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1 Introduction

A graph is a mathematical structure often depicted as a collection of points in the plane
(called vertices), together with a collection of simple curves (called edges) connecting pairs
of these points.

Graphs are often used to study the relationships between objects, such as when mapping
computer networks or modeling COVID transmission. In the 1970s, researchers found that
graphs were a useful tool in the efficient design of integrated circuits, specifically in Very
Large Scale Integration (VLSI). What began as an application of graph coloring [2] led to
an in-depth study of visibility graphs [4, 6].

1.1 Visibility Graphs

A visibility representation of a graph G is an association between the set of vertices in
G and a set of objects in the plane such that two objects have an unobstructed, positive
width line of sight between them if and only if their corresponding vertices are adjacent
in G. These visibility representations are also referred to as line-of-sight graphs, or simply
visibility graphs.

Visibility graphs are typically categorized based on the objects used. In this paper, we
focus primarily on bar visibility representations, using horizontal line segments, called
bars, to represent the vertices of a graph G and vertical lines of sight between bars to
indicate adjacency between vertices in G (Figure 1b). We also refer to this representation
as a bar visibility graph (BVG). If a graph has such a representation, we say it is bar
representable. Visibility graphs using rectangles and both vertical and horizontal lines
of sight are also common in the literature and are referred to as rectangle visibility
representations (Figure 1c).

(a) example of a bar
representable graph

(b) a corresponding bar
visibility representation

(c) a corresponding rectangle visibility
representation for the same graph

Figure 1

Notice that in Figure 1a the vertices a and b are adjacent while b and d are not. We can
see in Figure 1b that there is a clear line of sight between the bars a and b but visibility
between b and d is obstructed by c. Similarly, in Figure 1c the rectangles a and b can ’see’
each other, but b and d cannot.
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In the context of VLSI, visibility graphs were first introduced by Garey, Johnson, and So
[2] in 1976 as part of a graph coloring approach to testing for short-circuits in printed circuit
boards. Roughly 10 years later, Wismath [6] and Tamassia and Tollis [4] provided several
conditions on a graph in order for it to be representable as a bar or rectangle visibility
graph. These conditions include planarity and constraints on cut-vertices.

1.2 Integer Bar Visibility Graphs

A natural question to ask when studying bar visibility graphs is how to minimize their size.
For this question to be meaningful, we narrow our focus to BVGs where the endpoints of
each bar lie on non-negative integer coordinate points and are included in the bars. We
also require that lines of sight between bars have positive non-zero width. We call these
integer bar visibility graphs. In this paper, when a graph has n vertices, we draw each
bar at a distinct y-coordinate in the set {1, 2, ..., n}, so the height of a BVG will always be
the number of vertices in the graph G. This allows us to focus on width when minimizing
the size of a bar visibility representation. When describing integer bar visibility graphs, we
refer to each unit interval along the x-axis as a column.

We use the termwidth to refer to the minimum number of columns required to represent
a given bar-representable graph G, and we denote this by w(G). In particular, a graph G
cannot have a bar visibility representation with width less than w(G).

To date, relatively little research has been published on minimizing the width of bar
visibility graphs. One notable exception is the paper by Kant, Liotta, Tamassia, and Tollis
[3], in which the authors consider the area required for both bar and rectangle visibility
representations of directed trees. In their work, they present lower and upper bounds for
the width required to represent free and rooted trees with an upward visibility graph. Here
we seek to generalize and expand upon their work by allowing visibility both upward and
downward, and by considering more general families of graphs.

1.3 Overview of Thesis

In this paper we study characterizations of bar visibility representations for several families
of graphs, and we establish bounds on their width. Our work is organized as follows. In
Section 2 we define the graph theoretic terms and notation used throughout this paper. In
Section 3 we cover essential theorems from previous scholarship. In Section 4 we prove some
lower bounds and basic results on the width of general graphs. In Section 5 we find the exact
width for paths and cycles along with a sharp lower bound for the width of trees. In Section
6 we present our main results, providing a necessary condition for a graph to have width k.
In Section 7 we use our main results to prove a surprising result about trees and show that
there does not exist an upper bound on the width of families of graphs with specific degree
constraints. And, finally, in Section 8, we present questions for further research.

