
Portland State University Portland State University 

PDXScholar PDXScholar 

University Honors Theses University Honors College 

6-16-2021 

The Role of Cognitive Load and Individual The Role of Cognitive Load and Individual 

Differences When Interpreting Human-Resource Differences When Interpreting Human-Resource 

Data Visualizations Data Visualizations 

Zachary Hesson 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses 

 Part of the Cognitive Psychology Commons, Human Resources Management Commons, Industrial 

and Organizational Psychology Commons, and the Personality and Social Contexts Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Hesson, Zachary, "The Role of Cognitive Load and Individual Differences When Interpreting Human-
Resource Data Visualizations" (2021). University Honors Theses. Paper 1098. 
https://doi.org/10.15760/honors.1125 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/408?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/633?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/412?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/412?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/413?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/1098
https://doi.org/10.15760/honors.1125
mailto:pdxscholar@pdx.edu


Running head: COGNITIVE LOAD AND DATA VISUALIZATIONS 

 

The Role of Cognitive Load and Individual Differences When Interpreting Human-Resource 

Data Visualizations  

 

 

 

by 

 

Zachary Hesson 

 

 

 

An undergraduate honors thesis submitted in partial fulfillment of the 

 

requirements for the degree of 

 

Bachelor of Science 

 

in 

 

University Honors 

 

and 

 

Psychology 

 

 

 

Thesis Adviser 

 

Dr. David E. Caughlin 

 

 

 

 

 

 

 

Portland State University 

 

2021 



COGNITIVE LOAD AND DATA VISUALIZATIONS  2 
 

Abstract 

Data visualizations (e.g., bar graph, dashboard) can be used as decision-support and storytelling 

tools that aid users’ interpretation of sometimes complex information, including within the 

human resource management (HRM) context. As HRM evolves towards implementing more 

data-informed decisions, it is important to understand how users interpret data visualizations. 

The aims of this thesis are to (a) identify whether cognitive load affects the amount of time users 

spend arriving forming and interpretation and the accuracy of their interpretations, and (b) to 

evaluate whether cognitive load moderates the association between individual-difference 

variables and interpretation time and accuracy. The individual differences that are of particular 

interest are locus of control and the personality dimensions of extraversion, neuroticism, 

openness to experience, and conscientiousness. A sample of 58 undergraduate business students 

were randomly assigned to three different cognitive load levels (control, moderate, high), and 

each participant – irrespective of their group – responded to the same four data-visualization 

vignettes. Hypotheses were tested using a moderated multiple linear regression model. None of 

the proposed hypotheses were supported in the initial analysis, although after further analyses, 

cognitive load was a strong moderator of the association between neuroticism and interpretation 

accuracy for participants who experienced a moderate level of cognitive load, such that the 

association was negative when cognitive load was moderate. Theoretical and practical 

implications are included for developers of these data visualizations to keep in mind.  

Keywords: data visualization, individual differences, five-factor model, locus of control, 

decision-support tool, cognitive load, human resource management.  
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Today, data visualizations (e.g., bar graphs, scatter plots, line graphs) are used as 

decision-support and storytelling tools across different functional areas of organizations, 

including human resource management (HRM). Data visualizations can inform individuals who 

are not quantitative specialists on complex relationships between variables, which increases the 

accessibility of information within an organization (Sinar, 2015). And recent advances in 

computational power and informational technology have made data visualizations more readily 

available and easier to produce, which has led to a proliferation of use and an ever-expanding 

number of increasingly complex and sophisticated data-visualization display types. Despite this 

proliferation, researchers found that only 16% of organizations were using visualization tools 

effectively (DDI, The Conference Board & EY, 2018). By failing to consider how data-

visualization tools are deployed by organizations and interpreted by users (e.g., managers), users 

may be more likely to misinterpret the information displayed in a data visualization, potentially 

leading to poorer decision making.  

When considering the HRM context specifically, improving how data visualizations are 

designed and deployed might allow HR managers, or other consumers of HR data, to make better 

decisions about human capital. In terms of the design, one consideration is the use of chartjunk 

within a data-visualization display. Chartjunk refers to unnecessary visual elements that are 

placed onto a display that do not facilitate interpretation of the data being presented given the 

task at hand (Tufte, 1983). Whether chartjunk aids or hinders the interpretability of data 

visualizations is still an ongoing debate (Bailey & Pregill, 2014). In terms of the deployment of 

data visualizations, extraneous workplace cognitive demands (e.g., noise, distractions, 

multitasking, role overload) may also impair users’ task performance as they attempt to interpret 

key information displayed within a data visualization.   
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 The tenets of cognitive load theory (CLT) offer a way to understand how extraneous 

workplace cognitive demands may affect how users process and interpret information displayed 

in a data visualization (Sweller, 2010). Specifically, CLT posits that individuals who experience 

higher cognitive loads are more likely to experience distractor interference. This theory expands 

upon the idea that individuals have a limited working memory capacity, and when the working 

memory load is too high, it has the potential to attenuate their ability to process information 

effectively. Lavie (2010) mentions that “Cognitive control functions are loaded when people 

have to switch back and forth between different tasks or when people have to actively maintain 

in working memory some task unrelated material during task performance” (p. 147). Within a 

busy workplace environment, it is likely that multiple concurrent tasks and other types of 

cognitive demands that add to working memory demands, leading to higher overall cognitive 

load.  

Limiting the amount of extraneous cognitive load that individuals experience is one of 

the primary focuses of CLT research (Sweller, 1994), as decreasing the amount of cognitive load 

that an individual experiences could lead to overall better task performance given that more 

working memory resources are available to attend to the task at hand. Given that, this study aims 

to investigate the association between extraneous cognitive load and data-visualization 

interpretation efficiency and effectiveness. 

Cognitive load, however, is not the only factor that may affect how users interpret data 

visualizations. Namely, users’ levels of certain individual-difference variables may affect how 

users interpret data visualizations, and may affect how experienced cognitive impacts such 

interpretations. The focal individual-difference variables that this thesis focuses on are 

extraversion, neuroticism, openness to experience, conscientiousness, and locus of control, 

https://www.zotero.org/google-docs/?dUmD9o
https://www.zotero.org/google-docs/?6HKyKV
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which prior research has found to have implications for job performance (Barrick & Mount 

1991; Green & Fisher, 2010). Additionally, to my knowledge there is no research on how 

individual differences and cognitive load interact with each other when examining the 

interpretation of data visualizations. In my thesis, I aim to investigate whether experienced 

cognitive load moderates the association between individual differences and data-visualization 

interpretation efficiency and effectiveness.  

