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The dynamics of ultrashort pulse generation and amplification in dye lasers is

studied in this dissertation. In particular, we have developed general semiclassical models

for ultrashort pulse dye laser amplifiers and oscillators. These models start 감om

Maxwell’s equation for the electric field and density matrix equations for the active laser

medium. A finite coherence time or phase memory time of the molecular wave flmctions ,

a finite vibrational relaxation time for the lower electronic state of the dye laser transition,
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an isotropic molecular orientational distribution, and an arbitrary pump polarization are all

taken into account. Based on these models, specific topics that are discussed herein

include pump polarization effects, timing and detuning studies in synchronously pumped

mode-locked dye lasers, and amplification of ultrashort pulses in dye laser amplifiers.

Properties such as pulse width, pulse shape, pulse intensity, pulse stability, pulse

amplification efficiency, etc. , are studied in detai l.
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CHAPTERI

INTRODUCTION

Dye lasers are perhaps the most versatile and one of the most successful laser

sources known today. Indeed, at the time of the discovery of this class of lasers by

Sorokin and Lankard [1] , few could have anticipated their spectacular diversification and

their significant contribution to basic physics, chemistry, biology, and additional fields.

Dye lasers can operate in both pulsed and continuous wave (cw) conditions that

are tunable from the near-UV to near-IR. Dynamics has been a issue to study in laser

systems, and of course, is not limited to dye lasers. In general, dynamics means motion.

Dynamics addresses the forces at work in a system, specially, how they actively interplay

and change. At the root of all dynamics is a f10w or exchange of energy. For example, in

mechanical systems, we encounter forces that change the momentum and energy of

particles in the system [2].

A laser is a special optical transducer. A laser converts energy supplied by a pump

source into coherent light. When we design lasers, we seek both this energy conversion

and to control the coherence properties of the light. By studying and modeling the

dynamics of a laser, we can determine the abs이ute limits that we can achieve. In this

dissertation, we will study the dynamics of one class of the dye laser--ultrashort pulsed dye

lasers.

Depending on the particular attributes of the system at hand, these lasers produce

wavelength tunable pulses in the range of 10-1
-1 sec to 10-12 sec. These ultrashort optical

pulses have found extensive applications in areas such as spectroscopy and
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photochemistry, electronic material and electronic device characterization, electro-optic

and opto-optic sampling, optical communication and optical computing. Driven by the

needs of ultrashort pulse applications, some researchers seek the ways to produce stable

pulses with shorter and shorter pulsewidth at high repetition rate. On the other hand,

means to amplify pulses to higher and higher pulse energy are also sought. In general,

stable and short pulses with high energy are most desirable.

This dissertation intends to investigate the dynamics of such ultrashort pulsed dye

lasers concerning the pulse production and amplification. Even though the gain

bandwidths of dye media used in the ultrashort dye lasers are wider compared to other

laser active media, they are not infinite. As the limit of the bandwidth is approached,

dynamic properties such as pulse widths, peak intensity, stability, amplification efficiency,

etc. ought to be understood.

In Chapter II, a comprehensive semiclassical model governing the dynamics of

ultrashort pulse dye laser amplifiers and oscillators is derived in detail. This model started

from density matrix equations for the dye laser medium and Maxwell equation for the

electric field. The model includes isotropic molecular distribution, a finite vibrational

relaxation time, a finite coherence time, and an arbitrary pump polarization misalignment.

It is believed that this is the most general model of ultrashort pulse dye lasers to date. In

addition, corresponding simplified models such as a rate equation model and a

unidirectional distribution model are also derived. Based on models developed in Chapter

II, we have, in Chapter III, investigated the pump polarization effects in synchronously

pumped mode-locked dye lasers, which is one class of most reliable ultrashort pulse dye

lasers. Effects on pulse width, pulse shape, pulse intensity, etc. are included. In Chapter

IV, we have addressed the problem of timing and detuning of synchronously pumped

mode-locked dye lasers. Pulse occurrence time as a function of the cavity length
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mismatch is studied in detail both theoretically and experimentally. The issue of ultrashort

pulse amplification by dye laser amplifiers is investigated in Chapter V. The validity of

conventional models is discussed when applied to ultrashort pulse amplification.

Coherence effects are found to play crucial roles in modeling the amplification of

ultrashort pulses in dye amplifiers. Results obtained from the semiclassical model lead to

important guidelines for the design of the ultrashort pulse dye laser amplifiers.



CHAPTERII

THEORY OF ULTRASHORT PULSE DYE LASERS

INTRODUCTION

It was not until the synchronously pumped mode-locked dye laser produced

intense, stable picosecond optical pulses that extensive theoretical investigations were

begun [3]. The synchronous pumping concept was first demonstrated in 1968 using a

pulsed pump source [4-6]. However, the technique remained of limited practical value

until cw mode-locked pump sources were exploited [7, 8]. The first theoretical studies [9,

10] of synchronous pumping of mode-locked dye lasers were based on a model of a two­

level active medium with zero coherence time, or dephasing time of the dye laser media.

Based on this model, further analyses were used to explain the synchronously pumped

mode-locking process [11-15]. In some cases, these analyses have provided explicit

res비ts for the pulse shapes as functions of the various laser parameters. Initially the

results obtained by this model fully satisfied the investigators, but gradually it has become

clear that this approach does not describe accurately the development of synchronous

lasing in picosecond or subpicosecond lasers.

Due to the inaccuracy and difficulties of the rate equation model mentioned above,

multiple levels of the active medium with a transient polarization of the laser transition, or

the semiclassical model have been developed [16-18]. This has led to a much better

understanding of the physics of synchronous pumping and the formation of ultrashort

pulses, and has made it possible to determine the ultimate potential of ultrashort dye

lasers. As the semiclassical model employs a Maxwell-Schrodinger equation set
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governing the interaction of the pump and signal fields with the dye laser medium, it has

several advantages over the more conventional rate equation discussions [16].

First, it may be noted that in the semiclassical model, the electric fields are vectors

and one can account in a rigorous way for the fact that the emission and absorption

dipoles of the isotropically distributed dye molecules are not generally parallel to the pump

and signal fields.

Second, the semiclassical model includes the nonzero phase memory time, or

coherence time ofthe molecular wave functions. Since this coherence time is known to be

in the range of 10-14 to 10-12 sec, at least for rhodamine-based lasers, it would reasonable to

expect that the finite phase memory time could have at most a minor effects on the

evolution of picosecond mode-locked pulsation. However, the studies on synchronously

pumped mode-locked dye lasers [16, 19, 20] have shown that inclusion of coherence

effects is essential to understanding the dye laser dynamics when the cavity length

mismatch is very small. Coherence eff농cts were also found to be significant for

understanding ultrashort pulse evolution in excimer lasers [21-24]. As the optical p비ses

produced or amplified by dye lasers become shorter and shorter, coherence effects are

expected to be more substantial. For example, 200 fsec pulses were obtained directly

from a dye laser synchronously pumped by a compressed second harmonic of Nd:YAG

laser [25], and 26 fsec optical pulses were amplified by dye medium [26].

Another feature of the multi-level semiclassical model is that it includes the finite

vibrational relaxation time in the lower electronic state of the dye laser transition. The

vibrational relaxation time is on the order of one picosecond, and the inclusion of this

effect was shown to be of great importance in interpreting the evolution of the picosecond

laser pulses in the synchronously pumped mode-locked dye lasers [16]. It seems always
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necessary to include this finite relaxation time when one deals with picosecond,

subpicosecond, or femtosecond pulsation in dye lasers.

Starting from Maxwell’s equations for the signal and pump electric fields, and

density matrix equations for a four-level dye laser medium, reference [16] developed a

general model governing the light-matter interaction in dye lasers. This model assumed

parallel pump and signal field polarization in a longitudinal pump arrangement. In the

following sections, we will , based on the theory developed in reference [16] , derive a

semiclassical model for both longitudinal and transverse pumping configurations with

arbitrary pump and signal field polarization. A corresponding rate equation model and a

more conventional unidirectional molec비ar distribution model are also derived. Finally,

this model is adopted to the synchronous pumping configuration by some proper

simplifications.

