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(2) stochastic volatility processes, the benchmark models being those for which 

volatility evolves independently of the asset price, such as in Wiggens (I 987) and 

in Melino and Turnbull ( 1990); 

(3) jump-d(/jitsion processes, the benchmark model being Merton's ( 1976) and Ball 

and Torous'( I 983) specification of log-symmetric jumps with zero mean. 

Let us focus on the jump-diffusion process studies. Tlw introduction of the notion 

of jump is certainly based on empirical observations. Press ( 1967), Merton (I 976), Ball 

and Torous ( 1983) state that the behavior of the (log) returns can be divided into two 

independent components: 

(I) the continuous part which is responsible for the usual (or "normal") day-to-day 

price movement. The changes in stock prices may be due to variation in 

capitalization rates, a temporary imbalance between supply and demand, or the 

receipt of any information which only marginally affects stock prices. It is 

described by the traditional Brownian motion and modeled as a lognormal 

diffusion process; 

(2) a discontinuous part which is due to the receipt of any important information that 

causes a more than marginal change (or "abnormal" change) in the price of stock. 

The arrival of this kind of information is random. The number of information 

items is assumed to be distributed according to a Poisson process. Thus, this part 

is modeled as a Poisson jump process. 

This description is intuitive. In fact it may be the answer to market anomalies such as the 

size effect (small firms' stocks earn higher returns), the January effect or the weekend 
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effect, holiday effect, and so on. After all, the term "anomaly" means abnormal changes 

in prices in the financial context (Bhardw<~i and Brooks 1992, Keim 1983 and 1989, Keim 

and Stambaugh 1986, Lakonishok 19, and Roll 1983). 

Merton ( 1976), Cox and Ross ( 1976), and Ball and Torous ( 1983) extend the OPT 

to include the jump process. Their models assume risk-neutral and imply that the 

distribution is symmetric and slightly positively skewed, as stated by Fama ( 1965). They 

assume that jumps in the prices of the underlying asset arc uncorrclated with the changes 

in the price of the market portfolio, so that the jump risk is not priced in equilibrium. 

While Neither Merton ( 1976) nor Cox and Ross ( 1976) conducted any empirical work 

with their suggested models, Ball and Torous did and found that 78% stocks examined in 

their study indicate jumps presence. 

When important news like wars arrive, however, the market jumps, too. Most 

recent examples arc the crashes of 1987 and the volatile markets during the Persian Gulf 

War. Naik and Lee ( 1990) derived an equilibrium model, which includes premiums for 

both jump and diffusion risks, to price the option on the market portfolio. Their work 

moves the jump-diffusion studies from focusing on individual assets to the market 

portfolio. When commenting on Merton's ( 1976) model, they point out that a "feature of 

the Merton model is the assumption that the jumps in security prices arc uncorrclated 

with the return on the market portfolio. Clearly, this assumption is violated if the security 

under consideration is the market portfolio itself (495)." Another merit of their model is 

its recognition of the jump risk as systematic risks. which is left out by Merton as well as 

Cox and Ross ( 1976). 



If the return of stocks should be divided into jump part and diffusion part, 

certainly the risk associated with return of securities should be decomposed into two 

parts, too. The CAPM states that beta, a diffusion risk, is systematic and 

19 

nondiversifiable. So is the jump risk when taking both diffusion process and jump 

process into account. Bates ( 1991) deve!op a general equilibrium jump and diffusion 

option pricing model which has an asymmetric distribution. He also prices both jump 

and diffusion risks. Based on his contribution, Hsia ( 1992) obtained a jump-diffusion 

two-beta asset pricing model. The derivation of the jump-diffusion two-beta asset pricing 

model is illustrated in Appendix B. 



