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Abstract

A diffusion-convection equation is a partial differential equation featuring two important physical
processes. In this paper, we establish the theory of solving a 1D diffusion-convection equation,
subject to homogeneous Dirichlet, Robin, or Neumann boundary conditions and a general initial
condition. Firstly, we transform the diffusion-convection equation into a pure diffusion equation.
Secondly, using a separation of variables technique, we obtain a general solution formula for each
boundary type case, subject to transformed boundary and initial conditions. While eigenvalues
in the cases of Dirichlet and Neumann boundary conditions can be constructed easily, the Robin
boundary condition necessitates solving a transcendental algebraic equation to determine all the
eigenvalues. Thirdly, we use Python to construct and illustrate the solutions for all the cases
based on the newly developed solution formulas. Finally, we share all the associated Python
code for public access.

1 Introduction

1.1 Importance of Partial Differential Equations

Partial differential equations, PDEs, and their solutions are important mathematical tools that allow
scientists to describe the physical world. A PDE provides some information about the behavior of an
unknown function by containing its rates of change with respect to more than one variable. Those
rates of change are called partial derivatives. Often those variables are location x and time t. A
PDE can be thought of as a model, a thorough understanding of what causes the unknown function’s
change over time. Once it is stated, the PDE needs to be solved, which means finding an explicit
form of the previously unknown function of location and time whose rates of change are precisely
described by the given equation. [1]

Most of physics and chemistry involves partial differential equations. A powerful example of PDEs
is a set of Maxwell’s equations that describe the interaction of electric and magnetic fields with
each other as well as with electric charges. The knowledge contained in these equations allows
us to harness energy in the form of electricity and make it available for day-to-day consumption.
Another powerful example is the Schrodinger’s equation, whose solutions allow scientists to explain
the behavior and properties of the atomic and subatomic structures.

Hence, for those who study physical phenomena, it is imperative to understand the basic techniques
of solving PDEs. An example of such an equation is a system involving both diffusion and convection
processes which we explain in Section 1.2.

1.2 Diffusion-Convection Equation

In this thesis, we set up the theory of solving a one-dimensional diffusion-convection equation, which
is a particular type of PDE. Let us call the unknown function u = u(x, t) which depends on the
spatial variable x and time variable t.
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1.2.1 Diffusion Process

One of the natural processes occurring in solutions is diffusion, a spontaneous dispersion of par-
ticles due to collisions of those particles with each other, and possibly additional molecular-level
constituents, present in the solution. Our function u could be a concentration of a compound in
question or a temperature of the solution. In either case, it is a quantity that scientists have figured
out how to measure precisely. Mathematically, diffusion is represented by:

∂u

∂t
= c2

∂2u

∂x2
, (1)

where
∂u

∂t
indicates the rate of change of u with respect to time only, c2 is a constant called a diffusion

coefficient, which informs us how likely diffusion is to occur in the particular system. How quickly u

will change with time also depends on
∂2u

∂x2
, which is the second derivative of u with respect to the

position and indicates curvature of the function. The derivation of this dependency is based on the
conservation of either matter or energy, whether concentration or temperature is studied, and can
be found in Farlow’s Partial Differential Equations for Scientists and Engineers. [1]

A differential equation such as equation (1) describes how the concentration of particles changes
with respect of time and location, while the solution to it offers an explicit form for the function
u(x, t), which informs us what the concentration of the compound in the solution is at any time and
any given location.

1.2.2 Convection Process

Another common process occurring in nature is convection, which arises whenever there is motion

induced in a fluid. Convection causes the rate of change of u with respect to time,
∂u

∂t
, to be

proportional to the rate of change of u with respect to position,
∂u

∂x
,:

∂u

∂t
= −β

∂u

∂x
, (2)

where β is velocity with which the fluid flows. The steeper the curve is, the more susceptible to
convection it will be. A derivation of this dependence is well explained in the case of chemical
concentration in solutions in Atkins and De Paula’s Physical Chemistry. [2]

1.2.3 Simultaneous Diffusion and Convection Processes

When both diffusion and convection processes take place, we simply present them as a sum of the
terms from equations (1) and (2):

∂u

∂t
= c2

∂2u

∂x2
− β

∂u

∂x
. (3)

Now, to which extent each process will influence the behavior of our function u will depend on the
relative magnitude of the constants c2 and β in equation (3). This effect will be illustrated in Section
3, where we use the solutions obtained in Section 2 to show the evolution of the function u with
time and their dependence on the constants.
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The diffusion-convection equation (3), describes how the the change of function u with respect
to position influences its change with respect to time. Since a PDE involves partial derivatives,
integration techniques are used to solve it. Therefore, the highest degree of a derivative with respect
to a variable will determine how much information will be necessary to find a specific solution. In

case of a diffusion-convection equation, a second derivative with respect to position,
∂2u

∂x2
, is the

highest derivative, hence two boundary conditions must be given. Likewise, the only derivative of u

with respect to time,
∂u

∂t
, necessitates one initial condition.

1.3 Boundary Conditions

Boundary conditions contain information about the function in question, u, on the physical bound-
ary of the system and they describe the interaction between the studied environment and its sur-
roundings. Mathematically, three types of boundary conditions are Dirichlet, Neumann, and Robin
conditions. A Dirichlet boundary condition represents a prescribed value of u(t) on the boundary.
A Neumann boundary condition is an example of an insulated system in which the value of u(t) at
the boundary is allowed to change depending on what happens within the system, but the system
and the surrounding environment do not influence one another. A Robin boundary condition arises
from Newton’s law of cooling in case of temperature, where heat flux on the boundary depends on
the difference of temperature between the two interacting parts. In our case, it is the given system
and its surroundings. On the other hand, based on Fourier’s law, heat always flows from a hotter
to a cooler region. Putting the two laws together, for a one-dimensional system of length L where
0 ≤ x ≤ L we get the following expressions which describe the Robin boundary conditions:

−k0
∂u

∂x
(0, t) = −h [u (0, t)− u0,surr]

−k0
∂u

∂x
(L, t) = h [u (L, t)− uL,surr] ,

(4)

where k0 > 0 is related to the thermal conductivity and is material-specific, while h > 0 is the heat
transfer coefficient, mostly independent of the temperature difference and materials, but rather it
depends on the interface of the system and its surroundings. The temperature on the boundary of
the system is given by u (0, t) and u (L, t), while the temperature of the immediate surroundings is
given by u0,surr and uL,surr. [3]

The Dirichlet and Neumann boundary conditions can be viewed as limiting cases of the Robin
boundary conditions presented in equation (4). If the relative magnitude of the thermal conductivity
is much smaller than the heat transfer coefficient, k0 << h, then we get:

lim
h→∞

k0
h

= 0

and the conditions presented in equation (4) can be rewritten as follows:{
u (0, t) = u0,surr

u (L, t) = uL,surr.
(5)

The above set of equations represent Dirichlet boundary conditions - a prescribed, known value of u
at each boundary. If we are given that u0,surr = uL,surr = 0, then the Dirichlet boundary conditions
(5) become homogeneous.
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Now, if h << k0, then we get that:

lim
h→0

h

k0
= 0,

which forces the Robin boundary conditions presented in equation (4) to be rewritten as:
∂u

∂x
(0, t) = 0

∂u

∂x
(L, t) = 0,

(6)

which describes homogeneous Neumann boundary conditions, where there is no transfer of u across
the boundary.

In this work we will consider each case of homogeneous boundary conditions, where the surrounding’s
value of u is set to 0: u0,surr = uL,surr = 0.

1.4 Initial Condition

Finally, an initial condition u(x, 0), a set of known values of the function u anywhere within the
system at an initial time, is needed to precisely understand how the function u evolves over time.
While establishing the theory of solving the diffusion-convection equation with homogeneous bound-
ary conditions we will consider a general form of the initial condition:

u(x, 0) = f(x).

1.5 Motivation

Although the theory of diffusion-convection equation and its analytic solution are well established,
few literature sources provide complete details on how to solve the diffusion-convection equation
with different kinds of boundary conditions. Farlow [1] and Haberman [3] present several methods
to solve some general-type partial differential equations. Arrigo [4] provides specific solutions to
the diffusion-convection equation with Dirichlet boundary condition only. Tanveer [5] explains how
to handle Robin boundary conditions for a wave equation without considering convection. In this
university honors thesis, we will provide a detailed procedure for solving a diffusion-convection
equation with all three types of boundary conditions and a general initial condition based on the
separation of variables technique. We will then implement Python algorithms to visualize those
solutions case by case.