My thesis makes three primary contributions. First, this study has the potential to 

contribute to the understanding of how users’ experience of extraneous sources of cognitive load 

may affect the speed and accuracy of how information is interpreted when data visualizations are 

used as decision-support tools. In this way, my aim is to contribute to the CLT literature by 

applying theoretical tenets to the HR data visualization context. Second, this research will 

contribute to the small but growing body of research around individual differences and the 

interpretation of data visualizations, as well as attempt to identify a previously unexplored 

interaction effect between individual differences and cognitive load in relation to data-

visualization interpretation efficiency and effectiveness.  

In the sections that follow in the introduction, I begin by reviewing the research around 

data visualizations and how it applies to a HRM setting, followed by an examination how 

cognitive load may affect how users interpret data-visualizations as sources of information for 

completing tasks. After that, I review what is currently known about individual differences and 

task performance in general, and how cognitive load may moderate the association between 

individual-difference variables and data-visualization interpretation efficiency and effectiveness.  
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Data Visualizations 

A data visualization can be defined as “a set of processes via which data are graphically 

displayed and interpreted with a particular goal in mind to ultimately derive meaning in the form 

of information and knowledge” (Caughlin & Bauer, 2019, p. 95). A number of other close-

related terms are often used interchangeably when referring to a data visualization, such as a 

plot, chart, graph, diagram, or graphical display. Classic examples of data visualizations include 

the bar graph, line graph, and table. Data visualizations can display information about a single 

variable or the associations between two more variables. 

Data Visualizations as Storytelling and Decision-Support Tools 

Data visualizations can be conceptualized as both storytelling and decision-support tools. 

First, as a storytelling tool, data visualizations can be designed and deployed to report facts and 

convey narratives, which can improve communication and more generally aid interpretation. In 

general, storytelling can make complex information more accessible and more memorable (Roels 

et al., 2017). Given that a data visualization is a type of storytelling tool, it stands to reason then 

that a thoughtfully designed and deployed data visualization has the potential to make 

information more accessible and memorable to users in a variety of settings, including in 

organizations. Second, data visualizations can also be deployed as decision-support tools. The 

information displayed within a data visualization can be interpreted with the goal of finding 

solutions to problems, finding answers to questions, and building knowledge on a particular 

topic, all of which may pave the way for more efficient and effective interpretations and higher 

overall task performance.  

  

https://www.zotero.org/google-docs/?hTBnAI
https://www.zotero.org/google-docs/?hTBnAI
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Role of Data Visualizations in Human Resource Management 

In today’s organizations, managers frequently rely on data visualizations to facilitate task 

completion and decisions relating to staffing, products, and other essential operations. Among 

HR managers, specifically, data visualizations are commonly used to describe, explain, and 

understand the transactions and activities of the workforce. For example, a simple bar graph 

might be used by a team of training specialists to show whether employees who participated in a 

new version of a training program had higher average post-assessment scores than those who 

participated in an older version of a training program. As another example, a line graph might be 

used for workforce planning purposes to illustrate how headcount has changed over time by 

specific organizational units (e.g., marketing, research and development, and operations unit). 

Finally, a variety of data visualization display types – including data visualizations arranged in a 

dashboard – may be used to summarize and describe employee engagement survey responses.  

Design and Deployment of Data Visualizations 

When determining how to best design and deploy a data visualization, it is important to 

consider the characteristics of the intended user and their experiences, the message intended to 

be communicated using the displayed information, and the tasks users may complete using the 

displayed information. These considerations have implications for how efficiently and 

effectively the intended user interprets the information conveyed in the data visualization and 

ultimately how well they perform associated work tasks. To that end, Caughlin and Bauer (2019) 

proposed an integrated framework that highlighted some important considerations when 

designing and deploying data visualizations. Specifically, the integrated framework suggested 

that display characteristics (e.g., display type, display format), user characteristics (e.g., 

individual differences, experience, familiarity), and the tasks and objectives the user may 
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accomplish using the data visualization (e.g., compare data values, identify change over time) 

have implications for the user’s interpretation performance in terms of efficiency and 

effectiveness. Following a portion of this framework, this thesis focuses on the association 

between user characteristics and interpretation efficiency (e.g., speed) and effectiveness (e.g., 

accuracy). Such user characteristics could include the different working memory demands that 

the users are concurrently exposed to (e.g., distractions in the work environment, multitasking) 

as well as relatively stable dispositional characteristics like individual differences. 

If users misinterpret or misidentify information that is conveyed in a data visualization, 

then it is likely that overall interpretation task performance will be affected negatively. For 

example, display characteristics (e.g., trends, display format) can greatly influence how a user 

interprets information contained in a data visualization (Reb & Cropanzano, 2007). Further, 

different user characteristics, such as dispositional tendencies and concurrent work cognitive 

demands, might lead to heterogeneity in interpretations among a group of users. Thus, in 

addition to the design of a data visualization display, it is important to consider how the data 

visualization is deployed and to whom, which implies the importance of being aware of and/or 

sensitive to how end users with different characteristics and experiences might interpret a data 

visualization differently. After all, if a user does not interpret the intended message of the data 

visualization in an efficient or effective manner, then that user may perform poorly when 

applying their interpretation in the context of a work task.  

Data-Visualization Interpretation and Task Performance 

When available, HR managers may interpret information presented in data visualizations 

to aid completion of tasks, which means that data-visualization interpretation has potential 

implications for task performance. Broadly speaking, task performance can be conceptualized as 

https://www.zotero.org/google-docs/?ipuLQO
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one dimension of job performance, where other dimensions include organizational citizenship 

behavior and counterproductive work behavior (Rotundo & Sackett, 2002). Task performance 

can be defined as the “behaviors that contribute to the production of a good or the provision of a 

service” (Rotundo & Sackett, 2002, p. 67), which are not limited to the behaviors that appear in 

the job description. Consistent with Caughlin and Bauer (2019), a well-designed and -deployed 

data visualization may have the potential to improve interpretation efficiency and effectiveness – 

and ultimately enhance task performance. 

Interpretation Efficiency: Time 

In terms of interpretation efficiency, a single data visualization can illustrate graphically a 

difference or association that would otherwise require a lengthy text explanation, thereby 

reducing the amount of time that a busy manager or professional needs to spend when 

interpreting relevant information for the purposes of performing a work task. For example, 

imagine an HR manager who is tasked with identifying which sales employees might be in need 

of performance development plans. The manager could use a line graph like the one presented in 

Figure 5 to efficiently identify which sales employees have had consistently declining 

performance in recent years and thus might be in need of a performance development plan. By 

comparison, a text description of the same information presented visually in the line graph could 

be lengthy and thus lead the manager to spend more time arriving at a decision regarding who 

needs a performance development plan.  