2 Notation and Definitions

In this section, we collect a few basic definitions concerning graphs. For a more thorough
introduction to the topic, we refer the reader to [3, 5].

A graph G is defined by a finite set V (G), whose elements are called vertices, and
a set E(G) of 2-element subsets of V (G), called edges. The number of vertices in G is
represented by n. A drawing, or embedding, of G assigns each vertex v in V (G) to a
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point in the plane and each edge in E(G) to a simple curve whose endpoints are the pair of
vertices in that edge (see Figure 1a). When two vertices are connected by an edge, we say
they are adjacent. The degree of a vertex v is the number of vertices adjacent to it and
the maximum degree of a graph G is the highest degree of all vertices in G, denoted by
∆(G). Any vertex with degree 1 is called a leaf.

A graph is considered planar if it can be drawn in such a way that no two edges cross.
Such a drawing is called a planar embedding. Note that not every drawing of a planar
graph is a planar embedding. A face of a planar embedding is any simple closed region
in the complement of the embedding. Roughly speaking, then, a face is any region that
is either bounded by edges (with no vertices or edges within it), or the unbounded region
outside the drawing.

A path in a graph G is any sequence of distinct, consecutively adjacent vertices. The
length of a path is one less than the number of vertices in the path. A graphG is connected
if there exists a path between every pair of vertices in G. We say a graph H is a subgraph
of a graph G whenever V (H) ⊆ V (G) and E(H) ⊆ E(G). When a graph is disconnected, it
contains more than one component, or maximal connected subgraph of the original graph.
A cut vertex is a vertex whose removal increases the number of components in the graph.
Likewise, a cut edge is an edge whose removal increases the number of components in the
graph.

There are a number of important families of graphs we will encounter frequently in this
paper. A path Pn is a sequence of n vertices v1, v2, ..., vn such that each vertex is adjacent
to the next. A cycle Cn is a path with the addition of an edge between the first and last
vertices. A tree (also referred to as a free tree) is a connected graph that contains no
cycles as subgraphs. A star is a special type of tree that has one vertex v of degree n − 1
and n − 1 leaves adjacent to v. A rooted tree is a free tree T along with a distinguished
vertex called the root of T . The height of a rooted tree T , denoted by h(T ), is the length
of a longest path from the root of T to a leaf.

3 Prior Work

It is natural to wonder if every graph is bar-representable. Indeed, it is readily verified that
all graphs on up to 4 vertices have a bar representation. However, in considering all graphs
on up to 7 vertices, it is known that bar-representability coincides with planarity. In other
words, if n ≤ 7, then G is bar-representable if and only if G is planar. For the general case,
Tamassia and Tollis [4] (and separately Wismath [6]) show that, for any number of vertices
n, planarity is a necessary condition for a graph to be bar-representable. It is interesting
to note, however, that the converse is not necessarily true. Wismath [6] found the smallest
planar graph that is not bar-representable (see Figure 2).

Figure 2: The smallest non-bar-representable planar graph.
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Tamassia and Tollis [4] built on this by providing the necessary and sufficient conditions
for a graph to be bar-representable. They found that a graph G is bar-representable if and
only if it has a planar embedding where all cut vertices appear on the boundary of the same
face. You can see in Figure 2 that the three cut vertices do not lie on the boundary of the
same face, and no planar embedding exists such that they do share the same face. Thus
this graph exemplifies the conditions laid out by Tamassia and Tollis.

We were able to find one piece of previous scholarship, by Kant et al [3], that considers
the area required to represent graphs. Their work specifically deals with the area required
to represent directed trees using the notion of upward visibility. For this kind of visibility,
each directed edge (vi, vk), must correspond to a visibility where the bar for vk is located
above the bar for vi. Their results are divided into two parts. The first looks at rooted
trees, and the second at free trees.

Theorem 3.1 (Kant, Liotta, Tamassia, and Tollis, [3]). Let T be a rooted tree with l leaves
and height h. The area required by an upward bar-visibility representation of T is at least
(2l − 1) · h.