2 Solving a Diffusion-Convection Equation

In this section, we establish the theory of solving the diffusion-convection equation, subject to three
different types of homogeneous boundary conditions described in Section 1.3.
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2.1 Problem Statement

Consider a one-dimensional system of length L. The following second-degree partial differential
equation describes the system in which only diffusion and convection phenomena take place:

∂u

∂t
= c2

∂2u

∂x2
− β

∂u

∂x
, (7)

where c2 and β are constants. Equation (7) is valid within the following boundaries:

0 < x < L and 0 < t < ∞

For clarity, we rewrite equation (7) using subscript notation to indicate partial derivatives. Equation
(1) then becomes:

ut = c2uxx − βux (8)

The model is subject to a general initial condition:

u(x, 0) = f(x) (9)

and the following three cases of homogeneous boundary conditions:

1. Dirichlet: u (0, t) = u (L, t) = 0,

2. Robin: ux (0, t)− a0u (0, t) = ux (L, t) + aLu (L, t) = 0, where a0 > 0 and aL > 0,

3. Neumann: ux (0, t) = ux (L, t) = 0.

2.2 Transforming a Diffusion-Convection Equation into a Diffusion Equa-
tion

The first step in solving equation (8) is to transform it into a standard diffusion equation. This
process starts with the assumption that the function in question, u(x, t), can be rewritten in the
form of:

u(x, t) = A(x, t)v(x, t). (10)

The objective is to find a function A(x, t) such that the convection term in equation (8), βux,
disappears. Substituting equation (10) into (8) leads to:

Atv +Avt = c2 (Axxv + 2Axvx +Avxx)− β (Axv +Avx) . (11)

After dividing by A we obtain:

At

A
v + vt = c2

(
Axx

A
+ 2

Ax

A
vx + vxx

)
− β

(
Ax

A
v + vx

)
. (12)

Then collecting like-terms will result in:

vt = c2vxx +

(
2c2

Ax

A
− β

)
vx +

(
−β

Ax

A
+ c2

Axx

A
− At

A

)
v. (13)
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For our transformed equation to have a form of a pure diffusion equation:

vt = c2vxx, (14)

we ask that:

2c2
Ax

A
− β = 0 (15)

and

− β
Ax

A
+ c2

Axx

A
− At

A
= 0. (16)

The condition given in equation (15) can be rewritten as:

Ax

A
=

β

2c2
. (17)

This is an ordinary differential equation whose solution is obtained by first observing that in our
case:

Ax =
∂

∂x
A =

d

dx
A, (18)

which allows us to integrate equation (17) with respect to the variable x:∫
dA

A
=

∫
β

2c2
dx. (19)

As a result, we obtain the following:

ln (A) =
β

2c2
x+ C (t) , (20)

or, when we extract our function A, the general solution to equation (17) is:

A = C (t) e
β

2c2
x. (21)

Here, C(t) indicates an integration constant with respect to the variable x. Since our function A(x, t)
may contain a dependence on variable t, the obtained integration constant may be a function of t,
as indicated.
To find an explicit form for the function A, which means finding C(t), we use equation (16), which
A must also satisfy. After multiplying by A and rearranging, equation (16) can be rewritten as

At = c2Axx − βAx. (22)

This is a partial differential equation of A, so next we must compute the necessary partial derivatives
based on equation (21), so with respect to time we get:

At = Cte
β

2c2
x =

Ct

C
A (23)

and with respect to x:

Ax = C
β

2c2
e

β

2c2
x =

β

2c2
A, (24)

Axx = C
β2

4c4
e

β

2c2
x =

β2

4c4
A. (25)

Now substituting equations (23)-(25) into (22) results in:

Ct

C
A = c2

β2

4c4
A− β

(
β

2c2
A

)
. (26)
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Simplifying and rearranging the above equation with an assumption that A is not trivial gives:[
Ct

C
− β2

4c2
+

β2

2c2

]
A = 0

=⇒ Ct

C
+− β2

4c2
+

β2

2c2
= 0

=⇒ Ct

C
= − β2

4c2
.

(27)

Equation (27) is again an ordinary differential equation, which we can solve the same way we treated
equation (17). The solution is the explicit form of the constant with respect to x, C(t), introduced
in equation (20). It was found to be:

C (t) = A0e
− β2

4c2
t, (28)

where A0 is now a constant not depending on either x, nor on t. Now we can rewrite equation (17),
which reveals the function A (x, t) satisfying conditions (15) and (16):

A = A0e
− β2

4c2
te

β

2c2
x. (29)

Now, returning to the original goal of this section, we substitute (29) into equation (10) to find a
form of u (x, t) such that the diffusion-convection equation is transformed into a diffusion equation
form. This happens for:

u(x, t) = A0e
− β2

4c2
te

β

2c2
xv(x, t). (30)

Since our transformation of the diffusion-convection equation is possible for any constant A0, at this
point we simplify the form of u (x, t) by setting A0 to 1. Hence, our u (x, t) takes a general form of:

u(x, t) = e−
β2

4c2
te

β

2c2
xv(x, t). (31)

Let us now verify that (31) will allow us to work with a simpler PDE. To do this, we plug in the
expression in equation (31) into the diffusion-convection equation (8). We obtain the following:

− β2

4c2
Av +Avt = c2

(
β2

4c4
Av + 2

β

2c2
Avx +Avxx

)
− β

(
β

2c2
Av +Avx

)
, (32)

where A = e−
β2

4c2
te

β

2c2
x.

After distributing and simplifying we obtain:

vt = c2vxx. (33)

From now on we will work with the diffusion equation (33), but this change needs to be reflected by
adjusting our initial condition presented in (9). This condition tells us that:

u (x, 0) = A (x, 0) v (x, 0)

= e
β

2c2
xv (x, 0)

= f (x) .

(34)

Hence, we get the initial condition for the transformed diffusion equation:

v (x, 0) = e−
β

2c2
xf (x) . (35)
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The next step in the process of seeking solutions to the given equation (33) is to use a separation
of variables method. Suppose v (x, t) can be represented as a product of functions, one depending
solely on variable x, the other on t:

v (x, t) = X (x)T (t) . (36)

Equation (33) can be rewritten as follows:

XT ′ = c2X ′′T. (37)

After rearranging, we obtain that:
X ′′

X
=

1

c2
T ′

T
. (38)

We observe now that this equality must hold at any time, t and at any location x, so it must be that

X ′′

X
=

1

c2
T ′

T
= λ. (39)

for some constant λ. The assumption noted in equation (36) allows us to rewrite the partial differ-
ential equation (33) as a system of two ordinary differential equations:{

X ′′ = λX

T ′ = c2λT
(40)

At this point we need to consider boundary conditions.

2.3 Specific Solution with Dirichlet Boundary Conditions

Our physical system described by equation (8) will first be a subject to the following homogeneous
type I boundary conditions:

u(0, t) = u(L, t) = 0. (41)

Since we have transformed equation (8) into a diffusion equation presented in (33), we should find
the corresponding boundary conditions that reflect this change.

At x = 0 we have:
u (0, t) = A (0, t) v (0, t)

= e−
β2

4c2
tv (0, t)

= 0

(42)

and at x = L:
u (L, t) = A (L, t) v (L, t)

= e−
β2

4c2
te

βL

2c2 v (L, t)

= 0.

(43)

We see that for relations in equations (42) and (43) to hold it must be that

v (0, t) = v (L, t) = 0 (44)

Hence, in our transformed differential equation, (33), we continue working with the Dirichlet bound-
ary conditions.
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First we should address the ODE with respect to spacial variable from the system of equations given
by (40):

X ′′ = λX (45)

Its boundary conditions are:

v (0, t) = 0 =⇒ X (0)T (t) = 0 =⇒ X (0) = 0 (46)

and
v (L, t) = 0 =⇒ X (L)T (t) = 0 =⇒ X (L) = 0 (47)

Next we should show that only negative eigenvalues λ will satisfy the given boundary conditions.

Case 1: λ = 0
Our equation (45) in this case becomes

X ′′ = 0 (48)

which is solved by integrating it twice to obtain a general solution:

X (x) = ax+ b, (49)

where a and b are constants. This solution must satisfy the boundary conditions (46) and (47),
hence:

X (0) = 0 =⇒ a · 0 + b = 0 =⇒ b = 0 (50)

and
X (L) = 0 =⇒ a · L = 0 =⇒ a = 0. (51)

Hence, the only solution to equation (45) in case when λ = 0 is a trivial one.

Case 2: λ = k2 > 0
We consider a solution of type:

X (x) = erx, (52)

which plugged in to equation (45) will give the following characteristic equation:

r2 − λ = 0, (53)

from which we obtain valid values for r:
r± = ±k. (54)

Using this information we can rewrite a general solution as:

X (x) = c1e
kx + c2e

−kx (55)

where c1 and c2 are constants which can be found by using known boundary conditions.
Condition (46) will result in:

X (0) = 0 =⇒ c1e
0 + c2e

0 = 0 =⇒ c1 = −c2 (56)

Now, based on condition (47):

X (L) = 0 =⇒ c1
(
ekL − e−kL

)
= 0. (57)

Since k =
√
λ > 0 and L > 0 we get that:

ekL > e−kL, (58)
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which in turn means that equation (57) will be satisfied if and only if c1 = 0. This result, by the
implication of equation (56), leads to a trivial solution. Therefore, it must be that λ < 0, which we
demonstrate next.

Case 3: λ = −k2 < 0
As in the case of positive λ, we expect a general solution presented in equation (52), which leads to
the same characteristic equation but in this case the roots are:

r± = ±ik. (59)

Therefore, the general solution in this case will be:

X (x) = c3e
ikx + c4e

−ikx

= c3 [cos (kx) + i sin (kx)] + c4 [cos (kx)− i sin (kx)]

= (c3 + c4) cos (kx) + i (c3 − c4) sin (kx)

= c5 cos (kx) + c6 sin (kx) ,

(60)

where cj for j = 3, 4, 5, 6 are constants. As before, to find c5 and c6 we should use the known
boundary conditions. Condition (46) has to hold, therefore:

X (0) = 0 =⇒ c5 cos (0) + c6 sin (0) = 0 =⇒ c5 = 0 (61)

The boundary condition at L will force:

X (L) = 0 =⇒ c6 sin (kL) = 0 (62)

For the sought-after nontrivial solution we ask that c6 ̸= 0, hence it must be that:

sin (kL) = 0, (63)

which is true for the following values of k:

k =
nπ

L
where n = 1, 2, . . . (64)

Equation (64) leads to the valid eigenvalues:

λ = −k2 = −
(nπ
L

)2
where n = 1, 2, . . . (65)

and the solution to equation (45) is

Xn (x) = sin
(nπ
L

x
)

where n = 1, 2, . . . (66)

Notice, since c6 was an arbitrary constant, it was set to be equal to 1. The final constants that
satisfy the original problem will be determined in subsequent steps.