THEORY OF ULTRASHORT PULSE DYE LASER AMPLIFIERS

The energy level model used in this treatment is the four-level system shown

schematically in Figure 1. The pump absorption occurs between level 0 and level 3, while

the signal stimulated emission takes place between levels 2 and 1. The molecules in level

3 decay nonradiatively to level 2 with a vibrational relaxation time 1:3’
while molecules in

level 1 have a vibrational relaxation time 1:1, The spontaneous decay time for the laser

transition is represented by 딘. Setting up the density matrix equations and combining with

Maxwell’s wave equation, and making some reasonable simplifications and specializations,

leads to a basic set of equations governing the interaction of short light pulses and matter

in a dye laser medium. These equations were derived as [16]:

ap22 .. 1 __ . p' _ Pn , Tpl μpI
-4=-11sEi · e‘ - -4+-4「」-(E‘ . en)"a, fi"" 1:, 2 fi ~ ,-. - p

、‘,,/
1
l
l
i

/‘,‘
、
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꺼PII 1 __ ,T."" _ P‘1 , P22
-」L =--rLE‘ ·e‘ _.!:....!..!....+ r ~~ .,at tl “ ‘ t l t 2

(2)

,

π-TseE
μ

J
U

끼

nF
낀

n
ν’l꽤

--，
야
-a (3)

aE. , 1 aE. , Y, ’ ω 2 「
-+--+-E =-- | ns(빠)T]~e.dQ ，

8z va 2s ksa
(4)

where P22and PI1 are density matrix elements representing the populations of the upper

and lower laser levels, and Iμ51 and Iμpi are the magnitudes of the signal and pump dipole

moments, respectively. These moments are defined as

μpμ03 =Iμ싸 (5)

μ ， μ12 =Iμpie. (6)

The electromagnetic fields and the off-diagonal elements of the density matrix are assumed

to be dominated by a plane wave form, which is propagating either longitudinally or

transversely with respect to the longitudinal axis of the laser cavity. The parameter

T]~(e ，~， z， t) is related to the slowly varying amplitude of the off-diagonal elements

associated with the signal transition by T]~ =-iP211μ‘ I ， where i is the imaginary number

unit, P21 is the off-diagonal element ofthe density matrix. E~(z ， t) and E~(z ，t) are the

slowly varying amplitudes of the pump and signal fields. The variable e measures the

angle of a class of signal dipoles with respect to the x axis (which is perpendicular to the

direction of the signal propagation), and ~ measures the orientation of‘ the dipoles around

the x axis. The function 11,(e,~ )dQ represents the number of molecules per unit volume

having their signal dipoles oriented within the solid angle dQ about the (e，~) direction.

For the cases of interest here, the pump and signal dipoles of the dye molecules are

parallel (ep =e.) [27]. Even though Eqs (1 )-(4) are a set of simplified MaxweII-density­

matrix equations for short-pulse dye lasers, they are stilI expressed in terms of
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fundamental physical quantities. Further modifications of this set of equations are

necessary in order to make them useful for practicallaser systems.

Longitudinal Pumping

It is assumed now that the signal field E ’. is parallel to the x axis, which is

perpendicular to the signal pulse propagation direction, and E’p is linearly polarized in the

ζy plane and oriented at an angle a with respect to the x axis as shown in Figure 2. Then

the electric field vectors and the unit dipole moment vectors can be written

EP =EP (eI cosα+ e). sin α) ， (7)

Es =Esex ’ (8)

(9)
·m
y
­-

뼈

n0·
뻐

z
e+

빼
n
덩·

뻐
r,.

e+
뼈I

e-­
s

a‘--
nr

e

The dot products ofthese vectors in Eqs. (1)-(3) are

EL ep =타 (ex cosα + e). sin α). (ex cos8 + ey sin 8 cos~ + ez sin 8 sin ~)

=Ep ( cosa cos8 + sin a sin 8 cos~)

=파[xcosα + (1 - X2) J~ sin a cos~ ]

=EPX , (1 0)

JW·Mno·m
z

e+
때

Q
U·

뻐
v­

e+
뼈I

。‘
/’
-
-
、

x

,

e

X
’
’
’

E

E

---­
s

eE
、‘,,/

,.,‘
1
-­

/
I,‘
、

where the new angle variables are

X =cos8 ,

X =xcosα + (l- x2 )” sin(Xcos@.

(12)

(1 3)

It is evident that when the pump field is parallel to the signal field (α = 0) the variable X

equals X.
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With the substitutions given in Eqs. (1 0)-(1 3), Eqs. (1 )-(3) become

ap” l , , p” T|tl |
-• =- nEx - -4 +」꽉(£’，Xf ’at tz " ,.. 't o 2tz ‘ l

꺼P" _ 1_' r.'.. PII , Pn
-」L =- -TLEx - 」L+--,at tz" , .v 't

1
't

2

옐=-속(Pn - P Il )1μJ패-괄at

(1 4)

(1 5)

(1 6)

For dye molecules in a laser amplifier having an isotropic orientational distribution, the

ang비ar distribution function can be written as 1배

molecule concentration, and Eq. (4) reduces to

aE ’ 1 aE:‘ y , ’ - μ(l)3 N f?
--+---+-Es - ---- | | 11sXdx빼.az v at 2' κ 27I t t

( 17)

By introducing suitably normalized forms for dependent variables, Eqs. (1 4)-(1 7)

can be written in a more compact form. The normalization forms chosen here are the

following:

- μω;Nr. 1μJ X2(2-3sin2a.)+sin 2α
D(8,z, t) - , (Pj2 -Pll)

ksIiYs 2X- μ l ’

- μωiN긴|μJ X2 (2-3sin2α) + sin 2a.
M(e ， z， t)=r---'.-'~·'Ir-"

fI. ,- -~:'，，-::/'~'" ~(P22+PII)'
k,tzy , 2X" ι

-
μω:NT|μJ (2 't 2간 )~ X2 (2 - 3sin 2α) + sin 2a. _.'Q(e,z,t) =-

k,tzy , 2X 2

A(z,t) =팔(띈IE:I

(1 8)

(1 9)

(20)

(21 )
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- μω:N낀|μJ l:펴|μlIE~I-P(z, t) - l l l l

k/iYs 2tz2
(22)

where the fundamental independent variables are also noted on the left-hand side. Thus D

is a normalized population difference, M is a normalized population sum, Q is a

normalized polarization, A is a normalized signal electric field , and P is a normalized pump

rate.
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α-떼-2+

편
/
니

|
1
\

VA
「
」
꺼
L

Mr

-
-
π
l

+Dt

-
야

걱
띤

M
-a (24)

ao 1
-==--(Q-ADx),at 낀

(25)

앓+3뽕=웰-뺏) (26)

With this change of parameters all dependence on the <I> variable is eliminated, and the

pump misalignment is equivalent to a reduction ofthe pump amplitude.

Transverse Pumoing

For the transverse pump arrangement as shown in Figure 3, the signal field E: is

parallel to the x axis, and the pump field Ep' is linearly polarized in the xz plane and

oriented at an angle a with respect to the x axis. Then the electric field vectors and the

unit dipole moment vectors can be written

E_ =E_ (c_ cosa + c_ sin a)p -p 、 / (27)
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E , =Esex,

e_ = e. = e. cos8 + e .. sin 8 cos d> + e. sin 8 sin d>y ---- - --- T -Z ---- - ---- T

(28)

(29)

The dot products ofthese vectors in Eqs. (1 )-(3) are

EL ep =E파~(e힌I‘ cosα +e틴z s잉If띠naπrα띠x)· (e틴I cos8 + 까원S잉If띠n애8야cos <l> + e틴z s잉i띠n뻐8s허i띠n

=Ep(cosα cos8 + sin a sin 8 sin <1»

=과[xcosα +(1 -X2);~ sinαsin <1>]

=EPX ’ (30)

λ
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E

--=
s

e
s

E

(31 )

where X has the same form as in Eq. (12) but X takes the form

X =xcasα + ( l - x2 )”sin a sin @. (32)

With the same procedures as in the longitudinal pump arrangement mention~d

above, and the same normalization form as Eqs. (1 8)-(22) except that the pump

orientation factor X takes form of Eq. (32) instead of Eq. (13), one obtains the same

differential equations for D, 11ι and Q as given in Eqs. (23)-(25). Thus, the only

difference between longitudinal pump and transverse pump is the pump orientation factor

X which is now normalized away for these three variables.
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By substituting Es, in terms ofA, and ns’ in terms of Q into Eq. (4) and canceling

all the common terms on both sides, one can obtain

(36)/ -.
X

、 _~_ 2 _. dl뼈X
X냐 1-isin2 a)+311함

aA , 1 aA y
SA , YS 씬

-+--=_...:...추 A+~IIQxaz v at 2 4π56

Substituting Eq. (32) into Eq. (36), and carrying out the integral over <1>, one obtains

8A 1 8A 'Y-. Y ,} 2p /Xcosα+ (1 - X" )12 sin (J. sin ~ I
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(37)

Thus, Eqs. (23)-(26) can be used for both longitudinal andwhich is the same as Eq. (26).

transverse pump arrangements, and may be used to analyze light-matter interaction in a

dye laser amplifier having arbitrary space- and time-dependent pump and loss rates.