It is important to note that in this context, greater interpretation efficiency corresponds to 

a lower elapsed time and to a faster speed. To avoid confusion and to make subsequent 

hypotheses more intuitive, decision-making efficiency will from this point forward be referred to 

as interpretation time or time spent. 
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Interpretation Effectiveness: Accuracy 

In terms of decision-making effectiveness, a data visualization can be used to summarize 

sometimes complex information (e.g., differences, associations, trends). Extending the same 

example from the previous paragraph, a line graph depicting performance trends over recent 

years for a group of employees may be less cognitively demanding and more digestible than a 

densely written account of the same information. Accordingly, a well-designed and -deployed 

line graph, for example, may make help the HR manager more accurately interpret and evaluate 

the performance-trend data, thereby facilitating their ability to perform their managerial tasks.  

Cognitive Load Theory 

 Cognitive load theory (CLT; Sweller, 2010) posits that there are three different types of 

cognitive load: (a) intrinsic cognitive load (i.e., innate difficulty of a task), (b) extraneous 

cognitive load (i.e., how information is presented), and (c) germane cognitive load (i.e., working 

memory resources that convert into schemas which result in long term memory). Regardless of 

the type, cognitive load consists of two distinguishable components: mental load and mental 

effort (Paas, 1992). Mental load is the amount of load stemming from the task and how it is 

presented, whereas mental effort refers to how many mental resources are being spent on that 

specific task at hand.  

CLT posits that individuals who experience greater cognitive load are more likely to 

experience distractor interference (Murphy et al., 2016). This stems from the idea that 

individuals have limited working memory, and when working memory demands are high, the 

capacity to process information becomes strained. Extraneous cognitive load and intrinsic 

cognitive load are additive, meaning that if you have higher levels of one, then you must strive 

for lower levels of the other (van Merriënboer & Sweller, 2005). If both intrinsic and extrinsic 

https://www.zotero.org/google-docs/?D7mot0
https://www.zotero.org/google-docs/?pkDMoo
https://www.zotero.org/google-docs/?nSLjHM


COGNITIVE LOAD AND DATA VISUALIZATIONS  11 
 

levels of cognitive load are too high, then learning will be impaired and individuals will likely 

not grasp the information (Sweller, 1994). 

 To operationalize cognitive load, a separate working memory task will be given to certain 

participants. This task will be similar to the one found in Lavie (2010) and will help to better 

simulate the complexities of the workplace. Given that cognitive load adds to the amount of 

mental load and mental effort being spent interpreting a data visualization as part of a work task, 

it stands to reason that individuals who are exposed to higher levels of cognitive load will need 

to spend more time interpreting the information contained in a data visualization and that higher 

levels of cognitive load will lead to more interpretation errors – or in other words lower 

accuracy.  

Hypothesis 1: Cognitive load is positively associated with data-visualization 

interpretation time.  

Hypothesis 2: Cognitive load is negatively associated with data-visualization 

interpretation accuracy.  

Individual Differences & Task Performance 

 Individual differences in personality are unique variations within certain characteristics 

that differentiate individuals from one another, where personality can be defined as referring to 

those characteristics of the person that account for consistent patterns of feeling, thinking, and 

behaving (Pervin et al., 2005, p.6). They are an integral part of user characteristics (Caughlin & 

Bauer, 2019), and as such, they are a necessary point of consideration for data-visualization 

interpretation efficiency (i.e., time spent) and effectiveness (i.e., accuracy) as it relates to task 

performance. As shown in the conceptual framework depicted in Figure 1, I will investigate 

https://www.zotero.org/google-docs/?P71p23
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whether cognitive load moderates the association between different individual-difference 

variables and data-visualization interpretation efficiency and effectiveness.  

Figure 1 

Conceptual framework for present study 

 

 

Locus of Control 

Locus of control (LOC) has been chosen as a main area of focus considering the impact 

that it has on a variety of outcomes, such as academic and job performance (Green & Fisher, 

2010). Conventionally, LOC is operationalized such that those with higher scores have a higher 

internal LOC and those with lower scores have a higher external LOC (e.g., Spector, 1988). 

Further, those with a higher LOC look to themselves for direction, whereas those with a lower 

LOC rely more on outside elements, such as a supervisor or manager (Spector, 1982).  

Because individuals with a higher LOC tend to demonstrate better problem-solving skills 

and thus are more likely to persist when a task gets more challenging (Weiss & Sherman, 1973), 

I argue that those who have a higher LOC and who experience higher cognitive load will spend 

https://www.zotero.org/google-docs/?6XuaON
https://www.zotero.org/google-docs/?6XuaON
https://www.zotero.org/google-docs/?hBrCwp
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more time interpreting a data visualization than those who experience a lower cognitive load. In 

other words, I predict that cognitive load moderates the association between LOC and 

interpretation time, such that the association is more positive when cognitive load is higher. 

Hypothesis 3: Cognitive load moderates the association between LOC and data-

visualization interpretation time, such that under conditions of higher cognitive 

load the association between LOC and interpretation time will be more positive.  

Given that those with a higher LOC tend to demonstrate better problem-solving skills 

(Weiss & Sherman, 1973), one would expect the association between LOC and data-

visualization interpretation accuracy to be positive, such that those with a higher LOC arrive at 

more accurate interpretations. Further, because cognitive load is associated with greater mental 

effort and mental load, it stands to reason that the positive association between LOC and 

interpretation accuracy will be attenuated under conditions of higher cognitive load. 

Hypothesis 4: Cognitive load moderates the association between LOC and data-

visualization interpretation accuracy, such that under conditions of higher 

cognitive load the association between LOC and interpretation accuracy will be 

less positive.  

Five-Factor Model 

 Researchers have been interested in the relationship between the five-factor model (FFM) 

and task performance for decades, and the measures of the FFM (i.e., Big Five) are regularly 

used in personnel selection. The FFM consists of five personality dimensions: extraversion, 

openness to experience, neuroticism, agreeableness, and conscientiousness. Meta-analytic 

evidence has shown that these five dimensions tend to show small associations with overall job 

performance, with conscientiousness showing the largest association with overall job 

https://www.zotero.org/google-docs/?hBrCwp
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performance across different occupation types (Barrick & Mount, 1991). Further, in that same 

meta-analytic investigation, when focusing on the manager occupational group, these 

associations were of the same magnitude or slightly larger, which is particularly relevant to this 

study given my focus on HR managers as the target population. Interestingly, a subsequent meta-

analytic investigation by Oh and colleagues (2011) found that the magnitude of associations 

between the five personality dimensions and overall job performance tend to be larger in 

magnitude when personality is rated by observers as opposed to self-rated. With respect to how 

the FFM might influence individuals’ data-visualization interpretations, relatively little research 

has been published in this area to date. To that end, Liu and colleagues (2020) reviewed the data-

visualization literature and found that only a few studies that looked at the potential impact of 

personality on how individuals’ interpret the information displayed in data visualizations, leading 

the authors to argue that we need more research in this area. Heeding this call, this study aims to 

address this topic. Next, I describe each FFM dimension and how it might affect data-

visualization interpretation. 

