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Digital coincidence counting units (CCU) have made experimental verification of fundamental quantum mechanical
principles financially accessible to undergraduate level teaching programs. However, recent implementations of these
systems are not easily ported to National Instruments (NI) FPGAs, making them unsuitable for physics departments
that have heavily invested in the NI ecosystem. Therefore, there is clear need for a detailed implementation based
on an NI FPGA. We present a formal description of one such implementation, based on the NI myRIO (NI’s lower-
cost, student-oriented offering) which achieves 6.9 ns minimum guaranteed-distinguishable delay and 32.2 MHz peak
coincidence counting rate with four input channels and simultaneous monitoring of all possible coincidence types.

I. INTRODUCTION

Coincidence counting units (CCUs) are experimental ap-
paratus that can be used to perform relatively simple exper-
imental validations of the most basic principles of quantum
mechanics, including the particle/wave duality of light, and
Bell’s inequality, by detecting the simultaneous arrival of in-
dividual photons on separate input channels.1 The input chan-
nels used are referred to as single photon detectors (SPDs).

CCUs based on digital signal processing techniques are
significantly less expensive than their analog counterparts.2

However, older implementations have relied upon discrete
digital integrated circuits, and were therefore bulky, compli-
cated to assemble, and fixed in design.2 Newer designs based
instead on low-cost field programmable gate arrays (FPGAs)
eliminate the need for digital logic to be assembled physically,
enabling more sophisticated CCU logic that can be reconfig-
ured on a whim.2,3

However, FPGA programming is not easily transferable
between competing FPGA platforms. This is often due to
the use of platform-specific features or proprietary develop-
ment toolchains. For instance, the recent implementation of a
low-cost CCU based on an Altera brand FPGA by the Mark
Beck group at Reed College is not transferable at all to an-
other FPGA ecosystems due to its use of the platform-specific
"ECO Fit" feature to accomplish pulse shortening.1,3

This problem is especially pronounced for the National In-
struments (NI) FPGA ecosystem. NI brand FPGAs force the
use of the proprietary visual programming language, Lab-
VIEW, which uses a completely different paradigmn than
the low-level hardware description languages commonly used
by other FPGA ecosystems.4–6 In fact, LabVIEW enforces a
number of constraints directly preventing the typical approach
to pulse lengthening on an FPGA, thus requiring a totally new
approach.

The Nano Optics Group at Portland State University, like
many others, is invested heavily in the NI ecosystem. There-
fore, it is of direct interest to us to develop an approach em-
ploying an NI FPGA. Such an approach is presented here.

Additionally, many SPD units, including our own, can-
not be operated off the shelf, having card edge connectors
or exposed electronics that require an enclosure for safe
operation.7,8 Therefore, in contrast with the implementation

of the Beck group,5 and in congruence with the implemen-
tation of Han et al.,6 we have opted to directly integrate the
SPD unit, FPGA, and power electronics into a single housing.
We present a full description of the assembly and electronics
involved.

II. BACKGROUND

The reader may be unfamiliar with a number of topics
herein referenced. This section serves as a brief introduction
to these topics.

A. CCU Theory of Operation and Prior Implementations

Coincidence counting units monitor the detections of an ar-
ray of single photon detectors, sensitive devices capable of
detecting single incident photons. If several SPDs are trig-
gered simultaneously (within a small number of nanosec-
onds), this is known as a coincidence.5 CCUs detect and count
these coincidences. Advanced CCUs can distinguish between
all possible coincidence types (all possible combinations of
channels).2

1. Analog CCU Implementations

Older, and more expensive implementations of CCU rely on
nanosecond-precision analog timing circuits that measure the
time difference between detections on separate SPD channels,
and report a coincidence if this time difference is ever below
a threshold, known as the coincidence window. These timing
circuits are expensive, and can only monitor a single pair of
channels, making the monitoring of a large number of channel
combinations prohibitively complex and expensive.2

2. Discrete Digital Implementations

A discrete digital CCU, rather than directly measure the
time difference between channel pulses, treats each channel
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FIG. 1. An example of pulse shaping using 25 ns input pulse length
and 8 ns coincidence window. A and B are raw pulse signals from an
SPD. A′ and B′ are pulse-shortened versions of A and B respectively.
A′ ∧ B′ is the result of the application of an AND gate to A′ and
B′, and its momentary HIGH output at the intersection of A’ and
B’ indicates the detection of a coincidence.

as a digital signal to be processed using discrete digital logic
circuits.

Digital implementations first perform what is known as
pulse shaping, wherein the raw detection pulses provided by
the SPDs are modified to have a consistent length, equal to the
coincidence window.

These shaped signals are then sent to an AND gate, which
outputs a high signal when all of its input signals are high.
If two detections on two seperate SPDs are closer to one-
another than the coincidence window, this will cause their
shaped pulses to overlap, which the AND gate will detect as a
coincidence.2 See figure 1 for a visual example of pulse shap-
ing.

Discrete digital implementations which use pulse shaping
rather than attempt to directly track the time deltas between
detections are simpler and far less expensive than their pre-
cision analog counterparts. However, discrete digital circuits
still need to be manually assembled, and so are fixed in design
once built, and furthermore still limited by the practicality of
their assembly, albeit to a lesser extent.2

B. FPGA-based CCU Implementations

Field programmable gate arrays are devices that allow dig-
ital logic to be authored digitally and flashed (programmed)
rather than physically assembled. FPGAs are a natural choice
for the implementation of experimental apparatus such as
CCUs since the implemented digital logic can be updated
on a whim as the needs of a particular experiment evolve,
while the lack of physical assembly allows for much more
complex designs, and hence more sophisticated digital signal
processing.3,5

