PREFACE

The solution of elliptical equations has great impact
upon engineering fields. For example, in magneto-hydro-
dynamics we have this problem to solve

(1) vly (x,y)- ajexp(a, U(x,y)) = 0.

In the electronics field we have Poisson's Equation

(2) VAU(x,y) +p(U,x,5)/e = O.

This paper was born out of a’long-ter@ study of cathode ray
tubes and their functioning. One equation, which is the
example given in this paper, is an approximation to Poisson's
Equation for certain regions of electric fields U(x,y) and
charge distribution ?(U,x,y)/é where

e(U;x,y)j% ~ al(x,y), thus

(3) V2U(x,y) - al(x,y) = 0.

Thus, in engineering, we want to be able fo solve
elliptic problems of the general type

W YUY - a,U,x,y) =0,
where possible forms of g are shown in Eqs (1) through (3)

above.
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This paper will develop some problem solving techniques
for the general case, Eqn (4). In particular, it explains
the computer program written to solve for the constant a
in Eqn (3), and an analysis of the computer results to
establish the validity of the method,

Again, the specific problem form is the genéfal ellip~-
tical equation, Eqn (4), where U(x,y) is contained in the
function space Ca(Ra), where x,y ¢ RY, a in general is a
real vector of unknown quantities, and U(x,y) = f(x,y) are
the known bopn%gry values on the entire boundary of our
region of definition RCRE. The function g will be assumed
sufficiently smooth to ensure a unique, continuous solution
to Eqn (4) in R,

The spécific example vhich will be dealt with in detail
is called "linex" and is of the form of Eqn (3). Here we
use the specific method of this paper to solve for, in
this simple case, the one-dimensional unknown a. In this
situation we have &he analytic solution a = VEU(x,y)/U(x;y).
So, for any point in R an analytic solution for a can be
readily found. But there are other specific problems, like

Eqn (1) where there is no quick way of solving for the
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unknown a = (a;,a,) since a is a vector in this example.

The initial development of this solution method is
derived from work done at the University of §ou thern
California by Dr. Edward Angel. The general theoretical
part can be found in his paper [1], My main contribution
to this work lies in the analysis of the results.

The Table of Contents for this work gives a fairly
accurate outline on the contgnts. The order of the chap-
ters is harmonious with the natural succession of first
working out the technique and second trying out the theory
on a computer,

As will become evident in the Introduction, the in-
verse naturé of solution means that, for example, in
Eqn (3) we want to solve for a but first it is necessary
to find a solution for U(x,y) with a specific guess for
&. The inverseness lies in the‘method of solution nec-

essary to find U(x,y).




CHAPTER I
INTRODUCTION

In many problems dealing with the real world, one
finds a common situation where the governing equations of
the phe nomenon are known excest for one parameter, scalar
or vector [3]. Since there are many more forms of problems
in need of solutions, one must limit his scope of pursuit
to a small, small subset of the entire problem spectrum,
We shall limit ourselves to the specific task of solving
Inverse Boundary~Value Problems of the general elliptic type,
(N 72U,y - glx,y,0,8) = 0,
with U(x,y) = f(x,y) defining the boundary values. We shall
examine the specific results of using an IBM 1130 computer
for the problem solution. In this general form, a is the only
unknowﬁ, since U(x,y) can be determined because we know the
boundary conditions f and the region R.
OQur investigation will mainly involve a linear example
with a as a scalax:

(2) VZU(x,y) - al(x,y) = 0,
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with U = 1 along (0,0) to (0,1) and on the other three sides

of the unit square, U = O,

‘-H@x!l_ ")

e

i 0 Region of Interest in

P our Example, LINEX
KT U7 K o |

In order to ascertain the value of &, for the method

of solution used herein, we must have accurate observed
knowledge of U at L distinct points, each point specified
by its (x,y) coordinates, As we shall discover, the number
and placement of the observation points is of utmost
importance. Luckily there are rules of thumb as we shall
see,

Possible physical examples for our studies might
"be the non-~linear magneto-hydrodynamic problem described
by

) V2U(x,y) = agexp(ai(x,y),
where é is a two-dimensional real vector as= (aT,aa).
A simplerAversion of this same problem would be

(5) V2U(x,y) = exp(allx,y)),

normalized so that a is one-dimensional.



