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AN ABSTRACT OF THE THESIS OF ANGEL FAJARDO UGAZ for the Master of Science 

in Applied Science presented May 21, 1971. 

Title: Direct Design of a Portal Frame 

APPROVED BY MEMBERS OF THE THESIS COMMITTEE 

Shriniwas N. 

Harry J. Whi 

Hac~1! Erzurum1u /7
// 

This investigation was undertaken to develop plastic design aids 

to be used in the direct design of optimum frames. It uses the concept 

of minimum weight of plastically designed steel frames, and the concept 

of linear programming to obtain general solutions. Among the special 

characteristics of this study are: A. The integration of both gravity 

and combined loading conditions into one linear programming problem. 

B. The application of the revised simplex method to the dual of a par­

ametric original problem. C. The application of A and B above in the 

development of design aids for the optimum design of symmetrical sing1e­

bay, single-story portal frame. Specifically, design graphs for dif­

ferent height to span ratios and different vertical load to lateral load 

ratios are developed. The use of these graphs does not require the 

knowledge of linear programming or computers on the part of the designer. 
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NOTATION 

A Current basic matrix of the revised simplex 

-1
B Transformation matrix 

C Coefficients of the objective function equation 

CB Coefficients of the basic variables in the objective function 

C
R 

Coefficients of the nonbasic variables in the objective function 

f Plastic safety factor 

h Height of portal frame 

k Load ratio 

L Span of portal frame 

Mi Plastic moment of column 

M2 Plastic moment of beam 

Ma M/PL 

~ M2 /PL 

P Load 

Q Gravity load 

R Current nonbasic matrix 

Si Slack variables 

W Dual Variable of M 

X Height to span ratio 

Y Transform vector coefficient of entering variable 

Z Plastic modulus 

Z 
p 

Objective function of primal 

ZD Objective function of dual 
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I. INTRODUCTION 

I. 1. General. The total design of a structure may be divided into the 

following phases: 

1) Information and data acquisition about the structure. 

, 	 2) Preliminary design. 

3) Rigorous analysis and design. 

4) Documentation. 

Once the applied loads and the geometry of the structure are 

known, the traditional approach has been to consider a preliminary 

structu~e, analyze it, and improve it. In contrast with this trial and 

error procedure, the minimum weight design generates automatically the 

size of structural members to be used. This method of direct design 

combines the techniques of linear programming with the plastic design 

of structures. Minimum weight of plastically designed steel frames has 

lbeen 	studied extensively in the last two decades; Foulkes * applied the 

concept of Foulkes mechanisms to obtain the minimum weight of structure. 

2This 	concept was also used by Heyman and Prager who developed a design 
~. • ,I 

method that automatically furnishes the minimum weight design. Rubin­

stein and KaragoZion3.in~roduced the use of linear programming in the 

minimum weight design. Liaear programming has also been treated by 

4 	 5Bigelow and Gaylord (who added column buckling constraints) and others. 
. 	 " 

In the above studies the required moments are found when the 

loads and configuration of the frames are given. If different loading 

conditions or different frame dimensions are to be studied, a new linear 

J 

*Superscripts refer to reference numbers in Appendix D. 
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programming problem must be solved for every loading and for every 

change of the dimensions. Moreover, the computation of the required 

design moments requires a knowledge of linear programming and the use 

of computers. 

1. 2. ,Scope of this Study. The purpose of this study is to develop 

direct design aids which will provide optimum values of the required 

moments of a structure. In contrast with the preceding investigations, 

this study introduces the following new concepts: (a) The integration 

of both gravity and combined loading into one linear programming problem 

which gives better designs than the individual approach. (b) The dev­

elopment of general solutions for optimum plastic design. These general 

solutions, presented in a graph, chart or table, would provide directly 

the moments required for an optimum design for various loads and dimen­

sions of a structure. (c) In order to attain the general solution a 

new procedure is introduced in Chapter IV, a brief description of which 

10follows: 1. The objective function and constraint equations are 

written in a parametric form as a function of the plastic moments where 

. * .. ..' 
the "C" coefficients of the objective function and the b vector are 

parameters. These pa~ameters are related to the loads and to the frame 

dimensions. 2. It solves the dual of the original problem using the 

Revised Simplex Method,9 but instead of operating transformations on the 

constant numerical values, it operates on the parameters. 3. The 801­

utions are found for different ranges of values of the parameter which 

meet the optimality condition C - C B-1< O.
R B

*See Appendix E for Notation 
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In Chapter IV, Graph No. 1 is developed to illustrate the above 

concepts and a design example is given to show its practical application, 

From this graph the optimum design of a one-bay, one-story, fixed-ended 

portal frame m~y be read directly, after computing the parameters X and 

K. Here, X is the height to span and 2K, the ratio of vertical to lat­

eral load. It should be pointed out that these concepts can be applied 

to multistory multiple-bay frames. 

Chapter IV studies one-bay, one-story, hinged-ended, portal 

frames. Because of the special characteristics of the linear program­

ming problem,a semigraphical method is used. Graph No. 2 is developed 

as a design aid in this manner, and a design example to illustrate its 

use is provided. 

Chapters II and III discuss briefly the widely known concepts of 

plastic design and minimum weight design, and Appendix A describes the 

computational procedure of the Revised Simplex Hethod. 

To this date, the concepts a, b, and c mentIoned above have not 

been applied to the optimum design.of framed structures; neither graphs 

No. 1 or 2 have been published/before • 

.. 

http:design.of


II. PLASTIC DESIGN 

Traditional elastic design has for many years believed in the 

concept that the maximum load which a structure could support was that 

which first caused a stress equal to the yield point of the material 

somewhere in the structure. Ductile materials, however, do not fail 

until a great deal of yielding is reached. "When the stress at one 

point in a ductile steel structure reaches the yield point, that part 

of the structure will yield locally, permitting some readjustment of the 

stresses. Should the load be increased, the stress at the point in 

question will remain approximately constant, thereby requiring the less 

stressed parts of the structure to support the load increase. It is true 

that statically determinate structures can resist little load in excess 

of the amount that causes the yield stress to first develop at some point. 

For statically indeterminate structures, however, the load increase can 

be quite large; and these structures are said to have the happy facility 

of spreading out overloads due to the steel's ducti1ity.,,6 

In the plastic theory, rather than basing designs on the allowable 

stress method the design is based on considering the greatest load which 
-,' 

can be carried by the structure as a unit • 

•
Consider a be~ with symmetric cross section composed of ductile 

material having an e1astop1astic stress-strain diagram (identical in ten­

sion and compression) as shown in Fig. 2.1. Assuming that initially 

plane cross-sections remain plane as the applied bending moment increases, 

the strain distribution will vary as shown jn Fig. 2.2.A. The correspond­

ing distributions of bending stress are shown in Fig.2.2.B. If the mag­

nitude of strain could increase indefinitely, the stress distribution 

would approach that of Fig. 2. '2C.The bending moment corresponding to this 
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6distribution is referred to as the "fully plastic" bending moment 

and is often denoted by 11. For a typical I-Beam, for example,}1 = 
p P 

1.15}1 where M is the maximum bending moment corresponding to entirely
e e 

elastic behavior. 

As the fully plastic moment is approached, the curvature' of the 

beam increases sharply. Figure 2.4 shows the relationship between 

moment and curvature for a typical I-beam shape. In the immediate 

vicinity of a point in a beam at which the bending moment approaches 

M large rotations will occur. This phenomenon is referred to as the 
p 

formation of a "plastic hinge." 

As a consequence of the very nearly bilinear moment-curvature 

relation for some sections (Fig. 2.4), we could assume entirely elastic 

behavior until the moment reaches}1 (Fig. 2.5), at which point a plastic
p 

binge will form. 

