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This investigation was undertaken to develop plastic design aids
to be used in the direct design of optimum frames. It uses the concept
of minimum weight of plastically designed steel frames, and the concept
of linear programming to obtain general solutions. Among the special
characteristics of this study are: A. The integration of both gravity
and combined loading conditions into one linear programming problem.

B. The application of the revised simplex method to the dual of a par=-
ametric original problem. C. The application of A and B above in the
development of design aids for the optimum design of symmetrical single~
bay, single-story portal frame. Specifically, design graphs for dif=-
ferent height to span ratios and different vertical locad to lateral load
ratios are developed. The use of these g;aphs does not require the

knowledge of linear programming or computers on the part of the designer.
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NOTATION

Current basic matrix of the revised simplex

Transformation matrix

Coefficients of the objective function equation

Coefficients of the basic variables in the objective function
Coefficients of the nonbasic variables in the objective function
Plastic safety factor

Height of porfal frame

Load ratio

Span of portal frame

Plastic moment of column

Plastic moment of beam

M, /PL | ’
M,/PL

Load

Gravity load
Current nonbasic matrix

Slack variahles

. Dual Variable of M

Height to span ratio

Transform vector coefficient of entering variable
Plastic modulus

Objective function of primal

Objective function of dual
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I. INTRODUCTION

I. 1. General. The total design 6f a structure may be divided into the
following phases:

1) Information and data écquisition about the structure.

N 2) Preliminary design.

3) Rigorous analysis and design.

4) Documentation.

Once the applied loads and the geometry of the structure are
known, the traditional approach has been to consider a preliminary
structure, analyze it, and improve it. In contrast with this trial and
error brccedure, the minimum weight design generates automatically the

.size of structural members to be used. This method of direct design
combines the techniques of linear programming with the plastic design
of structures. Minimum weight of plastically designed steel frames has
been studied extensively in the laét two decades; Foulkesl* applied the
concept of Foulkes mechanisms to obtain the minimﬁm weight of struéture.
This concept was also used by Heyman and Prager2 who developed a design
method that autématiéally furﬁishes the minimum weight design. Rubin-
stein and KaragozionB-in;roduced the use of linear programming in the
minimum weight design. iinear programming has also been treated by
Bigelow and Gaylordi‘(who added column.buckling constraints) and others.5

In the above studies the required moments are found when the
loads and configuration of the frames are given. If different loading

conditions or different frame dimensions are to be studied, a new linear

*Superscripts refer to reference numbers in Appendix D.



programming problem must be solved for every loading and for every
change of the dimensions. Moreover, the comﬁutation of the required
design moments requires a knowledge of linear programming and the use
of computers,

I. 2. 8cope of this Studv. The purpose of this study is to develop

direct design aids which wili provide optimum values of the required
moments of a structure. In contrast with the preceding investigations,
this study introduces the following new concepts: (a) The integration
of both gravity and combined loading into one linear programming problem
which gives better designs than the individual approach. (b) The dev-
elopment of general soiutions for optimum plastic design. These general
solutions, presented in a graph, chart or table, would provide directly
the moments required for an optimum design for various loads and dimen~
siohs of a structure. (¢) In order to ;ttain the general solution a
new procedure is introduced in Chapter IV, a brief description of which
follows: 1. The objective function10 and constréiﬁt equations are
written in a parametric form as a funcfion of the plastic moments where
‘the "C"* coeffidients of the ogjective function and the b vector are
pafémeters. These parém;ters are related to the loads and to the frame
dimensions. 2. It solves the dual of thé original problem using the
Revised $implex_Method,9 but instead of operéting transformations on the
constant numerical values, 1t operates on the parameters. 3. The sol-
utions are found for différent ranges of wvalues of the parameter which

meet the optimality condition CR - CBB—1< 0.

*See Appendix E for Notation
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In Chapter 1V, Graph No. 1 is developed to illustrate the above

concepts and a design example is given to show its practical application.
From this graph the optimum design of a one-bay, one-story, fixed-ended
portal frame m.y be read di;eétiy, after computing the parameters X and
K. Here, X is‘the height to span and 2K, the ratio of‘vertiéal to lat-
eral load. It should be pointed out that these concepts can be applied
to multistory multiple-bay frames.

Chapter IV studies one-bay, one-story, hinged-ended, portal
frames. Because’of the special characteristics of the lineér program-
ing problem,a semigraphicél method is used. Graph No. 2 is developed
as a design aid in this manner, and a design example to illustrate its
use is provided. | |

Chapters II and IIT discuss briefly the widely known concepts of
plastic design and miﬁimum Veight design, and Appendix A describes thev
computationalvprocedufe of the Revised Simplex Method.

To this date, the cohcepts a, b, and ¢ mentioned above have not
been applied to the optimum design .,of framed structures; neither graphs

No. 1 or 2 have been published.before.

*

-
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II. PLASTIC DESIGN

Traditional elastic design has for many years believed in the
concept that the maximum load which a structure could support was that
which first caused a stress equal to the yield point of the material
somewhere in the structure. Ductile materials, however, do not fail
until a great deal of yielding is reacﬁed. "When the stress at bne
point in‘a ductile steel structure reaches the yield point, that part
of the structure will yield locally, permitting some readjustment of the
stresses. Shoulé the load be increased, the stress at the point in
question will remain approximately constant, thereby requiring the less
stressed par;s of the structure to support the load increase. It is true
that statically determinate structures can resist little load in excess
of the amount that causes the yleld stress to firs; develop at some point.
For statically indeterminate structures, however, the load increase can
be quite large; and these structures are said to have the happy facility
of spreading out overloads due to the steei's duct:i.lity."’6

In the plastic theory, rather than basing designs on the allowable
stress method the design is based on considering the greatest load which
can be carriedlﬁy thé structu;; as a unit.
| QCohsidér a beaﬁlwith symmetric cross section composed of duciile_
material having an elaséoplastic stress-strain diagram (identical in ten-
sion and compfession) as shown inAFig.~2.l.\ Assuming tﬁat initially
plane cross-sections remain plane as the applied bending moment increases,
the strain distribution Qill vary as shown in Fig. 2.2.A, The correspond-
ing distributions of bending stress are shown in Fig.2.2.8. If the mag-

nitude of strain could increase indefiﬁitely, the stress distribution

would approach that of Fig. 2.°2C, The bending moment corresponding to this
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FIG. 2-1 Elasto-plastic stress-strain diagram
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distribution is referred to as the ""fully plastic” bending moment

and 1s often denoted by Mb. For a typical I—Beam, for example, M

1.15 Me whereVMe 1s the maximum bending moment corresponding to entirely
elastic behavior.

As the fully plastic moment is approached, the curvature of the
beam increases sharply. Figure 2.4 shows fhe relationship between
moment and curvature for a typical I;beam shape. In the Immediate
vicinity of a point in a beam at which the bending moment approaches
Mi large rotations will occur. This phenomenon is referred to as the
formation of a "plastic hinge#" A |

As a consequence of thé very nearly bilinear moment-curvature
relation for some sections (Fig. 2.4), we could assume entirely elastic
behavior until the moment reaches Mp (Fig. 2.5), at which point a plastic
hinge will form. |

Unilizing the concept of plastic hinges, structures traﬁsmitting
bending moménts may be designed on the basis of"collapse at ultimate
load. Furthermore, indeterminate structures will not collapse at the
forﬁation of the first plastic hinge. Rather, as will'be shown, collapse
will occur only after the formation of a sufficient number of plastic
hinges to transform ghe}structﬁre into a mechanism. Before considering
design; however, it is necessary to discuss the most applicable method
of analysis, the "kinematic method.” ‘It will be assumed throughout,
Pthat the proceés of hinge formation 1s independent of axial or shear
forces, that all loads increase in proportion, and that there is no
instability other than that associated with tragéformation of the struc~
ure into a mechanism.

