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Abstract 

In this work, we investigate different techniques to predict the monthly trend 

direction of the S&P 500 market index. The techniques use a machine learning 

classifier with technical and macroeconomic indicators as input features. The 

Support Vector Machine (SVM) classifier was explored in-depth in order to 

optimize the performance using four different kernels; Linear, Radial Basis 

Function (RBF), Polynomial, and Quadratic. A result found was the performance 

of the classifier can be optimized by reducing the number of macroeconomic 

features needed by 30% using Sequential Feature Selection. Further 

performance enhancement was achieved by optimizing the RBF kernel and 

SVM parameters through gridsearch. This resulted in final classification 

accuracy rates of 62% using technical features alone with gridsearch and 60.4% 

using macroeconomic features alone using Rankfeatures. 
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Chapter 1 Introduction 

 Appearing in The New Palgrave: A dictionary of Economics, it was 

described that “The Efficient Markets Hypothesis (EMH) maintains that market 

prices fully reflect all available information. Developed independently by Paul A. 

Samuelson and Eugene F. Fama in the 1960s, this idea has been applied 

extensively to theoretical models and empirical studies of financial securities 

prices, generating considerable controversy as well as fundamental insights into 

the price-discovery process. The most enduring critique comes from 

psychologists and behavioral economists who argue that the EMH is based on 

counterfactual assumptions regarding human behavior, that is, rationality. 

Recent advances in evolutionary psychology and the cognitive neurosciences 

may be able to reconcile the EMH with behavioral anomalies [1].” Another 

financial theory is called the Random Walk Hypothesis (RWH) which supports 

the EMH. The RWH proposes the market prices change randomly which results 

in it being unpredictable.  

 Recently, studies show that the ability to predict market movement based 

on macroeconomic and technical analysis is possible. Macroeconomic analysis 

measures the health of a certain company and decides the value for a given 

business in order to predict if in the future the price will change in a certain 

direction. Technical analysis on the other hand uses the markets’ historical 

prices and volume in order to create an interpretation of the market’s state. With 

use of technical analysis, an analyst can convert the prices into various 
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indicators in order to understand the market state better and possibly make 

better prediction decisions. 

 The purpose of this work was to explore the techniques used to predict 

the market’s monthly trend direction using macroeconomic and technical 

analysis. Using this data, an in-depth investigation using machine learning 

techniques was performed in order to create a model for predicting the market’s 

movement. The result of this thesis shows that macroeconomic and technical 

information can be used as input to a machine learning classifier to create a 

prediction model that predicts if the market’s movement for the following month 

is ‘up’ or ‘down’. 

1.1 Problem Statement 

Predicting the monthly direction of the market is a problem faced by many 

investors. The work presented in this thesis develops a prediction model that can 

be used to help trading securities safer and cause less risk involved when 

making an investing decision. 

1.2 Objective 

The objective of this work was to develop a market prediction model that 

can successfully predict the monthly returns on a market to gain profit and 

reduce the risk involved. This was achieved by constructing a market prediction 

simulator with exploration of many different techniques to optimize the model’s 
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performance. This model was evaluated by noting the monthly in-sample and 

out-of-sample classification accuracy. 

1.3 Thesis Format 

The following includes a literature of background information and related 

techniques of market data classification (Chapter 2); a description of goals, 

hypothesis and evaluation methods (Chapter 3); an explanation of design 

(Chapter 4); and a thorough description of all experimental prediction strategies 

with results (Chapter 5). 
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Chapter 2 Background Information and Literature Overview 

 The potential use of different data types and systems to predict the 

market’s trend direction has increased in the recent years with many different 

techniques available. This thesis provides an explanation and overview of 

macroeconomic and technical data used with machine learning techniques to 

predict the direction of the market’s monthly trend. 

2.1 Macroeconomic Data 

 Macroeconomic data are measurements and indicators used to describe 

the current or previous economy’s state of a country [2]. The macroeconomic 

data measures the overall health of an economy. Ability to obtain the 

macroeconomic data is not as simple as obtaining technical data, the other 

source of data used to analyze the state of the market and economy. 

Macroeconomic Indicators [3]: 

2.1.1 Dividend Price Ratio 

 The dividend per share paid to the share on a stock exchange paid 

previously, used as a measure of the potential investment of a certain stock. 

2.1.2 Dividend Yield 

 It is a ratio of the dividends to the price per index that explains how much 

the pay out in dividends relative to the index price. 
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2.1.3 Earnings to Price Ratio 

 Earnings are the amount of profit that a company produces in a specific 

period which shows the company’s profitability. An Earnings to Price is the 

valuation of an index’s earnings to its price. 

2.1.4 Stock Variance 

 Stock Variance is a measure of volatility from an average which is used to 

measure the risk when purchasing a certain index. 

2.1.5 Book-to-Value 

 Book-to-Value is a ratio of a company’s historical cost to the company’s 

market value which can be found through its market capitalization. It helps to 

identify if the index is overvalued or undervalued. A ratio above 1 indicates the 

index is undervalued while less than 1 is overvalued. 

2.1.6 Net Equity Expansion 

 Net Equity Expansion is “the ratio of 12-month moving sums of net issues 

by NYSE listed stocks divided by the total end-of-year market capitalization of 

NYSE stocks.” 

2.1.7 Treasury-bill 

 Treasury bill is a short-dated government security that yields no interest 

but is offered at discounted prices on its redemption price. 
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2.1.8 Long Term Yield 

 It is the percentage of return of investment on the debt responsibilities of 

the U.S. government. 

2.1.9 Long Term Return 

2.1.10 Term Spread 

2.1.11 Default Yield Spread  

Default yield spread is the difference between the quoted rates of return 

on two different investments. In our case, it is used between AAA and BAA-rated 

bonds. 

2.1.12 Default Return Spread 

2.1.13 Inflation 

Inflation is the rate at which the general level of prices for goods and services 

increases and a fall in the purchasing power. 

2.2 Technical Data 

Technical analysis is the study of financial markets behavior. Technical analysis 

consists of evaluating historical prices in order to create technical indicators 

which indicate the current or past state of a certain security in market [4]. In this 
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work, we use some of the many common technical indicators as input features to 

the classifier. 

Technical Indicators used in this work: 

2.2.1 Relative Strength Index 

 An indicator attempts to identify if it is an overbought or oversold market 

by comparing the magnitude of resent gains to losses [6]. It is calculated as the 

following: 

𝑅𝑆𝐼 = 100 − �
100
𝑅𝑆

� 

𝑅𝑆 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠

 

 

2.2.2 Bollinger Bands 

 Bollinger Bands are volatility bands based on standard deviation which 

are placed above and below a moving average. They are used to determine the 

strength of the trend [7]. They’re calculated by the following formulas: 

1. Middle Band = t-day simple moving average (SMA). 

2. Upper Band = t-day SMA + (t-day standard deviation of price x 2) 

3. Lower Band = t-day SMA – (t-day standard deviation of price x 2) 
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2.2.3 Stochastic 

 It is an indicator to tell if the market is oversold or overbought by 

comparing the price of a certain security over a given period of time. This is done 

by: 

%𝐾 = 100 �
C(t)  −  L(14)

H(14)  −  L(14)
� 

%𝐷 = 3 − period moving average of %K 

C = the most recent closing price. 

L(14) = the low of the 14 previous trading sessions. 

 H(14) = the highest price traded during the same 14-day period. 

2.2.4 Simple Moving Average 

 This indicator is formed by computing the average index price over a 

given period. In other words, it is defined as the N day’s sum of closing price 

divided by N [9]. 

2.2.5 Momentum 

 It is an indicator that measures the change of a security’s price over a 

given time period. It is defined by: 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =
Price(N)

Price(N − t)
∗ 100 
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2.3 Classifier 

Classifiers are machine learning algorithms that can be used to classify a 

problem given a set of data. This work uses and investigates the Support Vector 

Machine (SVM) classifier closely to classify up or down periods given two 

different types of data sets as inputs; Macroeconomic and technical data. 

2.3.1 Support Vector Machine 

 A Support Vector Machine is a supervised learning algorithm that can use 

given data to solve certain problems by attempting to convert them into linearly 

separable problems [11]. The SVM is given input data called training data sets 

that are linked to binary outputs in order to classify new observation to one of the 

two classes by creating a separating hyperplane [12]. Through the created 

hyperplane, the algorithm then labels new examples. In this work, we perform 

SVM training and classification using Matlab with functions ‘svmtrain’ and 

‘svmclassify’. Four different kernels are used in this work; Linear, Radial Basis 

Function (RBF), Polynomial, and Quadratic. These functions are provided in the 

Statistics Toolbox as of the Matlab version 2013a. The mathematical formulation 

for each kernel is shown here [14]: 

• Linear:𝐾(𝑥, 𝑦) =  𝑤(𝑥.𝑦) + 𝑏. The vector w is known as the weight vector 

and b is called the bias.  

• Radial basis function – RBF: For some positive number σ:  
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o 𝐾(𝑥,𝑦) = exp �
–�� 𝑥𝑖 – 𝑥𝑗��

2

2𝜎2
�. 

o x i and xj will have either one becoming the support vector and the 

other will be the testing data point. 

• Polynomial: For some positive integer d: 

o  𝐾(𝑥, 𝑦) =  (1 + < 𝑥.𝑦 >)𝑑. Where d is the polynomial's degree 

• Quadratic: 𝐾(𝑥,𝑦) =  (< 𝑥.𝑦 >)2. 

2.4 A Literature Overview 

 This work performs a study on techniques used to predict the market’s 

trend direction using macroeconomic and technical data and feeding this data to 

a machine learning classifier such as the SVM in our case. 

2.4.1 SVM Prediction System 

 In the paper “Predicting S&P 500 Returns Using Support Vector 

Machines: Theory and Empirics,” the author mentions the use of macroeconomic 

data as input to the SVM classifier to predict the S&P 500 monthly trend direction 

[24]. We created a set of data called technical features in the aim of predicting 

the S&P 500 monthly trend direction. Using Relative Strength Index, Bollinger 

Bands, Stochastic, Simple Moving Average, and Momentum, a total of 17 

different technical features were constructed. 15 other inputs were constructed 

using macroeconomic features. The data provided is broken into two periods for 

training (in-sample period) and test (out-of-sample period). A comparison 
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between the efficacy of using macroeconomic and technical features was 

performed. The next step was to optimize the SVM for both sets of data and 

compare the results.  