Rate Equation ApProximation

In the rate equation approximation, one ignores coherence effects and therefore

Since a finitethe dependence of the polarization on past values of the electric field.

coherence time represents a temporallag between the induced polarization and the electric

field , coherence effects play an important role in limiting the magnitude and width of
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optical pulses [16, 17, 19, 23, 28, 29]. However, when the optical pulse width is long

compared to the coherence time, the rate equation approximation (or zero coherence time

approximation 깐 = 0) is often used. In this approximation, the polarization varies

simultaneously with the electric field. As a result, Eq.(25) has the solution

Q = AD χ (38)

With this substitution, Eqs. (23)-(24) and (26) become

뽕=-갚{(1+갚)ι(1-갚)M+2A'DX' - P[X'(I- 펼뜨)+펄]}， (39)
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짧+3뽕-꽁A(I-[Dx'때) (41 )

By defining the intensity J三 A 2, we can write Eqs. (39)-(41) in the following form in terms

ofthe normalized population difference D, population sum M , and intensity J:

뽕=-갚{(1+갚)D+( 1-갚)M+2파'- P[x,(1-辦)+펄]} (42)
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앓 ←많 =-r，I(I-[Dx'따) (44)

In this limit, a set of three nonlinear coupled differential equations, instead of four

as in the above sections, is employed to describe the light-matter interaction in a dye laser

amplifier. It is also noted that this set deals with pulse intensity instead of with electric
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field. Thus, the rate equation model can not explain the polarization effects of pump and

signal fields.

Unidirectional Molecular Distribution Model

For quantitative investigation of ultrashort dye laser amplifiers, the isotropic

molecular distribution is required as in the previous subsections above. With parallel

pump and signal polarizations and modest pump power, however, the unidirectional

molecular distribution is a common way to simplify and qualitatively describe the

interactions in dye lasers as well as to use less computer time.

A unidirectional orientational distribution can be' written as

/1(8 ,<1»= No(8-8 0 ,<I>-<I>o) , where 0 is a normalized Dirac-delta function , and 80 and <1>0

indicate the alignment direction. If this distribution is substituted into Eqs. (14)-( 17) with

80 = 0, and a = 0, and proceeding as before, one finds that the final set of Eqs.(23)-(26)

are replaced by the unidirectional set
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뽕=-윤{-갚D+찮M-P} (46)

꺼o 1
-으 =--(Q- AD),at 낀

뽀+l뽀= -뇨(A-Q)az v at 2

(47)

(48)

THEORY OF SYNCHRONOUSLY PUMPED MODE-LOCKED DYE LASERS

When periodic picosecond pulses are required, a standard technique involves

synchronous pumping of the dye laser medium using as the pump source a mode-locked
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argon laser or a frequency-doubled mode-locked Nd:YAG laser [7, 8, 16, 25]. Typically,

the pump laser is mode-locked acoustically, and the length of the dye laser cavity is

adjusted to be almost exactly equal to the pump laser cavity length (or a multiple thereof).

In operation, the dye laser pulse arrives at the dye jet approximately simultaneously with

the pump pulse, and this arrangement is found to favor mode-locking ofthe dye laser.

In a synchronously pumped mode-locked dye laser, as mentioned above, the signal

field amplitude A must be periodic with the same period as the pump pulse. If the net gain

per pass in the laser amplifier is not too large, each molecule in the dye medium interacts

with the same time-dependent pump and signal amplitudes. Thus, the output of the dye

laser is the same as it would be if the gain and loss were uniformly distributed around the

dye cavity with the pump and signal pulses having exactly equal velocity. There is,

however, no reason why these velocities should be considered to be equal to the speed of

light v. The repetition rate of the pump p비se is governed primarily by parameters of the

pump laser, and with saturable gain, it is possible for the effective velocity of the dye laser

signal to be somewhat greater than or less than the speed of light. To take advantage of

these concepts, it is helpful to introduce a new time coordinate 't = t - z/vs , where Vs is the

l ’envelope speed" in the dye laser of all quantities of interest.

to the ordinary differential equations

Then Eqs. (23)-(26) reduce

짧=-갚{(1+갚)D+-갚)M+2QAX -p[X'(I-펠뜨)+펄]}

뿔=-갚{-갚 D+갚M -P[X'( 1-辦)+펄]}
dO 1
-= =--(Q - ADx) ,
de 낀

(49)

(50)

(51 )



짧=-2t (l ] v/V )(A-iQX따
where all ofthe cavity losses are now incorporated in the photon-cavity lifetime.
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(52)

As one of the most important measurable parameters in a study of synchronous

mode-locking is the relative length of the dye laser cavity, it is convenient in Eq.(52) to

express the velocities in terms of the lengths of the pump and dye laser cavities. Thus, in

terms of the cavity length mismatch, or the cavity length difference 11L, and the dye laser

cavity length L, Eq. (52) can be written [16]

짧=-뚫(A-[QX때) (53)

Eqs.(49)-(51) and (53) are the key equations for the semiclassical treatment for a

synchronously pumped mode-locked dye laser including finite coherence time and

isotropic molecular distribution.

For the rate equation approximation, as discussed for the laser amplifier, a set of

equations in this limit can be obtained as

짧=-갚{(l+갚)D+-갚)M+2따， -+'(1- 펼프)+펄]}

뽑=-갚{-갚 D+갚M-p[x2(1 辦)+펄]}

찮=-찮(1- [DX'때)
where D, M, and I have the same meanings as introduced before.

Similarly, equations for the unidirectional molecular distribution can be written

(54)

(55)

(56)



짧-스{(l+갚)D+-갚)M+2QA-P}

따1 1 I T, _ T,., _I=:..:.. =- _A ~ _.-:.l:- D + .-:.l:- M _ P ~

dT T2 l 2 TI 2TI J

dO 1
-== --(Q-AD),
dT 간
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-=---(A-Q)
dT 2tJ:J.J

CONCLUSION
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(57)

(58)

(59)

(60)

In this chapter, we have developed a general semiclassical model, Eqs. (23)-(26)

for an ultrashort dye laser amplifier, and Eqs. (49)-(5 1) and (63) for a synchronously

pumped mode-locked dye laser. This semiclassical model started from Maxwell’s

equations for the electric field and density matrix equations for the active laser medium. It

includes a finite coherence time, or phase memory time of the molecular wave function, a

finite vibrational relaxation time for the lower electronic state of the dye laser transition,

and an isotropic molec비ar orientational distribution. As the model deals with the field

vectors directly, it will allow one to investigate the pump and signal polarization eff농cts.

Moreover, a corresponding rate equation model, Eqs.(42)-(44) for amplifiers, and

Eqs.(54)-(56) for oscillators was also developed. By comparing the results obtained from

both a more general semiclassical model and a zero coherence time rate equation model,

one can investigate the coherence eff농cts concerning the pulse parameters, and also the

validity and inaccuracies of the commonly used rate equation approximation. Finally, a

unidirectional molecular distribution model, Eqs.(45)-(48) for amplifiers and Eqs. (57)­

(60) for oscillators, may also permit qualitative studies. In conclusion, models developed
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in this chapter will be the cornerstone for investigating dynamics in ultrashort pulsed dye

laser amplifiers and oscillators.



CHAPTER III

PUMP POLARIZATION EFFECTS IN SYNCHRONOUSLY PUMPED

MODE-LOCKED DYE LASERS

INTRODUCTION

Lasers can operate with unpolarized pumping mechanisms such as flashlamps and

electric discharges, or polarized pumping mechanisms such as other lasers. By introducing

some anisotropic components into the resonator or lasing medium, all lasers can produce

polarized output light. Examples include solid-state lasers, when the host crystal is biaxial

or uniaxial, and gas lasers, when a Brewster window is used on the laser tube. Dye lasers,

in particular, are often designed to use other lasers as their pump sources. The pump

lasers are typically linearly polarized, which favors the gain for one signal polarization.

Some studies have been carried out previously concerning the polarization characteristics

of the spontaneous and stimulated emission from dye laser medium [27, 30-34]. Under

conditions of cw or quasi-cw pumping the polarization characteristics of dye laser

amplifiers have also been investigated [35-37]. Due to their unique properties of high

efficiency, fast decay time, and wide frequency tuning range, dye lasers have made

possible the production of tunable picosecond and subpicosecond pulses by means of

mode-locking techniques [7, 10, 38-40]. When periodic picosecond pulses are required, a

standard method involves the synchronous pumping of the dye medium with mode-locked

argon, krypton, or frequency-doubled Nd3+yAG lasers as the pumping source. In

practice, the length of the dye laser cavity is adjusted to be almost exactly equal to the

pump laser cavity length (or a multiple thereo f), so that the dye laser pulse arrives at the
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dye jet approximately simultaneously with the pump pulse, and such arrangement is found

to favor the mode-locking ofthe dye laser [41-43].