See reference {é] for further details of this problem,

There are three important mathematicél tools which
we shall need to solve for a in Eqn (1):

1) Invariant Imbedding

2) Newton's Method

3) Quasilinearization (if g is a nonlinear function

of U)

Quasilinearization is used to translate the nonlinear
equation intp a sequence of linear problems convergent to
the solution of Eqn (1). @Given the nonlinear equation:

(6) ?ZU(x,y) - aTexp(aZU(x,y)), =1 on boundary,
the linear version of t:e same equation in the unknown
function Um;T is:

(7 VZUm+T(x,y) = a,exp(aU )+ (U =U Ja,asexp(al )

Um+1 = 1 on R,



CHAPTER IT
METHOD OF INVERSE SOLUTIONS

In inverse problem solving, weiﬁahﬁ'td find the unknown
in a specific governing equation such that the observations
made on the process match up with the computer solution gf
the governing equation with the correct a-value. We shall
enploy a method of solution which relies upon the quantity
known as the Relative Least Squares Error (R.L.S.E.)

< L ‘ 2, i

(® sta) = F (0,00~ REO()/ RHO“(L),
where Un(ﬂ) is the value of U derived from using the nth
approximation'té a, and RHé(ﬁ) is‘the value taken from the
Jth observation data. It is shown in reference {1} that
the least squareé error method can yeild the correct or
proper a, and in this paper we aécept the method's validity,
use it, and observe ﬁhe results,

Taking the minimum over a of the least squares error
and rewriting, » 7

. . L W2/ pand
(9) min 5(a) = mjn ,QL-.;T. (U, (2)- RHO(Q))=/ RHOZ(L)

We can replace (9) by noting that a is the solution of



| (10) vs(a) = 0 ‘OR as/aai= sai(a) = 0, i=1,2,4. 44D
Thus a is the simultaneous solution of p nonlinear differen-
tial equatidns, whose solution presézzsvéuiﬁe‘a fornidable
computational task in itself.

Apparent at this juncture is the great difficulty in
applying the classical gradient method in (10). Gradient
methods, in general, require an enormous amount of computing
because it is necessary to solve all p equations for a.
Usually many guesses at a are necessary. Also gradient
solution requires the simultaneous solution of Egqn (1), a

very time consuming job., We need another method,one which

will be economical on the computer.



CHAPTER III

NEWTON'S CONVERGENCE METHOD

If we regard the original general governing equation,

(1) Vou(x,y) - g(U,x,y,a) = O
U(x,y) = f(x,y) on boundary

as our equation of interest, we can employ the general method

of solution known as Negton's method,

ASsumiﬁg that the gradient VS(a) is continous in a,
we can utilize Newton's Method as follows: let 25 be an
initial guess at a, then Newton's method says that a new
and more accurate approximation can be found by:

() 2z, =2 - J(gk)'T vs(a,) Sa]
where J(ak) is the Jacobian of the system. Namely, J is

the matrix whose i,j component is

-
al,_']

If we are near the correct a, then the convergence rate

(12) J(a) s =aZS(_a_)/a_a_iagj~, 1,3=1,2,...,n.

should be quadratic:

(13) ‘léoptimalf§k+1“ = O(,léoptimal'§k||2)°

Thus, at each interation the number of significant digits


http:a2S(a)/aa.aa

should be approximately dcubled if we start with a good ay.

The big problem at this point is the correct evaluation of

VS(a) and J7(a).



CHAPTER IV
USE OF SENSITIVITY FUNCTIONS

Like 50 many Jjig~saw puzzles, we are finally approaching
the point where all the pieces fit in place. Let us take
the first and second derivatives of the sensitivity function
S(a). Since Vs(gk) = Sai(gk) and
1) = 5, . @
Now all the parts fit the jigsaw puzzle.