2.4.2 Normalizing 

 Because data can be calculated differently and result in different 

representation to the data, certain data will have high numbers compared to the 

rest while others may be small. In data mining or machine learning, it is best 

practice to have the data pre-processed or normalized before the models are 

built and make use of the data. In this work, we perform normalization by use of 

the ‘zscore’, ‘normc’, and ‘normalize’ functions with Matlab. Unless turned off, 

SVM will normalize the data automatically using the zscore method. The way to 

control this is by setting ‘autoscale’ from its default value of ‘true’ to ‘false’, thus 

turning off the normalization done internally by the SVM function. 

svmStruct = svmtrain(Training, Group, 'autoscale', true); 

Zscore is a very useful statistical tool because it allows us to compare two 

different values from different normal distributions. Zscore is a function provided 

by Matlab and computed as follows: 

𝑍(𝑛) =
𝑌(𝑛) −𝑀

𝑆
 

Where M is the mean, S is the standard deviation and Yn is the value we are 

normalizing in the vector. A simple example is shown next where we have two 
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vectors to normalize, X and Y. The results show the zscore normalizes each 

column vector separately and independently. 

X Y Zscore X Zscore Y 
1 2 -1.1619 -1.1619 
2 4 -0.3873 -0.3873 
3 6 0.3873 0.3873 
4 8 1.1619 1.1619 

 
Table 2.1 Example for normalizing simple data with zscore 

 The function ‘normc’ normalizes the data to the length of 1 [15]. This 

function is also provided by Matlab. The normalized vector is computed by: 

𝑁(𝑛) =
𝑋(𝑛)
||𝑋||

 

Where ||X|| is the norm of the vector and computed as the following: 

||𝑋|| =  �X12 + X22 + ⋯+ 𝑋𝑛2 

The following table is a simple example for using normc. The same values 

used for zscore are used here to show the difference. We see normc scales the 

data to the length of 1. Using normc, the column data is normalized 

independently. 

 

X Y Normc X Normc Y 
1 2 0.18257 0.18257 
2 4 0.36515 0.36515 
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3 6 0.54772 0.54772 
4 8 0.7303 0.7303 

 
Table 2.2 Example for normalizing simple data with normc 

 The function ‘normalize’ normalizes the data in the vector to become 

between 0 and 1 and scales the rest of the values appropriately. This function 

appears not to be provided by Matlab. However, its Matlab implementation is 

given in an appendix. The normalized vector is computed as the following: 

𝑁(𝑛) =
𝑋(𝑛) − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

The same example for normc and zscore is done again to compare the results 

and show how ‘normalize’ works. 

X Y Normalize X Normalize Y 
1 2 0 0 
2 4  0.33333  0.33333 
3 6 0.66667 0.66667 
4 8 1 1 

 
Table 2.3 Example for normalizing simple data with normalize 

2.4.3 Gridsearch 

The classifier’s hyperplane can be adjusted based on the model 

presented by adjusting the parameters that affect the learning algorithm. This is 

called hyperparameter optimization or model selection and it will ensure that 

optimizing the model will be done during the in-sample period to not result in 

overfitting and make sure the out-of-sample classification procedure is not 
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affected [16]. There are two parameters for the RBF kernel SVM: C and sigma. A 

common way of performing this hyperparameter optimization is through 

gridsearch. The method consists of an in-depth searching through a chosen 

interval of the parameters. The grid search algorithm is guided by the 

performance and evaluation of the out-of-sample data. This process can be done 

by generating a range of values for C and sigma to search through first. The way 

used in this paper to generate the values is: 

𝐶 = 2−1, 2−0.9, 2−0.8, 2−0.7, … 20, 20.1, 20.2, 20.3, … 21 and this is done for sigma as 

well. Once we find the best parameters, we do another exhaustive search for a 

very small range where our best parameters are in. The range -1 to 1 is an 

example to show how it works. This range in this paper was started 

from 0.001 𝑡𝑜 25 with increment of 0.001 for the search. Next, we do 

comprehensive search for all possible pairs of C and sigma in order to obtain the 

best classification accuracy of the in-sample data with the optimized parameters 

[17]. 
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Chapter 3 Goals Hypothesis and Evaluation Method 

3.1 Goals 

 The main goal of this work was to create a prediction method for the 

direction of the monthly trend using an appropriate set of data. 

 The second goal of this work was to learn about the techniques used with 

Support Vector Machine in computational finance. With all the analysis tools 

available and the market volatility, it is a hard task to achieve accurate 

prediction, especially with different kinds of market data that is available. 

Learning how to classify the data to perform more accurate prediction to the 

trend direction was an important objective due to unexpected movement of the 

market. 

3.2 Hypothesis 

 The hypothesis of this work was the following: 

The financial markets are complex, evolutionary, and non-linear dynamic 

systems. The market’s trend direction can be identified by different type of large 

data sets. Therefore, predicting and forecasting the market trend is a difficult 

task. Given the right technical and/or macroeconomic data to a machine learning 

classifier, such as the Support Vector Machine, it is possible to classify the 

direction of the market’s trend and make accurate investing choices regarding 

the market and reduce the risk involved. 
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3.3 Evaluation Method 

 A simulated predicting system will be constructed using Matlab to test this 

hypothesis. This system designed will give the option between which features 

will be used to the SVM classifier and the ability of editing the parameters 

provided by the classifier in order to maximize the performance. The system will 

simulate the prediction over a given time period for testing and evaluation. The 

performance will be measured by the classification accuracy during the in-

sample and out-of-sample. The classification accuracy is the evaluation results 

of the total number of correctly classified targets compared to the total number of 

targets. 
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Chapter 4: Design 

The tool selected to design the prediction simulator was Matlab because 

of its power and simplicity at the same time. The features used are available 

mostly in the internet from reliable sources. The prediction simulator was 

designed to be simple enough and flexible to change the testing period, 

classifier’s kernel, and data selection and reduction.  

4.1 Prediction Model 

In this work, using different type of features and kernels for classification, 

a model was created in order to find the direction of the trend for the following 

month. 

4.1.1 Data Construction 

 The input data used in this work are separated into two types; 

macroeconomic and technical data of the S&P 500 (symbol: SPY). The 

macroeconomic data was prepared by Amit Goyal and Ivo Welch [18]. The data 

provided are: DY, EP, DE, SVAR, BM, NTIS, TBL, LTY, LTR, TMS, DFY, DFR 

and INFL. One extra input was added from the list which is EQ, Equity Premium, 

as follows: The equity risk premium is the difference between the compound 

market return and the log return on a risk-free Treasury bill. From the previous 

statement, we concluded EQ = Compound Return – log(1+Rfree). The index 

price was provided by [18] which open, close, high, low were obtained from the 



18 
 

index price itself. Close price is the index current month’s price while open is the 

previous month’s index price. High is defined as the maximum index price over 

the last 12 months. Low is defined in the same way as high, the lowest index 

price over the last 12 months. Since we were looking at monthly data with no 

volume provided, volume indicators were excluded. The data available is from 

January 1871 to December 2011, which is total of 1680 months of data. The 

index’s monthly price is the closing price of the last trading day of the month. The 

time period investigated in this work was from June 1938 through December 

2010 with the out-of-sample starting in January 1975. Out of 883 trading months 

used in this work, 439 were used as training data and the remaining 444 used as 

testing data. The training period was 49.71% while the testing period was 

50.29%. The total features constructed in this work were 27. 14 of the total 

features were macroeconomic while the 13 left were technical features. The 

construction of the features in Matlab was done through TA-Lib: Technical 

Analysis Library which is available as an open-source [19]. The macroeconomic 

inputs are: 

1. Dividend price-ratio, DP, is the log of dividends minus the log of prices. 

2. Dividend Yield, DY, is the log of dividends minus the log of lagged prices.  

3. Earnings are 12-month moving sums of earnings on the S&P 500 index. 

Earning Price Ratio, EP, is the log of earnings minus the log of prices. 

4. Dividend Payout Ratio, DE, is the log of dividends minus the log of 

earnings. 
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5. Stock Variance, SVAR, is the sum of the monthly return on the S&P 500. 

6. Book-to-Market, BM, is the ratio of book value to market value for the Dow 

Jones Industrial Average. 

7. Net Equity Expansion, NTIS, is the ratio of 12-month moving sums of net 

issues by NYSE listed stocks divided by the total end-of-year market 

capitalization of NYSE stocks. 

8. Treasury Bills, TBL, is the interest rate on a three-month Treasury bill. 

9. Long term yield, LTY, is the long-term government bond yield. 

10. Long term return, LTR, is the long-term government bond yield. 

11. The Term Spread, TMS, is the long term yield on government bonds 

minus the Treasury-bill. 

12. Default Yield Spread, DFY, is the difference between BAA and AAA-rated 

corporate bond yields. 

13.  Default Return Spread, DFR, is the difference between long-term 

corporate bond and long-term government bond returns. 

14. Inflation, INFL, is the Consumer Price Index calculated from All Urban 

Consumers. 

15. DY12 calculated as the difference between log dividends from Pt-12 to Pt 

at time t. 

When constructing the compound return using the given index price from the 

data in [18] and Yahoo! Finance, there is a mismatch. However, only 9 out of 

the 1692 data points are not the same when constructing the earnings vector 
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to use for training and testing. As a result of this, there is a possible error of 

0.53% or less. The days we found which mismatched are: 

Mismatch Date Price Previous Month’s Price 
April 1974 98.44 98.42 
April 1979 101.76 101.59 

September 1979 109.32 109.32 
April 1984 160.05 159.18 

January 1986 211.78 211.28 
April 1991 375.35 375.22 
June 1996 670.63 669.12 

February 2006 1280.66 1280.08 
June 2006 1270.20 1270.09 

 
Table 4.1 Dates of mismatched earnings 

From the table 4.1, we notice in those mismatched months, the earnings 

are so small for each that when we take the difference of the earnings and log of 

the risk-free, the number we get is negative but during our class labeling, those 

numbers came out as positive (prior to taking the earnings difference with risk-

free). 

The technical inputs used are shown in Table 4.2. 

