine, but its architecture is very different from that of either the RP3 

or the KSR I. The basic building block of the DASH system is a cluster containing 1-4 

processors, each with its own cache. The processors within a cluster are connected on a 

common bus and use the snooping protocol described earlier to maintain cache coherence 

within the cluster. Each cluster also contains a block of the global distributed memory, a 

directory, and inter-cluster interface circuitry. A 2-D mesh Request network and a 2-D 

Reply network are used to connect clusters in the system. The maximum size of the cur

rent system is 16 clusters of 4 processors each. 

The distributed directories in a multicluster DASH system have an entry for each 

16-byte line of the global memory. A directory entry holds the address of the line and bits 

which indicate whether the line is uncached. shared, or dirty. Memory functions as a 

4-level hierarchy. If a processor does not find a desired word in its local cache, it outputs 

the request on the cluster bus. If the word is present in one of the cluster caches, the 

appropriate snoopy controller supplies the line containing the word. If the word is not in 

the local cluster, a directory is used to find the "home" cluster for the line. If the line is 

not marked dirty, then the line will be supplied from the home cluster memory. If the line 

is marked dirty, the line will be supplied from the remote cluster cache where the dirty 

copy resides. Messages are used to access home and remote clusters. For future reference, 

the number of clocks required for accessing the four levels are I: 15: I 0 I: 132 according to 

Lenoski [Lenos93a]. Another interesting research system, the MIT Alewife [Agarw90a] 

system, has a modified SPARC processor called a SPARCLE at each node of a 2-D mesh 

network. The Alewife system uses a directory based cache coherency approach, but to 

reduce the required directory size, the Alewife directories have entries for only a limited 
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subset of the global memory lines and trap to software in the case of a directory miss. The 

SPARCLE processor is designed to cover th~s and other extended memory latency by 

rapidly swapping execution threads. 

Other current research-based distributed shared memory systems include ASURA 

[Mori93a), PLUS [Bisia90a), and Gallactica Net [Wils093a). 

One of the latest commercial examples of a distributed shared memory machine is 

the eray T3D. [Koeni94a). This machine is actually a "backend" processor for a large 

Parallel Vector Processor host such as a Cray C90, rather than a stand-alone mUltiproces

sor. 

The 3-D torus topology used in the machine is basically a cube with the opposite 

faces connected so that rows form rings and columns form rings. Two processing ele

ments are connected at each node in the torus, so an 8x8x8 torus can have up to 1024 pro

cessors. The three dimensions and the wrap-around connections drastically reduce the 

diameter of the network and thus decrease the maximum number of hops between any 

two processing elements. However, this topology requires more connections to each pro

cessing element than does, for example, a 2-D mesh topology. Also, this topology 

requires more nodes than a 2-D mesh to incrementally and symmetrically increase the 

size of a machine. As an example, an 8x8x8 torus requires 64 processing elements to 

increase to an 8x8x9 machine, but a 16x32 2-D mesh only requires 16 to increase to a 

16x33 mesh. 

Each processing element in the TD3 can have up to 64 Mbytes of DRAM memory 

which is part of the physically distributed, logically shared memory. Memory transfers 

are done with message packets containing payloads of one or four 64-bit words. The 

DEC 21 064APX processor used in each processing element has an 8 Kbyte instruction 

cache and an 8 Kbyte direct-mapped write-through data cache. According to Koeninger 

[Koeni94a). the T3D has no hardware support for maintaining coherence of local data 

-- -------- ----
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caches with respect to remote memory, so this is the responsibility of the Cray Research 

Adaptive FORTRAN(CRAFT) prolgramming model developed for the system. 

The possible programming advantage gained by implementing the distributed shared 

memory paradigm in hardware does not come cheaply. According to Lenoski [Lenos93a], 

for example, about 33% of the boai"d area, ) 3.9% of the SRAM, and) 3.7% of the DRAM 

in a DASH cluster is used for the cache directory circuitry. Although not specifically 

mentioned in the refe:rences, it see:ms that the global search engine in the KSR) or the 

global memory access hardware in ithe T3D also requires considerable hardware to imple

ment. 

Chapter Summary 

This chapter has. described some of the current attempts to develop scalable com

puter systems with hundreds or thousands of compute nodes. Message-passing-only mul

ticomputers such as tbe Intel Paragon or a workstation cluster are somewhat difficult to 

program at the lowest level, because the programmer must send and receive explicit mes

sages for all remote memory accesses, global operations, etc. Furthermore, as will be 

shown in Chapter V, the combination of message latency and network topology makes 

some common globall operations very costly on these systems. Parallel programming 

environments such as PVM, whichi run on top of the basic message-passing substrate of 

these machines make i[l programmer's job somewhat easier, but add considerable software 

overhead and do not n~mo\'e the limitations imposed by the basic message-passing mech

anism and the network topologies. I 

The difficulty of programming distributed memory message-passing-only multicom

puters has motivated a large effort at implementing the shared memory programming 

paradigm on distributed memory i machines. Software implementations of distributed 

shared memory built on messag(~-passing substrates, however, suffer not only the 
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message-passing and topology limitations but also the added overhead of an extra layer of 

software. Hardware implementation of distributed shared memory, as in the Stanford 

DASH system, for example, requires a large amount of circuitry to keep track of memory 

line locations, maintain cache coherency, etc. Also, although global shared memory 

makes the programmer's job perhaps easier, in Chapter V I show that some common 

global operations are unduly costly on this kind of machine and that a COP system can 

speed up these operations. 

The task of the next chapter is to give a solid explanation of how common global 

operations are currently performed on "Big Iron" multicomputers, cluster multicomput

ers, and distributed shared memory mUltiprocessors so that later discussions of the COP 

system and comparisons with these systems will be more understandable. 



CHAPTER III 

MIMD MACHINE PROGRAMMING AND PROGRAM OPERATIONS 

Requirements for SPMD Programs on MIMD Machines 

Since MIMD machines have independent instruction streams, they can be used in 

Single Program Multiple Data (SPMD) mode where parts of a single large program are 

executed on multiple processors, or they can be used in Multiple Program Multiple Data 

(MPMD) mode where several independent programs are executed on the machine. In this 

section I will discuss the requirements for SPMD mode parallel programs and then in the 

following section I will use an example program to show the operations used to meet 

these requirements on current multicomputers and multiprocessors. After a short section 

discussing the additional system requirements for MPMD program execution, the final 

section of the chapter analyzes the cost of the previously described program operations on 

multicomputers and mUltiprocessors. 

The first major consideration in adapting a uniprocessor program for execution on a 

MIMD machine is partitioning the overall task into processes that can be distributed 

among the compute nodes. One common way to do this is to create several identical pro

cesses, assign each process to a compute node, and have each process work on a subset of 

the data. Another common way is to create different processes which each perform vari

ous sub-tasks within the overall program. 

The second major consideration in the program adaptation process is scheduling 

execution of processes on compute nodes. Two common methods are static scheduling 

and dynamic scheduling. With static process scheduling, processes are distributed to 



21 

compute nodes at runtime and remain there for the duration of program execution. On a 

distributed memory MIMD system the data to be operated on by each process will likely 

be distributed to the appropriate compute nodes along with the process code. If the pro

cesses are identical and have equal data sets, then static scheduling provides a good load 

balance among the compute nodes. However, if the processes are very different or if the 

data does not divide easily among the processes, then dynamic scheduling may provide 

better load balancing. With dynamic scheduling, each compute node is programmed to 

seek new work when it completes its current work. Depending on the application, an idle 

node may simply grab a new chunk of data from an array, or it may acquire a new process 

from a queue of waiting processes. 

A third important point to consider is implementation of global operations in which 

each compute node must participate. Several common parallel algorithms, for example, 

require that each process contributes a value and that the global result of the contributed 

values be returned to all the processes. 

Synchronization is another major point to consider in adapting a uniprocessor pro

gram to run on multiple compute nodes. The access of mUltiple processes to shared write

able variables must be synchronized so that only one process at a time can read-modify

write the variable. Also, the execution sequence of multiple processes must be synchro

nized so that the result of a computation is the same as it would be on a sequential 

(uniprocessor) machine. A common form of this latter kind of synchronization requires 

that all processes reach a specific point before any are allowed to continue. 

The following sections use a common numerical computation algorithm to illustrate 

the program operations used to satisfy these requirements in a MIMD machine program. 
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Implementing The Jacobi Algorithm On Parallel Processors 

To illustrate the concepts of partitioning, scheduling, and synchronization and to 

show other operations commonly required by programs executing on MIMD machines, I 

will use the Jacobi Relaxation method for the numerical solution of Laplace's equation. 

As pointed out by Bertsekas [Berts89a], this algorithm is representative of a wide class of 

iterative numerical methods for solving systems of linear equations and is more easily 

parallelized than the somewhat similar Gauss-Seidel method. The Jacobi relaxation 

method can be used for such diverse applications as finding the temperature at specified 

points on a plate with fixed temperatures on the edges or finding the voltage at specified 

points on a metal plate with fixed voltages at the edges. In the latter case, for example, if 

v(x,y) is the function which represents the voltage at any point on a metal plate with fixed 

voltages at the edges, then the Laplace equation is: 

To solve this equation numerically with the Jacobi method, the plate is first divided 

into equally spaced regions with grid points as shown in Figure 5. An iterative approach 

is then used to produce better and better approximations for the voltage at each of these 

grid points. During each iteration an approximation for the voltage at each grid point is 

determined by averaging the values of its four nearest neighbors. In the first iteration the 

values for points near the center of the grid will all be zero, so most of the computed val

ues may not be very good approximations. With successive iterations, however, the effect 

of the fixed boundary values propagates toward the center points and produces better 

approximations for all points, and the point values converge toward a solution. When the 

maximum change in value for any point from one iteration to the next becomes less than 

some desired precision, commonly called the maximum norm or the infinity norm, the 



process is stopped. 
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Figure 5. Grid points for numerical solution of Laplace equation for metal 
plate with fixed voltages applied at edges 
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The example I will use here to show how this algorithm can be implemented on 

MIMD machines is an extension of one developed by Lester [Leste93a]. To start devel

oping this example, Figure 6 shows a sequential pseudo-program for this algorithm. The 

program follows the verbal algorithm in the preceding paragraph quite closely but there 

are a couple of points that need clarification. 

First, as shown in Figure 6 the data array is larger than the actual array of grid points 

so that there is room for the boundary values. The i and j loops which compute the value 

for each point only iterate over the actual grid points, so they do not change the boundary 

values. 

Second, the new values computed for each point are put in a second array, rather 

than being written over the old values. This is necessary because the Jacobi algorithm 

explicitly specifies that all new values must be computed using values from the previous 

iteration. If new values were immediately written over old, some computations would use 



do 
( 
max_delta = 0; 
for(i=l; i<n+l;i++) 

for(j=l;j<n+l;j++) 
{ 

} 

new[i] [j] = 0.25 * (old[i-l] [j] + old[i+l] [j] + 
old[i] [j-l] + old[i] [j+l]); 

delta = ABS(new[i] [j] - old[i] [j]); 
if(delta > max_delta) 

max_delta = delta; 

for(i=l; i<n+l;i++) 
for(j=l;j<n+l;j++) 

old [i] [j] = new [i] [j] ; 
} 

while (max_delta > lE-7); 

Figure 6. Body of sequential C program for Jacobi relaxation 
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old values and others a mixture of old and new. Note: The Gauss-Seidel method allows 

this. but for the reason stated above. I have used the Jacobi method here. Only after the 

new values for all points have been computed are they copied back to the original array to 

get ready for the next iteration. 

Third. to check for convergence. the difference between the new value and the old 

value is determined for each point. When the maximum difference for all the points is 

less than the desired precision. execution is terminated. 

The pseudo-program in Figure 7 shows in general how the sequential Jacobi pro-

gram must be modified to execute on multiple processors. The two lines at the top of this 

program distribute the point computations among the processors by assigning the compu

tations for one row of the matrix to each of n processors. Each processor also receives 

and executes a copy of the do-while block in the program. This is an example of static 

scheduling. 

For the actual computation with this distribution. each processor just loops over the 

range of the column index variable. j. After computing the new value for a point. the pro-

cessor determines the absolute value of the change in value for that point and updates the 



for(i=O; i<n_row; i++) 
assign row i to process i; 
do 

{ 
local_max_delta = 0; 
for(j=l;j<n+l;j++) 

{ 
new[i) [j) = 0.25 * (old[i-l) [j) + old[i+l) [j) + 

old[i) [j-l) + old[i) [j+l)); 
delta = ABS(old[i) [j) - new[i) [j)); 
if(delta > local_max_delta) 

local_max_delta = delta; 

BARRIER /* Wait for all procesors to compute new[i) [j) */ 

for(j=l;j<n+l;j++) 
old[i) [j) = new[i) [j); /* Copy new values to base array */ 

/* Accumulate global_max_delta */ 
LOCK 
if(local_max_delta > global_max_delta) 

global_max_delta = local_max_delta; 
UNLOCK 
BARRIER /* Wait until all processors have contributed */ 

) 
while(global_max_delta > 10E-7); /* Play it again, Sam? */ 

Figure 7. Pseudo parallel program for Jacobi relaxation 
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local_max_delta variable accordingly. When each processor finishes all of its j loop itera

tions. the variable 10caLmax_delta will have the maximum change for all the points com

puted by that processor. 

The BARRIER statement shown next in the program represents a synchronization 

construct devised by Jordan [Jorda78a]. A barrier forces each processor to wait until all 

processors have reached that point in the program. The purpose of the barrier here is to 

make sure that, as required by the Jacobi algorithm, all the new point values have been 

computed before any are copied to the old array. 

The next phase in the pseudo program In Figure 7 is to accumulate the 

local_max_delta values from all the processors into one global value which will be used 

to decide whether to execute another do loop. For this operation each processor must 
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access the global variable, perfonn a comparison with its local_max_delta, and write the 

result back in the global variable. If there were no control over when a processor could 

access the global variable, a major problem might occur. For example, if one processor 

reads the value of global_max_delta and then another processor reads the value of 

global_max_delta before the first writes a modified value, each processor will be compar

ing to the same value of global_max_delta. The result may be erroneous and is nondeter

ministic because of timing nuances. To prevent this problem, processor accesses to a 

global write-able variable must be synchronized in some way. 

One way to synchronize accesses to a shared write-able variable is with a program

ming construct called a lock. If a processor examines the lock and finds it unlocked, the 

processor is allowed to lock the lock to exclude others, access the shared variable, and 

then, when done, unlock the lock so that another processor can access the variable. If a 

processor finds the lock locked, it must keep checking the lock over and over until it finds 

the lock unlocked. 

The second barrier in the program in Figure 7 is required to make sure that computa

tion of the global_delta_max is completed before any processor uses the value of 

global_data_max to decide whether to do another iteration or to tenninate execution. 

In summary, parallelizing a sequential Jacobi program requires a mechanism to 

make sure all processors have completed computation before transferring new values, a 

mechanism to synchronize access to the global_delta_max variable, and a mechanism 

which requires all processors wait for the final result of the global_delta_max calculation 

before continuing. The next section shows how these and some other commonly needed 

operations can be implemented on a message-passing 2-D mesh connected multicom

puter. 



27 

Program Operations On A Message-Passing MIMD Machine 

Figure 8 shows a Multi-Pascal [Leste93a] program I wrote to demonstrate how the 

operations required for the Jacobi algorithm can be implemented on a message-passing 

MIMD machine with a 2-D square mesh topology. This topology was chosen because of 

its direct applicability to "Big Iron" machines such as the Intel Paragon, newer cluster 

multicomputers such as Shrimp or ATOMIC, and distributed shared memory systems 

such as DASH or Alewife. 

The program in Figure 8 roughly follows the pseudo-program in Figure 7. As an 

overview, each compute node executes a copy of the Updaterow procedure which 

exchanges values with neighboring rows, computes new values for the points in a row, 

and calls the Aggregate function to check for the termination condition. For simplicity 

this example has only 16 compute nodes and a 16 x 16 grid of data points, but by chang-

ing the values of the n, m, and L constants at the start of the program it can be used with 

larger systems and/or more data points. 

PROGRMl Jacobi3; (* JACOBI FOR 2-D MESH *) 
ARCHITECTURE MESH2(4); 
CONST n = 16; (*number of processors*) 

m = 4; (*number of processors one edge*) 
L = 16; (*number of points per row*) 
numiter = 1; (*iterations between termination checks*) 
tolerance = 0.1; 

TYPE rO\'ltype = ARRAY [0 .. L+ 1] OF REAL; 
VAR A: ARRAY [0 .. n+l] OF rowtype; (* Data array *) 

i,row,col: INTEGER; 
upchan,downchan: ARRAY [1 .. n] OF CHANNEL OF rowtype; (*com ports*) 
inchan: ARRAY [1 .. n] OF CH~~EL OF BOOLEAN; 
snake: ARRAY [1 .. n] OF INTEGER; 

FUNCTION Aggregate (mynum: INTEGER;mydone:BOOLEAN) : BOOLEAN; 
VAR prow, dnproc, uproc: INTEGER; 
BEGIN 
%SEQOFF; 

prow := ((mynum-l) DIV m) +1; (* Process row number *) 
IF prow = 1 THEN 

BEGIN 
dnproc := 2*prow*m+l-mynum; (* Compute dOI\'l1 process number *) 
inchan[dnproc] := mydone; (* Pass mydone down column *) 
mydone := inchan[mynum]; (* Wait for broadcast return *) 

END 
ELSE IF (prow> 1) AND (prow < m) THEN 

BEGIN 
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dnproc := 2*prow*m+l-mynum; (* Compute down process number *) 
uproc := 2* (prow-l)*m+l-mynum; (* Compute up process number *) 
inchan[dnproc) := mydone AND inchan[mynum); (* Pass result down *) 
mydone := inchan[mynum); (* Wait for broadcast return *) 
inchan[uproc) := mydone; (* Pass broadcast up column *) 

END 
ELSE (* prow = m *) 

BEGIN 
uproc := 2*(prow-l)*m+l-mynum; (* Compute up process number *) 
IF mynum = n+l-m THEN (* Corner process in mesh *) 

BEGIN 
mydone := inchan[mynum) AND mydone; (* COL AND mydone *) 
inchan[mynum+l) := mydone; (* Pass across row *) 
mydone := inchan[mynum); (* Wait for broadcast *) 
inchan[uproc) := mydone; (* Send up column *) 

END 
ELSE IF (mynum > n+l-m) AND (mynum < n) THEN (* Center processes *) 

BEGIN 
mydone := inchan[mynum) AND mydone; (* COL AND mydone *) 
mydone := inchan[mynum) AND mydone; (* COL, row, my result *) 
inchan[mynum+l) := mydone; (* Pass result across row *) 
mydone : = inchan [mynum); (* vJait for broadcast *) 
inchan[mynum-l) := mydone; (* Send across row *) 
inchan[uproc) := mydone; (* Send up column *) 

END 
ELSE (* mynum = n *) 