The next step involves solving the second ODE from the system of equations given in (40). This
equation can be solved via a similar method to the one used previously to obtain solutions to equation
(15):

T ′ = c2λT =⇒ ln (T (t)) = c2λt+ c7 =⇒ T (t) = c7e
c2λt, (67)

where c7 is a constant, which for now will be set to 1.
Putting together the solutions obtained for each ODE presented in (66) and (67), we obtain:

Xn (x)Tn (t) = sin
(nπ
L

x
)
e−c2(nπ

L )
2
t where n = 1, 2, . . . (68)
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Based on (68), the general solution to equation (33) will be the following linear combination:

v (x, t) =

∞∑
n=1

bn sin
(nπ
L

x
)
e−c2(nπ

L )
2
t, (69)

where constants bn can be extracted from the initial condition in equation (35):

v (x, 0) = e−
β

2c2
xf (x)

=

∞∑
n=1

bn sin
(nπ
L

x
)
.

(70)

Now we will multiply both sides of equation (70) by sin
(mπ

L
x
)
and integrate:

∫ L

0

e−
β

2c2
xf (x) sin

(mπ

L
x
)
dx =

∫ L

0

( ∞∑
n=1

bn sin
(nπ
L

x
))

sin
(mπ

L
x
)
dx

=

∞∑
n=1

bn

∫ L

0

sin
(nπ
L

x
)
sin
(mπ

L
x
)
dx

(71)

By the orthogonality of sin (nπx), we get the following result:

bn =
2

L

∫ L

0

e−
β

2c2
xf (x) sin

(nπ
L

x
)
dx. (72)

Now we are ready to put together all results and obtain the solution to the original partial differential
equation given by (8):

ut = c2uxx − βux

with homogeneous Dirichlet boundary conditions, (41):

u(0, t) = u(L, t) = 0

and general initial conditions given by (9):

u(x, 0) = f(x).

The solution is as follows:

u (x, t) = A(x, t)v(x, t)

= e
−β2

4c2
te

β

2c2
x

∞∑
n=1

bn sin
(nπ
L

x
)
e−c2(nπ

L )
2
t,

(73)

where bn are previously found constants:

bn =
2

L

∫ L

0

e−
β

2c2
xf (x) sin

(nπ
L

x
)
dx.

2.4 Specific Solution with Robin Boundary Conditions

In this section, we examine the solution to the diffusion-convection equation (8):

ut = c2uxx − βux

11



with the general initial condition (9):
u(x, 0) = f(x),

and homogeneous Robin boundary conditions:

ux (0, t)− a0u (0, t) = 0

ux (L, t) + aLu (L, t) = 0,
(74)

where a0, aL > 0 are constants. The constraint on these constants comes from the derivation of
Robin boundary conditions based on Newton’s law of cooling, and is necessary to ensure unique
solutions to the posed problem.

As in the previous section, we will work with the transformed heat equation (14). To do so, we
should transform our new boundary conditions to reflect the changes to the governing equation. So,
we plug equation (31) into (74), but before we do so, we differentiate (31) with respect to x:

ux(x, t) =
β

2c2
e−

β2

4c2
te

β

2c2
xv (x, t) + e−

β2

4c2
te

β

2c2
xvx (x, t) . (75)

Then, at location x = 0, we obtain:

β

2c2
e−

β2

4c2
tv (0, t) + e−

β2

4c2
tvx (0, t)− a0e

− β2

4c2
tv(0, t) = 0

=⇒
[
vx (0, t)−

(
a0 −

β

2c2

)
v (0, t)

]
e−

β2

4c2
t = 0.

(76)

Equation (76) is satisfied if and only if:

vx (0, t)−
(
a0 −

β

2c2

)
v (0, t) = 0. (77)

And for the other boundary condition, at x = L we get:

β

2c2
e−

β2

4c2
te

β

2c2
Lv (L, t) + e−

β2

4c2
te

β

2c2
Lvx (L, t) + aLe

− β2

4c2
te

β

2c2
Lv(L, t) = 0

=⇒
[
vx (L, t) +

(
aL +

β

2c2

)
v(L, t)

]
e−

β2

4c2
te

β

2c2
L = 0,

(78)

which is satisfied when

vx (L, t) +

(
aL +

β

2c2

)
v (L, t) = 0. (79)

Equations (77) and (79) are the new Robin boundary conditions in our transformed system. Now,
our condition for a well-posed problem requires that both of the coefficients of v(0, t) in (77) and
v(L, t) in (79) are non negative. Hence, when β ≥ 0, the following condition is always satisfied:

aL +
β

2c2
≥ 0, (80)

since in our problem aL > 0 and c2 > 0. On the other hand, at x = 0, we must have that:

a0 −
β

2c2
≥ 0 (81)

So, for our problem to remain well posed we must satisfy:

a0 ≥ β

2c2
=⇒ β ≤ 2c2a0 (82)
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Relation (82) implies that there must be an upper bound on the value of β, so that it does not
dominate the behavior of the system. This condition ensures the solution to the problem is always
well-defined.

Likewise, a similar approach is necessary in case when β < 0. Now condition (81) is always satisfied,
while condition (80) requires that:

aL +
β

2c2
≥ 0 =⇒ −β ≤ 2c2aL. (83)

In the process of solving our PDE we consider the case when β ≥ 0, since the solution can be easily
adapted to accommodate the opposite case.

As before, we now continue with the separation of variables technique, in which our solution, v (x, t)
can be written as a product of two functions, each depending on only one variable, as shown in
equation (36) repeated below for readers’ convenience:

v (x, t) = X (x)T (t) .

Examining the boundary conditions in (77) allows us to notice that:

vx (0, t)−
(
a0 −

β

2c2

)
v (0, t) = 0

=⇒ Xx (0)T (t)−
(
a0 −

β

2c2

)
X (0)T (t) = 0

=⇒ Xx (0)−
(
a0 −

β

2c2

)
X (0) = 0.

(84)

Likewise, the boundary conditions in (79) translate to:

vx (L, t) +

(
aL +

β

2c2

)
v (L, t) = 0

=⇒ Xx (L)T (t) +

(
aL +

β

2c2

)
X (L)T (t) = 0

=⇒ Xx (L) +

(
aL +

β

2c2

)
X (L) = 0.

(85)

Given equation (45): X ′′ = λX, we will now examine the eigenvalues that satisfy above boundary
conditions.

Case 1: λ = 0
A previously considered, a general solution to equation (45) is of the form X(x) = ax+ b and must
satisfy boundary conditions (84) and (85). Hence, at x = 0 we get:

Xx (0)−
(
a0 −

β

2c2

)
X (0) = 0

=⇒ a−
(
a0 −

β

2c2

)
b = 0

=⇒ a =

(
a0 −

β

2c2

)
b.

(86)
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Additionally, at x = L we obtain:

Xx (L) +

(
aL +

β

2c2

)
X (L) = 0

=⇒ a+

(
aL +

β

2c2

)
(aL+ b) = 0.

(87)

Then, substituting the result from (86) into (87) leads us to:(
a0 −

β

2c2

)
b+

(
aL +

β

2c2

)((
a0 −

β

2c2

)
bL+ b

)
= 0

=⇒
[(

a0 −
β

2c2

)
+

(
aL +

β

2c2

)((
a0 −

β

2c2

)
L+ 1

)]
b = 0

=⇒
[(

a0 −
β

2c2

)
+

(
aL +

β

2c2

)(
a0 −

β

2c2

)
L+

(
aL +

β

2c2

)]
b = 0.

(88)

Since all the terms inside the square bracket in equation (88) are greater or equal to zero and the
last term aL + β

2c2 > 0, then(
a0 −

β

2c2

)
+

(
aL +

β

2c2

)(
a0 −

β

2c2

)
L+

(
aL +

β

2c2

)
> 0. (89)

Therefore b = 0 must hold. This yields a trivial solution based on equation (86). Hence λ ̸= 0.

Case 2: λ = k2 > 0
As done previously, we should verify that the general solution in this case, given by (55):

X (x) = c1e
kx + c2e

−kx

will satisfy boundary conditions (84) and (85). At x = 0 we obtain the following:

Xx (0)−
(
a0 −

β

2c2

)
X (0) = 0

=⇒ k (c1 − c2)−
(
a0 −

β

2c2

)
(c1 + c2) = 0

=⇒
(
k −

(
a0 −

β

2c2

))
c1 −

(
k +

(
a0 −

β

2c2

))
c2 = 0.

(90)

Similarly, at x = L we get:

Xx (L) +

(
aL +

β

2c2

)
X (L) = 0

=⇒ k
(
c1e

kL − c2e
−kL

)
+

(
aL +

β

2c2

)(
c1e

kL + c2e
−kL

)
= 0

=⇒
(
k +

(
aL +

β

2c2

))
ekLc1 −

(
k −

(
aL +

β

2c2

))
e−kLc2 = 0.