Input # Definition 
1 𝑅𝑆𝐼(𝑐, 𝑡) 

2 
𝑐 − 𝐵𝐵ℎ𝑖𝑔ℎ
𝐵𝐵ℎ𝑖𝑔ℎ

 

3 
𝑐 − 𝐵𝐵𝑙𝑜𝑤
𝐵𝐵𝑙𝑜𝑤

 

4 %𝐾(𝑡) 
5 %𝐷(𝑡) 
6 %𝐾(𝑡) − %𝐾(𝑡 − 1) 
7 %𝐷(𝑡) − %𝐷(𝑡 − 1) 
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8 
𝑐(𝑡) − 𝑐(𝑡 − 1)

𝑐(𝑡 − 1)  

9 
𝑐(𝑡) − 𝑙(𝑡)
ℎ(𝑡) −  𝑙(𝑡)

 

10 
𝑆𝑀𝐴(𝑐, 10) − 𝑆𝑀𝐴(𝑐(𝑡 − 1), 10)

𝑆𝑀𝐴(𝑐(𝑡 − 1), 10)  

11 
𝑆𝑀𝐴(𝑐, 21) − 𝑆𝑀𝐴(𝑐(𝑡 − 1), 21)

𝑆𝑀𝐴(𝑐(𝑡 − 1), 21)  

12 
𝑆𝑀𝐴(𝑐, 10) − 𝑆𝑀𝐴(𝑐(𝑡 − 1), 21)

𝑆𝑀𝐴(𝑐(𝑡 − 1), 21)  

13 
𝑐(𝑡) − 𝑆𝑀𝐴(𝑐, 21)

𝑆𝑀𝐴(𝑐, 21)  

14 
𝑐(𝑡) −𝑚𝑖𝑛(𝑐, 5)

𝑚𝑖𝑛(𝑐, 5)  

15 �(�)−����,5����,5 

16 
𝑆𝑀𝐴(𝑐, 2) − 𝑆𝑀𝐴(𝑐, 12)

𝑆𝑀𝐴(𝑐, 12)  

17 
𝑐(𝑡) − 𝑐(𝑡 − 12)

𝑐(𝑡 − 12)  

 
Table 4.2 Set of Technical Indicators Used 

Where: 

• BBhigh and BBlow are the upper Bollinger Bands and lower Bollinger Bands. 

• c is the monthly price of the index. 

• t is the time. 
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Figure 4.1 S&P 500 Monthly index over the training and testing period 

 
Figure 4.2 S&P 500 DE movements over the training and testing period 



23 
 

 
Figure 4.3 S&P 500 EP movements over the training and testing period 

 
Figure 4.4 S&P 500 INFL movements over the training and testing period 
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4.1.2 Classification 

The price of the S&P 500 is a stock market index represented in dollar 

value. This work deals with S&P 500 price in time series. A classification method 

is best to represent the movement of S&P 500 price in a simplified way. The 

classification was calculated using a simple difference method; the current 

month’s index price – previous month’s index price. The classification then would 

assign a 1 if next month’s index price is higher or equal to the current month and 

0 if the price is less than the current month. 

4.1.3 Data Normalization 

 It is essential to normalize the data when using a classifier such Support 

Vector Machine because of features computed may have different value ranges 

between minimum that is below 0 and maximum to higher than thousands [20]. If 

features dimensions have fewer variations, it will take less time for SVM to learn 

and no certain feature that is dominating due to features having fewer 

dimensions which could impact the behavior over the test data. Normalization is 

done using the functions ‘zscore’, ‘normc’, and ‘normalize”. 

4.1.4 Proper Data Handling 

 Handling the data improperly to the classifier can result in inaccurate 

classification. When handling all the data at once (in-sample and out-of-sample), 

the SVM classifier will normalize both periods in a one-time operation. The 
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classifier at this point will realize the maximum value in the out-of-sample and 

this will affect the accuracy of the classification process. First, normalize the in-

sample training data and train the classifier. Normalize the first subset of out-of-

sample data as it will be known at this point and the classifier will not be 

considered looking at the future. Test the classifier for the current out-of-sample 

data and store the classification result in an array. Next, include the new subset 

of the out-of-sample data for new normalization (this subset is known at this 

point) and retrain the classifier for testing. Store the result in the classification 

array and redo the steps until the out-of-sample data is complete [21]. 

 

4.1.5 Data reduction and selection 

 The features used in this work were a total of 15 for macroeconomic and 

17 for technical. High dimension problems cause difficulty in classification 

because of creating many noise features which does not result in contribution to 

the classification system rather reduces the classification accuracy [22]. Two 

different methods were used separately in this work in effort to reduce the 

unnecessary features used while maintaining the robustness of the classification 

system; Sequential Feature Selection and Rankfeatures. By reducing the 

features used, the classifier will be dealing with fewer features to learn from. 

Reducing the features to the minimum useful while improving the performance in 

this work was done by looking at the criterion values and the in-sample accuracy 
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only, excluding out-of-sample during this procedure. This was done this way 

because it is not considered looking at future data to take off the data that wasn’t 

useful in out-of-sample. 

4.1.6 Frequent Index’s Price Oscillation 

 The index’s price frequent oscillation in a short period and the ability of 

the classifier to follow up with changes was an important factor in this work. For 

example, when in 4 consecutive months, the actual classification records for 

price movement 1, 0, 1, 0, the classifier needed to follow those short term price 

oscillation rather than long term price movement (i.e., 6 months in a row 

classification is 1 and then another 4 months classification is 0). 

 

4.2 Classifier Data Processing Kernel 

 In this work, four different SVM kernels were investigated. The goal was 

to find the best kernel to classify the data and have a good separation 

hyperplane between the data sets. Not in all cases the data can be separated, 

SVM in this case tends to soften the margin in order to separate as much as 

possible of the data. The kernels used are linear, RBF, quadratic, and 

polynomial. Finding the best parameters for RBF classifier to soften the margin 

was done using gridsearch method [23]. 
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Chapter 5: Experiments and Results 

5.1 SVM Classification 

 We were drawn to do this work by the paper:  “Predicting S&P 500 

Returns Using Support Vector Machines: Theory and Empirics” [24] in which a 

claim was made of achieving an 86% classification accuracy (we will later show 

that this claim is unsubstantiated). The model used the given data sets for 

testing period to predict the direction of the next month’s closing price of the S&P 

500. We explore different kernels for the SVM to find the best kernel to classify 

the data effectively. The features used were macroeconomic and technical. They 

were each used separately and then combined together with the aim of possibly 

achieving the highest accuracy in prediction. The same macroeconomic features 

introduced in [24] were used as an input for the SVM classifier. The technical 

features used in [25], the same features in Table 4.2, were used as input to the 

SVM classifier. A combination of both macroeconomic and technical features 

then was used. The data were normalized using functions,’ zscore’, ‘normc’, and 

‘normalize’ in Matlab. 

5.1.1 Macroeconomic Features 

The results for the macroeconomic data test with zscore data normalizing 

can be seen in Table 5.1. The average in-sample accuracy was 82.92% for the 

four different kernels. The average out-of-sample prediction accuracy was 

50.92%. The out-of-sample performance for both RBF and quadratic kernels are 



28 
 

the best with 55.79% accuracy with the RBF kernel and 54.86% with quadratic. 

The polynomial kernel performed the best during the in-sample period but had a 

lower out-of-sample accuracy with 47.22% compared to the 100% accuracy 

performance during the in-sample period which leads one to conclude that the 

polynomial was nothing more than a guess work in this case. The RBF kernel 

was similar in performance to the polynomial in the out-of-sample but has less 

accuracy during the in-sample period. The RBF has a better success rate 

compared to the rest of the kernels when considering both the in-sample and 

out-of-sample accuracy. 

Kernel In-Sample Accuracy % Out-Of-Sample Accuracy % 
Linear 59.23% 50.46% 
RBF 94.76% 55.79% 

Polynomial 97.95% 52.08% 
Quadratic 79.73% 54.86% 

 
Table 5.1 Results for SVM classifier using Macroeconomic data and zscore normalization 

Changing the data normalizing method from ‘zscore’ to ‘normc’, the out-

of-sample accuracy was improved and became overall better than the zscore. 

The in-sample period accuracy was not as good as with ‘zscore’ when gaining 

59.23% accuracy for all kernels. The average accuracy for the out-of-sample 

period was 55%. Classifying resulted in good results using ‘normc’ during the 

out-of-sample for all kernels. 

Kernel In-Sample Accuracy % Out-Of-Sample Accuracy % 
Linear 59.23% 56.02% 
RBF 59.23% 55.56% 



29 
 

Polynomial 59.23% 56.02% 
Quadratic 59.23% 55.79% 

 
Table 5.2 Results for SVM classifier using Macroeconomic data and normc normalization 

The function ‘normalize’ performed slightly better than ‘zscore’ during the 

out-of-sample period but featured less accuracy using quadratic kernel when 

compared to normalization with zscore in the out-of-sample. The RBF kernel 

responded well to the normalization with ‘normalize’ to gain 53.47% accuracy in 

the out-of-sample period which was close to the best performing quadratic 

kernel. 