Synchronously pumped mode-locked (SPML) dye lasers have been widely used as

sources of tunable intense and stable picosecond and subpicosecond light pulses in the

visible and infrared. These ultrashort optical pulses are used extensively in areas like high­

speed time-resolved spectroscopy, fast electro-optic applications, etc. To date, there have

been many theoretical analyses ofthe synchronously pumped mode-locking process [9, 11 ,

13, 14, 16, 44-46]. Some ofthese analyses started from a rate equation model, and show

that the cavity length of the dye laser and the pump laser should be matched very closely

to obtain optimum pe냥ormance [9, 11 , 44]. While the rate equation analyses can

qualitatively explain many aspects of the mode-locking process in SPML dye lasers,

semiclassical effects have been found to have a significant influence on the pulsation

waveforms [16, 45, 46].

Although many approaches have been employed in investigating ultrashort

pulsation, none of these has addressed the effects of pump p이arization in SPML dye

lasers. As most SPML dye lasers are used to generate picosecond or subpicosecond

pulses, the pump pulses usually have a pulse width on the order of hundred picoseconds,

which is on the same order as the effective lifetime of the excited state. Therefore, the

investigation of the polarization characteristics of SPML dye lasers based on the condition

of cw or quasi-cw pumping [3 5-37] is probably not appropriate. The present work in this

chapter includes detailed theoretical and expe디mental studies of pump polarization effects

in SPML dye lasers.
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NUMERICAL RESULTS

As rate equation models deal with pulse intensity instead of field, one has to use

the semiclassical model to study the pump polarization eff농cts. The model used here is the

one derived in Chapter II, Eqs. (49)-(51) and (53)
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짧=-鐵(A- [QX따) (64)

where all quantities have the same meanings as before. One of the key variables here,

however, is the polarization misalignment angle u. This variable measures the polarization

angle between the pump field and the signal field. As illustrated in Figures 2 and 3, the

signal electric field Es is polarized in the x direction and the pump filed Ep is pola디zed in

an arbitrary direction having the angle u with respect to the signal field polarization.

It is the purpose of this section to study the pulse parameters as functions of the

pump and signal field polarization misalignment angle u. Before numerically solving Eqs.

(62)-(64), it is necessary to specifY the pump function P(ψ. By choosing a Gaussian

profile to describe the pump pulse, the pump function appearing in the model can be

expressed as
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where L\'t p is the full width at half maximum. The constant PO can be related to the laser’so

operating point with respect to the oscillation threshold. Instead ofusing PO directly, it is

helpful to introduce an associated threshold parameter ,.. The relationship between PO and

,. can be found from the model using the relationship

JQxdx

A
(66)

with the population depletion term 2QAX and the pump misalignment α set to zero in the

population equations. Experimentally, one can determine the threshold parameter by

measuring the ratio of the pump power under operating conditions to its value at the

lasing threshold

For the coefficients appearing in Egs. (62)-(64), we have used the best available

values for the Rhodamine 6G dye laser system. These values include the fluorescence

decay time 딘 = 5x10-9 s, the vibrational relaxation time 1:1 = 1xl 0. 12 s, and the coherence

time 긴 = 5x10.14 s. Other parameters that are specific to our synchronously pumped

mode-locked dye laser experiments include the pump pulse width L\'tp = 1OOx 10. 12 s, the

cavity lifetime l c= 6x lO-9 s, the cavity length L = 1.8 m, and the cavity length mismatch M

= 2xl0-5 m. Using these parameter values, the predictions of the model have been

compared with experimental data.

The first pulse parameter of interest is the p비se temporal profile. Curves in Figure

4 show the theoretical normalized intensity traces I = A2 for different polarization angles

at a particular value of threshold parameter. Figures 4(a)-4(c) show this polarization

dependency for the threshold parameter values ,. = 1.3, 1.46, and 4.0, respectively. The

change ofthe vertical scales between the figures should be noted.
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It is clear from these figures that with larger values of the threshold parameter and

smaller values ofthe polarization angle the pulses become larger and earlier (relative to the

peak of the pump pulse), and the ringing becomes faster. Because of the importance of

the autocoπelation of the intensity pulses, we have also computed the autocorrelations of

the pulses shown in Figure 4 using the formula

G2 ('t) =fI('r:' )I( 't + 't' )따 (67)
∞

The results are shown in Figure 5. To aid in the comparison of pulse shapes, each

autocorrelation curve is normalized by its maximum value.

For the dye laser pulses, the signal p비se width L\'ts is also an important parameter.

Figure 6 gives curves of pulse width versus the pump polarization angles for several

different values of the threshold parameters. For higher levels of pumping the pulses are

shorter and less sensitive to the polarization angle. Also, with larger values of the

threshold parameter, lasing still occurs with a 90" rotation of the pump. This is because

the pump polarization mostly favors the population inversion of the dipoles oriented

approximately parallel to the field. When the pump becomes stronger, however, there are

enough excited for the gain at these angles to also exceed the loss (even near the 90。

direction). Another parameter of interest is the peak intensity of the dye laser p비ses I pk

A set ofc마띠urv

In order to see the angu비Ila따r dependence more clearly, we have calculated the

normalized average power of the p비ses

‘,‘
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where So is the effective area at the dye laser output and T is the period of the pulse train

As T and So are determined by the mode locker and the resonator geometry, they are
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constant for one system. For each pump level, we have further normalized the average

power for diff농rent polarization directions to the maximum average power with a. = O. In

Figure 8, the solid curves going from inside to outside correspond to the threshold

parameter values r = 1.3, 1.46, 4.0, and 10.0. If a vector is drawn from the origin to the

point on the curve, the angle of the vector with respect to the x axis represents the

direction of the pump polarization, and the length of the vector represents the normalized

average power for that polarization. The curves in Figure 9 reveal how the peak-to-peak

time delay between the dye laser pulse and the pump pulse varies with change of pump

polarization. As also noted previously in Figure 4, the pulse delay increases with pump

misalignment.

EXPERII\표NTAL RESULTS

The system used in the experiments involves an acousto-optically mode-locked

Spectra-physics 2020 argon-ion laser as the pump source for a Spectra-Physics 375B dye

laser, together making a synchronously pumped mode-locked dye laser system. The dye

jet is set at Brewster’s angle, so the dye laser electric field is forced to polarize in the x

direction, which is perpendicular to the pulse propagation direction. The pump

polarization was controlled by a Newport polarization rotator which has a 2° angular

resolution. By inserting neutral density filters before the dye laser, the pump power could

be a며usted. As the way mentioned above to determine the pump threshold parameter, we

have chosen the threshold parameter value of 1.3, 1.46, and 2.83 for our experimental

measurements. A Coherent power meter was used to measure the average output power.

The experimental normalized average power versus the pump polarization angle is shown

in Figure 8, where the open, filled squares and the open circles represent the pump levels

of 1.3, 1.46 and 2.83 , respectively. Using the methods deGcribed in Reference [47], the
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pl~ak-to-peak time delay was also evaluated, and the results are shown in Figure 9 by the

0 lPen and filled triangles.

CONCLUSION

With a linearly polarized pumping field, the pulsations of a synchronously pumped

mode-locked dye laser have been shown to depend strongly on the pump polarization

angle. This angular dependence is found to be less for large values of the threshold

parameters. The linearly polarized pump field favors the population inversion of the

dipoles oriented approximately parallel to the field. When the pump field is weak, those

dipoles near the pump field direction will thus give the greatest contribution to the gain in

the x direction, so the gain for the signal field mostly depends on the contribution of the

dipoles in the direction of the pump field. When the pump field becomes stronger,

however, enough excited dipoles can make lasing possible in other directions even near

the 90
0

direction with respect to the signal field. The experimental pump polarization and

pulse delay behavior of the synchronously pumped mode-locked dye laser are found to be

in excellent agreement with the theoretical model.
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CHAPTERIV

TIMING AND DETUNING STUDIES OF A SYNCHRONOUSLY

MODE-LOCKED DYE LASER

INTRODUCTION

A convenient source of wavelength tunable ultrashort optical pulses, the mode­

locked dye laser has been widely studied and used for more than two decades. One

pop비ar source today is the synchronously pumped mode-locked (SPML) dye laser.

State-of-the-art SPML dye lasers offer highly tunable subpicosecond pulses of reasonable

power at high repetition rates [3, 44, 48]. As mentioned in previous chapters, the basic

principle of synchronous pumping is that at each cycle the pump laser pulse arrives at the

gain medium at the same moment as the dye laser pulse. Expressed as a cavity length

condition, this requires that the length of the dye lasers be nearly an integer multiple of the

pump laser length. This theoretical condition is difficult to maintain in practice due to

thermal and vibration induced cavity length drift. Thus, the cavity length matching

condition will not be always be satisfied precisely, and the behavior of the SPML dye laser

under the circumstance of cavity length mismatch or detuning 삼om its optimum condition

becomes worthwhile to explore and understand from a technical standpoint. From a

scientific standpoint, the cavity length detuning parameter is an easily adjustable

experimental parameter that can be varied in the laboratory to obtain a wealth of data with

which to test a theory.

