
PREFACE 

The solution of elliptical equations has great impact 

upon engineering fields. For example, in magneto-hydro­

dynamics we have this problem to solve 

In the electronics field we have Poisson's Equation 

2(2) V U(x,y) + e(U,x'Y)/G = O. 

This paper was born out of a long-term study of cathode ray 

tubes and their functioning. One equation, which is the 

example given" in this paper, is an approximation to Poissonts 

Equation for certain regions of electric fields U(x,y) and 

charge distribution r(U,x,y)/~ where 

~(U ,x,Y)/E .. aU(x,y), thus 

V2U(x,y) - aU(x,y) = 0 • 

Thus, in engineering, we want to be able to solve 

elliptic problems of the general type 

V2U(x,y) - g(a,U,x,y) = 0, 

where possible forms of g are shown in Eqs (1) through (3) 

above. 
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This paper will develop some problem solving techniques 

for the general case, Eqn (4). In particular, it explains 
. 

the computer progrrun written to solve for the constant a 

in Eqn (3'), and an analysis of the computer results to 

establish the validity of the method. 

Again, the specific problem form is the general ellip­

tical equation, Eqn (4), where U(x,y) is contained in the 

function space C2(R2), where x,y t: R1, a in general is a 

real vector of unknown quantities, and U(x,Y) = f(x,y) are 

the known boundary values on the entire boundary of our 
" I 

region of definition RC~. The function g will be assumed 

sufficiently smooth to ensure a unique, continuous solution 

to Eqn (4) in"R. 

The specific example ~hich will be dealt with in detail 

is called tflinexU and is of the form of Eqn (3). Here VIe 

use the specific method of this paper to solve for, in 

this simple caso, the one-dimensional unknown.§;. In this 

situation we have nbe analytiC solution.§; = V2U(x,y)/U(x,y). 

So, for any point in R an analytic solution for a can be 

readily found. But there are other specific problems, like 

Eqn (n where there is no quick way of solving for the 
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unknown ~ = (a1,a2) since a is a vector in this example. 

The initial development of this solution method is 

derived from work done at the University of Sou thern 

California by Dr. Edward Angel. 'rhe general theore ti cal 

part can be found in his paper [lJ. My main contribution 

to this work lies in the analysis of the results. 

The Table of Contents for this work gives a fairly 

accurate outline on the contents. The order of the chap­

ters is harmonious with the natural succession of first 

working out the technique and second trying out the theory 

on a computer. 

As will become evident in the Introduction, the in­

verse nature of solution means that, for example, in 

Eqn (3) we want to solve for a but first it is necessary 

t9 find a solution for U(x,y) with a specific guess for 

.!. The inverseness lies in the method of solution nec­

essary to find U(x,y). 



CHAPTER I 

INTRODUCTION 

In many problems dealing with the real world, one 

finds a common situation where the governing equations of 

the phenomenon are known exce?t for one parameter, scalar 

or vector (3). Since there are many more forms of problems 

in need of solutions, one must limit his scope of pursuit 

toa small, small subset of the entire problem spectrum. 

We shall limit ourselves to the specific task of solving 

Inverse Boundary-Value Problems of the general elliptic type, 

(0 V2U(x,y) - g(x,y,U,~) = 0, 

with U(x,y) = f(x,y) defining the boundary values. We shall 

examine the specific results of using an IBM 1130 computer 

for the problem solution. In this general form, ~ is the only 

unknown, since U(x,y) can be determined because we know the 

boundary conditions f and the region R. 

Our investigation \nll mainly involve a linear example 

with ~ as a scalar: 

(2) V2U(x,y) - aU(x,y) = 0, 
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with U = 1 along (0,0) to (0,1) and on the other three sides 

of the unit square, U = 0. 

'l fguL-Ht----.u, \) 

o 	 Rogion of' Interest in 

our Example, LINEX 

In order ascertain the value of a, for the method 

of solution used herein, we must have accurate observed 

knowledge of U at L distinct pOints, each point specified 

by its (x,y) coordinates. As we shall discover, the number 

and placement of the observation points is of utmost 

importance. Lu<::kily there are rules of thumb as Vie shall 

see. 