Kernel In-Sample Accuracy % Out-Of-Sample Accuracy % 
Linear 59.68% 50.23% 
RBF 66.51% 53.47% 

Polynomial 72.67% 53.70% 
Quadratic 66.51% 53.94% 

 
Table 5.3 Results for SVM classifier using Macroeconomic data with ‘normalize’ function 

Based on our results obtained during the experiment with SVM 

classification with macroeconomic data and the promotion of the RBF kernel in 

the paper “Active Learning with Support Vector Machines” [26], we decided to 

choose RBF kernel and zscore data scaling to investigate the results presented 

in this paper and compare it with the results in [24]. All of the out-of-sample SVM 

predictions are presented in Table 5.3. Overall, 241 out of 432 predictions were 

correct, yielding to 55.79% accuracy. One thing we notice from the SVM 

performance was the response to following the long term trend. 
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yyyymm Prediction Actual 
197501 1 1 197803 1 1 
197502 1 1 197804 1 1 
197503 1 1 197805 1 0 
197504 1 1 197806 1 1 
197505 1 1 197807 1 1 
197506 1 0 197808 1 0 
197507 1 0 197809 0 0 
197508 1 0 197810 1 1 
197509 0 1 197811 1 1 
197510 1 1 197812 1 1 
197511 1 0 197901 1 0 
197512 0 1 197902 1 1 
197601 1 0 197903 1 1 
197602 0 1 197904 1 0 
197603 1 0 197905 1 1 
197604 0 0 197906 1 1 
197605 0 1 197907 1 1 
197606 0 0 197908 1 1 
197607 0 0 197909 1 0 
197608 0 1 197910 1 1 
197609 0 0 197911 1 1 
197610 0 0 197912 1 1 
197611 0 1 198001 1 0 
197612 0 0 198002 1 0 
197701 0 0 198003 1 1 
197702 0 0 198004 1 1 
197703 0 1 198005 1 1 
197704 0 0 198006 1 1 
197705 0 1 198007 1 1 
197706 0 0 198008 1 1 
197707 0 0 198009 1 1 
197708 0 0 198010 1 1 
197709 0 0 198011 0 0 
197710 0 1 198012 0 0 
197711 0 1 198101 0 1 
197712 1 0 198102 1 1 
197801 1 0 198103 1 0 
197802 0 1 198104 1 0 
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198105 1 0 198408 0 0 
198106 1 0 198409 0 0 
198107 1 0 198410 0 0 
198108 1 0 198411 0 1 
198109 1 1 198412 0 1 
198110 1 1 198501 0 1 
198111 1 0 198502 0 0 
198112 1 0 198503 0 0 
198201 1 0 198504 0 1 
198202 1 0 198505 0 1 
198203 1 1 198506 0 0 
198204 1 0 198507 0 0 
198205 1 0 198508 0 0 
198206 1 0 198509 0 1 
198207 1 1 198510 0 1 
198208 1 1 198511 0 1 
198209 1 1 198512 0 1 
198210 0 1 198601 0 1 
198211 0 1 198602 0 1 
198212 0 1 198603 0 0 
198301 0 1 198604 0 1 
198302 0 1 198605 0 1 
198303 0 1 198606 0 0 
198304 1 0 198607 0 1 
198305 0 1 198608 0 0 
198306 0 0 198609 0 1 
198307 0 1 198610 0 1 
198308 0 1 198611 1 0 
198309 0 0 198612 0 1 
198310 0 1 198701 0 1 
198311 0 0 198702 1 1 
198312 0 0 198703 1 0 
198401 0 0 198704 0 1 
198402 0 1 198705 1 1 
198403 0 1 198706 1 1 
198404 0 0 198707 1 1 
198405 0 1 198708 1 0 
198406 0 0 198709 1 0 
198407 0 1 198710 0 0 
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198711 0 1 199102 1 1 
198712 0 1 199103 1 1 
198801 0 1 199104 1 1 
198802 0 0 199105 1 0 
198803 0 1 199106 1 1 
198804 0 1 199107 1 1 
198805 0 1 199108 1 0 
198806 0 0 199109 1 1 
198807 0 0 199110 1 0 
198808 0 1 199111 1 1 
198809 0 1 199112 1 0 
198810 0 0 199201 1 1 
198811 0 1 199202 1 0 
198812 0 1 199203 1 1 
198901 0 0 199204 1 1 
198902 0 1 199205 1 0 
198903 0 1 199206 1 1 
198904 0 1 199207 1 0 
198905 0 0 199208 1 1 
198906 0 1 199209 1 1 
198907 0 1 199210 1 1 
198908 0 0 199211 1 1 
198909 0 0 199212 1 1 
198910 0 1 199301 1 1 
198911 1 1 199302 1 1 
198912 1 0 199303 1 0 
199001 1 1 199304 1 1 
199002 1 1 199305 1 1 
199003 1 0 199306 1 0 
199004 1 1 199307 1 1 
199005 1 0 199308 1 0 
199006 1 0 199309 1 1 
199007 1 0 199310 1 0 
199008 1 0 199311 1 1 
199009 1 0 199312 1 1 
199010 1 1 199401 1 0 
199011 1 1 199402 1 0 
199012 1 1 199403 1 1 
199101 1 1 199404 1 1 
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199405 1 0 199708 1 1 
199406 1 1 199709 1 0 
199407 1 1 199710 1 1 
199408 1 0 199711 1 1 
199409 1 1 199712 1 1 
199410 1 0 199801 1 1 
199411 0 1 199802 1 1 
199412 0 1 199803 1 1 
199501 0 1 199804 1 0 
199502 1 1 199805 1 1 
199503 0 1 199806 1 0 
199504 1 1 199807 1 0 
199505 1 1 199808 1 1 
199506 1 1 199809 1 1 
199507 1 0 199810 1 1 
199508 1 1 199811 1 1 
199509 1 0 199812 1 1 
199510 1 1 199901 1 0 
199511 1 1 199902 1 1 
199512 1 1 199903 1 1 
199601 1 1 199904 1 0 
199602 1 1 199905 1 1 
199603 1 1 199906 1 0 
199604 1 1 199907 1 0 
199605 1 1 199908 1 0 
199606 1 0 199909 1 1 
199607 1 1 199910 1 1 
199608 1 1 199911 1 1 
199609 1 1 199912 1 0 
199610 1 1 200001 1 0 
199611 1 0 200002 1 1 
199612 1 1 200003 1 0 
199701 1 1 200004 0 0 
199702 1 0 200005 0 1 
199703 1 1 200006 0 0 
199704 1 1 200007 0 1 
199705 1 1 200008 0 0 
199706 1 1 200009 0 0 
199707 1 0 200010 0 0 
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200011 0 1 200402 1 0 
200012 0 1 200403 1 0 
200101 0 0 200404 1 1 
200102 0 0 200405 1 1 
200103 0 1 200406 1 0 
200104 0 1 200407 1 1 
200105 0 0 200408 1 1 
200106 0 0 200409 1 1 
200107 0 0 200410 1 1 
200108 0 0 200411 1 1 
200109 0 1 200412 1 0 
200110 0 1 200501 1 1 
200111 0 1 200502 1 0 
200112 1 0 200503 1 0 
200201 0 0 200504 1 1 
200202 0 1 200505 1 0 
200203 0 0 200506 1 1 
200204 0 0 200507 1 0 
200205 0 0 200508 1 1 
200206 0 0 200509 1 0 
200207 0 1 200510 1 1 
200208 0 0 200511 1 0 
200209 0 1 200512 1 1 
200210 0 1 200601 1 1 
200211 0 0 200602 1 1 
200212 0 0 200603 1 1 
200301 0 0 200604 1 0 
200302 0 1 200605 1 1 
200303 0 1 200606 1 1 
200304 0 1 200607 1 1 
200305 0 1 200608 1 1 
200306 1 1 200609 1 1 
200307 1 1 200610 1 1 
200308 1 0 200611 1 1 
200309 1 1 200612 1 1 
200310 1 1 200701 1 0 
200311 1 1 200702 1 1 
200312 1 1 200703 1 1 
200401 1 1 200704 1 1 
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200705 1 0 200909 1 0 
200706 1 0 200910 0 1 
200707 1 1 200911 1 1 
200708 1 1 200912 1 0 
200709 1 1 201001 1 1 
200710 1 0 201002 1 1 
200711 1 0 201003 1 1 
200712 1 0 201004 1 0 
200801 1 0 201005 1 0 
200802 1 0 201006 1 1 
200803 1 1 201007 1 0 
200804 1 1 201008 1 1 
200805 1 0 201009 1 1 
200806 1 0 201010 1 0 
200807 1 1 201011 1 1 
200808 1 0 201012 1 1 
200809 0 0 
200810 0 0 
200811 0 1 
200812 1 0 
200901 0 0 
200902 0 1 
200903 0 1 
200904 1 1 
200905 1 1 
200906 1 1 
200907 1 1 
200908 1 1 

 

Table 5.4 Out-of-sample SVM predictions vs. actual realization 
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5.1.2 Technical Features 

 The work in [24] indicates the use of macroeconomic variables will tend to 

lead to superior prediction rates compared to the use of technical features. The 

next step in this work was to substitute the macroeconomic features with the 

technical features presented in [25]. The first test was to use technical features 

with zscore. The accuracy of the classification can be seen in Table 5.5. 

Kernel In-Sample Accuracy % Out-Of-Sample Accuracy % 
Linear 60.59% 51.16% 
RBF 95.90% 59.26% 

Polynomial 99.32% 49.77% 
Quadratic 77.68% 49.54% 

 
Table 5.5 Results for SVM classifier using technical features and zscore normalization 

The RBF and Polynomial kernels performed better during the in-sample 

with technical features as well. The polynomial kernel was able to perform the 

best during the in-sample period but not as well during out-of-sample to result in 

classification accuracy below 50%. Compared to the macroeconomic features, 

the classification accuracy of the RBF was the best at 59.26% to outperform the 

best performance made using macroeconomic features. The quadratic kernel 

had better results using the macroeconomic features compared to using 

technical features during the out-of-sample test.  

Kernel In-Sample Accuracy % Out-Of-Sample Accuracy % 
Linear 56.04% 48.15% 
RBF 56.04% 48.15% 

Polynomial 55.58% 46.99% 
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Quadratic 56.04% 46.99% 
 

Table 5.6 Results for SVM classifier using technical features and normc normalization 

Next, the data scaling was tested using normc function and the results 

can be seen in Table 5.6. Normc shows very similar performance during the in-

sample and out-of-sample periods. Classification with technical data showed 

similar behavior when using the normc to classifying with macroeconomic 

features. All kernels had similar results for the in-sample and out-of-sample 

The next step was to perform data normalization use the ‘normalize’ 

function. The polynomial kernel made a noticeable improvement in comparison 

with its performance using the normc and zscore functions. It outperformed the 

normc function and was able to achieve higher than 50% classification accuracy 

during the out-of-sample test period. From Table 5.7, the best performing kernel 

was the RBF with 55.56% accuracy during the out-of-sample period. 

Kernel In-Sample Accuracy % Out-Of-Sample Accuracy % 
Linear 61.73% 52.55% 
RBF 61.96% 55.56% 

Polynomial 69.25% 51.39% 
Quadratic 64.24% 54.63% 

 
Table 5.7 Results for SVM classifier using technical features and normalize function 

The classification results using zscore are still the best even when using 

technical features which are simple to obtain compared to macroeconomic data. 