1. Clocking

FPGAs are not without their own complexities. Digital
logic is assembled at run time on an FPGA by enabling and
disabling pre-built connections between an on-silicon array
of pre-built generalized logic units.9 These silicon units are
small, and do not have perfectly consistent timing,10 and the
connections formed between them can be quite lengthy or
complex. If allowed to respond to input signals immediately,
these logic units would very quickly end up out of sync. To
overcome this shortcoming, all logic units must be driven by a
synchronizing clock, so that they will only respond to the cur-
rent value of supplied inputs on the rising edge of each clock
cycle. This keeps the behavior of all logic units across the
FPGA silicon consistent, allows time for signals to fully prop-
agate through the silicon, and simplifies timing design consid-
erations for complex designs.9

2. Synthesis

The process of generating the final firmware sent to an
FPGA (known as the bitstream) is called synthesis.9 Due to
the complexity of synthesis, it has largely been automated.
This automation comes in two major forms: Logic synthesis
and high level synthesis (HLS).11

Logic synthesis converts a semi-low-level hardware de-
scription into a logic-gate level representation that is easily
translated into an FPGA bitstream. The antecedent descrip-
tion is typically at the register transfer level (RTL), wherein
circuits are described as an array of hardware value registers
and associated gates operating synchronously on said values.
RTL descriptions are most commonly authored in the Verilog
or VHDL hardware description languages (HDL).9

HLS, instead, takes as its input a high-level programming
language such as LabVIEW or C++, and synthesizes this into
an RTL description that can be fed to typical logic synthesis.11

3. National Instruments vs. Altera

The chosen FPGA platform greatly impacts the tools and
processes available for logic authoring. These differences are,
in fact, a key motivation for this research.
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Of particular relevance are the differences between the Al-
tera FPGA platform, used by the Beck research team, and
the National Instruments FPGA platform, preferred by our
own. Whereas Altera provides authoring software (Quartus)
that can sythesize both from VHDL and Verilog, NI lock
their FPGA motherboards down so that only their propri-
etary visual programming language, LabVIEW, can be used
and synthesized into bitstreams. This makes the programs
written in VHDL by the Beck team completely incompatible
with the high-level, dataflow-oriented approach required by
NI FPGAs.4,5

Furthermore, Quartus has a special synthesis feature known
as "ECO Fit" which the Beck team uses to implement pulse
shaping.5 No such feature exists within LabVIEW, and so
pulse shaping must be implemented explicitly.

C. Single Photon Avalanche Diodes

Single photon avalanche diodes (SPADs) are a form of
avalanche photodiode (APD) commonly used as a single pho-
ton detector. This is the case with our implementation.

1. Theory of Operation

SPADs operate by establishing a strong reverse bias volt-
age across a semiconductor photodiode. The exact voltage
used varies by SPAD, but in order to achieve single-photon
sensitivity, it must be above what is known as the breakdown
voltage of the underlying photodiode, typically on the order
of several tens of volts.12 Excelitas Technologies, the manu-
facturer of our chosen SPAD (SPCM-AQ4C) does not specify
the employed bias voltage.

Normally, the SPAD does not react to this bias voltage.
A depletion region with no free-moving electrons is formed,
through which no electron flow (current) can occur.

When a photon strikes the depletion region of the photodi-
ode, it can be absorbed by a trapped electron, thereby exciting
it and making it free to move, converting it into what is known
as a carrier, in that it can literally carry potential energy stored
in the bias voltage. Once freed, the carrier is accelerated by
the bias voltage. The bias voltage is sufficiently strong that
even a single freed carrier gains enough kinetic energy to in-
teract with other trapped electrons and excite them into carri-
ers as well. These new carriers can then excite other electrons,
resulting in an exponential increase in total carriers known as
an avalanche. This will continue until the bias voltage is suf-
ficiently depleted to prevent further carrier production.12

While the initial current contribution from the first carrier
is not measurable, the resulting avalanche certainly is. By
watching for this avalanche signal, individual photons can
fairly reliably be detected.13

2. Quantum Efficiency

Not all incident photons successfully create a carrier elec-
tron, and not all carrier electrons successfully initiate an
avalanche. The percentage of incident photons on a SPAD
which successfully result in an avalanche is known as the
quantum efficiency (or, alternatively, the photon detection ef-
ficiency) of the SPAD. It is worth note that quantum efficiency
can vary with wavelength.7

3. Afterpulsing

All SPADs, to one degree or another, exhibit a behav-
ior known as afterpulsing. During an avalanche, a substan-
tial amount of current is released across the junction of the
diode. A small percentage of carriers can become temporar-
ily trapped on the way out, and released several tens of mi-
croseconds later. If these trapped-and-released carriers trigger
another avalanche (and hence, a spurious second pulse), the
phenomenon is known as an after-pulse.

The afterpulsing probability specifies the probability that
any given avalanche will have an afterpulse.14

4. Dark Counts

SPADs also exhibit a behavior known as dark counts. This
is a form of spurious signal which occurs spontaneously with-
out any incident light on the sensor. While there are a num-
ber of underlying phenomena credited with creating dark
counts, the resultant behavior is identical; the SPAD will ex-
hibit a baseline rate of spurious detections (typically at a rate
of several hundred per second) regardless of whether there
is incident light.15 The SPCM-AQ4C has a manufacturer-
guaranteed upper-bound dark count rate of 500 counts per
second.7

5. Gating

To counteract afterpulsing and dark counts, many commer-
cial off the shelf SPAD units support a feature known as gat-
ing.

Essentially, gating allows an external signal to quickly and
precisely enable and disable the bias voltage on the SPAD.
The SPAD is only able to avalanche while there is a high bias
voltage applied.

Therefore, if the gating signal can be kept perfectly in sync
with the arrival of the light being analyzed, only the analyzed
light will be able to generate an avalanche. By keeping the
gate open for a period shorter than the afterpulsing delay, and
then closed until after the afterpulsing delay has elapsed, most
afterpulses can be ignored. This will also reduce dark counts,
as the APD will only be sensitive to them for the very short
amount of time (typically on the order of less than a microsec-
ond) required to detect the expected pulses of light.14
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Such timing is only possible with periodic pulsed light
sources, and typically the same signal generating the light
pulses will be used as the gating signal.

