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Abstract

Spanning trees are typically used to solve least path problems, and several
algorithms exist for finding the minimal spanning tree of a graph. Given a number t > 3
what is the least number n = o(t) such that there exists a graph on n vertices having
precisely ¢ spanning trees? In this work, we consider how the factoring of ¢ and the use
of cycles connected by one vertex will affect a(t)? Lower and upper bounds of a(t) are
graphed to illustrate bounds using properties of cycles and complete graphs. The upper
bound of a(t) is then improved by constructing a graph of connected cycles {Cp1, Cpo,
Cp3, .-, Cpn} where pl, p2, p3 ... pn belong to the prime factorization of t. The bounds
of a(t) are significantly improved.

1 Introduction

Graph theory is one of the many areas of study that has grown popular in modern
mathematics. Ideas that originated from graph theory are used in applications of
mathematics and in other areas of study as well. Graphs are structures that consist of
vertices and edges. One property of graphs that is often studied is its number of
spanning trees. A spanning tree of a graph is a subgraph that contains the least number
of edges needed to create a path from one vertex to another until all vertices are

connected [1].

The discussion of least spanning trees or the more commonly discussed problem
of finding the shortest path is popular among researchers in computer science and
computer networking. It is an important theoretical foundation for many algorithms
used in graph data structures in computer science, civil network planning, and computer
network routing. [2] These applications use minimal spanning trees to find the least path
or most efficient subgraph containing no cycles, which can provide information on
finding the most efficient and economical solution. In many modern technologies,

efficiency is a crucial demand for applications using mathematics and computer science.

A function related to spanning trees of graphs is a(t) = n, which takes in the
desired number of spanning trees of some graph G, denoted t = 1(G), as the parameter.
The output n equals the vertices of graph G, where G contains the least number of
vertices of any graph that has exactly t spanning trees. In 1970, graph theorist J.
Sedlacek [3] proved some properties about the asymptotic behavior of a(t). He showed



that a(t) < ? if t = 0(mod 3) and a(t) < % if t =2(mod 3). Later, the known upper

bound of a(t) is improved by J. Azarija and R. Skrekovski. They prove [4] that
t+13

at) < % and ((t) < — ift & {3,4,5,6,7,9, 10, 13, 18, 22}. They also show that the
known fixed points of o are 3, 4, 5, 6, 7, 9, 10, 13, 18, 22, which is the subset of Euler’s
Idoneal numbers. Additionally, Azarija and Skrekovski also consider B(t) = k, the
analogous function minimizing edges of graphs with t trees. A formula for the optimal
values of these functions has not been found yet. A conjecture has been made [5] in the

math community that a(n)=o0(/og n).

We now fix our notation and summarize the basic question of this paper. Given a
number t > 3 what is the least number n = a(t) such that there exists a graph on n
vertices having precisely t spanning trees? Let there exist a graph G with ¢ spanning
trees. Then o(t) is the order of any graph with the least number of vertices of such a

graph.

1.1 Definitions

Graph: A graph is a mathematical representation of a network. It represents the
relationship between lines and points. A graph is given as G = (V,E), where V is the set
of vertices and E is the set of edges.

Spanning Tree: A spanning tree is a subgraph of any graph that contains the least
number of edges needed to create a path, with no cycles, from one vertex to another
until all vertices are connected. All spanning trees have (n-1) edges, for a graph with n

vertices.

Complete Graph: A complete graph is a simple undirected graph with each pair of
distinct vertices connected by a unique edge. The complete graph on n vertices is
denoted by K.

Cycle: A cycle is a simple graph with n vertices, where n >2, with edges connecting each
vertex in a cyclic order of length n. The cycle on n vertices is denoted by C,,.

1.2 Spanning Tree Counting Theorems

There are two common techniques for counting spanning trees. Let G be any graph,

then t(G) outputs the number of spanning trees for graph G.



Deletion-Contraction Formula
This technique uses a deletion-contraction formula in a recursive form to count spanning
trees of a graph. For a graph G, t1(G) = t(H-e) + t(Hee).

Kirchhoff’s Matrix-Tree Theorem
This technique uses the adjacency matrix of a graph to create the Laplacian matrix

denoted L. With matrix L, a row and column is crossed off to get the smaller matrix L*.
Then, for a given graph G, t©(G) = det(L*) [6].

Cayley's Tree Formula

Cayley's tree formula [7] is based off the matrix-tree theorem. Let T, x be the number of
labelled forests on n vertices with k connected components, then T, = kn™k1 For the
spanning trees of complete graphs, t(K,) = n(®2),

2 Bounds of a(n) using cycles and complete graphs

In a related discussion of this topic, the spanning trees of circulant graphs are also
worth mentioning. The spanning trees of this subclass of regular graphs correlates closer
to the applications of computer network routing. A circulant graph is defined [8] as ‘a
graph of n graph vertices in which the ~th graph vertex is adjacent to the (7+/)-th and
(£-))-th graph vertices for each jin a list .” When visualized, these graphs are seen to be
formed from cycles, but with additional adjacencies.