Looking closely at classification results of the best overall performing kernel with 

technical features, the RBF with zscore data normalizing, the classifier predicted 
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256 out-of-sample data correctly out of 432. The classifier with technical features 

responded well to the short trend oscillation and making classification accuracy 

close to 60%. The following table shows detailed results of classification with 

technical features and RBF kernel: 

yyyymm Prediction Actual 
197501 1 1 197707 0 0 
197502 1 1 197708 1 0 
197503 1 1 197709 0 0 
197504 1 1 197710 0 1 
197505 1 1 197711 1 1 
197506 1 0 197712 1 0 
197507 1 0 197801 0 0 
197508 1 0 197802 0 1 
197509 1 1 197803 1 1 
197510 0 1 197804 1 1 
197511 0 0 197805 1 0 
197512 1 1 197806 0 1 
197601 1 0 197807 1 1 
197602 1 1 197808 1 0 
197603 1 0 197809 1 0 
197604 1 0 197810 1 1 
197605 1 1 197811 0 1 
197606 1 0 197812 1 1 
197607 1 0 197901 0 0 
197608 1 1 197902 1 1 
197609 1 0 197903 0 1 
197610 1 0 197904 1 0 
197611 1 1 197905 1 1 
197612 1 0 197906 1 1 
197701 1 0 197907 1 1 
197702 0 0 197908 0 1 
197703 0 1 197909 1 0 
197704 1 0 197910 1 1 
197705 1 1 197911 0 1 
197706 0 0 197912 0 1 
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198001 1 0 198304 1 0 
198002 0 0 198305 0 1 
198003 1 1 198306 1 0 
198004 1 1 198307 1 1 
198005 1 1 198308 1 1 
198006 1 1 198309 1 0 
198007 1 1 198310 0 1 
198008 0 1 198311 1 0 
198009 0 1 198312 0 0 
198010 1 1 198401 0 0 
198011 1 0 198402 1 1 
198012 1 0 198403 0 1 
198101 1 1 198404 1 0 
198102 1 1 198405 1 1 
198103 1 0 198406 0 0 
198104 0 0 198407 1 1 
198105 0 0 198408 1 0 
198106 0 0 198409 1 0 
198107 0 0 198410 0 0 
198108 0 0 198411 1 1 
198109 1 1 198412 1 1 
198110 1 1 198501 1 1 
198111 0 0 198502 1 0 
198112 1 0 198503 0 0 
198201 0 0 198504 0 1 
198202 1 0 198505 1 1 
198203 1 1 198506 0 0 
198204 1 0 198507 0 0 
198205 0 0 198508 1 0 
198206 1 0 198509 0 1 
198207 0 1 198510 1 1 
198208 1 1 198511 1 1 
198209 0 1 198512 1 1 
198210 1 1 198601 1 1 
198211 1 1 198602 1 1 
198212 1 1 198603 0 0 
198301 1 1 198604 0 1 
198302 1 1 198605 0 1 
198303 1 1 198606 0 0 
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198607 1 1 198910 1 1 
198608 0 0 198911 1 1 
198609 1 1 198912 1 0 
198610 1 1 199001 1 1 
198611 0 0 199002 0 1 
198612 0 1 199003 1 0 
198701 1 1 199004 0 1 
198702 1 1 199005 1 0 
198703 1 0 199006 1 0 
198704 1 1 199007 0 0 
198705 1 1 199008 0 0 
198706 0 1 199009 0 0 
198707 0 1 199010 1 1 
198708 0 0 199011 1 1 
198709 1 0 199012 0 1 
198710 1 0 199101 1 1 
198711 1 1 199102 1 1 
198712 1 1 199103 1 1 
198801 1 1 199104 1 1 
198802 1 0 199105 1 0 
198803 1 1 199106 1 1 
198804 0 1 199107 1 1 
198805 0 1 199108 0 0 
198806 1 0 199109 1 1 
198807 0 0 199110 0 0 
198808 0 1 199111 1 1 
198809 1 1 199112 1 0 
198810 1 0 199201 0 1 
198811 1 1 199202 0 0 
198812 0 1 199203 0 1 
198901 1 0 199204 1 1 
198902 1 1 199205 1 0 
198903 0 1 199206 1 1 
198904 0 1 199207 0 0 
198905 1 0 199208 1 1 
198906 0 1 199209 1 1 
198907 1 1 199210 1 1 
198908 1 0 199211 1 1 
198909 0 0 199212 1 1 
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199301 1 1 199604 1 1 
199302 1 1 199605 1 1 
199303 1 0 199606 1 0 
199304 0 1 199607 1 1 
199305 1 1 199608 1 1 
199306 1 0 199609 0 1 
199307 1 1 199610 0 1 
199308 0 0 199611 1 0 
199309 1 1 199612 1 1 
199310 1 0 199701 1 1 
199311 1 1 199702 1 0 
199312 1 1 199703 1 1 
199401 0 0 199704 1 1 
199402 1 0 199705 1 1 
199403 0 1 199706 1 1 
199404 1 1 199707 1 0 
199405 1 0 199708 1 1 
199406 0 1 199709 0 0 
199407 0 1 199710 1 1 
199408 1 0 199711 0 1 
199409 1 1 199712 0 1 
199410 0 0 199801 0 1 
199411 0 1 199802 1 1 
199412 0 1 199803 1 1 
199501 0 1 199804 0 0 
199502 1 1 199805 1 1 
199503 1 1 199806 0 0 
199504 0 1 199807 1 0 
199505 0 1 199808 1 1 
199506 1 1 199809 1 1 
199507 1 0 199810 1 1 
199508 0 1 199811 1 1 
199509 0 0 199812 1 1 
199510 1 1 199901 1 0 
199511 0 1 199902 1 1 
199512 0 1 199903 1 1 
199601 1 1 199904 1 0 
199602 1 1 199905 1 1 
199603 1 1 199906 1 0 
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199907 0 0 200210 1 1 
199908 0 0 200211 1 0 
199909 1 1 200212 1 0 
199910 1 1 200301 0 0 
199911 0 1 200302 0 1 
199912 1 0 200303 1 1 
200001 1 0 200304 1 1 
200002 1 1 200305 1 1 
200003 1 0 200306 1 1 
200004 0 0 200307 1 1 
200005 1 1 200308 1 0 
200006 0 0 200309 1 1 
200007 1 1 200310 0 1 
200008 0 0 200311 1 1 
200009 1 0 200312 0 1 
200010 0 0 200401 0 1 
200011 0 1 200402 0 0 
200012 0 1 200403 1 0 
200101 1 0 200404 1 1 
200102 1 0 200405 1 1 
200103 1 1 200406 0 0 
200104 1 1 200407 1 1 
200105 0 0 200408 1 1 
200106 0 0 200409 1 1 
200107 0 0 200410 1 1 
200108 0 0 200411 0 1 
200109 0 1 200412 0 0 
200110 0 1 200501 1 1 
200111 1 1 200502 0 0 
200112 1 0 200503 1 0 
200201 0 0 200504 0 1 
200202 0 1 200505 1 0 
200203 1 0 200506 1 1 
200204 0 0 200507 1 0 
200205 1 0 200508 1 1 
200206 1 0 200509 1 0 
200207 1 1 200510 0 1 
200208 1 0 200511 1 0 
200209 1 1 200512 1 1 
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200601 1 1 200808 1 0 
200602 1 1 200809 0 0 
200603 1 1 200810 1 0 
200604 0 0 200811 1 1 
200605 0 1 200812 1 0 
200606 0 1 200901 1 0 
200607 1 1 200902 1 1 
200608 0 1 200903 1 1 
200609 1 1 200904 1 1 
200610 0 1 200905 1 1 
200611 0 1 200906 1 1 
200612 0 1 200907 1 1 
200701 0 0 200908 1 1 
200702 0 1 200909 1 0 
200703 1 1 200910 1 1 
200704 0 1 200911 0 1 
200705 0 0 200912 1 0 
200706 0 0 201001 1 1 
200707 1 1 201002 1 1 
200708 1 1 201003 1 1 
200709 1 1 201004 1 0 
200710 0 0 201005 1 0 
200711 0 0 201006 1 1 
200712 0 0 201007 1 0 
200801 1 0 201008 1 1 
200802 1 0 201009 1 1 
200803 1 1 201010 1 0 
200804 1 1 201011 1 1 
200805 0 0 201012 1 1 
200806 1 0 
200807 1 1 

 

Table 5.8 Technical Out-of-sample SVM predictions vs. actual realization 
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5.2 SVM RBF Kernel Parameters Selection and Optimization 

The next step was to adjust the width of SVM RBF classifier using 

parameters C and sigma which will control the margin of classification. One way 

to do this is with a grid search method as mentioned in the previous chapters 

and papers [27] and [28]. The goal of this search was to find the best pair of 

parameters during the in-sample period to maximize the out-of-sample accuracy 

as much as possible. The default values for both parameters in Matlab were “1” 

for parameters, C and sigma. At the end of our work, the parameter C was not 

modified, because once we optimized for the best value of sigma for the RBF 

kernel, if we were to modify the parameter C further, it would have resulted in a 

softer margin for classification. This will result in slow response of the classifier 

(i.e. keeping the classification rate at 1 or 0 for a long period of time). 

From Figure 5.1 we notice during optimizing the RBF sigma parameter, 

setting the sigma parameter slightly higher than the default, the higher the 

accuracy we get. The optimal sigma parameter using macroeconomic features 

was 𝑆𝑖𝑔𝑚𝑎 =  0.45 which increased the performance for the out-of-sample 

period from 55.79% to 59.25% with zscore data normalizing. 
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Figure 5.1 Out-of-sample accuracy using macroeconomic data vs. parameters change 

 

Optimizing the RBF parameters to the classifier using technical features 

input showed noticeable improvement. From figure 5.2, the parameter sigma 

increased the out-of-sample accuracy to 62.03% with the parameter 𝑆𝑖𝑔𝑚𝑎 =

 0.425. This change increased the out-of-sample classification accuracy by 

2.77% from 59.26% to 62.03%. The data normalization method used was 

zscore. Technical features made a better out-of-sample accuracy with the 

optimized parameters than macroeconomic features. 
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Figure 5.2 Out-of-sample accuracy using technical data vs. parameters change 

5.3 Feature Selection and Dimensionality Reduction 

 The goal of feature reduction was to reduce the problem dimensionality by 

reducing the dataset in order to exclude irrelevant features and at the same time 

not have the dataset too small to cause the classifier to be over fit [29]. 