CHAPTER TWO 

JUMP-DIFFUSION TWO-BETA ASSET PRICING MODEL 

2.1 THE JUMP-DIFFUSION MODEL 

Under the same assumptions of the CAPM, except the normality of asset returns, 

the jump-diffusion model takes two different types of beta into account when pricing the 

underlying asset. One is the diffusion beta, which measures the systematic risk when no 

jump occurs. The other is the jump beta, which measures the systematic risk when jumps 

take place. In a similar form as that of the CAPM, the jump diffusion two-beta asset 

pricing model is as follows: 

where 
Expected Return 

of Security j 

R
1
v Expected Return of 

an Optimally Invested Wealth 

Rf = Risk-free Rate 

f3. = Diffusion 13 of 
J 

Security j 
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(2.1a) 

(2.1 b) 

(2.1 c) 
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2.2 PROPERTIES OF THE JUMP-DIFFUSION MODEL 

2.2.1 Risk and Return of an asset 

The jump-diffusion two-beta asset pricing model shows that the expected return 

of a security consists of three components: (i) the risk-free rate, R1, for compensating the 

time value of investing, (ii) the premium for taking diffusion risk (R -R-l (1-<Jl} r) .. 
tV t ] 

and (iii) the premium for taking jump risk [ Rtv- R t] <Jlp Aj • It clearly shows that jump 

risk is a systematic risk and it is priced with premiums. 

2.2.2 The Value of<!> 

The weight parameter <I> is a function of A, a2(R"'), and a2(Rt.w). Since all three 

parameters arc non-negative, the value of <I> is bounded between 0 and I, that is, 

which is ideal for<!> to serve as a weight parameter of the jump-diffusion two-beta asset 

pricing model. 

2.2.3 Generality of the Jump-Diffusion Model 

Equation (2.1) is a more general asset pricing model that takes both the pure 

diffusion and pure jump CAPM as two special cases. If there is no jump in the market, A 

= 0 which implies <!> = 0, equation (2.1) reduces to the conventional CAPM. 

(2.2) 

The equation (2.2) differs from equation ( 1.1) in that it docs not usc R111 , the market 



portfolio, but Rw. 

If the intensity of Poisson jumps increases indefinitely (i.e.,}..~ =),Poisson 

distribution converges to Normal and the jump beta converges to the diffusion beta. 

Consequently, equation (2.1) again reduces to the conventional CAPM, equation (2.2). 
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On the other hand, if security returns are generated by a pure jump process, a'(R,_.) 

= 0 which implies <J> = I, then equation (2.1) reduces to a pure jump CAPM, 

R j = Rf + (RIV - Rf) ~flj (2.3) 

Equation (2.2), the pure diffusion CAPM, and equation (2.3), the pure jump CAPM arc 

the two special cases of equation (2.1 ), the jump-diffusion two-beta asset pricing model. 

2.2.4 Expected Return-Risk Relationship 

The conventional CAPM implies that securities have same expected returns if 

they have same betas. The expected-risk relationship of the jump-diffusion model is 

different. The jump-diffusion model has two different types of beta. It is two­

dimensional instead of one. One measures the systematic risk when no jump occurs, and 

the other measures the systematic risk when jumps occur. These two types of beta arc 

independent by definition. Different securities may have different diffusion and jump 

risks. As a result, securities will have different expected returns even if they have the 

same diffusion betas. 

The conventional CAPM implies two-fund separation which claims that all 

investors hold the same two portfolios, a market portfolio and a riskless asset. This is no 

longer true in the Jump-Diffusion model because investors may have different 
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preferences to diffusion and jump risks. It is difficult, if not impossible, to find a 

portfolio that is optimally invested wealth which requires the same premium on both the 

diffusion and jump risks that are carried by different securities. 

_2.:~ TESTABILITY OF THE JUMP-DIFFUSION MODEL 

Roll ( 1977) shows that the conventional CAPM is untestable because the only 

testable hypothesis is mean-variance efficiency of the market portfolio, but the market 

portfolio is unobservable and cannot be used in the tests. Then the question is: Is the 

jump-diffusion two-beta asset pricing model testable? The following reasons suggest its 

testability. 

First, the concept of mean-variance efficiency is relevant only to equation (2.2), a 

special case of the jump-diffusion model. In general, the mean-variance efficiency is not 

a testable hypothesis of the new model. 

Second, the mean-variance efficiency is equivalent to the two-fund separation. 