Possible physical examples for our studies might 

be the non-linear magneto-hydrodynamic problem described 

by 

where a is a two-dimensional real vector a = (aT,a2). 

A simpler version of this same problem would be 

(5) V2U(x,y) = exp(aU(x,y}), 

normalized so that a is one-dimensional. 
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See reference l21 for further details of this problem • 

. 
There are three important mathematical tools which 

we shall need to solve for ~ in Eqn (1): 

1") Invariant Imbeddlng 

2) Newton's Method 

3) Quasilinearization (if g is a nonlinear function 

of U) 

Quasilinearization is used to translate the nonlinear 

equation into a sequence of linear problems convergent to 

the solution of Eqn (1). Given the nonlinear equation: 

the linear version of t'1e same equation in the unknown 

function U + l' ~s:m

(7) 

U + 1 = 1 on R.m



CHAPTER II 

METHOD OF INVERSE SOLUTIONS 

In inverse problem solving, we want to find the unknown 

in a specific governing equation such that the observations 

made on the process match up with the computer solution of 

the governing equation with the correct a-value. We shall 

employ a method of solution which relies upon the quantity 

known as the Relative Least Squares Error (R.L.S.E.) 
L 	 . 

(8) 	 Sea) = E (Un{~)- RHO(~))Z/ RH02(.q), 

1=t . 


where Un(~) is the value of U derived from using the nth 

approximation to a, and RHO(i) is the value truten from the 

lth observation data. It is shown in reference \..11 that 

the least squares error method can yeild the correct or 

proper~, and in this paper we accept the method's validity, 

use it, and observe the results. 

Taking the minimum over ~ of the least squares error 

and rewriting, 

We can replace (9) by noting that a is the solution of 
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( 10) VS(a) :-: 0 OR as/Sa.= S (a) ~ 0, i=1,2, •.••p. 
~ a.· 

~ 

Thus ~ is the simultaneous solution of p nonlinear differen­

tial equations, whose solution presents quite a formidable 

computational task in itself. 

Apparent at this juncture is the great difficulty in 

applying the classical gradie~t method in (10). Gradient 

methods, in general, require an enormous amount of computing 

because it is necessary to solve all p equations for a. 

Usually many guesses at ~ are necessary. Also gradient 

solution requires the simultaneous solution of Eqn (1), a 

very time consuming job. We need a~other method~one which 

will be economical on the computer. 



CHAPTER III 

NEWTON'S CONVERGENCE HETHOD 

If we regard the original general governing equation, 

(1) 	 V2U(x,y) - g(U,x,Y,a) = 0 

U(x,y) = f(x,Y) on boundary 

as our equation of interest, we can employ the general method 

of solution known as Newton's method. 

Assuming that the gradient VS(a) is continous in ~, 

we can utilize Newton's Bethod as follows: let ~ be an 

initial guess ~t~, then Newton's method says that a new 

and more accurate approximation can be found by: 

(11 ) 

where J(ak ) is the Jacobian of the system. Namely, J is 

the matrix whose i,j component is 

(12) J(a'.;:: S =a2S(a)/aa.aa., i,j=1,2, ••• ,n.-'1J a. a . - -~-J 
-~-J 

If we are near the correct~, then the convergence rate 

should be quadratic: 

Thus, at each interation the number of significant digits 

http:a2S(a)/aa.aa
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should be approximately doubled if we star·t with a good a • 
o 

The big problem at this point is the correct evaluation of 



CHAPTER IV 

USE OF SENSITIVITY FUNCTIONS 

Like so many jig-saw puzzles, we are finally approaching 

the point where all the pieces fit in place. Let us take 

the first and second derivatives of the sensitivity function 

S(a). Since VS(a ) = S (~) and - k ~a i 


J(~) = Sa. a. (f!k) • 

. ~ J 

Now all the parts fit the jigsaw puzzle. 