Sequential Feature Selection and Rankfeatures tests were performed in order to 

find the minimum possible features needed. The tests were performed to linear 

and RBF kernels since they are used mostly in this kind of work. 
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5.3.1 Sequential Feature Selection 

5.3.1.1 Sequential Feature Reduction with Macroeconomic Features 

 Linear Kernel: 

Sequential Feature Selection was performed using the most widely used 

two kernels in this sort of application from section 5.1 to both, macroeconomic 

and technical features. Table 5.9 shows the features significance using linear 

kernel and ‘zscore’ data scaling. 

Feature 
Rank 

Feature 
# 

1 14 
2 4 
3 5 
4 7 
5 1 
6 3 
7 15 
8 2 
9 8 

10 10 
11 6 
12 9 
13 13 
14 11 
15 12 

 
Table 5.9 Macroeconomic Features Significance Ranking using Sequential Feature and linear 

kernel 

Table 5.10 shows the results of Sequential Feature Selection test using 

macroeconomic data, zscore data scaling, and linear kernel. 
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# of Features Out-of-Sample Accuracy 
1 60.42% 
2 40.50% 
3 40.50% 
4 40.27% 
5 42.13% 
6 46.29% 
7 45.83% 
8 45.83% 
9 53.93% 

10 53.24% 
11 51.15% 
12 50.92% 
13 50.69% 
14 51.38% 
15 50.46% 

 
Table 5.10 Sequential Feature Selection for macroeconomic data with Linear Kernel 

From the Table 5.10, we notice that only one feature, namely inflation, out 

of 15 resulted in the best performance for linear kernel. 

RBF Kernel: 

Using an RBF kernel gave us different results from the linear kernel. 

Using ‘zscore’ when reducing the number of features, we were able to obtain the 

best result for macroeconomic with sequential feature reduction where the best 

out-of-sample accuracy was 58.33% using 3 features only (TBL, DFR, and DFY) 

as seen in Table 5.12. Table 5.11 shows the features significance using RBF 

kernel. 
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Feature 
Rank 

Feature 
# 

1 8 
2 13 
3 12 
4 15 
5 5 
6 10 
7 14 
8 4 
9 7 

10 6 
11 11 
12 3 
13 2 
14 1 
15 9 

 
Table 5.11 Macroeconomic Features Significance Ranking using Sequential Feature and 

RBF kernel 

# of Features  Out-of-Sample Accuracy 
1 55.09% 
2 55.55% 
3 58.33% 
4 53.70% 
5 54.16% 
6 53.93% 
7 53.70% 
8 53.47% 
9 53.70% 

10 52.54% 
11 52.31% 
12 54.39% 
13 56.25% 
14 55.79% 
15 55.79% 



50 
 

 
Table 5.12 Sequential Feature Selection accuracy for macroeconomic data and ‘zscore 

normalization and RBF Kernel 

5.3.1.2 Sequential Feature Reduction with Technical Features 

Linear Kernel: 

The significance and ranking of each of the technical features can be 

seen in Table 5.13. 

Feature 
Rank 

Feature 
# 

1 9 
2 15 
3 1 
4 2 
5 3 
6 6 
7 14 
8 10 
9 5 

10 7 
11 4 
12 17 
13 8 
14 16 
15 11 
16 12 
17 13 

 

Table 5.13 Sequential Feature Selection for technical data and linear kernel 

Feature reduction with linear kernel and technical features showed an 

improvement in the out-of-sample classification that can be seen in Table 5.13. 
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To achieve the best performance for the classifier, less features was given to the 

classifier. Using only 2 features (please refer to Table 4.2,) we were able to get 

57.87% accuracy. The more features we add, the worse the performance 

became.  

# of 
Features Out-of-Sample Accuracy 

1 55.78% 
2 57.87% 
3 56.71% 
4 57.17% 
5 55.32% 
6 54.16% 
7 53.70% 
8 53.70% 
9 54.63% 

10 53.24% 
11 55.78% 
12 53.93% 
13 54.63% 
14 52.77% 
15 52.54% 
16 51.62% 
17 51.15% 

Table 5.14 Sequential Feature Selection for technical data and ‘zscore’ normalization and Linear 
Kernel 

RBF: 

Another test of feature reduction was performed to the technical features 

but this time using an RBF kernel. Using technical features with RBF kernel, the 

more features we added, the better the accuracy we achieved. Classifying using 

all features resulted in the best accuracy than classifying with a reduced number 
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of features. The best accuracy achieved was 59.26%. We got the second best 

results with only 9 features achieving an accuracy of 58.33%. Table 5.15 shows 

the significance features using RBF kernel. 

Feature 
Rank 

Feature 
# 

1 1 
2 14 
3 2 
4 8 
5 12 
6 7 
7 3 
8 6 
9 15 

10 17 
11 10 
12 4 
13 9 
14 5 
15 11 
16 16 
17 13 

 

Table 5.15 Sequential Feature Selection for technical data and RBF kernel 

# of 
Features Out-of-Sample Accuracy 

1 50% 
2 50.46% 
3 51.85% 
4 53.70% 
5 54.39% 
6 54.16% 
7 54.63% 
8 58.10% 
9 58.33% 
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10 54.63% 
11 55.09% 
12 54.39% 
13 55.55% 
14 55.78% 
15 57.63% 
16 58.33% 
17 59.26% 

 
Table 5.16 Sequential Feature Selection for technical data and ‘zscore’ normalization and RBF 

Kernel 

5.3.2 Rankfeatures 

A simpler approach to identify the significant features was to assume all 

values are independent and compute a two-way t-test. Computing this test will 

return the index with features ranked in order of their effectiveness ranked with 

criterion absolute value. This test was used to relate whether the average 

difference between two groups was really significant or if it was due instead to 

data being random and not associated with each other [30]. We used the Matlab 

Rankfeatures function available in the bioinformatics toolbox. 

Macroeconomic Features: 

Feature 
Rank 

Feature 
# 

1 14 
2 11 
3 8 
4 9 
5 10 
6 15 
7 7 
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8 4 
9 2 

10 1 
11 6 
12 13 
13 3 
14 5 
15 12 

 
Table 5.17 Macroeconomic features significance with Rankfeatures 

Table 5.17 shows the features significance in order using Rankfeatures. 

Feature Rank Out-of-Sample Accuracy 
1 60.42% 
2 53.24% 
3 52.54% 
4 52.31% 
5 51.85% 
6 53.24% 
7 53.47% 
8 53.24% 
9 52.31% 

10 53.47% 
11 55.78% 
12 56.02% 
13 56.02% 
14 56.02% 
15 55.79% 

 
Table 5.18 Rankfeatures Accuracy with macroeconomic features 

Table 5.18 shows the accuracy of the classifier with Rankfeatures reducing the 

input features with RBF kernel and ‘zscore’ normalizing. Rankfeatures showed 

an improvement with the reduced features compared to using all features with 
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macroeconomic by improving the out-of-sample accuracy to 60.42% using the 

inflation feature. 

Technical Features: 

 Table 5.19 shows the ranking of features significance for the technical 

features. 

Ranking Feature 
1 3 
2 7 
3 9 
4 16 
5 14 
6 4 
7 5 
8 6 
9 17 

10 2 
11 10 
12 13 
13 1 
14 15 
15 8 
16 12 
17 11 

  
Table 5.19 Technical features significance with Rankfeatures 

# of Features Out-of-Sample Accuracy 
1 50.23% 
2 55.79% 
3 55.56% 
4 56.48% 
5 55.56% 
6 55.09% 
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7 54.86% 
8 56.02% 
9 54.86% 

10 52.55% 
11 54.17% 
12 55.79% 
13 54.86% 
14 56.25% 
15 56.48% 
16 55.32% 
17 59.26% 

 
Table 5.20 Rankfeatures Accuracy with technical features 

 Table 5.20 shows how technical features did not respond well to 

Rankfeatures. Rankfeatures did not identify the significant features in 

comparison with Sequential Feature Selection for the technical features. Most of 

the out-of-sample accuracies were not close to the best classification result 

when including all features. Overall, Rankfeatures worked better with 

macroeconomic features compared to technical features. 

5.4 Combining Macroeconomic with Technical Features 

 One of the conclusions in the paper “A Comparison of PNN and SVM for 

Stock Market Trend Prediction using Economic and Technical Information,” was 

that predicting the market using macroeconomic data was more accurate when 

compared to technical indicators [31]. It also contends that the addition of both 

macroeconomic and technical features does not improve the classification 

accuracy. After running the set of technical features and feature reduction, we 

found that the best classification accuracy is achieved when all features are 
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used. Since the more features we add to the RBF classifier, we decided to 

expand the initial set of features by combining both the macroeconomic and 

technical features. The next step of this work after combining macroeconomic 

and technical features was to do a feature reduction to find the best classification 

accuracy. When combining all macroeconomic and technical features together, 

we were able to obtain 59.72% classification accuracy. This is only marginally 

better than using technical features alone. 

Procedure Out-of-Sample 
Accuracy # of Features C Sigma 

Combining Macroeconomic 
with Technical Features 59.72% 32 1 1 

 
Table 5.21 Combination of macroeconomic and technical features 

5.5 Summary of Results 

Tables 5.22 and 5.23 are a summary of the best performing results and 

show a comparison between the experiments using macroeconomic and 

technical features alone. Improved accuracies were further obtained optimizing 

the SVM RBF parameters. The optimized parameter values are shown in the 

tables. 
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Procedure Out-of-Sample 
Accuracy # of Features C Sigma 

All features 56.48% 15 1 1 

Sequential Feature Reduction 60.41% 1 1 NA 
(linear) 

Rankfeatures 60.42% 1 1 1 
RBF Parameters Optimization 59.25% 15 1 0.45 

 
Table 5.22 Summary of the performance results using macroeconomic features 

Procedure Out-of-Sample 
Accuracy # of Features C Sigma 

All features 59.26% 17 1 1 
Sequential Feature Reduction 58.33% 9 1 1 

Rankfeatures 56.48% 4 1 1 
RBF Parameters Optimization 62.04% 17 1 0.425 

 
Table 5.23 Summary of the performance results using technical features 

From the above results, we can conclude the overall performance of the 

technical features was better than macroeconomic features in contrast to the 

result given in [31]. 