BEGIN 
mydone := inchan[mynum) AND mydone; (* COL AND mydone *) 
mydone := inchan[mynum) AND mydone; (* Final result *) 
inchan[mynum-l) := mydone; (* Send across row *) 
inchan[uproc) := mydone; (* Send up column *) 

EN;) 
END; 

Aggregate:= mydone; (* Pass result back to callee *) 
%SEQON; 
EN;); 

PROCEDURE Updaterow(me: INTEGER; myrow: rowtype; VAR out: rowtype); 
VAR j,k,loops: INTEGER; maxchange, change: REAL; 

newrolt.' , uprow , downrow: rowtype; 
done: BOOLEAN; 

BEGIN 
newrow[O) := myrow[O); n e-.... r ow [L+l) := myrow[L+l); (*End points*) 
IF me = 1 THEN downrow := downchan[me); (* Sent in main *) 
IF me = n THEN uprow := upchan[me); (* Sent in main *) 
REPEAT 

FOR k := 1 TO numiter DO 
BEGIN 

IF me > 1 THEN 
upchan[me-l) .- myrow; (* Send my row to me-l *) 

IF me < n THEN 
BEGIN 

downchan[me+l) := myrow; (* Send my row to me+l *) 
uprow : = up chan [me) ; 

END; 
IF me > 1 THEN 

downrow := downchan[me); (* Receive new downrow *) 
maxchange := 0; 
FOR j := 1 TO L DO 

BEGIN 
(* Compute average of adjacent points *) 
neloJrow[j) := (myrow[j-l)+myrow[j+l)+uprow[j)+downrow[j)) /4; 



change := ABS(newrow[j)-myrow[j)); 
IF change> maxchange THEN maxchange .- change; 

END; 
myrow : = newrow; 

END; 
IF me = n THEN loops := loops + numiter; 
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done:= Aggregate (me, maxchange < tolerance); (*Termination test*) 
UNTIL done; 

IF me = n THEN WRITELN('Loops to converge = ',loops); 
out .- myrow; (*Write final answer back to A array*) 

END; 

BEGIN 
(* Set up process allocation array so adjacent processes *) 

(* are on adjacent processors to minimize communication distances *) 
FOR i:= 1 TO n DO 

BEGIN 
IF ((i-I) DIV m) mod 2 = 0 THEN (* Even row *) 

snake[i) := i-I 
ELSE (* Odd row *) 

snake[i) := (((i-I) DIV m) +l)*m -1 - ((i-I) MOD m); 
END; 

(* Set up data array with initial values*) 
(* Nu~ber of data points = n*L *) 

row : = 0; 
FOR col:=l TO L DO 

A[row,col) := 100.0; (* Top boundary values = 100.0 *) 
FOR row:=l TO n+l DO (* Left and bottom boundary values = 0.0 *) 

FOR col:= 0 TO L DO 
A[row,col) := 0.0; 

col := L+l; 
FOR row := 1 TO n DO (* Right boundary values 100.0 *) 

A[row,col) := 100.0; 

(* Send fixed boundary values to channels *) 
downchan[l) := A[O); upchan[nJ := A[n+l); 

(* Assign processes to processors, channels to processes, *) 
(* and array rows to processes *) 

FOFALL i := 1 TO n DO 
(@snake[i) PORT upchan[i);downchan[i) ;inchan[i)) 

Updaterow(i, A[i), A[i)); 
END. 

Figure 8. Multi-Pascal program which implements the Jacobi algorithm on a 
2-D mesh MIMD machine. 

Just to have some data to work on, a section near the end of the program initializes 

the top and right boundary values for the data grid to 100.0, initializes the left and bottom 

boundary values to 0.0, and initializes the actual data grid values to 0.0. 

To implement static scheduling, the FORALL loop at the end of the program then 

creates a process containing the Updaterow procedure for each compute node, assigns 
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input and output communication channels to each process, and assigns one row of the 

data grid to each process. Figure 9a. shows how the actual compute nodes are numbered 

and Figure 9b shows how processes I-n are assigned to the compute nodes in a "snake" 

topology by the FORALL loop. The processes and grid rows are assigned to compute 

nodes in a snake pattern so that adjacent grid rows are always on adjacent nodes. This 

minimizes communication distances and congestion because all transfers of new row val-

ues require just one hop on the network. Assigning a complete row of data points to each 

compute node further reduces communication because each process has to send and 

receive only two messages during each iteration of the Update row procedure. If the grid 

data points were distributed to processes in blocks, then each compute node would have 

to send and receive four messages to exchange new values with adjacent processes. 

a. b. 

Figure 9a,b. Compute node numbering for 2-D Mesh MIMD machine(a), 
Snake pattern of process assignment to compute nodes(b) 

In Multi-Pascal, processes use channels to send messages to each other. At the start 

of the program in Figure 8, two channel variables, upchan and downchan are declared. 
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Identifying these channels as row type makes it possible to send a message containing an 

entire row of data points with a simple assignment statement of the form, upchan[me+IJ 

:= myrow. The message is received with another assigament statement of the fonn, uprow 

:= upchan[me]. 

At the start of the Update row procedure, each process first sends its current row val

ues to its two nearest neighbors and receives the current row values from its two nearest 

neighbors. Each process then computes the new value for all the points along its row and 

calculates the maximum change between the old value and the new value for all the 

points in its row. 

To check for the termination condition, each process then calls the function Aggre

gate and passes it a Boolean called mydone which is true if maxchange < tolerance for its 

last computation iteration. Figure lOa shows how these local my_done Booleans are com

bined and accumulated at the highest numbered node. Each of the nodes along the top of 

the mesh sends a message containing its my_done to the next node down its column and 

waits to receive a message containing the global result. Each node in the next row down 

ANDs the received my_done with its local my_done, sends a message containing the 

result down to the next node in its column, and waits to receive a message containing the 

final result. At the bottom of the mesh, the my_done accumulation moves horizontally as 

shown until the final result is generated in the highest numbered node. This method of 

generating a global result is very widely used and is commonly referred to as a minimum 

spanning binary tree algorithm [Barne93a]. In the case shown in Figure lOa it is specifi

cally a fanin tree. 

Figure lOb shows how a minimum spanning fanout tree can be used to broadcast the 

final Boolean value to all the waiting compute nodes. To start, the highest numbered node 

sends messages containing the result to two other nodes. Each of these sends messages 

containing the global value on to one or two other nodes as shown. Eventually, all the 
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waiting nodes receive the global value. As each node receives the global Boolean value, it 

exits from the Aggregate function and returns the global value to Updaterow. Update row 

uses the returned value to decide whether to loop again or quit. 

a. b. 

Figure IOa.b. Message flow for global aggregate on 2-D mesh MIMD ma
chine (a), Message flow for global broadcast on 2-D mesh MIMD machine 
(b) 

The fanin-fanout tree method used to accumulate and broadcast the global Boolean 

here implements both the second barrier and the lock shown in the pseudo-program of 

Figure 7. The fanin tree emulates the lock by providing controlled sequential accumula-

tion of the global Boolean value. Also, it enforces a barrier because no process can 

receive the global result until all have contributed. Once the global result is available, the 

fanout tree efficiently releases all the processors from the barrier. Note that although I ran 

Boolean values instead of local_max_delta values through the fanin-fanout trees, the 

result is the same. 

One way to reduce the overall time cost of convergence checking in a program such 

as this is to perform several computation iterations before checking for convergence. In 

the program in Figure 8, for example, if the value of numiter is changed to 4, then each 
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process will perform four iterations of the computation loop in Updaterow before calling 

Aggregate. The result is that Aggregate only executes one quarter as many times as it 

does with numiter = I. A larger value of numiter would further decrease the overall time 

contributed by execution of the Aggregate function. The tradeoff here is that if numiter is 

made too large, then extra and unnecessary computation iterations may be performed 

before the last convergence check. 

A final point to make about the program in Figure 8 is how the Jacobi algorithm 

requirement that each iteration use only values from the previous iteration is met. The 

pseudo-program in Figure 7 shows how a barrier can be used to enforce this requirement. 

In the program in Figure 8, message send-receive operations provide the mechanism 

which enforces this requirement. During the first iteration in Updaterow each process 

sends its row values to its two neighbors and receives row values from its two neighbors. 

After that, when a process finishes one computation iteration and loops around to do the 

next, it sends messages containing its new row values to its two neighbors and waits until 

it receives messages containing new row values from each of its neighbors. Since a pro

cess cannot proceed with a new computation until it receives these new rows and it can

not receive them until they are sent by the process that produces them, the Jacobi require

ment is satisfied. 

The preceding program has illustrated how message passing can be used to imple

ment synchronization, accumulate a global value, and broadcast a global value on a 

mesh-connected multicomputer. In this example we used fanin-fanout trees to accumulate 

a global Boolean, but the method is very general and can be used to generate and broad

cast, for example, the result of a global sum operation. Johnsson [Johnsa] mentions that 

the global sum operation is an important part of the conjugate gradient method and Clark 

[Clark92a] shows that this operation is important in molecular dynamics programs. The 

fanin-fanout tree method can also be used to generate a global MIN, MAX, OR. EXOR, 
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or AND, as required by a particular algorithm. In algorithms where only a one-to-all 

broadcast is needed, a single fanout tree algorithm can be used. van de Geijn [Geijn91 a] 

points out that this kind of broadcast is an important part of LV factorization of a dense 

matrix. 

In summary, this section has shown minimum spanning trees can be used to imple

ment important global operations such as barrier synchronization, global sum, MIN, 

MAX, OR, EXOR, and AND. The number of steps required for a minimum spanning 

binary tree algorithm implemented on a network is equal to the diameter of the network, 

D. Each step requires a message send and receive operation, so the total time for the algo

rithm is proportional to the (message send-receive time) x D. If two trees are used to gen

erate and broadcast a global sum, for example, the time is doubled. Later I show that for 

current machines, the cascaded message send-receive times along the branches of these 

trees contributes significantly to the overall execution time. Next is a discussion of how 

these global operations are commonly implemented on a hardware-based distributed 

shared memory machine. 

Program Operations On A Distributed Shared Memory MIMD Machine 

Conceptually, a Jacobi program for a shared memory machine follows the pseudo

program in Figure 7 very closely, so I did not write a separate program for it (see Lester 

[Leste93a] for one way to do it). On a shared memory machine, identical processes can 

be created on each processor and rows of grid points assigned to each process as in the 

preceding distributed memory example. Since all of the data are in a shared global 

address space, each processor can simply copy data values to its local cache as needed. 

The key points left to discuss then are how the synchronization lock and barriers shown 

in Figure 7 can be implemented on a distributed shared memory machine. 
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As mentioned earlier, a lock is a programming construct which allows only one pro

cessor at a time to access a shared resource. The simplest type of lock, commonly called a 

spin-lock, uses a lock variable which contains a 0 for the unlocked condition and a I for 

the locked condition. To gain access to the shared resource each processor uses an indi

visible read-write operation to read the value of the lock variable and write a 1 to it. If the 

value read was a 0, the lock was unlocked, so the requesting processor will be granted 

access to a shared resource such as global_max_delta. The 1 written to the lock variable 

as part of the indivisible read-write operation will mark the lock as locked for other pro

cessors that access the lock variable. When a processor completes its use of the shared 

resource, it resets the lock variable to indicate the lock is open. If a processor reads the 

lock variable and finds it aI, it must read the lock variable over and over or in other 

words "spin on the lock variable" until it reads a O. 

A common way to implement a simple barrier on a distributed shared memory sys

tem is with a count variable protected by a lock. At the start, the count variable is loaded 

with the number of processes that need to check in at the barrier. When each processor 

reaches the barrier, it spins until it is able to access the count variable through the lock, 

decrements the count value by one, and then releases the lock. When all the processes 

have checked in at the barrier, they are allowed to spin on a second lock which protects 

the count variable. To check out of the barrier, each process must acquire this second 

lock, increment the count variable, and release the lock. 

One major problem here is that all of the processors are trying to access the lock 

variable at the same time, so the lock variable memory location becomes a "hot spot" of 

contention. The traffic to and from this "hot spot" may interfere with other memory 

accesses. A second problem is that successful acquisitions of the lock are of necessity 

sequential since only one processor at a time can hold the lock. Since each processor 

must acquire the lock twice, the total time for the barrier is equal to 2 x N x (the lock 
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acquisition-release time), where N represents the number of processors. During this time 

processors spend most of their time spinning on the lock. Unless there are other processes 

available and the processors can efficiently swap to them, this spinning time is wasted. 

One method of decreasing the contention for a single lock variable is to use a binary 

tree of lock variables. Processors at the leaves of the tree compete in pairs for a local lock 

and decrement a local count variable through it. When both have reached the local bar

rier, one of the processes is allowed to compete with another "local winner" for a lock at 

the next level up the tree. When all processes have reached the barrier, competition will 

reach the top of the tree. The tree can be used in the reverse direction to release all the 

processors from the barrier. In this case the time for the barrier is proportional to 2 x log 

N x (acquisition time). Although this method reduces the contention for a single lock 

variable and perhaps reduces the load on the cache coherency mechanism, it requires 

additional software overhead and still requires considerable spinning. 

Still another way to reduce the contention for a lock such as this is to set up a queue 

of processes waiting for the lock. When one process unlocks the lock, it is automatically 

granted to the next process in the queue. The tradeoff here, of course, is the software 

complexity and time overhead of setting up and managing the queue. 

Referring back to Figure 7, the first barrier can be be implemented as just described. 

Since a barrier contains a lock, the lock and the second barrier shown in Figure 7 can be 

combined. As each process unlocks the lock and accesses the count variable, it can also 

update global_max_delta as needed. Each process can read the final global_max_deJta 

value during the barrier exit phase. Other global operations such as sum, MIN, OR, 

EXOR, and AND can be performed using the same approach. 

In summary, this section has shown how access synchronization, barriers, and other 

global operations can be performed on a distributed shared memory machine. Later I 

show how the COP system can substantially reduce the time required to implement these 



37 

operations. Next is a discussion of the additional requirements for executing multiple 

independent programs on a MIMD machine. 

Additional Requirements for MPMD Execution on a MIMD Machine 

In the preceding sections I described operations commonly needed for a multicom

puter and for a mUltiprocessor executing in Single Program Multiple Data(SPMD) mode. 

In addition to these operations, a machine executing in Multiple Program Multiple Data 

(MPMD) mode has several other requirements. 

First and foremost of these requirements is that each executing program or user must 

be assigned a set of processors which is reserved for its exclusive use. This process is 

commonly referred to as setting up a virtual machine for each program or each user. The 

usual way to assign a group of processors to a user is with an operating system call. On 

an Intel iPSC/2 [Corpoa], for example, the getcube (N) command instructs the NXJ2 

operating system to assign a group of N processors to the requesting user. 

The assigned set of processors must also be protected from interference by any other 

programs executing on other processors. This need for protection makes programming 

and program execution considerably more complex. For example, on a message-passing 

machine each message sent by a user program must be checked to make sure that its des

tination is one of the processors assigned to that program. This check is usually per

formed by the operating system. For example, when a program on an Intel iPSCI2 uses 

the csend(type, buf, length, node, pid) system call to send a message to another processor, 

the NX/2 operating system checks to make sure the destination node is within the group 

assigned to that program and signals an error if it is not. 

The software overhead of this checking adds to the time required for each message 

send-receive operation and thereby increases the overall program execution time. As will 

be discussed in the next chapter, the protection required for COP system operations is 
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implemented with fast hardware to minimize its effect on execution time. 

Initial Cost Analysis For Global Operations On MIMD Machines 

Preceding sections of this chapter have demonstrated some programming constructs 

and global operations which are important in programs for message-passing multicom

puters and in programs for distributed shared memory multiprocessors. These include: 

synchronization of access to shared variables; barrier synchronization to assure that all 

processors have reached a certain point before any are allowed to proceed; global opera

tions such as sum, MAX, MIN, OR. AND, EXOR; and broadcasting one-to-all, or all-to

all. Also important are protection capabilities which allow assigning virtual machines for 

MPMD execution. In this section I show an initial analysis of the cost of these operations 

on multicomputers and distributed shared memory mUltiprocessors, then I make some 

projections on the effect these costs have on overall execution time and on the optimum 

number of processors that can be applied to a particular parallel task. These projections 

are the rationale for the COP system which is described in the next chapter. 

Cost Analysis for Global Operations on "Big Iron" Multicomputers 

Several of the current, massively parallel multicomputers use single, high-bandwidth 

networks for communication between compute nodes. Compute nodes pass messages on 

this interconnection network for all data transfers, synchronizations, global operations, 

etc. On a message-passing-only machine, assuming no contention for network channels, 

the time required to send a message has two main components. The first, commonly 

called the latency time or fL' includes the message startup time, the time required to pack

etize the data to be sent, the time to add a header which specifies the destination for the 

message, the time to establish a path through the network, and the time to de-packetize 

and process the message at the receiving node. 
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The second component of the time to send a message is the total source to destina

tion hardware transmission time, M B * Rr , where M B is the number of bytes in the mes

sage and Rr is the reciprocal of the network message bandwidth. 

The total time to send and receive a message then is tL + MB * Rr . According to 

Rosing [Rosin94a], the Intel Paragon multicomputer currently has a minimum t L of 25 

microseconds and an Rr of 11200 Mbytes/sec. Using these values, the time to send and 

receive an 8 byte message is 25 microseconds + 40 nanoseconds. For very large mes

sages the latency term is swamped by the transmission time term, but for small messages 

the latency term clearly dominates. 

As described earlier in the chapter, synchronization and other global operations are 

often implemented with fanin and fanout minimum spanning trees. New messages are 

generated at each level in these trees, so message-passing times cascade along the 

branches of the trees. Since the number of levels in either tree is equal to D, the diameter 

of the network, the total message passing time for one of these trees is equal to 

D(tL + Mu * Rr)· 

Using the Intel Paragon numbers of tL = 25 microseconds and Rr = 1/(200 

Mbytes/sec), this equation gives a time of about 350 microseconds to broadcast an 8-byte 

value from one node to the other 63 in a 64 node square mesh. For a 16 x 32 node mesh, 

the equation gives a one-to-all broadcast time of 1200 microseconds or 1.2 ms. This com

puted time agrees with a measured time recently reported by van de Geijn [Geijn94a] for 

a 16 x 32 node Paragon using the new InterComm Collective Communication Library. 

Barriers and similar global operations require traversal of two trees, so the times for these 

operations are about twice the time for a simple one-to-all broadcast. 

Since current compute node processors can execute an instruction in 20 ns or less, 

the cascaded message times that a compute node must wait for a global result represents 

many thousands of instruction times. This time is wasted unless the program has enough 
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parallelism to support another execution thread and the thread swap overhead is low 

enough to justify a swap. 

Furthermore, if the number of compute nodes is increased in an attempt to exploit 

fine-grained parallelism in an application, the diameter of the network will increase. This 

will further increase the time required for each global operation and decrease or possibly 

eliminate the potential gain expected from using a greater number of compute nodes. 