Taking the necessary derivatives of the'R.L.S.E. func­

tion S(a), we obtain 
L 

as/aa.=S (a)=2E «U(L)-RHO(l» U (l»/RHO(l)2 
~ - 1=1a i a i 

L 
( 15) a2s/aa.oaj = 2E (U(l) - RHO(l» Ua.a.(l) + 

; 1=1. ~ J 
U (1) U (1)) /RHO(2) 2 • a i a j 

We find that these equations have created what are known as 

the Sensitivity Functions, which we now define as 

(16)· 1) U(x,y) = U(x,y) 

2) Ua.(x,y) = ~U(x,y)/oai = V(x,y) 
~ 

3) Ua. a . (x, y) = ciu(x , y) / e>ai 3a j = VI( x , y) 
]. J • 
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We have now introduced two more vari.ables which are 

similar to, and closely related to, U(x,y), namely V and W. 

Since simplification is our goal, lel--us now ~xamine the 

U, V, and W functions. 

By repeated differentiation ofEqn (1) and interchanging 

the order of differentiation, we obtain 

(1) V2U + g(U,x,y,a) = 0, u=f(x,y) on boundary 

( 17) V2U + g + g"U = 0, U = ° on boundary
~ \lai ai ai 

( 18) V2U + g + g U + g U + g U + g U = 0,
~a. a.a. U a. U a. UU a.a. U ~a.

J 1 J 1 1 1 J Ja i a j 

U 

i a j 
= ° on boundary.
a

Note that both Eqns (17)and (18) are also linear and differ 

from Eqn (1) only in their forcing function. Note that 

Eqn (1) is the forcing function for (17) while (17) is the 

forcing function for (18). The power of our method resides 

in these relationships. 



CHP..PTER V 

QUASILINEARIZATION 

From the preceeding chapter, we see that it is desir­

able to have all equations in linear form. When the govern­

ing· equation is not linear, we quasilinearize to a sequence 

of linear problems which converge to the solution of the 

problem of interest. A nonlinear example is 

,2U(x,y) = exp(aU(x,y) = g(a,U,x,y). 

Let V be an approximation of U? By Taylor's series 

expansion about V, we see that 

(1'9) g(U) = g(V) + (U-V) gU(V) + O( (U-V) 2). 

Substituting Eqn (19) into Eqn (t) yeilds 

(20) 

which is linear in U + 1.and assumes the original boundarym . 

value. In the limit, U -. U as m-+OC) • m 



CHAPTER VI 

DISCRETE INVARIA:\fT It-'IBEDDING 

We now introduce the needs of our discrete, digital 

computer. For simplicity of development, we shall assume 

that the re~ion of interest R is the unit square. 

o,JJ-I-____'"'\1 , 1 11 

Unit 	Square: Region of Interest 
R 

.. o,.u I,U 

This assumption is for simplicity of development only, 

because invariant imbedding is ideally suited for treatment 

of elliptic equations over very general regions. el, 51 
Remembering that all governing equations must be 

linearized,we can write the generalized form of the gover­

ning equation as 

(21) V2U(x,y) + H(x,y)U(x,y) = S(x,y) 

where U represents U, U,U , or U with appropriate H
ai ai a j , m 

and S 	 functions. 

Since we are developing a computer solution technique, 
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we now need to translate from the continuous to the discrete. 

We seek a solution of Eqn (21) at a discrete set of evenly 

spaced points, (xi,y j ), forming a gild bnthe'untt square R. 

We shall choose the points such that the spacing between them 

is 

(22) n: = liN, (not the u=3.1415926 ••• )-
where N denotes the number of divisions in the grid. For 

example, if N = 3 we would have the grid 
y 

~ 

1 , 1 

} tr~ 

U(x,y)=f(x,y) on boundary 

0, u y 
y 

For simplicity, let us define Uij as U(iu,jn:). Applying 

the standard five point approA~mation formula for 

V2U(i1C, jn:) gives 

(23) 2 = U-l+ 1 • ·+ U. j+l+ -4U ..+U. 1 .+U.. 1f/ Uij ~ ~_J 1,_ 1J ~- ,J 1,J-

Thus, the standard finite difference equation becomes 

(24) U-l+ 1 ,j+ U.. 1 -4U.. +U. 1 .+ U.. 1+ 1C 
2

H. jU.. = 
~ ~,J+ ~,J. 1- ,J 1,J- 1, ~,J 

1C 2S. . 
~, J, 

.. 23···N11, J= " ,~ ­
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The boundary values are known from the original continuous 

equation (n. Now we have (N_2)2 linear algebraic equations 

to solve. 