The mean-variance efficiency is a testable hypothesis of the conventional CAPM, it' and 

only if the two-fund separation holds, i.e., all investors hold the same two portfolios. As 

explained above, the two-fund separation no longer holds in the context of the new 

model. Consequently, the mean-variance efficiency of the market portfolio is no longer a 

testable hypothesis of the new model. 

Third, the concept of an all-inclusive market portfolio is not relevant to the new 

model either. The parameter that is closest to the concept of a market portfolio in the new 
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model is W which is defined as optimally invested wealth. Bates ( 1991) tested his option 

pricing model on the futures of the S&P 500 index. From the point of view of component 

securities, the S&P 500 is optimally invested wealth. The expected return-risk 

relationship between the component securities and the S&P 500 is described by equation 

(2), the jump-diffusion two-beta asset pricing model. Thus, the new model is testable and 

can be tested by a subset of assets against an optimally invested market-wide portfolio. 



CHAPTER THREE 

METHODOLOGY 

3.1 ECONOMETRICS OF STRUCTURAL CHANGE 

There have been decades of studies on the structural change in the field of 

econometrics. The classic example is the structural change between the supply and 

demand model in economics. Given a sample of time series economic data. Due to 

changes in policies and other factors, the data may be on the supply curve or on the 

demand curve during different periods (disequilibrium). If when the change takes place is 

known, the Chow test is used to identify it (Greene, p218-p224). If it is uncertain when 

the change takes place, alternative tests are CUSUM (cumulated sum of residuals) or 

CUSUM-Squarcd tests (Greene, p224-p227). The null hypothesis used in CUSUM and 

CUSUM-Squarcd tests is that the coefficients of the model arc the same for all periods. 

With the CUSUM or CUSUM-Squarcd method, one can test whether they arc the same or 

not, yet without knowing what they arc. The random coefficients model can actually 

predict them with the assumption that "the parameter heterogeneity ... as due to 

stochastic variation (Greene, p476)." As summarized in Greene (p476-p479), the 

application of this method is with cross-sectional rather than time-series data. For studies 
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with time series data in disequilibrium, however, a method called switching regression is 

most effective to estimate different coefficients. Goldfeld and Quandt ( 1974) 

summarized various usage of the switching regression with detailed explanations. Since 

this technique is applied to solve problems with mixed structure where "switching" from 

one structure to the other takes place, it can be applied to stochastic problems like the 

mixed jump-diffusion process. 

3.2 JUMP AND DIFFUSION PROCESS 

Since the study of the mixed rrocess of financial markets started in the 1970s, 

how to separate jump process from diffusion process has always been a challenge. Early 

studies focused on estimating descriptive statistics, and mean and variances of the jump 

and diffusion processes without actually separating them. The review of published works 

reveals progress of both knowledge and computing technology. Press ( 1967) limited the 

sample size to only ten NYSE listed common stocks over the period 1926 through 1960 

in his pioneer study. In order to describe the jump-diffusion process, Press constrains the 

instantaneous expected rate of return on the security to be zero. Employing the method of 

cumulants, he obtains many negative estimates of the variance parameters for both 

diffusion and jump processes. In an effort to modify the procedures of Press, Beckers 

( 1981) sets the mean jump size to zero. Beckers admits the superiority of the maximum 

likelihood method because "the parameter estimates arc efficient and the asymptotic 

distribution of the estimates is known, the first order condition is highly nonlinear and 



28 

contains an infinite sum (Idid: 129)." However, he found it "computationally impractical 

... because the occurrence of a jump cannot be identified easily (Idid: 129)." Therefore, 

Beckers employs the method of cumulants again and obtains many negative estimates of 

both diffusion and jump's variance parameters. 

Frustration over the difficulty of empirical implementation and verification of the 

mixed jump and diffusion processes was overcome when Ball and Torous ( 1983) reported 

their studies. They put forward an implementable model to ascertain the presence of a 

jump and employed the maximum likelihood method with their Bernoulli jump process 

model: 

where 

n 

lnL L ln[(l-f-.)~J(cx,o2 ) +f-.I!J(cx,o2 +o 2 )] 
i 1 

1 
---exp( 
J2no2 

The A. in equation (3.1) is not the same as that in equation (2.1 ), the Jump-

(3.1) 

(3.la) 

Diffusion model. It is only an indicator that is 0 if no jump taking place. By testing 

whether A.= 0 with a form of likelihood ratio test, Ball and Torous found that "over 7SC.:f, 

of stocks indicate presence of jumps at the I percent significance level (p60)." They 

obtained no negative estimates of variance with this method (p59). While the presence of 

jumps is detected, however, the actual jump process is not separated from the diffusion 

process. 