(91)

Now we rewrite the results from (90) and (91) in a matrix form: k −
(
a0 − β

2c2

)
−k −

(
a0 − β

2c2

)(
k +

(
aL + β

2c2

))
ekL

(
−k +

(
aL + β

2c2

))
e−kL

[c1
c2

]
=

[
0
0.

]
(92)
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The system of equations in (92) will have solutions if∣∣∣∣∣∣ k −
(
a0 − β

2c2

)
−k −

(
a0 − β

2c2

)(
k +

(
aL + β

2c2

))
ekL

(
−k +

(
aL + β

2c2

))
e−kL

∣∣∣∣∣∣ = 0, (93)

which means that:(
k −

(
a0 −

β

2c2

))(
k −

(
aL +

β

2c2

))
e−kL =

(
k +

(
a0 −

β

2c2

))(
k +

(
aL +

β

2c2

))
ekL.

The above condition holds only if:∣∣∣∣∣∣
(
k −

(
a0 − β

2c2

))(
k −

(
aL + β

2c2

))
(
k +

(
a0 − β

2c2

))(
k +

(
aL + β

2c2

))
∣∣∣∣∣∣ = e2kL. (94)

Since k =
√
λ > 0, we must have:

0 ≤

∣∣∣∣∣∣
k −

(
a0 − β

2c2

)
k +

(
a0 − β

2c2

)
∣∣∣∣∣∣ < 1, and 0 ≤

∣∣∣∣∣∣
k −

(
aL + β

2c2

)
k +

(
aL + β

2c2

)
∣∣∣∣∣∣ < 1

So, the left-hand-side of equation (94) satisfies:∣∣∣∣∣∣
(
k −

(
a0 − β

2c2

))(
k −

(
aL + β

2c2

))
(
k +

(
a0 − β

2c2

))(
k +

(
aL + β

2c2

))
∣∣∣∣∣∣ < 1,

while the right-hand-side gives:
e2kL > 1,

which is a contradiction. Hence, λ < 0 is the only case that holds for Robin boundary conditions.

Case 3: λ = −k2 < 0
As done previously, we now consider a general solution (60) that satisfies the given ODE (45) and
use boundary conditions (84) as well as (85) to find the solution that satisfies them.

Therefore, at x = 0 we get:

Xx (0)−
(
a0 −

β

2c2

)
X (0) = 0

=⇒ k (−c5 sin (0) + c6 cos (0))−
(
a0 −

β

2c2

)
(c5 cos (0) + c6 sin (0)) = 0

=⇒ −
(
a0 −

β

2c2

)
c5 + kc6 = 0

(95)

On the other hand, at x = L, we get that:

Xx (L) +

(
aL +

β

2c2

)
X (L) = 0

=⇒ k (−c5 sin (kL) + c6 cos (kL)) +

(
aL +

β

2c2

)
(c5 cos (kL) + c6 sin (kL)) = 0

=⇒
((

aL +
β

2c2

)
cos (kL)− k sin (kL)

)
c5 +

(
k cos (kL) +

(
aL +

β

2c2

)
sin (kL)

)
c6 = 0.

(96)
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Now we rewrite equations (95) and (96) in a matrix form to obtain: −
(
a0 − β

2c2

)
k(

aL + β
2c2

)
cos (kL)− k sin (kL) k cos (kL) +

(
aL + β

2c2

)
sin (kL)

[c5
c6

]
=

[
0
0

]
. (97)

Equation (97) has solutions if:∣∣∣∣∣∣ −
(
a0 − β

2c2

)
k(

aL + β
2c2

)
cos (kL)− k sin (kL) k cos (kL) +

(
aL + β

2c2

)
sin (kL)

∣∣∣∣∣∣ = 0. (98)

Hence, the following must be true:

−
(
a0 −

β

2c2

)(
k cos (kL) +

(
aL +

β

2c2

)
sin (kL)

)
− k

((
aL +

β

2c2

)
cos (kL)− k sin (kL)

)
= 0.

(99)
Multiplying through and collecting like-terms leads to the following:(

k2 −
(
a0 −

β

2c2

)(
aL +

β

2c2

))
sin (kL)− k

((
a0 −

β

2c2

)
+

(
aL +

β

2c2

))
cos (kL) = 0. (100)

Now, equation (100) can be further represented as follows:

tan (kL) =
k
((

a0 − β
2c2

)
+
(
aL + β

2c2

))
k2 −

(
a0 − β

2c2

)(
aL + β

2c2

)
=

k (a0 + aL)

k2 −
(
a0 − β

2c2

)(
aL + β

2c2

) . (101)

To find the values of k that satisfy the transcendental equation (101) we should rewrite it in the
form:

tan (α) =
L (a0 + aL)α

α2 − L2
(
a0 − β

2c2

)(
aL + β

2c2

) , where α = kL. (102)

Now we graphically represent each side of (102), as shown in Figure 1. The intersection of the
two graphs determines possible values of αn, from which eigenvalues can be obtained based on the
following relationship:

λn = −α2
n

L2
, where n = 1, 2, . . . (103)

The plot illustrating (102) in Figure 1 was obtained for the following values of the constants in (102):

a0 = 1.5, aL = 1,
β

2c2
= 1, and L = 6.5
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Figure 1: Plot of left- and right-hand side of (102) as a function of α.

Once the eigenvalues are obtained, we can find the corresponding eigen function X (x) by first
noticing, based on (95), that:

c6 =
a0 − β

2c2

k
c5, (104)

which leads us to rewriting a general solution (60):

X (x) = cos (kx) +
a0 − β

2c2

k
sin (kx) , (105)

where the arbitrary constant c5 was set to 1.

Continuing with the separation of variables technique, we find that, as in the case of Dirichlet
boundary conditions, the solution to T (t) for (40) is:

T (t) = ec
2λt. (106)

Therefore, the solutions to (36) will be:

Xn (x)Tn (t) =

(
cos
(αn

L
x
)
+

a0 − β
2c2

αn

L

sin
(αn

L
x
))

e−
α2
n

L2 c2t, where n = 1, 2, . . . (107)

Based on the above equation, the general solution to equation (33) will be the following linear
combination:

v (x, t) =

∞∑
n=1

Xn (x)Tn (t)

=

∞∑
n=1

An

(
cos
(αn

L
x
)
+

a0 − β
2c2

αn
L sin

(αn

L
x
))

e−
α2
n

L2 c2t,

(108)
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where An are constants whose values can be determined from the known initial boundary conditions
(35):

v (x, 0) = e−
β

2c2
xf (x)

=

∞∑
n=1

An

(
cos
(αn

L
x
)
+

a0 − β
2c2

αn
L sin

(αn

L
x
))

.
(109)

Now we multiply both sides of the equation by Xm (x) and integrate over the allowed values of x to
obtain on the left-hand side:∫ L

0

(
cos
(αm

L
x
)
+

a0 − β
2c2

αm
L sin

(αm

L
x
))

e−
β

2c2
xf (x) dx, (110)

and on the right-hand side:∫ L

0

∞∑
n=1

An

(
cos
(αn

L
x
)
+

a0 − β
2c2

αn
L sin

(αn

L
x
))(

cos
(αm

L
x
)
+

a0 − β
2c2

αm
L sin

(αm

L
x
))

dx.

(111)

First, notice that in (111) we are allowed to move the summation outside the integral. Also, since
the solutions Xn (x) in the Sturm-Liouville-type problems are orthogonal, asserted by Haberman
in Chapter 5 of Applied Partial Differential Equations with Fourier Series and Boundary Value
Problems we obtain the following result:∫ L

0

(
cos
(αm

L
x
)
+

a0 − β
2c2

αm
L sin

(αm

L
x
))

e−
β

2c2
xf (x) dx =

= Am

∫ L

0

(
cos
(αm

L
x
)
+

a0 − β
2c2

αm
L sin

(αm

L
x
))2

dx.

(112)

Solving for the constant Am and renaming the index back to n leads to:

An =

∫ L

0

(
cos
(
αn

L x
)
+

a0− β

2c2

αn
L sin

(
αn

L x
))

e−
β

2c2
xf (x) dx

∫ L

0

(
cos
(
αn

L x
)
+

a0− β

2c2

αn
L sin

(
αn

L x
))2

dx

. (113)

With constants An in mind given by (113), we return to the original problem and its solution
form given by (31) to present the final solution to equation (8) with homogeneous Robin boundary
conditions:

u (x, t) = A (x, t) v (x, t)

= e−
β2

4c2
te

β

2c2
x

∞∑
n=1

An

(
cos
(αn

L
x
)
+

a0 − β
2c2

αn
L sin

(αn

L
x
))

e−
α2
n

L2 c2t.
(114)

2.5 Neumann Boundary Conditions

Let us now consider the problem presented in (8) with general initial conditions (9) and homogeneous
type II boundary conditions:

ux (0, t) = 0

ux (L, t) = 0.
(115)
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These boundary conditions may be viewed as a limiting case of more general, Robin, boundary
conditions (74) considered in Section 2.3, where

a0 = aL = 0. (116)

Again, we have to keep in mind well-posedness of the problem, hence, after transformation of the
original equation (8) into a diffusion equation (33), we must satisfy conditions (80) and (82). With
our assumption of a0 = 0, condition (80) becomes:

a0 −
β

2c2
≥ 0 =⇒ β ≤ 0. (117)

For condition (82) to be satisfied it must be that:

aL +
β

2c2
≥ 0 =⇒ β ≥ 0. (118)