6. Dead Time

SPADs cannot detect photons continuously. After any de-
tection event, there is a short period of time during which the
SPAD cannot detect another photon. This is known as the
dead time of the SPAD. This creates an upper bound for the
maximum count rate for SPADs, although the actual maxi-
mum count rate may vary.16 The SPCM-AQ4C has a dead
time of 50 ns, as well as a maximum count rate of 5 MHz
burst and 2 MHz continuous.7

7. Power Considerations

In spite of the relatively small energy contributions made by
triggering photons, the resultant avalanches result in a signifi-
cant amount of current (on the order of tens of milliamps), and
therefore a significant amount of power (on the order of sev-
eral watts) being released as thermal energy within the SPAD
silicon at high count rates.7 Consequently, SPADs must be
carefully thermally managed, and care must be taken not to
exceed a count rate that would cause the SPAD to overheat.
The datasheet for the given SPAD should be consulted to de-
termine these limits.

III. IMPLEMENTATION

We implement a single-enclosure (monolithic), single pho-
ton coincidence counting unit utilizing an NI myRIO-1900
FPGA and Excelitas Technology SPCM-AQ4C four channel
SPAD, and associated support electronics.

A. System Description

1. Overview

The CCU implementation consists primarily of a four-
channel SPAD, a driving FPGA, and a variety of minimal
required support electronics, enclosed in a single aluminum
housing. Figure 2 shows a high-level diagram of the CCU.
The chosen FPGA is the NI myRIO-1900, selected for its rel-
atively low cost and undergraduate-oriented durability. This
FPGA motherboard features a Xilinx Zynq-7010 FPGA.17

The chosen SPAD is the Excelitas Technology SPCM-
AQ4C, a four-channel SPAD with an upper bound of 500
dark counts per second, 50 ns dead time, 25 ns pulse width,
0.5% afterpulsing probability, and a peak quantum efficiency
of roughly 60% at roughly 700 nm.7 This SPAD has exposed
electronics and is electronically interfaced with a card-edge
connector. Therefore, support electronics and an enclosure
are necessary for safe operation.

FIG. 2. A high-level diagram of the CCU.

FPGA, SPAD, and support electronics are packed into a
single enclosure. Ideally, this enclosure would be metallic.
However, due to time constraints and long manufacturer lead
times, a plastic surrogate had to be 3D-printed. Future work
will aim to transition to a metal enclosure.

2. Support Electronics

Ideally, one would implement all support electronics on a
single, purpose-built printed circuit board (PCB) featuring a
card edge connector receptacle for the SPAD, directly inte-
grated power electronics, and a direct parallel connector di-
rectly attachable to the FPGA. However, the design overhead
and prototyping costs were deemed to outweigh the potential
size and integration benefits of such an approach.

Instead, we have opted to utilize the Exelitas Technologies
SPCM-AQ4C-IO, a breakout board providing a power break-
out connector, card edge connector receptacle, and BNC style
ports for all detection signals and gate controls.

The SPCM-AQ4C-IO is mounted with 3D-printed brackets
to a perfboard (a type of generic prototyping PCB), which we
use to perform basic interconnect wiring and power supply
implementations.

Custom 50-ohm terminations (figure 3) are, as required by
the SPCM-AQ4C-IO, attached to each SPAD pulse output
channel, and then routed to the FPGA digital IO channels
via the perfboard. An additional ground-only BNC break-
out is used to connect the ground signal of the SPCM-AQ4C-
IO to one of the DGND reference ground pins of the FPGA.
Without this connection, the FPGA cannot reliably sample the
pulse channels.
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FIG. 3. Electrical diagram of the 50 ohm termination required by the
SPCM-AQ4C-IO.

The SPCM-AQ4C-IO is configured to use a single gating
signal for all channels. The gate signal is provided directly
via internal BNC cable connected to the backside of a BNC
port at the front of the CCU.

According to Excelitas, the SPCM-AQ4C requires three
distinct supply voltages:7,8

• 30 VDC must be supplied with at least 0.3 A current
capacity.

• 5 VDC must be supplied with at least 1 A current ca-
pacity.

• Isolated 2 VDC must be supplied with at least 2 A cur-
rent capacity.

Additionally, the NI myRIO-1900 requires external DC
power. While the exact voltage range and minimum current
are not specified by NI, the power supply the myRIO ships
with provides 12 VDC and is rated for 1.5 A. Out of caution,
we take 1.5 A as the lower-bound supply specification for the
myRIO.

To generate these voltages, we start with mains voltage,
supplied via an International Electrotechnical Commission
(IEC) C14 receptacle with 1 A fuse and switch on the back
of the unit.

This mains is routed to two AC to DC power supplies: A
Mean Well RS-25-12, 2.1 A 12 VDC supply to power the
FPGA, and a CFM40C300-DR 1.33 A 30 VDC to provide one
of the supplies required by the SPAD. This supply also pow-
ers the supplies responsible for the other two power inputs
required by the SPAD.

The necessary current rating for the 2 VDC isolated supply
required by the SPAD is quite high. Isolated DC to DC con-
verters with this current and voltage range simply do not exist
on the market at the time of writing. However, 5 VDC isolated
supplies in this current range are much more common, and so
we pair one (PQDE6W-Q24-S5-T) with a non-isolated DC to
DC step-down converter (OKX-T/5-W5P-C) to generate the
desired high-current, isolated 2 VDC.

The 2 VDC supply is adjustable, and so a simple trimming
circuit is required to achieve exactly 2 VDC. This circuit is
diagrammed in figure 4.

FIG. 4. Electrical diagram of the trimming circuit used to achieve
exactly 2V. The 10k potentiometer is adjusted manually until 2V is
reached, then fixed using adhesive.