Taking the necessary derivati?es of the R.L.S.E. func-

tion S(a), we obtain

L
(14) 35/23,=5, (2)=23 ((U(L)-RIO(1)) U, (1))/RHO(1)?
= : 1 :
L
2 - -
(15) @ s/aa?._aaj - 22 (V) - RO T , () +
U, (1) U, (1)) /RHO(2)Z,

i J

We findAthat these equation; have'created what are known as
the Sensitivity Functions, which we now define as
(16) 1) U(x,y) = U(x,y)
2) Uai(X,Y) = dU(x,y)/?a; = V(x,y)

V 2 .
3? Uaiaj(X,y) = 9 U(X,y)/aaiaaj = W(x,y)
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We have now introduced two more variables which are
similar to, aﬁd closely related to, U(x,y), namely V and W.
Since simplification is our goal, 15%“us“naw examine the
U, V, and W functions.

By repecated differentiation of Eqn (1) and interchanging
the order of differentiation, we obtain

(1) v°U + g(U,x,y,a) = 0, u=f(x,y) on boundary

(1?7) VaUai+ g, * &yl, =0, U, = O on boundary

i ) i i
2
(18) v<U + g +g. U +g. U_ +g..U +g..U =0
aiaj aiaj Uai\ai U 3 ay Uvu aiaj U aiaj ’
U = O on boundary.

a, a.
l . .
Note that both Egns (17)and (18) are also linear and differ

from Eqn (1) only in their forcing function. Note that
Eqn (1) is the forcing function for (17) while (17) is the
forcing function for (18). The power of our method resides

in these relationships.



CHAPTER V
QUASILINEARIZATION

From the preceeding chapter, we see that it is desir-
able to have all equations in linear form. When the govern-
ing equation is not linear, we quasilinearize to a sequence
of linear problems which converge to the solution of the
problem of interest. A nonlinear example is

V2U(x,y) = exp(al(x,y) = g(a,U,x,y).

Let V be an approximatioh of U, By Taylor's series
expansion about V, we see that

(19) g(1) = g(V) + (U-Mgy(¥) + 0((U-M?).
Substituting Eqn (19) into Egn (1) yeilds

(20) VAU, .+ g(U) + (U, ,-U)gy(U) = 0,
which'is linear in Um+rand assumes the original boundary

value, In the limit, Um.* U as m—0.



CHAPTER VI
DISCRETE INVARIAWT IMBEDDING

We now introduce the needs of our discrete, digital
computer., - For simplicity of development, we shall aséume

that the region of interest R is the unit square.

y ‘
0,k 1,1

Unit Square: Region of Interest

h -

0,0 e

This assumption is for simplicity of development only,
‘becéuse invariant imbedding is ideally suited for treatment
of elliptic equations over very general regions. [1, 5]
Remembering that all governing equations must be
linearized,we can write the genefalized form of the gover-
ning eqﬁation as
(21)  VU(x,y) + HG,3U(x,) = 50x,)

where U represents U, Ua-’na,a.g

or Um with appropriate H
i i~J

and S functions.

Since we are developing a computer solution technique,
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L]

we now need to translate from the continuqus'to the discrete.
We seek a solution of Eqn (21) at a discrete set of evenly
spaced points, (xi,yj), forming a grid on the unit square R,
We shall choose the points such that the spacing between them
is

(22) = = 1/N, (not the wn=3.1415926...)
where N denotes the number of divisions in the grid. For

example, if N = 3 we would have the grid

v 4
- 1,1
U(x,y)=f(x,y) on boundary
e
o, ) —pX

For simplicity, let us define Uij as U(irn,jn). Applying
the standard five point approximation formula for
VZU(im,jn) gives

5 ,
(23) VU35 = Ugyq gt Uy gt 403440 U

. 4
ij Tdi-1,]
RZ

i,J3-1

Thus, the standard finite difference equation becomes

U.., + U ) . L o=
(24) i+1, 1,jU1,3

nas.

i,d,

i,J= 2;3)...3N”‘

2
-an,j +U U. . +n“H

i,j+1 i-1,3" i, -1
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The boundary values are known from the original continuous
equation (1). Now we have (N-Z)2 linear algebraic equations

to solve.