We shall adopt a vector notation to expedite the solu­

tion. Let Ui be the ith column vector of interior points 

(the boundary points are known from the boundary conditions) 

let us also define some 	 handy vectors and matrices: 
2 , i~j 

(26) Q = (qi') = -1 , i-j=l
J! -0 , otherwise 

U. 1 ' j=2 
r i '= (rij ) = U~,N+l ' j=N 

o , otherwise 

Now we rewrite Eqn (24) 	using the vector notation 

where 

(29) Hi = 11:
2 diag (Hi2 ,Hi3 , ••• , HiN) , 1=2,3, ••• ,N 

2 .s
1:
.. = column (11: Sij)' J=2,3, ••• ,N 

We now have Eqn (28), a two-point boundary value problem 

with U1 and UN+ known and the other boundary conditions1 

entering through the r •i 
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Since we ar.e looking for solutions to linear equations, 
. 

we can seek solutions to Eqn (28) in the form 

(30) = Ai Ui + , where _~ are (N-:1)2 matrices,Ui + 1 bi
 

are (N-O-dimensional vectors, and the Ai' are
bi bi 

independent of U. Here the functional form is recursive, 

that is, U depends on U1 , U3 depends on U2 and so on.2 

To begin the recursive process of solution, we know U1 

from the boundary conditions since U1 is part of the 

boundary, so is UN+ 1• Solving for the coefficients Ai 

and bi , we put Eqn (30) into Eqn (28) which results in 

) -1(31') Ai _1.::: (21 + Q..- Hi -Ai ' AN ::: 0 

(32) bi~l -= + Si + bi) , = UAi _1(ri bN n+1 

Notice that Eqn (31) is in inverse form. 

The most important existence condition lies in the 

existence of the inverse of the. matrix in Eqn (31). Since 

21+Q. is positive definite and AN is zero from the boundary 

conditions, the entire set of Ai _ 1 matrices are positive 

if Hi is negative definite. Thus, an inductive argument 

shows the existence of the inverses for all i. 

The power of invariant imbedding for this problem 
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lies in recognizing and using the solutions to linear equation 

(30). Also we prefer to use invariant imbedding rather than 

standard iterative methods like "sucessive over-relaxation" 

or "alternating direction implicit" because 

1) there are no parameters to choose even when the 

problem is nonlinear, 

2) it works well within irregular regions, 

3) the solution of the se~sitivity equations is easy 

because of their similarity to Eqn (1). 

From the computational viewpoint, the matrix recurrence 

equation (31) requires a large part of the total computing 

time for a given ak , (k = 1,2, .••m), but we need only one 

set of A-matrices for calculations of U,U ,and Ua.a.(ie, 
a i 1 J 

u, V, and W) • 



CHAPTER VII 

~---

COHPUTER PROGRM1:, G~rERAL OUTLINE 

(1) If governing equation is nonlinear, linearize 

(2) Guess an ~. 

(3) Solve recursively for the set of Ai matrices, 

i = (N,N-1,N-2, ••• ,2) using Eqn (31). 

(4) Solve recursively for the bits, using Eqn (32). 

(5) Solve for Ui +1,(i=1,2, ••• N) using Eqn 30). 

(6) Solve for Vi + 1 ,using Eqn (16). 

(7) Solve for ci's 	using same equation as for bi's. 

(8) Use the same routine to solve for the Wi + 1 as 

(9) 	 Compute sums Sa. (~k) and Sa.a.(~k) using results 
~ ~ J 

from (6) and (8) above and Eqns (14) and (15). 

(10) Compute new ak+1 from Eqn (11). 

(11) Ifl~+1-~ f~ 	.005 , repeat (3) through (10), 
. (Linex) 


with ~k+t replacing ~k' otherwise stop. 