For simplicity, we use an additional PQDE6W-Q24-S5-T to
generate the final, non-isolated 5 VDC power supply required
by the SPAD. The SPCM-AQ4C-IO internally shorts the out-
put ground of this supply to the output ground of the 30 VDC
supply making it functionally non-isolated.

Figure 5 shows a component-level diagram of the power
and data electronics.

B. Physical Layout

The externals of the CCU consist of a 3D-printed enclo-
sure (printed in two pieces secured together with screws), 3D-
printed front and back panel, and various panel-mount com-
ponents, namely the gating signal BNC input, the IEC C14
power input with switch and fuse, a USB port for FPGA in-
terfacing, and the SPCM-AQ4C SPAD itself.

Internally, the SPCM-AQ4C-IO and perfboard are mounted
to each other with a pair of identical 3D-printed brackets. To-
gether they form the main electronics chassis. The 3D brack-
ets are sized so that the main electronics chassis fits snugly
in the main enclosure, but can slide along the forward axis.
The main chassis is never affixed to the main enclosure, but
rather, held in place by the card-edge connection between the
SPCM-AQ4C and SPCM-AQ4C-IO. Once this connection is
made, the main electronics chassis also serves to support the
back-end of the SPCM-AQ4C.

The 5 VDC and 2 VDC power supplies are directly affixed
to the perfboard (screwed and soldered, respectively). The
12 VDC and 30 VDC supplies are affixed directly to the main
chassis with Velcro. Given the completely-self-contained na-
ture of these two supplies, there is no risk of an electrical
short if they should become internally detached, and given the
strength of the Velcro, this is highly unlikely to begin with.
Hence, Velcro was deemed an acceptable solution for mount-
ing them.

The NI myRIO is friction fit into a gap between the main
electronics chassis brackets and the wall of the main enclo-
sure. This further locks the entire assembly into place.
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FIG. 5. Component level diagram of CCU signal and power electronics.

All 3D-printed parts have threaded inserts pushed into them
using a soldering iron. This allows them to be screwed into the
various components they attach to. All inserts are M3. Various
lengths of screw are used.

1. Parts List

These are the key components used in our implementation.
This list excludes the menagerie of miscellaneous crimping
inserts, wires, connectors, terminals, ferrules, cables, screws,
3D-printed parts and threaded inserts used. Many of said
components came from kits and do not have part numbers.
However, the assembly section details the relevant informa-
tion wherever possible.

• (1x) National Instruments myRIO-1900 (FPGA)

• (1x) Excelitas Technology SPCM-AQ4C (Four Channel
SPAD)

• (1x) Excelitas Technology SPCM-AQ4C-IO (Interface
Module for SPCM-AQ4C)

• (1x) CFM40C300-DR (30V, 40W, ACDC power sup-
ply)

• (1x) Mean Well RS-25-12 (12V, 25.2W, ACDC power
supply)

• (2x) PQDE6W-Q24-S5-T (5V, 6W, DCDC isolated
power supply)

• (1x) OKX-T/5-W5P-C (0.8V to 3.6V, 17W, DCDC ad-
justable power supply)

As previously mentioned, our implementation uses a 3D-
printed enclosure. However, we recommend that prospec-
tive implementers purchase a Rose Enclosures 07504011 alu-
minum enclosure. Our 3D-printed enclosure is designed to
mostly match up with this enclosure. Some internal arrange-
ments, especially the 3D-printed brackets, may need to be ad-
justed to better fit the aluminum enclosure. In the event that a
prospective implementer chooses identical SPAD, FPGA and
power supply units, CAD files for 3D-printed parts are avail-
able upon request. Please note, however, that these designs
will not fit the metal enclosure without adjustments. Figure 6
shows a picture of the 3D-printed enclosure used.

C. Assembly

First, mounting holes for 3D-printed brackets and 5 VDC
power supplies are drilled into the perfboard. Next, the 2 VDC
power supply and trimming circuit are soldered onto the perf-
board. A 4-conductor JST receptacle and a 34-pin insulation
displacement connector (IDC) receptacle are also soldered to
the perfboard and connected to each other. These are used
to transfer detection pulses to the FPGA. Finally, a termi-
nal block is added for connecting the SPCM-AQ4C-IO and
myRIO ground signals. Figure 7 shows the fully assembled
perfboard with electronics and power wires (described in the
next step) attached.

Next, wires are cut, crimped, zip-tied, and affixed to all of
the power supplies in the power supply chain. Crimp types in-
clude spade connectors, fork connectors and ferrules. The pre-
assembled HiRose HRS DF7-6S-3.96C cable supplied with
the SPCM-AQ4C-IO is also used. Figure 8 shows the full
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FIG. 6. Picture of the 3D-printed enclosure used by this implemen-
tation.

FIG. 7. Picture of the perfboard with all components soldered or
affixed, and all power wires inserted.

power supply chain and wiring.
At this point, a quick-power-on test is performed, and the

2 VDC trimmer is adjusted until 2 VDC is achieved. The trim-
mer is then fixed in place with hot glue. Figure 9 shows the
2 VDC circuit and fixed trimmer.

Meanwhile, the four 50 ohm BNC terminations, are as-
sembled and crimped to a 4-pin JST connector. These ter-
minations consist of a screw-terminal BNC breakout, a single
solid core wire, and a 50 ohm resistor. The solid core wire is
crimped to the resistor using a ferrule, which is inserted into
the signal channel of the BNC breakout. The other side of
the resistor is crimped to another ferrule which is inserted into
the ground channel of the BNC breakout. Clear heat shrink
is applied over the whole assembly to prevent shorts and keep
it secure. Additionally, the ground-only BNC termination is
created. This consists simply of a solid core wire crimped

FIG. 8. The fully wired power chain. Clockwise from middle left:
SPCM-AQ4C-IO, perfboard, 30 VDC power supply, 12 VDC power
supply, back panel with IEC C14 port and USB port. HiRose con-
nector is inserted into the SPCM-AQ4C-IO.