Theorem 3.2 (Kant, Liotta, Tamassia, and Tollis, [3]). Let T be a free tree with n vertices,
l leaves, and critical height h∗. The area required by a bar-visibility representation of T is
Ω(l · h∗ + n− 1).

We refer the interested reader to their paper for further details, including the definitions
of critical height and Ω notation. Although these two results are relevant to our work in
that they address the area (and by extension, the width) required to represent trees, their
restriction to upward-visibility of directed trees reduces their applicability to the context of
this paper.

4 Preliminary Results

For this project, we began our exploration of bar visibility graphs by constructing integer
BVGs for every connected graph on up to 6 vertices (up to isomorphism). We used Python
to write an algorithm that generates all possible bar visibility graphs with a given width
and number of vertices (see Appendix). We used this to cross check our hand-drawn BVGs
and reduce their size as appropriate until we found minimal representations of each graph.
We then used this database of graphs and their respective bar visibility representations to
identify patterns regarding the width of graphs. The following results came out of this initial
investigation.

We begin with lower bounds for the width of any given graph. Our first result focuses
on the number of leaves.

Lemma 4.1. Given a bar-representable graph G with ℓ leaves, w(G) ≥ ⌈ ℓ
2⌉.

Proof. Let G be a bar-representable graph with ℓ leaves. It is clear that each degree 1 vertex
must have either an open line of sight upwards or an open line of sight downwards. This
means each column has exactly two possible positions for a leaf, namely the top bar and
the bottom bar. If we utilize every one of these leaf positions, this gives us a width of ⌈ ℓ

2⌉.
We can see in Figure 3 that if ℓ is odd, there is an open line of sight in one of the columns
not being utilized by a leaf.

We want to show that G cannot be represented with a BVG narrower than ⌈ ℓ
2⌉. By

contradiction, suppose G can be represented with a BVG of width ⌈ ℓ
2⌉ − 1. Then by the
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Figure 3: A graph with 3 leaves and width 2.

pigeonhole principle, there is some column that contains 3 vertices with degree 1. This is a
contradiction because each degree 1 vertex must have a clear line of sight in one direction
and each column has only two such lines of sight. Thus, a graph G with ℓ leaves has
w(G) ≥ ⌈ ℓ

2⌉.

Our second result gives a lower bound on the width of a single bar in a bar visibility
representation based on the degree of its associated vertex.

Lemma 4.2. The degree d(v) of a vertex v forces a lower bound of ⌈d(v)
2 ⌉ on the width of

its associated bar.

Proof. A bar with width r has 2r possible lines of sight. This means that a given vertex v

in a graph G with degree d(v) must be represented by a bar of width at least ⌈d(v)
2 ⌉.

As an example of this result, we can look at the vertex c in Figure 4. Notice that c has
degree 4 and the width of its bar is 2. We build on this result by showing that the highest
degree vertex in a graph G forces a lower bound on the width of the entire bar visibility
graph of G.

Figure 4: A graph with ∆(G) = 4 and width 2.

Theorem 4.3. Given a bar-representable graph G with maximum degree ∆(G), the width

of G is bounded below by w(G) ≥ ⌈∆(G)
2 ⌉.

Proof. Let G be a bar-representable graph with maximum degree ∆(G). Let v be a vertex
with degree d(v) = ∆(G). By Lemma 4.2, we know that the width of the bar representing

v is at least ⌈∆(G)
2 ⌉. Thus, w(G) ≥ ⌈∆(G)

2 ⌉.
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Again, Figure 4 serves as an example. The maximum degree of this graph is 4, so the
width of the BVG is at least 2. In this case, the width achieves its lower bound. We conclude
this section with a result on the width of disconnected graphs.

Theorem 4.4. Let G be the union of two disjoint bar-representable components, G1 and
G2. Then w(G) = w(G1) + w(G2).

Proof. Let G = G1 ∪ G2 be the union of two disjoint bar-representable components, G1,
G2. We know that w(G) ≤ w(G1) +w(G2) since we can represent G by drawing a minimal
BVG of G1 next to a minimal BVG of G2 with no lines of sight between.