CHAPTER VIII 

LINEAR EXA14PLE: ftLINEX" 

A detailed analysis of computer results from the linear 

example follows in Chapter XI. 

We will examine the equation 

(33) V2U(x,y) = aU(x,y), where a is scaler. 

Assume fixed boundary conditions on the unit square with 

U 0 LINEX Boundary Conditions 

We wish to determine a such that,from a set of observation 

points in region R, ',"Ie can minimize the least squares criterion 
L 

(35) 	 Sea) = ~ (U(l) - RHO (1»2/RHO (l)2. 

1= 1 


The associated sensitivity functions are 

(36) v2u = 	 aU + U , U = 0 on boundary,a a a 

(37) V2u = aU +2U , U = 0 on boundary,aa aa 	 a aa 
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For simplicity, we write 

(38) V(x,y) = u (x,y)a 


W(x,y) = U (x,y)
aa 

Thus, we must solve the set of equations 

V2U _ a(39) U = 0, 

V2v - a V = U, 


V2w_ 
a W= 2V. 

Ntlte that the V solution depends upon the U solution while 

the Wsolution depends upon tae V solution. 

The discrete version of (39) is 


2
(40) - 2.U. + U. 1 - QU. - 'It aUi =Ui + 1 l l- l ° 
II(41) ( V replaces U) 'lt 2Ui= 

(42) n ( W replaces U) = 'lt 2V. 
l 

Since in this example = 0, we have the followingr i 

computer program outline: 

Computer Program Outline 

(1) All equations already linear, thus no quasilineari ­

zation necessary, 

(2) _ = «2+'lt2~)I+Q-Ai) , AN = O.0;JAi 1 

(3) Ui + 1=Ai Ui , U1= 1.0, (UN = 0.0), 
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(4) b. 1 = A. 1(b. +n: 2U. ) , b _ = 0"1- J.- 1. 1 N 1 

(5) A.V. +b., V, 0.0,Vi + 1 = 1. 1. 1 = 
'~-~ 

(6) c. 1 = A. l(c.+ 2n; 
2V.) , c _ 0.0,1- 1- 1 1 N 1 = 

(7) \'Ii + 1 = AiWi + ci ' iN, = 0.0, 

(8) = ak-(
S
a/Saa)'ak+ 1 

(9) testl~+,-~l<.oo5, if true exi t, if false repeat 

(2) through (9) with updated estimate of ~. 

See Chapter IV to understand where the right-hand 


side of step (8) comes from. 




CHAPTER IX 

A NONLINEAR EXANPLE (WITH NO CONFUTER DATA) 

Let us assume that the governing equation is 

(43) V2U(x,y) = a exp(bU(x,y» 	 (1), in the unit square, 

U(x,y) = 1 on boundary. 


Linearize Eqn (43) 


(44) V.2 zmt- 1 = a exp(bz )+ ab exp(bzni)'m

zm+l = 1 on boundary, 

where 

(45) lim Z = U.mm....ao 

We use repeated differentation of (43) with respect to 

~ and b (our unk.nowns) to derive the sensitivity equations: 

(46) 
(First Derivatives) 

(47) 

(48) v2u = 2bebUU + abebUU 	 +' ab w e bUU2 
aa a aa 	 a 

bU(49) V2U = 2 aebUub + 2abuebUub + aU2e +bb 
bU 2 bU 2abe ab e 	 (Second Derivatives)Ubb + Ub 

(50) V2U = UebUU + aebUU + 	 abUebUU +
ab b a a 

abebUU ab2ebUUaUbab + 
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Boundary conditions are all equal to zero. 

U =Ub=U =U "\.J...=U b=O.O on boundary of the unita aa I.U a 

square. 

The (normalized) Least Squares Criterion is 

(52) S(a,b) =!(U(l) - RHO(1»2/RH02(1). 
1"1 

Therefore, by differentiation we obtain 

(53) 

neb) 
I.. 

