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ABSTRACT 

 Life history within a single species can vary significantly.  Many of these differences are 

associated with varying environmental conditions.  Understanding what environmental conditions 

cue alternate life histories within a single species has been researched extensively.  In salmonid 

fishes, more than almost any other group, varying environmental conditions give rise to 

individuals within species that take markedly different life history trajectories. 

 Oncorhynchus mykiss is a species of salmonid native to the Pacific Northwest region of 

North America.  This species has two life history forms, anadromous and resident.  The 

anadromous form spends a portion of its life in ocean while the resident life history form 

completes its entire life history in freshwater.  Until the decision to migrate and morphological 

changes associated with smoltification occur, the two life history variants of this species are 

indistinguishable from each other.  This ambiguity in juvenile O. mykiss morphology presents 

challenges for conservation managers charged with protecting and increasing threatened O. 

mykiss populations around the Pacific Northwest because conservation efforts cannot be 

evaluated until juvenile fish make the decision to migrate.   

 In this study microarray gene expression analysis was used to profile gene expression in 

juvenile populations of wild and hatchery O. mykiss to identify gene expression variation 

associated with alternate life history variants.  This analysis identified 8 DNA sequences present 

in both brain and gill tissues that differ in expression in rainbow trout and steelhead hatchery 

stocks.  Differential expression as quantified by microarray technology was validated with 

quantitative real-time PCR.  Lastly, the expression of these putative life history markers was 

preliminarily evaluated in a wild population of O. mykiss at sample locations in the South Fork 

John Day River Basin, Oregon with known ratios of juvenile anadromous and resident fish. 
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INTRODUCTION 
 

Salmonid fishes are a dominant part of marine and freshwater food webs in the 

northern Pacific Ocean and the river systems that drain into it.  The reason for their great 

success is debatable, but very likely depends on their ability to exploit both freshwater 

and marine habitats, a trait that is rather rare amongst the fishes.  The ability to exploit 

marine resources offers great advantages under certain circumstances, supporting large 

population sizes, increased growth rate, and increased adult size at reproduction (Gross et 

al., 1988; Hendry and Stearns, 2003; Jonsson and Jonsson, 1993). In addition, escape to 

the marine environment may allow populations to persist in times when freshwater 

habitat conditions are poor or lost due to ecological changes such as natural disasters.  

Alternately, in times when marine conditions are limiting, freshwater forms may sustain 

populations.  Thus, it is not surprising that many salmonid species have evolved life 

history strategies that include migrating anadromous forms that exploit marine resources 

prior to reproduction and non-migrating resident forms that complete their entire lifecycle 

in freshwater.  Importantly, these life history variants appear to be indistinguishable 

genetically (Docker and Heath, 2003) and thus it is hypothesized that differential gene 

expression must underlie these observed patterns of life history diversity.  Gene 

expression is known to be highly sensitive to varying environmental conditions in many 

organisms (Aubin-Horth et al., 2005) and vast differences in gene expression levels can 

lead to markedly different life history strategies between conspecific individuals 

associated with changes both morphologically and behaviorally (Evans and Wheeler, 
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2001; Stearns, 1989). In this thesis, I evaluate differential gene expression in young-of-

the-year hatchery stocks of Oncorhynchus mykiss, resident: rainbow trout/anadromous: 

steelhead, known to differ in their migratory behavior, in an attempt to identify gene 

expression markers that are unique to anadromous and resident forms in salmonids. 

 

The Origin of Pacific Salmonids 

The genus Oncorhynchus is made up of seven salmonid species native to the 

Northern Pacific Ocean region of the Northern Hemisphere ranging from Northern 

Mexico on the North American side of the Pacific Ocean to South Korea and Southern 

Japan on the Asiatic side of the Pacific Ocean and are commonly referred to as “Pacific 

Salmon” (Quinn, 2005). These seven species include Chum (O. keta), Chinook (O. 

tshawytscha), Sockeye (O. nerka), Coho (O. kisutch), Pink (O. gorbuscha), Steelhead (O. 

mykiss) and Coastal Cutthroat (O. clarki).   

All seven species of Oncorhynchus are anadromous, spending part of their life 

history in the ocean but all spawning in freshwater.  This obligate freshwater stage of 

salmonid life history has been argued to suggest the salmonid family has a freshwater 

evolutionary origin rather than seawater origin (Allendorf and Thorgaard, 1984). Three of 

the seven species, O. mykiss, O. clarki, and O. nerka have significant resident 

populations; populations that complete their entire life history completely in freshwater 

(these populations are commonly referred to as “trout”) (Quinn, 2005).  

Sequence differences in genes from Salmo salar (Atlantic salmon), O. mykiss and 

O. nerka suggest an estimated divergence between the genus Salmo and Oncorhynchus in 
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the early Miocene period (approximately 20 MYA)(Devlin, 1993).  Fossil evidence of 

Oncorhynchus is limited but the fossils that have been found date the radiation of Pacific 

salmonids between 20 and 6 MYA (McPhail, 1997; Stearly and R., 1993).  

Oncorhynchus and Salmo differ greatly in that Oncorhynchus had a major radiation event 

producing the seven extant species we see today as well as several other that have since 

gone extinct (i.e. the Sabertooth salmon, O. rastrosus) while a major radiation event in 

Salmo never occurred.  Fossil evidence suggests by 6 MYA all seven extant 

Oncorhynchus species had evolved to their current form (Stearly and R., 1993). 

 

Life History Variation in Salmonid Fishes 

Life history amongst the salmonid fishes has been extensively studied as a model 

to better understand how traits are inherited and maintained within and between 

populations. Salmonid life history typically takes two forms, resident and anadromous 

and is largely related to migration.  The typical resident life history form is spawned in 

freshwater where it grows and completes its life cycle.  The anadromous form is spawned 

in freshwater where it remains for many months to several years after which it begins 

morphological and physiological changes associated with a process known as 

smoltification in preparation for life in the ocean. (Hendry and Stearns, 2003)   

Timing of smoltification varies between different species of salmonids.  Some 

species such as Oncorhynchus keta (Chum salmon) have fry that migrate to the ocean 

within a few weeks of hatching (Quinn, 2005). Others like Oncorhynchus mykiss 

(Rainbow trout/steelhead) and Oncorhynchus kisutch (Coho salmon) have juveniles that 
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reside for one to five years in freshwater before migrating to the sea (Quinn, 2005).  Prior 

to seaward migration and smoltification, juvenile anadromous salmonids are termed parr.  

Parr are typically bottom dwelling pelagic fish that establish territories that they defend 

aggressively.  Parr are indistinguishable in appearance from resident populations of the 

same species. Once parr establish territories they maintain their position in the stream by 

actively swimming against the current.  A study done by Kutty and Saunders (1973) 

showed that Atlantic salmon parr (Salmo salar) placed in a swim chamber would swim 

against the current to exhaustion and collapse, while smolting fish placed in the same 

swim chamber and under the same conditions ceased swimming and showed no signs of 

fatigue or exhaustion.  This suggests that a smolting fish will allow the current of a 

stream to carry them downstream and this refusal to swim could be seen as a 

characteristic of seaward migration.  Behavioral changes are typically the first obvious 

cues that a fish has begun smoltification.  Smolting fish typically abandon pelagic feeding 

territories, cease swimming, and express a marked decrease in aggression (Hoar, 1976).  

This decrease in aggression has been related to the observation that out-migrating fish 

tend to aggregate and eventually form schools for downstream migration.   

Once in the ocean, anadromous fish experience rapid and substantial growth 

before returning to freshwater to spawn several years later (Hendry and Stearns, 2003).  

Among salmonids there exists degrees of anadromy ranging from species that are 

purely anadromous to those that are optionally anadromous (Hoar, 1976). Recent studies 

comparing the anadromous and resident (non-anadromy) life history forms of many 

salmonids species have suggested there may be genetic factors linked to life history, 
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specifically related to smoltification (Narum et al., 2011; Nichols et al., 2008; Thrower et 

al., 2004).  However, there has never been a study on gene expression associated with 

alternate life history variants within salmonids on fish prior to when the changes 

associated with smoltification, migration, or residency can be observed. 

 

Pacific Salmonids Impacts on the Ecosystems Pacific Northwest 

Ecologically Pacific salmonids play an important role in both oceanic and 

terrestrial ecosystems.  In the Pacific ocean salmonids are an important food source, 

especially for many marine mammals (Pauly et al., 1998), and sea birds (Roth et al., 

2007).  Recent studies, done over the last decade have shown that returning anadromous 

salmonids also play a critical role in the nitrogen and carbon cycles in both the fresh 

water stream systems as well as the forests across the Pacific Northwest.   It has also been 

shown that growth rates  of resident population of salmonids in streams systems in 

Alaska were directly related to the nutrients anadromous salmonids carcasses brought to 

the stream systems from the oceans after the anadromous fish had spawned and died 

(Wipfil et al., 2003).  As well as effects of animal communities salmonids have 

significant impacts on terrestrial plant ecosystems.  An example of this is a study done by 

Helfield and Naiman (2001)that found Riparian forest near streams and rivers derive 22-

24% of the foliar Nitrogen direct from spawning salmon.  Ocean derived nitrogen 

brought to the freshwater ecosystems from spawning adult salmon has also been shown 

to be important in maintaining rearing grounds for juvenile salmonids. (Gresh et al., 

2000)  showed that only 6-7% of the historic ocean derived nitrogen and phosphorus is 
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reach Pacific Northwest streams.  Without the input of large runs of anadromous fish, 

salmonid recovery efforts may be in vain.   