 Neuroticism. Neuroticism is defined as the propensity to experience negative emotions 

such as stress, nervousness, or moodiness (Goldberg, 1992). Neuroticism is sometimes referred 

to by the opposite end of the same continuum: emotional stability. In general, neuroticism tends 

to be negatively associated overall job performance (Barrick & Mount, 1991). Further, those 

with higher levels of neuroticism have been found to interpret data visualizations and complete 

associated tasks in less time but with fewer insights reported (Green & Fisher, 2012). Given this, 

I predict that neuroticism will be negatively associated with data-visualization interpretation 

time. In the presence of higher cognitive load, I argue that the negative association will be 

attenuated. 

https://www.zotero.org/google-docs/?JWcbmT
https://www.zotero.org/google-docs/?IxNgyh
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Hypothesis 5: Cognitive load moderates the association between neuroticism and data-

visualization interpretation time, such that under conditions of higher cognitive 

load the association between neuroticism and interpretation time will be less 

negative.  

Based on Green and Fisher’s (2012) that those with higher neuroticism tend to glean 

fewer insights from data visualizations, I expect a negative association between neuroticism and 

data-visualization interpretation accuracy. Moreover, I predict that this association will become 

more negative when individuals are faced with greater mental effort and mental load that is 

associated with higher cognitive load. 

Hypothesis 6: Cognitive load moderates the association between neuroticism and data-

visualization interpretation accuracy, such that under conditions of higher 

cognitive load the association between neuroticism and interpretation accuracy 

will be more negative.  

Extraversion. Extraversion can be briefly described as how likely individuals are to 

interact with the outside world (Goldberg, 1992). The construct is typically conceptualized as 

existing along a introversion-extraversion continuum, where individuals who have higher 

extraversion tend to be more outgoing, and individuals who have lower extraversion tend to be 

less outgoing and less likely to engage with others. Similar to their aforementioned findings 

regarding neuroticism, Green and Fisher (2012) found that those with higher extraversion tended 

to interpret data visualizations and complete associated tasks in less time but with fewer insights 

reported. Given that, I expect cognitive load to moderate the associations between extraversion 

and data-visualization interpretation time and accuracy in the same manner as described above 

for neuroticism. 

https://www.zotero.org/google-docs/?IxNgyh
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Hypothesis 7: Cognitive load moderates the association between extraversion and data-

visualization interpretation time, such that under conditions of higher cognitive 

load the association between extraversion and interpretation time will be less 

negative.  

Hypothesis 8: Cognitive load moderates the association between extraversion and data-

visualization interpretation accuracy, such that under conditions of higher 

cognitive load the association between extraversion and interpretation accuracy 

will be more negative.  

Openness to experience. Openness to experience can be described as being imaginative, 

creative, and curious about the world (Goldberg, 1992), and sometimes this dimension is referred 

to as intellect. Individuals that scored high on this personality dimension tend to have better 

problem-solving skills (Myszkowski et al., 2015). Ziemkiewicz and Kosara (2009) found that 

those that were higher on openness were more comfortable when working with conflicting visual 

and verbal metaphors and they also add that users that are high on this dimension were likely to 

understand the visual metaphor based on their spatial ability. This suggests that openness to 

experience may be an important personality dimension in the context of data-visualization 

interpretation, and specifically I expect that those with higher openness to experience will spend 

less time interpreting data visualizations and will make more accurate interpretations. With 

respect to cognitive load, I predict that both associations will be attenuated under conditions of 

higher cognitive load due to the associated greater mental demands.  

Hypothesis 9: Cognitive load moderates the association between openness to experience 

and data-visualization interpretation time, such that under conditions of higher 

https://www.zotero.org/google-docs/?IxNgyh
https://www.zotero.org/google-docs/?KmvWYI
https://www.zotero.org/google-docs/?XYhKLa
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cognitive load the association between openness to experience and interpretation 

time will be less negative.  

Hypothesis 10: Cognitive load moderates the association between openness to 

experience and data-visualization interpretation accuracy, such that under 

conditions of higher cognitive load the association between openness to 

experience and interpretation accuracy will be less positive.  

Conscientiousness. Conscientiousness can be described as the propensity to remain 

organized, reliable, and thorough (Goldberg, 1992), and people who are high in 

conscientiousness tend to be task-oriented and dutiful. As mentioned above, this dimension of 

the FFM is the most consistent predictor of job performance across all job types (Barrick & 

Mount, 1991). Yet, to date, research has not found conscientiousness to be associated with task 

performance involving data-visualization interpretation (Brown et al., 2014; Ziemkiewicz & 

Kosara, 2009), which may be an artifact of the types of visualizations used in these studies. With 

that being said, given that people who are higher in conscientiousness tend to display more self-

discipline and tend to be more task oriented, I suspect that those with higher conscientiousness 

tend to spend more time interpreting data visualizations and tend to make more accurate 

interpretations. I predict that the expected positive association between conscientiousness and 

data-visualization interpretation time will be augmented under conditions of higher cognitive 

load due to the associated mental effort and load, and conversely I predict that the expected 

positive association between conscientiousness and data-visualization interpretation accuracy 

will be attenuated under conditions of higher cognitive load. 

Hypothesis 11: Cognitive load moderates the association between conscientiousness and 

data-visualization interpretation time, such that under conditions of higher 

https://www.zotero.org/google-docs/?LbZdtb
https://www.zotero.org/google-docs/?LbZdtb
https://www.zotero.org/google-docs/?urSWMB
https://www.zotero.org/google-docs/?urSWMB
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cognitive load the association between conscientiousness and interpretation time 

will be more positive.  

Hypothesis 12: Cognitive load moderates the association between conscientiousness and 

data-visualization interpretation accuracy, such that under conditions of higher 

cognitive load the association between conscientiousness and interpretation 

accuracy will be less positive.  

Agreeableness. Agreeableness can be defined as the proclivity to be kind, trusting, or 

affable amongst a group of individuals (Goldberg, 1992). Although some researchers have 

investigated whether agreeableness is associated with task performance (Brown et al., 2014; 

Ziemkiewicz & Kosara, 2009), the results have been inconclusive. Given the construct’s focus 

on harmony with others, it is unlikely that this dimension of personality will be associated with 

data-visualization interpretation in any systematic manner; thus, I have no hypotheses involving 

agreeableness. 