Driscoll and Daasch [Drisc95a] have shown, in an extension of the work of Amdahl 

[Amdah67a] and Gustafson [Gusta88a], that if the serial component of an application 

increases linearly with the number of compute nodes, the optimal number of compute 

nodes can be represented as: 

~aro 
NoPT = --

as 

where Pa/'o represents the time to execute the parallelizable portion of the application on 

a single machine, and as is the serial component of the application. 

The number of levels in a binary spanning tree increases logarithmically with the 

number of processors and therefore the serial component introduced by cascaded mes-

sage times increases logarithmically with N rather than linearly. However, this expression 

clearly shows that if global operations which use these trees are a significant part of the 

application, as they are in many scientific computations, then the sequential time repre

sented by the cascaded message latencies limits the number of compute nodes which can 

be effectively utilized in the computation. 

Cost Analysis for Global Operations on Cluster Multicomputers 

For current workstation cluster multicomputers the time costs of global operations 

are even greater than those for "Big Iron" machines, because the message-passing 

latency times are much longer. Steenkiste [Steen94a] reports that the measured time for a 
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single 16-byte message on the Nectar cluster system is 97 to 234 microseconds, depend

ing on the protocols used. Cohen [Cohen94a] reports that the latency between user mem

ory on one node and user memory on another node in the ATOMIC cluster system is 

about 1500 microseconds. The main reason that these times are so long is that high level 

operating system protocols are used to send and receive messages. This is done to main

tain protection, implement error detection, and maintain software compatibility. The point 

remains, that since global operations require cascaded messages, they are very expensive 

time-wise on current cluster multicomputers. 

Cost Analysis for Global Operations on Distributed Shared Memory Multiprocessors 

If many processors in a distributed shared memory system are trying to access a 

cached lock variable at the same time, the synchronization variable may "ping-pong" 

around the system caches. This is a worst-case scenario for most cache coherent systems, 

because after each write, the result will be dirty in a remote cache. As cited in Chapter II, 

Lenoski [ Lenos93a] notes that on the DASH system this type access requires 132 clock 

pulses as compared to only one clock pulse for a local cache access. Even if the lock vari

able is not cached, each access is still remote and takes appreciably more time than a 

local cache access. 

Since accesses to a lock variable for implementing a barrier, a reduction, or some 

other global operation are of necessity sequential, the access times are additive. If a single 

lock variable is used, Lenoski [ Lenos93a] has shown that the total time is a linear func

tion of the number of processors. If software combining trees are used to implement these 

operations as described in an earlier section of the chapter, the total time in O(log N). 

In either case, these operations introduce a sequential time component which 

increases with the number of participating processors and, as previously cited from 

Driscoll and Daasch, strongly affects the optimum number of processors which can be 
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applied to a particular task. Also, as discussed earlier in the chapter, most of this sequen

tial time is wasted spinning on locks. 

Chapter Summary And Conclusions 

Global operations introduce a substantial sequential time component into computa

tions on both multicomputers and distributed shared memory multiprocessors. As stated 

in Chapter I, my hypothesis is that the addition of a high-speed secondary interconnection 

network with a wide tree topology and one or more Coordination Processor(s) or COP(s) 

to either type of machine could reduce the time required these operations by as much as 

two or three orders of magnitude. In my research I found no other multicomputer or mul

tiprocessor enhancements ·that give the combination of speed, versatility, and cost effec

tiveness potentially provided by the COP system. 

In the next chapter I describe in detail the architecture, operations, and software 

interface of the COP system. Then in Chapter V, I do a detailed performance analysis of 

the COP system, compare the performance of a COP enhanced system with the reported 

performance of current research and commercial machines, and show some examples of 

the overall program speedup provided by the COP system. With the picture of the COP 

system complete. I then in Chapter VI describe and compare other attempts to improve 

global operation performance. 



CHAPTER IV 

COP SYSTEM ARCHITECTURE, OPERATIONS, AND PROGRAMMING 

Goals 

The goals of the COP system were: 

I. Be applicable to "Big Iron" multicomputers, workstation cluster multicomputers, and 

distributed shared memory systems. 

2. Improve the efficiency of a wide variety of common parallel programming operations 

so as to better justify the cost of implementation. 

3. Retrofit easily to the hardware of current generation machines so that it would not be 

necessary to wait for the next generation of machines to gain the benefits. 

4. Require minimum modification of existing programs and programming paradigms so 

as to not waste the massive efforts that have been invested in them. 

5. Be compatible with MPI, PVM, BLACS, and other current efforts to insulate program

mers from low level system details. 

6. Be compatible with advances such as thread scheduling and object oriented parallel 

programming that are likely to be included in future machines. 

7. Have a high benefit-to-cost ratio. 

As I discuss the architecture and operation of the COP system in the following sec

tions, I will point out some of the decisions made to help meet these goals. 
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Top Level View 

Figure II shows the network topology for a single level COP system. As shown, 

each compute node in a group of 64 is connected to a coordination processor (COP) by an 

independent high-speed, half-duplex serial data link. Upon seeing 64 compute nodes 

connected to one COP, the first word that probably comes to mind is "bottleneck". How

ever, as I show later, it is the centralized nature of the COP which helps provide the bene

fits of the system and the COP is not a bottleneck for its intended operations. Everyday 

life provides many examples of the benefits of a balanced, centralized system such as 

this. An airport control tower, for example, seems a better way to control plane landings 

than having each plane attempt to land on its own and back off each time a collision 

seems imminent. 

Half Duplex 
Serial Line 

• • • 

Half Duplex 
Senal Lillo 

Figure II. Single level COP system topology 

Since the communication links between compute nodes and a COP are independent, 

all the compute nodes in a group can send data words or synchronization signals to their 

COP simultaneously. With these dedicated direct links, the source and destination are 

hardwired, so no complex message formatting is required. To send a word to its COP, a 

compute node simply does a write to its COP network interface port. The dedicated sig

nal lines also mean that no time is required to establish a connection with the COP, and 
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there is no network contention. The result of these capabilities is that each compute node 

can transmit a synchronization signal or data word to its COP in a very short constant 

time. The independent communication links also mean that a COP can broadcast a syn

chronization signal or data value to all the compute nodes in its group simultaneously. 

Bit-serial data transmission was chosen to minimize the number of conductors in 

each link and for compatibility with relatively inexpensive, non-multiplexed fiber-optic 

data transmission. 

The decision to assign 64 compute nodes to each COP was made partially so masks, 

bit-vectors, etc. are compatible with the data path widths of the latest compute node pro

cessors. Based on my personal programming experience, this reduces "bit-twiddling" 

and thus simplifies the software interface with the COP. Also, assigning 64 compute 

nodes to each COP means that a two level hierarchy of COPs can service up to 4096 

compute nodes as shown in Figure 12. Keeping the number of levels low reduces the 

number of COPs and the number of connecting links for a given size machine. Keeping 

the number of levels low also reduces the overhead involved in traversing the tree for 

global operations in which a large number of compute nodes participate. To broadcast a 

value to all 4095 other nodes, for example, compute node 0 sends the value to COP 0, 

COP 0 sends the value to the Level 2 COP, the Level 2 COP broadcasts the value to all 

the Level I COPs, and each of these COPs broadcasts the value to its 64 compute nodes. 

The whole process requires only three passes though a COP level. 

A very important point here is that the topology of the COP system is independent 

of the topology of the underlying machine. This means that the COP system is equally 

applicable to "Big Iron" multicomputers, cluster mUlticomputers, and distributed shared 

memory mUltiprocessors. Note that the COP system will be most efficient if a particular 

physical partition or "virtual machine" is created with all its compute nodes connected to 

one COP, but this is not required. In this case only the level I COP is used for all 

-- ---~- --- ----
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Figure 12. Two level COP system topology 
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LEVEL 2 

LEVEL 1 

operations within the partition. For a two level system it is somewhat more efficient to 

assign the compute notes of a partition to level I COPs that are connected to adjacent 

input channels on the level 2 COP, but again, this is not required. 

The software receive latency for a COP broadcast is usually very low because the 

receiving node is waiting for the control or data word and immediately reads it from the 

COP network interface as soon as it arrives. In the case of a global sum operation, for 

exa,mple, a compute node would most likely write its data value and the appropriate op 

code to its COP interface port, poll the COP interface port Data Ready strobe until the 

global sum arrives, and then immediately read the sum from the port. 

Each COP has two extra serial channels in addition to those used to connect to 64 

compute nodes or to lower level COPs. One of these is used to connect to a higher level 

COP if present. The second extra serial channel can optionally be used to export perfor

mance and debugging data to external recording equipment. 
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A 64-bit integer ALU in each COP is used for performing global integer sums, MIN, 

MAX, bitwise AND, bitwise OR, and bitwise EX OR operations. A Floating Point Unit in 

each COP is used for performing global floating point sum, MIN, and MAX. Each COP 

also contains a bank of very fast SRAM which is used to hold intermediate results and 

shared write-able variables, to function as a global name space, and to accumulate perfor

mance data. A second, smaller bank of RAM holds broadcast/multicast masks. A third, 

small bank of RAM holds bit vectors which identify the compute nodes participating in a 

barrier or other global operation. As a brief, introductory example of how a COP system 

works, we will use a global sum operation. 

To start, each compute node writes a command consisting of a data value and the 

appropriate op code to its COP network interface port. The COP network interface con

troller then automatically transmits the command to the COP. Arrival of a command at 

the network port of a COP sets a DATA_RDY flag for that input channel. The COP cycles 

through the input channel service requests on a round-robin basis. When the COP ser

vices a channel, it adds that channel's contribution to the intermediate result and resets 

the appropriate bit in the bit vector which identifies the compute nodes participating in 

the operation. When all the compute nodes have contributed, the COP broadcasts the sum 

simultaneously to all the participating compute nodes. 

Operations that a COP system can directly perform include: synchronized read

modify-write access to global variables; barriers; integer and floating point global sum, 

MIN, MAX; bitwise AND, OR, EXOR; one-to-all broadcast or multicast: and all-to-all 

broadcast or multicast. As mentioned in the last chapter, the COP system includes hard

ware-based protection mechanisms so that it is compatible with MPMD execution as well 

as with SPMD execution. 
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The Compute Node To COP Network Interface 

Figure 13a shows a block diagram of the compute node to COP network interface. 

This interface is basically just a serial port with receive buffering, deadlock detection, and 

virtual machine protection capabilities. The compute node can interact with the interface 

on either a polled or an interrupt basis. To the compute node the interface appears simply 

as a 64-bit read/write port. 

Each communication between a compute node and a COP consists of one to four 

32-bit words as shown by the command layout example in Figure 13a. The first word in a 

COP command is always an instruction word with the format shown in Figure 13b. 

Depending on the particular command, this instruction word is inserted by a user instruc

tion, an operating system command, or hardware. The U/S bit in the instruction word 

indicates whether the command is a user level command or a supervisor level command 

which can only be invoked with an as call. The PPN in the instruction word is a number 

which identifies the physical partition to which the processor has been assigned. All the 

compute nodes assigned to a particular user will have the same PPN. The X bit is used to 

indicate whether the physical partition extends beyond the local, Level I COP. In other 

words, the X bit specifies whether a COP command should be passed on to a level 2 COP 

and applied to more than one level I COP. The PID in the command word includes con

text, group, and rank numbers which identify the process sending or receiving the com

mand. This process identification mechanism was chosen for compatibility with the Mes

sage Passing Interface Standard. [Tennea] 

The OP Code bits in the instruction word specify the operation to be performed. The 

MASK bit in the instruction word is used to select one of two programmable masks in the 

COP Mask RAM. One of these masks might be programmed for a one-to-all broadcast to 

all the other compute nodes in the partition. and the other mask might be programmed for 
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a multicast to some subset of the compute nodes in the partition. Additional bits in the 

instruction word are reserved for future use. 

If required, the second word in a command contains an address which is used to 

access a global shared variable or partial result in the COP Data RAM. The third and 

fourth words in a command are used for 32-bit data values, 64-bit data values, or 64-bit 

mask values. 

From the compute node, the COP network interface appears as a read/write port 

with two different and separate addresses. One address maps the port into protected I/O 

or memory space where it can only be accessed through the operating system. This access 
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is used to initialize broadcast and barrier masks in the COP, change the value in the Cur

rent Process Register, initialize the deadlock timer, and perform various tasks during a 

process swap. For this type of access, the value in the UIS bit in the instruction word is 

determined by the bit written to the port in that position. 

The second interface port address is mapped into the user addressable memory or 

va space and allows user programs to directly access the COP. When the interface is 

accessed through this address, the UIS bit is hardwired with the User value so there is no 

chance a user program can mistakenly issue a Supervisor level command. 

During system startup the operating system writes a physical partition number and 

the PID for the first process to the Current Process Register, and writes an initial count to 

the deadlock timer. When a user writes a command to the interface, the PPN and PID 

numbers are automatically inserted in the instruction word from the Current Process Reg

ister as the word is transferred to the Dual-Port RAM Buffer. This hardware mechanism 

assures that a command is linked with the currently executing process. During a process 

s\vap, the operating system writes the PID number for the new process in the Current Pro

cess Register. 

If a command consists of more than one word, the additional words are transferred 

to the Dual-Port RAM Buffer as they are written to the interface by the compute node. 

However, as soon as an instruction word is written to the buffer, the interface controller 

transfers it to the UART and the UART automatically sends the word on to the COP. 

Additional words of a command are transferred to the UART and sent to the COP in 

sequence. 

The actual UART sections of both the compute node to COP network interface and 

the network to COP interface use Motorola MCI00SX1451 Autobahn Spanceivers 

[Produ93a] rather than custom modeled devices. These devices not only fill a need in the 

COP system, but also demonstrate that 200-400 MBytelsec serial transmission is possible 

--~- --- -~~-.-~-- ------
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with currently available commercial technology. 

The Spanceiver serializes each 32-bit word and transmits it over a Positive Emitter 

Coupled Logic (PECL) differential transmission line. Current versions of the device 

transmit at a programmable data rate of up to 200 Mbytes/sec. Second-silicon versions 

are expected to work at up to 400 Mbytes/sec. High quality triaxial cable can be used to 

connect Spanceivers that are within IO feet of each other. [Blood88a]. For longer dis

tance connections between Spanceivers, the PECL signals can be converted to non

multiplexed optical signals and transmitted over relatively inexpensive multi-mode fiber 

optic cables. The second-silicon version of the Spanceiver, in fact, includes fiber optic 

interface circuitry. 

Using bit-serial data transmission for the initial design also provides a worst case 

test of the fe4\sibility of the COP system from a timing standpoint. Later versions might 

use byte-serial or word-serial transmission if justified by the benefit/cost ratio. Recent 

research by Smith [Smith94a], indicates that it will soon be feasible to use parallel ribbon 

fiber interconnects between multicomputer cabinets over distances up to a few tens of 

meters. 

Figure 14 shows a block diagram for the Spanceiver transmit and receive sections. 

Parallel data words to be sent are written to the Spanceiver transmit register using a 

FULLlSTRB signal handshake protocol. Once a 32-bit word is written to the transmit 

section of the spanceiver, the word is automatically serialized and sent out on the serlser* 

differential outputs. 

When the Spanceiver is not transmitting, it monitors the serlser* pin for signal activ

ity. In response to a detected signal transition the receiver section automatically synchro

nizes on the incoming data, shifts the data bits into the SIPO register, and transfers the 

received word in parallel to the receive buffer register. Since the Spanceiver can only 

buffer one 32-bit word internally, each word is transferred to the external RAM buffer. As 
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Figure 14. MC I OOSX 1451 Autobahn Spanceiver transmit and receive blocks 

an instruction word is transferred from the Spanceiver, the PPN and PID are extracted 

from it and written to the Buffer Pointer Register. The contents of this register are used as 

part of the address for the RAM location where the received command will be written. 

After all the words for a received command are written to the RAM Buffer, the inter-

face controller compares the Current Process Register with the Buffer Pointer Register to 

determine if the received message is intended for the current process. If so, the controller 

sets a bit in the interface status register and/or asserts an interrupt signal to the compute 

node. If the command is intended for a swapped out process, the interface controller may 

immediately set a status bit and/or generate an interrupt signal if programmed to do so, or 

it may wait until the destination process is swapped back in to do this. The key here is 

that when a process is swapped back in, the interface controller checks the RAM buffer to 

deh;rmine if there are any COP commands waiting for the process. This mechanism 

assures that a command returning to a process from a COP will not be lost if it arrives at 

the interface while the process is swapped out. 

If a Spanceiver detects any errors while receiving a data word, it will assert its Error 

signal. Later, after I discuss the operation of the COP end of the data link I will describe 

the protocol that the COP system uses to handle errors detected by the Spanceiver. 

When the compute node accesses the COP port to read the received message, the 

contents of the Current Process Register are used as a pointer to the RAM Buffer. This 
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further assures that a compute node can only read a message intended for the currently 

executing process. 

The deadlock timer on the interface can be used to trap to the operating system if a 

compute node sends a command to its COP and does not receive a reply within some pro

grammable time interval. 

In summary, the compute node to COP network interface provides fast data transfer 

with the protection features required for virtual machine operation. The relative simplic

ity and standard bus connections of this interface allow it to be implemented as a small 

daughter board which can be added to an existing compute node for performance 

enhancement or can be easily included in a new system design. 

COP Architecture And Operations 

The COP to COP Network Interface 

Figure 15 shows a block diagram of a COP. Each of the COP to network interfaces 

has a Motorola Me I OOSX 1451 Spanceiver, four 32-bit registers for buffering words 

received from a compute node. fOLlr 32 bit registers for buffering words to be sent to a 

compute node. and a mini-controller. The first register in each set is an instruction regis

ter. The second register in each set is used for Data RAM addresses which identify global 

shared variables or partial results. The third and fourth registers in each set are used for 

32-bit or 64-bit data words and 64-bit masks. 
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When the first word of a command arrives at the COP board, the interface controller 

transfers the word to the first buffer register, and extracts two bits which specify the num

ber of words in the command. As additional words are received, they are transferred to 

the appropriate buffer register. 

If the Spanceiver detects an error while receiving a word, it will assert its Error sig

nal. If this signal is asserted, the interface controller aborts the receive operation and, as 

soon as the Spanceiver is available, writes a "resend" command to the Spanceiver for 

transmission back to the compute node. In response to a resend command, the compute 

node interface controller resends the entire command which is still in the RAM buffer on 

the compute node interface. After some number of unsuccessful attempts to receive a 

message from a compute node, the buffer controller sends an error word which causes a 

trap to the operating system on the compute node. A major advantage of this approach is 

that the compute node to COP link can cycle through multiple attempts to deliver a mes

sage without involving the COP controller. This reduces the COP controller overhead. 

When all of the words of a command have been received without errors, the COP 

interface controller asserts a DATA_ROY signal. The main COP controller polls the 

DATA_ROY signals of the 64 network interfaces on a round-robin basis and services 

ready interfaces in sequence. As soon as the COP controller reads a command from a 

ready interface, the interface controller writes an Acknowledge word to the Spanceiver 

for transmission back to the compute node. Arrival of this Acknowledge word at the com

pute node indicates that the receive registers on the COP end of the link are available. 