 

The Life History of Oncorhynchus mykiss 

An abundant and wide-spread species of salmonid native to the Pacific Northwest 

Region of North America, Oncorhynchus mykiss, is classified as optionally anadromous 

(Hoar, 1976).  Within O. mykiss it is known that both the anadromous and resident life 

history forms can arise from parents of either life history trajectory (Christie et al., 2011; 

Thrower et al., 2004; Zimmerman and Reeves, 2000). A recent study done by Christie et 

al. (2011) tracked gene flow in a population of O. mykiss in the Hood River, Oregon. This 

showed that in the wild anadromous population of steelhead, nearly 20% of the alleles 

originated from resident rainbow trout parents (Christie et al., 2011).  Other studies done 

by (Doucett et al., 1999; Zimmerman and Reeves, 2002) used evidence from 

strontium/calcium (Sr/Ca) ratios in otoliths to identify anadromous and non-anadromous 

individuals of O. mykiss in the Deschutes River, Oregon.  Strontium is more common in 

salt water than in freshwater.  Thus Sr/Ca ratios can be used to determine whether or not 

an individual’s mother was anadromous or non-anadromous due to maternal provisioning 

of these minerals into developing oocytes during oogenesis.  Sr/Ca ratios indicate that in 

the Deschutes River, the anadromous steelhead sampled from the river had both 

anadromous and resident mothers (Zimmerman and Reeves, 2000).  In addition, Sr/Ca 

ratios also suggest that resident O. mykiss in the Deschutes River had both anadromous 

and non-anadromous mothers (Zimmerman and Reeves, 2000).  This study illustrates the 
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lack of a purely genetic explanation for anadromy in O. mykiss from the Deschutes River, 

and instead implicates a non-genetic mechanism in determining life history variation in 

this species such as phenotypic plasticity associated with varying environmental cues.  In 

addition, other studies show that the life history trajectory of O. mykiss is influenced by 

physiologic, environmental as well as genetic factors that play an important role in the 

decision to remain resident in freshwater or initiate changes required for smoltification 

and anadromy (Metcalfe et al., 1988; Nichols et al., 2008; Thrower et al., 2004). 

While the genetic factors influencing life history are still poorly understood, 

several recent studies have focused on the genetic factors associated with smoltification 

at the population level using single nucleotide polymorphisms or SNPs (Narum et al., 

2011) and quantitative trait loci (QTL) analyses (Nichols et al., 2008).   

It is important to note that a recent study done by Brown et al. (2006) found 

intraspecific variation in O. mykiss mitochondrial genomes that suggests phylogenetic 

divide between coastal and inland populations.  This phylogenetic difference between 

inland and coastal O. mykiss population is not well understood. 

Very little is known concerning the mechanisms that determine alternative life 

history strategies in this species, and currently no reliable biomarkers are available for 

identifying alternative trajectories in young-of-the-year fish prior to the obvious changes 

associated with smoltification at an individual level. In addition, it is not clear at what 

point during early life history development the decision to become anadromous or 

resident is made in O. mykiss.  Understanding when life history decisions are made, and 

identifying the gene expression pathways that underlie this decision will play an 
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important role in better understanding how genetic and environmental factors interact to 

influence life history.  This knowledge will not only inform scientists on the basic 

biology of salmonid species, but will also provide a powerful tool to inform resource 

managers concerned with the conservation of alternative life history forms in threatened 

O. mykiss populations.   

 

Oncorhynchus mykiss in the John Day River Basin, Oregon 

The John Day River is the second largest undammed river system in the American 

West and the largest free flowing river system in the continental United States to have an 

un-supplemented, wild, anadromous Oncorhynchus mykiss (steelhead) population 

(Carmichael and Talyor, 2010).  This makes this population important due to its high 

degree of genetic diversity that has been relatively unaffected by genetic influences of 

hatchery fish.  However, wild populations of O. mykiss have dramatically declined from 

historic levels in the Columbia River basin due to many factors, including overfishing, 

poor ocean conditions, habitat destruction, hydropower development and hatchery 

practices (Raymond, 1988).  These declines led to the 1999 Endangered Species Act 

(ESA) listing of an environmentally significant unit (ESU) of steelhead from the Middle 

Columbia River as “threatened” (Federal Register, Vol. 64, No. 57, March 25, 1999, p. 

14517),(Good and Waples).  This ESU includes a wild population of summer-run 

steelhead in the South Fork John Day River Basin (SFJD). 

Summer-run steelhead in the SFJD are characterized by adults returning to the 

main stem Columbia River from the Pacific Ocean in late-summer or early-fall and 
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holding in the major river system over winter until spring when they migrate up the 

tributaries of the SFJD to spawn when river and stream flows increase.  Oncorhynchus 

mykiss populations in the Columbia River Basin can spend from 1-5 years in freshwater 

before migrating; however migration generally occurs at year 2 or 3 (Peven et al., 1994).  

The SFJD population is iteroparous (spawning more than once per generation) and 

optionally anadromous, and thus is composed of both a migrant anadromous (steelhead) 

and a resident form (rainbow trout) that are morphologically indistinguishable as 

juveniles.  

Previous research has identified anadromous/resident life history ratios in several 

tributaries of the SFJD basin through mark-recapture experiments.  In this study two 

closely spaced tributaries (Figure 1) were found to have differences in the proportion of 

out-migrating juvenile fish (assumed to be anadromous).  In 2004, Murderers Creek was 

shown to have a larger proportion of out migrant fish (13.7%) compared to Black Canyon 

Creek (3.1%) (Tattam, 2006).  The following year (2005) 11.6% of tagged juvenile O. 

mykiss emigrated downstream from Murderers Creek compared to only 3.2% in Black 

Canyon Creek (Tattam, 2006). These two tributaries differ in their physical 

characteristics.  Lower Murderers creek headwaters originate in the Malheur National 

Forest.  Murderers Creek’s elevation ranges from 900 to 2000m and has a length of 

approximately 30 km. The stream system primarily flows through open high desert 

grasslands and open range cattle pasture but at its higher elevations the landscape is 

dominated by Ponderosa and Douglas fir forests.  Black Canyon Creek headwaters 

originate in the Black Canyon Wilderness Area inside the Ochoco National Forest. Black 



10 

 

Canyon Creek’s elevation ranges from 900 to 1600m and has a stream length of 

approximately 15 km.  All 15 km of BCC are dominated by high gradient flow and most 

of the stream system flows in deep canyons dominated by scrub brush and ponderosa and 

Douglas fir forests. Stream temperatures in Murderers Creek range from 0oC in the winter 

to 26oC in the summer, while temperatures in Black Canyon Creek held around 1 oC in 

the winter and rarely reach over 20oC in the summer (Tattam, 2006). Despite these 

physical differences, the two stream systems enter the South Fork John Day River 

approximately 3.7 km from each other (Figure 1). These closely spaced tributaries with 

differing ratios of out-migrating fish create an excellent system for investigating possible 

differences in life history variation in a natural system.  

 

Hatchery Production of Oncorhynchus mykiss in the Columbia River Basin 

The culturing of O. mykiss in hatchery environments has its beginning in the early 

20th century at first as an attempt to create faster growing sport fish with high survival 

rates but later on as a tool to supplement declining wild O. mykiss populations (Service, 

2010).  As wild populations declined, limitations were put in place on the catch of wild 

fish resulting in a higher demand and therefore a greater production of hatchery fish 

throughout the region. Today, 70-80% of the salmon and steelhead caught in the Pacific 

Northwest originated from a hatchery (Service, 2010).  As the numbers of hatchery O. 

mykiss released into the region’s rivers and streams increased, concern of the effects of 

hatchery released fish on wild indigenous fish populations started to grow.  Research 

suggests that hatchery fish are having direct and negative impacts on wild fish 
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populations.  For instance a study done by (McMichael et al., 1997) showed a significant 

correlation between the occurrence of residualized hatchery O. mykiss (anadromous 

released fish that do not migrate but instead remaining at their release site as resident 

fish) and negative growth rates in wild indigenous O. mykiss.  

The O. mykiss anadromous life history form is the primary target for hatchery 

release programs in river and streams within the Columbia River Basin. Like most 

anadromous salmonids, O. mykiss exhibits “homing” during migration. (Quinn, 1993).  

They return to their natal rivers and streams to spawn. However, not all O. mykiss (wild 

and/or hatchery) return to their natal stream to spawn; these fish are termed “strays”.  

Strays may migrate back to a nearby tributary or as far away as other river basins.  For 

example, a study focusing on the occurrence of hatchery strays in Oregon coastal rivers 

found that 22% of fish sampled in 5 streams without hatchery O. mykiss releases were 

actually hatchery strays (Schroeder et al., 2001).  These strays can have significant 

impact on the genetic make-up of protected wild O. mykiss populations especially when 

interbreeding between wild and hatchery fish occurs.   Hatchery O. mykiss tend to have 

lower reproductive success than that of wild O. mykiss populations (Chilcote et al., 1986) 

as well as higher mortality rates.  Hatchery x wild spawning pairs have been shown to 

produced 63% fewer recruits compared to wild x wild spawning pairs (Chilcote, 2003). 

Despite the negative impacts of hatchery fish on wild populations, and the 

artificial rearing environment they create, hatchery fish provide an opportunity to perform 

“common garden” experiments in a much more controlled environment than can be 

accomplished in natural settings.  In this study, we compared individuals from resident 



12 

 

and anadromous hatchery stocks from Mossy Rock Hatchery, Washington.  Mossy Rock 

Hatchery water is fed to the facility from an underground spring providing a clean water 

source with stable temperature of 10°C year-round.  