Unilizing the concept of plastic hinges, structures transmitting 

bending moments may be designed on the basis of collapse at ultimate 

load. Furthermore, indeterminate structures will not collapse at the 

formation of the first plastic hinge. Rather, as will be shown, collapse 

will occur only after the for~ation of a sufficient number of plastic 

binges to transform the'structure into a mechanism. Before considering 

design, however, iits necessary to discuss the most applicable method 

of analysis, the "kinematic method." It will be assumed throughout, 

that the process of hinge formation is independent of axial or shear 

forces, that all loads increase in proportion, and that there is no 

instability other than that associated with transformation of the struc­

ure into a mechanism. 

The kinematic method of analysis is based on a theorem which provides 

an upper bound to the collapse load of a structure. The statement of this 
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8 
theorem is as follows: "The actual limiting load intensity on a structure 

is the smallest intensity that can be computed by arbitrarily inserting 

an adequate number of plastic hinges to form a mechanism, and equating 

the work dissipated in the hinges to the work of the applied 10ads,,6 (i.e., 

by applying the principle of virtual work to an assumed mechanism and com­

puting the load corresponding to the formation of the mechanism). 

To find the actual collapse load utilizing this theorem it is there­

fore necessary to consider all possible mechanisms for the structure. 

In order to reverse the analysis process, and design a frame of 

specified geometry subjected to specified loads, it is necessary to regard 

the fully plastic moment of each component as a design parameter. In this 

case, it is not known at the outset whether the column will be weaker or 

stronger than the beam. Hence, mechanisms considered must include both 

possibilities. Consideration of mechanisms for the purpose of design leads 

to a set of constraints on the allowable values of fully plastic moments. 

It is also necessary to define what will constitute an optimum design for 

a frame. With minimum weight again chosen as the criterion, a relation­

ship between structural weight and fully plastic moments of the various 

components is required. 
,,' 

t. 



q 2 I--------­

, 
I if' 

r 
Mp M p2 

III. MINIMUM WEIGHT DESIGN 

The optimum plastic design of frames has been investigated by many 

authors and most of them agree that the total weight of the members fur­

nishes a good m~~sure of the total cost. Thus we shall study designs for 

minimum weight~ 

A relationship between structural weight and plastic modulus of the 

various components may be observed 6in figure 3.1 where the weight per 

unit length is drawn against g = H . 
.P/oy 

These curves satisfy the equation: 

a; 


q == Kl ~) 
 (3.1) 
oy 

For WF,Q ~2/3 and making Kl . = K2 

ay 
= K M2/3 (3.2)q 2 P 

This is shown in figure 3.2 

s 

q5! q3= (l/2)(ql + q2).. ' 
ql 

M
E _< 2 
Mpl 

FIG .3.2 

For a ratio of Mp2 over Mpl of less th:ln 2, we can substitute Eq. 3." 

by the equation of the tangent at a point 3 which the abscissa is the 

arithmetic mean of the abscissa of the end points 1 and 2, the error in­

curred is of the order of 1%. 
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The equation of the target is then q a + b M. The total weightp ­

n n 
of the structure will belqLi :: rLi (a + b Mpi) == a.I.. Li == b :r. Mpi Li · 

Where Li is the length of member i, Mpi its r1astic moment capacity and, 

n the number of members. 
n 

When the dimensions of the frame are given the term a~L. is con­
L 

stant so the objective function B depends only on Mp and Li , thus to find 

the minimum weight we should minimize B =l:M L. 
P 

The constraints are determined by all the possible collapse mechan­

isms and applying the virtual work equations. The external work inflicted 

by the ioads must be less or at best equal to the strain energy or inter­

nal work capacity of the frame. That is: 

u ~ tS WE 

for each mechanism:l Mpi 9i 'rPjLj 9j 

Example: Design the frame shown in Fig. 3.3, which is braced 

against sideway. 

The objective function B' ==rM L . P 

B == 2Ml (?.4t) + M2(L) = O.SM L + M2 L == (O.SM + M2) L
I l 

The collapse mechanisms and their energy equations are shown in 

Fig. 3.4. If the objective function is divided by a constant (P L2), 

the optimum solution will not change. Thus~ 

B == O.SM! + M2 

PL PL 
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13The linear programming problem is 

Minimize 	 B = 0.8M M2l + 
PL PL 

Subject to 	 4M2 )1 

PL 

2M1 2M2 )1+ 
PL PL 

M1I. 	 M2 ~O 
PL PL 

This couid be written in the Matrix form 

Minimize (0.8, 1) 
 = COM
Ml 
PL 

M2 
PL 

S.t. M1 
PL 

~ 	 AM~B 
[] a 

.,1e:J M2 
PL 

o. 

Or Minimize C· M 

S.t. AM 'B 

A graphic solution is shown in Fig. 3.5. The linear constraints divide 

the area into two; the area of Feasible designs--where the combinations 

of values of M1 and M2 will not violate the constraints, thus giving a 

safe structure, and the area of unfeasible designs--where any point 



14 


M:/PL 

~ 
41 

1. 
2 AREA OF FEASIBLE SOLUTIONS 

411 	 'c Ullllllll{({(UlllllUl{l{({{(U{{UI'l(UU' - Uquu {((l ({ U({{ 

o 
1.. 	 .L MI/PL
41 	 41 

..L 
2 

(a) 	 4 M~!!! I 
PL 

-.' 

( b) 	 2 Mf+. ,2'MJ == I 
PL PL 

M, =:0' , M" e:: 0 

8:. (O. 8 M. + .1A.) = ...2. 
P l PL 20 

FI G. 	 3.5 

.,-~~ .. 



15 
represents a frame that will not be able .to support the load. The points 

"T" and "s" where the constraints intersect each other on the boundary of 

the feasible solutions are called "Basic Solutions;' one of which is the 

optimum solutic~. The solution is 

Ml "" M2 = PL/4, B = (3/4)~L2 

In the case of three or more variables, the graphic solution becomes cum­

bersome and impossible. The methods of Linear Programming will be used 

(see appendix) for the subsequent problem. 

Remarks. The optimum design of the frame in the example will give 

~ PL/4 PL .z "" = ---- = -4-- which, of course, w~ll vary depending on P , Land 
0- 0- 0­
.y Y Y 

0-, but for a determined value of P and L, we are not apt to find a rolled 
y 

section with exactly that plastic modulus because there is only a limited 

number of sections available. The solution will then be 

PL
Ml = M2 > PL/4, Z > 40­

Y 

These values will not break any of the constraints. If 1'11 = PL/4 and 

M2 .= PL/4 meet this requiremen~' so will any value of Ml and M2 greater 

than PL/4. For an exact solution ~ye should apply a method of "Discrete 

Linear Programming" substituting M by Z Y and using the standard shapes; 

however, this method consumes a lot of computer time and is expensive. 

Another way to tackle this problem is to use the linear programming sol­

ution as an initial solution and by systematically combining the avai1­

able sections in the neighborhood, the best design is obtained. 



IV. STUDY OF A ONE-BAY ONE-STORY FIXED-ENDED PORTAL FP~ 

IV. 1. Introduction. In this chapter a design aid (Graph No.1) will 

be developed fora one-bay, one-s,tory, fixed-ended portal frame, This 

design aid provides not only optimum design values, but also the corres­

ponding mechanisms. It starts by finding the basic mechanisms. From 

the basic mechanisms all the possible collapse mechanisms are obtained, 

which in turn, provide the energy constraints. These linear constraints, 

for both gravity and combined loads, are integrated into one set. The 

objective function equation was developed in Chapter III as: ~B = ~}1piL1' 

which is to be minimized. The solution will be found by applying the 

revised simplex method to the dual of the original problem, However, 

instead of having constant coefficients in the objective function and 

in the righthand side values (b vector), we have some function of the 

parameters X and K. General solutions are found for values of X and K 

lthat meet the optimality condition, that is CR-CBB- < O. A graph pre­

senting these solutions is constructed. A numerical example follows in 

Section IV. 4. to illustrate the use of Graph No. 1 which gives the 

moments required 'for an optimum"design, given the loads and the frame 

t,dimensions. 