Requiring that the compute node interface wait for this Acknowledge prevents overwrit

ing the receive buffers on the COP and assures that a command is still available in the 

compute node interface RAM buffer for resending in case of an error. 

To send a command to a compute node, the COP controller transfers the command, 

address and data components of the command in parallel to the four transmit buffer 
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registers in the interface. The interface controller then transfers the buffered words to the 

Spanceiver in sequence for transmission. If the compute node interface detects an error in 

a received word, it will direct the COP interface controller to resend the command. After 

some number of unsuccessful communication attempts, a trap to the operating system is 

generated. Again, placing the responsibility for reliable communication on the interface 

controllers rather than on the main COP controller removes the overhead of error han

dling from the main COP controller and thereby improves its efficiency. 

Another important point here is that the COP network communication links are 

asynchronous. This means that no global clock is required and that cables do not have to 

be cut to specific lengths in order to synchronize transmitters and receivers. This makes it 

easier to use the COP system with cluster multicomputers. 

Overview of COP Operations 

As mentioned previously and as also shown in Figure 15, a COP contains a 64-bit 

integer ALU, a double precision Floating Point Unit, three banks of 64-bit wide, very fast 

SRAM, and a hard-wired controller. The Data RAM can be used to hold shared write

able variables, hold intermediate computational results, function as a global name space, 

and accumulate performance data. The Mask RAM holds programmable masks which are 

used to enable the desired output channels during broadcast and multicast operations. The 

Terminal Count RAM holds the bit vectors that are used to keep track of which compute 

nodes have participated in a global operation. In this section I will give an overview of 

how these parts work together during various COP operations and in following sections 

discuss in detail the operation of each major block of COP circuitry. 

As a first example of how a COP operates, suppose that one compute node needs to 

broadcast a data value to all or a subset of the other nodes in its partition. To do this the 

compute node sends the data word and the appropriate instruction word to its COP. When 



57 

the COP controller reads the command, it will use the PPN, PID, and a couple of other 

bits in the instruction word as a pointer to the Mask RAM. The mask read from this RAM 

will enable the transmit buffers of the channels that are to receive the broadcast data 

word. After the transmit buffers are enabled, the controller writes the data word to all of 

them simultaneously. The interface controllers then transmit the data word to all the desti

nation compute nodes at the same time. 

If the partition is larger than can be serviced by a single COP, then the local, Level 1 

COP forwards the command on to the Level 2 COP. The level 2 COP uses a mask in its 

Mask RAM to broadcast the command to the appropriate Level I COPs and each of these 

then uses a mask from its Mask RAM to broadcast the data value to the desired compute 

nodes. 

To enable a compute node to efficiently broadcast vectors longer than the eight-byte 

maximum for a single broadcast command, the COP controller has a channel lock capa

bility. When a COP controller receives a lock command, the round-robin servicing of 

input channels is disabled so the controller continues servicing the locked channel until it 

receives an unlock command. This feature allows the node associated with the locked 

channel to pipeline back-to-back sequences of words through the COP. 

Two protection mechanisms are available for broadcast operations. First, an OS call 

is required to write a mask to a Mask RAM, so the OS can check that a user program is 

not attempting to write an illegal mask. Second, using the PPN and PID to access a mask 

assures that the mask belongs to the currently executing process. 

The COP system can also be used to implement a barrier very efficiently. As men

tioned earlier, the Terminal Count(TC) RAM in the COP is used to hold bit vectors which 

identify the compute nodes participating in global operations such as barriers, reductions, 

etc. Each bit in one of these vectors corresponds to one of the attached compute nodes. 

To maintain protection, an operating system call must be used to write a bit vector in one 
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of the TC RAM locations. 

When each participating compute node reaches the barrier, it sends a single 32-bit 

command word to the COP. In response to this word the COP resets the corresponding bit 

in the barrier bit vector and determines if all the bits are reset. If all the bits in the barrier 

vector are reset, the Done signal is asserted. In response to the Done signal, the COP con

troller writes a barrier exit command word to all the network interfaces which are enabled 

by the corresponding mask from the Mask RAM. The barrier exit command is thus 

broadcast to all the participating compute nodes simultaneously rather than sequentially. 

Global sum and other similar global operations can also be performed very effi

ciently by a COP system. For this operation each compute node sends a contribution to its 

COP. The COP adds each contribution to a partial result stored in a Data RAM location. 

When all the values have been added, the COP uses a mask from the Mask RAM to 

broadcast the result to the participating compute nodes. For protection, the PPN and PID 

in the instruction word are used as part of the address for the temporary result in the Data 

RAM and for the mask in the Mask RAM. Note that each intermediate result could be 

broadcast to all or to a subset of the participating compute nodes at the same time as it is 

written back to the Data RAM, if this were required by the particular algorithm. 

Still another type of operation that a COP system can easily perform is global shared 

variable access. For simple read access, a compute node sends the appropriate command 

and a variable identifier (address) to its COP. The COP uses the variable identifier, the 

PPN, and the PID received from the compute node to address the desired location in its 

Data RAM and sends the addressed data value back to the compute node. In a case where 

it is important that a compute node very quickly read a series of values from the Data 

RAM or write a series of values, the channel lock feature can be invoked. 

Read-Modify-Write access to the COP Data RAM is essentially the same, except 

that as the value read from the Data RAM is being copied to an interface transmit buffer, 
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it is passed though the ALU, modified as specified in the command, and then written back 

to the Data RAM. 

With the overview of COP operations fresh in mind, let's now take a closer look at 

the Mask Generator, Terminal Count, ALUIFPU, and Controller blocks in a COP. 

Operation of the Mask Generator Block 

Figure 16 shows a detailed block diagram of the Mask Generator block. This block 

has three major functions. The first function is to supply a l-of-64 signal which enables 

one network interface unit at a time for servicing. The second function of this block is to 

supply masks which enable the desired channel interfaces during broadcast and multicast 

operations. The third function is to produce the XMIT_READY signal when all the trans

mit interfaces specified by a particular mask are available. 

The CHAN DECODE block in the lower left corner of Figure 16 decodes a 6-bit 

count from the controller to produce the l-of-64 signal needed to enable a single network 

interface unit for servicing. This l-of-64 signal is also used to enable an interface unit for 

returning a Data RAM value to a requesting compute node. In either case, the CHAN 

DECODE signal is passed through the 64 x 2:1 multiplexer in the lower right corner of 

Figure 16 so the enable signal(s) can be asserted at the correct times. 

During a broadcast or multicast operation the specified mask is read from the Mask 

RAM and at the correct time passed through the 2: 1 multiplexer to enable the desired 

interface units. The mask read from the MASK RAM is also applied to the XGEN cir

cuitry where it is compared on a bit-by-bit basis with the TX_EMPTY signals from the 

interface units. If the transmit buffer registers are empty on all the interfaces specified by 

the mask, then the XMIT _READY signal will be asserted. In response to this signal, the 

controller enables the 2: 1 multiplexer to pass the mask on to the enable inputs of the 

interfaces. If one or more of the interfaces is still working on transmitting data words 
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from a preceding operation, the COP controller will simply insert wait states until the 

transmission(s) are complete and the XMIT _READY signal is asserted. 
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Figure 16. Block diagram of the Mask Generator Block 

Operation of the Terminal Count Detector Block 

As indicated by its name, the function of the Terminal Count (TC) Detector block 

shown in Figure 17 is to keep track of which nodes have participated in a particular 

global operation and generate a Done signal for the controller when all have participated. 

Nodes participating in a particular operation are represented by bits in a bit vector stored 

in the TC RAM. A bit vector is initialized with a specific Write-to-TC-RAM COP corn-

mand. 
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When a node participates in a global operation related to that bit vector, the bit vec

tor is transferred to the DONE REGISTER. There the bit corresponding to the participat

ing node is reset, and the resultant bit vector is written back to the TC RAM. If the resul

tant bit vector contains all zeros, the DONE signal is asserted. In response to this signal, 

the controller transfers the result to the network interface units enabled by the corre

sponding mask from the Mask Generator Block. 
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Figure 17. Block diagram of Terminal Count Detector block 

Operation of the ALU and FPU blocks 

Figure 18 shows a more detailed look at the ALU block of a COP. The overall archi

tecture of the Floating Point Unit block is the same as that of the ALU block and, except 

for timing, the operations are essentially the same as those for the ALU block. Therefore, 

to avoid redundancy, I will just describe the ALU block. 
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In the current COP design, the ALU block requires two clock cycles to service a 

channel and do a simple RAM read or write, three clock cycles to service a channel and 

perform one element of a global integer or barrier operation, and 7 clock cycles to service 

a channel and perform a floating point operation. Probably the best way to explain how 

the ALU block works is to briefly describe the control and data flow during a few repre-

sentative operations. 

To start, a channel request to read the value of a shared variable in the Data RAM 

takes two clock cycles and proceeds as follows. During the first clock cycle, the four 
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receive buffer registers on the selected interface are enabled and the contents transferred 

to the appropriate COP latches. The address and data registers are transferred to the cor

responding latches shown in Figure 18 and the instruction word is transferred to a latch in 

the controller where it is immediately decoded. As mentioned in an earlier section, as 

soon as the COP Controller transfers a command, the interface controller sends an ACK 

word back to the compute node to indicate that the receive buffers on the COP end of the 

link are available. 

Note that the address and data are always latched, rather than waiting to see if they 

are needed before latching them. Also, the latched address is always immediately applied 

to all three RAM blocks, and the latched data is always moved as close to the RAMs as 

possible. This approach costs nothing extra and helps get the address and data to RAMs 

as soon as possible. The PPN and PID parts of a memory address from an instruction 

word simply pass through the controller to the appropriate address input on the RAMs. 

During the second clock cycle RAM is enabled and, if the XMIT _READY signal 

from the Mask Generator is asserted, the En5 signal will be asserted to transfer the data 

word to the interface for the requesting channel. Once the word is transferred to the inter

face, the interface controller automatically transmits the data word to the requesting node. 

Note that a command word and optionally an address word are returned along with the 

data word. The command word contains the PPN and PID required to identify the process 

to which the data word belongs. The returned address could represent a handle or a 

shared object identifier. 

For a simple write to the Data RAM, the data latched during the first clock cycle is 

written to the RAM during the second clock cycle. This operation does not require a sep

arate command be returned to the sending node because an ACK word was already 

returned when the command was read from the interface buffer registers. 
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A one-to-all broadcast operation seems a good way to further illustrate how the 

Mask Generator block and the ALU Block work together. As shown in Figure 19, during 

the first clock cycle the command words are transferred from the interface and the com-

mand decoded. During the second clock cycle, the addressed mask is read from the 

MASK RAM and En2 is asserted to bring the data word one step closer to the tnmsmit 

buffers. If the XMIT _READY signal is asserted, then in the third clock cycle the data 

word is transferred to the transmit buffers of all the interfaces that are enabled by the 

mask read from the MASK RAM. Again, a command word is transmitted along with the 

data word in order to identify the process(es) for which the broadcast data word is des-

tined. 

Clock Cycle I 2 3 
Enable Channel. Read Mask RAM Transfer latched 
Latch address, data, command, 
data, and command. and address to 
Decode instruction. transmit buffers. 

Increment channel 
count if not lock. 

Figure 19. Activities during each clock cycle for a one-to-all broadcast 

As an example of operations involving the ALU Block and the Terminal Count 

Detector Block, Figure 20 shows the activities that occur when a compute node sends a 

barrier entry command. During the first clock cycle, the command is transferred, latched, 

and decoded as before. In the second clock cycle, the addressed TC vector is read from 

the TC RAM and the appropriate bit reset. Also, during the second clock cycle, the mask 

which identifies the compute nodes participating in that specific barrier is read from the 

Mask RAM. If resetting the bit in the TC vector left all zeros, then during the third clock 

cycle a barrier exit word will be transferred to all the interfaces enabled by the mask. If 

the result was not all zeros, the modified TC bit vector will simply be written back to the 
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TC RAM during the third clock cycle. 

Clock Cycle I 2 3 
Enable Channel. ReadTC RAM & If Done, broadcast 
Latch address, reset bit for barrier exit 
data, and command. channel. command to 
Decode instruction. Read Mask RAM enabled channels. 

in case needed. 

Figure 20. Activities during each clock cycle for a barrier entry/exit operation 

A global reduction (sum) and broadcast operation likewise involves all three COP 

blocks. Figure 21 summarizes the activities that take place during each clock cycle for 

this operation. Latching and decoding in the first clock cycle are the same as for other 

operations just described. At this time, the data word from the compute node will also be 

passed on to one set of inputs on the ALU. 

During the second clock cycle, the bit vector will be read from the TC RAM. the 

appropriate bit reset, and the DONE signal asserted if this is the last contribution to the 

sum. Likewise during the second clock cycle, a mask will be read from the MASK RAM 

to be ready for a broadcast if this is the last contribution to the global result. Also, during 

the second clock cycle, the Data RAM supplies the previous result as the second operand 

to the ALU. The sum is produced at the very end of the second clock cycle. 

At the start of the third clock cycle, the operand from the Data RAM is latched to 

release the RAM so that the result of the addition can be written back to RAM. If the 

DONE signal is asserted, indicating that all the involved nodes have participated, then the 

controller will assert the En5 signal to transfer the result to all the interfaces enabled by 

the mask from the Mask Generator. 

For a global floating point reduction, the activities in the first and last clock cycles 

are the same as those for the integer reduction described in the previous section. 
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However, after the second operand is transferred to the FPU, the controller spins for five 

clock cycles until the result is ready, then transfers the result to the interface transmit 

buffers if appropriate. Note, I did not model the FPU, but simply assumed 5 clock cycles 

for this operation based on a discussion in Hennessy and Patterson [Henne90a]. 

Clock Cycle I 2 3 
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data, and command. to ALU B input. Data RAM. 
Decode instruction. ReadTCRAM & Write bit vector 

reset bit. back to TC RAM. 
Read Mask RAM in Broadcast sum 
case needed. if Done. 
Calculate sum. Increment channel 

count if not lock. 

Figure 21. Activities during each clock cycle for a global sum operation 

The COP Controller Block 

Figure 22 shows a block diagram for the COP Controller section. The 6-bit counter 

in this section provides the CHAN_CNT signal to the Mask Generator Block. As dis

cussed earlier, CHAN-CNT is decoded to produce the signal which enables a particular 

network interface unit for servicing. If all of the interfaces are requesting service, then the 

counter cycles through a normal binary count sequence and the interfaces will be serviced 

on a round-robin basis. However, if one or more interfaces does not require service, the 

controller will jump the counter in sequence to the next interface that does need servicing. 

This jump requires one clock cycle, but in the case where only a few interfaces need ser

vicing, it is cheaper than cycling through all the channels. 

If the COP receives a lock command, this counter is simply stopped so the selected 

interface is serviced repeatedly until an unlock command is received. Except in the case 

of this Lock operation, the round-robin scheduling is fair because it services interfaces in 
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orderly sequence and assures that each interface is only serviced once for each cycle 

through them all. 

The counter can also be jumpered so that it cycles through 2, 4, 8, 16, 32, or the full 

64 counts. This "short cycle" feature further improves performance in systems which do 

not utilize all of the interfaces on a COP. 
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Figure 22. Block diagram of the COP controller block 

Another major part of this block is a traditional hard-wired state machine controller. 

Table I shows the list of commands that the initial version of the COP controller is pro

grammed to implement. One subset of commands left out of this first version of the COP 

was parallel prefix operations [Almas94a], where the partial result at each step in a 

global operation is returned to the contributor. The COP has many unused op codes avail

able and the basic hardware configuration makes it very easy to add these operations. In 

the case of the global sum operation shown in Figure 21, for example, the controller can 

be programmed to send the partial sum to the contributor at the same time as it is written 

back to the Data RAM. The next design of the COP controller will include these and any 

other commands deemed useful. 



Command Opcode 

RSRAM32 1011100 
WSRAM32 1011101 
RMW32 1011110 
SUMI32 1010000 
MAXI32 1010001 
MINI32 1010010 
OR32 1011000 
AND32 1011001 
EXOR32 1011010 
RSRAM64 1111100 
WSRAM64 1111101 
RMW64 1111110 
SUMI64 1110000 
SUMF 1110100 
MAXI64 1110001 
MAXF 1110101 
MINI64 1110010 
MINF 111011U 
OR64 1111000 
AND64 1111001 
EXOR64 1111010 
BENTRY 0000001 
LOCK OUOOUIO 
UNLOCK 0000011 
XMIT 0000100 
ACK UOOIOOO 
BCAST32 0011100 
SETBM 0111110 
SETTC UIIIIII 
BCAST64 0111100 

TABLE I 

COMMANDS AND OPCODES 

DescnptlOn 

Read 32-bit data from Data RAM 
Wnte 32-blt data to Data RAM 
Read-Modify-Wnte 32-blt data 
32-bit Integer global Sum 
32-bit Integer global Maximum 
32-bIt integer global Mimmum 
32-bit global logical OR 
32-bit global logIcal AND 
32-bu global logIcal EX OR 
Read 64-bit data from Data RAM 
Wnte 64-bit data to Data RAM 
Read-Modify-Wnte 64-blt data 
64-bit integer global sum 
64-bJt t10ating pOint global sum 
64-bit Integer global MaxImum 
64-bit floating point global Maximum 
64-bit Integer global Mmlmum 
64-blt t10atmg pOint global Mlmmim 
64-bit global logical OR 
64-blt global logIcal AND 
64-bit global logIcal EXOR 
Barrier entry and broadcast 
Lock a channel 
Unlock a locked channel 
Retransmit a message 
Acknowledgement tor a message 
Broadcast 32-bit word 
Set broadcast mask 
~et 'IC Bit vector 
Broadcast 64-bu word 
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Pnvilege 

U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
u/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
U/S 
S 
S 
U/S 

Note that with the COP design there is no conflict if, for example, one node sends a 

global slim command and another sends a Data RAM read command. Assuming the con

troller services the interface with the global sum command first, the COP will simply add 
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that interface's contribution to the intermediate sum in the Data RAM. If the global sum 

is now complete, the COP will broadcast it to all the nodes waiting for the sum. As men

tioned earlier, an instruction is is broadcast along with the sum to identify the sum for the 

receiving nodes. If the global sum was not complete, the COP will just go on to the inter

face requesting a Data RAM value and service that request. 

In addition to the direct COP commands, there are several other control features 

which need further explanation. First, the transmit and receive interfaces to higher level 

COP are enabled directly by the controller, rather than through the Mask Generator block. 

If the X bit is set in a command, the Controller wiII assert the enable signals required to 

transfer the words of the command directly to the transmit buffers of the interface which 

connects to a higher level COP. Likewise, the Controller directly monitors the higher 

level COP interface to detect commands coming in from the higher level COP. 