A complete history of the origin of resident hatchery stock in the Pacific 

Northwest is partial at best.  Of all the resident rainbow trout hatchery lines available, the 

line selected for this study (Goldendale Rainbow trout, GDT) has one of the better 

records of development.  Goldendale Rainbow trout are fall spawning.  The line began at 

Goldendale Hatchery in 1938.  Today’s Goldendale Rainbow trout line was established in 

1948 and is a cross between Meader and Yakima rainbow trout lines (Kinunen and 

Moring, 1976).  The anadromous Steelhead line used in this study is derived from wild 

fall run of Kalama River brood stock (ESA Listed) that has been long established at the 

Kalama Hatchery, Washington.  The returning Kalama steelhead are spawned at the 

Kalama hatchery and incubated until the eggs reached the “eyed-up” stage of 

development before being transported to Mossy Rock Hatchery for hatching and rearing.     

 

Conservation management of Oncorhynchus mykiss in the SFJD 

A major issue facing conservation of the SFJD O. mykiss populations is 

measuring the effectiveness of conservation strategies such as habitat restoration.  The 

ESA listing of the Middle Columbia River ESU specifically targets only the anadromous 

form of the O. mykiss population.  Both government and non-government agencies have 

recognized the importance of this John Day River Basin steelhead population and 

devoted large amounts of resources and time to habitat protection and restoration in 
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hopes of increasing the steelhead populations.  The ability to assess if conservation 

efforts are working to increase anadromous populations in restored areas could be a very 

useful management tool.  Importantly, being able to identify pre-smolting juveniles as 

resident or anadromous would allow for more immediate impacts of management 

decisions to be assessed. 

 

Specific Aims 

The primary aim of this research is to identify differences in gene expression 

between known young-of-the-year (YOY) resident and anadromous forms of O. mykiss.  

I hope to use these differences in gene expression to identify gene expression markers 

that can be used to identify an individual O. mykiss YOY as likely to be anadromous or 

resident prior to any morphological, behavioral, or physiological changes associated with 

preparations for migration. 

To achieve these aims oligonucleotide microarray gene expression and qPCR 

analyses were employed to identify gene expression differences between resident and 

anadromous life history variants in YOY O. mykiss reared under common conditions in a 

hatchery environment and in a wild, threatened population of juvenile O. mykiss from the 

South Fork John Day River Basin.   

Gene expression differences were analyzed in brain and gill tissues between 

anadromous versus resident life history strategies by sampling juvenile, young of the year 

fish from Mossy Rock Hatchery, Washington, prior to smoltification. Gill and brain 

tissues have been chosen because of the important physiologic changes that occur within 
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these tissues prior to smoltification and subsequent migration to the sea; because of this 

these tissues are an obvious location to observe differences in gene expression between 

alternate life history forms. Mossy Rock Hatchery was chosen as a sample location 

because the hatchery rears both a wild Kalama run anadromous population as well as a 

resident population. Both stocks of fish are brought to the hatchery at the same age and 

are rear under common garden conditions.   

Next, gene expression was analyzed in brain and gill tissues from two different 

tributaries of the South Fork John Day River (Oregon) known to produce different ratios 

of anadromous versus resident forms independent of parental affects. Working in 

collaboration with a team from Oregon State University and under a permit from the 

National Oceanographic and Atmospheric Administration (NOAA) 
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MATERIALS AND METHODS 

 

Specimen Collection and Handling 

Hatchery fish. Young-of-the-year O. mykiss were obtained from Mossy Rock 

hatchery (Mossyrock, Washington).  Eight fish each from two stocks known to differ 

substantially in their tendency to migrate were sacrificed by concussion.  The heads were 

then removed and flash-frozen in liquid nitrogen.  Total time between sacrifice and 

freezing was less than 1 min.  Fish were randomly sampled from troughs, but chosen by 

size from the net to control for size-specific differences.  This sampling resulted in a 

mean mass and mean length for the rainbow trout hatchery samples of 7.5 ± 2.57g and 

85.25 ± 10.54 mm (mean ± s.d.), respectively. The steelhead sampling resulted in a mean 

mass and mean length for steelhead hatchery stock of 5.25 ± 1.10g and 79.75 ± 2.95 mm 

(mean ± s.d). Both the mean mass (t-test, p = 0.13) and mean length (t-test, p = 0.31) 

were not significantly different between the two stocks. The resident stock (MRHR) was 

a Goldendale Rainbow stock that had been reared for many generations at Mossy Rock 

hatchery for production of rainbow trout to support stocking efforts.  The anadromous 

stock (MRHS) was produced from wild-origin Steelhead parents captured in the Kalama 

River for rearing in a hatchery environment for wild population supplementation.   

Wild Fish.  Young-of-the-year fish were sampled from two tributaries of the 

South Fork John Day River Basin (SFJD) that have been previously shown to produce 

differing proportions of anadromous and resident life history variants of juvenile O. 

mykiss (Tattam, 2006). These sites were Lowers Murderer Creek (LMC, anadromous 
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biased) and Black Canyon Creek (BCC, resident biased).  In a recent study Murderers 

Creek was shown to have juvenile growth rates significantly higher than Black Canyon 

Creek and Murderers Creek was shown to produce more migrant (assumed anadromous) 

O. mykiss as compared to Black Canyon Creek (Tattam, 2006).   

Fish were captured by hook-and-line sampling at the BCC site, and by snorkel 

herding into seine nets at the LMC site. In both locations fish were sacrificed and whole 

heads were frozen as described above for the hatchery fish.  

 

Tissue Sampled 

Gill and brain tissue were sampled for both physiologic  and practical reasons.  

First, many of the changes associated with smoltification occur in these two tissue types.  

Second, due to the limitation of lethal sampling of an ESA-listed species and the need to 

share fish among several investigators, only heads were available for sampling.  The size 

class and weight class of hatchery fish chosen for this study were selected due to their 

similar size to YOY wild fish sampled in the South Fork John Day River basin research 

site. 

 

RNA Extraction 

RNA was extracted from brain and gill tissue by dissecting samples in the lab 

from frozen heads.  Each frozen sample was homogenized in Trizol reagent and the RNA 

was extracted following the following the manufacture’s protocol (Invitrogen, Carlsbad, 

CA, USA.).  Care was taken to ensure that the tissues did not thaw prior to being 
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submerged in Trizol reagent.  Total RNA concentration and RNA purity were quantified 

using a Tecan Infinite 200 Pro Nanoquant plate reader (Mannedorf, Switzerland).  RNA 

integrity was also verified by running 1 µg of total RNA on a 1% agarose gel.  All 

samples exhibited clear ribosomal RNA bands and a smear of high molecular weight 

RNA. 

 

Microarray Probe Preparation 

Differences in gene expression were quantified using an Agilent 44K 

oligonucleotide array developed for Atlantic Salmon, Salmo salar, and commonly used to 

profile gene expression in salmonid fishes (www.agilent.com, Release Date 06/08).  

Probes were generated for each sample using 200 ng of total RNA and the Agilent One-

color spike mix kit according to the manufacturer’s instructions.  This kit provides 10 

positive controls that act as quality control for the amplification and labeling steps 

preceding hybridization.  Cyanine 3-CTP (Cy3) labeling dye was incorporated directly 

into the cRNA during the amplification process.  Fluoresecently-labeled cRNA was then 

purified using RNeasy Minispin columns Qiagen (Valencia, CA, USA) following the 

Qiagen protocol.  Purified cRNA was eluted into a final volume of 30 µl RNAase-free 

H20.  cRNA yield was determined by measuring absorbance at 260 nm and labeling 

efficiency was calculated from total yield and total Cy3 fluorescence (550/570 nm 

excitation/emission) according to Agilent’s protocols using a Tecan Infinite Pro 

Nanoquant plate reader.  Fluorescent-labeled probes with amplification yields greater 
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than 1.65 µg with specific activity greater than 6.0 pmol Cy3/µg cRNA were used for 

microarray hybridizations.   

 

Microarray Hybridization 

cRNA samples were hybridized following Agilent’s hybridization protocols.  1.65 

µg of cRNA was processed with 25x fragmentation buffer to fragment the cRNA into 

optimal sizes for hybridization.  Each sample was fragmented for exactly 30 min at 

60.0°C.  Samples were then hybridized to the Agilent 4 x 44k oligonucleotide 

microarrays using the Agilent SureHyb chamber at 65.0°C for 17 hrs.   

 

Microarray Analysis 

Each microarray was scanned using a Molecular Devices (Sunnyville, CA, USA) 

Axon GenePix 4000B Microarray scanner at 5 µm resolution with an average of two 

scans per line. Images were acquired using the companion GenePix Pro 7 software.  

Images were then analyzed using Agilent Feature Extractor software following the 

software manufacture’s protocols (version 9.5.3.1).  Extracted data was exported to 

Agilent Genespring GX software (Ver 10) for expression analysis.  Quality control 

analysis was performed on the results for all hybridizations, and one gill sample had to be 

excluded from analysis based on not meeting minimum standards.  Genes that were 

differentially expressed in resident vs. anadromous life history variants were identified 

using a one-way ANOVA and the Benjamin Hochberg FDR correction for multiple 

comparisons (total p<0.05).  Further filtering of the data analysis by fold-change in gene 
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expression was sometimes performed to highlight genes with high levels of gene 

expression variation.  A clustering analysis was performed on the genes found to be 

differentially expressed using non-averaged samples and a hierarchical clustering 

algorithm with a Pearson centered distance metric and a centroid linkage rule.  Clusters 

were based on both entities and condition (i.e. gene probe and stock).  Venn diagrams 

were constructed using the entity lists generated from the one-way ANOVA statistical 

test comparing differentially expressed genes in both tissue types.  Genes differentially 

expressed in both tissue types were deemed candidate life history markers.  The full 

sequence for each candidate life history marker was downloaded from GenBank using the 

nucleotide Blast tool (http://blast.ncbi.nlm.nih.gov/) using the accession numbers for each 

maker found in the microarray annotation file provided by Agilent. 