The kinematic method of analysis is based on a theorem which provides

an upper bound to the collapse load of a structure. The statement of this
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theorem is as follows: '"The actual limiting load intensity on a structure
g y

is the smallest intensity that can be computed by arbitrarily inserting

an adequate number of plastic hinges to form é mechanism, and equating

the work dissipated in the ﬁinges to the work of the applied loads"6 (i.e.,
by applying the principle of virtual work to an assumed mechanism and com-
puting the load corresponding to the formation of the mechanism).

To find the actual collapse load utilizing this theorem it is thére—
fore necessary to consider all possible mechanisms for the structure.

In order to reverse the analysis process, and design a frame of
specified geometry subjected to specified loads, it is necessary to regard
the fully plastic moment of each component as a design parameter. In this
case, it is not known at the outset whether the column will be weaker or
stronger than the beam. Hence, mechanisms considered must include both
possibilities. Consideration of mechanisms for the purpose of design leads
to a.set of constraints on the allowable values of fully plastic moments.
It isAalso necessary to define what will constifute an optimum design for
a frame. With minimum weight again chosen as the criterion, a relation-
'sﬁip between structural wéight and fully plastic moments of the various

o

components is required.



IIT. MINIMUM‘WEIGHT DESIGN

The optimum plastic design of frames has been investigated by many
authors and most of them agree that the total weight of the members fur-
nishes a good measure of the total cost. Thus we shall study designs for
minimum weight:

A relationship between struétural weight and plastic modulus of the
various coﬁpﬁnents may be observedéin figure 3.1 where the weight per
unit length is drawn against 2 = M_.

P
/%
These curves satisfy the equation:

o
q= K0 (3.1)
oy
4
For WF,u =2/3 and making K, =K
2/3 i
q =K, Mp (3.2)
This is shown in figure 3.2
9, //////:7$/’/M o
\ A
q = I
q, | :
| nE o
* M o <
i » i
Mo, Mp M,

2
Fi1G.3.2

For a ratio of Mpz over MPl of less than 2, we can substitute Eq. 3.7
by the equation of the tangent at a point 3 which the abscissa is the
arithmetic mean of the abscissa of the end points 1 and 2, the error in-

curred is of the order of 1%.
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The equation of the target is then q = a + b Mp. The total weight

n n
of the structure will be{qLi = ZLi(a + b Mpi) =aX Li = b szi Li'

Where L, is the length of member 1, M | 1its plastic moment capacity and,

i pi
n the number of members.

When the dimensions of the frame are.given the term a%Li is con-
stant so the objective function B depends only on Mp and Li’ thus to find
the minimum weight we should minimize B =ZMP L.

The constraints are determined by all the possible collapse mechan-
isms and applying the virtual work equations. The external work inflicted

by the loads must be less or at = best equal to the strain energy or inter-

nal work capacity of the frame. That is:
U3 &w
E
M.0. SSprL 0 for each mechanism
2 pi 1 > zj i3

Example: Design the frame shown in Fig. 3.3, which is braced
against sideway.
The objective function B =ZMp L

B = ZH]_ (?..4‘L) + Mz(L) = O.SMl L+¥M, L= (0.81*'1:L + MZ) L

2

H

The collapse mechanisms and their energy equations are shown in
Fig. 3.4. If the objective function is divided by a constant (P Lz),

the optimum solution will not change. Thus)

B = 0.8M1 + M2

PL PL
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The linear programming problem is

Minimize B = O.SM1 + E&
PL PL
Subject to 4M2 31
PL

=
=
A\
L=

This could be written in the Matrix form

Minimize (0.8, 1) "M; = COft
PL
M
PL
— p
S.t. 0 4 ﬁ 1
PL
>
0 2 f‘_g : 1
PL
Or Minimize cC M
S.t. - " AM 31

A graphic solution is shown in Fig. 3.5. The linear constraints divide

the area into two; the area of Feasible designs--~where the combinations

of values of Ml and M2 will not violate the constraints, thus giving a

safe structure, and the area of unfeasible designs—-where any point

13
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represents a frame that will not be able to support the load. The points

"3" and "s" where the constraints‘intersect each other on the boundary of
the feasible solutions are called "Basic Solutions) one of which is the

optimum solutica. The solution is

M, =M, = PL/4, B = (3/4)pL?

In the case of three or more variables, the graphic solution becomes cum~

bersome and impossible. The methods of Linear Programming ﬁill'be used

(see appendix) for the subsequent problem.

Remarks. The optimum design of the frame in the example will give
Z = EE-= BLZ&'= P whiﬁh of cou;se will vary dependi n P L and
o} a& 4°§ s s y dep ng o s

o;, but for a determined value of P and L, we are not apt to find a rolled
section with exactly that plastic modulus because there is only a limited

number of sections available. Thé solution will then be

- M 5 BT PL
Ml-M2>PL/4, Z>40§

These values will not break anf of the constraints. If M. = PL/4 and

1
and M2 greater

1

M2'= PL/4 meet this réquiremen£ s0 will’any vaiue of Ml
than PL/4. For an e#aét,solution we should apply a method of "Discrete
Linear Programming" subSéituting Mby 2 y and using the standard shapes:
hbwever, this method consumes a lot of compuger time and is expensive.
Another way to tackie this problem is to use the linear programming sol~-

ution as an initial solution and by systematically combining the avail-

able sections in the neighborhood, the best design 1is obtained,




Iv. STUDY OF A ONE-BAY ONE-STORY FIXED-ENDED PORTAL FRAME

IV. 1. Introduction. In this chapter a deéign aid (Graph No. l)’will
be developed for a one-bay, one-story, fixed—ended portal frame. This
design aid provides not only optimum design values, but also the corres-
ponding mechanisms. It starts by finding the basic meéhanisms. From
the basic mechanisms all the possible collapse mechanisms afe obtained,
which in turn, provide the enérgy constraints. These linear constraints,
fqr both gravity and combined loads, are integrated into one set. The
objective function equation was developed in Chapter III as::§3==§MpiLi,
which 1s to be minimized. The solﬁtion will be found by applying the
revised simplex matﬁod.to the dual of the originalAp}oblem. However,
instead of having constant coefficients in the objective function and
in the riéhthand side valueé (b vector), we have some function of ﬁhe
parameters X and K. General solutions are found for values of X and K