1. The spanning trees of the circulant graph, square of the cycle C'2, 9], is ©(C12,)
= nF?,, where F,, is the sequence of the Fibonacci numbers.

Fibonacci

N Sequence T(Ch2y)
1 1 1

2 1

3 2 12

4 3 36

5) 5) 125
6 8 384
7 13 1183
8 21 3528
9 34 10404
10 55 30250



2. The number of spanning trees for complete graphs is t(K,) = n(®2)

©(Ka)

1
1
3
16
125
1296
16807
262144
4782969
10 100000000

© 00 O O W~ B

2.1 Fixed Points of a(t)

By Azarija and Skrekovski, a(t) is fixed for the subset of Euler's Idoneal numbers: {3, 4,
5,6, 7,9, 10, 13, 18, 22} For this set, the a(t) cannot be reduced and is fixed.

n oft)=n
3 3
4 4
) )
6 6
7 7
9 9
10 10
13 13
18 18
22 22

2.2 Upper Bounds of a(t)

Upper Bound for a Cycle: A cycle with n vertices has exactly n spanning trees. Each
spanning tree of a cycle is found by removing a single edge to produce a unique
spanning tree. Then the maximum upper bound of a(t) for the set of cycles Cy, is t(Cy)
= n. Therefore, a(t(C,)) < n.



n=4 n—>5 n-==~6
©(Cq) = 4 (Cs) =5 (Cg) = 6
a(4) <4 a(b) <5 o(6) <6

Figure 1: For cycles C4, Cs, and Cg the number of spanning trees is equal to the
number of vertices of that cycle and a(t(C,)) is less than or equal to n.

Upper bound for complete graphs: The set of complete graphs denoted by K, is one that
contains edges from each vertex to another. For any given cycle with n vertices > 4,
adding additional edges between vertices will allow the graph to produce a greater
number of spanning trees. Then a complete graph K, will produce the most spanning

trees for n vertices, since K, contains edges from every vertex to all other vertices.
Therefore a(t(Ky)) < n.

SEHek

n—4 n—>»s n=>6
t(Ky4) = 16 t(K5) = 125 (Kg) = 1296
a(16) <4 a(125) <5 x(1296) < 6

Figure 2: For complete graphs Ky, K5, and Kg the number of spanning trees is
equal to the number of vertices of that cycle and a(t(K,)) is less than or equal to
n. t(Ky) is higher than that of C, since it contains more edges.



For each n, C, and K, represent the cycles and complete graphs, respectively, with n
vertices. Let t = 1t(K,). Then taking o(t(K,)) allows us to determine some upper and
lower bounds for a(t). Clearly, the maximum upper bound is a(t) <t so, a(t(Ky)) <
7(Ky). The lower bound is determined by the result of a(t(Ky)).

Let n = 4. Note that: 1(K4) = 16 and o(16

) <4

Any graph with n = 4 vertices can have at most t(K4) = 16 spanning trees.

For any graph with 16 + 1 spanning trees, since n = 4 has at most 16 spanning trees,

o(17) must be a graph with 5 or more vertices.

5< o(17)
Then it is true that 4 <o(17)
It is also true that 4 < a(16)

Then the bounds are

n 7(Cy) 1(Ka) Bounds of o

3 3 3 3<a(3)<3

4 4 16 4 < a(16) < 16

5 ) 125 5 <a(l25) <125

6 6 1296 6 < a(1296) < 1296

7 7 16807 7 < a(16807) < 16807

8 8 262144 8 < u(262144) < 262144

9 9 4782969 9 < «(4782969) < 4782969

10 10 100000000 10 < (100000000) < 100000000

11 11 2357947691 11 < a(2357947691) < 2357947691

12 12 61917364224 12 < (61917364224) < 61917364224

13 13 1.79216E+12 13 < (1792160394037) < 1792160394037
14 14 5.66939E+13 14 < 1(56693912375296) < 56693912375296
15 15 1.9462E-+15 15 < 0(1946195068359370) < 1946195068359370

These upper bounds can be improved by taking the prime factorization of the upper
bound. Note that the upper bound is the result of the number of spanning trees for that

cycle (i.e. Cigsor => T(Cigs07) = 16807) Therefore, taking the prime factorization of



16807, a graph of connected cycles can be constructed, where each sub-cycle contains

the same number of vertices as each of the primes in the prime factorization.

Let G be the cycle C;. Let H be the graph constructed of cycles from the set {Cp1, Cpo,
Cp3, -y Cpn | P1, P2, P3, ..., pn € prime factorization of t}. If the prime factorization
includes any powers of 2, it must be converted to a power of 4, since there cannot be a

cycle of 2 vertices, without requiring duplicate edges.

t Prime Factorization of t
16 4x4
125 5x 9
1296 4x4x3x3x3x3
16807 TXTXTXTXT
262144 4x4x4x4x4dx4x4x4x4
4782969 3x3x3x3x3x3x3x3x3x3x3x3x3x3
100000000 4x4x4x4x5x5xH5x5xHx5x5xH
2357947691 11x11x11x11x11x11x11x11x11
61917364224 4x4x4x4x4x4x4x4x4x4x3x3x3x3x3x3x3x3x3x3
1792160394037 13x13x13x13x13x13x13x13x13x13x13
Example.