Saa(a,b) =22«U(1)-RHO(1)U (1) + U2(1»/RH02(l)a!"l . aa 
It(b) 

I.. 
=1:2«U(1)-RHO(l)U bel) + Ua(l)Ub!~ a 

(1»/RH02(1). 

Newton's method"yields 

= - (SbbSa-SabSb)/ak 

= bk - (SabSa~SaaSb)/ 

For each value of (~,bk)' we solve Eqns (44) and (46) through 

(54)4 Since these equations are of similar forms the invar­

iant imbedding procedure is quite efficient. Observations 

were generated (by Angel) by solving the discretized problem •. 

Angels results for the constrults a and b were 
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Iteration 
No. k ak bk 

0 1'.500 1.500 
1 1 .682 2.274 
2 1 .681 2.269 
3 1 .681 2.269 
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1) number of observation points 

2) rate of convergence to correct a 

3) symmetry of observation points 

The rate of convergence is here defined as the actual (or 

extrapolated) number of iterations necessary to achieve 

convergence to an accuracy of .005. If the number is over 

13, then it is extrapolated. 

Unexpectedly, a quadratic rate of convergence was not 

seen in all of the test cases. But in the cases where the 

observation points were apparently in the most effective 

places and appeared in the right numbers, a rate approximating 

quadratic convergence is observed. A possible factor, other 

than observation number and placement, in reducing convergence 

time might be large errors in the initial guess of a. 
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TABLE I 

An Approximate Weighting Table of 'the Number of 

Interations on ~ ~Data Set. 

NECESSARY 
SYHBOL USED CLASS DESCRIPTION ITERATIONS 

VF or VG very fast or very good "'10 

F or G fast or good )10~13 

almost fast or goodAF or AG 

p poor or slow 

VP very poor or slow >25 

* Oscil. about correct a 
but no convergence-

initial and 
continuing in the 
wrong direc­
tion 

OVERSHOOT inital and continuing overshoot 

The class discriptions are approximate and are here used 

to denote c.onvergence performance between the range of 

"very fast" to "very slow". 



CHAPTER XII 

LINEX: SORTING OF DATA SETS 
~-. 

The different classifications of my data sets are 

chosen to show the success of the specific sets and groups 

of sets. The order of importance of the set classification 

are: 

1) Rate of convergence 

2) Number of observation points. 

3) The shape (symmetry) of the observation points 

arrangement. 

Figure II shows the different data sets arranged according 

to the classifications of rate as given in Chapter XI. 



30CON}~GURATIONS OF ALL OBSERVATION DATA SETS 

CLASSIFIED ACCORDING TO SPEED OF CONVERGENCE 

VERY FAST CONVERGENCE (VF or VG) 

b L~~~~$' 000 l~~ h~@, ..000 

r G) 

oo~ t~;.. ...., 
ALNOST FAST AND SLOW (AF or AG and P) 

o Q~. 0 0 0 j~ I000 ~. ~ 00 10 0 0 
°0 0 • 000 001000 

~t-'T"!'1, It I I f II +~ ll.t-rt , I I I I rt+t...... H 'Il...j..l i(i}~...~r 

OSCI LATION ABOUT CORRECT .£ VALUE 

L ~....,." L~ 
WRONG DIREC ION OR OVERSHOO 

Figure 2 



CHAPTER XIII 

LINEX: RESULTS OF DATA SORTING 

(1) If the initial ~ guess is not close enough to 

the final a = 2.00, then there is a greater possibility that 

the final a-guess could approach another local extremum. 

Theoretically, this cannot occur, at least for linear problems. 

However, numerical inaccuracies can introduce spurious results. 

(2) As the data-arrangement is further from the y-

origin symmetry line, the rate of convergence is generally 

slower. 
xoxox 

(3) Data sets arranged symmetrically as in: 00000 
xoxox 

where x is data and 0 is blank, seem to be the most successful 

arrangements, especially if they follow (2), above, and have 

from 2 to 6 observation points. 