 

Quantitative Real-time Polymerase Chain Reaction (qPCR) 

Microarray data were validated using qPCR for probes that appeared to be 

possible markers for life history variation in O. mykiss.  PCR primers were designed 

using the National Center for Biotechnology Information Primer-Blast website 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) based on the accession number for 

each probe found in the Agilent S. Salar microarray annotation file.  Information about 

each primer set is shown in Tables 1-9.  Primers were selected for product lengths 

between 75 and 150 bp.  Optimal annealing temperatures (Table 10) were calculated 

using New England Biolabs (Ipswich, MA, USA) Tm calculator 

(http://www.neb.com/nebecomm/tech_reference/tmcalc/default.asp#.T-1WprVDx8G) 
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which accounts for the annealing temperatures for each individual primer set within the 

buffers and reagents associated with their PCR assay.  Single-stranded cDNA was 

synthesized using the Thermo Scientific Fermentas (Glen Burnie, Maryland) first strand 

cDNA synthesis kit according to the manufacturer’s instructions.  Standard PCR 

reactions were performed using New England Biolabs reagents on each primer set to 

optimize reaction protocols. PCR product purity was checked electrophoretically on a 2% 

agarose gel.  Finalized PCR programs used for qPCR quantification of each probe are 

reported in Tables 2 and 3.  qPCR reactions were run on a Bio-Rad (Hercules, CA, USA) 

MiniOpticon real time PCR System using QuantiTect SYBR green PCR Master mix 

(Qiagen – Catalog#204143).  Data were collected and Ct values were calculated with the 

companion Opticon Monitor software (version 3.1.32) (See Figures 13-21).  Comparative 

quantification was used using the ∆∆Ct method (Invitrogen, 2012). (Fold Change = 

EffSample∆Ct Sample/EffNormalizer∆Ct Norm) (See Table 10) using β-actin as the reference for 

each comparison. 
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RESULTS 

 

Gene expression patterns of hatchery stocks 

Microarray analysis revealed 154 sequences differentially expressed in the brain 

tissue and 137 sequences differentially expressed in gill tissue between hatchery rainbow 

trout stocks and hatchery-reared wild steelhead stocks.  Heat maps generated from the 

hierarchical clustering analysis of differentially expressed sequences illustrate a clear 

relationship between gene expression and stock type as seen in Figures 2 and 3.  Of the 

15 differentially expressed sequences common to gill and brain tissues (Fig 4 and 5), 8 

sequences had known accession numbers and full sequences were obtained from 

GenBank (Table 1).  These 8 sequences were chosen as putative life history markers for 

resident versus anadromous life history variants in YOY O. mykiss.  Three of the eight 

life history markers are known genes, proteasome subunit beta type-9b, cd83 protein, and 

duodenase-1 (Table 1).   Little is known about the role these genes have on alternate life 

history pathways but it is clear from the microarray data that the genes are alternately 

expressed between the two different life history types.  Gene Ontology interrogation of 

the data resulted in no enrichment of differentially expressed genes for any specific 

pathway.  However, this negative result is likely due mainly to the limited annotation of 

the S. salar genome and associated microarray probes represented on the microarray. 
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Quantitative real-time PCR Validation 

Primer sets for each accession number resulted in verified PCR protocols that 

yielded single products of the appropriate size (Tables 2-10) as verified on 2% agarose 

gels.  These verified PCR protocols were then used to validate the microarray data using 

qPCR for each gene expression marker.  The Results for these qPCR runs are presented 

in Fig 7-15) 

There was a significant positive correlation between the qPCR and microarray 

expression data for all eight markers. (r = 0.72, p < 0.001; Fig 16).  These data validate 

the microarray gene expression data generated in this study by demonstrating a direct 

correlation between qPCR data and microarray data as seen in Figure 16.  Linear 

regression analysis yields a slope close to 1.0, suggesting a nearly 1:1 relationship 

between the two methods of determining gene expression (slope = 0.93 ± 0.24, p < 0.002). 

The most significant differentially expressed marker in both brain and gill tissue 

was marker BT045730.  For this marker, microarray analysis yielded a 8.02-fold up 

regulation in rainbow trout brain, while qPCR analysis using Ct values yielded a 16.28-

fold up regulation in the same sample.  For the same marker in gill tissue the microarray 

analysis yielded an 8.40-fold up regulation, while qPCR yielded a 14.27-fold up 

regulation.  Thus, the microarray and qPCR results are consistent in both direction and 

magnitude of differential expression.  These data indicate with some certainty that these 

markers were differentially expressed between the two life history stocks reared under 

identical hatchery conditions. 

 



23 

 

Microarray analysis of gene expression in wild fish 

The microarray analysis comparing LMC, BCC, MRHR to MRHS in brain tissue 

revealed 154 differentially expressed genes (Fig. 3).  For gill tissue, 137 genes were 

differentially expressed (Fig. 2).  Cluster analysis on these differentially expressed 

sequences in brain and gill tissue sampled from all sample locations (MRHS vs. MRHR 

vs. LMC vs. BCC) reveal expression patterns that are unique in wild compared to 

hatchery fish suggesting a large component of differential gene expression due to 

environmental an ecological differences between the wild and hatchery stocks. (Fig. 2-3).  

However, despite all of this variation, two of the eight potential life history markers 

identified as differentially expressed in hatchery stocks were also differentially expressed 

in the wild fish. These two markers’ accession numbers are: BT045730, and BT047975.    
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DISCUSSION 

 

The complexity of life history variants observed in extant populations of O. 

mykiss are very likely the result of selective pressures that vary over time and in intensity 

alternately favoring increased survival in marine and freshwater environments.  Thus, the 

life history matrix of these fish remains flexible and able to adapt to favorable ocean or 

freshwater conditions.  While this is clearly of evolutionary advantage, it almost certainly 

adds layers of complexity to the natural fluctuations in population size that are observed 

even in wild and undisturbed populations of fish.  When human manipulations of 

populations and degradation of the environment (both freshwater and marine) are added 

to the mix, determining the causes behind population declines and expansions can be very 

difficult.  In addition, without knowledge of the environmental factors that regulate life 

history decisions and the molecular pathways that are altered in resident versus 

anadromous variants, it is extremely difficult to predict changes in fish health or 

abundance over time and in response to changes in the environment.  Thus, as a first step 

towards identifying the molecular pathways that are involved in determining life history 

variation in O. mykiss I have used gene expression analysis to identify genes that are 

differentially expressed in stocks of fish that are known to be primarily resident or 

anadromous, but were reared under identical conditions.  This “common garden” 

experimental design provides the best conditions for identifying genes that are 

differentially expressed due to life history trajectory, and not local environmental 

conditions.  It is our hope that these genes will be useful for two distinct purposes – first, 



25 

 

of empirical value, and second, for the practical value for the management of threatened 

populations.  First, I hope to identify the molecular pathways that regulate life history 

trajectories in this species, and the window of development in which life history 

trajectory is determined.  This information will be invaluable in understanding how 

environmental and genetic factors work together to determine complex life history 

decisions.  Second, it is hoped that the life history markers identified in this gene 

expression study could be used to develop molecular markers that can predict life history 

trajectory using a non-lethal sampling protocol in pre-smolting juveniles from both wild 

populations and hatchery stocks.  This information can be used to determine areas where 

resident and anadromous variants are highly successful, which is information sorely 

needed in preparing management strategies for protecting endangered populations of 

anadromous O. mykiss in the Columbia River Basin.   

There are many factors that have been identified as influencing life history 

decisions in O. mykiss and other populations of salmonids but the three widely accepted 

indicators of life history are growth-rate (Hutchings and Jones, 1998), (Metcalfe et al., 

1999) movement/migration (Beckman et al., 1998) and survival (Holtby et al., 1990).  

These three indicators are interdependent and culminate in an individual’s “decision” to 

mature in freshwater (resident fish) or migrate to sea (anadromous fish).  These factors 

can be measured over long periods of time.  However, these indicators are all large-scale 

traits that integrate changes in many physiological systems, and likely represent the 

downstream effects of the actual mechanistic causes that drive the changes associated 

with life history variation.  In this thesis, I argue that gene expression changes prior to the 
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expression of the above mentioned life history indicators and that by focusing on the role 

that these genes play in regulating cellular and organismal physiology, we can not only 

quickly and easily identify a juvenile O. mykiss’s likely life history in a very short period 

of time, but we can also ultimately understand how and perhaps why the life history 

decision has been made.   

 In this study over 150 genes have been identified that are differentially 

expressed in resident versus anadromous hatchery stocks of O. mykiss.  Of the 8 

identified sequences selected as putative life history markers in hatchery stocks, several 

of these sequences are also differently expressed between South Fork John Day River 

sample sites.  At this point, there is no cohesive story that can be told based on the genes 

that have been identified. This is not a failure of the methodologies used, but rather is a 

symptom of our general lack of knowledge of gene function for the genes that are 

differentially expressed. The major focus of this study was to primarily identify genes 

associated with alternate life histories in juvenile O. mykiss but preliminary research 

shows the functions of the eight identified life history genes in this study are, at this point, 

poorly understood.  However, the association with three major physiologic processes 

(proteasome activity, metabolism, digestion and immune response) has been established 

for all but one of these markers (Accession # EG823395).   