To date, the effects of a finite cavity length mismatch have been explored with

respect to pulse shape, pulse width, pulse buildup, peak power, average output power and
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pulse train stability, and it has been widely noted that the output pulses lengthen

dramatically, lose peak power , and develop satellite pulses at lengths away from optimum

[9-14, 16, 49-51]. The gain bandwidth limiting effects of an intracavity wavelength tuning

filter have also been studied with a coherent model [20]. Another parameter of interest is

the time of occurrence of the dye laser pulse measured relative to the pump laser pulse.

This quantity has significance as an experimental test of SPML laser theory, and as a

possible error signal for an active stabilization scheme. While there previously have been

brief mentions of pulse timing as a function of cavity length detuning, the present work is

devoted solely to the su비ecL Most of the previous theoretical studies of the dye laser

pulse delay included one or more of the severe simplifYing assumptions and

approximations inherent in the use of a self consistent Gaussian pulse, rate equation

models and circuit analogies [10-12, 14, 51]. AIl previous studies have neglected the

vibrational relaxation and coherence effects which inevitably become important for very

short pulsations. Only in one case has a quantitative comparison between theory and

experiment been attempted [14]. Simplifications are, of course, necessary for any study of

so complex a system, but models are now available which avoid most of the

approximations just noted.

In this chapter, we study in detail the eff농ct of cavity len땅h mismatch on the

occurrence time of the dye laser pulses. Experimentally, we directly measured the delay

time of the peak of the dye laser pulse relative to the peak of the pump pulse with greater

precision than has been achieved previously. These measurements are used to test, for the

first time with no free parameters, our semiclassical theory for synchronously pumped

mode-locked dye lasers, and very close agreement has been achieved. Semiclassical dye

laser models have not previously been applied to the study of pulsation timing. The

inclusion of semiclassical effects is important for quantitative agreement near the optimum
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cavity length detuning, which is, pragmatically, the region of most interest. In addition to

this quantitative study, we also presented the results obtained from a corresponding rate

equation model which could qualitatively describe the timing characteristics of the SPML

laser.

EXPERTh표NT

The experiments were performed using a commercially available Spectra-Physics

argon ion / rhodamine 6G dye laser system with a cavity length of 186 em. The argon

laser (Spectra-Physics 2020) was actively mode-locked by a fused silica acousto-optic

modulator driven at about 40.25 1\따-Iz. It was operated in TEMoo transverse mode and

was set up to produce a stable train of 100 ps, 514 nm pulses with a p비se repetition

frequency of 80.25 MHz. Once optimized, this argon laser system was not adjusted

during the measurements, and hence provided a consistent relative clock for the timing

and detuning studies.

The argon laser pumped a Spectra-Physics 375B dye laser as shown in Figure 10..

The output coupler of the dye laser was mounted on a precision translatable stage, which

provided the cavity len힘h adjustment. A Mitutoyo dial indicator permitted displacement

measurements readable to 0.5 μm resolution, and the overall system length error was

within ±1 μm. For our purpose, the optimum cavity length was defined as that length

giving the shortest mode-locked dye laser pulses, as measured by a Spectra-Physics 409

autocorrelator. This length is nearly, but not precisely, equal to exact cavity matching

between the pump laser and the dye laser [16].

A shift in the dye laser cavity length affects neither the acousto·애.

nor the timing position of t“hepum피1끼ψp pulse. Thus the timing position of the pump pulse is a

well defined reference for our measurements. The delay time ofthe dye laser pulse as a
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function of dye laser cavity length detuning can be measured using a Tektronix 7S 11

sampling oscilloscope triggered by the pump laser mode-locking signal. It made no

discernible difference in our measurements whether the trigger signal came directly from

the rf modulator or from a photodiode monitoring the pump train. As the dye laser cavity

length is changed, the dye laser pulse moves across the screen of the sampling scope, and

recording this shift is our basic measurement. A typical set of raw data is shown in Figure

11. Pulse resolution of these picosecond pulses on the sampling scope is limited by the

rise time of the scope (25 ps) and the detector (35 ps), and by the intrinsic jitter of the

system. These factors permit a determination of the timing of the peak of the waveform

with an uncertainty ofabout ±10 ps as measured from the trace-width ofthe best sampling

scope traces. The total range of detuning covered was approximately 70 μm. Our data of

Tpk as a function of M is shown in Figure 12 for two different pump powers

corresponding to the threshold parameters r = 1.3 and r = 1.7. Experimentally, r is the

ratio of the actual average pump power divided by the minimum average power necessary

to achieve lasing. The lower threshold parameter was reached by linearly attenuating the

pump laser beam. Figure 12 reveals three basic regions of interest in 깐k versus M. For

negative detu띠ngs， 강 is insensitive to changes in M. For large positive M ’s, the

dependence is almost linear. Finally, there is a steep transition region just around M opt'

NUMERICAL CALCULATION

The theoretical models we used for the numerical calculations were the

semiclassical model and a corresponding rate equation model for a SPML dye laser which

were derived fully in Chapter II. The semiclassical model is a set of nonlinear integro­

differential equations, Eqs. (49)-(51) and (53) with the polarization alignment angle a set

to zero.
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FiJmre 11. Sampling s∞pe tempor외 traces (1 00 ps/div) of the mode­
locked dye lasers for r =1.7 at vadolls cavity length detunings. Traces (a)·
(e) show the delay in the waveform as the detuning is increased. The
trace is unstable for cavity lengths shorter than optimum. (a) M shorter
than optimum by 30 μm; (b) M shorter than optimum by 10 μm; (c) M
optimum; (d) M longer than optimum by 20 μm; (e) M longer than
optimum by 40 μm.
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dO 1
-슨 =-; [Q-ADX] ,
d1: π

(71 )

짧=-뚫[A-뀔때] (72)

The corresponding unidirectional molecular distribution, rate equation model is

Eqs. (57), (58) and (60) with Q =AD obtained from Eq.(59) by setting the coherence time

Ts to zero.

짧-갚{(1+갚)D+( 1-갚)M+ 2ID-P} (73)

쁘= -끽-즈~D+쑤M-P~
d1: 1: 2 l 2 1: 1 21: 1 J

(74)

dI LI-=---(1-D)
dt 1/1L

(75)

Quantities in the above equations have the same meaning as introduced in Chapter

II. A represents the normalized electric field , D represents the normalized population

difference, M represents the normalized population sum, and Q represents the normalized

polarization. I represents the pulse intensity which was defined as I 三 A2. These models

explicitly include the orientation of the molecular dipoles, x= cose. This point is

important for quantitative agreement between our model and experiment [16]. In general,

then, Eqs. (69)-(1 2) refer specially to only one orientation class and the individual classes
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contribute to the field through the integral over X in Eq. (72). Moreover, the

consideration of a finite coherence time r. in the general semiclassical model, Eqs. (69)­

(72) is also important for quantitative prediction of the p비se formation especially when

pulses are short. In modeling our Rhodamine 6G dye laser, we have used the best

available values for these parameters, with 't J = 1 ps, 자 = 5 ns and 긴=50 fs.

The dynamical rate constant associated with the field is composed of the cavity

length L, the cavity lifetime te, and the cavity length mismatch M , which is the amount by

which the dye laser cavity length exceeds that ofthe pump laser. In our case, L=1.86 m,

te= 80 ns as calculated by considering the transmission of the output coupler, mirror

diffiaction and other scattering losses. The cavity length detuning M , is the key

parameter which we vary to mimic our experiment.

The argon ion pump laser enters into this set of equations through the forcing term

P('t). The pump pulse was modeled as a Gaussian profile with a full width at half

maximum t1't equal to 100 ps.

P('t)= 껴(옳)(딸r ex+(뚫)' ln2] (76)

The pump amplitude, PO, can be related to the threshold parameter r by

determining the minimum PO necessary to bring the gain up to the loss level by the end of

the pulse. From Eq.(72), this threshold parameter would be given by value ofthe ratio

JQXI따

A

where, from Eqs. (69)-(71), the value ofQ can be approximated by

Q= ADx = APoX
3

/ 't 2 .

유 =5't 2r

Similarly, for the unidirectional distribution rate equation model, it is easy to get

(77)

(78)

(79)
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PO =L 2r. (80)

Thus, PO may be obtained from the experimentally measured r by using Eqs. (79) or (8이.

We see that one consequence of dipole orientation effects is an inefficiency that

can be quite high. In the isotropic case considered here, one must pump five times as hard

to achieve a given threshold parameter as in the unidirectional distribution case.