A final point about the Controller, or actually about the overall COP design, relates 

to how I divided the activities among clock cycles for different operations. As shown in 

the preceding sections the clock by clock activities are very similar for most COP opera

tions. While this makes the controller simpler and easier to implement, it sacrifices some 

efficiency for specific operations. For example, as I discuss in Chapter VI, several 

research projects and the Cray T3D have added a secondary network and essentially a big 

AND gate just to implement barriers. This approach can obviously be very fast, but it is 

also very limited. My feeling is that the versatility, protection features, and ease of pro

gramming provided by the COP approach justify the small additional time cost. 

Software Interface For The COP System 

In accordance with the goal that existing programs require minimum modification to 

utilize a COP, the COP does not change the basic parallel programming operations. It 

simply provides an alternative hardware mechanism to implement them. This is 
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analogous to the way a numeric coprocessor provides an alternative hardware based 

mechanism for implementing floating point computations on an 80x86 based PC system. 

The overall software approaches for the COP system can be similar to those used for a 

numeric coprocessor. 

A very important point about the COP system is that User/Supervisor and process 

level protection are both enforced in hardware. This means that application programs can 

safely be given direct, low-overhead access to the User COP port. For programming at the 

lowest level then, the COP system gives the programmer the additional set of commands 

shown in Table I. An assembler or compiler can translate each COP command into the 

short sequence of machine instructions actually needed to implement it. Perhaps, a rea

sonable scenario would be to write a program so that it contains both standard mecha

nisms and COP based mechanisms for relevant operations. Upon startup, the program 

could then determine if the system contains a COP. If so, the program could use the more 

efficient COP based code sections for the relevant operations. This approach is commonly 

used in math-intensive application programs intended to run on 80X86 based PCs. 

At a somewhat higher level of programming, COP enhanced code could be included 

as the same type of alternative in programming libraries such as MPI [Tennea]. The Col

lective Communication section of the MPI library, for example, contains functions for 

one-to-all broadcast, barriers, global operations, all-to-all broadcast, parallel-prefix, etc. 

At the actual implementation level, the library could contain both standard message

passing code and COP-based code for these operations. 

At a still higher level of programming, Li [Li91 a] has done considerable work with 

compiling shared memory programs to run on distributed memory machines. His 

approach involves partitioning program data for efficient communication. syntactically 

analyzing a program to recognize the required communication patterns. and at runtime 

choosing the least cost routine to implement the required communication on the target 
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machine. It seems that a sophisticated compiler could likewise analyze programs to deter

mine functions that can be implemented efficiently by the COP system and insert the 

hooks necessary to call the appropriate routines at runtime if the system was found to 

contain a COP. 

A final point here is that the COP system does not prevent use of the standard fea

tures on a given system. It simply provides a more efficient execution mechanism for 

global operations. 



CHAPTER V 

COP PERFORMANCE ANALYSIS AND COMPARISONS 

COP Perfonnance 

Introduction 

In the last chapter, Figures 19, 20, and 21 showed the activities that take place in the 

major COP blocks during each clock cycle. In this section I extend the analysis of the 

COP system, derive equations for the total times required for various global operations, 

and use simulation results to project some actual execution times for these operations. 

In order to determine the feasibility and hardware perfonnance capability of the 

COP system, I modeled the major portions of a single-level COP system in VHDL and 

simulated the resulting models using the Mentor Graphics 1076 VHDL System and 

QuickSimII simulator. Although I only modeled and simulated the functional blocks for a 

single level COP system, I feel that that the basic symmetry of the COP system allows the 

results to be extended to a two level system with a high degree of confidence. 

For timing parameters in the VHDL models, I used values from currently available 

commercial products so that I could verify the feasibility of building the system with 

existing technology. In the RAM model, for example, I used the parameters of the NEC 

.uPD46258 which has a maximum address access time of 6 ns and an output enable 

access time of 4 ns. For latches, buffers, multiplexers, counters, etc. I used the propaga

tion delay values for these devices implemented in the Motorola ECLinPS [Motor94a] 

family which is compatible with the Spanceiver. Maximum propagation delay for a single 

gate device in this family is about SOD ps. Other maximum delay values for devices in this 
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family are 700 ps for a D latch, 850 ps for a 2-input multiplexer, and 1100 ps for a 6-bit 

binary synchronous counter. Using these timing parameters, the COP system design 

described in the last chapter simulated correctly with a IOns clock period. 

To simplify later performance projections, I also assume a IOns compute node or 

workstation clock period. This assumption is justified by several commercially available 

machines. The DEC AlphaStation 200 4/233 workstation [Lee94a], for example, has a 

4.3 ns clock period, and the Cray T3D Multiprocessor discussed in Chapter II has a 6.7 ns 

clock period. Because it is an important part of many other operations, I will analyze the 

COP One-To-All broadcast operation first. 

One-To-All Broadcasting with a COP 

To perform a one-to-all broadcast in a multicomputer with a COP system, a compute 

node writes the appropriate instruction word and data word(s) to the COP network inter

face. The interface then sends these to the local COP. The number of clocks required for a 

compute node to output a word and for the interface to transmit it to a COP will be repre

sented as IO;-COI" Assuming the compute node can write a 64-bit word to its COP port in 

two clock cycles, ICN-COp = II clocks for a command word, address word, and a 64-bit 

data word. 

When the network interface on the COP correctly receives all the words of a com

mand, it will assert its Data Ready output. The COP controller checks the Data Ready 

signals on a round-robin basis. Assuming the worst case condition that all channels are 

requesting some type of service, the total number of clocks to cycle through all the other 

channels and get to the channel requesting a broadcast is C * lOp. C in this expression rep

resents the number of channels in a COP and top represents the number of clocks that a 

COP requires to service each input channel. As shown in Figures 19,20, and 21, top is 3 

for integer and Data RAM operations, but increases to 7 for floating point operations. 
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To implement the broadcast operation, the COP uses a mask from the Mask RAM to 

enable the transmit buffers for the desired destination nodes and writes the data word to 

all these buffers at the same time. The interfaces then transmit the data word to all or a 

desired subset of the compute nodes simultaneously. Again assuming a compute node can 

read a 64-bit value from its COP port in two clock cycles, 17 clock cycles are required for 

the network interfaces to transfer a broadcast data value and the receiving compute node 

to read the word. This time will be referred to as lcop-eN' 

Figure 23 shows the timing for these operations in diagram form. Intuitively or 

from this diagram the maximum number of clocks required for a single one-to-all broad

cast of an 8-byte data value on a single level COP system is leN-COP + C * lOp + leoP-CN' 

The total time required then is: II-All = (tCN-COP + C * lop + lcoP-CN)PCLK, where PeLK is 

the period of the COP system clock. Using the previously stated values of leN-COP = 1 J, 

IOf = 3, I cop-cop = 17, and a 10 ns clock period, gives a time of 2.2 microseconds to 

broadcast an 8-byte value to 64 compute nodes. For comparison, later I show that a 2-D 

mesh, message-passing multicomputer such as the Intel Paragon requires about 350 

microseconds for the same type of broadcast. 

One small note here is that from the Spanceiver data sheet I was not able to deter

mine if its design allows for metastability settling time. If not, this time can be provided 

by adding an extra flip-flop to each interface. With this addition, ICN-eop and leap-eN will 

each be increased by one. This will increase the total time for a one-to-all broadcast from 

2.20 microseconds to 2.22 microseconds. Since this change is less than 1 % and less than 

the precision of the software timing assumptions, I will ignore it in the analyses that fol

low. 

The COP timing for a multicast to, for example, some number of nearest neighbors 

connected to the same COP is the same as that for a one-to-all broadcast. because the 

broadcast or multicast word is transferred to all of the enabled transmit buffers at the 



75 

same time. 

Note that some small additional overhead is incurred in initializing the broad

cast/multicast mask. However, in iterative algorithms the same mask will be used multi

ple times and this startup overhead will thus be amortized over many broadcast opera

tions. 

r C * top 

FromCNo tCN-COp tcop-CN 

0 

0 top 
0 

] 

FromCN N 

Figure 23. Timing for One-To-AII broadcast with single level COP system 

For one-to-all broadcast of larger vectors, the COP channel lock feature can be 

invoked. Figure 24 shows a diagram for this kind of operation. In the worst case, the COP 

con,troller may cycle through servicing all the other channels before it gets to the channel 

desiring to broadcast, but once the channel is locked, successive broadcasts can proceed 

in "pipeline" fashion as shown. The key here is that as soon as the COP reads a com

mand, a one word ACK is returned to the sending compute node to indicate that it can 

send the next command. If the broadcast mask is set up so that the COP does not send the 

broadcast word(s) back to the sending node, then a new command can be coming into the 

COP from the sending node at the same time that the broadcast word is being transmitted 

to the receiving nodes. Once the pipeline is running, only top + tCOP-CN clocks are 
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required for each 8-byte block. The total time to broadcast a vector with M B bytes then is 

M8 
tMn = [tCN-COP + C * top + tCOP-CN + ("8 - l)(top + tCOP-CN)]PCLK 

Substituting the previously stated values in this expression reduces it to about TMn = 2.2 

microseconds + M 8 x .025 microsecondslbyte. Assuming the vector is long enough to 

swamp out the 2.2 microseconds, this gives a broadcast(not just point-to-point) band

width of about 40 Mbytes/sec. Broadcasting a 64K-byte vector in this way requires about 

1600 microseconds. Note that some small additional startup overhead is incurred in issu-

ing the lock and unlock commands. 
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Figure 24. Timing for One-To-AII broadcast of long vectors with single COP 

Figure 25 shows the timing for a one-to-all broadcast with a two-level COP system. 

For this operation the sending compute node transmits the command to its local COP and 

the local COP passes the command on to the Level 2 COP. The Level 2 COP broadcasts 

the command to all the Level I COPs that need to receive it. Each of the level I COPs 

broadcasts the value to the compute nodes enabled by the appropriate mask from its 

MASK RAM. For analysis of a two level system it helps to introduce an additional vari

able, L, which represents the number of COP levels in a system. If C represents the num

ber of channels in each COP and N is the number of compute nodes, then L is equal to 



77 

logC(N). The time required for a two-level COP-assisted one-to-all broadcast is: 

tl-ALL2 = [tCN-COP + (2L-I)C * top + (2L-2)tcop-cop + tcoP-cNlPCLK 

This expression assumes the worst case situation where each of the COP controllers 

has to cycle through servicing all the other channels before it services the channel which 

has the data to be broadcast. Assuming tcop-cop = tCN-COP and using the previously 

stated values from our simulation, this expression indicates that a two-level COP system 

will require a worst case time of about 6.3 microseconds to broadcast an 8-byte value to 

as many as 4096 compute nodes. 

C * top C * top C * top 

NODE 
LOAD TO SEND TO 
LOW LEVEL HIGH LEVEL 

BROADCAST 
TO LOW 
LEVEL 

BROADCAST 
TO NODES 

tCN-COp tcop-cop tcop-cop tcop-eN 

tl-ALL2 

Figure 25. Timing for One-To-All broadcast with two-level COP 

Note that the expression in the preceding paragraph assumes the maximum size two 

level system where all the level 2 COP inputs have level 1 COPs that must be serviced. 

For systems with less than 64 level I COPs, the short cycle feature of the level 2 COP can 

be used to minimize the number of channels checked, and thus reduce the effective value 

of C for the level 2 COP. The expression for the required time in this case is: 

tl-ALL2 = [tCN-COp + «2L-2)C1 + C 2)top + (2L-2)tcop-col' + tcop-cNlPCLK 

For a 256 node system which uses only 4 channels on the level 2 COP, this gives a worst 

case time of 4.5 microseconds to broadcast an 8-byte value to all 256 nodes. 
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For one-to-all broadcast of longer vectors to a large number of compute nodes, the 

COP channel lock command can be invoked on all COPs. Once the channel locks are in 

place, successive words can be pipelined through the two COP levels and broadcast to all 

the nodes. The pipeline is longer in this case, but once the pipeline is flowing, the data 

rate is the same as that for the single level COP system. Assuming 6.3 microseconds to 

get the channel locks in place and another 6.3 microseconds to broadcast the first word, 

the time for an M byte vector is about TMfI = 6.3 microseconds + 6.3 microseconds + M B 

x .025 microsecondslbyte. This expression predicts a time of about 1650 microseconds to 

broadcast a 64 Kbyte vector to as many as 4096 compute nodes. 

Global Sum and Other Global Operations 

A comparison of Figures 19 and 21 shows that top is the same for both operations. 

Assuming that all the participating compute nodes send a contribution to their COP at the 

same time, the overall timing diagram for a global integer or bitwise logical operation 

performed with a single level COP is the same as that shown in Figure 23 for a COP 

implemented one-to-all broadcast. Therefore, the expressions for the total times are the 

same. Likewise, the timing for a global sum or bitwise logical operation with a two-level 

COP system is the same as that shown for a two level one-to-all broadcast in Figure 25. A 

COP assisted 64-bit integer reduction or bit-wise logical operation then requires a maxi

mum of 2.2 microseconds on a single level cop system with up to 64 compute nodes and 

a maximum of about 6.3 microseconds on a two level COP system with up 4096 nodes. 

For a double-precision floating-point reduction top is 7 clocks, so the total time is 4.7 

microseconds for 64 compute nodes and about 14 microseconds for 4096 compute nodes. 

The times for producing global results for longer vectors on a COP system are cal

culated by cascading the times for single word operations. For example. to produce the 

sum vector for 1024 element integer vectors over 64 compute nodes requires 2.2 
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microseconds x 1024 = about 2200 microseconds. The time to produce a double

precision floating point sum vector for 1024 element vectors over 4096 compute nodes is 

14 microseconds x 1024 = about 14,000 microseconds. 

Barrier Implementation 

When a compute node in a COP enhanced system reaches a barrier point, it sends 

just an instruction word to its COP. As described earlier, the COP controller uses the PPN 

and PID in the command to access the appropriate TC bit vector in the TC RAM and the 

appropriate mask in the MASK RAM, then resets the bit for that compute node in the TC 

vector. If all the TC vector bits are reset, the barrier exit command is broadcast simultane

ously to all the participating compute nodes. 

The timing expressions for COP implemented barriers are the same as those for one

to-all broadcasts, but since only command words are sent in each direction, the actual 

times are slightly less. Ignoring this small difference and using the COP values from pre

vious examples, gives a worst case time of 2.2 microseconds for a barrier with up to 64 

nodes and a worst case time of 6.3 microseconds for a two level COP barrier with up to 

4096 nodes. 

Note that the mask mechanism in the COP system allows any subset of the compute 

nodes to participate in a barrier. Also, it permits multiple barriers to be in force within a 

partition at the same time and thus provides for finer grained synchronization than that 

provided by a single global barrier. Yeung [Yeung92a] has shown that finer grained syn

chronization improves performance on conjugate gradient problems. 

AII-To-All Broadcast 

Figure 26 shows the basic timing diagram for an all-to-all broadcast of a 8-byte 

word using a single level COP. During the first phase, all the compute nodes simultane

ously transmit a value to their COP. During the second phase, the COP sequentially reads 
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each of the received values and broadcasts each to the mask selected set of compute 

nodes. This phase is just a series of one-to-all broadcasts. The number of clocks for each 

of these broadcasts is rop + rCOP-CN so the number of clocks to receive and broadcast all 

the values is about: 

Using the COP values from previous examples, the time required for a COP assisted 

all-to-all broadcast of a 8-byte word with 64 processors is about 13 microseconds. 
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Figure 26. Timing for AII-To-AII broadcast with single-level COP 

An all-to-all broadcast with a two-level COP system requires several phases. The 

details of these phases depend on the particular type of all-to-all broadcast. It can be 

shown that the time for the worst case, where each node broadcasts an 8-byte value to all 

the other nodes is: 
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Assuming for simplification that ICN-COP = lcop-COp = lCOP-CN' then I A2A2 can be 

approximated as: 

With 64 channel COPs and the same timing parameters used in the preceding exam

ples, this expression predicts the time for an all-to-all broadcast of a 8 byte word with 

4096 compute nodes to be about 1,650 microseconds or 1.65 ms. 

Shared Variable Access 

In a COP system, global shared variables can be stored in the Data RAM. To service 

a shared variable read, write, or read-modify-write request, the COP uses a decoded com

bination of the address, PPN, and PID received from the compute node to access the vari

able in the Data RAM. In the case of a simple read, the addressed value is simply trans

mitted back to the requesting node. For a simple write, the data value received as part of 

the command is written to the addressed Data RAM location. In the case of a Read

Modify-Write Access, the value read from the Data RAM is transferred to the transmit 

buffer for the requesting node and at the same time applied to the ALU. The ALU per

forms the specified operation on the data value and the result is written back to the Data 

RAM for the next access. 

. Assuming simultaneous requests and a single COP level, the maximum time for all 

of the requesting nodes to receive individual values is: 

tR = [ICN-COP + C * top + ICOP-CN]PCLK 

Substituting the previously stated COP values in this expression indicates that a sin

gle level COP can supply different or the same 8-byte variable(s) to 64 compute nodes in 

about 2.2 microseconds. The node serviced first gets its value in about 300 ns and the last 

gets its value after 2.2 microseconds, so the average time to service a request is about 
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1.25 microseconds. Note that the COP shared memory provides sequential consistency in 

that the value read by any compute node wiII be the last value written. 

The expression for the worst case time to supply a shared variable to each of 4096 

compute nodes can be shown to be approximately: 

tR2 = (2C
2 + C + l)Ctop + tCOP-CN)PCLK 

Using the previous COP values, this expression predicts a time of about 1650 

microseconds to supply the same value or successively modified values of a shared vari

able to up to 4096 compute nodes with a two-level COP system. 

Performance Summary 

Table II summarizes the performance data calculated for various global operations 

using the expressions shown and the timing values derived from VHDL modeling and 

simulation. Note that these expressions assume the worst case where all of the COP 

inputs are connected and all require servicing. Timing values for smaller systems can be 

derived as shown previously for a one-to-all broadcast on a two-level COP system with 

256 nodes. Also note that I did not include wire or fiber-optic cable delay of 1.6 ns/foot 

because the time this contributes would be about the same for all systems. 

As I show in the next major section of the chapter, the performance numbers shown 

in TABLE II are quite impressive when compared with those for the same operations on 

"Big Iron" and other multicomputers. First, however, I will briefly discuss some topol

ogy tradeoffs for a COP system while the preceeding analyses are still fresh. 