Markers NM_001123714, BT047975 and BT058447 have been shown associated 

with proteasome function (Murray et al., 1999).  BT050202, BT045730,  NM_001141601 

have been shown to be associated with metabolisms and specifically markers BT050202 

(gene ID/name: ddn1, Duodenase-1)  is a protease which has both trypsin-like and 
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chymotrypsin-like activities (Pletnev et al., 2000).  Finally, BT045799 (GeneID/name: 

CD83, CD83 Protein) have been shown to be involved in immune response.  Specifically 

CD83 is a protein in the family of immunoglobulin superfamily of receptors.  It is 

thought to be involved in the regulation of antigen presentation and may also be involved 

in binding to dendritic cells to inhibit the cell’s maturation (Chen et al., 2011).  How 

these genes affect life history decisions in O. mykiss are unknown at this point. 

  Additional studies will be required to better understand the role these genes have 

in life history decisions.  Many of the other 150 genes that are differentially expressed are 

also of unknown identity and or function.  It will take many years to identify and 

determine the function of these genes, and hopefully after a great deal of effort we will be 

able to reconstruct a mechanistic picture of the molecular differences between a fish that 

expresses as a resident or anadromous life history variant.  These genes are the first clues 

to unraveling a likely complex interaction of gene expression that leads to the differences 

in cellular and organismal traits we associate with both life history variants. 

From a practical perspective, these differentially expressed genes represent 

putative biomarkers for anadromous and resident life history variants of O. mykiss in the 

two hatchery populations in this study.  Importantly, these markers are expressed far prior 

to the morphological and physiological changes that are associated with smoltification.  

Identifying these markers in non-lethal tissue would make it possible to use them to 

identify life history trajectory in YOY wild O. mykiss populations.  This will make 

possible the ability to look for changes in the ratio of anadromous to resident forms in 

specific stream reaches and in response to specific alterations in the environment, such as 
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fluctuations in temperature or changes in fish density, food quality and availability.  

These life history markers may also play an important role for conservation managers 

when evaluating habitat restoration projects. Life history markers could allow fish to be 

examined soon after these events which will minimize loss of the signal due to migration 

of fish out of an area, and it will allow a greater deal of certainty to be developed as to 

cause and effect relationships in migratory decisions by individual fish.  In the future we 

may not have to wait for fish to smolt and migrate in order to determine the effects of 

habitat alterations on the ratio of anadromous versus resident forms. 

The expression analysis of the two Mossy Rock Hatchery stocks (rainbow 

trout/steelhead) demonstrate there is an expression level difference between these two 

long establish hatchery stocks.  Microarray data and qPCR data are closely correlated and 

both support the same conclusion of differential expression in the two stocks.   

From a hatchery perspective the ability to identify the life history of juvenile fish 

prior to their release into local rivers and streams could alleviate many of the problems 

associated with residual and stray fish.  The common garden conditions of Mossy Rock 

hatchery would be an ideal place to test whether these anadromy markers do fully predict 

a juvenile O. mykiss life history.  Expression analysis of these markers could be 

performed on fin clips that are produced as a normal part of the PIT-tagging efforts 

throughout the Columbia River basin.  The migration of these fish could then be easily 

tracked through existing PIT tag monitoring stations at all major dams and by placing 

new PIT tag monitoring stations at strategic sites along the fish’s migration route.  These 
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data could be used to validate the identified gene expression markers in fish released into 

natural waterways. 

The sample size of this study is relatively low and was limited by the need to 

lethally sample an ESA listed population of fish.  The future application of these markers 

for the management of wild populations will require additional studies to not only 

validate the results found in this study in broader populations of O. mykiss, but also to 

validate that these markers can be identified in non-lethal tissue samples.  Preliminary 

data suggested at least one of the identified life history markers (BT045730) is expressed 

and can be quantified in a non-lethal tissue sample (fin clip).  The ability to use fin-clips 

to identify future migratory behavior could provide higher resolution data on specific 

reaches of stream systems and provide information on how management practices are 

affecting the ratio of anadromous and resident forms of O. mykiss.  It would provide a 

powerful tool to help in habitat restoration monitoring of ESA and non-ESA population 

of O. mykiss. 

Migration behavior in O. mykiss from the South Fork John Day River basin has 

been monitored using Passive Integrated Transponders (PIT) Tags (Tattam, 2006).  This 

study, although limited in scope and sample size illustrated differing ratios of migrant and 

resident juvenile O. mykiss in stream systems within the basin.  In the future, it would be 

fantastic to compare the anadromous/resident ratios from tributaries with known 

differences in migration bias with the putative gene expression markers identified in this 

study.  Non-lethal sampling and PIT tagging of a large number of individuals in a natural 

setting such as this would be an excellent way to validate the life history markers from 
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this study.  In fact, this is the logical next step in evaluating the effectiveness of these 

markers.   

The ability to identify what life history strategy (anadromous or resident) young 

of the year O. mykiss are expressing before there are morphological differences between 

individual fish has never been achieved.  This study is the first to identify life history 

markers present in multiple tissues types that may be useful tools for understanding the 

mechanisms that induce life history variation, as well as a way to evaluate life history 

variation in this species.  Further research into using these markers for verification via 

non-lethal sampling (blood samples or fin clips) is the next logical step in furthering this 

research. In addition, evaluating how early in development these differences in gene 

expression can be traced will help better understand the timing of the decision to follow a 

specific life history trajectory. 
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Figure 1.  Map of the South Fork John Day Sample Locations   

South Fork John Day River 

Murderers Creek 

Black Canyon Creek 
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Figure 2.  Heat Map of differentially expressed gene in gill tissue between hatchery rainbow trout 
and steelhead stocks.  
Cluster analysis (Pearson’s Centered) of all genes differentially expressed in gill tissues between young-
of-the-year hatchery steelhead (MRHS) and hatchery rainbow trout (MRHR) stocks. There were 137 
differentially expressed genes identified using t-tests and the Benjamini-Hochberg correction for multiple 
comparisons (total p<0.05). 
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Figure 3.  Heat Map of differentially expressed gene in brain tissue between 
hatchery rainbow trout and steelhead stocks.  Cluster analysis (Pearson’s centered) 
of all genes differentially expressed in brain tissue between young-of-the-year hatchery 
steelhead (MRHS) and hatchery rainbow trout (MRHR) stocks. There were 154 
differentially expressed genes identified using t-tests and the Benjamini-Hochberg 
correction for multiple comparisons (total p<0.05). 
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Figure 4. Venn diagram of genes differentially expressed in gill and brain tissue 
from young-of-the-year Mossy Rock Hatchery stock
(MRHS: Mossy Rock Hatchery steelhead, MRHR: Mossy Rock Hatchery rainbow 
Trout).  15 genes were differentially expressed in both brain and gill tissues and have 
been chosen as putative life history markers for anadromous versus resident forms of 
O. mykiss. 
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Figures 5.  Heat map of gene expression for the 15 putative life history markers 
identified from the Mossy Rock Hatchery analysis. 
In this heat map of expression levels for the 15 putative gene expression markers for 
alternative life history trajectories common to both brain (Figure 4) and gill tissues in 
MRHR (RT) and MRHS (SH) stocks. 
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Figure 6. Graph and correlations analysis of qPCR and microarray gene 
expression data for the 8 selected life history markers. 
A comparison of log2 fold change in gene expression using a microarray gene 
expression analysis and qPCR.  A Pearson’s correlation analysis was done comparing 
qPCR and Microarray data resulting in a significant r2 value of 0.7119  
(p-value<0.0010) These data verify the validity of the microarray gene expression for 
the life history markers selected for all but one marker in one tissue (NM_0023714, in 
brain tissue).  Linear regression modeling produced a slope value of 0.9263 ± 0.2442 
and an r2 value of 0.5069 (p-value<0.0020 
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Figure 7.   Heat map diagram comparing gene expression in 
gill tissues from South Fork John Day River basin samples 
sites and Mossy Rock Hatchery Samples. 
This heat map diagram compares gene expression in gill tissue 
from MRHS, MRHR, LMC and BCC.  All samples were 
references to MRHS (the control wild origin hatchery Kalama 
steelhead stock).  There were 375 differentially expressed genes 
identified using t-tests and the Benjamini-Hochberg correction 
for multiple comparisons (total p<0.05).  Two of the 8 life 
history markers identified in hatchery samples were 
differentially expressed in this analysis 
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Figure 8.   Heat map diagram comparing gene expression in 
brain tissues from South Fork John Day River basin 
samples sites and Mossy Rock Hatchery stocks. This heat 
map diagram compares gene expression in brain tissue from 
MRHS, MRHR, LMC, and BCC.  All samples were references 
to MRHS (the control wild origin hatchery Kalama steelhead 
stock).  There were 200 differentially expressed genes identified 
using t-tests and the Benjamini-Hochberg correction for 
multiple comparisons (total p<0.01).  One of the 8 life history 
markers identified in hatchery samples were differentially 
expressed in this analysis 



 