V 1<

that meet the optimality condition, that is C_-C_B

= CB 0. -A graph pre-

senting these sclutions is constructed. A numerical example follows in
Section IV. 4. to illustrate the use of Crapﬁ No. l'which gives the
moments required for an optimumgdesign,‘given the loads and the frame
dimensions. S

IV. 2. One-Bay, One-Story, Fixed-Ended Portal Frame. Consider -the frame

shown in Fig. 4.1 where the plastic moment of each column is Ml and the

plastic moment of the beam is M There are seven potentially critical

20
sections and the redundancy is 6-3=3. The number of linearly independent
basic mechanisms is 7-3=4. These are shown in Fig. 4.2. For a combined

loading condition, all possible mechanisms and their corresponding energy

constraint equations are shown in Fig. 4.3,
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We should use either (b) or (bl) depending if K > X or K << X, respec-

tively. The objective function is:

=B =2XM + M,

Written in matrix form we can state the problem:

Minimize

For gravity loads there are only two relevant mechanisms.

Q

B= (2%, 1) "Ml'"
PL
i)
| PL |
N . - ™ 7
o« [y .
PL »
2 2 Kor X
——,
4 0 " - X
2
2 4 PL ] X 4+ K
4 2 J X+ K

= 1,85 _
'i—.z-a 2KP = 1;321(21(?)

(a)) &M, = qL/2 or 82 1

(b

The objective

o2

D 2M o+ 2M, 2 QL/2 or 4 M1, s My >
' | QL QL

function is:

]

EM1L1=2XM1L + MzL

_B oM oM,

2 — =

QL QL QL

(a) and (b).
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A graphical solution of this linear programming problem will
give (see Fig.‘4.4)
I) For X< 1/2
M, =M, = (1/8) QL
Collapse Mechanisms ajs bl’
II) For X> 1/2
Ml = 0
M, = (1/4) QL

Collapse Mechanism b1

For the latter condition M, is determined either by column

1

requirements or by the combined loading requirements. In either case
a MZ may be found from equation bl and checked against equation a; -
The usual way of solving a design problem would be to find the

combined and gravity load solutions independently and to use the load-

ing condition, which 1is more critical. However, an integrated approach

may be used, which is developed 1in the following paragraphs.

The gravity load objective function is:

* . __.‘ __l_ __.g.
Minimize "Be= 2x oL + oL
But, Q = 1.321 (2KP)

‘ 2x M, ' Ma
Thus,  B=13ieor b T1.321(20PL

Multiplying B by 1.321(2K) we could write:




w/aL,
3
8
\ .
_l_\
4 N\
\
N\
\
\\\
=\
1 >~ {al}
8 \\ \\\
\ ~~__ B{X<1/2)
{b)
0 1 1 3 M/AL
8
{a) 8M: > 1
QL
(b} A’Ml . 4M| > l
QL QL ~
M2Z0 , M20
B._. 2XM.+ Mg
QL QL

FIG. 4.4 GRAPHIC

SOLUTION TO GRAVITY LOADING

21



as the one for the combined load. Substituting Q = 1.321(2KP) in

equations ay and bl:

(a 8 M, 4 M,
1 or —= 2 1.321K

.
—_— >
1.321(2KP)L PL 7

(v 4 M 4 M,

)
1 1 . 2>
1.321(2KP)L

1.321(2KP)L 1

or, ZM1 ZM2

—a + ——n

PL PL

v

1.321K

Considering that the combined loading and the gravity loading
have the same objective function we could integrate the twd sets of

constraints and we will have:

(a) 4M
2>
pp = K
©
PL PL T
1 "O,
(™) 2, M, S
vt o =%
(c) 4Ml ‘
L 2 X
d 2M 4M
O L o T
PL PL
(e) 4M. oM
1 2z >
55 v 3 2 X+K
{(a,) &M
1 2 > 1.321k

1 fg. which is the same objective function

22
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2 . 2,
PL PL
M
2 >
PL ™ 0

2

1.321K

23

Observing that a) contains a; and bl contains b, the a and b could

be eliminated. Making M}/PL:Ma and Mz/PL==Mb, we could state our pro-

blem as:

Minimize

S.t.

X M+ M
(a)) My
(bl) 2Ma + 2Mb

1
) 2Ma + 2Mb

(c) &Ma
@ M+

(e). 4}{3 +-.~2Mb

,

M, sz 0

N

Vv

1.321K

1.321K

X+XK

X +K

IV. 3. The Linear Programming Problem.

Minimize

(2% - 1)

T

]
4

T P

:
|
E
?
i
:
T
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S.t. —-0 4-h Ma “1.321K ]
2 2 Mb 2 1.321K or X
2 2 X
4 0 X+ K
2 2 X+ K
L Mb‘ 20

The dual would be:

Maximum 1.321 KWl +(1.321K| W, + XW., + (X + K) W, +(X+RK)W
X 2 3 4 5
S.t. oW, + 2w2 + 4W3 + 2w4 + ZMS‘ < 2X

4wl + zwz + ow3 + 4w4 + 2w3 <1

Applying the revised simplex method (see Appendix A)

w =[s]= [2 st R R S
b | 1| X By - j X
0 1 1
s, 1
cy = (0, O o, = l:(l.SZlK), 1.321K , X, (X4K), <x+1<zl
X
W w ’

This protlem will be solvedasafunction of the ¥ and K parameters
to obtain general solution. However, a computer program (see A‘ppendix B)
was also written to provide a check to the analytical solution.

As we want to maximize, we need to find the values of X and K for

which(CR - CB B":L R)is less than zero, this optimum of the dual will give

;
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the optimum minimum of our initial problem, and CB Bnl will give the

optimum values for Ma and Mb.

For analytical solutions go to paths (:), (:) s (:) .

_For numerical computer solutions go to Appendix B and C.