Method 

Design 

 A between-subjects design was used in this study, where the between-subjects factor 

consisted of three cognitive-load levels (control, moderate, high). Specifically, all participants 

completed individual-difference and demographic measures and were subsequently randomly 

assigned to one of the three cognitive-load conditions. After assigned to a condition, each 

participant was then exposed to four data-visualization tasks, which varied in terms of their chart 

embellishments and chartjunk. After reviewing each data visualization, participants were then 

measured on the time and accuracy with which they completed each data-visualization task and 

their confidence level regarding the accuracy of their decision.  

https://www.zotero.org/google-docs/?IxNgyh
https://www.zotero.org/google-docs/?iFXGJJ
https://www.zotero.org/google-docs/?iFXGJJ
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Sample and Participants 

 Undergraduate business students were recruited for this study using a large university’s 

online participant recruitment platform called the SONA system. Business students were chosen 

given that these students should be familiar with data visualizations and management principles, 

potentially limiting the number of potential confounding variables associated with these tasks. 

Eighty-one students were recruited using this platform; however, 16 students were removed for 

failing an attention check item, and 7 students were removed for completing the entire survey in 

less than 5 minutes – the latter of which was an a priori threshold set to exclude participants who 

completed the study too hastily. Of the 58 participants who were retained, 31.0% (n = 18) were 

in the control group, 32.8% (n = 19) were in the moderate cognitive load group, and 36.2% (n = 

21) were in the high cognitive load group. In regard to their gender identities, 24.1% (n = 14) 

identified as men, 74.1% (n = 43) identified as women, and 1.7% (n = 1) identified as 

genderqueer. The race and ethnicity statistics are as follows: 37.9% (n = 22) identified as White, 

17.2% (n = 10) identified as Hispanic or Latino, 22.4% (n = 13) indicated that they were Asian, 

3.4% (n = 2) identified as American Indian or Alaska Native, 3.4% (n = 2) identified as Black or 

African American, and 15.5% (n = 9) identified with two or more races or ethnicities. 

Participants’ ages ranged from 18 to 41 years, with an average age of 24.7 years and a standard 

deviation of 5.3. 

Measures 

 The individual-differences measures were administered at the beginning of the study, and 

the data-visualization interpretation efficiency and effectiveness measures were administered 

after each data-visualization task. 
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Individual Differences  

Participants completed measures intended to assess the Five-Factor Model (FFM) and 

locus of control (LOC). Sixteen items from the Mini-IPIP (Donnellan et al., 2006; Goldberg, 

1992; Goldberg 1999) were used to assess the following 4-item dimensions: extraversion, 

openness to experience, neuroticism, and conscientiousness; agreeableness items were not used 

from this measure because I did not make any hypotheses associated with that personality 

dimension. These dimensions were assessed using a 5-point Likert agreement response format, 

ranging from 1 (“strongly disagree”) to 5 (“strongly agree”). Each dimension had 4 items for its 

respective subscale, with 2 reverse-coded items included in the extraversion, neuroticism, and 

conscientiousness dimensions and 3 reverse-coded items included in the openness to experience 

dimension. Sample items include: extraversion (“I am the life of the party.”; “I don’t talk a lot. 

(reverse-coded)”; α = .64), openness to experience (“I have a vivid imagination.”; “I am not 

interested in abstract ideas. (reverse-coded)”; α = .70), neuroticism (“I have frequent mood 

swings.”; “I am relaxed most of the time. (reverse-coded)”; α = .61), and conscientiousness (“I 

get chores done right away.”; “I make a mess of things. (reverse-coded)”; α = .45). Individuals 

that were higher on these respective scales exhibited stronger characteristics of the construct.  

LOC was measured using a 7-item scale (Spector, 1988; α = .74). This scale used a 5-

point Likert response format, ranging from 1 (“strongly disagree”) to 5 (“strongly agree”). There 

were 6 items on this scale that were scored regularly, and 1 item was reverse-coded. The reverse-

coded item was dropped to increase internal consistency reliability, leaving 6 items. Sample 

items for LOC included: “A job is what you make of it.” and “If you know what you want out of 

a job, you can find one that gives it to you.”. Higher scores on this scale are associated with 

higher internal LOC, whereas lower scores are associated with a higher external LOC.  

https://www.zotero.org/google-docs/?qXmMwa
https://www.zotero.org/google-docs/?qXmMwa
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Data-Visualization Interpretation Efficiency and Effectiveness Measures 

Data-visualization interpretation efficiency and effectiveness were operationalized as 

time and accuracy, respectively. Time was assessed by determining how long it took a 

participant to respond to each question after interpreting each data visualization task. A 

composite variable was created for participants by taking the average response time for all of the 

participants successfully completed tasks. Participants who were unable to complete the task 

within 60 seconds had their responses removed for that question, as the instructions were to 

select a response quickly. 

Accuracy was assessed based on whether a participant interpreted a data visualization 

correctly and thus answered the associated task question correctly (i.e., decision-making 

accuracies). Correct responses were given a value of 1 and incorrect responses were given a 

value of 0. Composite variables were created for each participant by using the sum of all the 

correct responses, with possible scores ranging from 0 to 4. Out of the 58 participants who 

completed the survey, 15.52% (n = 9) answered 0 correctly, 29.31% (n = 17) answered 1 

correctly, 31.03% (n = 18) answered 2 correctly, 22.41% (n = 13) answered 3 correctly, and 

1.7% (n = 1) answered all 4 questions correctly.  

As an exploratory data-visualization interpretation measure, I created a confidence-

accuracy measure. to determine an individual’s confidence level in the accuracy of their response 

to each question, participants self-reported how confident they were with each response ranging 

from 0 (“not at all confident”) to 100 (“very confident”). These values were then multiplied by 1 

or -1 depending on whether the participant responded correctly (1) or incorrectly (-1), and an 

overall confidence-accuracy estimate was computed based on the average confidence-accuracy 

for each of the four data-visualization tasks.  
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Procedure and Materials 

 Participants were recruited through a large university’s business school using the SONA 

platform, and students received extra credit for participating courses for participating in a certain 

number of research studies. They were able to log into the survey remotely at their own leisure. 

First, they clicked on the Qualtrics survey and completed the informed consent page. Next, they 

completed the individual difference measures. Afterwards, they were randomly placed into one 

of the three cognitive load conditions (control, moderate, high). Participants who were assigned 

to the moderate and high conditions were given a working memory task that they were to 

complete in addition to the primary data-visualization task. This task was completed after the 

data-visualization task and changed after each task was completed. Every participant was then 

given a task where they were prompted to answer a specific question related to the data 

visualization, and this was completed a total of four times with a different task and data 

visualization each time. Participants’ interpretation time and accuracy were recorded after each 

data-visualization task was completed. 