For the opposite inequality, let us consider any minimum width representation of G. If
any column contains bars for vertices from both G1 and G2, then some vertex in G1 must
be adjacent to some vertex in G2. But this is a contradiction, since G1 and G2 are disjoint
components. Thus, the bars for vertices in G1 occupy a disjoint set of columns than the
bars for vertices in G2. Deleting each of these sets of columns in turn gives bar visibility
representations of G1 and G2, respectively. By the definition of width, then, we must have
w(G) ≥ w(G1) + w(G2).

In Figure 5 we see an example that illustrates the situation for disconnected graphs. The
components have width 3 and 1, while the entire graph has width 4.

Figure 5: A graph with two disconnected components.

The previous result generalizes easily to any number of components.

Corollary 4.5. Let G be the union of k disjoint, bar-representable components G1, ..., Gk.
Then w(G) =

∑k
i=1 w(Gi).

Proof. We can proceed by induction. The result is trivial when k = 1. Now fix any k ≥ 2
and let G =

⋃k
i=1 Gi. Define G′ =

⋃k−1
i=1 Gi and, for our induction hypothesis, we assume

that w(G′) =
∑k−1

i=1 w(Gi). Then by Theorem 4.4,

w(G) = w(G′ ∪Gk+1) =

(
k−1∑
i=1

w(Gi)

)
+ w(Gk) =

k∑
i=1

w(Gi),

and the result follows.

In light of this, we focus on connected graphs in this paper.
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5 Families of Graphs

In this section, we look briefly at three families of graphs: trees, paths, and cycles. For each
family, either we find an exact width for the graphs in that family, or we give bounds on
the width for those graphs.

5.1 Trees

We begin our study of trees by showing that every tree is bar representable and by giving
a lower bound on their width.

Theorem 5.1. The width of a tree T with ℓ leaves is bounded below by ⌈ ℓ
2⌉.

Proof. Let T be a tree with ℓ leaves. Then T is clearly planar and, since T contains no
cycles, every cut vertex must lie on the boundary of the same (unbounded) face. Thus T is
bar representable. It follows from Lemma 4.1, w(T ) ≥ ⌈ ℓ

2⌉.

The graph shown in Figure 6 illustrates the bound of the previous theorem.

Figure 6: A star on 6 vertices with width 3.

From here, we are able to show that the width of a star will always equal this bound.

Corollary 5.2. The width of a star S on n vertices is ⌈n−1
2 ⌉.

Proof. Let S be a star on n vertices. Then there are n− 1 leaves, so we know that w(S) ≥
⌈n−1

2 ⌉. Note that we can construct a bar representation of S by drawing the vertex of degree
n− 1 as a bar of length ⌈n−1

2 ⌉. We then place ⌈n−1
2 ⌉ bars of length 1 above this vertex and

⌊n−1
2 ⌋ bars of length 1 below, as in Figure 6. This construction shows that stars can always

be represented in a way that attains the lower bound for trees.

We can use this result to show that there is no uniform upper bound on the width of all
trees.

Corollary 5.3. Let k be any positive integer. There exists a tree T with width w(T ) = k.

Proof. We know from Corollary 5.2 that the width of a star with ℓ leaves is ⌈ ℓ
2⌉, so for any

positive integer k, we can let T denote a star with 2k+1 vertices. Then w(T ) = ⌈ 2k
2 ⌉ = k.
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5.2 Paths

We begin our study of paths by first showing that every path is bar-representable and has
a width of 1.

Lemma 5.4. Given any path Pn, w(Pn) = 1.

Proof. First note that a given path Pn is planar and there is only one face in any planar
drawing of Pn, so every cut vertex necessarily lies on the boundary of the same face. Thus
every path is bar representable.

We use induction to show that the width of Pn is 1. Let P2 be a path on two vertices.
We can represent P2 with two width 1 bars, one directly above the other (Figure 7).

Figure 7: A path on 2 vertices with width 1.

Let Pk be a path of length k with a width 1 bar visibility representation (Figure 8).

Figure 8: A path on k vertices with width 1.