Putting the two above conditions together we obtain that the Neumann boundary conditions require
that:

β = 0. (119)

From (119) we see that the original problem presented in equation (8) becomes a diffusion equation:

ut = c2uxx (120)

with a general initial condition (9):
u(x, 0) = f(x)

and boundary conditions (115). Again, the method of separation of variables suggests a solution of
type:

u (x, t) = X (x)T (t) , (121)

which needs to satisfy (120), hence we obtain:

XT ′ = c2X ′′T =⇒ X ′′

X
=

1

c2
T ′

T
= λ, (122)

for some constant λ. As before, we obtain a system of two ordinary differential equations:{
X ′′ = λX

T ′ = c2λT.
(123)

The suggested solution (121) must satisfy boundary conditions (115), hence at x = 0 we must have:

ux (0, t) = Xx (0)T (t) = 0 =⇒ Xx (0) = 0. (124)

Likewise, at x = L we get:

ux (L, t) = Xx (L)T (t) = 0 =⇒ Xx (L) = 0. (125)

Now we must check for which values of λ, equation:

X ′′ = λX (126)

with boundary conditions (124) and (125) is satisfied.
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Case 1: λ = 0
Our equation (126) in this case becomes:

X ′′ = 0, (127)

which is solved by integrating it twice to obtain a general solution:

X (x) = ax+ b, (128)

where a and b are constants. This solution must satisfy the boundary conditions hence:

Xx (0) = 0 =⇒ a = 0 (129)

and:
Xx (L) = 0 =⇒ a = 0 (130)

as well. With no condition on the constant b we set it for now arbitrarily to 1, knowing that a
constant function:

X (x) = 1 (131)

is a valid and a non-trivial solution to (127).

Now we should examine if positive values of λ are allowed.

Case 2: λ = k2 > 0
The characteristic equation of (126) with suggested solution of type X (x) = erx is:

r2 − k2 = 0, (132)

which leads to the following roots:
r± = ±k. (133)

A general solution then to (126) is:

X (x) = c7e
kx + c8e

−kx, (134)

where c7 and c8 are some constants. To find the solution to (126) we should use the information
contained in the boundary conditions. At x = 0 condition (129) must hold, which means that:

k · c7ek·0 − k · c8e−k·0 = 0 =⇒ c7 − c8 = 0 =⇒ c7 = c8. (135)

On the other hand, at x = L it must be that:

k · c7ekL − k · c7e−kL = 0 =⇒ k · c7
(
ekL − e−kL

)
= 0. (136)

Since k =
√
λ > 0 and L > 0, Similar argument as Case 2 of Dirichlet boundary conditions from

Section 2.3 yields c7 = 0. This result, together with equation (135), leads to a trivial solution.
Therefore, λ > 0 will not hold for Neumann boundary condition.

Case 3: λ = −k2 < 0
Here, the characteristic equation of (126) is:

r2 + k2 = 0, (137)

for which the roots are:
r± = ±ik. (138)
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Therefore, as shown previously in Section 2.2 in (60), the following general solution satisfies the
given problem:

X (x) = c9 cos (kx) + c10 sin (kx) , (139)

where c9 and c10 are constants determined by the considered boundary conditions. We have that at
x = 0 the following must hold:

Xx (0) = 0 =⇒ k (−c9 sin (0) + c10 cos (0)) = 0

=⇒ c10 = 0,
(140)

which means that:
X (x) = c9 cos (kx) (141)

is a nonzero solution. To find the values of k we should examine the boundary condition at x = L,
for which:

Xx (L) = 0 =⇒ −kc9 sin (kL) = 0

=⇒ kL = nπ, where n = 1, 2, . . .

=⇒ k =
nπ

L
, where n = 1, 2, . . .

(142)

Now, plugging in the value of k obtained in (142) and setting the arbitrary constant c9 = 0 we
obtain the following result:

Xn (x) = cos
(nπ
L

x
)
, where n = 1, 2, . . . (143)

Based on the above, we see that the eigenvalues for (114) will be:

λn = −k2

= −
(nπ
L

)2
, where n = 1, 2, . . .

(144)

Now, similarly to the result (67) from Section 2.2 and the result obtained in (144), we get that the
solution to:

T ′ = c2λT (145)

is:
Tn (t) = e−c2(nπ

L )
2
t. (146)

Returning to the original problem in this section, (120) and remembering that the available eigen-
values λ ≤ 0, we get that the following linear combination of the above results will be its solution:

u (x, t) = 1 · T0 (t) +

∞∑
n=1

Xn (x)Tn (t)

= a0 +

∞∑
n=1

an cos
(nπ
L

x
)
e−c2(nπ

L )
2
t,

(147)

where an are constant coefficients whose value we find by examining the initial condition (9):

u (x, 0) = a0 +

∞∑
n=1

an cos
(nπ
L

x
)

= f(x).

(148)
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Now we multiply both sides of (148) by cos
(
mπ
L x
)
:

f(x) cos
(mπ

L
x
)
= a0 cos

(
0 · π
L

x

)
cos
(mπ

L
x
)
+

∞∑
n=1

an cos
(nπ
L

x
)
cos
(mπ

L
x
)

(149)

and integrate: ∫ L

0

f(x) cos
(mπ

L
x
)
dx = a0

∫ L

0

cos

(
0 · π
L

x

)
cos
(mπ

L
x
)
dx+

+

∫ L

0

∞∑
n=1

an cos
(nπ
L

x
)
cos
(mπ

L
x
)
dx.

(150)

As before, we should use the knowledge of orthogonality of functions cos(nπx). Then for m = 0 we
obtain: ∫ L

0

f(x) cos

(
0 · π
L

x

)
dx = a0

∫ L

0

cos

(
0 · π
L

x

)
cos

(
0 · π
L

x

)
dx

=⇒
∫ L

0

f(x)dx = a0

∫ L

0

dx

=⇒ a0 =
1

L

∫ L

0

f(x)dx.

(151)

In case when m > 0 we get:∫ L

0

f(x) cos
(mπ

L
x
)
dx =

∞∑
n=1

an

∫ L

0

cos
(nπ
L

x
)
cos
(mπ

L
x
)
dx

=⇒
∫ L

0

f(x) cos
(mπ

L
x
)
dx = am

∫ L

0

(
cos
(mπ

L
x
))2

dx

=⇒ am =
2

L

∫ L

0

f(x) cos
(mπ

L
x
)
dx.
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Hence, the solution to the problem with Neumann boundary condition is:

u (x, t) = a0 +

∞∑
n=1

an cos
(nπ
L

x
)
e−c2(nπ

L )
2
t, (153)

where:

a0 =
1

L

∫ L

0

f(x)dx (154)

an =
2

L

∫ L

0

f(x) cos
(nπ
L

x
)
dx, for n = 1, 2, . . . . (155)

3 Analysis and Visualization of the Results for the Diffusion-
Convection Equation

In this section, we use the theoretical results obtained in Section 2 to demonstrate the behavior
of each analyzed system in order to show how different constants affect the evolution of the initial
condition function.
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3.1 Homogeneous Dirichlet Boundary Conditions

In Section 2.3 the following problem was investigated:

ut = c2uxx − βux 0 < x < L and 0 < t < ∞,

subject to the following boundary and initial conditions:

u(0, t) = u(L, t) = 0

u(x, 0) = f(x).

The obtained solution:

u (x, t) = e−
β2

4c2
te

β

2c2
x

∞∑
n=1

bn sin
(nπ
L

x
)
e−c2(nπ

L )
2
t,

where the coefficients bn are given by:

bn =
2

L

∫ L

0

e−
β

2c2
xf (x) sin

(nπ
L

x
)
dx.

It is worth noting that the imposed Dirichlet boundary conditions are responsible for the above
solution to have a simple equilibrium state. By equilibrium we mean a steady state solution where
we examine whether this system will approach a preferable, constant state. This state will be
characterized by the following condition:

∂u

∂t
= 0.

Notice that the solution contains two exponentially decaying functions of t: e−
β2

4c2
t and e−c2(nπ

L )
2
t.

The first one indicates β’s contribution to the overall decay, or rather it is the ratio
β2

4c2
, while the

second comes only from the diffusion coefficient, c2. Calculating the following limit will illustrate
the expected decay:

lim
t→∞

u(x, t) = lim
t→∞

[
e−

β2

4c2
te

β

2c2
x

∞∑
n=1

bn sin
(nπ
L

x
)
e−c2(nπ

L )
2
t

]

= lim
t→∞

[
e−

β2

4c2
te

β

2c2
x

∞∑
n=1

(
2

L

∫ L

0

e−
β

2c2
xf (x) sin

(nπ
L

x
)
dx

)
sin
(nπ
L

x
)
e−c2(nπ

L )
2
t

]
= 0.

Hence, any initial condition will over time decay to zero given Dirichlet boundary conditions.

3.1.1 Effect of Changing the Sign and Magnitude of β on u(x, t)

Consider the following constants used in the simulation: L = 1, c = 1, and let the initial condition
be f(x) = sin (πx). Figure 2 presents the solutions for three values of the convection coefficient
β : −10, 0, and 5, where the first 70 eigenvalues (n = 70) were used. In all three cases the blue
curves signify the initial condition, the black curves are the solutions after 0.05 units of time, and
the red curves are the solutions at time 0.1.
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Figure 2: The effect of changing β on the behavior of the system described by the diffusion-convection
equation with Dirichlet boundary conditions.