5.6 Comparison between Predictions Based on Basic Assumptions and SVM 

The overall trend of the market over the long term is in the up direction. 

The next step was to evaluate and compare the classifier prediction 

performance during 3 different periods. The first period was the overall out-of-

sample period from January 1975 – December 2010. The two other periods 

were when the US economy was hit by financial crisis. The first financial crisis 

period considered was from October 2000 – September 2002. This period 

represents the period of the bursting of the dot com bubble. The second period 
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was from October 2007 – July 2009, which was during the credit crisis. The 

classification was performed using zscore, RBF kernel and technical features. 

The first procedure was a comparison of the prediction which assumes a 

monthly trend of ‘up’ for all months considered during the out-of-sample period. 

Then we did the opposite by comparing the prediction results with down only 

during the out-of-sample period. The next procedure was to compare the results 

with a naïve prediction where if the previous month was up (or down), then the 

next month is predicted to be up (or down). The last procedure was to do the 

reverse of the previous procedure where if the previous month was up (or 

down), then the next month is predicted to be down (or up). 

Procedure Out-Of-Sample Accuracy % 
Up Only 60.42% 

Down Only 39.58% 
Following Previous Month 52.55% 

Opposite of Previous Month 47.22% 
SVM Prediction 62.04% 

 
Table 5.24 Results for comparing the classification accuracy during the full out-of-sample period 

We can see from Table 5.24 that when assuming the index will go up 

every month, the overall accuracy was 60.4%. That was true for most of the time 

prior to 2000. After that period, the index direction wasn’t going up only but 

rather oscillated. 

The next step was to compare the results during the first period when the 

market crashed. Figure 5.3 shows the index price during the first economic crisis 

we were looking at. 
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Figure 5.3 S&P 500 Index price over the first economic crisis (October 2000 – September 2002) 

 

The results of the predictions are provided below: 

Procedure Out-Of-Sample Accuracy % 
Up Only 41.67% 

Down Only 58.33% 
Following Previous Month 54.17% 

Opposite of Previous Month 50.00% 
SVM Prediction 50.00% 

 
Table 5.25 Results for comparing the classification accuracy during the first economic 

crisis period 

From Table 5.25, we can notice if we were to go up only from the 

beginning of out-of-sample, a big risk was avoided using SVM for prediction 
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during this economic crisis period if the strategy were to be followed by if the 

index price will only go up. 

The last step was to see the performance during the last economic crisis 

beginning in late 2007. It was clear from Figure 5.4 that the index was going 

down during this period. 

 Figure 5.4 S&P 500 Index price during the last economic crisis (October 2007 – July 2009) 
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Procedure Out-Of-Sample Accuracy % 
Up Only 33.33% 

Down Only 66.67% 
Following Previous Month 61.11% 

Opposite of Previous Month 44.44% 
SVM Prediction 61.11% 

 
Table 5.26 Results for comparing the classification accuracy during the last economic 

crisis period 

We see from Table 5.26 that if we were to use the up only prediction, 

then the accuracy was 33.33%. SVM predicted 61.11% accurately, which as it 

happens was the same result when following the direction of previous month. 

This was another test to show the advantage of SVM over if we assumed the 

market will always go up. 

If an investing strategy was implemented during the last two economic 

crisis period assuming the market will always go up, it would have encountered 

huge losses. The SVM reduced the risk in the first economic crisis to 50% 

compared to 58.33% loss when assuming the market will always go up. In the 

second economic crisis, SVM gave 61.1% accuracy while an up only strategy 

only had 33.33% accuracy. 
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

 This worked performed several prediction models using SVM as a 

classifying tool in attempt to predict the direction of the market’s trend using S&P 

500 into ‘up’ or ‘down’ months. The first model used 15 inputs for 

macroeconomic features and 17 for technical features, as inputs to the SVM 

classifier. Results showed the best accuracy of 56.48% using all macroeconomic 

features with zscore to normalize the data, 51.39% using normc, and 53.94% 

using normalize. Classification using technical features showed better results 

compared to macroeconomic. We were able to obtain the best classification 

accuracy using all technical features with zscore. With normalizing the data 

using zscore, we were able to get 59.26% classification accuracy, 49.77% using 

normc, and 53.94% using normalize. 

 Optimizing the RBF’s parameters further and raised the out-of-sample 

accuracy from 59.26% to 62.04% using technical features and from 56.48% to 

59.25% using macroeconomic features. However, the best result for 

macroeconomic data was achieved using only the inflation feature giving 

60.42%. 

Reducing the dimensionality of the input features using Rankfeatures was 

found to be better in terms of choosing the right features needed and the 

accuracy to which features to exclude based on the RBF kernel we tested. The 
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response for reducing the features was better for the macroeconomic data. The 

linear kernel performs better with fewer features used to classify when using 

Sequential Feature Selection. We were able to get 60% accuracy with only one 

feature using macroeconomic data. 

From this work, we can conclude that classification using technical 

features result in better classification accuracy than using macroeconomic 

features. This may be fortuitous as obtaining the macroeconomic data is 

generally not an easy task. In contrast, technical features can be easily obtained 

and since all you need is the index’s price to be able to derive the features used 

in this work.  

This work was initially motivated by the result presented by Yuan in [24], 

where an out-of-sample classification accuracy of 86% was achieved. By the 

work done in the thesis we believe this rate of accuracy was achieved 

unfortunately by error. Specifically when labeling the correct target, Yuan’s result 

is shifted by one month which results in looking into the future. When labeling the 

targets in the same way as [24], our classification rate achieved was also 86% 

when using technical features and close to 98% with macroeconomic features. 

In the future, the parameters of the technical features can be optimized, 

perhaps using Genetic Algorithm to find better performing features. Also, SVM 

regression can be used to get a sense of what range the index can be expected 

to move during prediction period. 
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Appendix: Matlab Code 

% uses Charles Yuan's macro-economic features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
%Prompt User for kernel type 
prompt = 'Please enter kernel type (linear/rbf/polynomial/quadratic): 
'; 
kernel = input(prompt,'s'); 
  
% Labels in the Goyal spreadsheet 
%   1     2     3   4   5   6   7   8   9   10    11    12    13  14    
15   16  17         18   
% yyyymm  Index D12 E12 b/m tbl AAA BAA lty ntis  Rfree infl  ltr corpr 
svar csp CRSP_SPvw  CRSP_SPvwx 
  
%  From Yuan paper 
%            3           4       15    5    10    6    9     13              
11    12            
%  EqPreDir  %DP  %DY  %EP  %DE  %svar %bm  ntis  tbl  lty   ltr  TMS  
%dfy  %dfr  infl  %MA(2,12) %P(t,t-12) 
  
A = xlsread('PredictorData2011.xls');  % Amit Goyal's spreadsheet 
  
DP = log(A(:,3)) - log(A(:,2));                                    %  1 
DY = [nan;log(A(2:end,3)) - log(A(1:end-1,2))];                    %  2 
EP = log(A(:,4)) - log(A(:,2));                                    %  3 
DE = log(A(:,3)) - log(A(:,4));                                    %  4 
SVAR = A(:,15);                                                    %  5 
BM = A(:,5);                                                       %  6 
NTIS = A(:,10);                                                    %  7 
TBL = A(:,6);                                                      %  8 
LTY = A(:,9);                                                      %  9 
LTR = A(:,13);                                                     % 10 
TMS = LTY - TBL;                                                   % 11 
DFY = A(:,8) - A(:,7);                                             % 12 
DFR = A(:,14) - LTR;                                               % 13 
INFL = A(:,12);                                                    % 14 
DY12 = [nan(12,1); log(A(13:end,3)) - log(A(1:end-12,2))];         % 15            
  
features=[DP,DY,EP,DE,SVAR,BM,NTIS,TBL,LTY,LTR,TMS,DFY,DFR,INFL,DY12]; 
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%features = [EP BM TBL];  % 3, 6, 8   Yuan's best features 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
stk.d = A(:,1); 
stk.c = A(:,2); 
           
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1); nan]; 
  
IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
% In-sample period Normalization Method 
     IS_Set = zscore(IS_Set); 
%    IS_Set = normc(IS_Set); 
%    IS_Set = normalize(IS_Set); 
  
svmStruct = svmtrain(IS_Set, IS_CorrectTargets,'autoscale',false,... 
                     'kernel_function',kernel,'method','LS'); 
                    
YY = svmclassify(svmStruct,IS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
fprintf('inmodel SVM Accuracy: %6.2f %%\n', 100-errRate*100); 
  
  
[r, ~] = size(IS_Set); 
XX = [IS_Set; OOS_Set]; 
YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
  
  
for n=1:length(OOS_Set) 
     
% choose the desired normalization method 
    XXN  = zscore(XX(1:r+n, :)); 
%     XXN  = normc(XX(1:r+n, :));  
%     XXN  = normalize(XX(1:r+n, :));  
     
    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ...   
               