For our calculation, we set PO to correspond to experimental conditions and

calculated, using a Runge Kutta computer program, the time, 갑， at which the dye laser

pulse is maximum. Varying M allows us to predict the slope in Figure 12. The numerical

results are shown in Figure 12, together with the experimental data. The vertical scale is

taken from the calculated Tpk and hence is abs이ute ， not relative. For negative detunings,

the SPML dye laser p비se returns to the gain medium before the pump overcomes the loss.

Hence the SPML dye laser p비se is delayed each cycle until the lasing threshold condition

is met. Physically, this is why 지k is insensitive to variations in !1L for cavity lengths

shorter than optimum. Our model and our experiments show that the pulse is unstable for

negative Ms. An important implication of both the experimental data and the theoretical

res비ts is that for positive length detunings, the pulse delay 긴k is an almost linear function

of detuning. Also by comparing the curves of the semiclassical model and the

unidirectional rate equation model, one can find that the unidirectional rate equation model

p때icts a flatter slope of긴k versus M. For the consideration of p비se stability, it seems

that the unidirectional rate equation model may over-estimate the stability of the SPML

dye laser system.

CONCLUSION

We have explored the timing relationship between a synchronously pumped mode­

locked dye laser pulse and its pump pulse through experiments and theory. We have
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shown that our semiclassical theory for a SPML dye laser predicts a nearly linear timing

shift of the dye laser pulse with cavity length detuning, and this result is in close

quantitative agreement with our experimental data.

Our observation that a triggering signal from the RF modulator is as effective as a

triggering signal from the pump pulse train implies that the major portion of the jitter on

the system comes from the electronics of the RF modulator. For low absolute jitter

applications, such as the electro-optic sampling of electronic circuits, it would be most

advantageous to the system’s pe냥armance to control the timing jitter in the RF modulator

CIrcUItry.

Our theory and expεriments show that the dependence of 간k on l1L weakens as ,.

becomes larger. Thus we may conclude that for a fixed, optimum cavity length mismatch,

the timing jitter of a SPML dye laser may be reduced by increasing the pump power.

Alternatively, at low pump power levels, the occurrence time may be used as an error

signal for an active feedback stabilization scheme since there is an abrupt shift in 깐k

versus l1L near the optimum detuning.



CHAPTER V

ULTRASHORT PULSE PROPAGATION IN DYE LASER AMPLIFIERS

INTRODUCTION

Interests in ultrashort pulse amplification has grown rapidly during the past few

years, and because of their high gain and broad gain spectrum, liquid-dye based laser

amplifiers are usually considered to be the most attractive amplifying media. Amplification

of pulses as short as 26 fs has been reported [26]. Many different pump sources have been

employed in dye laser amplifiers including cw YAG lasers [52-55], argon ion lasers [56,

57], copper vapor lasers, and XeCl excimer lasers [58, 59]. Some ofthese systems were

used to obtain pulses at high repetition rates, while others emphasized high peak powers.

However, they all try to maintain pulse widths of less than 100 femtosecond. In spite of

the rapid development of expe디mental techniques for ultrashort optical pulse

amplification, the theory ofthis subject seems to have lagged behind. To date, onlya few

theoretical studies of picosecond or subpicosecond dye laser pulse amplifications have

been reported [60-64]. These rate equation models have explained many aspects of dye

laser amplifier performance in the picosecond regime. However, they meet serious

difficulties as the optical pulses go to the subpicosecond and femtosecond regimes.

First, as these models usually originate from basic rate equation concepts, they

may not consider the molec비ar vibrational relaxation time, which is on the order of a

picosecond. This relaxation time has already been shown to be of importance in

interpreting the evolution of picosecond laser pulses [16]. In the subpicosecond or
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femtosecond regime, the effects of this relaxation time are expected to be even more

substantial.

Second, in these models the coherence time or the dephasing time of the dye

molecules of the amplifying medium was not taken into account. Depending on solvents,

spectral positions and sample deterioration, this time has been found to lie in the range of

20 fs to 2 ps, [16], which might be unimportant for picosecond pulses but not for

femtosecond pulses. Rate equation models describe the light-matter interaction based on

the assumption that the polarization varies instantaneously with the field, or in other words

that th닝 coherence time is zero. Such an assumption may be valid when the amplified

pulses are much longer than the coherence time, i.e. , the signal field varies much slower

than the dephasing time. However, when the signal pulse width approaches the coherence

time, rate equation models fail to explain the light-matter interaction adequately.

Coherence time eff농cts have been studied in excimer amplifying media such as KrF and

XeCI. [21-24]. Significant diff농rences ， especially in the amplified pulse temporal

evolution, were found between the results obtained with and without consideration of the

coherence time. As dye laser media have a much different gain spectrum and energy

structure, those models can not be used to desc디be the complex nonlinear processes that

take place inside dye laser amplifiers.

Third, in order to characterize the dye medium, the molecular orientational

distribution must be included in the model. With parallel pump and signal polarizations

and modest pumping levels, a unidirectional orientational distribution can provide

qualitative insight into some aspects of dye laser amplification. However, inclusion of the

more realistic isotropic distribution has been shown to be necessary for quantitative

interpretations or predictions of synchronously pumped mode-locked dye laser oscillators

[16].
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Using the general semiclassical model, Eqs. (23)-(26), derived in Chapter II, which

was based on the density matrix equations and Maxwell’s equation, we have studied in

detail the dynamic behavior of ultrashort pulses propagating in a dye laser amplifier. In

addition, both the rate equation model and the unidirεctional molecular distribution model

were employed. Numerical results were compared to see the validity of those simplified

models.

SIMPLIFICATIONS OF THE THEORY

Semiclassical Model
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뽕 --센-갚D+갚M-P[X'(I-辦)+펄]} (82)

ao 1
-= =-「(Q - ADx) ,
α ι

(83)

짧+3짧=-꽁(A-f Qx째) (84)

As mentioned in Chapter II, D is a normalized population difference, M is a

normalized population sum, Q is a normalized polarization, A is a normalized signal

electric field, and P is a normalized pump rate. 긴 is the c이lerence time, Ys is the

distributed loss, and X= cosS where the variable S measures the angle of a class of signal

dipoles with respect to the field polarization direction. α measures the misalignment

between the pump field and the signal field.
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Simolifications

In order to have the highest interaction efficiency, th~~ pump field needs to have the

same polarization as the signal field, which was previously demonstrated in detail in a

synchronously pumped mode-locked dye laser systems [28] .. In the present case, we will

only consider the parallel alignment ofthe pump field and signal field. Therefore, one may

substitute α = 0 into Eq. (81 )-(84), and it is helpful to intmduce a new set of coordinate

variables as

z
T. =t--,

t.: =Ysz.

(85)

(86)

With some simple mathematical simplifications, one can expr:ess Eqs. (81 )-(84) in terms of