Cognitive-Load Manipulation 

 To ensure that cognitive load is being operationalized as opposed to perceptual load, 

participants were randomly assigned to one of three conditions. The first group did not receive a 

working-memory task and served as the control group. The second group received a moderate-

level working-memory task where they are to memorize a four-digit alphanumeric sequence 

prior to the main task (see Figure 2). A different sequence was repeated after each primary data-

visualization task. The third group received high-level working-memory, which was similar to 

the moderate-level task except that the alphanumeric sequence had no predictable pattern (see 

Figure 3). These secondary working-memory tasks changed after each primary task was 
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completed, so that there were four unique working-memory tasks that accompanied the four 

primary data-visualization tasks. Participants who were able to return at least 50% of the 

sequence in any order were considered to have successfully completed the working-memory 

task. Those who did not successfully complete the working-memory task had null values entered 

for their data-visualization interpretation measures. 

Figure 2 

Moderate cognitive-load condition 

 

Note. The alphanumeric sequences in this moderate cognitive load condition have a relatively 

predictable pattern, making this sequence easier to recall. 

Figure 3 

High cognitive-load condition 

 

Note. The alphanumeric sequences in this high cognitive-load condition do not have predictable 

patterns, as these sequences are random. These sequences are more difficult to remember than 

the moderate cognitive-load condition. 

Data-Visualization Interpretation Tasks 

 Specific prompts were given to individuals after the working memory task as they viewed 

the data visualization. Participants were asked to complete specific spatial tasks while analyzing 

the four different data visualizations one by one. The data visualizations consisted of two bar 
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graphs (Figure 4) and two line graphs (Figure 5). All of the data visualization tasks had eight 

possible responses.  
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Figure 4 

Bar graph data-visualization tasks 
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Figure 5 

Line graph data-visualization tasks 
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Results 

 Table 1 shows the correlations between the focal non-manipulation variables. Because 

conscientiousness had poor levels of internal consistency reliability (α = .45), Hypotheses 11 and 

12 were not tested. Extraversion and neuroticism had questionable levels of internal consistency 

reliability (α = .64 and α = .61, respectively). Locus of control (LOC) and openness to experience 

had adequate levels of internal consistency reliability (α > .70). Table 2 includes the means and 

standard deviations for each of the focal variables for each of the three cognitive-load conditions. 

Tables 1, 3, and 4 were created using the apaTables R package (Stanley, 2021). 
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Table 1  

  

Zero-order correlations with confidence intervals for focal non-manipulation variables 

  

Variable 1 2 3 4 5 

      

1. Speed           

            

2. Accuracy .31*         

  [.05, .52]         

            

3. Locus of control .01 .04       

  [-.24, .27] [-.22, .30]       

            

4. Neuroticism -.33* -.33* -.04     

  [-.54, -.08] [-.54, -.07] [-.29, .22]     

            

5. Extraversion -.01 .11 .01 .05   

  [-.27, .25] [-.15, .36] [-.25, .27] [-.22, .30]   

            

6. Openness to experience .24 .01 -.06 -.05 -.11 

  [-.02, .47] [-.25, .26] [-.31, .20] [-.30, .21] [-.36, .15] 

            

 

Note. n = 58. Values in square brackets indicate the 95% confidence interval for each correlation. The confidence interval is a 

plausible range of population correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. ** 

indicates p < .01. 
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Table 2 

Means and standard deviations of focal variables by levels of cognitive load 

(control, moderate, high) and across cognitive load levels (overall) 

 

 Control  Moderate  High  Overall 

Variables M SD M SD M SD M SD 

Speed 30.43 8.88 31.67 10.28 32.29 8.64 31.51 9.15 

Accuracy 2.00 1.14 1.58 1.12 1.43 .87 1.66 1.05 

Locus of 

control 

3.92 .72 3.75 .76 3.71 .63 3.79 .70 

Neuroticism 2.97 .76 2.87 .93 3.08 .76 2.98 .81 

Extraversion 2.97 1.00 3.00 .71 2.77 .92 2.91 .87 

Openness to 

experience 

3.56 .93 3.5 .76 3.81 .69 3.63 .79 

Note. M and SD are used to represent mean and standard deviation, respectively. 

Hypotheses 1 and 2 

One-way ANOVAs were used to determine whether there were significant differences in 

data-visualization interpretation time and accuracy across the three different groups. For 

Hypothesis 1, I predicted that cognitive load would be positively associated with data-

visualization interpretation time. Because there were no significant differences in time between 

the three cognitive-load groups (F 2,55 = .201, p = .81), Hypothesis 1 was not supported. For 

Hypothesis 2, I predicted that cognitive load would be negatively associated with data-

visualization interpretation accuracy. Because there were no significant differences in the 

number of accurate interpretations between the three cognitive-load groups (F 2,55 = 1.53, p = 

0.23), Hypothesis 2 was not supported.  

Hypotheses 3-10 

 Moderated multiple linear regression (MMLR) was used to test Hypotheses 3-10, as these 

hypotheses involved a continuous predictor variable (i.e., LOC, neuroticism, extraversion, 

openness to experience) and a categorical moderator variable (i.e., cognitive-load variable) with 
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data-visualization interpretation time and accuracy as the outcome variables. [Please note that, as 

mentioned above, Hypotheses 11 and 12 were dropped due to the low internal consistency 

reliability of the conscientiousness measure.] Because the cognitive-load variable had three 

levels (control, moderate, high), two dummy variables were created with the control condition as 

the reference group. Each hypothesis was tested using hierarchical linear regression as follows: 

(a) a nested additive model was estimated in which one of the individual-difference variables and 

the two cognitive-load dummy variables were specified as predictors, and one of the data-

visualization interpretation measures (i.e., time or accuracy) was specified as the outcome; (b) a 

full model was estimated which include the same variables as the nested model as well as the 

product terms between the individual-difference variable and the two dummy variables; (c) a 

nested-model comparison was performed to evaluate whether the full model fit the data 

significantly better than the nested model.    

Locus of Control (LOC) 

For Hypothesis 3, I predicted that cognitive load would moderate the association between 

LOC and data-visualization interpretation time, such that under conditions of higher cognitive 

load the association between LOC and interpretation time would be more positive. The full 

model that included the product terms did not fit the data significantly better than the nested 

model (F 2,52 = 1.452, p = .243), and thus Hypothesis 3 was not supported. For Hypothesis 4, I 

predicted that cognitive load would moderate the association between LOC and data-

visualization interpretation accuracy, such that under conditions of higher cognitive load the 

association between LOC and interpretation accuracy would be less positive. The addition of the 

product terms did not result in a significantly better fitting model (F 2,52 = 3.133, p = .052), and 

thus Hypothesis 3 was not supported.  
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Neuroticism 

For Hypothesis 5, I predicted that cognitive load would moderate the association between 

neuroticism and data-visualization interpretation time, such that under conditions of higher 

cognitive load the association between neuroticism and interpretation time would be less 

negative. The full model that included the product terms did not fit the data significantly better 

than the nested model (F 2,52 = 3.159, p = .051), and thus Hypothesis 5 was not supported. For 

Hypothesis 6, I predicted that cognitive load would moderate the association between 

neuroticism and data-visualization interpretation accuracy, such that under conditions of higher 

cognitive load the association between neuroticism and interpretation accuracy would be more 

negative. The full model that included the product terms did not fit the data significantly better 

than the nested model (F 2,52 = 1.840, p = .169), and thus Hypothesis 6 was not supported.  