IV. 2. One-Bay, One-Story, Fixed-Ended Portal Frame. Consider'the frame 

shown in Fig~ 4.1 where the plastic moment of each column is Ml and the 

plastic moment of the beam is M • There are seven potentially critical2

sections and the redundancy is 6-3=3. The number of linearly independent 

basic mechanisms is 7-3=4. These are shown in Fig. 4.2. For a combined 

loading condition, all possible mechanisms and their corresponding energy 

constraint equations are shown in Fig. 4.3. 
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We should use either (b) or (b ) depending if K > X or K < X, .respec­

tively. The 	objective function is: 

. B = Bl = 2 X Ml 	 + M2 
PL2 

PL PL 

Written in matrix form we can 	state the problem: 

Minimize B = (2 x. 1) 	 1-11 

PL 


M2 

PL 


S.t. 0 4 1 rMll K 

2 

4 

2 

2 

0 

4 

I PL I 

1M 
2 

LPL J 

;;;;:: 
I K or X 

X 

X+K 

4 2 X+K 

For gravity 	loads there are only two relevant mechanisms. (a) and (b). 

Q = 1.85 2KP = 1. 321 (2KP) 1.40 ..' 

(a ) 4.M QL/2 or 8 M2 :>:1l 2 	
~ 

QL 

M 
~(hI) 2 Ml + 2 M2 QL/2 or 4 1 4 M 2 > 

-+ --	-1
QL Ql 

The objective function is: 

B = ~Mi Li = 2 X Ml L + M2 L 

B 2X Ml M2B = = + 
QL2 QL QL 
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A graphical solution of this linear programming problem will 

give (see Fig, 4.4) 

I) For X< 1/2 

MI = M2 = (1/8) QL 

Collapse Mechanisms a1 , b l , 

II) For x> 1/2 

M = 01 


M2 = (1/4) QL 


Collapse Mechanism b

1 

for the 1a~ter condition M1 is determined either by column 

requirements or by the combined loading requirements. In either case 

a M2 may be found from equation b1 and checked against equation a1 , 

The usual way of solving a design problem would be to find the 

combined and gravity load solutions independently and to use the load­

ingcondition, which is more critical, However, an integrated approach 

may be used, which is developed in the following paragraphs. 

The gravity load objective function is: 
..' 
M1 M2 

Minimize B· =" 2x +QL QL 


But, Q = 1.321 (2KP) 


2x M1 M2 

Thus, +
B = 1. 321 (2K)PL 1. 321 (2K)PL 

Multiplying B by 1.32l(2K) we could write: 



10 10 
"'w +,W xi' =9 

o-W o ­ < < W 

• 
_ 10 10 
< ·W), + 'W'l (q) 

10 
< 'w 8 (D) 
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B = 2X Ml M2 which is the same objective function+PL PL 

as the one for the combined load. Substituting Q 1.32l(2KP) in 

equations and bl :al 

(a ) 8 M2 	 4 M2l > 1 or > 1.32lK1.32l(2KP)L PL 

(b
l 

) 
+ > 1 

4 Ml 	 4 M2 
1. 321(2KP)L 1. 321(2KP)L 


ar, 2Ml 2M2 

+ > l.32lKPL PL 

Considering that the combined loading and the gravity loading 

have the same objective function we could integrate the two sets of 

constraints and we will have: 

(a) 4M2 
> K 

PL! 

(b) 2M! 2M2 
- + ~ K 

••JPL . PL 

.l(b ) 2MI 2M2 
- + > X 

\PL PL 

(c) 	 4MI 

~ X
PL 

(d) 2MI 4M2 
> X + K+PL PL 

(e) 4Ml 2M2 
+ ~ X + K

PL PL 

(a ) 4112l > 1.32lK
PL 
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(b ) 2Ml 2M2l + > 1.32lKPL PL 


Ml M2 

~ 0PL ' PL 

Observing that al contains a; and b contains b, the a and b couldl 

be eliminated. Making M/PL= Ma and M/PL=~, we could state our pro­

blem as: 

Minimize 2X Ma + ~ 

S.t. (al ) 4~ ~ 1.32lK 

(b ) 2M + 2~ > 1.32lKl a ­

(bl ) 2Ma + 2~ > X 

(c) 4M > X a 

(d) 2Ma + 4~ > X + K 

(e) 4Ma +.,'2~ > X + K 

>. 

Ma , ~ ~ 0 

IV. 3. The Linear ProBFamming Problem. 

Minimize (2X - 1) M a 

~ 
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S.t. 0 4 [M J rU21K 

Z 2 ~ ;::. I 1.321K or X 

Z 2 IX 

4 0 X+K 

2 X + K 2J 

Ma' ~ 2: 0 

The dual would be: 

Maximum 1.321 KW1 +[1'i21KJW2 + XW3 + (X + K) W4 +(X+K)WS 

S. t. OWl + 2W2 + 4W3 + 2W4 + 4WS S 2X 

4Wl + ZWZ + OW3 + 4W4 + ZW3 < 1 

Applying the revised simplex method (see Appendix A) 

-1 = b* Br j 

Wb = [::r ~1 [: :] l:X] 


CB =: (0,0) .oR = [(1.32lK), l'iZlK , X, (X+K) , (X+K21 

>. 

w wwI w3 Ws2 4 , 

Z 4 2 
R- [: :]2 0 4 

This prot: lem will be solved as a func.tion of the X and K parameters 

to obtain general solution. However, a computer program (see Appendix B) 

was also written to provide a check to the analytical solution. . 

As we want to maximize, we need to find the values of X and K for 

which(C C B-1 R)is less than zero, this optimum of the dual will giveR - B 
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the optimum minimum of our initial problem, and C

B 
B-1 will give the 

optimum values for Na and Ml,' 

For analytical solutions go to paths 0, @ , @ 
For numerical computer solutions go to Appendix Band C. 

Path 0 
1) Enter W2 ~ =GJ 

2) Y 2 - B-1 [~J = [ : J 

[ 2X 1:.] { 	 i ==Min 	 == For X< 1/2 1, Sl leaves ~ 
2 ' 2 


, For X > 1/2 i == 2, S2 leaves j 

For i == 1 solution go to@. 


Sl W2
-1 _ 	

[: J3) X 1/2 BlI - 1 	 -1 A == 

o 	 1/2 

WWI S2 W3 Ws4 
4) b == B X == o 4 2 

* -1 	 2X - 1J R== [0 
] 1/2 4 	 1 0 4b [	 ~ 

1) Enter Ws R5 == 

GJ 
-12) == B RSYs 

= [:] 


Min 2X-l 1/2 

== rFor X < 1 i == i, 	 \ 

1 S1 Leaves )lFor X> 1 i == 2, W leaves2 
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3) 1/2 < X < 1 

-1 
BIll · [1/2 

-1/2 
-1~2J A = 

W5 

[: 

W2 

:J 
4) 

R == 

WI 

[: 

81 
1 

0 

W3 
4 

0 

W4 
2 

4 

82 

:J 
*b TX -3/4J

1 -x 

5) CB == [X + K, 1.
3i1KJ C B-1: 

B [1/2(1.64K-X) 1/2(X-.32K)] 
1/2 (8-K) '1/2 K 

CR = [1. 321K, , 0 , X , K+X , OJ 
CBB­

1
R = [3.284K-X 

. 2 (X-K) 
.821K-1/2X, 

'1/2(X-K) 
2X-.642K 
2K ' 

2.963K-X 
2X-K ' 

1/2X-.16K]
1/2K 

CR-CBB­
1

R == [2X-1.963K 
3.321K-2X' 

.642K-X 
'X-2K 

2X-1.983X 
'2K-X 

] < 0 
. 