Path '<::>

1)} Enter Wz R2 =1 2
2
-1
2) VY2 = B 2y =1 2
2 2
Min [ 2x 1] [ For x< 1/2  1=1, s, leaves
2 *2 | T( !
“For X 1/2 i=2, 8, leaves
For 1 = 1 solution go to(i:).
,“1 S1 Wz
3) X 1/2 BII = 1 -1 A= 11 2
0 1/2 0 2
. _1 ) Wl 82 W3 Wé W5
4) b =B 2X| = 12X -1 R=|10 0 4 2 4

‘1 172 4 1 0 4 2

»

1) Enter WS R5 4
2

+xf
Q
=
»
A
ot
[
"

1

2, W2 leaves

i, § Leaves.E

T
3
O
2]
P
v
o
[N
it

N T

P P L L S




3)

4)

5)

If, a)

b)

6)

1)

2)

1/2 <X <1

-1

Bri1 -1/2

= | 1/2

-1/2 1

Cp = [1.321K, E q K+X . 0]
CBB-lR = [3.284k-X  .821K-1/2X, 2X—.642K 2.963K-X 1/2X-.16K
: 2(X-K)  * 1/2(X-K) 2K » 2%-K * 1/2K
CRfCBB_lR = | 2%-1.963K 642K-X  2%-1.983K | _ o
3.321K-2X’ » X-2K  ° 2K-X >

642K < X <.981K and 1/2 <X <1

There is no optimum possible

a) Sl = Ml = lXZ(XiZSQK)
82 = M? = }/2(1.64K~X)
Collapsé'mechanisms bi’ e
Enter W3 R3 = 4
0
—1 _
YB = B R3 = 2
-2
Y23 -2< 0 Use 1 =1

[:x + K, ‘1.321K] c.B 1= [%/2(1.64K-x)
B X B
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Ws W2
A= |4 2
2 2

1/2(X-.32K

1/2(S-K) *1/2 K

» X s

W5 Leaves

|

]




M2=<..'.66K—~_l/4X Ml = 1/4X

, 7 :
3y x<1/2 _ 2
= W. W
-1 : 3 2
By =| /4 -1/4] a=[4 2
0 1/2 0 2
4) _"’1 s, W W, 8
R =[]0 0 4 2 1
4 1 2 4 0 |
5 cy= [ % 1.321x cBB"l = [1/4X, .66K-1/4X
X . , 1/4% ‘
Cp = [1.321K 0 OX4K X+K 0 ]
cﬁn"1R= 2. 64K-X .66K-1/4X 1/2%+1.321K  2.64K-1/2X 1/4X
, | x ’ 1/4x 1.5% ’ 1.5%  ° o
cR-c]f;B"1R= [x-1.321x .5%-.321K 1.5%-1.64K | o ‘—3
; 1.321K-X °* ? K-1/2% > R-1/2% ’ :
If, a) X < .642K and X >1/2 !

Collapse mechanisms bl, c

B) X >2K and X > 1/2
M, =N,

Collapse mechanisms bl, c

= 1/4X
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1) Enter W3 R3 =14 -ﬁ,;
o |
2) Y, = R = [4
3 3 ?
Y23 = 0 i=1 S1 Leaves
3 -1 [ f3 %2
Biy = 1/4 0 A= |4 0O
0 1 0 1
u ;
4 4 - |
b=Bb= | 1/4 0 2Xx = 1/2X
0 1 1 1
— 3
W,OW, S, W oW,
R=|0 2 1 2 4
5 2 0 4 2 %
1) Enter Ws Rf:’, =| 4
‘ 2
-l . T
2) Yg=B R5~3V1‘
2
min [1/2x 1] [ X<1 1=1 W, Leaves
1 2 X>1 i =2 S, Leaves
| 2
3) X>1 W W
1 . 3 5
Biyp = | /4 -1/2 A= 4 4




4) W W S W

5) C, =

1.321%,

w
f

-1 ~
CR—CBB R ~.679K,

If, .642K< X< 2K and X> 1

M, = 1/4X, M, = 1/2K

2

Collapse mechanisms ¢, e

29

CBB“1= [1/4)(, 1}2K:|

1.321K , O , KX, O
X
1/2%+K , 1/4X, 2K+1/2X, 1/21{]
.321K-1/2X 1/2X-K , < 0
1/2%-k  * . ;



Path @

1) Enter Wy R, =12

Min [2}( 1}_ [ For X<L1/46 1 1, § Leaves]
2% !

L~For X>1/4 4 2, 82 Leaves
3 X>U4 . 51 %,
BII = 1 ~-1/2 A= 1 2
0 1/4 0 4
, . . Wl W2 W3 82
4y b =B 2X | = | 2X~1/2 R = 0 2 4 0

1 1/4 4 2 0 1

To enter W2 go to @

1) Enter W5 R5 = | 4
2
S N e
2) Yo =B Rg 3
/2
Min [2x-1/2 1/4] [ X<l 1=1 S Leaves
3 1/2 | X>1 {i=2 W4 Leaves
3) 1/4< x<1 W, W
-1 > 4
B =[ 1/3 -1/6 A=[4 2

-1/6 1/3 2 4

30



4) w,ow, Wa
R= |0 2 4

4 4 0

3) Cp * | XK, x+1<]

c, =[1.321x

R = 3/3(x+K) .

CR-CBB R =|.654K-2/3X,

_
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CBB’1= [1/6 (X+K) , 1z6(s+1<):l

1.321K. X » O s 0]

X
2/3(X+K)  , 2/3(X+K) , 1/6(X+K), 1/6(X+K)]

.654K-2/3X
1/3%-2/3k °?

1/3%X-2/3K,

If, 981K < X € 2K and 1/4 < X <1

M, =M,

Collapse mechanisms d, e

= 1/6(X+K)
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3) X<1/2 W s
1 -~ 2 2
Bl 1/2 0 A=1|2 o0
-1 1 2 1
* _ _
5 b =31 2x] =[x Wy 5 Wy W, Wy
R=[0 1 4 2 & 4
1 L}—2x E
& 0 0 4 2 ;
1) Enter Wl Rl f 0 E
4 |
S A i
2) Yl = B Rl =10 {
4
Yil = (0 use Yzl = 4 i=2, 52 Leaves
i
3 x<1/2 ", W ]
BIII= 1/4 0 A.= 2 0 . : ?
/14 1/4 2 4
4 * 1/2X ) S, S, W |
) b= o 2 51 M3 W, W
1/4-3/4X R=10 1 4 2

5) Cp = 1.321K 1.321K cBB“1= .33K .33K
X > 1/2%X-.33K °




If,
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R=0 ,0 , X , XHK ,x+1<] '
CBB-lR =[.33k, .33K 1.321K 1.981K  1.981K
1/2X-.33K ’ 2X-1.321K * X+.66K ’ 2X-.66K
cR--cBB’la -, , X-1.321K  X-.98IK  %-.981K|
i 1.321K-X  * +.34K ° .34K-X
a) X< .981K and X<1/2
M, = M, = 33K
Collapse mechanisms aps bl
1) EnterW4 R4 = |2
4
I S
2) Y4 = B R4 1
1/2

Min [1/2x 1/4 - 3/4xJ ~ [For X<1/4

1° 1/2 " | For X>1/4
3) x<1/4
-1
By /2 0
-1/2 1/4
o 5y, 8 Wy W, Wy

5) ¢

s~
fi

[x + K, 1.3211(_]

i=1, W2 Leaves
i= 2, Wl Leaves
Y, N
A= |2 0
2 4

etz [1;’2(}(—.3211(), .33K:l

B
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c =E} , 0 , X , 1.321K X + K]
R ) K E ]
cBB"IR =[.331<, 1/2(X-.321K), 2%-.642K, X+.339K , 2x+.018K]
cR—cBB"la a[ , , .642K-X , .981K-X .981K~X:] <0
-.339k °