Then a path Pk+1 can be constructed by adding 1 vertex adjacent to kth vertex in Pk.
Similarly, the BVG of Pk+1 can be constructed by adding one width 1 bar under the kth
bar (Figure 9).

Thus by induction, any path can be represented with a width 1 bar visibility graph.

We follow this by showing that any graph with a width 1 bar visibility representation
must be a path.

Lemma 5.5. Given w(G) = 1, G must be a path.

Proof. Let G be a graph such that w(G) = 1. When n = 1, G is simply a single vertex,
or a path of length 0, so assume n > 1. Then ∆(G) = 2. We also know G is connected.
To see this, suppose G is not connected. Then there are two vertices in G with no path
between them. Since the width of a path is 1 and the width of a graph with disconnected
components is the sum of the widths of the components, w(G) must be greater than 1. This
is a contradiction, so G must be connected. Note that G has exactly 2 leaves, since there
is only one column with an open upward line of sight from the top vertex and an open
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Figure 9: A path on k + 1 vertices with width 1.

downward line of sight from the bottom vertex. So G is a connected graph with maximum
degree 2 and exactly 2 leaves. By definition, this means G is a path.

We conclude that having a width 1 bar visibility representation is a necessary and suffi-
cient condition for a graph to be a path.

Theorem 5.6. A graph G has w(G) = 1 if and only if G is a path.

Proof. The proof of this theorem follows directly from Lemma 5.4 and Lemma 5.5.

5.3 Cycles

Similar to our work with paths, we first show that every cycle can be represented with a
width 2 bar visibility graph.

Lemma 5.7. Given any cycle Cn, w(Cn) = 2.

Proof. Let Cn be a cycle on n vertices. Clearly, Cn is planar and contains no cut vertices,
so it is bar representable.

Figure 10: A cycle on 3 vertices with width 2.

We will use induction to show that w(Cn) = 2. Let C3 be a cycle on 3 vertices. We can
represent this with two width 2 bars and a width 1 bar between them (Figure 10). Suppose
C3 could be represented with a smaller BVG. Then w(Cn) = 1. By Theorem 5.6 this implies
that C3 is a path. This is a contradiction, so w(C3) = 2.

Suppose Ck is a cycle on k vertices with a width 2 bar representation (Figure 11).
We can construct a cycle Ck+1 on k + 1 vertices by replacing the edge between vertices

k and 1 with a length 2 path through a new vertex k + 1. We can represent this new cycle
as a bar visibility graph by inserting a width 1 bar between the bars k and 1 (Figure 12).
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Figure 11: A cycle on k vertices with width 2.

Figure 12: A cycle on k + 1 vertices with width 2.

Notice that this does not increase the width of the BVG. Thus, any cycle can be repre-
sented with a width 2 bar visibility graph.

Corollary 5.8. In the above bar visibility representation of a cycle, any two adjacent vertices
can be drawn as the top and bottom bars of the BVG.

Proof. Given a cycle Cn, choose any two adjacent vertices, say, v1 and v2. Then there exists
a path between v1 and v2 that does not use edge v1v2. We know from the construction in
Lemma 5.4 that we can represent this with a stack of width 1 bars where v1 is on one end
and v2 is on the other. The only unrepresented edge in Cn at this point is the edge directly
between v1 and v2. So, we extend their respective bars to width 2 so they can see each
other. This is now a bar visibility representation for the cycle Cn.

In the following two corollaries, we extend the results of Lemma 5.7 to graphs composed
of two cycles joined either by a cut vertex or a cut edge.

Corollary 5.9. The width of two cycles sharing a cut vertex is 2.

Proof. Let G be a graph composed of two cycles sharing a single cut vertex, like the one in
Figure 4. We can label the two cycles C1, C2 and the shared cut vertex v. We know that G
is planar and contains a single cut vertex, so G is bar representable.

12



By Theorem 5.6, we know that only paths have width 1, so a graph with a cycle subgraph
cannot be represented with a width less than 2. Thus, w(G) ≥ 2.