First, homogeneous boundary conditions force the value of the function at x = 0 and x = 1 to
always be 0, which means that over time, with diffusion or convection taking place, one expects that
the function will decrease its overall value. This is evident in all three cases presented Figure (2)
because the function is forced to have a value of 0 at both boundaries.

Second, changing the sign of β causes the convection to occur in the direction of the sign of the
coefficient with respect to the increasing value of assigned position, x. For negative β, convection
occurs in the negative x direction, which is shown in the left figure - the curve appears to be ”pushed”
to the left. One also observes that the function’s value is allowed to increase at some locations (e.g.,
x = 0.01). This is because the magnitude of the convection coefficient (10) is much greater than
the diffusion coefficient (c2 = 1), so convection in this case dominates the behavior of the system.
The figure on the right shows the case where β is positive, so convection occurs in the positive x
direction, but its magnitude (5) is half of that of the case with β = −10, so the function at the
corresponding times appears to decrease at a slower rate. At time t = 0.1, the red curve in the right
figure is much more significant than that in the left figure.

Third, the middle graph in Figure 2 represents the system where no convection occurs, which is
described by a pure diffusion equation. Here, we observe an even slower progress of dissipation of
the function - but its disappearance is caused by the diffusion, meaning that without it, the function
would remain at the blue curve’s state at any time t.

3.1.2 Effect of Changing the Magnitude of c2 on u(x, t)

Now, to find how changing c2 will affect the behavior of the system, we consider the following
constants: L = 1, β = 5, and let the initial condition be f(x) = sin (πx). Figure 3 presents the
solutions for three values of the convection coefficient c2 : 1.00, 2.25, and 4.00, where the first 70
eigenvalues (n = 70) were used. As before, in all three cases the blue curves signify the initial
condition, but now the black curves are the solutions after 0.02 units of time, and the red curves
show the solutions at time 0.05.
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Figure 3: The effect of changing c2 on the behavior of the system described by the diffusion-
convection equation with Dirichlet boundary conditions.

The left-most graph in Figure 3 shows the system with the smallest effect of diffusion. The movement
of the curve in the positive x direction as time progresses signifies that convection, or the effect of
the β coefficient, is the most prominent. The middle graph in Figure 3 considers an increased value
of the diffusion coefficient. With respect to the graph on the left, c2 increased 2.25 times, which
causes the rate at which the function decreases to be larger. The effect of convection, although still
visible through the slight tilt of the curve with time progressing, is not as noticeable as in the graph
to the left. The graph on the right has c2 increased four times with respect to the left-most case,
which causes the function to dissipate even faster with convection only slightly signified by the tilt
of the curve to the right.

With the convection coefficient kept constant, increased values of the diffusion coefficient should
produce a faster disappearance of the function, which is seen going from left to right. This is
because the Dirichlet boundary conditions force the value of the function to always be zero at the
two boundaries. This is why the diffusion or slow dissipation of the function in both directions over
time causes an increase of the value of the function as it approaches the boundaries, but at the same
time the imposed boundary conditions force the function to decrease to zero at each end. The same
is true of the effect of the convection, which ultimately causes the disappearance of the function,
which mathematically is represented by limt→∞ u(x, t) = 0.

3.1.3 Effect of Changing the Initial Condition f(x) on u(x, t)

In this section, we will investigate how the shape of the initial function f(x) determines the solution of
the diffusion-convection equation with Dirichlet boundary conditions. Here we assigned the following
values to the constants in the problem: L = 1, c2 = 1, β = 5. The solutions presented were calculated
using 70 first eigenvalues (n = 70). Figure 4 presents three cases with different initial conditions.
The left-most graph presents the solution for f(x) = sin2(2πx) cos2(3πx), the middle graph’s initial
condition was f(x) = sin2(2πx), and the graph on the right examines f(x) = sin6(πx). The time
points considered is t = 0.000, t = 0.005, and t = 0.020.
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Figure 4: The effect of changing f(x) on the behavior of the system described by the diffusion-
convection equation with Dirichlet boundary conditions.

The examples of different initial conditions presented in Figure 4 show how the initial shape of the
function determines its evolution over time. The left graph in Figure 4 shows f(x) with four local
maxima which quickly merge to become a curve with only two local maxima at t = 0.005, followed
by the slightly slanted shape with only one maximum at t = 0.02. The middle example’s initial
condition only has two maxima, which start to decrease and shift to the right, but the decrease here
is slower than in the left example, which is related to how quickly f(x) is changing with respect to
position and its curvature. The first reason relates to the steepness of the curve, which is connected
to convection, while the curvature influences the diffusion process. The initial condition in the left
graph has a steeper and more curved shape than the starting point of f(x) in the middle graph. To
the right, we have an initial condition with only one maximum. Even though the convection shifts
the curve to the right, on the lower left hand side we clearly see that a significant curvature there
causes the diffusion, occurring in either direction, to visibly increase the value of the function in
that corner.

3.2 Homogeneous Robin Boundary Conditions

In section 2.4 the problem investigated was:

ut = c2uxx − βux 0 < x < L and 0 < t < ∞,

where c2 and β are positive constants. This equation was subject to the following boundary condi-
tions:

ux (0, t)− a0u (0, t) = 0

ux (L, t) + aLu (L, t) = 0,

where a0 and aL are positive constants. The following general initial condition was considered:

u(x, 0) = f(x).

The well-posedness of the problem required additional conditions on the constant β:

β ≤ 2c2a0.
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The solution to this equation was found to be:

u (x, t) = e−
β2

4c2
te

β

2c2
x

∞∑
n=1

An

(
cos
(αn

L
x
)
+

a0 − β
2c2

αn
L sin

(αn

L
x
))

e−
α2
n

L2 c2t,

where coefficients An are given by:

An =

∫ L

0

(
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(
αn

L x
)
+

a0− β

2c2

αn
L sin

(
αn

L x
))
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β

2c2
xf (x) dx

∫ L

0

(
cos
(
αn

L x
)
+
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2c2

αn
L sin

(
αn

L x
))2

dx

,

and constants αn (n ∈ Z≥0) are solutions to the following transcendental equation:

tan (α) =
L (a0 + aL)α

α2 − L2
(
a0 − β

2c2

)(
aL + β

2c2

) .
As in the case of Dirichlet boundary conditions, we ask about the equilibrium solution:

lim
t→∞

u (x, t) = lim
t→∞

[
e−

β2

4c2
te

β

2c2
x
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n=1

An

(
cos
(αn

L
x
)
+

a0 − β
2c2

αn
L sin

(αn

L
x
))

e−
α2
n

L2 c2t

]
= 0.

The above result signifies that in the system, which interacts with its surroundings according to
Newton’s law, the solution will also over time diminish to the u(x) = 0. The following examples
will illustrate the major difference between Dirichlet and Robin boundary conditions - while in the
Dirichlet case the function at each end of the system was kept at u(0, t) = u(L, t) = 0, in the Robin
case, these values will change in time.

3.2.1 Effect of Changing the Magnitude of β on u(x, t)

In this section, we will illustrate how changing the magnitude of the convection coefficient, β, affects
the behavior of the system.

Consider a system of length 1 (0 ≤ x ≤ 1), where the following coefficients were kept constant:
c2 = 1, a0 = 10, and aL = 0.5. In each case illustrated in Figure 5, the initial condition was
f(x) = sin(πx) and 70 first αn values were used in obtaining the solutions for times t = 0.00, 0.03,
and 0.20.

Different values of β cause the system to evolve slightly differently. The example on the left in
Figure 5 illustrates a solution to the pure diffusion problem (β = 0). The function f(x) is seen to
decrease most notably where its curvature is negative, which coincides with a maximum. The most
notable difference we observe is in the rate at which the function’s value changes on the boundaries.
Because the a0 coefficient was chosen to be much higher than aL, this means that at x = 0 the
system is allowed to interact with the surroundings to a greater extent than at x = 1. Over time,
this manifests itself by making the curve look tilted - with smaller value achieved at x = 0 compared
to x = 1. Since the function dissipates through the boundaries, just at different rates at each end,
it will continue to decrease until it becomes the zero-function.
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Figure 5: The effect of changing the magnitude of β on the behavior of the system described by the
diffusion-convection equation with homogeneous Robin boundary conditions.

The middle graph in Figure 5 shows the same conditions as in the left example, but now convection
process is introduced (β = 4). The convection ”pushes” the curve to the right, so the function’s
value at x = 1 at time t = 0.03 reaches a higher values than in the left example, but this in turn
helps dissipating the function, so at time t = 0.20 the curve appears to have decreased faster than
the to the left.

In the right example of Figure 5, β was increased by a factor of 2 (β = 8), which caused the function
at the left boundary, x = 0, to reach smaller values at different times compared to the left and
middle graphs. This is because convection at this end works against the diffusion. On the other
hand, at x = 1 and at t = 0.03, the function takes on the largest value between the three examples,
although at t = 0.20, it has the smallest of the three values. Even though the exchange with the
surroundings at x = 1 is inhibited by the small value of aL = 0.5, it still happens, so constant
convection in that direction allows for faster progression toward equilibrium.

3.2.2 Effect of Changing the Magnitude of c2 on u(x, t)

We now illustrate how the change of the diffusion coefficient, c2, affects the solution. Figure 6
presents the system bounded by 0 ≤ x ≤ 1, where the convection coefficient is β = 4, and the chosen
boundary condition coefficients are a0 = aL = 3. The initial condition is f(x) = sin(πx) and 70 first
αn constants were used in presenting the solutions at times t = 0.00, 0.03, and 0.10.