Jorion ( 1989) proposes a practical model to identify the jump process in both the 

foreign exchange market and stock market. It is implementable and in the form of 
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maximum likelihood function. The derivation of the equation is illustrated in next 

section. Although he notes that "discontinuities are harder to identify in the stock market 

index (ldid: 442)," Jorion's model provides a method to empirically study the stock 

market. Johnson and Schneeweis ( 1994) carried out a jump-difTusion study on the impact 

of the macroeconomic news based on Jorion's mixed process model. This research is also 

based on his method. 

Naik and Lee ( 1990) priced both jump risk and diffusion risk in an extension of 

the OPT model. Bates ( 1991) also prices the jump risk as a systematic risk, but his notion 

of the jump risk is not beyond the context of the OPT. 

A common feature of the previous discussed works is the complexity of pricing 

the jump risk. They estimate jump and diffusion parameters implicitly with the option 

price. In contrast, this paper presents an intuitive and effective way to explicitly identify 

jump and diffusion processes. This method is not limited by the OPT and can be applied 

to all assets. 

3.3 MAXIMUM LIKELIHOOD ESTIMATION EQUATION 

In his derivation of the maximum likelihood function of the mixed process, Jorion 

( 1989) illustrates the following. If prices follow a diffusion process with constant drift 

parameter E(ilP/P) =a and constant variance V(ilP/P) = a2
, then 

(3.2) 

where P, is the daily price of stock market index and z is a standard Gauss-Wiener 
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process (Merton 1976, p 128). Let X, be the logarithm of price relatives, i.e. X,= 

ln(P/P,_ 1). The assumption that prices follow the diffusion process implies that X,- N(p. 

a 2
), normally distributed with mean p = ex- a2/2 and variance a2

• As shown in Oldfield et 

al ( 1977, p391-392), the result of solving the differential equation (3.2) is 

X, = ln(P/P,_1) = p + az, 

in discrete time. The density function of X, is a standard Gaussian density: 

lj/ (p, o 2
) 

1 
---exp( 
V2no2 

(3.3) 

(3.4) 

Now, add the factor of the jump process to equation (3.2), we shall have the 

mixed jump-diffusion process as modeled by the following differential equation 

(3.5) 

where q is the Poisson process with).. as the mean rate of jumps occurring per unit time. 

The jump size Y has a posited distribution In Y- N(8, o2
), normally distributed with 

mean f) and variance o2
• q is assumed independent of z. Now X, can be expressed by the 

following equation: 

xt= ln(Pt/Pt 1 ) 

N 

= l-1 + oz + r: ln Yi 
i 1 

(3.6) 

where Ni is the number of jumps during the interval (detailed derivation can be found in 

Oldfield et al). As derived by Beckers ( 1981) and reconfirmed by Ball and Torous 

( 1983), in the form of a Poisson mixture of Gaussian densities, the density function of X, 
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is: 

that is, 

(3.7) 

where i is a random number. It is easy to see that when}..= 0 and i = 0, equation (3.7) 

reduces to equation (3.4 ). 

With T independent observations, the likelihood function is 

T ~, -'A~-.i 1 -(x -].l-8i) 2 

L(1)1; xt) = IT [L _e___ exp( t ) ] (3.8) 
c 1 io ~! J2n(a2+(}i) 2(o2 +i5 2 i) 

the logarithm of the likelihood function L(tjJ; x) can then be written as 

F(b) lnL(1)1; xc) 

T ~, f,.A i 1 L ln [ L _e __ - ~::==:=======.== exp ( 
c 1 i o ~! J2n(o2+ 02i) 