If, X<.982K and X<1/4
M, = 1/2(X-.321K) M. o= L33K

Collapse mechanisms a

~ R

T

|
|
i
3
b
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1) Enter Wz R2 2

-1
2) Y2 = BIIR2 = |1
1/2

o
N

Min | 2X-1/2 1/4 - X< 1/2 i
1’ 1/2 X >1/2 i ,W4 Leaves
3) 1/4 <X <1/2 W, W

1 T2
B~ 1 -1/2 a=1[2 2

1 S, Leaves ]

-1/2 1/2 2 4

|

5) Cp = 1.321K "X + K 1
K’ CgB = [1/2(1.642k-%)  1/2(x-321K)
REV I IV
Cg = [1.321xk , 0 X 0 :l
c'BB“la = [2x-.64K 1/2(1.642K-X)  3.284K-2X 1/2(X-321K) 2963K-X
2% * 1/2(X-K » 2%-2K > 1/2K > 2%-K
cR—cBB‘1R= 1.961K-2X . 3x-3.284K ~1.963K| _,
| -.689  ° ) 2%-X g * 2K-X
If, a) There is no optimum possible

b) X> 2K and 1/4<X < 1/2
M, = 1/2(X-K), M, = 1/2K

Collapse mechanisms bl, d




36
The optimum solutions that provide the collapse mechanisms and

optimum moments for different values of X and K are presented below and

also in Graph No. T1.

x Mz 025 (XPL)
/ Mgz 05 (KPL)
)

= M2 1B (X K)PL

Mz 05(X-K)PL

Mz 0.5 KPL 4,0 Mz 0.5 (X-0.32K)PL
Mz 0.5 { .64K~ X)PL
0.5 ) Xz 0.5
*
b, d +
_ e, by
» M,z Mg 0.33KPL
0.28
o, d M= 1/2 (X-0.32IK)PL ’
M.z 0.33KPL

0.5 ] L5

"Coltapse mechanism for different volues of K and X

IV. 4. Example: Design the frame shownin Fig. 4.5.

£f=1.4 P=(13) (1.4) = 18.2 kips
X=_h = 24 = .75 K=_26 =1

o

L 32 (2) (13)

From Graph I at ¥ = .75 and K = 1 the collapse mechanisms ére

b1 and e; the moments are:

M

L]

1 = 1/2(x-.321K)PL = .215PL = 125.2 kips-ft.

M2 1/2(1.642K - X)PL = .446PL = 259.6 kips ft.

The bending moment diagrams.ore shown in Fig. No. 4.6. There are two
collapse mechanisms; bl for the gravity loads, and e for the combined loads,

these mechanisms provide the basis for the design requirements.



S 2606k

wWind
N

Bk, 1
24’ X=
K=]
y . S
Lt : Lo TN
< 16" —— >i< 16" ——>

FIG.4.5 FIXED-ENDED RECTANGULAR FRAME
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a-[w

o

w
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259.6 k- ft
(\
( Ve r\\
$ =
,I 1’ Y‘ 3
Y. 7] \‘
/ Y

Y 125.2 k-ft

125.2k-ft

62.6k-ft —>-H,=7.8k - 'Hvdzzskaz———fi 62.6 k-t

Vaz24.1k V, =24,

FIG.4.6a MOMENT DIAGRAM FOR “b"(gravity loads)



http:FIG.4.6a
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259.6 k-ft
62.6k-ft Ll ARINE
' O
\L\(
h  125.2 k-ft
Ho= 7.8k = 125.2 k-fr | Hy=10.4 kel 125.2 k-fi
V= 12,4k V= 24.0k

FIG. 4.6b MOMEN DIAGRAM FOR “e” [combined loading]
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Taking the higher values for plastic moments, shear and normal
stresses we have:

125.2 K-ft.

e
]

259.6 K-ft.

=
i

od Hd = 10.4 K

<}
L}

4
]
<
[}
L[}
<
il

24.1 K

Nbcm 10.4AK

Choice of Section ‘ ‘ ;

Column Ml

1

]

125.2k-ft.

125.2x12 = 41.73 in.
36 . :
12 WF31
3
Zl 44.0 in.

= 9,12 in.2

6.525 in.2

It

A
b
d

12.09 in.

t = 465 in.
w= ,265
rx= 5,11 in.

ry= 1.47 in.

Beanm

=
]

259.6 k=ft.

259.6x12 86.53 in.> 259.6x12 =  86.53 in.>

36 36

24
fl
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Z = 89.6 in.

A = 13.24 in.?
b = 7.477 in.
d = 17.86 in.
t = .499 in.
w = .335 in.
rx = 7.30 in.
ry = 1.55 in.

Shear Force*

3

Vab = 10.4<(.550c&wd x 10

<.55x36x.265x9.12 = 48.2k

Vb = 24.1 < .55x36x.395x17.86

Normal Force

P = Ag = 9.12x36 = 328k
y y

Stability Check

2 N " L <

_.+._.___

70 .r
: X

. Y .. '
2[24.1 1 [24 x 12
[328:] * 7 [ 5.11] = 147

Buckling Strength

M
d 24,1
Py 328 ,0735 < .15

The full plastic moment of section ﬁay be used.

* Designed according to Ref. 8

-+

.806 < 1

4]

OOK.
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Cross Section Proportions

Beam Column

b/t = 12.6 15.5<17  OK

d/v = 53.3 45.6 < 70-100 P = 62.7 OK
P
y

Laﬁeral Bracing

il

Columns 1 . (60-40 M ) r _ 60-40(-1) x 1.47 = 147.0 in.

M
p

147.0 < 24x12 = 288 One lateral support is necessary,
Brace Column at 12' = 144 in. from top.

Brace beam at 4' < 35r y, intervals.

Connections
Wy = We - W= 3M - W
o-d d
ybec

Wd = 3 x125.2 x12
36 x 13.24 x .12

Use two double plates of at least .134 in. thickness each.

.335 = .598-.381 = .267 in.

4

Iv. 5. Concluding Remarks. Graph No. 1 provides a way to obtain dir-

ectly the optimum desién moments of a single-bay, single-story, fixed-
ended portal frame. The amount of computation involved in developing
this type of graph depends significantly on the number of variables in

the primal, that is,the required Mpi (Ml and M, here-in). This is true

2
because it is the dual of the problem that is the one solved, and the
order of the transformation matrix B~1 depends on the number of the ori-
ginal variables. The two collapse mechanisms obtained in the example

were related to different loading conditions: therefore, both distrib-

utions of moments should be analysed.