The graph on the left in Figure 6 shows that convection is the dominating process, causing the
function to shift to the right as time progresses. This also causes, even though the boundary
conditions at each boundary are identical, the function to increase more at x = 1 than at x = 0.

Increasing the impact of diffusion by a factor of 2 (c2 = 2) in the middle graph shows that the
function progresses toward equilibrium much faster and the curves at different times now have
smaller curvatures, compared with solutions at corresponding times with the example on the left.
Increasing c2 to 4 in the right example still has visible convection effect, which causes a slight shift
of the maximum of u(x, t) to the right. Diffusion now plays a dominant role reducing the relative
difference in function values at each boundary, compared with examples from the left and middle
graphs. With both convection and higher impact of diffusion, the solution on the right graph at
t = 0.10 is much closer to equilibrium than the other examples.
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Figure 6: The effect of changing the magnitude of c2 on the behavior of the system described by the
diffusion-convection equation with homogeneous Robin boundary conditions.

3.2.3 Effect of Changing the Boundary Constants a0 and aL on u(x, t)

We move on to demonstrate how changing the character of the boundary condition at each end
will impact its solution. Increasing a0 or aL constants will cause the boundary to interact with the
surroundings more, which having homogeneous conditions means more ”Dirichlet” character, while
decreasing them will cause the boundary to become more insulated, or ”Neumann” in character.

Consider again a bounded system 0 ≤ x ≤ 1, where c2 = 1, β = 5. The initial condition was set to
f(x) = sin(πx) and 70 values of αn coefficients were used in producing the graphs in Figure 7. The
solutions are shown for three different time t = 0.00, 0.05, and 0.15.

Figure 7: The effect of changing the relative values of a0 and aL on the behavior of the system
described by the diffusion-convection equation with homogeneous Robin boundary conditions.

Comparing the left and middle graphs in Figure 7 we see that decreasing the magnitude of aL from
10 to 0.1 made the right boundary more insulated - the function increased in value at t = 0.05
and 0.15, compared to the corresponding curves in the left graph. Keeping aL = 0.1 and changing
the values of a0 from 3 to 50 as illustrated in the right graph of Figure 7 shows how close the left
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boundary appears to the one presented in Section 3.1.1 in Figure 2. This change did affect how
the function behaved at the right boundary. While at time t = 0.05 there is little if any difference
between the value of the function between the middle and right graph, but at t = 0.15, one can
observe a noticeable decrease in the function’s values at that point in space.

3.2.4 Effect of Changing the Initial Condition f(x) on u(x, t)

In this section, we show three examples of initial functions to illustrate that, given the same con-
ditions, the systems’ behavior, while similar, will differ. Figure 8 presents the solutions with the
following constants: c2 = 1, β = 10, a0 = 10, and aL = 0.5. In all graphs, the blue curves represent
t = 0.000, the black curves t = 0.005, and the red curves correspond to t = 0.020. The explicit
formulas for each f(x) is presented as a title for each of the graphs in Figure 8.

In all the graphs in Figure 8 we see clear impact of convection, where all curves slowly shift to
the right with time passing. The difference between the magnitudes of a0 and aL demonstrate
themselves by increased value of the function at x = 1 as compared to the value of the function at
x = 0. It is interesting to see how low the u(0, t) remains on the right graph in comparison to the
other examples. The reasons for that are the relative magnitude of β and c2, as well as how close to
zero f(x) is for x ∈ (0, 2).

Figure 8: The effect of changing f(x) on the behavior of the system described by the diffusion-
convection equation with Robin boundary conditions.

3.3 Homogeneous Neumann Boundary Conditions

In Section 2.5 we investigated an insulated system which necessitated the following value of the
convection coefficient: β = 0. Hence, the problem in the case of Neumann boundary condition
turned out to be a pure diffusion equation:

ut = c2uxx 0 < x < L and 0 < t < ∞,

subject to the following boundary and initial conditions:

ux(0, t) = ux(L, t) = 0

u(x, 0) = f(x).
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The obtained solution was as follows:

u (x, t) = a0 +

∞∑
n=1

an cos
(nπ
L

x
)
e−c2(nπ

L )
2
t,

where:
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L

∫ L

0

f(x)dx
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2

L

∫ L

0

f(x) cos
(nπ
L

x
)
dx, for n = 1, 2, . . .

As in the Dirichlet and Robin boundary conditions, we should ask if an equilibrium state is expected,
and if so, is it different from the previous problems? Again, to do this we are interested in computing
the following limit:
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∫ L

0

f(x)dx

The above result shows that indeed, the system which is subject to the Neumann boundary conditions
will approach the equilibrium state when at each position the value of the function u(x) will be
constant and an average of the given f(x).

3.3.1 Effect of Changing the Magnitude of c2 on u(x, t)

We will now illustrate how changing the value of the diffusion coefficient changes the behavior of
the system.

Consider a system of length L = 1: 0 ≤ x ≤ 1 and the initial condition given by: f(x) = sin(πx),
where 70 first eigenvalues were used to approximate the solutions. Figure 9 presents three cases
where the diffusion coefficient c2 was chosen to be: 1.00 (left), 2.25 (middle), and 4.00 (right). The
insulated system manifests itself by changing the value of the function at x = 0 and at x = L. Due
to the diffusion process, the function increases where its average value is below the aforementioned
average of f(x), and it decreases where its value was above the starting average. This process
continues, slightly slowing down with time, most visible on the right graph in Figure 9 at x = 0.5,
as the curvature of the function decreases.
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Figure 9: The effect of changing c2 on the behavior of the system described by the diffusion-
convection equation with Neumann boundary conditions.

Figure 9 shows how, with increasing diffusion coefficient, the system changes at a faster rate, which
supports the claim that the second derivative with respect to position term in the differential equation
is a mathematically represented physical process of diffusion. Notice, now that β = 0, no convection
occurs and the symmetry of the system as given by the initial condition f(x) is preserved.

3.3.2 Effect of Changing the Initial Condition f(x) on u(x, t)

We now illustrate in Figure 10 how the change of the system with Neumann boundary conditions
depends on the shape of the initial condition f(x). In Figure 10, the graph on the left has an initial
condition given by: f(x) = sin2(2πx) cos2(3πx), while the one in the middle has f(x) = sin2(2πx),
and the initial condition in the right graph is f(x) = sin6(πx). In each case the spatial variable x is
bounded by x = 0 on the left, and L = 1 on the right. The chosen value of the diffusion coefficient
was c2 = 1. The times considered in each case were t = 0.000, 0.005, and 0.020.

Figure 10: The effect of changing f(x) on the behavior of the system described by the diffusion
equation with Neumann boundary conditions.

With time passing, in each case, the function decreases where its curvature is negative and increases
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where it is positive. This is visible in the left example, where at time t = 0.005 each local maximum
exhibits some decrease. The decrease is most predominant in the two middle maxima. The two
peripheral maxima, both well below the average of f(x) also show slight decrease, until, very quickly
their curvatures decrease at which time they no longer are local maxima. Once this happens, those
points start increasing, as they appear to be lower than the average of f(x). The graph in the middle
shows two local maxima in f(x). The curvature at those points is smaller than in the left example,
which explains why their decrease after time t = 0.005 was much smaller as compared with the case
on the left. The example on the right in Figure 10 demonstrates how much slower the process is when
there is one dominant curvature at the maximum with two areas with smaller curvature present on
each side of the curve. In comparison, the middle example has two local maxima with about equal
curvature each (as compared to the right example) with an additional local minimum having large
positive curvature. The number and the magnitude of the points with dominant curvatures causes
the system in the middle to evolve quicker than the one on the right.

3.4 Comparing the Solutions with Three Different Boundary Conditions
for β = 0

As a final example we present the solutions to the pure diffusion equation and illustrate the effect
the three different, homogeneous boundary conditions have on the system. For the graphs presented
in Figure 11, the following constants were used: c2 = 2, β = 0, necessarily, a0 = 10, and aL = 0.1.
In each case, 70 eigenvalues were used to compute the solution for f(x) = sin4(πx). The times at
which the solutions are graphed are: t = 0.000, 0.002, 0.010, and 0.050.

Figure 11: The effect of changing the type of boundary conditions on the behavior of the system
described by the diffusion equation with f(x) = sin4(πx).

While both, the Dirichlet and Robin functions will over time decay to zero, we can clearly see the
differences between them. In the Robin case, the interaction with the surroundings is inhibited,
hence it will decrease at a lower rate than the Dirichlet system. Somewhat surprisingly, the system
with insulated boundary conditions, Neumann on the right, reaches its equilibrium much faster than
the Dirichlet case on the left. This may be because in the Neumann case the curvatures close to
the boundaries, while decreasing with time, remain and continue driving the diffusion process along
with the curvature present in the middle. In the Dirichlet case, the originally present curvatures
close to the boundaries quickly diminish leaving only one dominant one, where the function has its
maximum, to be the source of diffusion.
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4 Python Code

In this section, we share the Python code used to visualize the theoretical results obtained in the
previous sections. Visualizing the evolution of the system given different boundary conditions was
essential to understanding the physical processes of convection and diffusion, and while derivation of
their mathematical forms were referenced from other sources, the rate of change and the curvature
of a given function clearly relate to those processes, respectively.