By Corollary 5.8, let v be identified with both the bottom width-2 bar in the represen-
tation of C1 and the top width-2 bar in the representation of C2. Then we can draw G by
first creating a width-2 bar for v, then drawing the remaining bars in C1 above v and the
remaining bars in C2 below v. Because v has width 2, none of the bars in C1 have a clear
line of sight to any of the bars in C2. Thus, two cycles sharing only a cut vertex can be
represented with a width-2 bar visibility graph.

A similar argument can be given for graphs consisting of two cycles joined by a cut edge,
as depicted in Figure 13.

Corollary 5.10. The width of two cycles joined by a cut edge is 2.

Proof. Let G be a graph composed of two cycles C1, C2 joined by a cut edge e, like the one
in Figure 13. Label the endpoints of e as v1 and v2 (where v1 is in C1 and v2 is in C2). We
know that G is planar and can be drawn such that the two cut vertices v1 and v2 lie on the
boundary of the outside face. Thus G is bar representable.

By Theorem 5.6 we know that only paths have width 1. So, w(G) ≥ 2.
By Corollary 5.8, let v1 be the bottom width-2 bar in the representation of C1 and let

v2 be the top width-2 bar in the representation of C2. Then we can draw the BVG of C1

above the BVG of C2. Notice that v1 can now see v2. Thus, we can represent any graph
composed of two cycles joined by a cut edge with a width-2 bar visibility graph.

Figure 13: Two cycles joined by a cut edge with width 2.

6 Main Results

Our main results build on our work with paths and cycles in order to characterize all width 2
graphs and provide a necessary condition for a graph to be width k. We do this by orienting
a graph and looking at its induced path subgraphs.
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An orientation of a graph G assigns a direction to each edge in G. The first vertex of
the edge becomes the tail and the second becomes the head. In an embedding of an oriented
graph, each edge is drawn as an arrow from tail to head. An acyclic orientation of G is
an orientation such that no induced subgraph of G contains a directed cycle.

A directed path is a path on vertices v1, v2, ..., vn with an orientation that satisfies the
property that each edge is directed from vi to vi+1 for all 1 ≤ i < n. We say two paths P1

and P2 are coherently directed if for every vj , vk ∈ P1, vs, vt ∈ P2 such that vj = vs and
vk = vt, then j < k if and only if s < t. In other words, if two vertices appear in both P1

and P2, then those two vertices appear in the same order in both paths.

Figure 14: An orientation of the graph in Fig. 13 with 2 coherently directed paths.

We show that any graph with width 2 can be expressed as the union of 2 coherently
directed paths. First we will look at an example. Consider the graph and its BVG in Figure
13. We know this graph has width 2. In Figure 14 we can see that each column in the
BVG is a path within the graph. The path P1 represented in the first column has vertices
a, e, c, d, b, f . The path P2 in the second column goes through the vertices a, c, d, f . Notice
that the union of P1 and P2 gives us an acyclic orientation of the original graph in Figure
13. Observe that the edge between c and d is in both P1 and P2 and has the same direction
in both paths, so there is no contradiction when taking the union.

Similarly, in Figure 15, we can see a graph with an acyclic orientation. Let P1 be a path
on the vertices f, e, a, b, c and P2 a path on the vertices e, d, b. Notice that the union of P1

and P2 is the original graph. We can use these two paths to construct a width 2 BVG for
this graph. We can see that the vertices e and b appear in the same order in both paths, so
there is no conflict when constructing the BVG. We formalize our observations from these
two examples in the following theorem.

Theorem 6.1. Given a bar representable graph G, w(G) = 2 if and only if 2 is the fewest
number of coherently directed paths whose union is an acyclic orientation of G.

Proof. (⇒) Let G be a graph with width w(G) = 2. Then we can think about each column
of the bar representation of G as a directed path going downwards through the BVG. Since
there are two columns, we have two directed paths. Note that every edge in G is included
in one or both of these paths. Thus the union of these two directed paths, Ĝ, is an acyclic
orientation of G.
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Figure 15: The union of two coherently directed paths with width 2.

Suppose we can use fewer than 2 paths. This would mean G is a single path. By Theorem
5.6, G has width 1. This is a contradiction, so 2 is the fewest number of paths we can use
to build an acyclic orientation of G.