If, a) .642K < X <. 981K and 1/2 <X < 1 

b) There is no optimum possible 

6) a) Sl == M1 == 1/2(X-.32K) 
.,' 

S2 == M2 == ~/2(1.64K-X) 

• 
Co11aps~ mechanisms· b., e 

~ 

1) Enter W3 
R3 = [:] 

2) Y3 == 
-1

B R3 = 

[-:] 
== -2 < 0 Use i 1 W5 LeavesY23 



3) x ~ 1/2 

B
-1 

-
_ 

[:/4IV -1/4J 

1/2 

4) W S2 W5 W S 
1 4 1 

R = 0 4 2C :] 
. 

1 2 4 

5) C C B-1 
B = [ X, 1.i2lK] B 

C = [L321K 0R 

C~B R= X .66K-1/4x-1 
[2.6iK­

1/4X 

; -1C -Co B R= [X-1.321KR a 1.321K-X ' 

If, a) X < .642K and X >1/2 

M2=··66K-1/4X M1 = 1/4X 

Collapse mechanisms b1 , c 

b) X > 2K and X > 1/2 

M = M = 1/4X1 2 
. .}

Collapse mechanisms b , c 

t. 

27 
= W3 W2 

A= [: :J 

= e/4X •66K-1/4X J 
, 1/4X 

X+K X+K 0 ] 

1/2X+1.321K 2. 64K-1/2X 1/4Xj
L5X L5X 

.5X-.321K L5X-L 64K ] <0 
K-1/2X K-1/2X ' 
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Path @ 
1) Enter W3 

R3 • [:] 

2) Y = B R = 3 3 
-1 

[:] 
= 0 i = 1 Sl LeavesY23 

W3 S2 
A = Brr-1 [

3) 
= :/4 :J [: :J 

4)b * =B-1b= [ 1/4 0 2X == II :/2X ]
0 1 1 

W W WSl W31 2 4 
2 1 2 

R = [: 

2 o ; 4 
 :J 

1) Enter Ws 
RS•• l: J 

• 
-12) Y == B R == 5 5 .[: J 

Min [1/2X ~_[X<1 i == 1 113 Leaves]
1 ' 2 X > 1 i == 2 S2 Leaves 

3) X> 1 

BIll == -1/2 ] 
-1 

[:/4 A = [: II:J 
112 
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4) W W 8WI Sl2 4 2 
R = 2 1 2 

[: 2 o :]4 

C B-l =5) == [X, X + KJ [1/4X~ 1/2KJCB B 

= [1. 32lK, 1.321K , 0 , K+X , 0CR X J 
CBB-lR = [2K 1/2X+K , 1/4X, 2K+l/2X, 1/2KJ 

CR-CBB-1R == [ -.679K, . 32lK-l/2X 1/2X-K , ] < 0 
1/2X-K 

If, .642K < X < 2K and X> 1 

Ml = 1/4X, M2 == 1/2K 


Collapse mechanisms c, e 


..' 

'. 
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Path 

1) Enter W 
y R4 ~ [:] 

1
2) 

Y4 ~ B- [ : J·[:] 
Min [2X .! ] _ [For X<1I4 i = I, SI Leave~J 

2 ' 4 For X >1/4 i 2, S2 Leaves 

3) X > 1/4 4 

B~~ - [1 -1/2J Sl W

A=C :Jo 1/4 

WI W3 S22.. 1 W

4) b 2 4 0 - B- [:XJ = [:~:I/J R ~ [: W:J 
2 0 1 

To enter W2 go to (Y). 

1) Enter W5 
RS· [: ] 

~ J ,,'
2) Y5 = B Rs.= : .-1 

. . 1/2 

Min i == 1 Sl[2X-In I/4J . [ x <1 Leaves]
3 ' 1/2 X> 1 1 == 2 W Leaves4 

3) 1/4 < X<l W5 W

B-1 
= [ 1/3 -1/6] A-[: : 

4 

]-1/6 1/3 
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4) 	 WWI W3 S2 Sl2 

R = 2 4 0[: 	 :J4 	 0 I 

5) 
CB C [X+K, X+KJ CBB-

I= ~/6(X+K), 1/6(S+K)] 

== ~. 32lK , 1. 32IK . x , 0 

CBB-IR == §/3(X+K) 2/3 (X+K) 2/3 <X+K) 1/6(X+K), 1/6(X+K)~ 

CR 
X 	

, 0] 

1 
CR-CBB- R - [654K-2/3X. . 654K-2/3X 1/3X-2/3K, ] < 01/3X-2/3K ' 

If, 	.98lK < X < 2K and 1/4 < X < 1 

Ml == M2 = 1/6(X+K) 

Collapse mechanisms d, e 

..' 

'. 



32 


Path @ 

3) X < 1/2 

-1 

:JBn = [1/2 A = 

-1 
[: s:] 

WI Sl W3 W44) b* = B-
1[2Xl = [X l w~R= 0 1 4 2 

1 J 1-2~ 
[ 400 4 

1) Enter WI 
Rl E [:] 

2) Y = B R = 1 1 
-1 

[:] 
Yi1 = 0 use Y21 = 4 i = 2, S2 Leaves 

3) X < 1/2 -1 
W2 WI 

BIn= r/4 OJ A - [: ~ 
t/14..,1/4 

4) b*=11/2X' oj . S2 Sl W3 W Ws 
R = [: 1 4 2 

4 

4J.l!/4-3/4X 
o 0 4 2 

5) CB = [ 1. i21K , 1. 321KJ CBB-
1 

= f·33K .33KJ 
L!/2X-.33K ' 
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CR =[0 ,0 , X , X+K , X+KJ 

CBB-
1

R =[.33K' 	 .33K 1. 321K L981K L981Kl 
1/2X-.33K ' 2X-1.321K 'X+.66K '2X-.66KJ 

1
C -oC B- R =[ 	 ,X-L321K X-.981K X-.981KJ <0R B 1.321K-X '+.34K • 34K-X 

If, a) X< .981K and X< 1/2 

M~ = M2 = .33K 

Collapse mechanisms aI' hI 

1) EnterW4 

R4 - [:] 


2) y4= B-lR4= [1 ] 
1/2 

Min [1/2X 1/4 - 3/4X] = OFor X<1/4 i 1, W2 LeavesJ 
l' 1/2 For X >1/4 i = 2, WI Leaves 

3) X < 1/4 	 W WI1 4 
B- - t'2 0 ] A= 

IV -1/2 ..,1/4 [: :J 
4) 

R= [~Si 
•. 

W~ W; W~ ] 
10022 

5) 
CB = [X + K, 1.321KJ CBB-1 -= [ 1/2(X-.321K), .33KJ 



.3 A 

, X , 1. 321K +KJ=~ 	 , 0 XCR K 

CBB-1R =[ .33K, 1/2(X-.321K), 2X-.642K, X+.339K , 2X+.018K] 

-1 [ , .642K-X , .981K-X .981K-X] < 0CR-CBB R = , 
-.339K 

If, 	 X < .982K and X< 1/4 

M1 = 1/2(X-.321K) M2 = .33K 

Collapse mechanisms al , d 

,.' 

t. 