Let G = Cia96. The prime factorization of 1296 — 24 * 34 = 4x4x3x3x 3 x 3.

Let H be the graph constructed of cycles Cy4, Cy, C3 C3 C3 Cs. Then H is such a graph:

| H
H contains the same number of spanning trees as G. To see this, choose one spanning
tree from each sub-cycle in H. The combined outcome is one spanning tree of H. To find

the second spanning tree of H, the chosen spanning trees for the sub-cycles shall remain
the same. Now choose a different spanning tree for only the first sub-cycle C4. To find




the third spanning tree of H, choose a different spanning tree of C4. This can be
repeated for each sub-cycle. C4 has 4 choices of spanning trees and C3 has 3 choices of
spanning trees. Then this becomes a counting problem where the total number of
spanning trees is equal to 4 x 4 x 3 x 3 x 3 x 3, which is the same as the factorization of
1296.

Thus, G = C; and H both have the same number of spanning trees. While C; has t
vertices, H has less vertices since each sub-cycle shares a vertex. The number of vertices
for a set of sub-cycles {Cp1, Cpa, Cps, ..., Cpn} is calculated by taking the sum p; + ps +
p3 + ... + pn —n + 1 (the number of sub-cycles in the graph). For graph H, the number
of verticesis4 + 4 + 3 + 3 + 3 + 3 -5 = 15. Then there now exists a graph with
significantly less vertices than the original cycle. The updated bounds for this set of

graphs is:
t Vertices Bounds of «
16 7 4<a(16)<7
125 9 5<a(125) <9
1296 15 6 < a(1296) < 15
16807 31 7 < a(16806) < 31
262144 28 8 < u(262144) < 28
4782969 29 9 < (4782969) < 29
100000000 45 10 < «(100000000) < 45
2357947691 91 11 < (2357947691) < 91
61917364224 51 12 < o(61917364224) < 51
1792160394037 133 13 < (1792160394037) < 133

The first two powers of the prime factors 3 and 4 (4=22, since a 2-cycle cannot be
constructed) are calculated in the table below. The number of spanning trees is equal to
the power of the 3 and 4. The number of vertices for a graph constructed of 3-cycles
begins with 5 and continues to increase by a constant value of 2. The number of vertices
for a graph constructed of 4-cycles begins with 7 and continues to increase by a constant
value of 3. Since the vertices for connected graphs is the sum of each sub-cycle minus
the number of sub-cycles in the graph, the pattern is expected to be similar for powers
of other prime numbers (5, 7, 11...)



Exp Powers  Prime Factorization Spanning Trees # vertices Bounds of o
372 9 3*3 9 5 a(9) <5
373 27 3*3*3 27 7 a(27) <7
374 81 3*3%3*3 81 9 a(81) <9
375 243 3*3*3%3*3 243 11 x(243) <11
376 729 3*3*3*3%3*3 729 13 a(729) < 13
472 16 4*4 16 7 a(l6) <7
4~3 64 4¥4%4 64 10 a(64) < 10
4~4 256 4¥4*4%4 256 13 (256) < 13
4°5 1024 AFQFAR4*Y 1024 16 (1024) < 16
476 4096 AHRAFAHRL*RL*Y 4096 19 «(4096) < 19

The bounds proven by Sedlacek a(t) < % if t = 0(mod 3) and a(t) < % if t =2(mod 3)

and J. Azarija and R. Skrekovski a(t) < % could possibly be represented by a table

such as this one, although it does not make sense to plot out powers of every prime
number. One thing to note about graphs constructed by connected cycles is that the
bound for a(t) will be improved if the sum of the factors used for the cycle is close to

each other.

Example.

For Csg, the factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36.
Note that:

2%18 =2*%2%9=2%2%3*%3=4*3%*%3
3*12=4*3%*3

4*9=4%3%*3

6*6=3*%2*3*2=4%3%3

For Csg and each of the graphs constructed with connected cycles, the number of
spanning trees will remain the same: t(Cgs) = t(C2 * Ci5) = 1(Cs * Cg) = 36 and so
forth for each connected cycle.



Q@

Cae Gz Ci2
0((T(C36)) < 36 OL(T(C?, * C12)) <14
C4 * Cg CG * CG
O((‘E(C4 * Cg)) <12 Cﬁ * C@)) <11
C3 % Cyx Cs

a(t(C3xCyx Cy)) <8



3 Conclusion

The behavior of a(t) is observed by finding the upper bounds using properties known
about t(C,) and t(K,) and improving that bound significantly by creating a graph
constructed of cycles connected by one vertex. Since constructed cycles may have
different factorizations, it is best to break out the cycle into multiple connected cycles
that have factors that are close in number. The expected number and size of prime
numbers of typical values of n may give us possible directions for further research. We
may be able to obtain such estimates from analytic number theory. Knowing these
values could offer asymptotic estimates for the number and size of cycles given in our
construction. Perhaps the resulting bounds will agree with other known results.
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