COP Topology Tradeoffs 

For the discussions thus far I have assumed a 64-ary tree topology for the COP sys

tem, but the timing values from the VHDL simulation and the analyses in the preceding 

section provide a mechanism for evaluating the tradeoffs in using different width trees for 
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TABLE II 

COP GLOBAL OPERATION TIMES AND EXPRESSIONS 

Operation ExecutIOn ExpressIOns for executIOn tImes 
Time (,uS) one level and two level COP systems 

ReadlWrite 2.2 [1.=1] (tCN-COP + C * lop + ICOp-CN)PCU; (64 nodes) 

1400 [1.=2] (2C2 + C + l)(top + ICOp-CN)PCU; (4096 nodes) 

One-to-All 2.2 [L=I] (tCN-COp + C * lop + lcoP-CN)P cu; 

6.3 [L=2] (tCN-COp + (2L -I)C * lop + (2L - 2)tcop-cop + ICOp-c.v)Pcu; 

GlobalOP 2.2 [L=I] (tCN-COp + C * lop + ICOp-CN)PCU; 
Integer 

6.3 [L=2] (tCN-COP + (2L - I)C * lop + (2L - 2)lcop-cop + ICOp-CN)PCU; 

GlobalOP 4.7 lL=I] (tCh'-COp + C· lop + ICOp-CN)PCU; 
Double Float 

14 [L=2] (tCN-COp + (2L - I)C • 1(1/' + (2L - 2)lco/'-co/' + lcop-o: )Pcu; 

Barrier 2.2 [L=l] (tCN-COI' + C· lop + ICOp-CN)PCU; 

6.3 [L=2] (tCN-COp + (2L -l)C· lop + (2L - 2)lcol'-col' + Icop-c.,·lPcu; 

All-ta-All 13 [L=I] (tCn-COI' + C(tOI' + Icol'-cs»PCL/\ 

1,650 [L=2] (2C~ + C + l)(t 01' + I COI'-CS lP CU; 

the COP system topology. 

As stated previously, the number levels in a given COP system is L = logc N, where 

C is the number of channels per COP and N is the total number of compute nodes in the 

system. Also stated previously was the fact that the worst-case time required for a one-to

all broadcast on a COP system is: 

II-ALL = [ICN-COP + (2L -1)C >I< lop + (2L - 2)lcol'-cOP + lcoP-CN]PCU:. 

The first section of TABLE III shows the times required for a one-to-all broadcast on 64 
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node COP systems with different width COP network trees. 

Looking at just the times in this section of TABLE III leads to the conclusion that an 

oct tree with 8 nodes per COP is the best choice by about a factor of two. However, look

ing at hardware complexity required for this topology shows the tradeoffs. 

The number of COPs required for a particular topology can be expressed as: 

L-I 
Ncops = L C; 

;=0 

and the number of links between compute nodes and COPs and between COPs can be 

expressed as: 

L . 
NUllks = L C' 

;=1 

The Number of COPs column in TABLE III shows that an oct-tree based COP system 

with 64 compute nodes requires nine times as many COPS as the same system with a 

64-ary tree topology. TABLE III furthermore shows that the oct-tree based topology 

requires 12.59'c more links than a 64-ary tree topology. 

The second section of TABLE III shows that for a 4096 node system the oct-tree 

topology is also faster than the 64-ary tree topology by about a factor of two. Again how-

ever, the oct-tree based topology requires nine times as many COPs and 12.5% more 

links. It seems doubtful that the factor of two increase in performance predicted for an 

oct-tree based topology justifies the cost of this large number of additional COPS and 

links. Also, increasing the number of components by a factor of nine significantly 

increases the chances of a component failure. 

Another deciding factor not shown in TABLE III is the increased software complex

ity required to initialize all the additional COPS and to direct commands to the appropri-

ate COPs. My programming experience indicates that the extra software overhead 
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TABLE III 

COP TREE-WIDTH TRADEOFFS 

Nodes Channels Number of Total Lmks Clocks TIme flS 

per COP COP COPS I-All 
Levels 

64 64 I I 64 220 2.2 
64 8 2 9 72 124 1.2 
64 4 3 21 84 136 1.4 
64 2 6 63 126 214 2.1 

4096 64 2 65 4160 628 6.3 
4096 16 3 273 4368 316 3.2 
4096 8 4 585 4680 268 2.7 
4096 4 b 1365 54-60 280 2.8 
4096 2 12 4097 8191 430 4.3 

32 32 I I 32 124 1.2 
1024 32 2 33 1056 330 3.3 

32768 32 3 1057 33824 556 5.6 

required by an oct-tree topology COP system could easily eliminate much of the gain pre-

dieted by TABLE III. 

In this initial research I opted for the 64-ary tree topology to reduce hardware costs, 

make programming easier, service a sizable number of compute nodes with a single COP 

board, and accommodate up to 4096 nodes with only a two level system. However, the 

COP system topology tradeoffs represent a fairly large design space. To give a few more 

points in this space, the third section of TABLE III shows the values for different sized 

systems using a 32-ary tree topology. This topology might prove appropriate for a work

station cluster system, where it seems unlikely that a 4096 node capability would be 

needed. The point here is that further research will be needed, especially in the software 

aspects, to center a final design within the available design space. However, in the next 

section I show that the initial 64-ary tree COP system outperforms other current systems. 



86 

Comparison of Other Systems with the COP System 

"Big Iron" Multicomputer Global Operation Performance Comparison 

In this section I derive expressions for the time required to perform these operations on 

example "Big Iron" multicomputers, cluster multicomputers, and distributed shared 

memory multiprocessors, and then compare the performance of the COP system where 

possible with the published performance of current, representative machines in each cate

gory 

As discussed earlier, assuming no contention for network channels, the time 

required to send and receive a single message on a message-passing-only multicomputer 

is tll/ = t L + M B * Rr. The latency time, t L, includes the time required to packetize the 

data to be sent, the time to add a header which specifies the destination for the message, 

the time to establish a path through the network, and the time to depacketize and process 

the message at the receiving node. The total source to destination hardware transmission 

time is M B * Rr , where M B is the number of bytes in the message and Rr is just the recip

rocal of the network message bandwidth. Performing any operation on a message

passing-only system will require some number of these message times plus any required 

computation time. 

In a 2-D mesh-connected, message-passing machine, the number of steps or phases 

required to broadcast a message from one compute node to all the other compute nodes is 

the diameter of the network, D. For a square mesh, D = 2...fFi - 2, where N is the number 

of compute nodes. For a rectangular mesh, D = II + w - 2, where h is the number of com

pute nodes along one edge and w is the number of nodes along an orthogonal edge. Since 

each phase requires a time of tL + M B * Rr , the total one-to-all broadcast time is: 

tl-ALL = D(tL + MB * Rr)· 

Using the Intel Paragon numbers of tL = 25 microseconds, and Rr = 11200 
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Mbytes/sec cited earlier from Rosing [Rosin94a], this equation gives a time of 350 

microseconds to broadcast a 64-bit value to the other 63 compute nodes in a 64 node 

mesh. For a 16x32 rectangular mesh, the expression predicts a time of 1200 microseconds 

or 1.2 ms to broadcast an 8-byte value. This number agrees closely with that recently 

reported by van de Geijn [Geijn94a] for a 16x32 Paragon using the new InterCom Col

lective Communications Library. For future comparison, a 4096 node square mesh 

machine would require about 3150 microseconds for this operation. van de Geijn also 

reported that the 16x32 Paragon required 12,000 microseconds to broadcast a 64 Kbyte 

vector to all 512 nodes. For a preliminary comparison, an earlier section mentioned that a 

two-level COP system requires only about 1600 microseconds to broadcast a 64 Kbyte 

vector to as many as 4096 compute nodes. 

For global reductions with small vectors, Barnett [Bame93a] has shown that a 

fanin/fanout algorithm is the most efficient on 2-D mesh multicomputers. As discussed in 

Chapter III, this algorithm uses a minimum spanning binary fanin tree to produce the 

global sum at one node and then uses the same type tree to broadcast the result to all the 

other compute nodes. The number of steps in each tree is equal to D, the diameter of the 

network. Assuming that the time to do the actual addition is very small as compared to 

the message latencies, then the basic timing for a global sum operation on a message

passing mesh is: ISUM = 2D(tL + mn * Rr). This is just twice the time calculated earlier 

for a broadcast, so the predicted time for a global sum is 700 microseconds with 64 

nodes, 2300 microseconds with a 512 node mesh and 6300 microseconds with a 4096 

node mesh. 

For synchronization barriers implemented with Fanin-Fanout trees on a 2-D square 

mesh. message passing machines the expressions and times are the same as those given in 

the preceding section for a global sum operation. Specifically, the times are 700 

microseconds for a 64 node machine, 2400 microseconds for a 512 node machine, and 
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6300 microseconds for a 4096 node machine. 

For all-to-all broadcast on a message passing machine, Johnsson [Johnsa] has 

shown that the lower bound on the required time is (N-I) x M x te, where M is the num

ber of words and te is the communication time. Expressing this in terms of h, MB , and 

Rr gives TA2A = (N -1)(tL + MB * Rr)· 

This expression predicts an all-to-all broadcast time of about 1600 microseconds 

with a mesh of 64 compute nodes and a time of about 102,000 microseconds for a mesh 

with 4096 compute nodes. 

In order for mUltiple compute nodes to read successively modified values of a shared 

variable which is stored in the memory of one of the other compute nodes in a multicom

puter, each node sends a request message to the node holding the variable. That node has 

to return a message containing the variable. 

If we generously assume that the time to access memory on the receiving node is 

negligible as compared to the message passing overhead, then the total time required to 

send and receive the request message, and send and receive the reply message is just 

2Ul. + MLJ*Rr )· 

If the system has N processors, then as many as N-I processors can be sending 

acquire messages to the node which has the shared variable and that node must send val

ues back to all N-I processors. If a compute node has a single port connection to its 

router and it can send one message and receive one message at a time, requests and 

responses can be overlapped, so the total time to service the N-I requests is about 

(N - I)(t I. + M B * Rr). With the previously stated Paragon parameters, this gives a time of 

about 1600 microseconds to service 63 requests or 102,000 microseconds to service 4095 

requests. 

TABLE IV summarizes the expressions for the times required by various global 
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operations on a 2-D square mesh multicomputer and shows the timing performance these 

expressions predict for a machine with the latency and bandwidth parameters of the Intel 

Paragon. For comparison, TABLE IV also includes a copy of the COP timing values from 

TABLE II. 

TABLE IV 

"BIG IRON" MULTICOMPUTER TIMING EXPRESSIONS AND VALUES 
COMPARED WITH COP VALUES 

Expression 64 Processor COP+ 4096 Processor COP+ 
Processor for Time Paragon Iype 64 Processor Paragon Type 4096 Processor 
Operalion Required machine Paragon Iype machine Paragon Iype 

machine machine 

pS pS pS pS 

R-M-W NUL + IIln Rr) 1,600 2.2 102.000 1400 

One-Io-AII (2W - 2)(tL + M nRr) 350 2.2 3.150 6.3 

Global OP:64 bils 2('2W - 2)(IL + !II nRr) 700 2.2 6.300 6.3 

Barrier 2('JJ'N - 2)(tL + !II nRr) 700 2.2 6.300 6.3 

AII-lo-AII:64 bils (N-I)(tL+M nRr ) 1,600 13 102.000 1.650 

TABLE IV clearly shows that the times for these global operations on a COP system 

are consistently 2-3 orders of magnitude less than they are for a 2-D mesh multicomputer 

without a COP system. Although the numbers in TABLE IV are for 8-byte quantities, the 

COP system also maintains a performance advantage for longer vectors. As stated earlier, 

for example, van de Geijn [Geijn94a] reported that a 16x32 node Paragon using the new 

InterCom Collective Communications Library required 1300 microseconds to broadcast 

an 8-byte value to 512 nodes and about 12,000 microseconds to broadcast a 64 Kbyte 
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vector to all 512 nodes. In an earlier section I showed that a two-level COP system 

requires only 6.3 microseconds to broadcast an 8-byte value to as many as 4096 nodes 

and only about 1600 microseconds to broadcast a 64 Kbyte vector to as many as 4096 

nodes. In a later section of the chapter I make some projections about the reduction in 

overall program execution time provided by adding a COP system to this kind of 

machine. 

Cluster Multicomputer Global Operation Performance Comparison 

A section in Chapter II described several attempts currently under way to build scal

able multicomputers with clusters of workstations using mesh router or crossbar switch 

networks. A major difficulty with these systems is the long message latency. As cited in 

Chapter III, Steenkiste [Steen94a] reports that the measured time for a single 16-byte 

message on Carnegie-Mellon's Nectar cluster system is 97 to 234 microseconds, depend

ing on the protocol used. As also cited in Chapter III, Cohen [Cohen94a] reports that the 

message latency between user memory on one node and user memory on another node in 

the USCIISI ATOMIC cluster system is about 1500 microseconds. 

Due to the mesh or similar topology of these systems, global operations are usually 

implemented with some type of minimum spanning tree. The long message latency times 

cascade along the branches of the trees and make these operations very expensive. The 

long message latency time on these systems is caused by the high-level "protocol stack" 

used to send and receive messages. These time consuming protocols are required to main

tain protection, implement error detection, and maintain software compatibility between 

machines. 

Since the COP system enforces User/Supervisor and process level protection in 

hardware, user programs can safely be given direct access to the COP port, which is 

mapped into user memory or port address space. The COP system can then provide even 
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greater speedup for global operations on this type system than on a "Big Iron" multicom

puter such as that described in the preceding sections. TABLE IV shows that even if the 

performance of a cluster system's main interconnection network catches up with that of 

the "Big Iron" machines, the COP system still provides substantial performance gain for 

global operations. 

Distributed Shared Memory System Global Operation Comparison 

According to Koeninger [Koeni94a], the latest and greatest of the distributed shared 

memory machines is the CRAY T3D. This machine is connected as a 3-D torus with two 

processing elements at per node. Each processing element has up to 64 Mbytes of DRAM 

which is part of the physically distributed, logically shared global memory. Memory 

transfers are done with message packets containing "payloads" of one to four 64-bit 

words. The global memory is managed by special, dedicated hardware, so a processing 

element can read from or write to a memory location physically located at another pro

cessor without directly involving that processor. 

When a processor initiates a memory operation, the memory management hardware 

determines if the addressed location is in the local memory. If not, a short message is sent 

to the remote memory containing that address. For a write operation, the hardware at the 

remote processor simply writes the data word to the specified address. For a read, the 

hardware at the remote processor generates a short message which returns the data word 

to the requesting processor. 

I was not able to find published data specifically showing the performance of the 

T3D for global operations, so for comparison purposes I will use published values of 

message latency and bandwidth to estimate some values for these operations. Measure

ments reported by Numrich [Numri94a] show that the average latency (software + hard

ware) for a single 64-bit memory write message to an adjacent node on the T3D is 2.7 
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microseconds and the "payload" bandwidth is 126 Mbytes/sec. 

Performing a global sum or other global operation on this type machine involves 

several phases. Each processor must gain exclusive access to the partial result, make its 

contribution, determine when all have contributed, and read the final result. A two lock 

system is commonly used to synchronize these phases. Each processor spins on the first 

lock until it gains access, locks the lock, makes its contribution, increments a count, 

unlocks the lock. When all processors have contributed, execution proceeds to the second 

lock. Here each processor spins until it gains access, locks the lock, reads the final result, 

unlocks the lock, and continues. 

Given an atomic instruction to read and lock the lock, the entry part of this sequence 

requires four discrete memory operations plus two add operations. Likewise, the exit part 

of the described sequence requires four memory operations. As I describe in the next 

chapter, the T3D has a very fast hardware-based barrier mechanism which can be used to 

notify all processors when all have contributed. This removes the need for the second 

lock, but processors must still sequentially read the final result, so the total number of 

memory operations for each processor is five. 

Binary software combining trees are often used to reduce the lineup at a single pair 

of locks. Assuming binary software combining trees are used for both the entry and exit 

parts, and generously assuming that these contribute no additional overhead time, the 

total time can be represented as: 

10 = 2 * logN * (5(tL + MB * Rr) + lADD)' 

With a maximum size T3D system of 2048 processors, the 1 Land M B values quoted 

above, and 1 ADD negligible as compared to latency time, this expression predicts a time of 

about 297 microseconds to produce a global floating point sum. As shown in TABLE II, a 

COP system requires about 14 microseconds to perform a global floating point sum over 
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4096 processors. 

The point here is that in spite of the relatively low latency and high bandwidth of the 

T3D network, the COP system still provides substantial performance improvement for 

global operations such as reduction which otherwise require cascaded latency times. 

Effect of Some Global Operations on Overall Execution Time 

Introduction 

In the preceding sections I have shown that the COP system provides substantial 

speedup for common global operations on a variety of multicomputers and mUltiproces

sors. However, it does little good to make a particular operation 100 times faster, if that 

operation only represents 1% of the total execution time for a program. Therefore, I will 

now give some examples of how the speedup provided by a COP reduces the overall 

execution time of some common scientific programs. 

The examples I have chosen represent very general kinds of programs or important 

"computational kernels" which are used in a wide range of programs. In addition to the 

applications described in Chapter III, the Jacobi algorithm discussed first is used in solv

ing elliptic partial differential equations and as a preconditioner for other methods such as 

finite difference. The molecular dynamics program discussed next is an example of the 

very general N-body problem. The third example is the UNPACK Benchmark which 

uses LU factorization to solve dense systems of linear equations which are found in many 

physical problems. The final example is a preconditioned conjugate gradient algorithm, 

which is another important method for solving systems of linear equations. 

A Block-Factored Jacobi Program 

To illustrate the overall performance gain provided by a more efficient barrier mech

anism, I will assume a slightly modified version of the message-passing Jacobi program 
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shown in Figure 8. For this example assume a message-passing multicomputer with 64 

compute nodes arranged in an 8 x 8 mesh topology. Further assume that, instead of 

assigning rows of grid points to each compute node as was done in the program in Figure 

8, a 32 x 32 block of grid points is assigned to each compute node. Block assignment 

gives greater flexibility in setting grid point aspect ratio. The overall grid for this example 

contains 65,536 points in a 256 x 256 matrix. 

As explained in Chapter III and shown in Figure 8, the three major phases of a mes

sage-passing Jacobi program are: 1. Communicate last point values to nearest neighbors, 

2. Compute new point values. 3. Aggregate and broadcast the global termination Boolean 

value. Note that in this program, the third phase also implements a barrier which prevents 

any compute node from starting a new update loop until all compute nodes have made 

their contribution to the global Boolean value. 

For the communication phase in this example, each compute node has to exchange 

values with its four nearest neighbors. The time for these exchanges will be 

4(t L + M 8 * Rr). Assuming each message requires 32 8-byte floating point values and 

using the previously stated Intel Paragon numbers for h, M B, and Rr, the total time for 

this phase is 4(25 microseconds + 256 bytes * 0.005 microsecondslbyte) = 105 microsec

onds. 

During the Compute phase each compute node will perform four floating point oper

ations (FLOPs) on each of its 1024 points. Assuming that the compute node can perform 

100 MFLOPs per second, the total time for this phase is 4 FLOPS/point * 1024 points * 

11100.000,000 FLOPs/second = 41 microseconds 

As discussed previously and shown in TABLE IV, the time required for the Aggre

gate and Broadcast phase on a square mesh is 2(2fFi - 2)(rL + ME * Rr). Again assuming 

Intel Paragon values. this gives a time of 700 microseconds. 
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Figure 27 shows how these time relate to the overall execution time. The sum of the 

Communicate and Compute times will be multiplied by the number of iterations between 

convergence checks. This time will be added to Aggregate and Broadcast time, and the 

result multiplied by the number of loops required for convergence. Since the total time is 

a linear function of the number of loops, looking at just the time ratio for one loop should 

be enough to see the overall relationships. Using the previously calculated values and 

assuming 16 iterations between convergence checks, the time for one loop is 16( 1 05 

microseconds + 41 microseconds) + 700 microseconds = 3036 microseconds. With these 

values, about 23'70 of the loop time is spent in the Aggregate and Broadcast phase. Even if 

the problem size is increased so that each compute node has more points or the number of 

iterations between convergence checks is increased, the percentage of time spent in this 

phase is substantial. 