CR = ~.321~ , 
, " 

0 	 X 0 ] 
eBB-lR = U~~: 64K , 1/2 (1. 642K-X) 3.284K-2X 1/2 (X-.321K) 2.963K-~ 

2K 1/2(X-K ' 2X-2K ' 1/2K 2X-K 

CR-CBB-1R = ~	1.961K-2X 3X-3.2B4K -L963~<o
-.689 . 2X-X ' 2K-X 

If, 	 a) There is no optimum possible 

b) X> 2K and 1/4<X < 1/2 

M1 = 1/2(X-K), M2 = 1/2K 

1Collapse mechanisms b , d 
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M.-0.25 (XPL.) 
M.-o.5 (I(PL.) 

CI •• II. 

M,. 41... 0.3 31< Plo 

36 

The optimum solutions that provide the collapse mechanisms and 

optimum moments for different values of X and K are presented below and 

also 	in Graph No.1. 

!It 

X' 0.50.5 

0.2 tI I 

0.5 2.tI k 
'Collapse mechanism for differenf valu .. of I< and X 

IV. 4. Example: Design the frame shownin Fig. 4.5. 

I 
f = 1.4 P + (13) (1.4) = 18.2 kips 

X = 	 h = 24 = .75 K = 26 = 1 
L 32 (2)(13) 

." 

From Graph I at ~ = .75 and K = 1 the collapse mechanisms are 


b and e; the moments are:
l 

MI = 1/2(X-.32IK)PL = .215PL = 125.2 ki~s-ft. 

M2 = 	 1/2(1.642K - X)PL = .446PL = 259.6 kips ft. 

The bending moment diagrams ore shown in Fig. No.4. 6. There are two 

collapse mechanisms; b for the gravity loads, and e for the combined loads,l 


these mechanisms provide the basis for the design requirements. 


l.tI 2 
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r 

j 26 (,f) k' 

13 (f)k 

_ 24 324' X-3"2 = T 

_ 26
K-13 (2) = 

I 

16' 16 I~I"<-,' 

.. , 

" 
FIG.4.5 FIXED-ENDED RECTANGULAR fRAME 

" 
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259.6 k- ft 

If""""'I""'"'' "" ". "".• 

125.2k.f,FJ &125.2 k·f • 

.,.. 

..' 
62.6k- ft ==t Hd = 7. 8 k"" 

FIG.4.6a '.MOMENT DIAGRAM FOR "b"(gravity loads) 

http:FIG.4.6a
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259.6k-ft 

62.6k-ft 

125.2k-ft 

Ha : 7. 8 k I' \. -.' . Hd :;=10.4 k-c= j===::\ 125.2 k-fl~t\.1.~5 . 2 k - f I 

Va= 12.4 k '{.= 24.0 k 

FIG.·4.6b MOMEN DIAGRAM FOR "e" (combined loading) 

"'~. 

http:FIG.�4.6b
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Taking the higher values for plastic moments, shear and normal 

stresses we have: 

M1 = 125.2 K-ft. 

M2 = 259.6 K-ft. 

Vcd= Hd = 10.4 K 

N= V = N = V = 24.1 Kab a cd d 


Nbc= 10.4 K 


Choice of Section 


Column M1 = 125.2k-ft. 


~ 1 = 125.2x12 = 41. 73 in. 3 

36 

12 WF31 

3 
~1 = 44.0 in. 

2
A = 9.12 in. 

2
b = 6.525 in. 

d ... 12.09 in. 

t = .465 in. 

w .,. .265 
-,' 

rx= 5.11 in. 

rye 1.47 in. 

Beam 

M2 ::: 259.6 k-ft. 


. 3

~2 = 259.6x12 86.53 l.n. :?')9.6x12 = 86. in. 3 

. . 36 36 
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18 WF 45 

g 

A 

== 89.6 in. 

= 13.24 in. 
2 

b = 7.477 in. 

d == 17.86 in. 

t == .499 in. 

w == .335 in. 

rx = 7.30 in. 

ry = 1.55 in. 

Shear Force * 
. 

V b == 10.4 < .5500- wd x a y 

<.55x36x.265x9.12 

-3 
10 

= 48.2k 

Vb == 24.1 < .55x36x.395x17.86 

Normal Force 

P = Ar:r = 9.12x36 = 328k
Y Y 

Stability Check 

2 Np1
- +­P 70·r 

Y '. x 

..' 
~ 1 

2r24.11 
l)28 J 

+ _1_ [24 x 12J 
70 5.11 

Buckling Strength 

== .147 + .806 < 1 O.K. 

Md 

P y 
== 

24.1 
328 == 

The full plastic moment 

.0735 < .15 

of section may be used. 

11 Designed according to Ref. 8 
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Cross Section Proportions 

Beam Column 

bIt = 12.6 15.5 <17 OK 

d/w = 53.3 45.6 <70-100 Np = 62.7 OK 
p 

Y 

Lateral Bracing 


Columns 1 = (60-40 M) r = 60-40(-1) x 1.47 = 147.0 in. 

cr M· Y 


p 


147.0 <. 24x12 = 288 One lateral support is necessary. 


Brace Column at 12' = 144 in. from top. 


Brace beam at 4' < 35 r y, intervals. 


Connections 


w ... W.,.. - W = 3 M - W
d .E 
d-dbdY c If: 

I;!
qi 

W 3 x 125.2 x 12
d 

EO 

.335 = .598-.381 = .267 in:
36 x 13.24 x .12 

Use two double plates of at least .134 in. thickness each. 
_ • ~l 

IV. 5. Concluding Remarks.· Graph No.1 provides a way to obtain dir­

ectly the optimum design moments of a single-bay, single-story, fixed-

ended portal frame. The amount of computation involved in developing 

this type of graph depends significantly on the number of variables in 

the primal. that iS1 the required Mpi (M and M2 here-in). This is true1 

because it is the dual of the problem that is the one solved, and the 

-1order of the transformation matrix B depends on the number of the ori ­

gina1 variables. The two collapse mechanisms obtained in the example 

were related to different loading conditions; therefore, both distrib­

!LE';utions of moments should be analysed. 

r'·· 

I 



V. STUDY OF A ONE-BAY ONE-STORY HINGED-ENDED PORTAL FRAME 

V. 1. Introduction. This chapter follows the general outline of 

Chapter IV with the difference that the solution to the linear program­

ming problem is obtained semigraphically. A design aid (Graph No.2) 

will be developed and a design example will be provided. 

V. 2. One-Bay, One-Story, Hinged-Ended Portal Frame. Consider the 

frame shown in Fig. 5.1 where both columns have the same plastic moment, 

MI , which may differ from M2, the plastic moment of the beam. There are 

five potentially critical sections, the redundancy is 4-3=1. Thus, the 

number of basic mechanisms is 5-1=4. The four independent mechanisms 

are shown in Fig. 5.2; these are: the beam mechanism, the panel mechanism 

and two false mechanisms of the rotation of the joints. All possible 

mechanisms and their work equations are shown in Fig. 5.3. 