Figure 9. qPCR data for p
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qPCR data for primer set BT045799 
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Figure 10. qPCR data for primer set
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data for primer set BT045730 
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Figure 11. qPCR data for primer set
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qPCR data for primer set BT050202 
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Figure 12. qPCR data for primer
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qPCR data for primer set EG823395 
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Figure 13. qPCR data for primer set
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qPCR data for primer set BT047975 
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Figure 14. qPCR data for primer set
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qPCR data for primer set ß -Actin 
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Figure 15. qPCR data for primer set
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qPCR data for primer set BT058447 
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Figure 16. qPCR data for primer set 
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qPCR data for primer set NM_0023714 
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Figure 17. qPCR data for primer set
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qPCR data for primer set NM_001141601 
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ProbeID PrimaryAccession GeneSymbol GeneName Description

A_05_P459622 NM_001123714 psmb9-b proteasome subunit beta type-9b
Salmo salar proteasome subunit beta type-9b 

(psmb9-b), mRNA [NM_001123714]

A_05_P452267 BT045730

Salmo salar clone ssal-rgf-529-363 Serine 

incorporator 1 putative mRNA, complete cds 

[BT045730]

A_05_P310042 BT058447

Salmo salar clone Contig835 Proteasome subunit 

beta type-8 precursor putative mRNA, complete cds 

[BT058447]

A_05_P357297 EG823395

EST_ssal_evd_25036 ssalevd thymus Salmo salar 

cDNA Salmo salar cDNA clone 

ssal_evd_532_214_fwd 3', mRNA sequence 

[EG823395]

A_05_P260975 BT045799 cd83 cd83 protein
Salmo salar clone ssal-rgf-531-267 CD83 antigen 

precursor putative mRNA, complete cds [BT045799]

A_05_P358337 NM_001141601 ddn1 Duodenase-1
Salmo salar Duodenase-1 (ddn1), mRNA 

[NM_001141601]

A_05_P417167 BT047975

Salmo salar clone ssal-eve-542-161 Proteasome 

subunit beta type-7 precursor putative mRNA, 

complete cds [BT047975]

A_05_P272269 BT050202

Salmo salar clone ssal-eve-515-010 Carbonyl 

reductase 1 putative mRNA, complete cds 

[BT050202]

Table 1.  Eight putative life history markers identified in the Mossy Rock Hatchery 
gene analysis study.  Of the 15 putative life history markers identified as differentially 
expressed in both brain and gill tissue 8 are described List of the identities and Genbank 
accession information for these 8 genetic markers are listed above. 
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Table 2. Life history marker information: BT045730 
Accession Number: BT045730 
Agilent Probe ID: A_05_P452267 
Gene ID: N/A 
Protocol: 1: 30sec@94.0oC; 35: 30sec@94.0 oC, 30sec@68.0 oC 
Primer Forward: 5-GAAGACGGCGAGAACCGGGC 

Primer Reverse:  5'-TCATAGCTGGCGTCGGGGCT 

Product Length: 143bp 
 
Full Sequence 
agatcgtaaa cagacgagaa gcatccatat ttcttcccgg agaagtcgta tttcagaaaa 
acaccatggg ggccgttctt ggactgtgct ccatggcgag ttggatcccc tgcctgtgtg 
gcactgcccc ctgcctgctg tgcagatgct gccccagtgg gaataactcc actgtcaccc 
gacttatcta tgccttcttc ctccttctgg gtgtgggcat cgcatgcatc atgctaatgc 
cagggatgga agagcaactc aagaagattc caggattctg tgatggggga atgggtacat 
caatcccagg tgtggagggt catgtgaact gtgatgtctt ggtcggctac aaggctgtgt 
accgcgtctg ctttggcatg gccatgttct tcctgctctt ctccctcatt atggtcaagg 
tcaagagtag ccaggatcct agagctgcag tacacaacgg gttttggttc ttcaagtttg 
ctgctgcgac tgccattacc gtcggtgcat tcttcattcc agagggtgcc ttcacaactg 
tttggttcta cataggaatg gctggagctt tttgcttcat cctgatccag ctggtccttc 
tgattgactt tgcccactcc tggaatgagt cctgggtgga gaaaatggag gagggcaact 
ctcgctgctg gtatgcagct ctgctgtctg ctacaaccat caactacatc ctgtcccttg 
tgtctctggt catgttctac gtctactaca cccacactga tggctgcact gagaacaagg 
ccttcatcac tgtcaacatg ctgctgtgtg tgggagcctc agttatgtcc atcctgccac 
agattcagga gtcccagcca aggtccgggt tgctgcagtc atccattgtg actctgtaca 
ccatgtatct cacctggtct gccatgacca atgagccaga caggaaatgc aacccaagct 
tgctgggtat cattggcctc aacaacacca ccccagctgg caaggaccat cctgttgttc 
agtggtggga tgcccagggc attgtggggc tggtcctgtt cctgatgtgt gttctatact 
caagcatccg caactcctcc aacacccaag tgaacaaact gactctgacc agtgatgagt 
ctgcactgat tgaggatggc ccccaccctg agaactttga cgtggaagac ggcgagaacc 
gggccgtgga caacgagaag gacggagtca cctacagcta ctccttcttc cacttcatgc 
tcttcctggc ctccctctac atcatgatga ccctcaccaa ctggtacagc cccgacgcca 
gctatgagac aatgaccagc aagtggccct ctgtgtgggt gaagatctcc tccagctgga 
tctgcattgc cctgtatgtg tggaccctgg ctgcaccact ggtcctggtc aatcgagact 
tcgactgatg agctaaagaa ttagaaggga gcgcaatcat ttgctcatga ttgtgactat 
tcaaattgta taaggtgaac aagctctgtg tgtgtattcc ctgtggataa cccacccttt 
ttgtttttaa caaactgcat gcatgcaagt attgagtaca tatgtgttat ccactgtgtt 
ttatcctatt gcacaattta aagaatgagg attacttatg cagagttcgg gttgtaaagg 
tcgctggggc ttggggagat ggtcagtgga catgtggtca gttaatgaag ggagaagcac 
tcttcctcaa ctgtaatcgg ttctggatag gacattcaga aagaactgtt aatttgttac 
aaaatgggta agactgcttt gtttatgcta cactttcctt cactttaagt atagaggaag 
tgcagggttc cagatattag ctaacattat cctaggttca taagtgagca tgatttacca 
tttgcatgat attataggct aatctacaat catgcaaatc ttaatgttgc tgtgatttcc 
ttttcagaat atctgccccg attgctaacc tgcacatctt gtaatagctc aaataagacc 
ttaagtttta tgtaccttgt gttacttatt atttgcacta gttatcttct aaaggtaaaa 
tactgatgtt caaacagtgg ataagttatt ttgtagatgc tttagcataa tttaaggtgt 
attaagtgtt tctagcagac aagatacatg tcagaaaatg tcaactccca tttctccaga 
atagtttgcc tttcgatatg tattaaagtg cattgcaaac cataaaaaaa aaaaaaaaaa 
aaaaaaaaag a 

 



50 

 

Table 3. Life history marker information: NM_001123714 
Accession Number: NM_001123714 
Agilent Probe ID: A_05_P459622 
Gene Symbol: psmb9-b 
Gene Name: proteasome subunit beta type-9b 
Protocol: 1: 30sec@94.0 oC; 33: 30sec@94.0 oC, 30sec@58.0 oC, 30sec@72.0 oC 
Primer Forward: 5’-TGAGGCGTCGTTTGGTGTTTTCT 
Primer Reverse:  5'-CTGTGCAGTCCGCACGGTGT 
Product Length: 82bp 
 
 

Full Sequence: 
ggctccttgc tcaaatatat ttaagagttg attcttaata caacagtaca gttgaatagt 
aatcgttcgt gtatgtccta aatgaggcgt cgtttggtgt tttctttttc ttttcatttc 
gcgttgaatc attaggcttc tcacacaccg tgcggactgc acaggtatca acgcgaccag 
ccacaaaact aaagtgcttc aatatgttag aagaatcatc agagccaggg tggctatccg 
aagaagtaaa aactgggacc accatcattg ctattgagtt tgatggaggt gtggtgctgg 
gctctgactc tcgagtgtct gctggggaga ctgtggtgaa ccgggtgatg aacaagctct 
ctctcctcca tgacaagatc tactgcgccc tgtcaggctc ggctgcagac gcccagacca 
tcgctgagat ggtcaactac cagctggatg tgcacagcat tgaggttgga gaggatcctc 
aagttcgttc agctgccact ctggtgaaaa acatctccta caagtacaaa gaagagctgt 
cagcacatct cattgttgcc gggtgggaca agagaggagg gggacaggtg tatgtgaccc 
tgaatggcct gttgtccaga caaccctttg cggtcggggg ctccggaagc gcctacgtct 
atgggtttgt tgatgcagag taccggaagg ccatgagcaa agaggactgc caacagtttg 
ttgtcaacac actttcattg gccatgagtc gagatggttc cagcggaggt gtggcctacc 
ttgtcactat tgatgaaaag ggtgcagagg agaaatgcat cctgggcaac gagttgccca 
ctttttatga tcagtgaaaa ctgggttgtg aaaacagtaa caatgaggtt gtcgtagtta 
tgaaacagtg agtggacata tggccacctt acgaacaaac agtactatta aatctacaca 
ggatatagaa tgtttggata ggggtatgaa tcatgctggc acaatgtcaa atattctcac 
tacacatgcc attttcaaaa ttgttatgcc ctctgttgaa aacaactgat tttattttgg 
atagccaggg acctcaggct ggactgtgtc ttcgggtgat tcacaagtaa attaaacttt 
ccttggataa aa 
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Table 4. Life history marker information: BT050202 
Accession Number: BT050202 
Agilent Probe ID: A_05_P272269 
Gene ID: N/A 
Protocol: 1: 30sec@95.0 oC; 35: 30sec@95.0 oC, 30sec@68.0 oC 
Primer Forward: 5'-CCGCTGCAGCCCTGAACTCC 
Primer Reverse:  5'-CTGCCTGGGCCTCCTGGACA 
Product Length: 101bp 
 