Communicate (105 microseconds) 

X Number Loops X Number Iterations 
Compute (41 microseconds) 

Aggregate and 
Broadcast (700 microseconds) 

Figure 27. Execution time relationships for Jacobi program 

As shown in TABLE II, a single level COP system can perform the Aggregate and 

Broadcast phase for 64 compute nodes in about 2.2 microseconds. Inserting this value in 

place of the 700 microseconds in the above expression reduces the time required for each 

loop to about 2338 microseconds, which is a 23% reduction. Due to the linear relation

ship, this 23% reduction in execution time should extend to the overall program. 
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Incidentally, note that the communicate phase of this program provides an example 

of the type of communication for which the COP system is not generally as efficient as 

the main interconnection network. In this phase each compute node exchanges four 

256-byte messages with its four nearest neighbors. Since there is no contention for these 

messages on the compute node mesh network, all of the nodes can be sending and receiv

ing these messages at the same time. As shown above, the total time is just the time for 

four messages, or for the values given, 105 microseconds. 

With a COP system, the timing for this operation is the same as the time for an all

to-all broadcast. As shown in TABLE II, the time required for an 8-byte all-to-all broad

cast to 64 nodes is 13 microseconds. If the channel lock feature is not invoked, the total 

time required is just (13 microseconds/8 bytes) x 256 bytes = 416 microseconds. This 

example shows well the advantage of the point-to-point main network for this type com

munication. 

A Molecular Dynamics Program 

To illustrate the role played by the global sum operation in important scientific pro

grams, I will use a molecular dynamics program described by Clark [Clark92a). Accord

ing to Clark the purpose of this type program is to calculate the motion of each atom in a 

group. as determined by the forces exerted by all the other atoms in the group. Again 

according to Clark, these programs repeatedly compute the total force on each atom and 

then use Newton's laws of motion to determine the new position and velocity for each 

atom. The six major parts of the program are Non-Bonded force calculation, Pairlist gen

eration, Shake, Bonded Force calculation, Global Sum calculation, and Load Balancing. 

The first six columns in TABLE V show the data collected by Clark when he ran 

this program for 500 time steps on an Intel iPSC/860 with I to 32 compute nodes. Note 

that as the number of compute nodes used is increased, the times for the Non-Bonded 
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Force(NBForce) calculation and Pairlist generation(PList) decrease, the Shake and 

Bonded-Force(BForce) calculation times remain the same, and the Global Sum(GSum) 

and Load Balancing(LBal) times increase. As the number of nodes is increased, the total 

execution time asymptotically approaches the sum of the constant and increasing times. 

To further explore this effect, I extended Clark's graphs to produce the values for 64 

nodes and for 128 nodes shown in TABLE V. As expected, increasing the number of 

compute nodes from 4 to 8 produced a 40% decrease in execution time, but increasing the 

number of compute nodes from 64 to 128 produced only about a 10% decrease in execu

tion time. To see how adding a COP affects these numbers, let's first look at the Global 

Sum part of the program. 

TABLE V 

TIMING IN MINUTES FOR MOLECULAR DYNAMICS PROGRAM 

COP+ COP+ COP+ 
Nodes I 2 4 11 16 32 32 64 64 128 128 

NBFon:e 290 170 7S 36 19 10 10 5 5 3 3 

PList 190 100 50 28 18 10 10 5 5 3 3 

Shake II II II II II II 8.5 II 8.5 II 8.5 

BForcc 5 5 S 5 55 5 5 5 5 5 5 

GSUlIl - 0.8 1.5 2.0 2.1 2.5 0 2.5 0 2.8 0 

LBal 0 0.2 0.3 0.4 0.5 1.2 1.2 1.8 1.8 2.5 2.5 

Total 500 287 143 82 56 39.7 34.7 30.3 25.3 27.3 22 

This program used a total of 6968 molecules, so for the case of 32 compute nodes, 

each compute node does the computations for about 220. Assuming that each force is 

represented by three double-precision floating point components, the total time for a COP 

system to accumulate the 220 forces from each compute node and broadcast the result for 

500 time steps is 500 steps x 220 forces/step x 3 components/force x 4.7 microsec

onds/global sum = 1.6 seconds. This is nearly a factor of 100 reduction from the 2.5 
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minutes which Clark measured, and is essentially zero as compared to the other times in 

the 32 node column of TABLE V. 

Again according to Clark, the Shake part of the program uses a Jacobi algorithm. 

Assuming that a COP can improve this part of the program by 23% as in the preceding 

Jacobi example, the time required for the Shake part would then be about 8.5 minutes 

instead of 11 minutes. 

Load balancing usually involves some global operation that the COP might benefit, 

but the Clark's paper did not contain enough detail in this area to determine if this was 

indeed the case. 

As shown in TABLE V, the time for the program to execute on a 32 node system 

with a COP is about 34.7 minutes, which is about a 12.6% improvement over the time for 

the same number of nodes without a COP. Although this represents some improvement, 

the real benefit of the COP becomes more obvious as the number of computes nodes is 

increased. For example, just doubling the number of compute nodes from 64 to 128 pro

duces an improvement in execution time of about 9.9%. Doubling the number of nodes 

from 64 to 128 and adding a COP gives a 27.4% reduction in execution time. In other 

words, the combination gives about three times as much improvement as simply doubling 

the number of compute nodes. 

Since the COP system decreases the fixed, sequential parts of the program, it not 

only decreases overall execution time, but also, as predicted by the previously cited work 

of Driscoll and Daasch, it increases the number of compute nodes which can be benefi

cially used on the program. 

As a further point of reference, the last two columns in TABLE V show that just 

adding a COP to a 128 node system reduces the execution time from 27.3 minutes to 22 

minutes, which is about 20%. The question that may occur here is whether a 20% gain is 
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worth the effort of adding a COP. Although the program described here runs for minutes, 

a larger number of atoms would make the program run for days or months. If adding a 

COP system reduces the execution time for this kind of program by 20% from 10 days to 

8 days, it not only makes the system available two days earlier, but it also decreases the 

chances of a machine failure during the program run. 

Linear Algebra Programs 

As an example of the importance of broadcast or multicast I will use an implementa

tion of the UNPACK benchmark described by van de Geijn [Geijn91 a]. This program 

uses LV factorization to solve a system of linear equations. Two important parts of the 

LV factorization are broadcast of the column panel and broadcast of the row panel. van 

de Geijn reports that when this program was run on a 128 node Intel Delta (predecessor 

of the Paragon) machine, almost a third, or 14 seconds of the 45 second, total execution 

time was spent in these operations. The Delta used was an 8 x 16 mesh, so the diameter, 

D, was 22. The time to broadcast a single 8 byte value with a minimum spanning tree 

then is D(t L + M B * Rr). Generously assuming that the Delta values for T Land Rr are 

comparable to those of the Paragon, the time to broadcast a single 8 byte value is about 

550 microseconds. A two level COP system can broadcast an 8 byte value to 128 com-

pute nodes in about 4.4 microseconds. This is less than 1 % of the time required using the 

main message passing network, so the overall performance gain is about 30%. 

Preconditioned Conjugate Gradient P,ogram 

As mentioned earlier, the preconditioned conjugate algorithm is another method of solv

ing large sparse systems of linear equations. Kumar [Kumar94a] shows that the time for 

one iteration of this algorithm on a mesh is: 

, II _ rJ:' 
Tp = l' - + 31.< log P + 61,,{P + 41.< + 4111 "V1l1p. 

P 
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In this expression r', represents computation time, n is the number of equations, p is the 

number of processors, ts is the message latency time, tIl is the per node message hop time, 

and tl\' is the time cost to transmit a word. 

The first term in the expression represents total computation time, the next two 

terms represent the communication time required by inner product computation, and the 

last two terms represent the communication time required during matrix-vector multipli

cation. Kumar also points out that the second two terms are negligible and can be 

dropped if the algorithm is executed on a machine that has fast reduction capability. Since 

the COP provides fast reduction capability, this term can then be dropped when comput

ing the communication time on any machine using a COP. 

To give a rough idea of how much this decreases communication cost, I will assume 

n = 64, P = 64, t.< = 25 microseconds, tIl = 0.04 microseconds, and tl\' = .005 microsec

ondslbyte. Substituting these values in the expression above gives T p = r', + 552 

microseconds. Leaving out the second two terms gives Tp = r', + 100 microseconds. This 

represents performance gain of about 82% in the communication requirements for the 

program. 

COP System Benefits Versus Cost 

According the 1994 Digital Equipment Corporation catalog, a DEC 3000 Model 600 

AXP workstation costs about $21,000, so a 64-node cluster of these workstations would 

cost about $1,344,000. A rough estimate is that a complete COP system for a 64-node 

workstation cluster can be built for about $30,000, which is only about 2.2% of the cost 

of the workstations. The program performance analyses in the preceding sections showed 

that the COP system provides an average decrease in execution time of about 25%. A 

25% improvement in performance for a 2.2% increase in cost seems to be a good ratio. 
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As another example, a 64-node Intel Paragol; multicomputer cUlTently costs about 

$2,000,000. The $30,000 cost of a COP system for this size machine represents only 

about 1.5% of the basic system cost. Assuming as before that a COP system provides an 

average performance gain of about 25%, the benefit-cost ratio of 25% to 1.5% is even 

better than that projected for a 64-node workstation cluster system. 

For still another example, Koeninger [Koeni94a] notes that a 256 processor Cray 

T3D costs about $9,000,000. The five COP boards required to service a system of this 

size cost about $150,000, which represents about 1.7% of the cost of the T3D system. 

Although detailed performance data for the T3D is not yet available for comparison, the 

relatively small cost of the COP system should maintain a good benefit to cost ratio on 

this system also. 

Chapter Summary 

This chapter has shown that the COP system can speed up a variety of global opera

tions by two to three orders of magnitude. The examples in the last section show that the 

COP provides an average decrease in overall execution time of about 25% for some com

mon scientific programs and computational kernels which utilize COP supported global 

operations. Furthermore, the COP system provides this 25% improvement for an addi

tional cost of only about 2%. 

As pointed out in Chapter IV, the COP system topology does not depend on the 

topology of the under-lying machine. This means that the COP system can provide this 

performance gain on "Big Iron" multicomputers, cluster multicomputers, or multiproces

sors. In the next chapter, I summarize some of the many other attempts to improve the 

efficiency of global operations on these machines and where possible compare the perfor

mance of these others with that of the COP system. 



CHAPTER VI 

OTHER WORK ON HARDWARE SUPPORT FOR GLOBAL OPERATIONS 

Introduction 

The expressions in TABLE IV show that the time required for several common 

global operations on message-passing distributed memory multicomputers is directly pro

portional to D(t L + M B * Rr). In the last chapter I showed how the COP system reduces D 

and I L, and thereby substantially reduces the execution times for global operations. In this 

chapter I describe and compare other proposed or practiced methods for decreasing these 

times and for decreasing shared variable access time. To provide some order in the dis

cussion, I divide the work into two main categories as follows. 

I. Work aimed at decreasing and/or hiding latency time, increasing network band

width, and decreasing remote memory access time. 

2. Specialized hardware support for synchronization and/or other global operations. 

Attempts to Decrease Message Passing and Memory Access Overhead 

I. Work aimed at "Big Iron" multicomputers 

Many diverse methods of improving message passing efficiency have been tried for 

machines in this category. I will concentrate on those that very specifically relate to the 

COP system. 

Hsu and Banerjee [Hsu90a], show the advantages of using a communication copro

cessor at each compute node to relieve the main processor of the burden of packetizing, 

sending. receiving, and depacketizing messages. Perhaps influenced by this work, Intel 
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Paragon systems use a dedicated i860 as a communication coprocessor at each compute 

node. 

A communication coprocessor allows the main processor to continue computing 

while a message is being sent if the algorithm allows. This overlap of computation and 

communication improves the overall efficiency, but the absolute message latency is still 

present. Therefore, the cascaded latency times of global operations are still a problem. 

Including the communication circuitry on the same chip as the processor provides 

tighter and theoretically more efficient coupling between the two. The custom processor 

chip used in the nCUBE 2S [Zorpe92a], for example, contains a floating point computa

tion unit. a memory management interface, a message-routing unit, and 14 pairs of direct

memory-access (DMA) channels. One of the 14 DMA channels is used for external 

input/output. The other 13 DMA channels are llsed to connect a processor to its nearest 

neighbors in a hypercube topology which can contain up to 8192 nodes. In this system, a 

processor sends a message to a neighboring processor by writing the message into the 

receiving processor's memory on a DMA basis. However, long range communication 

requires a "bucket brigade" type transfer from one processor's memory to the next along 

the way. The latency of each transfer adds to the total message delay for both point-to

point and global "tree" communication. Contributing to the latency is the fact that cur

rently. the only access to the network on the nCUBE 2S is through the operating system. 

Another example of a processor chip that contains both a computation agent and a 

communication agent is the Intel iWarp "component" [Borka88a] used in Intel iWarp 

systems. The communication agent has four independent input ports and four indepen

dent output ports. The independence of these ports allows iWarp components to be con

nected in ring. mesh, or torus topologies for general purpose computing or to be con

nected in special array configurations suitable for systolic graphics or signal processing 

algorithms. The wormhole routers in the chip allow messages to pass through a 
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communication agent without disturbing the computation agent in that node. For general 

message passing, however, there is no actual communication coprocessor, so the main 

computation element still has the overhead of packetizing and depacketizing messages. 

The main contribution to my thoughts by iWarp was provided by its systolic com

munication mode. In this mode data is rapidly transferred from the computation element 

in one cell to the computation element in another without going through the memory of 

either. For this special, direct type of communication the receiving cell explicitly "knows 

what to do with" the incoming data, so a complex message format is not needed. The 

dedicated communication links in the COP system provide a similar type of direct com

munication. 

Another machine with processors that integrate computation and communication is 

the Jellybean Machine or J-Machine [Dally92a], developed as a collaborative project 

between MIT and Intel Corporation. The Message-Driven Processors(MDPs) in a J

Machine implement a fine-grained. data-flow model of computation. J-machine messages 

contain a pointer to the computation handler for the message, one data operand, and a 

pointer to another data operand if needed. When a message arrives at a processor, it is put 

in a FIFO queue. The specified handler is invoked and the computation performed when 

the processor reads the message from the queue. Thus, computation is message driven. 

The advantage of this approach is that the processor does not try to execute an instruction 

until it has both the instruction and the data for that instruction. Therefore, processors 

spend their time executing instructions for which they have the data, rather than executing 

instructions that each require a wait for the required data. 

Each MDP in a J-Machine contains an ALU, and Address Arithmetic Unit, a mem

ory controller with ECC, a network interface, and a router. The six ports on the router are 

used to connect the MDPs in a 3-D mesh topology with up to 64K nodes. According to 

Dally. the J-machine requires about 3 microseconds for a message send-receive operation, 



105 

which is quite good, especially since the machine only has a 16.5 Mhz clock. However, 

the mesh topology of the J-machine requires trees of some sort for global operations and 

thus suffers the cascaded message latency problem for these operations. Also, since the J

Machine uses small, custom processors and a message-driven programming paradigm, I 

feel that the mountains of existing software would need major modifications or complete 

rewriting to efficiently execute on this kind of machine. 

The active messages scheme developed by von Eicken [Eicke92a] is a pure software 

approach to reducing message latency. In some ways this approach is very similar to the 

message driven approach of the J-machine, but in other ways it is quite different. An 

active message contains both data and a pointer to the handler process which will read the 

message on the receiving node and integrate the data into an ongoing computation. The 

difference here is that the handler process simply reads the message off the network and 

puts the data in the correct place; it does not perform the actual computation as does the 

handler in a J-Machine. 

von Eicken [Eicke92a] reports that the active message approach reduced the mes

sage send-receive latency for the Thinking Machines CM-5 from 86 microseconds to 23 

microseconds. However. the active message approach assumes SPMD only program 

execution. and therefore does not provide any of the protection mechanisms required for 

MPMD program execution. 

Another software based attempt to reduce the message-passing latency is work of 

Rosing [Rosin93a] at ICASE. Rosing and his colleagues replaced the NX/2 operating 

system in an Intel iPSC/860 with an operating system which allows user programs to 

directly access the communication hardware, rather go through the usual operating sys

tem calls. According to Rosing this reduces the minimum message latency from 70 

microseconds to about 25 microseconds. This approach does reduce the latency, but it 

also places the responsibility for message formatting, etc. on the application programmer. 
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Also, since this direct access circumvents the usual protection mechanisms, it can only be 

used for SPMD program execution. 

Two important points emerge from the preceding discussions. The first is that even 

with the message latency drastically reduced as in the l-Machine, active messages, or 

Rosing's work, the cascaded latencies of the tree algorithms required for global opera

tions on many of these machines still contribute substantially to overall execution time. 

Second, if user programs are to be given direct network access in order Lo reduce latency 

time, some mechanism must be implemented to provide protection so that the overall 

machine can be used for MPMD program execution as well as for SPMD program execu

tion. The COP system both reduces the time cost of global operations and for these opera

tions; it also provides the protection mechanisms needed for MPMD program execution. 

2. Work related to cluster multicomputers 

As described in Chapter II, several of the latest research and commercial cluster 

multicomputers use interconnection networks with crossbar switches or wormhole routers 

instead of shared medium networks such as ethernet or FODL These newer networks 

improve system scalability and provide greater bandwidth. 

One cluster multicomputer that uses a unique network interface to reduce message 

latency is the Princeton Shrimp system described by Li [Blumr93a]. Shrimp is actually 

an example of distributed shared virtual memory system, but since it uses Intel Pentium 

workstations as compute nodes, I will discuss it in this section. 

Message passing in the Shrimp system is separated into two phases. During the 

mapping phase, an operating system call is used to set up a communication path between 

two nodes. This is done by mapping the same page of virtual memory to the sending and 

receiving nodes. The second phase is the actual communication. When a compute node 

writes a word to a location in the shared virtual page, a special network interface chip 



107 

snoops the transaction on the compute node memory bus and generates a message to the 

same virtual address in the remote node. The network interface essentially functions as a 

snooping communication coprocessor. The point here 'is that only the mapping phase 

requires operating system involvement to enforce protection. User programs can have 

direct access to the virtual memory mapped page assigned to them, and thus send mes

sages with low latency. Li has reported a latency time of about 2 microseconds for the 

communication phase of a single point-to-point message. If a particular communication 

path is used over and over, the mapping phase is only needed for the first use. 