(3.9) 

where h is the vector of parameters, that is 

b' =(A, p, a, 8, o), 

as shown in Jorion (p443). Again,}.. is the mean rate of jumps. p mean of diffusion 

process, a the standard deviation of the diffusion process, 8 mean of lognormal jump 

size, o the standard deviation of the lognormal jump size. If there is a pure diffusion 

process, the logarithm of the likelihood function should be 

T 1 -(xc- J-1)2 L ln [ exp ( 
2 

) ] 

t 1 J2no2 2o· 
(3. I 0) 
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where Ldill differentiates from L(tjJ; x) in equation (3.9). Rename L(tjJ; x) as Lm;.,, The 

equation (3.1 0) is used to obtain the likelihood ratio: 

Lditt 
!\.=--· 

L. 
nnx 

(3.11) 

The existence of the jump-diffusion process can then be tested by the chi-square statistics: 

X2 = -21nA = -2[1nL 11 ;11 - lnL mix], (3.11 a) 

with degrees of freedom equal to the number of parameters between the two models (d.f. 

= 3 in this case). 

3.4 PARAMETERS ESTIMATION 

Using Quadratic Hill-Climbing method to numerically maximize the likelihood 

function, given data X,, five parameters (A, IJ, a, 8, and o) are obtained. The principle is 

explained in many textbooks. Summarized by Fomby eta!. ( 1984 ), it can be briefly 

described as follow. 

If F(b) expressed in the equation (3.9) is continuous and has continuous first and 

second order partial derivatives, the necessary and sufficient conditions for a local 

maximum arc 

(3.12) 

and at the point b' defined by (3.12) that the Hessian matrix 

(3.13) 
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is negative definite. Hence F(b) is maximized by finding all the solutions to (3.12) such 

that the Hessian is negative definite and then choosing as the solution the point 

corresponding to the global maximum (ldid: 604). 

In practice, F(b) is maximized numerically because it is extremely difficult to 

solve (3.12) analytically. The numerical maximization methods are iterative, trial-and­

error methods. The quadratic hill climbing method is one of the numerical methods 

applied to solve maximization problems, suggested by Goldfeld et. a!. ( 1966). Jorion 

( 1989) also estimates these parameters with equation (3.9). This dissertation goes one 

step further, a critical step to this empirical research: to identify the jump process. 

3.5 IDENTIFYING JUMPS AND ESTIMATING PARAMETERS 

A concept is borrowed from the switching regression in identifying the jump 

process. Ball and Torous ( 1981) employs an indicator (A) in their Bernoulli mixture of 

Gaussian densities model, equation (3.1 ). It identifies whether any relevant information 

arrival occurs to affect the stock prices. The null hypothesis (A= 0) is tested with this 

model. This coincides with one technique of switching regression, that is, testing the 

hypothesis that no switch took place (Goldfeld and Quandt, 4). With the hypothesis 

testing result, Ball and Torous successfully proved the existence of jumps in the stock 

market. 

As stated in section 3.2, the existence of jumps is tested with likelihood ratio 

obtained by equation (3.11 ). However, we have to go one step further than Ball and 
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Torous, i.e., to identify jumps from diffusion. Therefore, a simple test on the occurrence 

of jumps is not sufficient although it is important. Let p1 denote the probability of 

occurrence of a jump on day t. It is calculated as 

(3. 14) 

As a quantitative method to identify the "switch," probability p presents a state of 

adjustment from one "structure" (one "process" in this case) to the other. In the case of 

this jump-diffusion study, a higher p1 value indicates the strong presence of a jump whi Ic 

a lower p 1 value shows the dominant diffusion process. 

As pointed out previously, equation (3.7) (f(X1) I 0 _7)) reduces to a pure diffusion 

density function, equation (3.4) (f(X1)I 04 )) when jump is absent. Therefore, when A= 0 

and i = 0, p1 = 0. On the other hand, when there is no diffusion, equation (3.4) equals to 

zero. Thus, p 1 = I. The Jump-Diffusion model implies that the daily stock prices arc 

results of the mixed processes. Thus the value of p1 should be within the range [0, I]. In 

the mixed processes, when the diffusion process is dominant, p 1 -· 0. When jumps arc 

more frequent, however, p 1 - I. Since 0 :; p1 :; I, it represents the probability of jump 

occurrence. This has been proved to be true with our calculation of equation (3.14). ---

For the benefit of future research, the computer program and some outputs arc included in 

the Appendix D. 