We shall adopt a vector notation to expedite the solu-~
tion. Let Ui be the ith column vector of interior points

(the boundary points are known from the boundary conditions)

(25) U, = |Vi2

i
Ui3
Usn
let us also define some handy vectors and matrices:
2, i=j
(26) Q= (qij ": -1 3 i-J=1 .
* -0 , otherwise
U, =2
- _ i1 ? s
ryo= (myy) = 0§ g s 3N
' 0 , otherwise

Now we rewrite Eqn (24) using the vector notation

(28) Uy, ;=20 «U; o - QU + r, + HU, =5,

where

(29) Hi 1‘:2 diag (HiZ’HiB’ ou.,HiN)’ i=2,3,...,N

2, .
S; = column (r Sij)’ J=2,3,...,N

We now have Eqn (28), a two-point boundary value problem
with U1 and UN+¥ known and the other boundary conditions

entering through the r;.
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Since we are looking for solutions to linear equations,

we can seek solutions to Eqn (28) in the form

, > .
(30) Ujpp = 4305 + Db, where~éi‘g:¢‘(Nf1) matrices,

b, are (N-1)-dimensional vectors, and the Ay, by are

independent of U, Here the functional form is récursive,
that is, U2 depends on Uﬁ’ U3 depends on UZ and so on.

- To begin the recursive process of solution, we know U1

from the boundary conditions since U1 is part of the

boundary, so is U Solving for the coefficients Ai

N+1°*

and b,, we put Eqn (30) into Bqn (28) which results in

1

(31) A,

- _
i-1. (21 + Q - Hi -‘Ai) , AN =0

i

(32) b. 4

O30 = Ap gy * 85 ¥ By, By Uy
Notice that Eqn (31) is in inverse form.

The most important existence condition lies in the
existence ofvthe inverse of the matrix in Eqn (31). Since
2I+Q is positive definite énd AH ié zérd from the boundary
_condiﬁions, the entire set of Ai-i matrices are positivé
if Hi is negative definite. Thus, an inductive argument

shows the existence of the inverses for all i.

The power of invariant imbedding for this problem
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lies in recognizing and using the solutioqs to linear equation
(30). Also we prefer to use invariant imbedding rather than
standard iterative methods like "sucessive o&ér—relaxation"
or "alternating direction implicit" because
1) there are no parameters to choose even when the
problem is nonlinear,
2) it works well within irregular regions,
%) the solution of the sensitivity equations is casy
because of their similarity to Eaqn (1).
From the computational fiewpoint, the matrix recurrence
equation (31) requires a large part of the total computing
time for a givén ., (k = 1,2,...m), but we need only one

set of A-matrices for calculations of U,Ua , and Ua a

(ie,
i i=3 V

U,V, and W).



CHAPTER VII

TR

COMPUTER PROGRAM, GENERAL OUTLINE
(1) If governing equation is nonlinear, linearize
(2) Guess an R
(3) Solve recursively for the set of Ai matrices,
i = (N,N-1,N-2,...,2) using Eqn (31).
(4) Solve recursively for the b, 's, using Eqn (32).
(5) Solve for Ui+1 (i=1,2,...N) using Eqn 30).
2
(6) Solve for V. ., using Eqn (16).
(7) Solve for ci's using same equation as for bi's.

(8) Use the same routine to solve for the W

ir1 28

Where Wi+ = Ai W, + ¢

for V 1

i+13 i i *

(9) Compute sums Sai(gk) and Saiaj(gk) using results
from (6) and (8) above and Eqns (14) and (15).