FIG. 9. A close view of the 2 VDC power circuit, with voltage adjust
trimmer fixed in place with hot glue.

to a ferrule and screwed into the ground terminal of a BNC
breakout. Figure 10 shows the terminations in detail. Note,
however, that the HiRose connector and perfboard that should
be present by this stage are missing from the picture.

These five BNC terminations are now assembled onto the
SPCM-AQ4C-IO, which in turn is screwed onto the perf-
board, and configured for single-gate mode.8 Figure 11 shows
the fuse configuration for the SPCM-AQ4C-IO that imple-
ments single-gated mode. The JST connector is inserted into
the JST receptacle, and the ground termination is inserted into
the DGND terminal block. This completes the main electron-
ics chassis. Figure 12 shows a picture of the fully assembled
main electronics chassis. Note, however, that the HiRose con-
nector that should be inserted by this stage is left freestanding
in the picture.

Now, the 12 VDC and 30 VDC power supplies are fed
through the back of the enclosure to the front, where they are
affixed with Velcro. This is pictured in figure 13.

Meanwhile, the SPAD and BNC gating input are affixed to
the 3D-printed front panel (see figure 14), and a BNC cable
is affixed to the internal side of the gating input (see figure
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FIG. 10. A close shot of the 50 ohm and GND-only BNC termi-
nations mounted to the SPCM-AQ4C-IO. Bottom row are 50 ohm
terminations. Upper right is GND-only termination.

FIG. 11. Picture of the fuse arrangement on the SPCM-AQ4C-IO
that enables single-gated mode.

15). This cable is run through the front of the enclosure to the
back. Once this is complete, the front panel is affixed to the
enclosure.

Next, all power cables and the gating control cable are fed
through the interior of the main electronics chassis, carefully
routed to avoid interference between the cables and chassis

FIG. 12. Picture of the fully assembled main electronics chassis.

FIG. 13. Front view of the enclosure with 12 VDC and 30 VDC
power supplies internally affixed.

FIG. 14. Picture of the front panel, showing SPCM-AQ4C and gate
signal BNC input affixed.

assembly, and the main electronics chassis is partially inserted
into the enclosure. This is pictured in figure 16.

It is now possible to connect the HiRose power connec-
tor and the gating control BNC cable to the SPCM-AQ4C-IO.
This is pictured in figure 17.

Once this is complete, a 34-pin IDC cable is plugged into
the perfboard, and the main electronics chassis is carefully slid
toward the front-end of the enclosure, until it begins to make
contact with the card edge connector. Care must be taken to
avoid interference between the wiring, chassis assembly, and
card-edge connector, and the slot for the FPGA must be kept

FIG. 15. Picture of the reverse side of the front panel, showing
SPCM-AQ4C and a BNC cable attached to the internal side of the
gating signal input.
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FIG. 16. Rear view of enclosure showing partially inserted main
electronics chassis with cables from the front passed through to back.

FIG. 17. Rear view of enclosure showing partially inserted main
electronics chassis with cables from the front passed through to back
and HiRose power connector and BNC gating signal attached to the
SPCM-AQ4C-IO.

clear.
After double-checking visually that there is no physical in-

terference between the wiring and chassis assembly, and that
the card-edge connector is aligned and free of obstruction, a
firm push on the main electronics chassis causes the card edge
connector to mate. The SPCM-AQ4C-IO and SPCM-AQ4C
are now connected.

Meanwhile, the back panel is assembled. The IEC C14 con-
nector and USB panel mount connector are affixed to the back
panel, and the IEC C14 port is wired so that the switch is in
series with mains.

The other end of the IDC cable from the main electronics
chassis, the 12 VDC barrel jack from the front power supplies,
and the USB cable from the back panel are now inserted into
the FPGA. This is pictured in figure 18. Note that the IDC
cable must be inserted into connector A of the FPGA.

The FPGA is now friction-fit into its slot (figure 19).
Finally, the spade connectors for mains are attached to the

IEC C14 connector (see figure 20), and the back panel is af-

FIG. 18. Rear view of the implementation after main electronics
assembly is fully inserted and 34-pin IDC, power, and USB cables
are attached to the FPGA. IEC C14 receptacle backside is visible in
lower left.

FIG. 19. Rear view of implementation, showing the fully inserted
FPGA.

fixed to the rear of the enclosure (see figure 21).
The unit can now be plugged into an IEC C13 power ca-

ble, and connected to a host computer via USB cable to be
programmed and operated.

D. Programming in LabVIEW

The precision of an FPGA-based CCU is, ultimately, driven
by the resolution at which signal pulse shortening can be per-
formed. On non-LabVIEW FPGAs, it is common to im-
plement pulse shortening by passing the input signal and a
marginally phase-shifted copy of itself through an AND gate
with single inverted input or an XOR gate.2,6 This results in
pulses whose length is exactly equal to the phase shift amount.
Thus, the shortest achievable pulse length (and, hence, best
achievable CCU precision) is directly determined by the min-
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FIG. 20. Close view of the affixed IEC C14 port with mains wires
attached with spade connectors.

FIG. 21. Picture of the affixed back panel of the implementation.

imum reliable phase shift achievable with the FPGA. Figure
22 gives an example of phase-shift-based pulse shaping.

In a non-LabVIEW FPGA programming environment, it is
possible to directly use buffer elements to incur phase shifts
on signals (arising from the propagation time of the buffers
themselves). With careful attention to clock propagation, this
will result in the minimum phase shift possible on the FPGA.
The outputs of an array of cascading buffers can be fed to
a single multiplexer to implement a dynamically-configured
phase shift5,6. A diagram of this approach is given in figure
23.

However, in a LabVIEW FPGA environment, none of this
is possible. LabVIEW is a data-oriented programming lan-
guage based on a concept referred to as dataflow, and so can
only describe circuits which transform data in a manner which
is congruent with a high-level dataflow program.4 While con-
currency is certainly supported, non-synchronous circuits and
single-buffer delays such as those used by Beck and Han are
outright impossible to implement in LabVIEW.