The objective function is the same as the one for the fixed ended, 

portal frame (Chapter IV.), that is: 

2XMI M2 

B=.JiL, + 
 PL 

For a combined ~oading the linear constraints related to these 

mechanisms are: 
4H2 

(a) > K
PL 

2MI 2M2 
(b) + > K

PL PL 

2M' . 2 
(c) > XPL 
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TP I ~I 

h= XL 

l/\ ~ 

I-- ~ " ~ --l 
F.lG.5.1 HINGED ENDS RECTANGULAR FRAME 

.,' 


BEAM ME CHANtSM PANEL MECHANISM 

.~ 7 
~ JOINT MECHANISMS 

FIG.5.2 BASIC MECHANISMS 
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2KP 


(0) 4M~ £KPL (b 12M. + 2 Ma!: KPL 

! 
! 

e 
e 

(C) 2M.2~XPL (d) 2 M, !: X P L 

(el 4M.t~ (X .. K)PL (f) 2 M. + 2 M a. ~ (X + K) P L 

FIG.5.3 COLLAPSE MECHANISMS 

....;;, 
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(d) 2~ 

~ X
PL 

4 M 
(e) 	 2 > X + K 


PL ­

(f) 2 Ml 2 	M2 > X + K 
-+ PL­PL 


Ml M2 

-~	 0, PL ~ 0PL 

The gravity loading constraints are the same as the ones in part 

IV, that is: 

(a ) 4 M 
l 2 > 1.32lK

PL ­

(b ) 2 Ml 2 M I _+ 	 2,
PL PL ' 1.32lK 

V. 	 3. The Linear Programming Problem. 

Combining both sets of constraints as in part IV and eliminating 
..' 

(a) and (b) we 	 have: 

Minimize 	 B = 2X MI M2 

'PL + PL 


S.t. 
(a )

l 4 M2 	 > 1. 32IK 
PL ­

(b ) 2 Ml 2 M l _+ 	 2,
PL PL ~ 1.321K 
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(c) 2 M2 > 	X 
PL ­

(d) 2 Ml 
~ XPL 

(e) 	
4 M 

2 2 X + K 

PL 


(f) 2 Ml 2 	M2 > X + K 
-+ PL­PL 

A graphical solution of this linear programming problem will give 

(see Fig. 5.4): 

(I) 	 For X> K 


M = M = X PL
1 2 	 ­
2 

i 
Collapse 	Mechanisms c, d 

(II) For 	.32lK<X<K 
." 

(a) X < 	.5 
t. 

Ml = M2 - 1/4 (X + K) PL 

Collapse Mechanisms e,f 

(b) 	 X>.5 

HI = X PL M2 = K PL 
2 2 

Collapse Mechanisms d, f 



O.32IK<X<K 

48 


X>K 0, , C 

1.321K~ 
2 X 

T 
(I) 

. 1. 321 K /4 I"~:s., 0, 

X~l 2 e,f 
X~I 2 d, f 

X+K/4di

1.~~~~ .~/;~~<1/2=~~ 

.!. 
2 

(11 ) 

FIG.5.4{A} 



6,. 

e 

'q fp z:/1<x 
'q f '0 lit 5" X 

(III) 

," 

· ix 
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(III) For X <.321 K 

(a) 	 X .5 

Ml ~ M2 = .33KPL 

Collapse Mechanisms aI' b 
l 

(b) X > .5 

Ml 	 = X PL M2 = 1/2 (1.32lK-X) 
2 

Collapse Mechanisms b l , d 

The optimum solutions that provide the collapse mechanisms and 

optimum moments for different values of X and K are presented in Graph 

No. II. 

V. 4. Example: Design the frame for the load shown in Fig. 5.5. 

f = 1.4 P = l3xl.4 = lB.2 

X = 3/4 K = 1 

.32lK<X< K X>
,,'

1/2 

From Graph II at .X .75 and K = 1 the collapse mechanisms are d 

and f, and the moments ,are: 

MI = 1/2X PL = (1/2) (3/4)x1B.2x32 = 21B.4 K-ft. 


M2 = 1/2 KPL = (I/2)xlxlB.2x32 = 291. 2 K-ft. 


Coll~pse Uechanisms are d, f 
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26(f)K 

13 f) K 

X: 24 :.l...
32 4 

24' 
K­ 26 1

-2(13) : 

;101", 16 116' 

FIG.5.5 HINGED ENDS RECTANGULAR FRAME 

, 291. 2 K - ft. 

218.4 K-ft 
b c 

,.' 

lilt 

, 

218.4K-ft 

~~G:-___ 
Vab ~---Vdc 

FIG. 5.6 MOMENT DIAGRAM 
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Analysis: 


The moment diagram is shown in Fig. 5.6; from there: 


== M1 == 218.4 = 9.1KVdc ---v;­
h 

Vab 18.2 - 9.1 = 9.1K 

Nd· == 18.2 x 24 + 36.4 x 16 == 31.85K = -v 
c 32 c 

N = 4.55K == V
ab b 

Choice of Section 

Columns 

M1 == 218.4 k-ft. 

Z == 218.4 x 12 = 72.8 in. 3 

36 

14 WF 48 


Z == 78.5 in. 3 


A = 14.11 in. 2 


d = 13.81 in. 

." 


b == 8..031 in • 


• 
t = .593 ih. 


w == .339 in • 


. r == 5.86 in. 
x 


r == 1. 91 in. 

y 

Beam 

M1 == 291. 2 K~ft. 

Z == 291. 2 x 12 == 97.1 in. 3 
-'. ­

36 
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18 WF 50 

Z = 100.8 in. 3 

A = 14.71 in. 
2 

d = 18.0 in. 

b = 7.5 in. 

t= .570 in. 

w = .358 in. 

r = 7.38 in. 
x 

r = 1.59 in. y 

Shear Force 

Vab = 9.1 < .550­y wd = .55 x 36 x .339 x 13.81 = 93 K OK 

V c 31,.85 <19.8 x .358 x 18 127.6 K OK 

Normal Force 

P 
y 

= A 0­
y 

= 14.11 x 36 = 508 K 

Stability Check 

2 

2 

[~J 
[31.85J. 508 

+ 

+ 

~t~J-70 r 
x 

1 [24x1j
70 5.86 

~ 

= 

1 

.125 + .701 < 1 OK 

Buckling Strength 

N 
_..E.. 
P 

y 

= 31. 85 
508 

= .0625 < .15 

The full plastic moment of section may be used. 
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Cross Section Proportions 
Beam 

bIt = 13.2 
Column 

13.5 < 17 OK 

dlw = 50.3 40.7 < 55 OK 

Lateral Bracing 

Columns 1 == (60-40~ ) r == 60xl.9l = 114.6 in.cr y
M 

P 

114.6< 24x12== 288 in. Lateral support is necessary. 

Brace columns at 35 ry == 67 in. from top and 110 in. from bottom. 

Brace Beam at 55 in. < 35 r intervals. 
y 

Connections 

w =w -w = 3 M - wb = 3 x 218.4x12 - .358d r b :e 36 x 18 x 13.81
cr dbd Y c 

= .508 - .358 = .150 

Use two double plates of at least .075 in. thickness each. 

V. 5. Concluding Remarks. The use of the semigraphical method of sol­

ution to linear programming is limited to special cases of problems which ..' 
contain no more than two.variables; hence,its use in this chapter. The 

two collapse mechanisms obtained in the design example are related to 

the same loading condition. Therefore, a new mechanism is formed with 

plastic hinges common to the original two. This new collapse mechanism 

is called Foulkes mechanism; it has the characteristic that the slope 

of its energy e~uation is parallel to the min~mum weight objective 

function. 



VI. SUMHARY AND CONCLUSIONS 


VI. 1. Su~mary. Based on the concepts of minimum weight, plastic theory 

and linear programming, the general solution graphs developed in this 

paper provide the values of the plastic moments as well as the corres­

ponding collapse mechanisms for different loading conditions and dimen­

sions of a single-bay, single-story portal frame. 