4.1 Dirichlet Boundary Conditions

import numpy as np

import scipy.integrate

from numpy import exp

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from matplotlib.animation import PillowWriter

dt = 0.001 #time increment

tmin = 0.0 #initial time

tmax = 0.2 #simulate until

nx = 500 #number of position points (spatial resolution)

xmin = 0.0 #left bound

xmax = 1.0 #right bound

x = np.arange(xmin, xmax, (xmax - xmin)/nx)

#set initial condition:

def f(x):

return np.sin(np.pi*x/xmax)

#define constants:

c = 1 #diffusion coefficient

beta = 5 #velocity

#number of eigenvalues:

n = 70

N = np.arange(1,n+1,1)

#compute eigenvalues:

a = np.empty(n)

for i in N:

a[i-1]=(-(i*np.pi/xmax)**2)

#solution:

def u(x,t,beta):

sum = 0

for i in N:

sum= sum+2/xmax*scipy.integrate.quad(lambda x:exp(-beta/(2*c**2)*x)*f(x)*

np.sin(i*np.pi*x/xmax),0,xmax)[0]*np.sin(i*np.pi*x/xmax)*

exp(-c**2*(i*np.pi/xmax)**2*t)
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return sum*exp(-beta**2/(4*c**2)*t)*exp(beta/(2*c**2)*x)

#producing animation

fig, ax = plt.subplots()

ax.set xlabel(’x’)

plotLine, = ax.plot(x, np.zeros(len(x))*np.NaN, ’r-’)

plotTitle = ax.set title("t=0")

ax.set ylim(0,1.2)

ax.set xlim(xmin,xmax)

def solution(t):

p = u(x,t,beta)

return p

def animate(t):

pp = solution(t)

plotLine.set ydata(pp)

plotTitle.set text(’t = ’ + str(round(t,3)))

return [plotLine,plotTitle]

ani = animation.FuncAnimation(fig, func=animate, frames=np.arange(tmin, tmax, dt),

blit=False)

plt.show()

#saving animation

ani.save("Dirichlet.gif",writer=PillowWriter(fps=24))

4.2 Robin Boundary Conditions

import numpy as np

import scipy.integrate

from numpy import exp

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from matplotlib.animation import PillowWriter

dt = 0.001 #time increment

tmin = 0.0 #initial time

tmax = 0.4 #simulate until

nx = 200 #number of position points (spatial resolution)

xmin = 0.0 #left bound

xmax = 1.0 #right bound

x = np.arange(xmin, xmax, nx)

#define constants:

c = 1 #diffusion coefficient

beta = 5 #velocity

a0=5 #x=0 BC constant

aL=1 #x=L BC constant

pertub=1e-4 #perturbation value to determine bisect interval
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#number of alpha constants:

n = 70

N = np.arange(1,n+1,1)

#set initial condition

def f(x):

return np.sin(np.pi*x/xmax)**4

#compute the vertical asymptote

asympt = xmax*np.sqrt((a0-beta/(2*c**2))*(aL+beta/(2*c**2)))

if asympt > 0:

print(’The vertical asymptote happens at x = ’, asympt)

else:

print(’beta is out of range for Robin boundary condition to ensure

solution existence’)

#function to be used in the bisection method

def func(y):

return np.tan(y)-xmax*(a0+aL)*y/(y**2-xmax**2*((a0-beta/(2*c**2))*

(aL+beta/(2*c**2))))

#find the interval containing the vertical asymptote

for i in N:

if np.pi*(i-1) <= asympt and asympt < np.pi*i:

sep = i-1

break

print(’The interval containing the vertical asymptote is ’, sep)

#compute alpha constants:

a = np.empty(n)

for i in N:

if i <= sep: #interval before the vertical asymptote

if func((i-1)*np.pi+np.pi/2*(1+pertub))*func(i*np.pi) < 0:

print("found alpha in interval ", i)

a[i-1]=optimize.bisect(func, (i-1)*np.pi+np.pi/2*(1+pertub), i*np.pi)

elif i > sep+1: #interval after the vertical asymptote

if func((i-1)*np.pi)*func((i-1)*np.pi+0.5*np.pi*(1-pertub)) < 0:

print("found alpha in interval ", i)

a[i-1]=optimize.bisect(func, (i-1)*np.pi, (i-1)*np.pi+0.5*np.pi*(1-pertub))

else: #interval containing the vertical asymptote

if asympt < (i-1)*np.pi+0.5*np.pi:

if func(asympt*(1+pertub))*func((i-1)*np.pi+0.5*np.pi*(1-pertub)) < 0:

print("found alpha in interval ", i)

a[i-1] = optimize.bisect(func, asympt*(1+pertub),

(i-1)*np.pi+0.5*np.pi*(1-pertub))

elif asympt > (i-1)*np.pi+0.5*np.pi:

if func((i-1)*np.pi+0.5*np.pi*(1+pertub))*func(asympt*(1-pertub)) < 0:

print("found alpha in interval ", i)

a[i-1] = optimize.bisect(func, (i-1)*np.pi+0.5*np.pi*(1+pertub),

asympt*(1-pertub))

else:
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a[i-1] = asympt

print(a)

#solution:

def u(x,t):

sum = 0

for i in N:

An = (scipy.integrate.quad(lambda x:exp(-beta/(2*c**2)*x)*f(x)*

(np.cos(a[i-1]*x/xmax)+(a0-beta/(2*c**2))*xmax/a[i-1]*np.sin(a[i-1]*x/xmax)),

0,xmax)[0])/(scipy.integrate.quad(lambda x:(np.cos(a[i-1]*x/xmax)+

(a0-beta/(2*c**2))*xmax/(a[i-1])*np.sin(a[i-1]*x/xmax))**2,0,xmax)[0])

sum = sum+An*exp(-(a[i-1]**2*c**2*t/(xmax**2)))*(np.cos(a[i-1]*x/xmax)+

(a0-beta/(2*c**2))*xmax/(a[i-1])*np.sin(a[i-1]*x/xmax))

return sum*exp(-beta**2/(4*c**2)*t)*exp(beta/(2*c**2)*x)

#producing animation

fig, ax = plt.subplots()

ax.set xlabel(’x’)

plotLine, = ax.plot(x, np.zeros(len(x))*np.NaN, ’r-’)

plotTitle = ax.set title("t=0")

ax.set ylim(-np.max(f(x))*1.1,np.max(f(x))*1.1)

ax.set xlim(xmin,xmax)

def solution(t):

p = u(x,t)

return p

def animate(t):

pp = solution(t)

plotLine.set ydata(pp)

plotTitle.set text(’t = ’ + str(round(t,3)))

return [plotLine,plotTitle]

ani = animation.FuncAnimation(fig, func=animate, frames=np.arange(tmin+2*dt,

tmax, dt), blit=False)

plt.show()

#saving animation

ani.save("Robin.gif",writer=PillowWriter(fps=24))

4.3 Neumann Boundary Conditions

import numpy as np

import scipy.integrate

from numpy import exp

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from matplotlib.animation import PillowWriter

dt = 0.003 #time increment

tmin = 0.0 #initial time
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tmax = 0.4 #simulate until

nx = 200 #number of position points (spatial resolution)

xmin = 0.0 #left bound

xmax = 1.0 #right bound

x = np.arange(xmin, xmax, (xmax - xmin)/nx)

#set initial condition:

def f(x):

return np.sin(np.pi*x/xmax)

#define constants:

c = 1/2 #diffusion coefficient

beta = 0 #no velocity allowed

#number of eigenvalues:

n = 70

N = np.arange(1,n+1,1)

#compute eigenvalues:

a = np.empty(n)

for i in N:

a[i-1]=(-(i*np.pi/xmax)**2)

#solution:

def u(x,c,t):

sum = 0

for i in N:

sum= sum+2/xmax*scipy.integrate.quad(lambda x:f(x)*

np.cos(i*np.pi*x/xmax),0,xmax)[0]*np.cos(i*np.pi*x/xmax)*

exp(-c**2*(i*np.pi/xmax)**2*t)

return 1/xmax*scipy.integrate.quad(lambda x:f(x),0,xmax)[0]+sum

#producing animation

fig, ax = plt.subplots()

ax.set xlabel(’x’)

plotLine, = ax.plot(x, np.zeros(len(x))*np.NaN, ’r-’)

plotTitle = ax.set title("t=0")

ax.set ylim(0,1.2)

ax.set xlim(xmin,xmax)

def solution(t):

p = u(x,c,t)

return p

def animate(t):

pp = solution(t)

plotLine.set ydata(pp)

plotTitle.set text(’t = ’ + str(round(t,3)))

return [plotLine,plotTitle]

ani = animation.FuncAnimation(fig, func=animate, frames=np.arange(tmin, tmax, dt),

blit=False)
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plt.show()

#saving animation

ani.save("Neumann.gif",writer=PillowWriter(fps=24))

5 Summary and Conclusions

In this paper, we follow Arrigo [4] and Tanveer [5] to establish a complete procedure of solving
1D diffusion-convection equation with all three kinds boundary conditions (Dirichlet, Robin, and
Neumann). The Dirichlet boundary condition does not enforce any restrictions on the convection
coefficient. However, the Robin boundary condition indeed enforces an upper bound on the convec-
tion coefficient in order to ensure solution existence and uniqueness for the problem. The Neumann
boundary condition, as a special case of Robin boundary condition, requires that the convection
coefficient remains zero. Therefore, a diffusion system cannot be insulated from its surroundings
once convection takes effect. Finally, we use Python code to construct and visualize the solution of
the diffusion-convection equation with varying boundary conditions.
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