In fact, the only way to achieve any form of precision tim-
ing in LabVIEW is through the use of single cycle timed loops

FIG. 22. An example of phase-shift-based pulse shaping. A 25 ns
input signal (A) is shaped into an 8 ns output signal (A∧¬

(
Aphased

)
).

First, A is phase-shifted by 8 ns (the desired output pulse length) to
produce Aphased. Next, Aphased is inverted to produce ¬Aphased. Fi-
nally, A is intersected with ¬Aphased to produce the final shaped pulse.
Note that this method can only shorten pulses. Pulse lengthening is
not possible.

FIG. 23. An example of buffer-and-multiplexer phase-shift-based
pulse shaping with functional blocks highlighted in grey. Raw pulses
enter the variable phase shifter, and must pass through an increasing
number of buffers to reach each successive input of the MUX. Each
buffer adds delay so that each input to the MUX is phase shifted by
the buffer delay relative to the previous input. Thus, the MUX can
be used to select a desired phase shift from these four inputs. The
delay compensator buffer counteracts the propagation delay of the
MUX itself. The signal combiner intersects the compensated raw
pulse with an inverted version of the selected phase-shifted pulse to
produce the final shaped pulse, as per figure 22.

(SCTL). Any code placed inside an SCTL is guaranteed to
be executed in lockstep with a specified clock signal from the
FPGA.18 While this allows much greater timing precision than
is otherwise possible in LabVIEW (since the enclosed code
has an associated guaranteed frequency that can be made to
approach the upper limits of the FPGA), it comes with the
very significant drawback that LabVIEW requires the entire
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portion of code within the loop to complete within the driving
clock period. Furthermore, input digital signals are sampled at
the clock frequency, rather than piped directly to the gates that
receive them. In other words, the entirety of the code within
the SCTL must be synchronous, forcing all phase shifts to be
a multiple of the driving clock frequency and making buffer-
based phase shifts completely impossible.

In short, any CCU implemented in LabVIEW is forced to
operate by sampling the digital input at a fixed frequency that
is directly linked to the total execution time of the coincidence
counting logic, and this sampling rate will be the absolute
minimum achievable phase shift for any such implementation.
Hence, when working with an NI FPGA, maximizing the driv-
ing clock frequency becomes a critical concern for maximiz-
ing performance.

The execution time of an SCTL can often be reduced, with-
out limiting code complexity, by using a technique known as
pipelining, wherein partially processed data is passed to the
next iteration of the SCTL (using a register or feedback node
of some kind) to be processed concurrently with the input data
for the next cycle.19 However, registers and feedback nodes
are not without delay of their own, and hence, it is not possi-
ble to reduce the execution time of an SCTL to any less than
that of a single node and its input/output feedback nodes. Lab-
VIEW also inserts hidden circuitry to enforce dataflow known
as the enable chain, further increasing the minimum execu-
tion time of an SCTL containing complex programs.4 While
some NI platforms allow the enable chain to be disabled, the
myRIO platform is not among them. Finally, the RTL synthe-
sis engine itself may choose to include extra buffers if a sin-
gle output is routed to a large number of inputs (this is called
fanout) even further contributing to the minimum execution
time for complex circuits.9

In general, then, having the minimum phase shift limited
to the driving clock period is a major drawback to the Lab-
VIEW platform, and results in significant reductions to the
upper bound performance of a potential CCU. Fortunately, in
spite of these setbacks, we have found an implementation in
LabVIEW which performs comparably the Beck implementa-
tions (which employed a much older FPGA). This is mostly
due to the significant difference in overall FPGA performance
between our chosen FPGA and the FPGA employed by Beck
et al. As we will demonstrate in the validation section, our im-
plementation is significantly slower than the Non-LabVIEW
implementation by Han et al.

Given the restriction imposed by LabVIEW that phase
shifts last an entire driving clock period, there is significantly
less impetus to pursue the buffer-and-multiplexer approach
of Han. Instead, we have opted to use a numeric solution
based on DSP48E1 digital signal processing (DSP) slices, a
specialized, 48-bit logic and arithmetic element that can in
theory execute relatively complex mathematical operations
with total execution times that are similar to single standard
logic elements.20 All counting logic is placed within a single
SCTL. In practice, we find these units to be somewhat slower
than single logic elements, meaning it may be possible to get
higher clock speeds by using purely traditional logic. But,
for the purposes of this implementation, we found the DSP

FIG. 24. LabVIEW rising edge detection program operating on
DIO0 through DIO3 inputs from connector A. Each input is passed
to a feed-forward node (labeled by LabVIEW as a feedback node) in
series with a NOT gate, the output of which is passed to an AND gate
along with the original signal. The result is an output which is HIGH
if and only if the input is currently HIGH, but was LOW the previous
clock cycle. The output is finally fed to a pipelining feed-forward
node.

slices to be adequate. The use of these slices also comes with
some benefits. The coincidence totals and pulse shaping logic
are all 48-bit, allowing an extremely large range of coinci-
dence windows and extremely high total coincidence count to
be achieved.

The numeric method we employ works as follows: First,
rising edge detection is implemented on all digital inputs. Ev-
ery clock cycle, the previous value of the digital input is com-
pared to the current value. If they differ and the latest value
is HIGH, then a HIGH output is generated, exclusively for the
clock cycle on which this transition occurred. This is pictured
in figure 24.

All four channels have a negative-counting accumulator
with a negative-number pattern detector implemented using
one DSP slice each. Whenever a pulse rising edge is detected,
the DSP slice is reset, and one cycle later, the coincidence
window value is numerically added to the current accumulator
value. Every cycle, the accumulator value decreases by 1. The
pattern detect feature of the DSP slice is configured to output
a HIGH value whenever the accumulator value is negative.
These configurations cause the output of the pattern detect to
be LOW for N +1 clock cycles after every pulse rising edge,
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where N is the configured coincidence window. We invert this
signal and treat it as the shaped pulse. Adjusting the (48-bit)
coincidence window value thus directly alters the pulse length
generated by this pulse shaping program. The minimum pos-
sible coincidence window is zero, corresponding to an actual
pulse length of one. The pulse shaping program is pictured in
figure 25.