It should be pointed out that the regular plastic design procedure 

starts with a preliminary design and then determines the corresponding 

collapse mechanism under each loading condition, then the collapse loads 

are comp,ared with the working loads. If the design is to be changed the 

new collapse mechanisms must be found again, etc. The determination of 

the collapse mechanisms requires a good deal of effort and skill on the 

part of the designer. In contrast, from the graphs 1 and 2, developed 

in Chapter IV and Chapter V, we could obtain directly the collapse 

mechanisms. In the case where each of the two collapse mechanisms are 

related to different loading conditions (as in the example in Chapter IV), 

the two mechanisms should be analyzed to obtain a feasible design. In 
..: ~.. 

the case where both collapse mechanisms are related to the same loading 

conditions, (as in the "example in Chapter V), a new mechanism is formed 

with plastic hinges common to the original two. This new collapse 

mechanism is formed with plastic hinges common to the original two. 

lThis new collapse mechanism is called Foulkes mechanism and has the 

characteristic that the slope of its energy equation is the same as the 

slope of the minimum weight objective function. 

The practical use of the general solutions to the plastic design 

is twofold; one is in the graphical form as a design aid, and two, with 

the help of a computer,the general solution and other pertinent information 
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may be stored to provide a direct design of single-bay, single-story 

portal frames. 

VI. 2. Conclusions. From this study the following conclusions may 

be drawn: 

1. The integration of both gravity and combined loading into one 

linear programming problem has been shoWn to be feasible, and the solu­

tion thus obtained satisfies both loading conditions. 

2. The application of the revised simplex method to the dual of 

a parametric 'primal problem provides a useful technique for the devel­

opment of general solutions to optimum design problems. This has been 

illustrated in Chapter IV to obtain Graph No.1. 

3. The amount of computation involved in the development of this 

type of solutions (conclusion No.2) depends mainly on the number of 

variables of the primal problem, and to a much lesser degree on the 

number of parameters. 

4. Graphs 1 and 2, presented in Appendix C, greatly simplify the 

design of single-bay, single-story portal frames by providing moment 

requirements fo~ optimum designed frames. To use these graphs (design 

aids), a designer ~ee~.not know linear programming or computers. 



Appendix A 

Linear Programming - Revised Simplex 9 

The "gene:::-al linear programming problem" seeks a vector 

x = (xl' x 2 ' ---, xn) which will: 

Maximize 

ClXl + c2x2 + - - - + CjXj + ••• + cnxn 

Subject to 

0, j = 1, 2, ••• , nXj 


aUxl + a12x 2+-·· .+aijxj+...+alnx ~ 
n b l 

a a .•• + a + ••• + a ~ b2lxl + 22x 2 + 2j x j 2nxn 2 

ailxl + •. - + aijxj + ••• + ainxj :::;a i2x 2 + b i 


a lXl + a 2x2 + ••• + a Xj + ••• + a x < b 
m m mn mnn- m 

where a ij , bi' c ~re specified constants, m<n, and b i ;.:: O • j 
. I 

Alternately, the "constraint equations," may be written in matrix 

form: ..' 

au 
a
2l 

a l 2. 

a
12 

a
ln 

a2n 

or, 
L 

amI 

AX: ~b 

a
m2 a mn 

Xj z 0 

bXl l 

x 22 < b

x b 
mn 
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Thus the linear programming problem 	may be stated as: 

Maximize ex 

< 
~ 

S.t. 	 AX b 


j = 1.2 •• n
Xj > ° 
In contrast with the simplex method that transforms the set of 

numerical values in the simplex tableau. The revised simplex reconstruct 

completely the tableau at each iteration from the initial data, A, b or c 

(or equivalently, from the first simplex tableau) and from the inverse 

-1
B of the current basis B. 

We start with a Basis B-1 = I and R = A, b = b. The steps to 

calculate the next iteration areas follows: 

1) Determine the vector ~ to enter the basis 

-1
2) Calculate the vector Y B ~. If Yk~ 0, there is no finitek 

optimum. Otherwise, application of the exit criterion of the simplex 

method will determine the vector a	 which is to leave, That is:i 

Minimum ~ * 'f/ j i = subscript of leaving variable 
.,1 

Yjk 

t. 

-1
3) Calculate the inverse of the new 	basis B following the rules: 

-1
Rule 1 - Divide row i in B by Yik 

Rule 2 - MUltiply the new row i by Y and substract fromjk , 

row j 1 i to obtain new row j 

* -1 * 4) Calculate new b = B b (old), 	modify R matrix by substituting 

the ~ vector by the vector ai' 

r~-



5B 

5) Calculate the new values of T = CR-C B
-1 

R, where CR and CB B 

are the objective function coefficients of the non-basic and basic 

variables respectively. If T < 0 we have obtained a maximum. If T>O, 

find k for maximum Tl T/ 1 and go to step one. 

6) The optimum solution is given by the basic variables, their 

values are equal to B-lb, and the objective function is Z= CBB-lb. 

Example lA 


Maximum Z = 3X + 2X

l 2 

-1 *' 0 b '= 8B = ~ =1 81 

,,' 1 12I: :l8 . 
2 

I. 10 1 I I 5° 8
3­ XXl 

CB == (0,0,0) R == 112 
2 

1 3 

1 1 

-1 )CBB R = (0,0 C
R 

= (3, 2) 

-1
T c CR -, CBB R == (3, 2) < ° Non Optimum 



59 
" 

Maximum Ti = (3, 2) = 3, K = 1 

1) Enter Xl R1 =1 2 

1 

1 
L 

2) Y1 = B­
1 

121 r2 

1 1 

1 1 

Minimum * ~ 
Yjk 

= [ ~. 12 
1 ' iJ = 4, i = 1 Sl Leaves 

3) Y11 = 2 B1 == 1/2 (1, 0, 0) == (1/2, 0, 0) 

'Y21 == 1 B2 == (0, 1, 0)-1(1/2, 0, 0) == (-1/2, 1, 0) 

Y3 ,;.. 1 B3 = (0, 0, 1)-1(1/2, 0, 0) == (-1/2, 0, 1) 

B-1 == I .5 0 0 

-.5 1 0 

4) * ==b 

-.5 0 
..' 

B.~lf al == 

Ll: J 

1 

r 4 l 

l: J 

R 
Sl 

== r1 

l: 
X2 

1 

3 

1 

5) 

Maximum 

C
B 

' = (3, 0, 0) CR == (0,2) 

-1
CBB R == (1.5, 1.5) 

-1
T == CR-CBB R == (-1.5, 0.5) < 0 Non Optimum 

T1 == (-1.5, 0.5) = 0.5, K = 2 
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1) Enter X2 R2 ::: 11 
3 

1 

-1 
2) Y2 = B I1 ::: .5 

3 2.5 

1 I 1.5 

Minimum [_4_ ~ --.LJ = 2 i = 3.5 ' 2.5'.5 ' 

3) = 1/2 B3 ::: 2(-1/2, 0, 1) = (-1, 0, 2)Y23 

= 1/2 B1 ::: (1/2, 0, 0) -1/2(-1, 0, 2) ::: (1, 0, -1)Y21 

= 2.5 B2 = (-1/2, 1, 0)-2.5(-1, 0, 2) = (2, 1, -5)Y22 

-1
B = -1

T1 ° 
2 1 -5 


-1 2
° 81 S3 
:::4) b*'; B-1 14 3 R = 11 ° 

8 11.. ' ° ° 
1 1 1-2 1 

L­° 
5) C ::: (3, 0, 2) C = (0, 0)B R 

CBB
-1 = (1, 0, 1) 
-1 ­

CBB R = (1, 1) 

1T = CR-CBB- R = (-1, -1) < ° A Optimum Solution has been 

reached. 