V. STUDY OF A ONE~-BAY ONE-STORY HINGED-ENDED PORTAL FRAME

V. 1. Introduction. This chapter follows the general outline of

Chapter IV with the difference that the solution to the linear program-

ming problem is obtained semigraphically. A design aid (Graph No. 2)
will be developed and a design example will be provided.

V. 2. One-Bay, One-Story, Hinged-Ended Portal Frame. Consider the

frame shown in Fig. 5.1 where both columns have the same plastic moment,
Ml’ which may differ from Mz, the plastic moment of the beam. There are
five potentially critical sections, the redundancy is 4-3=1. Thus, the
number of basic mechanisms is 5-1=4. The four indepéndent mechanisnms
are shown in Fig. 5.2; these are: the beam mechanism, the panel mechanism
and two falseVmechanisms of the rotation of the joints. All‘possible
" mechanisms and their work équations are shown in Fig. 5.3. f

The objective fuﬁction is the samé as the one for the fixed ended,
portal frame (Chapter IV.), that is:

ZXMl M2

B=m . Y m

For a combined loading the linear constraints related to these

mechanisms are:

(a) ‘ i’-L—z— > K
M oM
1 2
1 ~2 .k
®) 3¢ oo
2,

() PL > X
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h 4

Y A | AN

; L < L
2

FIG. 5.1 HINGED ENDS RECTANGULAR FRAME

\'/.-

BEAM MECHAN(|SM PANEL MECHANISM

- JOINT MECHANISMS

FIG. 5.2 BASIC MECHANISMS
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2KP

2KP

20

V e AT

{a) 4M, £KPL (b)

2M +2M 2KPL

() 2M,=XPL (d) 2M. = XPL

(e) 4M,< (X +K)PL (F) 2M.+ 2M,% (X + K)PL

FIG. 5.3 COLLAPSE MECHANISMS




(d 2 M1

L 2 X
(e) 4 M2
R>X+K
(f) 2 Ml 2 M2
—PT+ FE2X+K
M M
1 2
= ;20

The gravity loading constraints are the same as the ones- in part

IV, that is:
(a,) 4 M
1 2
. PL2 1.321K
(b,) 2M 2M

1 1 2 -
PL + 'ﬁf2 1.321K

V. 3. The Linear Programming Problem.

Combining both sets of constraints as in part v and eliminating

(a) and (b) we héve:

Minimize B = 2X M M

(a,) 4 M
1 A}
>
51 ..-1.3211{

(bl.‘)(zﬁ-l”ZMz

PL L 2 1.32‘1K




(c)

()

(e)

(£)

A graphical solution of

(see Fig. 5.4):

(1)

(1)
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2_M£ <
PL =

2 M

1

PL Z;X
&Mz
—f,-iZX-I-K

2 M 2 M

1 2

PL+ -1-)—1-:_>_X+K

this linear programming problem will give

For X> K
PL
i
Collapse Mechanisms ¢, d

For .321K<X<«K

sl

(@) xX<.5
M1=M2- 1/4 (X + K) PL
Collapse Mechanisms e,f
(b)Y X>.5
M, = X PL M, =K PL
1 2 2 2
Collapse Mechanisms d, f




X/2

X+K/4

. 1.321K /4

a o
-

X/2
1.32n</4;

FIG.5.4(A)
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1.321K /4
X*K/A

X<321K

x<i1/2
xX21/2

\\b‘xa 2

7 A

AN

(111)

FIG. 5.4 (B)

49

a,

:b‘
d b,

)
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(III) For X <€.321 K

(a) x .5
Ml = M2 = .33KPL !
Collapse Mechanisms ay, bi ;
' |
(b)) X>.5 »
M1 = %_ PL M2 = 1/2 (1.321K-X)
Collapse Mechanisms bl’ d

The optimum solutions that provide the collapse mechanisms and
optimum moments for different values of X and K are presented in Graph

No. II.
V. 4. Example: Design the frame for the load shown in Fig. 5.5.

18.2

f=1.4 . P = 13x1.4
X = 3/4 K=1

32IK<X<K  X> 1/2

From Graph 17 at X = .75 and K = 1 the collapse mechanisms are d

and £, and the moments_afe:

1t

1/2X PL = (1/2) (3/4)x18.2x32 = 318.4 K-ft.

=
]

291 . 2 K"‘ft .

=
"

1/2 KPL = (1/2)x1x18.2x32

Collapse Mechanisms are d, f




51
26(#)K

13(¢) K f

b 4

< 16' she 16" >

FIG. 5.5 HINGED ENDS RECTANGULAR FRAME

~ 291.2K-#1.

(ot ""H—“—r‘\
7] r N

218.4 K-ft
]
b —X < g
\ :
@ A
¥ -
A ¥ ¢
LY N .
= N ¥

A ¥

’ | wm

218.4K-ft

Vd.

FIG. 5.6 MOMENT DIAGRAM
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Analysis:

The moment diagram is shown in Fig. 5.6; from there: X

= 218.4 = 9.1K

V. 18.2 - 9.1 = 9.1K

N, =18.2 x 24 + 36.4 x 16 31.85K

32

i
]

-V k
c .

Nab = 4.55Kk = V

b
Choice of Section

Columns

=
]

21804 k“ftu

3

2]
]

218.4 x 12 = 72.8 in.
36

14 WF 48

Z = 78.5 in.> i’
A 2 gl

N

14.11 in.

d

i

13.81 in.

it

b = 8.031 in.

.593 in.

1t

t

.339 in.

]

w
‘r_= 5.86 in.
x

r = 1.91 in.
y

Beam

=
]

291.2 K-ft.
3

o
1t

291.2 x 12 = 97.1 in.
36
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100.8 in.

N
]

o>
t

14.71 in.

(a9
]

18.0 in.

o
]

7.5 in.

.570 in.

lad
n

w .358 in.

r 7.38 in.

X

r = 1.59 in.
y

Shear Force

Vab

9.1 < .550; wd = .55 x 36 x .339 x 13.81 = 93K OK

A
c

3.85<19.8 x .358 x 18 = 127.6K OK

Normal Force

P = Ao = 14.11 x 36 = 508K
y y

Stability Check . gl

2 3LL§%] + L 24X1f] = .25 + .701 < 1 OK

508 70 | 5.86

Buckling Strength

P _ 31.85
508
y

= .0625 < .15

The full plastic moment of section may be used.
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Cross Section Proportions
Beanm Column
b/t = 13.2 13.5 < 17 oK
d[w = 50.3 40.7 <« 55 OK

Lateral Bracing

Columns e = (60~AQ§ ) r, = 60x1.91 = 114.6 in.
p
114.6< 24x12= 288 in. Lateral support is necessary.
Brace columns at 35 ry = 67 in. from top and 110 in. from bottom.

Brace Beam at 55 in. < 35 ry intervals.

Connections
W, =W =W = I M -w = 3 x 218.4x12 -~ .358
d v b p b 378 x 13,61
o d,.d
ybe
= ,508 - .358 = .[150

Use two double plates of at least .075 in. thickness each.