The jump process is identified with the estimated value of parameter A. By its 

definition. A is the ratio of the number of jumps and the number of total observations. 
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i.e., 

A. =#jumps I# observation (3.15) 

We use the A. obtained from the maximum likelihood estimation equation (3.9) as the 

standard. As stated before, the equation (3.14) implies that the higher the value of p, the 

closer it is to belong to the jump process. Sort the sample first with p,. Select any 

number of observations with the highest p, values. Then divide the number of selected 

observations by the size of the sample. Compare the solution with A.. If it is higher than 

A., select a smaller number of observations with higher pt values. Otherwise select a 

larger number. Repeat this process until the solution of equation (3.15) equals to the 

estimated value of A.. Then the final group of selected observations belongs to the jump 

process and the remaining group belongs to the diffusion process. 

The assumption that the jump process is independent from the diffusion process 

makes it feasible to estimate the rest parameters. The value of the weight parameter is 

simply calculated by equation 

(3.16) 

where o\Rw), the diffusion variance, and o2(R6w), the jump variance, arc calculated from 

the separated diffusion and jump samples, Rw and R6 " respectively. The value of o2(R") 

is not necessarily the same as the output of maximum likelihood estimation, a'-, due to the 

nature of nonlinear estimates. The same is true for the estimated a via (3.9) and the mean 

return of Rw. 8 and 62 arc not comparable with the mean and variance estimates of the 
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jump process because they are the mean and variance of the lognormal jump size rather 

than the process itself. 

The jump beta, p6i and diffusion beta, pi are the ordinary least square estimators. 

First divide portfolio returns into two separate samples, R6i and Ri, according to R6" and 

R", respectively. R6"' and R"' as well as R6i and Ri are vectors of daily returns. 

where nil and T arc number of observations in jump sample and diffusion sample 

respectively, and j indicates jth portfolio. p6 i and P, arc then obtained by 

(3.17) 

(3.18) 

3.6 ISSUES OF AUTOCORRELATION AND HETEROSCEDASTICITY 

Working with time-series data of mixed processes with implied structural 

changes, issues of autocorrelation and heterosccdasticity should be concerned. Jorion 

( 1989) employed ARCH (AutoRegressive Conditionally Heteroscedastic) model as an 

additional measure to investigate the stochastic processes in his research. He found that 

the power of ARCH model for the jump-diffusion process is higher than that without it. 

Johnson and Schneeweis ( 1994) point out that a large number of observations arc needed 



37 

to increase the power of the model (p316). They did not adopt the ARCH model. It is 

tempting to adopt the ARCH model in this empirical research. However trials are not 

successful. The loglikelihood value does not improve even after 5,000 iterations. 

Reviewing J01·ion's work, arguments made by Johnson and Schneeweis, it may be 

explained that samples used in this study are not fit for ARCH modeling. Unlike Jorion's 

sample of I 0-year daily data, samples used in this study arc jump/event intensified. The 

discontinuity of the time-series data disqualifies the assumption of autocorrelation. The 

heterosccdasticity is taken care of by the definition of jump variance and diffusion 

variance. Thus, adoption of the ARCH model is going to duplicate the effort of adjusting 

for heterosccdasticity. That is why the trials in this study with the ARCH model failed to 

improve the value of the log likelihood. 

3.7 PROCESS OF THTS RESEARCH 

The primary goal of this empirical research is to test the specifications of the 

jump-diffusion model. Daily security returns and a market index from the CRSP' 

magnetic tape arc employed in this study. The data collection is done by generating 30 

portfolios after downloading security returns from the tape. The jump-diffusion 

processes arc identified through the maximum likelihood estimation. The existence of 

the mixed process is confirmed by conducting the likelihood ratio test against the pure 

diffusion process. The portfolio jump betas and diffusion betas arc obtained for every 

3. CRSP ---Center of Research for Stock Prices, University of Chicago. 