(⇐) Let G be a graph with an acyclic orientation Ĝ such that Ĝ = P1 ∪ P2 where
P1, P2 are coherently directed paths. We can begin constructing a bar representation of G
by drawing P1 as we did in Lemma 5.4. Then for each vertex included in both P1 and P2,
extend the associated bar to width 2. Since the two paths are coherently directed, these
extended bars are in the same order in both P2 and P1. Now we simply insert width 1 bars
among the extended bars in the second column to complete P2. Thus we have a width 2
representation of G.

Figure 16: An acyclic orientation of a graph with width 3.
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It is clear to see that the forward direction of this theorem scales up to w(G) = k. We
can see an example with k = 3 in Figure 16. However we leave the other direction as a
conjecture.

Corollary 6.2. Given a bar representable graph G, if w(G) = k then there exists an acyclic
orientation Ĝ of G such that Ĝ =

⋃
i∈[k] Pi where P1, P2, ..., Pk are coherently directed paths.

Conjecture 6.3. Given a bar representable graph G, if k is the fewest number of coherently
directed paths whose union is an acyclic orientation of G, then w(G) = k.

7 Applications of Main Results

7.1 Trees with w(T ) > ⌈ ℓ
2
⌉

We found in Theorem 5.1 that the width of a tree with ℓ leaves is bounded below by ⌈ ℓ
2⌉.

While the majority of trees we looked at meet this bound, we found that some require a
slightly greater width. We use our main results to prove this.

Figure 17: A tree with 6 leaves and width 4.
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Theorem 7.1. There are trees with ℓ leaves and width greater than ⌈ ℓ
2⌉.

Proof. Consider the tree in Figure 17. Note that this tree contains 6 leaves and is represented
with a width 4 bar visibility graph. Suppose we could represent it with a width 3 BVG.
Then by Corollary 6.2 we can find 3 coherently directed paths whose union is an acyclic
orientation of this tree. In order to minimize the number of paths, we may assume that each
path is maximal. Notice that for the paths to be coherently directed, the vertices a and b
must either both be heads or both be tails. Likewise with the pair of vertices j and k and
with the pair m and l. This means we have either four heads or four tails. Either way, we
require at least four paths in order to build this tree with coherently directed paths.

7.2 Graphs with Degree Constraints

We saw in Lemma 4.2 and Theorem 4.3 that we can use high degree vertices to force the
bar visibility representation of a graph to be arbitrarily wide. Similarly, in Lemma 4.1 and
Corollary 5.2 we saw that increasing the number of leaves in a graph forces an increase in
the width of a graph. Here we focus on creating arbitrarily wide graphs by first eliminating
high degree vertices, and then eliminating leaves as well.

We begin by restricting the maximum degree of a graph to 4. In the following result, we
utilize leaves to create arbitrarily wide graphs.

Theorem 7.2. Let k be any nonzero positive integer. Then there exists a graph G with
∆(G) = 4 and w(G) = k.

Proof. Consider the family of graphs in Figure 18. Notice that for each graph, there are
2k leaves, so by Lemma 4.1 w(G) ≥ k. We can see from Figure 18 that each graph is
representable with a width k BVG.

Figure 18: A family of graphs with ∆(G) = 4 and arbitrary width.

In the following result, we construct a family of graphs that eliminates both high degree
vertices and leaves. The degree of each vertex in these graphs is either 2 or 3. We show
that we can find a graph in this family with width greater than any given width.
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Theorem 7.3. Let k be any nonzero positive integer. Then there exists a connected graph
G with no leaves and ∆(G) = 3 with width w(G) ≥ k.

Proof. Consider the family of graphs in Figure 19. If we think about the criteria in Corollary
6.2 for the width of a given graph, we want to show that given a width k, a graph in this
family requires at least k coherently directed paths. Let us first consider using undirected
paths. Notice that each 3-cycle requires two paths, since a path cannot start and end at
the same vertex (this would be a cycle). In creating maximal paths, each path can include
edges from one 3-cycle at one end and another 3-cycle at the other end. Thus, in the best
case scenario, we can use two paths for every two 3-cycles in the graph. This means we need
at least one path per 3-cycle to construct G. When looking at coherently directed paths, we
need at least this many paths, if not more, to create an acyclic orientation of G. So, given
a width k, a graph in this family with k 3-cycles will require at least k coherently directed
paths. Thus the width of such a graph is at least k.