V. 5. Concluding Remarks. The use of the semigraphical method of sol-

ution to linear programming isllimited to special cases of problems which
contain no more‘than'two’vafiables; hence, its use in this chapter. The
two collapse mechanisﬁ; obtained in the design example are related to

the same loading condifion. Therefore, a new mechanism is forﬁed with
plastic hinges common to the original two. This new collapse mechanism
is called Foulkes mechanism;rit has the characteristic that the slope

of its energy ezuation 1s parallel to the minimum weight objective

function.

- ”"' N ""'“:' ;

z 7 DA
Ran AR e M FRSr i e ar¥ie o M




VI. SUMMARY AND CONCLUSIONS

VI. 1. Summary. Based on the concepts of minimum weight, plastic theory
and linear programming, the general solution graphs developed in this
paper provide the values of the plastic moments as well as the corres-
ponding collapse mecﬁanisms for different 1oading‘conditions and dimen-
sions of a single-bay, single-story portalrframe.

It should be pointed out that the regular plastic design procedure
starts with a,prelimina;y design and then determines the corresponding
collapse mechanism under each loading condition, then the collapse 1o;ds
are compared with the working loads. If the design is to be changed the
new collapse mechanisms must be’found again, etc. The determination of
"the collapse mechanisms requires a good deal of effoft and skill on the
part of the designer. In contrast, from the graphs 1 and é, developed
in Chapter IV and Chaptef V, we could obtain directly the collapse
mechanisms.  In the case where each of the two collapse mechanisms are
related to different loéding conditions (as in the examplé in Chapter 1IV),
the two mechanisms should be analyzed to obtain a feasible design. In
the case where both dollapse mgchanisms are related to the same loading
conditions, (as in the;e;ample in Chapter V),‘a new mechanism is formed
with plastic hinges comm;n to the original two. This new collapse
mechanism is formed with plastic hinges commén to the original two.

This new collapse mechanism is called Foulkes mechanism1 and has the
characteristic that the slope of its energy equation is the same as the
slope of the minimum weight objective function.

The practical use of the general solutions to the plastic design
is twofold: one is in the graphical form as a design aid, and two, with

the help of a computer, the general solution and other pertinent information
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may be stored to provide a direct design of single-bay, single-~story
portal frames.

VI. 2. Conclusions. From this study the following conclusions may
be drawn:

1. The integration of both gravity and combined loading into one
linear prégramming problem hés been éhoWn to be féasible, and the solu-
tion thus obtained satisfies both loading conditions.

2. The application of the revise& simplex method to the dual of
a parametric ‘primal problem provides a useful technique for the devel-
opment of general solutions to optimum desigﬁ problems. This has been
‘illustrated in Chaptgr IV to obtain Graph No. 1.

3. The amount of computati§n involved in‘the development of this
type of solutions (conclusion No. 2) depends mainly. on the number of
variables of the primal problem, and to a much lesser degree on the
number of parameters,

4, Graphs 1 and 2, presented in Appendix C, greafly simplify the
design of single-bay, single-story portal frames by providing moment
requirements for optimum designed frames. To use theée graphs (design

aids), a designer need.not know linear programming or computers.

K




Appendix A

Linear Programming - Revised Simplex °

The "general linear programming problem’ seeks a vector

X = (xl, Koy =ees xn) which will:

Maximize
clxl + czx2 + .0+ ijj + ..+ cnxn
Subject to
xj 0, j=1,2, ..., n
allxl + 312x2+“" .-!-.':11‘_]x_']+...+alnxn < bl
)% F ay%, + ...+ azjxj + ...+ a, x < b,

ailx1 + aizx2 + vee + aijxj + cee + ainxjg bi

a 1% + a 0%, + ...+ amnxj + ...+ a ¥ < bm

are specified constants, m<n, and b12 0.
N ‘

where a,,, b

13° %10 %y

Alternately, the "constraint equations," may be written in matrix

form: "
31 213 e 2, | X by
21 212 o 2n 2| < P2
g1 y) b & *a bm
or, - - -
AX <D
x. 2 0
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Thus the linear programming problem may be stated as:

Maximize X

S.t. AX < b
¥y > 0 j=1.2..n

In contrast with the simplex method that transforms the set of

numerical values in the simplex tableau. The revised simplex reconstruct

completely the tableau at each iteration from the initial datae, A, b or ¢

(or equivalently, from the first simplex tableau) and from the inverse

B-1 of the current basis B.

We start with a Basis B'l = T and R= A, b = b. The steps to

calculate the next iteration dreas follows:
1) Determine the vector Rk to enter the basis

2) Calculate the vector Yk = B—le. If Ykg 0, there is no finite
optimum. Otherwise, application of the exit criterion of the simplex

method will determine the vector ai which is to leavé. That is:

* ‘
Minimum bz' V{_j i = subscript of leaving variable

3) Calculate the inverse of the new basis B-1 following the rules:

Rule 1 - Divide row { in B“l by Yi

k
Rule 2 - Multiply the new row i by ij, and substract from

row j # 1 to obtain new row j

% -1 %
4) Calculate newb =B b (old), modify R matrix by substituting

the Rk vector by the vector a.




58

5) Calculate the new values of T = C_~C B_l R, where C

R B R

- are the objective function coefficients of the non-basic and basic

and CB

variables respectively. TIf T € 0 we have obtained a maximum. If T>O0,

find k for maximum TlV 1 and go to step one.

6) The optimum solution is given by the basic variables, their

values are equal to B_lb, and the objective function is Z= CBB-lb.

Example 1A
Maximum Z = 3X1 +‘2X2
S.t

2%, + X, + 8 < 8

Xl +3X2 + + S2 <12

.x1+x2+ +  +5;<5

X5 X, <o

1st Basic Feasible Solution

- -] * o -
X =[5 B~ = [1 o0 o b =|8
., .o 1 o 12
Sy
, 0 0 1 5
—83; _ L
, 5%
c. = (0,0,0) R = 2 1
B
1 3
101
c.B IR = (0 0) - c'=(3»2)
B S R ’