Full Sequence 
gggggaatgt tacggaagcc agcaagtagc ctgaagcgtg tcaacctcag tggtttgaag 
ccagttctgt aacaatactg ttcgacacgt caagagtacc cccactgtaa agtatgccaa 
aagttgcact ggtgactggt tccaataagg ggattggatt tgcaattgtg cggtcgcttt 
gcaagcaatt caatggggat gttttcctca gtagccggga tgctggccgt ggaacagcgg 
ctgtggagag cctgaattct gaagggctga aacccctctt ccaacagctt gacatcaacg 
acccagaaag tgtgcgcgcg gcccgagatt tcttcaatga gaaatatggt ggccttgatg 
tgctcattaa caatgctggg attgccttta aaaacgctga tactacaccc tttggaaccc 
aagctgaggt gactctcaaa actaacttct ttgccacaag agacatgtgc aatgagtttc 
tccccatcat caaaccagga gggagggtgg tgaacgtgtc tagtgttatg agctccatcg 
ccctgaaccg ctgcagccct gaactccagg cccggttccg cagcaatgac atcacagagg 
aggagctggt ggggctgatg gagagatttg tccaggaggc ccaggcaggg gcgcactccc 
aggggggctg gcccgacaca gcctacggtg tgtccaaaac aggcctcacc gtgctctcca 
ggatccatgc ccgcaagctg gggcatgaga gaccagctga tcagatcctt ctgaatgcgt 
gctgcccggg ctgggtgagg accgatatgg ctgggcccaa cgccaccaag tcacctgacg 
agggtgccat cacccccgtt tacctggccc tgcttcctgc gggggctggg gagccgcagg 
gacagtttgt gatggacaag aaggtccatc cgtggtgagg attaggtttt tgagtaatgt 
gtgtattctg gaggggttta cagagtctgg ctgttcttat ctgtgggaat gagggttaaa 
tgcactgtat acattggaaa ggacaacatc acaggaaaat tcaggaatgt tgattttggt 
acaaaaatgt gtaaacccag gtgtattttt gtgggtttat ccaatctcac tctaatagtg 
tttttcaggt caatggaatt aaccatgttt ttagcaccta tgtatgatat tgtatttatt 
caacatttta caagctgaac ttattttcac acaatcaggt ggggctctgt ttagcaaaaa 
atagttttgc ctgttatttt ggcattgtgt cacatatcag tttgcaaaca atgtaatttc 
attaaaatca tttagttaat aaagctgcat ac 
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Table 5. Life history marker information: BT058447 
Accession Number: BT058447 
Agilent Probe ID: A_05_P310042 
Gene ID: N/A 
Protocol: 1: 30sec@94.0; 35: 30sec@94.0, 30sec@56.0 
Primer Forward: 5'-GACAGCGGCTACCGATATGA 
Primer Reverse:  5'-AAAAGCGGTGGTACAGGTCG 
Product Length: 181bp 
 
Full Sequence 
ttggccagag catctgcagg atcttacgtc agcactcaga tgtttaagaa ggtgatcgag 
ataaacccct ttctacttgg gacaatgtca ggcagtgctg ccgactgtgt ctattgggag 
agagtcttgg ccaaggagtg cgggatatca gattgggtta aagaggacgg attcaacgcg 
gaacgagcgt cggtggataa agtcaatcac ttcaaattcg ctgctcagac accagagttg 
gcggtacccg ttggagttga tccagcagag tttcttaggc ctctggttga cagtgaagaa 
ggggtggatg gggtgaagat taacctggag catggcacta ctactctggc tttcaagttc 
cagcatgggg tgatggtggc tgttgactcc agagcatctg caggatctta cgtcagcact 
cagatgttta agaaggtgat cgagataaac ccctttctac ttgggacaat gtcaggcagt 
gctgccgact gtgtctattg ggagagagtc ttggccaagg agtgcaggat atacaatctg 
aggaacaagg agaggatctc agtatctgct gcctctaagc tccttgccaa catggtggtc 
aactacagag ggatgggtct ctccatgggc acaatgatat gtggctggga caagaagggt 
cctgggctgt attacgttga tgacaatggt ctgagactgt gtggaaacat gttctccact 
gggtctggta acacctacgc ctatggtgtg atggacagcg gctaccgata tgacttgtct 
gttccagaag cctatgattt ggcacagagg gccatctttc atgcaacaca cagagatgct 
tactctgggg gaacagtcaa catgtatcac atgagagaga ctggttggat caaagtttct 
caagaggatg ttggcgacct gtaccaccgc ttttacaatg acaagaagtg aatctggccc 
gttgtaacta tattcacagt cacatcaata ccatacaata catcatgaac atagtcaaat 
aagtatatca aatcataagg atcatggggc catgaccttc tctcaggcaa ccatatggca 
gtcactg 
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Table 6. Life history marker information: EG823395 
Accession Number: EG823395 
Agilent Probe ID: A_05_P357297 
Gene ID: N/A 
Protocol: 1: 30sec@94.0; 35: 30sec@94.0, 30sec@57.0, 30sec@72.0 
Primer Forward: 5'-AAGACGGAATCTGGGAGTGG 
Primer Reverse:  5'-AATGGGTCTGATGCCGTCTG 
Product Length: 123bp 
 
Full Sequence 
ggggacttca tgaagtacaa cttggcctca catcgctata aaacgtcagc tgtatctcca 
cttgtagaca ttcaactcca aatccccgac tcaacaggca gggcacccct aaagggagta 
acatctggca tctcatggga agtcgatgtt gaaaagatga tgaacacctt ggcaagaaag 
gcccagcaga ggaggtatta ggtgaacacc ttgacaagaa aggccctgca gaggaggtat 
taggtgaaca ccttgacaag aaaggcccag cagaggaggt attaggtgaa caccttggca 
agaaaggccc agcagaggag gtattaggtg aacaccttgg caagaaaggc ccagcagagg 
aggtattagg tgaacacctt ggcaagaaag gcccagcaga ggaggtcaga aggcatgcag 
agcaatgggt gcagatgatg ttattataaa cagcagagaa gagcagatat ttatccatgg 
atttaagaag aatgtctgga ttggtacata taaaaaagac ggaatctggg agtggattgg 
cataacacta tttaaaccta cctattggat ggaaggggaa ccaaataaca tgcatgacga 
gtgtgttgag atctcacaga cggcatcaga cccattgaag agttggaagt ttgcaccatg 
tgctattcca aaatactggg tgtgtgaaaa accgttcacc ccgtagtcta attataatag 
ctaaatgtaa ttccctatct tatagagttg aactggtttt ccctgtgtta ggctgaacct 
gtttttgttt ctatttgtaa ctacattgaa aga 
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Table 7. Life history marker information: BT045799 
Accession Number: BT045799 
Agilent Probe ID: A_05_P260975 
Gene Symbol: cd83 
Gene Name: cd83 protein 
Protocol: 1: 30sec@94.0; 30: 30sec@94.0, 30sec@57.0 
Primer Forward: 5'-CGTCTGCATTCTAGCTGCCT 
Primer Reverse:  5'-AGCTTGTACCACCTCACTGC 
Product Length: 153bp 
 
 
Full Sequence 
tctcgatcat cgtcttcatt gctgtagttc cacaaatatg ttttttcaac tcgtctgcat 
tctagctgcc tccgtgcaat gtgggctcac acagaatatg cctacccagg aagtgaagtc 
aatttgtgga gaggactcaa ttctgaaatg taaagcaata tgtaagcgtg gggtccagta 
ccgggcagtg aggtggtaca agctaggtga ggagccctct gataaggagt ctggtctatt 
gatgaagagg ctatcaccta aaagcaccac cctatggtac gccggtctgg agcgggaagt 
ggaacttttg gctgatgatt ctttcgatat cttgctgccc aatgtaacgg ctgttgatag 
cgggaggtac aagtgtctcc tggcagcacc tgtaggagag cagaaccagg aggggcaggt 
tcacctcaga gtgacaggtt gccttgagtc tacagaccaa tcagaagaaa gggataccat 
cctagttctt tccattgtgg ggcttgtggc ggcattgctg atattcacca tcagctatgt 
catcctaagg aatatgttat tgcaaaggag taagaagtat ccacaagaac cacttctaga 
tgcacccctt gagaagaaag atgtaatgtt gatttacact ccggggccaa actggtccag 
acagggttcc ataaaacatg tctgtgtgtg agagcctgtt ctgctcattg tatacttgaa 
tgtgaagagc aaatgcagag aaagactagg gcacatttga agctgagcaa cgagtctatc 
acgctgacca caccgcttgt gttatgtgcg tgagtgtggc aaaataaatg tacacatacc 
tgttattcaa caatttcatc caaactgctc gcgcgcatca acgagcgcct gcgtagcaag 
gctctaaaat agacgcttta tgcgctgcaa gtccactttc tcccatctcc tcattgggtt 
ttcagagcat atacccacat gggtgattga aagatgaact gcgatccaca ctctagccca 
gttggtggtg gtaatgcacc ttaaagttgg ttgtcaaacg ccatataaag tcagaagaag 
actgacggag gagagattac tagaaacaaa ctaagtttac ccttttatct gtggattaat 
tgtcagagta gaggaccttg tgtatttcag gtaaaataac aacccaatac ttatactttc 
caggagaaga gttcaccact agagcagatg gaggcagaca accctctggg ttagaactaa 
gatgtttagg cttttcaaag aaatgaaaca gaaacagtag cctacaccgt ttcactcagg 
cagtcaaaca gcagtacaaa gtcaggctag aacagcagtt ctccagcaat gattgctcgt 
ctgcagcatt cacacgcctg tgatgcgcaa gcagcagggc ctggtgaagg gacccacaat 
ctaagcccca agatctaacc tcaataagga gcttcaggaa ggggtgcagg aatggcctac 
gatgaggggt cattctggag ggttgctcca tggcaacgtg ggggttaata tcatttacat 
ttgagtcaac ccagaattga agtcgacatt gactttgaac tgggaaatga cccatgtgta 
cagaactgat cttttagaat tgcctaattc aattcctgta ctgactggta ttgaaataaa 
attgattcaa ttgcctccaa gcaaaatgaa agtgggcttt ggtgaaaagt aattggcaga 
aaatctatca ggtttttaaa atattatcag caattctgtg gacacattga aaataaagaa 
gccttgtaaa taaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa ga 
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Table 8. Life history marker information: NM_001141601 
Accession Number: NM_001141601 
Agilent Probe ID: A_05_P358337 
Gene Symbol: ddn1   
Gene Name: Duodenase-1 
Protocol: 1: 30sec@94.0; 33: 30sec@94.0, 30sec@58.0, 30sec@72.0 
Primer Forward: 5'-TGCCTTGCTGCTGGATGGGG 
Primer Reverse:  5'-TCCCACTGCTTCTGGCAGACC 
Product Length: 110bp  
 