the new coordinate variables as

뽕=-갚 {(l+갚)D+-갚)M+2앤x-파}

쁘=-μ- 프2 D+즈.LM _Px2 ~
or. T. 2 l 2T. 1 2T.1 J

ao 1
~~~ =-.: (Q-ADx) ,a 1;

뚫=-HA-웰)

(87)

(88)

(89)

(90)

It is also helpful to introduce a pump threshold parameter r. A threshold condition

may be defined as that when a steady-state signal sees zero distributed gain along an

unsaturated amplifier. Therefore, from Eqs. (87)-(89), one finds

0=-센(1+갚)D+-갚)M+2QAx -px'} (91)
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0=--낀-푸D+푸M _PX2 ~
1'2 I 21'} 21') J ι

(92)

0=-숙(Q-ADx) (93)

짧=웰-練) (94)

Eg. (93) has the solution

Q=ADx (95)
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In tenns ofthe light intensity I =A2, Eg. (98) can be expressed

앓~ -Y，[I- 웅 (1텐 (99)
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As mentioned above, threshold may be defined as the condition when the

distributed gain for the intensity is zero. Thus a threshold pump rate can be obtained from

Eq. (99):

~ 5't o
“ - -‘ threslwld - 't2 - 't,

(1 00)

The pump threshold parameter r describes the degree of pumping above threshold. In

terms ofthe threshold parameter, any pump rate P can be expressed as

P=rP..threshold'

NU1\표RICAL RESULTS

(101 )

By numerically solving Eqs. (87)-(90), one can obtain all of the parameters

concerning ultrashort pulse propagation in a dye laser amplifier. The physical situation of

a pulse propagating in an amplifier is illustrated in the space-time diagram of Figure 13 ,

which is similar to a pulse propagation description developed for maser amplifiers [65]. It

is seen that the new time coordinate 't remains constant for any part of the signal as it

passes from the input to the output. For instance, the leading edge of a pulse may be

characterized everywhere by 't = 'to, whereas in real time it would pass the input at ,= '0
and the output at ,= '0 + Llv where L is the amplifier length and v is the speed of light.

The figure also suggests that the physical situation at a point (l:,'t) is determined by

all interactions which happened earlier, i.e., from time - ∞ to 't and closer, i.e. , from 0 to ζ

Such a problem can not be specified unless two boundary conditions are set up. One is

the initial condition which specifies the situation for values of space O<l:<L at initial time 't

- -∞. The second boundary condition is the input condition which specifies the situation

for time -∞<'t<∞ at the input l: = O. With these two boundary conditions, the equations

permit a unique evaluation ofthe variables at any position l: and time 't o



52

띠
m
」
그
4
」
·
그α
L「
그
。

FINAL STORED ENERGY

g
V
F
v
g
•

(
ν
-
니
)

석

L

c

O<s<L utiD(s,t l )

utI

0

g
v
νv
g
•

(
ν-
。
)
식

띠
m
」
그
ι
t
F그
α
z
-

INmAL STORED ENERGY

。 <~<L

Figure 13. Schematic diagram of a p비se propagating in a dye laser
amplifier and the gain process by depletion of stored energy; also illustrated
are the ev이ution in time t and space (

D{~.to)



53

The two boundary conditions for the present problem include the initial condition

for the population difference D, population sum M, polarization Q, and signal field A or

intensity I. As the amplified spontaneous emission (ASE) is neglected here, D and Mare

determined by Eqs. (87)-(88), which are

D(따 =-∞) = l'(i;}X'(l- 쥔)

M(따 =-∞)=l'(!;)X'(1+ 달)

for O<l:<L and zero anywhere else. (1 02)

for O<l:<L and zero anywhere else. (1 03)

The initial time here is defined as the moment just before the input pulse enters the

amplifier. As ASE is assumed to be negligible, the initial condition for the electric field is

zero, as is the initial condition for the polarization.

The other condition describes the input signal
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where a Gaussian profile of the input p비se was assumed. W is the pulse energy density.

The initial condition for the other equations can not be specified directly. However, after

the electric field or the intensity of the pulse is specified, D (잉 = 0, 1:), Jvf(l: = 0, 1:), and

Q(깅 = 0,1:) can be resolved from Eqs. (87)-(89), which are one-dimensional, coupled first­

order differential equations. A fourth-order Runge-Kutta method was used to get these

numerical solutions.

The signal at arbitrary space and time (ζ't) was computed as illustrated in Figure

13. At any constant ζ the signal at time 't was determined by the population difference,

population sum, and the polarization at that time and earlier. At any time, the signal at a

point l: was determined by the interaction before that position. A recursive fOffi1Ula for
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space and time was used for the entire time range and for the position along the amplifier

cell.

Although an arbitrary pumping rate can be used in the model, a constant pumping

rate has been assumed for the present problem. This is valid as long as the pumping is

approximately uniform along the amplifier cell, and the pump rate varies slowly compared

to the signal. These conditions are satisfied for most practical amplifier setups. The

parameters related to Rhodamine 6G include the vibrational relaxation time 't l =1 ps, the

fluorescence decay time 't2=5 ns, and the coherence time Ts = 50 fs

General Results

A normalized energy density of W =1x10.8 sec was employed for the input pulse,

which represents an input p비se energy of about 10 nJ if the beam has a diameter of 2 mm.

The FWl표t1 of the input pulse is chosen as 1 ps, 100 fs and 10 월， the pump threshold

parameter r is lx lO4, and the amplifier cell length is 1 cm. With these parameters,

solutions ofEqs. (87)-(90) have been carried out.

Rate Eauation Aooroximation

In the rate equation limit where the polarization varies simultaneously with the

electric field, the coherence time r. can be treated as zero. As a result, Eq. (89) has the

solution

Q= ADX·

Ifthis solution is substituted into Eqs. (87)-(88) and (90), one obtains

뽕=-갚{(l+찮)D+(l-갚)M+2A2xz-얘'}

뽕=-갚{-찮D+갚M-얘'}

(1 05)

(106)

(1 07)
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(108)

In this limit, a set of three nonlinear coupled differential equations, instead of four

as in the above sections, is employed to describe the light-matter interaction in a dye laser

amplifier. Figure 14 illustrates the pulse intensity (normalized to its peak value) as a

function of time for both the general semiclassical model and the rate equation

approximation at small signal gain lengths gl of 10, 20, 30, 40, and 50. Parts (a), (b), and

(c) correspond to input pulse widths of 1 ps, 100 월 and 10 월， respectively. The solid lines

represent the general semiclassical model and the dotted lines represent the rate equation

model. Different time scales should be noticed in these figures. The time corresponding

to the peak ofthe input pulses for all ofthe cases is at zero. As the input pulse propagates

in the amplifier, the leading edge of the pulse experiences larger gain than the tail due to

the gain saturation, and thus the peak of the pulse travels faster than the speed of light

The sharpening of the leading edge and the pulse broadening can be seen clearly, which

are some of the well-known characteristics of pulse propagation inside an amplifier

predicted by rate equation models as seen in case (a). It is seen that the semiclassical

model and the rate equation model predict similar intensity temporal profiles in this range

where the signal pulse width is long compared to the coherence time. When the pulse

width becomes shorter as in case (b), however, the difference appears more obvious and

the rate equation model begins to show some inaccuracies. The pulse width predicted by

the semiclassical model is much shorter than that predicted by rate equations. The pulse

delay time is also different but the peak is still moving forward. When the input p비se

becomes much shorter, as in case (c), the peak may even move slower than the speed of

light, and the pulse width may become smaller as the pulse propagates along the amplifier.
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It can be seen from the right hand side of the field wave equation of Eq. (90) that

the field can not be separated out for the general semiclassical model, and the conventional

idea of intensity gain has little meaning. The population difference b하ween the laser

transition levels is of more significance. The curves in Figure 15 show that the temporal

behavior of the integrated (over the entire solid angle) population difference, and the time

scales for parts (a), (b), and (c) are the same as those in Figure 14. The Isolid lines

represent the semiclassical model, and the dotted lines represent the rate equatlion model.

The population difference is always positive in the rate equation model but can be negative

in some time regimes in the semiclassical model due to the coherence time effects. When

the pulse width becomes comparable to the coherence time, the induced polarization can

not respond instantaneously to changes in the population inversion and el.ectricfield but is

delayed due to the finite coherence time. As a result, the pulse can even be amplified

when the population difference is negative. When the p이arization changes from positive

to negative or changes from a larger to a smaller value, the amplifier inay ttωu뻐l

a때bs잉o야r매be앙r. In this case, the amplifying medium behaves like a saturable absorber which

quenches the tail part of the pulse. Thus the pulse peak slows down and. the pulse width

can be shortened as the pulse is propagating in the amplifier.

The integrated energy gain versus the small signal gain-length product양 is plotted

in Figure 16 for the general semiclassical model (a) and for the rate equation model (b).

Even though the temporal behavior of the amplified pulses may vary dramatically, the

energy gain curves predicted by both models for pulses with different imlse widths are

almost the same. The same energy and shorter pulses predicted by the se~liclassical model

II뼈y higher peak intensities in the semiclassical model. For the input pul샘 we Ihave used,

the energy gain saturation starts at around gl =10 for all cases.
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Unidirectional Molecular Distribution

For modest pump power, the unidirectional molec비ar distribution is a common

way to simpli fY the interaction in dye lasers as well as to use less computer time. It was

concluded in Ref [16] that the unidirectional distribution approximation could

qualitatively describe the synchronously pumped mode-locked dye laser oscillator.

By simplifYing Eqs. (87)-(90), one can get a set of equations for the unidirectional

case:
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The parameters used here were the same as those above. However, the threshold

pump rate required to give zero distributed gain for the signal intensity is changed to
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The pump threshold in the unidirectional case is a fifth of that for the isotropic