- (10) Compute new Ay 1 from Eqn (11).

(11) 1If -a_ [> .005 , repeat (3) through (10),
_ '§k+1 2k (Linex) epes o °

with 8141 Teplacing a,, otherwise stop.



CHAPTER VIII
LINEAR EXAMPLE: WLINEXM

A detailed analysis of computer results from the linear
example follows in Chapter XI.

We will examine the equation

(33) VEU(x,y) = alU(x,y), where a is scaler.
Assume fixed boundary conditions on the unit square with

lower left corner being the origin (see figure).

(34) U(O)y) = 1.0
U(1,y) = U(x,0) = U(x,1) = O
y .
U=0 1,71
olq U+0 LINEX Boundary Conditions
0,6—U=0 %

We wish to determine a such that, from a set of observation
points in region R, we can miaimize the least squares criterion

L
(35) s(a) =121(U(1) - RHO (1))2/rEO(1)Z.

The associated sensitivity functions are

2
(36) ¥°U_ = aU+U , U= O on boundary,

(37) VZUaa = al_ +20,, U = O on boundary,
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For simplicity, we write

(38) V(x,y)

Ua(X,y)

W(X:y)

Uaa(x’y)

Thus, we must solve the set of equations

(39) ¥%U - a U = O,
VoV -avs=u,
VoW ~ a W= 2V,

N¥te that the V solution depends upon the U solution while
the W solution depends upon the V solution.

The discrete version of (39) is

2 -
(40) Uspq =20, + U, 4 - QU =n%l, =0
(1) " ( V replaces U) = ani
(42) " ( W replaces U) = nZVi

Since in this example r; = 0, we have the following

computer program outline:

Computer Program Outline

(1) All equations already linear, thus no quasilineari-
zation necessary,
- 2 - -
(2) 4y = ((2#m%5 )I+Q-4;) , Ay = 0.0,

(3) Ui+ 1=AiUi, U1= 1.0, (UN = 0.0)’



(L)
(%)
(6)
(?7)
(8)
(9)
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o
i

go1 = A Opfl), By =0,
Vi = AV, +b, V. = 0.0,

cj_1 = Ay_j(eg+ 2%V, & = 0.0,
Wi, = AW, + 6, W, = 0.0,

| s
ery = 2= (Fa/8,,),

test[ak+1—akl<.005, if true exit, if false repeat

(2) through (9) with updated estimate of a.

See Chapter IV to understand where the right-hand

side of step (8) comes from.



CHAPTER IX
A NONLINEAR EXAMPLE (WITH NO COMFUTER DATA)

Let us assume that the governing equation is

(43) VZU(x,y) = a exp(bU(x,y)) (1), in the unit square,
U(x,y) = 1 on boundary.

Linearize Eqn (43)

(44) szmb1 = a exp(bz )+ ab exp(bzm),
Zoe] = 1 on boundary,

where

(45) lim =z = U.

m-»00

We use repeated differentation of (43) with respect to

a and b (our unknowns) to derive the sensitivity equations:

(46) VZUa ebU+abebUUa
: (First Derivatives)

(47) Van = aUebU + abebUUb
‘ 20 _ . bU bU, . _,w_bU 2
(48) Vv U,, = 2be U  + abe U__+ ab'e "U_
(49) VeU,. = 2 2¢”Uu, + 2abUe®Pu, + av2ePl *
) bb b b
abebUUbb + abzebUUg (Second Derivatives)

2 _ bU U bU
(50) Vv Uab = Ue Ub + ae Ua + abUe Ua'+

bU 2 bl
abe Uab + ab%e Uan
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Boundary conditions are all equal to zero.
(51) Ua Ub Uaa Utb U p=0.0 on boundary of the unit
square.
The (normalized) Least Squares Criterion is
(52) S(a,b) =FKU(1) - RHO(1))“/RHO“(1).
, =l
Therefore, by differentiation we obtain
' L
(53) 5,(a,b) 55?(U(1)-RH0(1))Ua(l)/THoa(l)
5, (a,b) = "(b)

|
5, ,(a,b) =§$((U(1)faﬂo(1)Uaa(1) + US(1))/RHOZ(1)

"(b)

i

Sy (2, )

L
S Spa =§‘2((U(1)-mo(1)uab(1) + U (1T

ab =
(1)) /RHOZ(1).