 
Full Sequence: 
gggggctgga tcatttgaca agccctccaa acatgcacac cataaacaaa cttctactca 
ctgttctcct gacctatctg ggacattcgg ttgcatttgg gggtcaaatc atcaatggga 
aaaaagccaa gaggaattcc ttgcagtaca tggcctctgt gcagaacaat gagaagcaca 
tctgtggagg attcctgatc actccagact ttgtgctaac agctgcacac tgtaacaaaa 
gcaacttgag tgttgttctt ggtacccaca acatcaagat gggcctcggg aaagctgtca 
gatacaatgt ggaacgcaaa tgcaaatcca actcatatga aaatgtaaag gatggtagtg 
acatcatgct tctaaagctg tctaggaaag ttaaattaag caaatctgtg aaaaaagtga 
ggcttccaac caaggataaa gtcctcaaac ccaacacaaa gtgccttgct gctggatggg 
gcactacaac aacagacaga ccattcgttg acgaacttca agtggtggat gtggaagcca 
ttgatctgaa ggtctgccag aagcagtggg accatgtcga ctttaatctt cctcccaatg 
tcatctgtgc aggtggatac ccgaccaaca aaggcacatg tcagggggat tctggtggtc 
ctttggtgtg caatggagag gcagtgggca tcgtctcctt caacatgaat ggaaactgtg 
cctatcccaa cgtgcccaat gtttacactc agatttccaa gtacttaccc tggataaagg 
aggtcatcaa caagcagtca tgttagaatg gatactttgt ttgctgcaaa attatgcctt 
tggctattac acataactga tgatattact gattctttag tttgctgtta aactgtctaa 
tgcattacca tgtactgtaa gggaaataaa tgtgttctta atcatg 
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Table 9. Life history marker information: BT047975 
Accession Number: BT047975 
Agilent Probe ID: A_05_P417167 
Gene Symbol: N/A 
Gene Name: N/A 
Protocol: 1: 30sec@94.0; 40: 30sec@94.0, 30sec@58.0 
Primer Forward: 5'-ACGTGTCGTGATGGCAGTAA 
Primer Reverse:  5'-AATCCCCAAAGCAGCCAAGT 
Product Length: 190bp  
 
 
Full Sequence 
gggggagatc gagaatattg cgacctcgtg cgacgtgcaa agggttgtag ggaagtcaga 
atcttacaat tgagtgcaaa ataacccttt tcaggtatgg cgctatcaaa tgttctcgaa 
atacctacat cgggatttaa tttcaagaac gtcgccagaa atgttgctct ggagggcctg 
cttgagggag gacataccaa gacacttaag cctatgaaga ctgggaccac catagctgga 
ctagtgtgca aggagggagt ggtactggga gcagacacgc gggccacctc cggtgaagtg 
gtggctgata agatgtgtgc caagatccac tacatctccc ccaatatata ctgctgtggt 
gcagggactg cagcggatac agagaagacc accgacctgc tctcctccaa cctcaccatc 
ttttctatga acagcggcag gaacccacgt gtcgtgatgg cagtaaacat actgcaggac 
atgctattca ggtaccgggg ccagataggg gccagtctaa tcctaggagg ggtggactgt 
accggtaatc acctctacac agtggggccc tatgggagca tagacaatgt gcaatacctt 
gcaatggggt ctggcgactt ggctgctttg gggattctgg aggacaggtt caaacctaat 
atggagatgg aggaggctaa ggagctggtc cgggatgcca tccactctgg catcatgagt 
gacctgggct caggaaacaa catagatatc tgtgtcatca ctaaacaggg ggtggactac 
atcaggccgt accaggagtc agagtacaaa gacaagaggc ggaagagata caagtatggc 
acaggtacaa cgtctatttt gacagagaaa atagtccctc tggagctgga ggtggtgcag 
aagacagtcc agcggatgga tactgcctga acctgaccac tctgaaacga cagagaggct 
ggagacagtc acacagaggc taatcacaat attcagacat aaaataaatg aatacaagac 
acctgataat gacaagactt gactactagg tgacactaca atgcaaagcc ataaaatcat 
tgtgacataa agatcttagt tgaatgaact gtagtcagcg atacattttg aacaggtaat 
aggcctaggc tagtgggtga aatattgtaa agtgattgat tgaataaaaa gtctacattc tt 
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Table 10.   Average Ct values for the 8 life history markers identified in this study 
for the Mossy Rock Hatchery samples.  This table contains the average Ct values for 

the 8 life history markers identified in the Mossy Rock Hatchery Steelhead (MRHS) and 

Mossy Rock Hatchery Rainbow Trout(MRHR) compiled from qPCR data for the 8 life 

history markers.

Ct VALUE BRAIN Beta-Actin BT045799 BT050202 BT058447 NM_001141601 BT047975 NM_0023714 BT045730 EG823395

K1 11.43 25.49 21.38 15.70 29.36 23.83 27.25 27.22 25.10

K2 11.03 25.27 20.46 14.08 28.74 22.14 25.95 26.97 23.46

K3 10.99 26.22 20.83 14.11 29.47 22.27 27.55 27.09 27.28

K4 10.99 25.45 15.90 13.93 29.60 22.26 27.24 27.14 26.54

K5 11.02 25.05 21.10 14.28 29.24 23.20 23.93 27.22 24.70

K6 11.24 25.69 20.55 13.80 28.16 23.66 26.12 27.35 28.54

K7 11.84 26.11 20.98 14.06 29.09 22.47 25.08 27.96 27.23

K8 11.25 25.54 20.74 14.32 28.32 23.71 25.13 27.60 25.48

K9 11.22 19.23 22.05 12.75 26.30 22.60 27.08 17.77 26.06

K10 11.45 19.27 21.07 12.15 26.60 21.74 26.16 17.98 25.77

K11 11.11 17.79 20.05 11.90 24.44 20.79 26.45 17.97 24.37

K12 11.21 19.29 20.34 11.50 25.25 20.72 28.29 17.89 25.50

K13 11.34 18.35 21.24 11.76 25.30 21.23 - 18.11 24.93

K14 11.23 16.68 21.74 13.12 28.12 23.26 23.90 24.17 25.10

K15 11.83 18.24 21.18 11.57 25.53 21.36 22.94 17.89 25.58

K16 11.34 17.67 21.63 12.19 28.58 22.25 24.28 23.13 25.99

Ct VALUE Gill

K1 11.57 22.43 18.56 23.69 19.59 21.79 21.05 30.02 22.43

K2 12.11 23.68 19.11 27.28 19.69 22.06 21.17 30.69 23.68

K3 11.72 23.54 18.80 30.79 24.40 21.36 20.68 30.34 23.54

K4 11.92 23.08 18.47 29.23 19.50 21.23 20.68 30.35 23.08

K5 11.68 23.69 18.49 28.62 20.08 22.22 20.83 29.71 23.69

K6 11.49 23.50 18.86 29.63 19.30 22.11 22.95 30.07 23.50

K7 11.65 24.04 18.45 31.26 19.63 22.08 21.06 29.96 24.04

K8 12.25 24.86 19.06 29.52 20.61 23.02 22.68 30.47 24.86

K9 10.25 22.43 16.89 23.53 21.16 18.34 18.85 - 24.39

K10 10.14 23.68 17.24 22.28 14.73 18.05 18.87 - 24.60

K11 10.15 23.54 17.21 21.97 13.79 17.98 19.17 11.43 22.86

K12 10.67 23.08 17.45 21.56 14.00 17.79 19.04 11.54 24.50

K13 10.53 23.69 17.43 21.66 14.26 16.91 18.88 11.72 23.57

K14 10.92 23.50 17.71 23.71 14.82 18.41 18.39 11.62 21.92

K15 10.92 24.04 17.97 22.00 15.09 17.92 18.75 12.19 23.48

K16 10.64 24.86 17.45 22.98 15.08 18.02 18.58 16.66 22.93
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