Rather than send the shaped signals directly to the coin-
cidence detection logic, we first perform a process we refer
to as coincidence latching. Coincidence latching eliminates
the double-counting of various coincidence types. For in-
stance, without coincidence latching, two simultaneous pulses
on channels A and B would result in a count for A, a count for
B, and a count for the AB coincidence counter. However, with
coincidence latching, only the AB coincidence counter is in-
cremented.

Coincidence latching works by passing each shaped signal
to a latch which latches HIGH whenever its assigned channel
outputs HIGH, but resets back to LOW when and only when
all four input channels are LOW. All latches reset simultane-
ously when this condition is met. Whenever the latches reset,
their value immediately before the reset is treated as a 4 bit
integer representing the coincidence type, and this integer is
passed off to the counting program.

Suppose, for example, a pulse occurs on channel A. This
will latch the channel A latch to HIGH. Consider, then, a pulse
which occurs shortly after on channel B. If the delay between
these pulses is greater than the coincidence window, then the
shaped A signal will go LOW before the shaped B signal goes
HIGH. Therefore, for a brief moment, all signals will be LOW,
and the latches will reset, treating A as an individual A count.
Shortly after, the B pulse will count as an individual B count as
well, as would be expected. However, if the delay is less than
the coincidence window, the shaped B signal will go HIGH
before the shaped A signal goes LOW, and there will not be
a moment when all shaped signals are LOW simultaneously.
Thus, the A and B latches will both be HIGH when the latches
reset (after the conditioned B signal goes LOW), and this will
count as an AB coincidence.

Figure 26 shows the pattern latching program.
The counting program performs a direct equality check on

all integers between 0 and 15, and instructs the corresponding
counter (implemented using another DSP slice) to increment
whenever the equality holds true. In practice, the zero coinci-
dence is never actually triggered; all-latches-LOW is the latch
reset state, and in this state, the integer 16 is passed along as
the coincidence type, preventing any zero counts from occur-
ring.

The coincidence counting logic also features a simple cycle
counter for accurate time measurement, and a RESET regis-
ter, which can be used to reset all counters, including the cycle
counter. In future revisions, the non-functional zero-type co-
incidence counter and the cycle counter will be combined to
use a counter.

Finally, registers are used to copy count values off to a
lower-frequency loop, where they are made available to the
front-panel. Directly writing the values to the front panel
would significantly hinder maximum clock speed. The co-

incidence type counters, cycle counter, RESET register read,
and counter register writes are all pictured in figure 27. The
low-frequency loop used to copy register values to and from
the front-panel is pictured in figure 28.

The full LabVIEW project is available on request.
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FIG. 25. Single channel of LabVIEW rising edge detection (left) and DSP48E1-based pulse shaping (right) program, featuring coincidence
window input register in the upper-left. Rising edge detection is the same as pictured in figure 24. Raw input pulses are fed to the rising
edge detection circuit, which produces rising edge ticks that reset the DSP slice and feed its c register, via a feedback register and one cycle
later, with the coincidence window on every pulse rising edge. The pattern detect output on the DSP slice is configured to output true if the
accumulator value is negative. Thus, after every rising edge, the patterndetect output of the DSP slice will be LOW for exactly N +1 cycles,
where N is the coincidence window cycle, and will be high at all other times. This signal is negated to produce a shaped version of the input
pulse, and then fed via a pipelining feed forward node (labeled as a feedback node) to the pattern latch pictured in figure 26. Note that this
pulse shaping program can both shorten and lengthen pulses. The exact configuration of the DSP slice is pictured in figure 32 in appendix A.

FIG. 26. LabVIEW pattern latching program. Shaped pulse outputs
from figure 25 are fed in from the left to an array of four latches,
each consisting of an OR gate, an AND gate, and a feedback node.
Each latch will go high if its corresponding shaped pulse input goes
high. So long as any of the four shaped inputs is high, the latches
will retain their value. On the exact cycle this condition is violated,
all four latches will reset, and their values just prior to reset will be
converted to an integer and output via a pipeling feed-forward node
to the counters pictured in figure 27.

FIG. 27. The first five counters of the LabVIEW counting program.
Whenever the coincidence latch (pictured in figure 26, and partly
visible here) detects a coincidence, a 4-bit coincidence number is
passed for a single clock cycle to all 16 counting channels, 5 of which
are visible here. Each channel checks the equality of the sent num-
ber with a distinct pre-programmed value. In the event of a match,
the corresponding counter, implemented using a DSP48E1 slice, is
incremented by one. The outputs of each counter are written to a
corresponding register after every cycle to be retrieved later for the
front-end. This retrieval process is pictured in figure 28. Also pic-
tured is the cycle counter, which increments on every cycle without
regard to any coincidence. The full configuration for the DSP slice
used here is available in figure 33 in appendix B.
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FIG. 28. Picture of the low-frequency loop used to copy regis-
ter values to and from the high-frequency SCTL, featuring a ba-
sic while loop, 16 coincidence count register reads (the first 6 of
which are pictured), which are aggregated into a single array avail-
able on the front panel, a coincidence window control and register
write, a CLEAR/RESET control and register write, and finally a cy-
cle counter readout. The while loop operates continuously and is not
frequency-limited.
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IV. RESULTS & VALIDATION

A. Dark Counts

As mentioned earlier, SPADs have a baseline spurious
count rate which is present even in absolute darkness. These
dark counts should be detected by a successful CCU imple-
mentation, and the measured dark count rate should be on ap-
proximately the same order of magnitude as the listed maxi-
mum dark count rate provided by the manufacturer. We do,
indeed, detect dark counts when our implementation is pow-
ered on, at a rate of between 360 and 410 counts per second,
which is comfortably close to the quoted upper bound dark
count rate of 500 counts per second.7 A nominal dark count
rate is not listed, but the fact that the measured rate is the same
order of magnitude as the stated upper bound is an excellent
sign.