Newton's method yields

2
= (SppSa=52550) (S5Spp~Sap )

2)

(54)  ay,q = &

b - (s

il

b)/ (8, .80b=5an

k+1 k ab a aa

For each value of (ak,bk), we solve_Eqns (44) and (46) through
(54). Since these equations are of similar forms the invar-
iant imbedding procedure is quite efficient. Observations
were generated (by Angel) by solving the discretized problem,.

Angels results for the constants a and b were



Iteration

No.

W =0

k

.500
.682
.681
681

1.500
2.274
2.269
2.269
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An Approximate

TABLE I

Weighting Table of ‘the Number of

Interations on a per Data Set.

NECESSARY

SYMBOL USED CLASS DESCRIPTION ITERATIONS
VF or VG very fast or very good £10
ForgG fast or good 21013
AF or AG almost fast or good >13€16
P poor or slow >16€25
VP very poor or slow »>25
. Oscil, about correct a initial and
but no convergence continuing in the
wrong direc-
tion
OVERSHOOT inital and continuing overshoot

The class discriptions are approximate and are here used

to denote convergence performance between the range of

"very fast" to "very slow™.



CHAPTER XII

LINEX: GSORTING OF DATA SETS

The different classifications of my data sets are

chosen to show the success of the specific sets and groups

of sets.
are:

1)

2)

3)

The order of importance of the set classification

Rate of convergence
Number of observation points.
The shape (symmetry) of the observation points

arrangenment,

Figure II sthé the different data sets arranged according

to the classifications of rate as given in Chapter XI.



CONFIGURATIONS OF ALL OBSERVATION DATA SETS

CLASSIFIED ACCORDING TO SPEED OF CONVERGENCE

VERY FAST CONVERGENCE (VF or V@)

(v e We Q00 OO0 QOO SCO0Q [vRe 00
—HPLB4D Sea s Y4 P
FAST CONVERGENCE (F or G)
.a¢] 00 ‘0 o] Q.
{w« N e
ALMOST FAST AND SLOW (AF or AG and P)
000 °° o, .0 000
‘ <] o]
Lwﬂ Lw—n L&« B 138, 18 L022
OSCILLATION ABOUT CORRECT a VALUE
O
e SRt ¢ TR R
WRONG DIRECTION OR OVERSHOO
0000 100000 0L00 16 0.0 O Figure 2
; Aqe0peis TaRtae Liid SO+t o

50

OOOOO

BG4 Bttt



CHAPTER XIII
LINEX: RESULTS OF DATA SORTING

(1) If the initial a, guess is not close enough to
the final a = 2.00, then there 1s a greater possibility that
the final a=-guess could approach another local extremum,
Theoretically, this cannot occur, at least for linear problems.
However, numerical inaccuracies can introduce spurious results.
(2) As the data-arrangement is further from the y-

origin symmetry line, the rate of convergence is generally

slower.
' : X0X0X
(3) Data sets arranged symmetrically as in: ooooo
XO0X0oX

where x is data and o is blank, seem to be the most successful
‘arrangements, especially if they follow (2), above, and have
from 2 to 6 observation points.

(4) The method used in solving LINEX is based upon\the‘
largest matrix size which could fit in the Portland State
University IBM 1130 computer (this being 9 x 9) while Ahgel's
work was done using a 17 x 17 array. This is a ratio of

useful non-boundary-value numbers of 49/225 or five times as
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many points, giving a matrix ratio (squarg-root of points
ratio) of 2.3 to 1. So there is a very good chance that
convergence was slower gecause of this or, pefhaps there is
some sort of resonance phenomenon’involved.