(4) The method used in solving LINEX is based upon the 

largest matrix size which could fit in the Portland State 

University IBM 1130 computer (this being 9 x 9) while Angel's 

work was done using a 17 x 17 array_ This is a ratio of 

useful non-boundary-value numbers of 49/225 or five times as 
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m~~y points, giving a matrix ratio (squar~-root of pOints 

ratio) of 2.3 to 1. So there is a very good chance that 

convergence was slower because of this or, perhaps there is 

some sort of resonance pheno~enon involved. 

(5) The most successful data sets seemed to work due 

to the number of observation points (the successful group 

all contained 2 to 6 points each). The successful sets are 

definitely a function of the pattern and placement of obser­

vation points. 

(6) There are three classifications of the least 

successful observation point data sets. 

a) the sets which Vlere completely off had 

7 to 10 observation pOints/set. One would believe 

that more data would enhance covergence but such 

appeared not to be the case, 

b) the oscillating data sets all had their 

observation points on the axis of symmetry (namely, 

Y=~). This is definitely significant. 

c) for the successful but very slowly convergent 

sets, see the figure on the next page. 



FIGURE OF THE LEVELS OF CONVERGENCE SHOWING THE LOC-· 

ACTION AND RELATIVE FREQUErJCY OF THE 'OBSERVATION POINTS 

Individual Data Points~- Collected Data Pts 
..;;...:;;..=.;;;...;;....;..;;..,;;.::.......;:;..;:.;..;~-. 


Very fast con ergence class 

OOOOOQ 
Q 

sym 
~~~~N~u~m-b~e~r~O~f-p-O-l-.n~tHs~aXi.i~]g 

cluster = frequency

of occurence in dat 


Oscillat'on 


Very poor conJ. rgence class 

~ % ~. () ~ O~ ~ 0 () 0

" 
0 ~ a 0~ ~ I:)~ 00 0 

~ ~ ~ <b G !> 00 e <!l 0" 
6) e e ED f) e. 

Figure 3 
The "Collected Data Pts." show the effects of bunching the 

"Individual Data Points" into an expression of relative 

"size" for a given position. # indicates equivalence. 



CHAPTER XIV 

CONCLUSIONS 

By looking at the data interpretation chapters, it is 

apparent there is a right way and a wrong way of getting 

fast convergence from .a set of observation points. And, of 

course, if we can get fast convergence then we have a suc­

cessful computer solution to the problem at hand. 

Quite likely there will be other conditions for 

successful observation pOints for other geometries. For 

example, the nonlinear problem discussed in Chapter IX. 

Here, since there is a boundary value of 1 all around the unit 

square, successful data points could be anywhere near the 

boundary not just near the unit value y-axis as in ttLINEX." 

Returning to LINEX, we obtained fast convergence when 

the observation data points upon U(x,y) were as near to the 

origin as possible, while still in art XOXOX formation as 

shown on page 30. This so-called proper spacing must have 

something to do '!lith our use of the standard five point 

approximation formula in discretizing our basic formulas. 



__~~~r~~~rr~~correct a-value 
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oxo 
The five point approach has the following .syro..rnetry: xox • 

ox6 
Very similar is our most successful observation data arrange­

xoxox 
ment: oxoxo, which is just the negative of the "five point" 

xoxox 
symmetry. If other approximation schemes were used, it is 

quite possible that similar relationships between the approxi­

mation and the data point symmetries would be found. 

Other than symmetry of data paints, we must examine 

the two important straight lines near which the data points 

worked best. These are the y-axis and the axis of symmetry 
'A y-axis 

for the function U(x,y): 

most effective poin------...f..4~!100 axis of symmetry 

~________~~~~x-axis 

The y-axis is easiest to understand. The data near it con­

tains the most significant digits and woul~ therefore be best 

for fast convergence. The line of U symmetry is more diffi ­

cult to, understand. Here, if the data,is piled right on the 

line, as shown on page 33, instead of a very rapid convergence 

we obtain convergence and then oscillation: 

K iteration no ......... 
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If we move the data points away from this pxis slightly, 

then the convergence method works well (see page 33). 

Thus, we have two major criteria for proper convergence 

defined and partially understood. For our sample problem 

LINEX we have determined the best location and the proper 

symmetrical arrangement of the observation data on U(x,y). 
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