distribution. This is reasonable as in the unidirectional case all the molecular dipoles are

aligned in the direction of the pump and signal fields, and all the dipoles contribute to the

interaction. The pump rate can be expressed in terms of r as

P = rF:llreshold' (1 14)
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The res비ts of a unidirectional molecular distribution model for the pulse

propagation in a dye laser amplifier are compared with those of the general semiclassical

model, which employed the isotropic molecular distribution, in the following figures.

Figure 17 shows the intensity profiles as a function of time for input pulse widths of 1 ps,

100 fs, and 10 월. It is found that the pulses in the unidirectional distribution case are

similar to those in the general semiclassical model. The echo pulses in the unidirectional

case are farther apart and hold more energy. Intuitively, the unidirectional distribution

should lead to larger intensities as all the dipoles are aligned with the signal and pump

fields. However, it should be noticed that to reach the same level above threshold, the

pump for an isotropic distribution has be five times as large as for a unidirectional

distribution. Thus, the isotropic distribution can give higher intensity than the

unidirectional distribution if they are at the same pump level above threshold.

Figure 18 shows the population difference for the isotropic distribution and the

unidirectional distribution. It is found that coherence time effects in the unidirectional

case are stronger. The pulse energy gains are still similar for both cases as illustrated in

Figure 19.

CONCLUSION

A theoretical model has been developed for the propagation of ultrashort pulses in

dye laser amplifiers. In comparison with the results from rate equation models, one finds

that a semiclassical model including the finite coherence time, isotopic molecular

distribution, and fast vibrational relaxation time should be much more accurate in

characterizing nonlinear processes in the amplifier. Although some pulse amplification

systems employ a saturable absorber together with the ampliδer to compress the pulses, it

is clear from this investigation that such approaches should be preceded by more detailed



62

glc50

gl=40

glc30

(
영m
”
=
잉E
L
。
Z
)i glc20

gl~IO

INPUT
a

8642o-2-4-6-8

c

T (psec)

gl~50glc50

gl-40gl=40

gl “ 30gl=30(
검
검
응E
L。
Z
)-

gl~20glc20

gl-IOgl-IO

INPUT
b

INPUT

0.8 -0.08 -0.06-0.0<4 -0.02 0.00 0.02 0.0 <4 0.06 0.08

T (psec)

Fimue 17. Nonnalized intensity temporal profiles of없nplified pulses with
In1tiaI sma1l signal gain-length product &Om 1O to 5O based on the general
(isotropic molecular distribution) semiclassical model (s이id lines) 멍ven 10

Eqs. (8?)-(?0) and the unidirectional molecular distribution modeI (dotted
lines) given in Eqs. (109)-(1 12). P따때앙ers are the same as in Figure 14.

0.60.40.20.0

T (psec)

-0.8 -0.6 -0.4 -0.2



감(U

-
ν
-X
)Q
(

”κ엄(
U
-p
-R
)Q

INPUT

gl=IO

gl=20

gl=30

gl ‘:40

gl=50

a

-‘~。

-8 -6 -4 -2 0 2 4 6 8

T (psec)

INPUT

g1 a l0
.....-~

‘ •
gl-20 3 선

'j '" ‘

gl=30 겨:'1/
.\..， .κ -

gl"040
1,,,, ., ••••••••••

gl-50 ,U. '.

.-...
~ . b.

INPUT

c

gl-10

gl ..20 -....
gl<=30

gl-40 . - - -.... . . -

gl ..50

-0.8 -0.6 -0.4 -0.2 0.0 0 .2 0.4 0.6 q.8 -0.08-0.06-0.04 -0.02 0.00 0.02 0.04 0.06 0.08

T (psec) T (psec)

힌멜쁘잭.:. Nonnalized integrated (over the entire s이id angle ) population
differences as a function of time. Solid lines are the general semiclassical
model (isotropic molecular distribution), and dotted lines are the
unidirectional molec비ar distribution model. The input pulses are (a)lxlO·12

sec, (b) lx lO·13 sec, and (c) lxlO·14 sec.

63



@-mUm

U
-
E「
{
힌m
m으
I

Rp〕(멈“r←“
r、

、--"

)“r 버넘얻

￥느~~￥'-.~

100

10
.... ·’

--- -
~

~,

0.1
o 3010 20 40 50

gl

figure 19. Integrated pulse energy gain based on the unidirectional
molecular distribution mode1 of Eqs. (109)-(112) as a &nction of smaII
slg때FaiII빠gth prodl따 for input pulse widths of lxl0-12 sec (s이id lines),
1x1U 」 sec (dashed lines), and 1x10·l4 sec (dotted lines). Other parameters
are the same as in Figure 14.

64



65

studies of the amplifier itself Such studies are especially needed for subpicosecond and

femtosecond pulses where the inaccuracies of the rate equation models are especially

conspicuous. The more accurate models will provide the necessary accurate pulse

information on parameters such as pulse shape, pulse energy, etc. , for subsequent amplifier

or absorber stages. Due to the self-compression arising from the coherence time effects in

some ranges, the p비se may be directly amplified to high energy without serious pulse

broadening and distortion. It should also be noted that models similar to those developed

here may be applied to many types ofabsorbers.

The semiclassical model for the ultrashort dye laser amplifier developed here

overcomes the limit of the rate equation approximation of zero coherence time. It is,

however, still under the approximation of slowly varying electric field amplitude. Such a

treatment is valid as long as the signal transient time is much longer than an optical cycle,

which is about 2 fs for a signal at a wavelength of 630 nm. Moreover, due to the

nonlinearity of the dye solvents, other nonlinear effects such as self phase modulation and

group velocity dispersion should also be considered at very high intensities or in long

amplifier cells.



CHAPTER VI

CONCLUSIONS

Generation and amplification of ultrashort optical pulses by dye lasers have gained

a lot of interest in science and technology. Shorter and shorter optical pulses with higher

and higher energy have been obtained in the past few years, and some quantities related to

such optical processes are being pushed to approach the limit of the active dye laser

media. Dynamics studies of ultrashort dye lasers require more powerful models to explain

the new behaviors of those intense and short optical pulses as well as to exploit the limits

ofthis reliable source oftunable ultrashort optical pulses.

The goal of the dissertation was to extend of the dynamics studies of the ultrashort

pulse dye lasers. In particular, we have studied the dynamics of synchronously pumped

mode-locked dye lasers, one class of the most reliable sources of ultrashort optical pulses

to date, in the range of approaching the limits of active dye media. In addition,

amplifications of these ultrashort optical pulses by dye laser amplifiers were modeled with

a more comprehensive semiclassical theory. Throughout this work, we have established a

self-consistent organization. In Chapter II entitled "Theory of ultrashort pulse dye lasers",

general semiclassical models were developed for both dye laser amplifiers and oscillators.

These semiclassical models started from Maxwell’s wave equation and the density matrix

equations, and included a finite coherence time, or phase memory time of the molecular

wave function, a finite vibrational relaxation time, and an isotropic molecular orientational

distribution. Models derived in this chapter formed the basis for the following studies.
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Chapter III entitled "Pump polarization effects in synchronously pumped mode­

locked dye lasers" showed that the pulsations of a mode-locked dye laser depend strongly

on the pump polarization angle. This study took advantage of the semiclassical model

which deals with electric field vectors directly, and has investigated the effects on pulse

shape, pulse width, pulse intensity etc. of a linearly polarized pump field. This work has

been published in the February 15,1991 issue ofthe Journal of Applied Physics.

In Chapter IV, "Timing and detuning studies of a synchronously pumped mode­

locked dye laser", used the models developed to investigate the pulse occurrence time as a

function of the cavity length mismatch. Such study was found helpful to evaluation of the

pulse stability. Experimentally, we have measured the pulse occurrence time relative to

the pump pulse. Good agreement was obtained between the theory and experiments. A

similar paper based on this chapter may be found in the January 15,1991 issue of Optics

Communications.

Chapter V, "Ultrashort p비se propagation in dye laser amplifiers", studied the

dynamics associated with ultrashort pulse amplification by dye laser amplifiers. The

validity of conventional rate equation models has been examined when applied to

ultrashort pulse amplifications. Semiclassical modeling has been found to be important in

predicting the pulse amplification, especially the pulse shape. In addition, gain profiles and

energy efficiency of dye laser amplifiers were studied. P비se shortening was predicted by

the semiclassical model due to the coherence time effects, which may help the design of

multiple stage amplifier chains to obtain desirable pulses. This work may be found in the

January 15, 1993 issue ofthe Journal of Applied Physics

In general, the semiclassical model developed in this dissertation can apply to

dynamics of ultrashort pulses in not only amplifiers but also absorbers. The semiclassical

treatment has overcome the limit of the rate equation approximation of zero coherence
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time, and it will be valid as long as the signal transient time is much longer than an optical

cycle. Moreover, due to the nonlinearity of the dye s이vents ， other nonlinear effects such

as self phase modulation and group velocity dispersion may play nonnegligible roles

especially at very high intensities or in long amplifier cells, and such nonlinear effects may

need to be included.

There are several areas which can be pursued further in this work. In the

ultrashort pulse amplifier problem, experimental verification was not possible in our

research and is still necessary. This will not only test the predictions made by our

semiclassical theory but will also help to refine the theoretical models.

Periodic and chaotic pulse train modulation has been found in synchronously

pumped mode-locked dye lasers [66, 67], but no satisfactory explanation has been given

yet. As stable pulses are desired and more useful for practical applications, a better

understanding of this phenomenon is important for both the science and technology of

these systems. Applying the theoretical models developed in this dissertation and

investigating the key parameters responsible for the pulse train instability will be helpful to

improving laser performance.

Finally, as the semiclassical theory developed in this dissertation is general, one can

possibly apply the theory to other ultrashort pulse laser systems as long as the right

parameters are used. Such laser systems may include ultrashort pulse solid state lasers

[68] and semiconductor lasers [69].
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