T=Cp - CBB' R= (3, 2) < 0 Non Optimum




Maximum Ti = (3, 2) =3, = ]
1) Enter X1 R1 -
2) vy, = g7 27 -
. .
1
Minimum E_;i 8 | 12 |
Vi = l:-z—, 1 —jl = 4, 1= S, Leaves
Dy, =2 B =1/2(,0,0 = (1/2, 0, 0)
Yy = 1 B, = (0, 1, 0)-1(1/2, 0, 0) = (-1/2, 1, 0)
y3 =1 By = (0, 0, 1)-1(1/2, 0, 0) = (-1/2, 0, 1)
sl 5 0o o
-5 1 0
-5 0 1
o %
4 b= leﬂ 8 | = |4 R = i .i
‘ 12 8 0 3
s 1 o 1
5 ¢y = (3,0, 0 Cp = (0,2)
c 8 'R = (1.5, 1.5)
T = cR-cBB'lR = (1.5, 0.5) < 0 Non Optimum
Maximum Tl = (~1.5, 0.5) = 0.5, K= 2
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1) Enter X2 R2 =11
| 3
1
2) v,=8'[1|=|.5
3 2.5
1 .5
Minimum [é ’ 2{35 ’ 151 - 2, 1=3
3) y,, =1/2 By =2(-1/2, 0, 1) = (-1, 0, 2)
y,, =1/2 B, = (1/2, 0, 0) -1/2(-1, 0, 2) = (1, 0, -1)
Yo, = 2.5 B, = (-1/2, 1, 0)-2.5(-1, 0, 2) = (2, 1, -5)
3t = T1 o -1
2 1 -5
10 2
. __1l,, , 51 83
4) b =8 -[4] =13 R=[1 0
o 8| .. |11 0 0
‘ L1 -2 0 1
5) ¢=(3,0,2 ¢ = (0,0
CBB—l = (1, 0, 1) ‘
cBB“lRQ—: a, v

T = CR—CBB—lR = (~1, -1) < 0 A Optimum Solution has been

reached.




6) x, =[x, = 87 =1 0o -1][s
s, 2 1 -s5| |12
X, 1 0o 2||s
X, = 3, xz' = 2
z =cB b =(1,0,1)[8] = 13
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Duality'®

The linear programming problem (primal)

Minimize Zp = (X
S.t. AX 2 b
Xj 2 0 3=1,2, ... n

"Has a dual

Maximize Zd = blw
S.t. alw<cl!
wizi 0 i=1, 2 m

Where Al is the transpose of A, bl of b and cl §f c.

These two sets of equations have some intéresting relationships.
The most important one is that if one possesses a feasible solution
so does the. other one aﬁd theilr optimum objective function value is
the same. That is:

Minimum (opt)' Zp = maximum (opt) ZD

Also the primal_soiution is contained in the dual, in particular
in the cost coefficien;s'of the slack variables, and viceverse. More~
over, the dual of the dual is the primal and we can look at performing
simplex iterations on the dual, where the rows in the primal correspond
to columns in the dual.

Example 2 A

Find the dual and its solution for example 1.A.
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) i
Max ZP = 3X1 + 2X2
S.t. 2}(l + X2 < 8
Xl + 3X2 < 12
X, + X, < 5
X)s X, > 0 -
a) The dual is
Min zZ, = 8W1 + 120, + 5w3
S.t. M, + W, + w3_>_ 3
Wy + 3Wy + Wy > 2
>
Wl, W2, W3 2 0

b) The dual solution is given by the value of the cost coefficients

of the slack variables of the primal Gshich is, example 1A). These values
\ l A
are found in the vector ;((%B_l)

1 7

Aw’ =¢cBl= [1, o, 1]

W T LWy =0, iy - 27 bW 2T W

and z, = W'b'»'=,[}, 0, g 8|= 13
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11
12
15
15
17
1%
an
25
- 3n
35
40
45
50
55
60
65
70
75
30
35
99
95
1N0
1ns
110
115
120
125
131
135
140
145
150
155
159
160
165
170
175
175
190
191
215
220
23N
24n

APDENDIX 8
1 COMDIJTER PRIGRAM

NDIM 72015515R02,23,Y02,11,D02,1]7
DIM CE152155015,515F02,11,802,17, 0r2,113
DI D015215,A02,21,R02,51]
FOR X=4125 TD A4 STEP 125
DRINT
PRINT
PRINT ' K="3% ]
FOR ¥=.125 TD 2.5 STZH 125
IF ¥<1+321%K THEZN 40
LET M=Y
GITI 48
LET ¥M=1.321%%
LET Z01511=13231%K
LET 7201,21=4
LET 7Z01533=%
LET Z01541="{+%
LET 7Zf1551=¢+%
LET D01,11=9%%
LEr NDL2,11=1
LET R@MWis511=n
LET RC1,21=2
LT R{1,31=4
L=T RC1,41=2
LET MW1553=4
LEZT RE2,13=4
LET R[2,21=2
LET RC{2,31=n ¢
LET R[2,41=4
LET R(2,51=2
LST ACt1,11=1
LET AC1,21=0 iy
LET Aar2,13=0 '
LET ar2,21=t -
MAT G=7Z8E301,9]
MAT RB=IDN([2,2]
MAT F=D
LET 1=2 ,
LET Y{1511=R01,11
LET Yr£2,11=3(2,11]
MAT W=RxY
MAT Y=
MAT G=R%F
MAT F=03
IF YL1s11>0 THEN 23
GITD 272 '
IF YI[2,11>0 THEN 250
GITI 255




25N
255
260
270
212
275
2310
235
290
235
300
305
310
- 315
320
325
330
335
34n
345
350
355
370
371
375
380
385
390
395
400
450
453
454
455
460
465
475
480

13/¢¥L1,11=-FL2,13/Y(2,13>0 THEN 272

I# FC1ts
LET .J=1
LEf L=2
GATI 280
LET J=2
LET L=1

LET BC{J»11=8{.J,13/Y(.Js1]

LET B[Js21=8BL.Js21/7Y0ds1) ;
LET BLLs11=80L,11-30Js11%Y[L,11
LET BLL,21=8[L,21-B[J,21*%Y[L,1]
LET Aa1=7ZC01,11 .
LET 701,131=CC1,.J]

LET CCL1sJ1=41

LET A1=A(1,.J] .

LET 4Af1,J1=301,11

LET RC{1,11=41

LET A1=A[2,J]

LET Ar2,.J1=R02,11)

LET RC[2,131=41

MAT P=C*R

MAT E=p%R

MAT E=7-%

LET A2=E[1,1)

LET I=1

FOR 4=2 TO 5

IF A2-E[1,H1>0 THEN 395

LET A2=E{1,4]

LET I=4

NEXT 4 ,

1F a2>n THEN 155

PRIINT %

MAT PRINT 2

MAT PRINT A

PRINT , ;

PRINT _ i

NEXT % ' :

NEXT K
END
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APPENDIX B.2

o b, b’ ¢ d e
aldM,=1.321K
bl 0.33K  [2Ma 2M; 132K
0.5(X-0.66K  X/4
b X=1.321K  [2M g 2ZM = X
'0.33K X/4
X /4 X/4 X /4
el AM X
| 0.33K  [lAR:6a2K-X) | X /4
0.5(X~321K) |0.5(1. 64 2K-X] | 0.5(x~K ) X /4
d N N 2Mgr M=K +X
0.33K  [0.5(x-0.321K) |  K/2 18(2K+X)
VA(X-1.64K)| 0.5(X-0.321K) | K/2 X /4
e 1/6{K+X) |4Mg2MFK+X
0.33K |0.5(1.6aK-X) |1/2 (X~K) K/2

POSSIBLE BASIC SOLUTIONS
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