(5) The most successful data sets séemed to work due
to the number of observation points (the successful group
all contained 2 to 6 points each). The successful sets are
definitely a function of the pattern and placement ofrobser~
vation points.

(6) There are three claésifications of the least
successful observation point data sets.

a) ‘the sets which were completely off had
7 to 10 observation points/set. One would believe
that more data would enhance covergence but such
‘appeared not to be the case,

b) the oscillating dafa se?s all had their
observation points on the axis of symmetry (namely,
¥=51t). This is definitely significant.

c)‘ for the successful but very slowly convergent

sets, see the figure on the next page.
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FIGURE OF THE LEVELS CF CONVERGENCE SHOWING THE LOC--
ACTION AND RELATIVE FREQUENCY OF THE OBSERVATION POINTS

- Individual Data Points = - - Collected Datapis,
Very fast conyvergence class
[} . - . ' . Q A
© e - . - R T Y .
® .
B8 B ¥ v @ OO0 o0
. [C] - . - . » @ - - . -

—-4F—%ﬂr—%—%§r-~—%%§y@ Lol e () -
axis O\ 7o\
Number of points inJ

cluster = frequency »
of occurence in dat portional to
frequency of

Oscillation class |gccurrence

Circle size pro

O . . . . . ® . ’ - . -

‘?_qg_JQMfeﬁﬂnwﬁe_moﬂwwwww_ufyﬂg}—gp—g}—4h——e '

Very poor convergence class

*

© : '<:><D Q) o’(ﬁ o

&B ® ¥ o @

BB P 0. @ OO0 o ,

BBV DL 0o O o o0
O——0—8—e—o6

00— 0 00— c o—e—o
Figure 3

The "Collected Data Pts." show the effects of bunching the
"Individual Data Points' into an expression of relative
fsize" for a given position.'¢$ indicates equivalence,



CHAPTER XIV
CONCLUSIONS

By looking at the data interpretation chapters, it is
apparent there is a right way and a wrong way of getting
‘fast convergence from a set of observation points. And, of
course, 1f we can get fast convergence then we have a suc-
cessful computer solution to the problem at hand.

Quite likely there will be other conditions for
successful observation points for other geometries. For
example, the nonlinear problem discussed in Chapter IX.
Heré, since there is a boundary value of 1 all around the unit
square, successful data points could be anywhere near the
boundary not just near the unit value y-axis as in "LINEX."

Returning to LINEX, we obtained fast convergence when
the obsérvation data points upon U(x,y) were asvnear to tﬁe
origin as possible, while still in an XO0X0X formation as
shown on page 30. This so-called proper spacing must have
something to do with our use of theAstandard five point

approximation formula in discretizing our basic formulas,
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- O0XOo
The five point approach has the following .symmetry: xox .

oxd
Very similar is our most successful observation data arrange-
XOX0X :

ment: oxoxo, which is Jjust the negative of the "five point"
XOXO0X ;
symmetry. If other approximation schemes were used, it is
quite possible that similar relationships between the approxi-
mation and the data point symmetries would be found.
Other than symmetry of data points, we must examine
the two important straight lines near which the data points
worked best.' These are the y-axis and the axis of symmetry

: }y-axis
for the function U(x,y):

most effective poin@ - axis of symmetry

4 w X=aXis

The y-axis is easiest to understand. The data near it con-.
tains the most significant digits and would therefore be best
for fast convergence. The line of U symmet;y is more diffi-
cult toiunderstand. Here, if the aata~is piled right on the
line, as shown on page 33, instead of a very rapid convergence

we obtain convergence and then oscillation:
' oscillations

correct a-value
K iteration no .
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If we move the data points away from this axis slightly,
then the convergence method works well (see page 33).
Thus, we have two major critef§é'fér'prdper convergence
defined and partially understcod. For our sample problem
LINEX we have determined the best location and the proper

symmetrical arrangement of the observation data on U(x,y).
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