Figure 19: A family of graphs with ∆(G) = 3, no leaves, and arbitrarily large width.

8 Future Work

In our initial work with BVGs, we found that the empty graph En on n vertices has width n.
This follows directly from Corollary 4.5. We have checked all graphs on up to six vertices and
have yet to find a connected graph with width greater than n, so we present the following
conjecture on the upper bound of w(G) for a connected graph G.

Conjecture 8.1. Given a connected bar representable graph G on n vertices, w(G) ≤ n.

Limiting high degree vertices and leaves led us to ask whether a graph where every vertex
has the same degree could also be arbitrarily wide.

Conjecture 8.2. For any k ≥ 3 there exists a family of k-regular connected bar repre-
sentable graphs with arbitrarily large width.

We think such a family of graphs might be of the form of the graph in Figure 20.
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Figure 20: A potential family of 3-regular graphs with arbitrarily large width.
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Appendix

The following is the code we used to generate all possible BVGs on a given number of
vertices and with a given width.

from itertools import product

import numpy as np

vert = int() # number of vertices

width = int() # max width of bvgs

barset = set() # list of possible bars given width (ordered pairs)

B = list() # list of bvgs given vert and barset

D = list() # list of bvgs with associated info (deg seq, traces, etc.)

# get number of vertices

vert = input(’# vertices: ’)

vert = int(vert)

# get maximum width

width = input(’width: ’)

width = int(width)

# create all possible bars given vert and add them to barset

for x_1 in range(width+1):

for x_2 in range(x_1+1,width+1):

bar = (x_1,x_2)

barset.add(bar)

# create all possible bvgs on vertices from list of bars

B = list(z for z in product(barset, repeat = vert))

print(len(B))

We then created visual representations of the BVGs using matrices.

def grid(bvg):

Grid = np.zeros((vert,width), dtype=int)

for x_1 in range(vert):

for x_2 in range(bvg[x_1][0],bvg[x_1][1]):

Grid[x_1][x_2] = x_1+1

return Grid

We used these matrices to generate the adjacency matrices, degree sequences, and traces in
order to identify the graph that each BVG was representing.

# creates the adjacency matrix of a given bvg

def adj(Grid):

A = np.zeros((vert,vert), dtype=int)

# walks through columns of grid, deleting 0s

for y in range(width):
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col = Grid[:,y]

ncol = col[col != 0]

# puts 1 in adjacency matrix for every pairwise adjacent vertex/bar

for i in range(len(ncol)-1):

A[ncol[i]-1][ncol[i+1]-1] = 1

A[ncol[i+1]-1][ncol[i]-1] = 1

return A

# generate degree sequences

def degseqlist(B):

degseqs = set()

start = int(input(’start: ’))

stop = int(input(’stop: ’))

# this loop walks through each bvg in the list B from index ’start’

# to index ’stop’

# 1. finds adjacency matrix adj(grid(B([x_1])))

# 2. sums each row to create a deg seq (np.sum)

# 3. sorts that deg seq (np.sort)

# 4. turns the deg seq into a list (np.ndarray.tolist)

# 5. inserts that list as the second entry in a tuple

# (first entry is the associated bvg from the original list B)

for i in range(start,stop):

d = np.ndarray.tolist(np.sort(np.sum(adj(grid(B[i])), axis=0)))

D[i][1] = d

if i % 100 == 0:

print(i)

degseqs.add(str(d))

degseqs = list(degseqs)

degseqs.sort()

for x in range(len(degseqs)):

print(degseqs[x])

# find trace of A^2, A^3, A^4 of a given bvg

def trace(bvg):

A = adj(grid(bvg)) # adjacency matrix

A2 = np.matmul(A,A) # A^2

A3 = np.matmul(A2,A) # A^3

A4 = np.matmul(A3,A) # A^4

traces = [np.trace(A2), np.trace(A3), np.trace(A4)]

return traces
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