Extraversion 

For Hypothesis 7, I predicted that cognitive load would moderate the association between 

extraversion and data-visualization interpretation time, such that under conditions of higher 

cognitive load the association between extraversion and interpretation time would be less 

negative. The full model that included the product terms did not fit the data significantly better 

than the nested model (F 2,52 = .826, p = .444), and thus Hypothesis 7 was not supported. For 

Hypothesis 8, I predicted that cognitive load would moderate the association between 

extraversion and data-visualization interpretation accuracy, such that under conditions of higher 

cognitive load the association between extraversion and interpretation accuracy would be more 

negative. The full model that included the product terms did not fit the data significantly better 

than the nested model (F = 2,52 = .410, p = .666), and thus Hypothesis 8 was not supported.  
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Openness to Experience  

For Hypothesis 9, I predicted that cognitive load would moderate the association between 

openness to experience and data-visualization interpretation time, such that under conditions of 

higher cognitive load the association between openness to experience and interpretation time 

would be less negative. The full model that included the product terms did not fit the data 

significantly better than the nested model (F 2,52 = .104, p = .901), and thus Hypothesis 9 was 

not supported. For Hypothesis 10, I predicted that cognitive load would moderate the association 

between openness to experience and data-visualization interpretation accuracy, such that under 

conditions of higher cognitive load the association between openness to experience and 

interpretation accuracy would be less positive. The full model that included the product terms did 

not fit the data significantly better than the nested model (F 2,52 = .295, p = .746), and thus 

Hypothesis 10 was not supported.  

Supplementary Analyses 

 In supplementary analyses, I relaxed the time constraint applied to each question to 90 

seconds instead of 60 seconds. This resulted in more observations being retained. The associated 

zero-order correlations and means and standard deviations appear in Table 3. The percentage of 

correct responses was as follows: 6.9% (n = 4) answered 0 correctly, 29.3% (n = 17) answered 1 

correctly, 34.5% (n = 20) answered 2 correctly, 24.1% (n = 14) answered 3 correctly, and finally 

5.2% (n = 3) answered all 4 correctly. With the exception of Hypothesis 6, all of the hypotheses 

remained unsupported. Hypothesis 6 received partial support when the time constraint was 

relaxed to 90 seconds. Specifically, cognitive load was found to moderate the association 

between neuroticism and data-visualization interpretation accuracy (F 2,52 = 3.416, p = .040); 

however, the form of the interaction was not exactly as predicted. As shown in Table 4 and 
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Figure 6, the association between neuroticism and interpretation accuracy was significant and 

negative for participants from the moderate cognitive load group (SS = -.87, p < .05), but the 

significant slopes were not significant for the control group (SS = .07, p = .82) or the high 

cognitive-load group (SS = -.33, p = .21). The association found for those who experienced 

moderate cognitive load suggests that there was a negative association between neuroticism and 

interpretation accuracy, such that those that scored higher in the neuroticism scale interpreted 

information displayed in data visualizations with less accuracy. The amount of incremental 

variance explained by the product terms in relation to interpretation accuracy when controlling 

for the additive effects would generally be considered to be medium in magnitude (ΔR2 = .093).  

 As an exploratory interpretation measure and using the original 60-second time 

constraint, I tested same models as above with the confidence-accuracy data-visualization 

interpretation measure. A one-way ANOVA was used to determine whether there were 

significant differences in the overall confidence levels between the three groups. The results 

showed confidence-accuracy levels did not differ between the three cognitive-load groups (F 

2,55 = 2.18, p = .12). Additionally, confidence measures were further analyzed by conducting a 

series of MMLRs using nested-model comparisons for each individual-difference variable to 

identify whether cognitive load moderated the associations between each individual-difference 

variable and confidence-accuracy. Cognitive load did not moderate the association between LOC 

and confidence-accuracy levels (F 2,52 = 1.848, p = .168). Cognitive load did not moderate the 

association between neuroticism and confidence-accuracy levels (F 2,52 = 2.932, p = .062). 

Cognitive load did not moderate the association between extraversion and confidence-accuracy 

levels (F 2,52 = .680, p = .511). Cognitive load did not moderate the association between 

openness to experience and confidence-accuracy levels (F 2,52 = .987, p = .379). 
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Table 3  

  

Means, standard deviations, and zero-order correlations with confidence intervals 

  

Variable M SD 1 2 3 4 5 6 

         

1. Speed 36.41 11.79             

                  

2. Accuracy 1.91 1.01 .22           

      [-.04, .46]           

                  

3. Locus of control 3.79 .70 -.12 -.01         

      [-.37, .14] [-.27, .25]         

                  

4. Neuroticism 2.98 .81 -.28* -.37** -.04       

      [-.50, -.03] [-.57, -.12] [-.29, .22]       

                  

5. Extraversion 2.91 .87 -.08 .09 .01 .05     

      [-.33, .18] [-.18, .34] [-.25, .27] [-.22, .30]     

                  

6. Openness to experience 3.63 .79 .10 -.00 -.06 -.05 -.11   

      [-.16, .35] [-.26, .26] [-.31, .20] [-.30, .21] [-.36, .15]   

                  

7. Confidence 2.87 40.24 .22 .88** -.03 -.33* .09 .05 

      [-.05, .45] [.81, .93] [-.28, .23] [-.54, -.07] [-.18, .34] [-.21, .30] 

                  

Note. n = 58. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% 

confidence interval for each correlation. The confidence interval is a plausible range of population correlations that could have caused 

the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01. 