B. Minimum Guaranteed-Distinguishable Pulse Delay

The completed program is able to compile with a driving
clock frequency for the main SCTL of up to 280 MHz. In
theory, this corresponds to a sample interval of approximately
3.5 ns, or equivalently, a minimum guaranteed-distinguishable
delay (which we will now abbreviate as MGDD) of twice that
value, or about 7 ns. In other words, theoretically, our imple-
mentation is guaranteed to be able to distinguish two pulses
that are more than approximately 7 ns apart.

This theoretical value seems to correlate well with the
achieved performance of the Beck research team, who claim
a 7 ns to 8 ns timing resolution.5 While an exact definition of
timing resolution is not given by the Beck team in this paper,
it is reasonable to assume MGDD was the intended meaning.
The Han research team, meanwhile, achieved an MGDD of
0.46 ns.6

MGDD can be measured by feeding two precision square
waves to the CCU, and performing a scan of phase shift vs.
coincidence probability with the CCU. The MGDD will be
the difference in time between the smallest phase shift which
guarantees no coincidences are counted, and the largest phase
shift which guarantees all pulses are counted as a coincidence.
Performing this scan at a variety of coincidence window val-
ues improves its reliability.

We perform precisely this test, using another myRIO FPGA
to generate the precision square waves. Unfortunately, our
square wave generator has extremely similar limitations to our
CCU in that it has a maximum clock frequency of 290 MHz,
and therefore a phase shift and pulse length resolution of only
about 3.5 ns. Therefore, our measurements are not nearly as
precise as the Han team, which had a 10 ps timing resolution
for their square waves,6 but they do at least establish a solid
lower bound on our true performance, and provide a viable
sanity check to the theoretical MGDD. The myRIO-to-myRIO
test setup is pictured in figure 29.

Figure 30 shows a set of 11 scans of phase shift vs. per-
cent chance of coincidence, each for a distinct coincidence
window. Each scan ranged from a phase shift of about 3 ns

FIG. 29. Picture of the myRIO-to-myRIO configuration used to char-
acterize the CCU performance. DIO lines from test signal generator
are connected directly across to DIO lines for CCU FPGA. DGND
lines are also connected.

to about 70 ns, incrementing by the minimum phase shift our
test signal generator is capable of. Each data point is the result
of a full second of feeding two square waves with this phase
shift to two channels of the CCU. Both square waves had a
frequency of 1 MHz for all samples. As would be expected,
the transition point moves right as the coincidence window in-
creases. Importantly, the transition from 100% coincidence to
0% coincidence is completed, without fail, within a span of
two samples, indicating that the MGDD is, at most, 6.9 ns,
or about 15 times that achieved by Han et al. This is exactly
in line with the theoretical prediciton for the achieved clock
frequency, and indicates the CCU is operating as expected.

C. Maximum Pulse Frequency

The maximum coincidence count rate of the CCU can be
characterized by performing a simple frequency sweep with
two identical 50% duty cycle square waves fed to two of the
FPGA pulse input channels. The coincidences detected per
second should equal the frequency of the square waves. The
point at which this equality fails is the maximum coincidence
count rate. Han et al. achieve a maximum coincidence count
count rate of about 400 MHz.

Figure 31 shows the graph of a frequency vs coincidence
rate sweep from about 300 kHz to 280 MHz. 1000 samples
were collected, with each sample corresponding to a different
minimum decrement of the test signal period. Values were
obtained by allowing the CCU and test signal to run for one
second at the given target frequency, and then dividing the
total observed coincidences by the total observed clock cy-
cles, multiplying by a scaling factor to convert from coinci-
dences per cycle into coincidences per second. The test sig-
nal frequency and coincidence counting rate are identical until
32.2 MHz, after which the coincidence counts drop to zero. In
other words, the maximum coincidence count rate for our im-
plementation is 32.2 MHz, about one 12th of that of Han et al.
Once again, the precision limitations for the test signal gener-
ator severely limit the accuracy to which we can test the max-
imum coincidence count rate. This is especially pronounced
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FIG. 31. A plot of test signal frequency vs. coincidence detection rate for the CCU.

near 290 MHz, as the achievable target frequencies get more
spread out. A more precise test signal generator might signifi-
cantly increase the estimated upper bound coincidence count-
ing rate. At the very least, however, we have a lower bound
for the upper bound performance.

V. CONCLUSION

We have successfully implemented and demonstrated a
National Instruments version of Mark Beck’s CCU imple-
mentation, overcoming a great deal of technical challenges
mainly imposed by the LabVIEW FPGA programming envi-
ronment. While this implementation is not state of the art,
it achieves comparable minimum guaranteed-distinguishable
delay to that of Beck et al., and is therefore adequate for im-
plementing quantum experiment curriculum. We have also
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presented the full electrical and construction details of our im-
plementation, so that the reader is able to completely recreate
the implementation if so desired.

In future work we hope to make the transition to a metal en-
closure, acquire more accurate test data with higher-precision
signal generators, implement and demonstrate some of the
CCU experiments authored by the Beck research lab, and in-
vestigate ways to further improve on the limitations imposed
by the LabVIEW FPGA programming environment.

It is our hope that this work enables other research teams
who are heavily invested in the NI ecosystem to pursue FPGA-
based CCU and the associated undergraduate quantum exper-
iment curriculum created by Mark Beck.
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Appendix A: Pulse Shaping DSP Slice Configuration

FIG. 32. Full configuration for the DSP slice used for pulse shaping.
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Appendix B: Counter DSP Slice Configuration

FIG. 33. Full configuration for the DSP slice used for all counters.
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