-. 

t" 

S 

ZI 

(I '0 '1) = q aa::>;:: Z (I == S 1­

Z Zx '( IX = == 

Zx Z S Z 0 I 

( Zs ZI s-I Z 

::: ( Ix 1-0 I S == q a == :::~ (9 1­
[9 
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DualityJO 

The linear programming problem (primal) 

Minimize Z == ex p 

S. t. AX 2 b 
~ 

Xj > 0 .j= 1, 2, ••• n 


Has a dual 


Maxim I z e Zd == blW 


S.t. AlW ~cl 

Wi > 0 i == 1, 2 m 

111Where A is the transpose of A, b of band c of c. 

These two sets of equations have some interesting relationships. 

The most important one is that if one possesses a feasible solution 

so does the. other one and thei~ optimum objective function value is 

the same. That is: 

Minimum (opt) Z m~ximum (opt) ZD 
P 

Also the primal.solution is contained in the dual, in particular 

in the cost coefficients of the slack variables, and viceverse. More­

over, the dual of the dual is the primal and we can look at performing 

simplex iterations on the dual, where the rows in the primal correspond 

to columns in the dual. 

Example 2A 

Find the dual and its solution for example 1.A. 
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Max Z = 3X + 2X2. p 1 

S.t. 2X + < 81 X2 


Xl + 3X2 S 12 


Xl + X2 < 5 

..;Xl' X2 > 0 

a) The dual is 


Min Zn = 8W1 + 12W2 + 5W3 


S.t. 2W + W2 + W3 > 31 

W2 + 3W2 + W3 >- 2 -

>W1 ' W2 ' W3 0 

b) The dual solution is given by the value of the cost coefficients 

of the slack variables of the primal (which is, example 1A). These values 
. I 

are found in the vector! (GsB-1) 

!l.I 
I!Wi == C B-1 

== [1, 0, 1] 
\ ! 

W1 ": 1, W = 0, W· = 1 Z =btW=Z'=W'b2 '3 d d 

and Zd == W'b','= Q-, 0, ~l 81= 13 


12 


5 




II) 
t I 
t~ 

15 
1.6 
I 7 
1~ 

81) 
8~ 

3n 
35 
40 
45 
5f) 
55 
51) 
65 
71) 
75 
ql) 
~s 

9n 
95 
t(11) 
lf15 
Itl) 
11') 
18n 
185 
13f) 
t ,15 
14n 
1.45 
151) 
155 
159 
16n 
165 
171) 
175 
176 
l.~n 

t~1 

215 
88n 
83f) 
8Ljf) 

~D~E~otx g 

1 C)~0JfE~ uRJGq~M 

OIM ZCI,5),n[~,~J,y[~,t),O(~,I] 


01;vl C ( 1 , ~ ] , SCI, 5] , rr. ~, 1 ] , G [ ~, 1 ] "v[ ~, 1 ] 

Ot~ D(t,8],~[8,8],qC~,5] 


F01 K=.185 TJ I) Sf~P .1~5 

P1INT 
pqI\lT 
P~H NT .. !{="; '< 

F'r)~\ ''{=ol85 T) 8.S sr~i) .t~S '" 

IF ~<t.~~I*K T~EN lin 

LSr M='>:: 

(DT) LIS 


L~f M::l.38t*~ 


LET ~(1,1]=1.~81*~ 


LS f Z ( 1 , ?, ] =:<1 
LET ZCt,3)='{ 
L~'r ZCI,~]=~+~ 

LEf Z[I,')]=~+~ 
LE r DC 1 , 1] =q*'( 
LSf 0(8,1]=1 
LST 'Hl,I]::f) 
LE:f q(I,~]=~ 
LST RC1,1]=4 
LST R[1,4]=?, 

L ET~ ( 1 , 5) :: II ' 


L~f R[8,1]='L~ 


L":r QC8,?']=8 

LS'f R(8,3]=1) I 


LSr :H?,Lj]=4 

L~T QC8,S]=?, 

L ST 1\ C1, 1 ]:: 1 

LETl\ [ 1" 8 J =() ,.' 

LEf l\[8,lJ=n 

LET l\C?',~J=1 


~!\T C=ZF':,U 1, q] 

MAf 8=10\l(?,2] 

:10.1' F=D 

LST I=~ 


LSf y[t,tJ=qrt,l] 

LEr YC~,1]::lC8,I] 


tv1 0. r ~'1= 8*Y 

rijo.T Y=:'l 

Ml\T G=R*F' 

M!\f i'=G 

IF' YCl,l]>1) T~S~ 83f) 

GJT') 87~ 


IF YC?',t]>n T~EN ~5n 


G.)T) 855 




~5n 

~55 
~f)11 

~10 

~12 

215 
2~n 

2~5 
29t) 
2:)5 
3011 
,3()5 
3111 
315 
3::!O 
325 
33() 
335 
3411 
345 
3511 
355 
310 
311 
315 
3~() 

3~5 
39t) 
395 
4nO 
450 
453 
45t~ 

455 
4611 
465 
415 
4~0 

65 

IF FC1,1]/yel,lJ-F[~,lJ/YC~#lJ>n T~SN ~1~ 
LET J=l 
LET L=2 
G'JT} 2'311 
LET ..1=2 
LET 1..=1 
L~r BCJ,I'J=8CJ,IJ/yeJ,tJ 
LET BCJ,~]=8[J,2J/YCJ,IJ 
LET ReL,lJ=B(L,IJ-~(J,IJ*Y[L,'J 
LET R(L,~J=B(L,2)-R(J,2J*Y(L,lJ 
LET ~1=Z(I,I) 

LET Z C 1 , 1 ) =C [ 1, .J] 

LET C [ 1 , .J ] =0. 1 
LST l\ 1=0. [ 1 ,.J] 

LET 0.[ 1 ,.)]=':Ul, I] 

LET R. [ 1 , tJ :::: 0. 1 

I.. ET 0.1 =0. [ 2 , .J] 


LET o.[::!,J]=~[?,I] 


LET RC2,I]=l\1 

MI\T P=C*R 

MAT E=l:>*q 
MIXT E=Z-S 
LET A2=E[I,I] 

, \'LET 1=1 
FOR 1..{=2 TO 5 
tF l\2-EC1,t.{]>t) Tt.{SN 395 
LET l\?=EC 1 -!.H] 
LET 1=1..{ 
NE:>::T I..{ 

1 F 1\::!>11 Tl-IEN 165 
PRtNT v.: 
MI\T PRINT? 
Ml\T pqINT l\ 
PRINT 
PRINT .,t 

NE"::T >:: 

NE,{T K 
END 
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b,0, 

Ot 4Mb=1.321K 

; 

bl O.33K 2Mo+2Mb r.321K 

0.5 (X-O.661q X/4 

bl 
X=1.321K 

X/4'0.33 K 

X/4 X/4 

-
. 0.33 K lA(2:642 K - Xj 

O. 5(X -.321 K) 0.5(1. 64 2K-,X] 

d 

0.5(X - 0.321K) 0.33K . 
O.5(X- 0.321 K)1/4 (X-1.64K) 

e 

0.5(L64K-X)0.33 K 

APPENDIX B.2 


b l 

2MQ+ 2 Mb= X 

X /4 

X/4 

0.5(X-K) 

..' 
K/2 


K/2 


l/l(X-K) 

C 

4Mo= X 

X/4 

\ 

18(2K+X) 

X/4 

'.. 
K/2 

d 

2MQ+4Mb= K +X 

1/6(K+X) 

POSSI BlE BAS Ie SOLU TI ON S 

e ! 
. 

: i 

~ II., 

:1 
.. \ .' ' 

4MQ+2 Mb=K+X 
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