Table 4  

  

Nested-model comparison with interpretation accuracy as the outcome 
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Predictor b 

b 

95% CI 

[LL, UL] 

sr2  

sr2  

95% CI 

[LL, UL] 

Fit Difference 

Intercept 3.62** [2.60, 4.63]     

Dummy Variable (High 

Cognitive Load) 
-.61* [-1.21, -.01] .06 [-.05, .17]   

Dummy Variable (Moderate 

Cognitive Load) 
-.43 [-1.04, .19] .03 [-.05, .11]   

Neuroticism -.45** [-.76, -.14] .13 [-.03, .28]   

     R2   = .200**  

     95% CI[.02,.34]  

       

Intercept 2.08* [.33, 3.84]     

Dummy Variable (High 

Cognitive Load) 
.55 [-1.86, 2.97] .00 [-.02, .03]   

Dummy Variable (Moderate 

Cognitive Load) 
2.30* [.07, 4.53] .06 [-.04, .16]   

Neuroticism .07 [-.51, .64] .00 [-.01, .01]   

Dummy Variable (High 

Cognitive Load) X 

Neuroticism 

-.40 [-1.17, .38] .01 [-.04, .07]   

Dummy Variable (Moderate 

Cognitive Load) X 

Neuroticism 

-.93* [-1.66, -.20] .09 [-.04, .21]   

     R2   = .293** ΔR2   = .093* 

     95% CI[.05,.42] 95% CI[-.03, .22] 

Note. n = 58. A significant b-weight indicates the semi-partial correlation is also significant. b represents unstandardized regression 

weights. sr2 represents the semi-partial correlation squared. LL and UL indicate the lower and upper limits of a confidence interval, 

respectively. * indicates p < .05. ** indicates p < .01.
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Figure 6 

Simple slopes plot of significant interaction between neuroticism and cognitive load in relation 

to data-visualization interpretation accuracy 
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Discussion 

 

All the hypotheses that were tested were not supported, except for Hypothesis 6 from the 

supplementary analysis, which could be due to low levels of internal consistency reliability 

and/or a lower-than desired statistical power due to a relatively small sample (n = 58). There may 

be other underlying user characteristics that affected this sample which could better explain the 

null results. The significant moderation found within the supplementary analyses indicates that 

when cognitive load was moderate, those with highest neuroticism tended to interpret data 

visualizations with the lowest accuracy. This is partially aligned with the proposed hypothesis, 

but unexpectedly there was no association between neuroticism and interpretation accuracy for 

those who experienced a high level of cognitive load. Interestingly, evidence of this moderation 

was only found when the time constraint was relaxed from 60 to 90 seconds.  

Implications 

From a theoretical perspective, researchers interested in data visualizations should 

consider the impact that a distracting environment has on participants who have higher levels of 

neuroticism. These distracting environments contribute to extraneous cognitive load and may 

affect interpretation accuracy. Another consideration is the effect that task switching can have on 

these individuals. If participants are supposed to remember certain minutiae of an old task while 

they go on to complete another task, then this may further affect interpretation accuracy since 

they would have less working memory resources available. This relationship was only found 

within the moderate level cognitive load group, which may be indicative of either a small 

sample, or a faulty manipulation for the high-level cognitive load group.  

 From a practical perspective, developers of these data visualizations should consider how 

cognitive load stemming from the work environment and HR managers’ level of neuroticism 
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might interaction and affect interpretation accuracy. Given that cognitive load stems from the 

idea that humans have a limited working memory capacity, it would make sense to try and limit 

the amount of working-memory demands HR managers experience when they are tasked with 

interpreting a data visualization – especially for those who have higher levels of neuroticism. 

This could be as simple as making sure that the users are not working on multiple tasks at once 

or not working in a distracting workspace. This could allow for more working memory demands 

to be directed at the task at hand, which could lead to better interpretation time and effectiveness. 

Limitations 

There were several limitations in this study that should be kept in mind when interpreting 

the results. First, the method of simulating cognitive load by means of a working-memory task 

may not fully encapsulate all the working memory demands that individuals experience in the 

workplace, which may affect the generalizability of these results. Surely the intricacies of the 

workplace go further than simply memorizing an alphanumeric sequence. Second, only two data-

visualization display types were used: bar graph and line graph. These are two of the most 

common data visualization display types, but using more complex data-visualization display 

types – such as heatmaps or alluvial diagrams – could broaden the implications of the present 

study. Third, this sample included undergraduate business students as opposed to HR managers. 

The business students likely had varying levels of exposure to these types of data visualizations 

and to manage principles in general, whereas HR managers likely have strong domain and 

context knowledge to facilitate their interpretations. Fourth, the relatively small sample size may 

have resulted in lower-than-desired statistical power and thus my ability to find true effects was 

reduced. Finally, internal consistency reliabilities for some of the personality measures were less 

than the conventional .70 cutoff, which may have limited the magnitude of the effects I observed. 
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Future Directions 

Future researchers may be interested in experimenting with different data visualization 

display types to see how users analyze them in a similar type of study. With the massive 

advances in computational power, there is far more that we can accomplish with data 

visualizations beyond the use of static images. Researchers may want to explore how users 

interact with data visualizations that can be easily manipulated by the user by using dashboards. 

This could generate insight on how different users explore certain data visualizations depending 

on their unique user characteristics.  

To expand upon this present study, future researchers may look at incorporating different 

types of audio or visual forms of cognitive load that better simulate the workplace, such as an 

email notification that comes up in the middle of the task. Additionally, it may be interesting to 

add different types of questions, as all the vignettes in this study contained single choice 

response questions. By introducing different types of questions, such as a rank order with 

weighted responses or short answer response, there may be more room for interpretability. This 

could create more insights into how users analyze data visualizations, and how this affects their 

overall interpretation efficiency and effectiveness. 

Conclusion 

 This thesis explored whether cognitive load impacts data visualization effectiveness and 

efficiency, as well as investigated whether cognitive load moderated the association between 

individual differences and interpretation time and accuracy. A pilot study was conducted to test 

these claims, and although all the tested hypotheses were non-significant, there are still 

significant contributions to consider. This work adds to the research around CLT by applying 

these theoretical principles to an HRM context. This thesis has also contributed to the growing 
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body of literature around individual differences and data visualizations. Finally, this work has 

received partial support in the discovery that cognitive load moderates the association between 

neuroticism and interpretation accuracy. This interaction effect was only present within one of 

the groups, and it was only found after supplementary analyses, nonetheless the interaction effect 

found was significant. This finding indicates the need for future research into this area to further 

explore this interaction. 

Overall, the contributions within this thesis help us move toward a better understanding 

of how cognitive load and individual differences interact when working with data visualizations. 

Data visualizations can be incredibly powerful decision-support tools; however, it is imperative 

that the intended message is not missed. If HR managers within an organization have higher 

levels of neuroticism and they are experiencing moderate levels of cognitive load, then they may 

have poorer interpretation accuracy. To mitigate the likelihood of this happening, managers 

should be mindful of their workplace environment when they are analyzing data visualizations. 

Extraneous workplace cognitive demands can take away from interpreting data visualizations 

and by eliminating them you could allow for more working memory resources to be allocated 

towards the primary task at hand.  

For those interested, there is a direct link that includes all the R code used in this thesis 

within the appendix. The code contains each step that was mentioned along with annotations 

explaining what I did. 
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Appendix 

Annotated R Code  

 All the R code used in this thesis has been uploaded to the Open Science Framework 

(OSF.io) and it is publicly available. Here is a direct link that leads you to the project where the 

code is stored: https://osf.io/muejf/?view_only=1e729948a8b54ec99d2ddda82859d51d.  

https://osf.io/muejf/?view_only=1e729948a8b54ec99d2ddda82859d51d
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