As reported by Li, however, a weak point of Shrimp is broadcast and other global 

operations. The Shrimp system uses an Intel Paragon router backplane to implement its 

interconnection network. Since this backplane has a 2-D mesh topology, spanning trees 

are needed to implement broadcast and other global operations. Not only do message 

latencies cascade along the branches of these trees, but also multiple operating system 

calls are required to set up the mapping for the trees before the global operation and to 

restore the previous communication links after the operation. I feel that addition of a COP 

system to Shrimp could greatly improve its performance on global operations. 

I found no work proposing a system such as the COP for cluster multicomputers. 

3. Work related to distributed shared memory machines 

The discussion in Chapter III showed that a major problem on distributed shared 

memory systems is the memory "hot spots" caused by, for example, contention for a lock 

variable. 

One of the relatively early attempts to alleviate this problem was the combining net

work in the NYU Ultracomputer [GottI83a]. The Ultracomputer uses an Omega type, 

multistage interconnection network to interface processors with the memory modules. 

The network is enhanced so that it can combine access requests directed at the same 
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memory location. Furthermore, if several processors need to receive, for example, succes

sive values of an array index variable, the network circuitry wiII fetch the current value of 

the variable from memory, add a specified value for each request, return successive values 

to each of the requesting processors, and write the final value of the variable in memory. 

As shown by Almasi and Gottlieb [Almas94a], the fetch-and-add primitive can also be 

used to implement barriers. The importance of this fetch-and-add mechanism is that for 

simultaneous accesses, it provides "answers" to aU the processors in about the same time 

as required for a single request. This means that the entire network is not tied up while 

each request is serviced sequentially. However, if the requests do not aU arrive at the same 

time, they must still be serviced serially so the combining capability is in that case not 

beneficial. 

A somewhat similar machine, the IBM RP3 [Pfist85a], discussed briefly in Chapter 

II has one high speed omega network for general memory access and another omega net

work with combining capability as previously described for the NYU Ultracomputer 

omega network. A major problem with both of these is cost and complexity of the net

work(s) when extended to a large number of processors. The COP system provides fast 

fetch-and-add capability with no spinning or traffic on the main interconnection network 

and provides other capabilities as well. 

The Stanford DASH [Lenos93a] distributed shared memory system discussed in 

Chapter II has both fetch-and-increment capability, and queue-based locks to assist with 

synchronization. Lenoski [Lenos93a] reports that using fetch-and-increment decreases 

execution time for a single barrier to about 30 microseconds for a 44 processor machine 

as compared to 375 microseconds for a pure linear barrier on the same machine. 

Queue-based locks on the DASH are handled as part of the directory logic. The 

directory keeps track of which processors are spinning on a particular lock variable and, 

when the lock becomes available, it is randomly granted to one of the waiting processors. 
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The COP system can easily implement both fetch-and-increment and queue-based locks 

if desired, but the COP system directly provides fast barriers which is one of the main 

uses for these. 

The Cray T3D distributed shared memory system, also discussed in Chapter II, has 

several mechanisms to reduce remote memory access times. These include a one-word 

prefetch queue and a remote processor store which queues up to four writes directed to a 

remote location. The T3D also has a block transfer engine which efficiently manages 

transfers of large blocks. These mechanisms are helpful for many operations, but as 

pointed out by the performance estimates in the last chapter, they are not particularly 

helpful for several of the global operations performed by the COP. For synchronization, 

however, the T3D does have a very fast hardware-based barrier mechanism which I dis

cuss later. 

Another way of coping with the latency time of remote memory accesses or syn

chronization is to swap to another lightweight process or thread of execution while wait

ing. Examples of systems which use this approach are the Tera machine [Alver90a] pro

posed by Tera Computer Company. and MIT's Alewife [Agarw90a] system which I men

tioned in a discussion of cache directories in Chapter II. In the Alewife system, the modi

fied SPARC processor at each node maintains four program contexts in hardware and can 

very quickly swap contexts. When a cache miss or synchronization wait occurs, a soft

ware trap forces a context swap to another thread if one is available. This scheme 

assumes that overall program algorithms contain enough parallelism to support multiple 

threads and that a compiler which can generate the required threads is available. For a 

program such as the Jacobi program described in Chapter III, I am not sure what you 

have the processors do while waiting for all to complete an iteration as required by the 

algorithm. With no other threads to swap to, the processors must just spin until all have 

checked in at the barrier. In this case, the speedup provided by the COP system still 
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reduces overall execution time as projected for other systems. 

The Alewife system does have a full/empty bit associated with each memory loca

tion to provide fine-grained synchronization as was done in the Delecor HEP. A read of 

an empty location or a write to a full location can generate a trap and cause a context 

switch to keep the processor busy while waiting for synchronization. This reduces spin

ning on memory locations, but again requires available threads to actually improve pro

cessor utilization. 

The main point from the research reported in this section is that most if not all of 

these distributed shared memory systems could benefit significantly from the addition of 

a COP system for access to shared variables and other global operations. In the next sec

tion I discuss and compare other proposed and existing hardware support for these opera

tions. 

Specialized Hardware for Synchronization and Other Global Operations 

Machines with hardware support for barriers 

The first topic I researched in this area was dedicated hardware to directly imple

ment barriers in shared memory machines. The major works I initially found in this cate

gory were [Gupta89a], [Beckm90a], [Hwang9Ia], [OKeef90a]. and [Ghose9Ia]. All of 

these approaches are essentially based on a large AND gate with a processor connected to 

each of its inputs. When each processor reaches the barrier. it asserts a signal connected 

to its input on the AND gate. When all of the processors have reached the barrier, the sig

nal from the output of the AND gate is broadcast back to all the processors to signal the 

barrier exit phase. Some of these approaches insert flip-flops in series with the AND gate 

inputs and/or output to better control signal timing. The design proposed by Ghose 

[Ghose91 a] uses an input register with maskable bits so that a barrier can be implemented 

for a specified subset of processors. 
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The Thinking Machines CM-S [Leise92a), also has a subnetwork of this type for 

barrier synchronization. Likewise, the Cray T3D [KessI93a) has a separate, binary tree 

network and an array of AND gates to implement barrier synchronization. 

Using simple dedicated hardware as done in these systems can implement a barrier 

in a very short time. According to Kwan [Kwan93a), for example, the CM-S can imple

ment a barrier over 2S6 processors in about S microseconds, and according to Koeninger 

[Koeni94a], the CRAY T3D can implement a barrier over 2048 processors in 330 

nanoseconds. However, these specialized barrier networks tend to be very limited in their 

capabilities. In a recent personal conversation, Kent Koeninger, Software Program Man

ager for the Cray T3D, told me that while the barrier network works well if used for the 

whole machine, it has two major problems for smaller partitions. First, the binary tree 

topology of the barrier network does not map easily into the cubes of processors usually 

assigned to different users. Second, the barrier network does not have the protection 

mechanisms required for MPMD program execution. Kent further said that due to the 

limited applicability of this barrier-only network, it will probably not be included in 

future systems. 

The COP system implements other important operations as well as barriers, pro

vides MPMD required protection, and allows processor subset participation in barriers so 

its cost is more easily justified. However, the generalized barrier mechanism which pro

vides these capabilities in the COP is in some cases slower than the specialized "big 

AND" approach. For comparison, a two level COP system can implement a barrier over 

256 compute nodes in 4.S microseconds. This is faster than the S microseconds quoted 

above for the CM-S, but obviously much slower than the 330 nanoseconds quoted above 

for the T3D. It seems dubious that it is worth the cost of adding the extra hardware and 

signal lines to improve just the barrier efficiency by this amount. In the next section I dis

cuss systems which include specialized hardware for other global operations as well. 
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Machines with hardware support for other global operations 

The Sequent Balance(R) is a bus-based, shared memory system such as that shown 

in Figure 2. Each processor in a Balance has an associated Serial Link and Interrupt Con

troller(SLIC) Ie. The SLIC chips communicate with each other over a secondary network 

which consists of a bit-serial bus. A priority resolution scheme arbitrates multiple 

attempts to access the serial bus. 

According to Beck [Beck87a] the main functions of the SLIC chips are to distribute 

interrupt service requests among the processors for load balancing, to provide interpro

cessor synchronization, and to assist in system configuration and control. 

When an interrupt is injected into the system, SLIC chips arbitrate to determine 

which one will accept the interrupt. Once a SLIC chip has accepted an interrupt, it will no 

longer contend for any other interrupts until it finishes servicing the first. Interrupt ser

vice requests are thus distributed among the processors. 

To provide low level synchronization each SLIC has 64 single-bit "gates" which, 

along with test-and-set primitives, can be used to implement locks. Gates are duplicated 

in all the SLICs, so a processor spins on the local copy of a gate rather than over the 

SLIC bus or over the main memory bus. This reduces synchronization traffic on the main 

bus, but requires periodic broadcasts to keep the gates current. 

The idea of using a low-cost secondary network and SLIC chips to move synchro

nization traffic and other traffic off the main memory bus seems good, but contention for 

the bit-serial bus would rapidly create a bottleneck if the number of processors is 

increased beyond the Balance's maximum of 30. The COP system uses individual point

to-point communication links to avoid this problem. Also, the COP system provides 

many more operations and reduces duplication by allowing one COP to service a group 

of compute nodes. 
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Another system that contributed to my thinking was the PAX machine. According 

to Hoshino [Hoshi89a), the PAX-128 is an 8x 16 torus of Processing Units built with 8-bit 

commodity microprocessors. The system uses a general purpose minicomputer as a host 

for user interface program development. The system also contains a Control Unit micro

computer which transfers programs and data between the host and the processing units, 

assists in synchronization, and does global broadcasts. The Control Unit is connected to 

all the Processing Units by a parallel bus and Processing Units are connected to each 

other by parallel buses. Communication between the Control Unit and Processing Units 

and communication between Processing Units is done via shared memory address spaces. 

To send program code or data to a Processing Unit, for example, the Control Unit selects 

the target Processing Unit and writes the code and data in a section of the Processing 

Unit's memory on a DMA basis. Long range communication between Processing Units is 

done with a "bucket brigade" approach where the "message" is passed along from one 

Processing Unit's memory to the next until it reaches the destination Processing Unit. 

In the PAX -128 the Control Unit and the Extended Control Unit bus supply a mech

anism for global broadcast to all or to a subset of the Processing Units. For a broadcast to 

all the Processing Units, the Control Unit halts all the processors, writes the broadcast 

data at the same address in each Processing Unit's memory, then restarts the Processing 

Units. The Control Unit also provides a mechanism for global synchronization. When a 

Processing Unit reaches a barrier, it writes a code into its status register and halts. The 

Control Unit continuously monitors all the status registers and when all the Processing 

Units have checked in, the Control Unit sends out a signal which restarts all the Process

ing Units. This mechanism is very similar to the "big AND" mechanism described pre

viously. 

Although the PAX-128 used 8-bit Processing Units and a relatively slow 2 MHz 

processor clock frequency, its hardware barrier mechanism allowed it to service a barrier 
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in about 25 microseconds and its control unit bus allowed it to broadcast N bytes of data 

to all the Processing Units in 4N + 148 microseconds. I felt that these numbers strongly 

supported my idea of adding a secondary network which is optimized for global commu

nication and some centralized hardware to perform global operations. 

Another system with specialized hardware for global operations is the Thinking 

Machines CM-5 [9Ia]. A CM-5 machine has two types of processors, compute proces

sors and control processors. The control processors in a CM-5 are SPARC workstation 

type computers which run a Unix-like operating system. The control processors are used 

to partition the system, distribute programs to compute processors, run diagnostics, and 

manage VO operations. 

The compute processors and the control processors in a CM-5 are connected by a 

data network, a control network, and a diagnostic network. The data network connects the 

compute and control nodes in a "fat tree" topology as described in Chapter II. The control 

network and the diagnostic network connect compute processors and control processors 

in binary tree topologies with the processors at the leaves. Communication on all three 

networks is by message passing. The data network supports only point-to-point commu

nications. The control net\\lork supports both point-to-point and broadcast communica

tions. 

Each compute processor and each control processor has a network interface unit 

which allows it to communicate over the three networks. The control network section of 

each network interface unit contains three broadcast functional units, a combine type 

functional unit, and three global operation type functional units. The three broadcast units 

allow user type, supervisor type, or interrupt type messages to be broadcast to all proces

sors. The combine unit is used for global operations which involve integer addition, bit

wise logical OR, bitwise logical EXOR, MAX, and MIN. The three global operation 

functional units are mostly used to implement barriers as described previously. 
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Superficially, the COP system may seem somewhat similar to the CM-S control net

work, but the COP is really quite different and has many prominent advantages over the 

CM-S. 

First, the COP system is much more versatile. A user partition in a COP system can 

contain any number of compute nodes and the COP protection mechanisms allow both 

SPMD and MPMD program execution. The minimum user partition in a CM-S system is 

32 nodes and only SPMD program execution is allowed within a partition. Also, the 

COP mask system allows all or any subset of the compute nodes in a partition to partici

pate in. for example, a barrier or broadcast operation. In a CM-S system all the nodes in a 

partition must participate in a barrier or broadcast operation. Furthermore, the COP net

work is asynchronous, so the COP system can be easily used with workstation cluster 

multicomputers as well as with "Big 1ron" machines. The CM-S networks are syn

chronous and are therefore not applicable to cluster systems because these may include 

workstations with very different clock frequencies. The COP system provides a very effi

cient mechanism for maintaining and accessing globally shared write-able variables; the 

CM-S does not. 

Also, the COP system is faster than the CM-S system for global operations. As 

shown in Table II, a single level COP system can broadcast an 8-byte word, perform a 

global integer sum, or execute a barrier in 2.2 microseconds. According to 

Kwan[Kwan93a), a CM-S requires 12 microseconds, 6 microseconds, and S microsec

onds respectively for these operations on the same size partition. Furthermore, as stated in 

Chapter VI, a COP system can broadcast a 64 Kbyte vector to 64 compute nodes in about 

1600 microseconds. The performance parameters reported in K wan indicate that this 

same broadcast would take about 80,000 microseconds or 80 milliseconds on a 64 node 

CM-S machine. 
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Finally, the centralized COPs do not require the duplication of low level functional 

units at each compute node as is done in the CM-5. 

Chapter Summary 

Although several of the references cited here contributed to my thinking as noted, no 

other single system duplicates or more efficiently implements the versatile functionality 

of the COP system. 



CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

My hypothesis was that global program operations on a multicomputer or mUltipro

cessor could be significantly speeded up by the addition of a wide-tree secondary network 

and one or more centralized processors optimized for these operations. The analyses in 

Chapters V and VI conclusively demonstrate that the COP system's combination of speed 

and versatility exceeds that of any other system for many common global operations. 

Furthermore, the program examples in Chapter V show that speeding up these operations 

decreases overall program execution time by an average of about 25% at an additional 

system cost of only about 2%. Specifically, the COP system provides the following 

advantages. 

The very high bandwidth bit-serial interconnect makes the COP system equally 

applicable to "Big Iron" multicomputers, workstation cluster multicomputers, and dis

tributed shared memory machines. The independent links between compute nodes and 

COPs provide a high degree of fault tolerance, because, if one link fails, the rest of the 

COP system can continue to operate. The mask based partitioning and protection 

approach used in the COP makes it independent of the underlying network topology. 

Also, as shown in TABLE II, the wide-tree topology reduces the number of interconnect 

links and the number of COPs required as compared to a narrower tree topology. The 

wide topology also eases programming because mask word widths match data path 

widths of current machines. 
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The COP system can easily be added existing systems as an upgrade. The compute 

node to COP-Network interface circuitry can be built on a small board for insertion in a 

system bus slot, insertion in a SIMM slot, or piggy-backing on a compute node board. 

For new system designs, the small amount of circuitry required for this interface can eas

ily be included directly in the board design. 

The entire COP system can be implemented with existing technology. Except for the 

Spanceivers, the COP system uses standard components such such as buffers, latches, 

mUltiplexers, SRAM, ALUs, and FPUs. The controllers can be implemented with high 

speed programmable logic devices to avoid producing a custom ASIC. A rough estimate 

is that a complete 64-node, single level COP system could be built for about $30,000. 

However, if less than the full 64 channels are needed, the cost can be significantly 

decreased by inserting Spanceivers only for the channels needed. As described in Chapter 

IV, the COP controller can be jumpered to only cycle through the number of interfaces 

actuallly used. 

Since the COP system does not change the basic programming paradigm, but simply 

provides an alternative, fast mechanism for implement:llg common global operations, the 

main software component needed to utilize it is a library of COP access routines. A smart 

compiler can then insert calls to COP access routines where appropriate. COP access rou

tines could also be included in an MPI or PVM implementation. The User/Supervisor and 

process level protection mechanisms in the COP system make it compatible with MPMD 

program execution as well as with SPMD program execution. 

The COP system provides many benefits, but it also has some limitations. As 

pointed Ollt in Chapter V, for example, the COP system is less efficient than standard 

message passing for all-to-all personalized communication on a 2-D mesh multicomputer. 

However, operations for which the COP does excel suggest several other possible uses 

which I have not previously discussed here. 
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The fast broadcast capability of the COP system, for example, could be used to 

broadcast global clock values during distributed simulations. This strong capability could 

also perhaps be used to broadcast updates of shared objects as required by the ORCA 

[Tanen92a] language. Still another use of the COP broadcast speed might be to distribute 

load index values for the type of dynamic process level load balancing proposed by Xu 

and Hwang [Xu90a]. 

A totally different application of the COP system is performance monitoring. The 

COP network provides a very fast mechanism for exporting event counter data and other 

performance data to external recording equipment. Also, for distributed debugging, the 

COP system provides a way of exporting breakpoint data for external examination. 

The point here is that the COP is a new and powerful system resource which will 

suggest other uses as we become more familiar with it. This point leads into the next sec

tion which describes my projected future work. 

Future Work 

The COP system described here presents many potential research topics. I am particularly 

interested in the application of the COP system to workstation cluster multicomputers 

because I feel that they will be the most widespread supercomputing platforms in the near 

future and they can potentially derive the most benefit from the COP system. 

In reporting on a year-long effort at porting the NAS benchmarks and other scien

tific programs to PVM for execution on a cluster of workstations at NASA Ames 

Research Center. Castagnera [Casta94a] has pointed out the severe limitations imposed 

by the high network latency. As discussed in Chapter II, others are working on improving 

the general network performance for cluster systems, but no one seems to be working 

specifically on improving performance for the global operations addressed by the COP 

system. 
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Therefore, I feel that it is time to move from the "proof of concept" phase described 

in this document to the actual design and implementation phases for the COP system. 

Assuming suitable funding can be found, these phases might proceed as follows. 

I. Since PVM seems to be very universally used, research the requirements for 

replacing PVM or underlying MPI calls with COP calls. 

2. Research the requirements for interfacing with the available workstation buses. 

3. Design, simulate, and build prototypes of the compute node to COP network 

interface and the actual COP. If the clock frequency for this prototype system is 

reduced to 50 MHz, a large portion of the circuitry can be implemented in FPGAs or 

CPLDs. 

4. Measure and compare the performance of the system using the PVM programs 

available from NAS and/or locally generated programs. 

5. Attempt to form a partnership with a company or other research group which is 

working on improving the overall network performance and try to integrate our 

efforts. 
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