'kernel_function',kernel,'autoscale',false,'method','LS');       
                           
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
end 
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compare = (Results == OOS_CorrectTargets); 
precision = (sum(compare)/length(compare)*100); 
  
% end 
  
%Display Results 
fprintf('Out-of-Sample Accuracy: %6.2f %%\n', precision); 
Gridsearch.m 
 
% uses Charles Yuan's macro-economic features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
% Labels in the Goyal spreadsheet 
%   1     2     3   4   5   6   7   8   9   10    11    12    13  14    
15   16  17         18   
% yyyymm  Index D12 E12 b/m tbl AAA BAA lty ntis  Rfree infl  ltr corpr 
svar csp CRSP_SPvw  CRSP_SPvwx 
  
%  From Yuan paper 
%            3           4       15    5    10    6    9     13              
11    12            
%  EqPreDir  %DP  %DY  %EP  %DE  %svar %bm  ntis  tbl  lty   ltr  TMS  
%dfy  %dfr  infl  %MA(2,12) %P(t,t-12) 
  
A = xlsread('PredictorData2011.xls');  % Amit Goyal's spreadsheet 
  
DP = log(A(:,3)) - log(A(:,2));                                    %  1 
DY = [nan;log(A(2:end,3)) - log(A(1:end-1,2))];                    %  2 
EP = log(A(:,4)) - log(A(:,2));                                    %  3 
DE = log(A(:,3)) - log(A(:,4));                                    %  4 
SVAR = A(:,15);                                                    %  5 
BM = A(:,5);                                                       %  6 
NTIS = A(:,10);                                                    %  7 
TBL = A(:,6);                                                      %  8 
LTY = A(:,9);                                                      %  9 
LTR = A(:,13);                                                     % 10 
TMS = LTY - TBL;                                                   % 11 
DFY = A(:,8) - A(:,7);                                             % 12 
DFR = A(:,14) - LTR;                                               % 13 
INFL = A(:,12);                                                    % 14 
DY12 = [nan(12,1); log(A(13:end,3)) - log(A(1:end-12,2))];         % 15            
  
features=[DP,DY,EP,DE,SVAR,BM,NTIS,TBL,LTY,LTR,TMS,DFY,DFR,INFL,DY12]; 
%features = [EP BM TBL];  % 3, 6, 8   Yuan's best features 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
stk.d = A(:,1); 
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stk.c = A(:,2); 
           
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1); nan]; 
  
IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
IS_Set = zscore(IS_Set); 
  
%%%%%%%%%%%%%%%%%%%%%% 
  
X = (0.1:0.01:1.2); 
Y = (0.1:0.01:1.2); 
  
[p,q] = meshgrid(X,Y); 
pairs = [p(:) q(:)]; 
  
tic 
for j= 1:length(X) 
  
j 
CurrentSigma = X(j) 
CurrentC = Y(j) 
  
svmStruct = svmtrain(IS_Set, IS_CorrectTargets,'autoscale',true,... 
                     
'kernel_function','rbf','method','LS','RBF_Sigma',X(j),'boxconstraint',
Y(j)); 
                    
YY = svmclassify(svmStruct,IS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
  
[r, ~] = size(IS_Set); 
XX = [IS_Set; OOS_Set]; 
YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
  
  
for n=1:length(OOS_Set) 
  
    XXN  = zscore(XX(1:r+n, :));  % choose the desired normalization 
method 
  
    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ...   
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'kernel_function','rbf','autoscale',false,'method','LS',... 
               'RBF_Sigma',X(j),'boxconstraint',Y(j));       
                           
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
    
end 
  
    compare = (Results == OOS_CorrectTargets); 
    precision (j) = (sum(compare)/length(compare)*100); 
    CurrentPrecision = precision(end) 
  
    Pred(j,:) = Results; 
  
  
end 
toc 
  
MaxPrecision = max(precision) 
  
% Find the best pair 
Best = find(precision >= max(precision)); 
Sigma = X(Best) 
C = Y(Best) 
  
figure(1) 
% hold on 
plot(X,precision) 
ylabel('Accuracy'); 
% hold off 
  
  
%Display Results 
fprintf('Out-of-Sample Accuracy: %6.2f %%\n', precision); 
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MacroSequentialFeatureReduction.m 
 
% uses Charles Yuan's macro-economic features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
%Prompt User for kernel type 
prompt = 'Please enter kernel type (linear/rbf/polynomial/quadratic): 
'; 
kernel = input(prompt,'s'); 
  
% Labels in the Goyal spreadsheet 
%   1     2     3   4   5   6   7   8   9   10    11    12    13  14    
15   16  17         18   
% yyyymm  Index D12 E12 b/m tbl AAA BAA lty ntis  Rfree infl  ltr corpr 
svar csp CRSP_SPvw  CRSP_SPvwx 
  
%  From Yuan paper 
%            3           4       15    5    10    6    9     13              
11    12            
%  EqPreDir  %DP  %DY  %EP  %DE  %svar %bm  ntis  tbl  lty   ltr  TMS  
%dfy  %dfr  infl  %MA(2,12) %P(t,t-12) 
  
A = xlsread('PredictorData2011.xls');  % Amit Goyal's spreadsheet 
  
DP = log(A(:,3)) - log(A(:,2));                                    %  1 
DY = [nan;log(A(2:end,3)) - log(A(1:end-1,2))];                    %  2 
EP = log(A(:,4)) - log(A(:,2));                                    %  3 
DE = log(A(:,3)) - log(A(:,4));                                    %  4 
SVAR = A(:,15);                                                    %  5 
BM = A(:,5);                                                       %  6 
NTIS = A(:,10);                                                    %  7 
TBL = A(:,6);                                                      %  8 
LTY = A(:,9);                                                      %  9 
LTR = A(:,13);                                                     % 10 
TMS = LTY - TBL;                                                   % 11 
DFY = A(:,8) - A(:,7);                                             % 12 
DFR = A(:,14) - LTR;                                               % 13 
INFL = A(:,12);                                                    % 14 
DY12 = [nan(12,1); log(A(13:end,3)) - log(A(1:end-12,2))];         % 15            
  
features=[DP,DY,EP,DE,SVAR,BM,NTIS,TBL,LTY,LTR,TMS,DFY,DFR,INFL,DY12]; 
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%features = [EP BM TBL];  % 3, 6, 8   Yuan's best features 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
stk.d = A(:,1); 
stk.c = A(:,2); 
           
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1); nan]; 
  
IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
% In-sample period Normalization Method 
     IS_Set = zscore(IS_Set); 
%    IS_Set = normc(IS_Set); 
%    IS_Set = normalize(IS_Set); 
  
for k = 1:size(features,2) 
  
%%%%%%%%%%%%%%%%%%%%%% 
% uncomment this section and set NFeatures to limit to top features 
  
maxdev = 0.001; 
opt = statset('display','iter','TolFun',maxdev,'TolTypeFun','abs'); 
               
inmodel = sequentialfs(@cfun2,IS_Set,IS_CorrectTargets,... 
                       'cv','none',...                    
                       'options',opt,... 
                       'NFeatures', k,... 
                       'direction','forward');  
  
sfsIS_Set = IS_Set(:,inmodel); 
sfsOOS_Set = OOS_Set(:,inmodel); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
svmStruct = svmtrain(sfsIS_Set, IS_CorrectTargets,'autoscale',false,... 
                     'kernel_function',kernel,'method','LS'); 
                    
YY = svmclassify(svmStruct,sfsIS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
  
[r, ~] = size(sfsIS_Set); 
XX = [sfsIS_Set; sfsOOS_Set]; 
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YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
  
for n=1:length(sfsOOS_Set) 
  
% choose the desired normalization method 
    XXN  = zscore(XX(1:r+n, :)); 
%     XXN  = normc(XX(1:r+n, :));  
%     XXN  = normalize(XX(1:r+n, :)); 
  
    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ...   
               
'kernel_function',kernel,'autoscale',false,'method','LS');       
                           
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
end 
  
compare = (Results == OOS_CorrectTargets); 
precision(k) = (sum(compare)/length(compare)*100); 
CurrentPrecision = precision(end) 
  
end 
  
% # Features and precision 
[(1:k)' precision'] 
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Macrorankfeatures.m 
 
% uses Charles Yuan's macro-economic features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
%Prompt User for kernel type 
prompt = 'Please enter kernel type (linear/rbf/polynomial/quadratic): 
'; 
kernel = input(prompt,'s'); 
  
% Labels in the Goyal spreadsheet 
%   1     2     3   4   5   6   7   8   9   10    11    12    13  14    
15   16  17         18   
% yyyymm  Index D12 E12 b/m tbl AAA BAA lty ntis  Rfree infl  ltr corpr 
svar csp CRSP_SPvw  CRSP_SPvwx 
  
%  From Yuan paper 
%            3           4       15    5    10    6    9     13              
11    12            
%  EqPreDir  %DP  %DY  %EP  %DE  %svar %bm  ntis  tbl  lty   ltr  TMS  
%dfy  %dfr  infl  %MA(2,12) %P(t,t-12) 
  
A = xlsread('PredictorData2011.xls');  % Amit Goyal's spreadsheet 
  
DP = log(A(:,3)) - log(A(:,2));                                    %  1 
DY = [nan;log(A(2:end,3)) - log(A(1:end-1,2))];                    %  2 
EP = log(A(:,4)) - log(A(:,2));                                    %  3 
DE = log(A(:,3)) - log(A(:,4));                                    %  4 
SVAR = A(:,15);                                                    %  5 
BM = A(:,5);                                                       %  6 
NTIS = A(:,10);                                                    %  7 
TBL = A(:,6);                                                      %  8 
LTY = A(:,9);                                                      %  9 
LTR = A(:,13);                                                     % 10 
TMS = LTY - TBL;                                                   % 11 
DFY = A(:,8) - A(:,7);                                             % 12 
DFR = A(:,14) - LTR;                                               % 13 
INFL = A(:,12);                                                    % 14 
DY12 = [nan(12,1); log(A(13:end,3)) - log(A(1:end-12,2))];         % 15            
  
features=[DP,DY,EP,DE,SVAR,BM,NTIS,TBL,LTY,LTR,TMS,DFY,DFR,INFL,DY12]; 
%features = [EP BM TBL];  % 3, 6, 8   Yuan's best features 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
stk.d = A(:,1); 
stk.c = A(:,2); 
           
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1); nan]; 
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IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
%%%%%%%%%%%%%%%%%%%%%% 
% uncomment this section and set k to limit to top features 
  
for k = 1:size(features,2) 
  
[inmodel, Z] = rankfeatures(IS_Set', IS_CorrectTargets, 
'NumberOfIndices', k); 
  
sfsIS_Set = IS_Set(:,inmodel); 
sfsOOS_Set = OOS_Set(:,inmodel); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Normalization Method 
     sfsIS_Set = zscore(sfsIS_Set); 
%    sfsIS_Set = normc(sfsIS_Set); 
%    sfsIS_Set = normalize(sfsIS_Set); 
  
svmStruct = svmtrain(sfsIS_Set, IS_CorrectTargets,'autoscale',false,... 
                     'kernel_function','rbf','method','LS'); 
                    
YY = svmclassify(svmStruct,sfsIS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
  
[r, ~] = size(IS_Set); 
XX = [sfsIS_Set; sfsOOS_Set]; 
YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
for n=1:length(OOS_Set) 
  
    XXN  = zscore(XX(1:r+n, :));  % choose the desired normalization 
method 
%    XXN = normc(XX(1:r+n, :)); 
%    XXN = normalize(XX(1:r+n, :)); 
  
    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ...   
               
'kernel_function','rbf','autoscale',false,'method','LS');       
                           
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
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end 
  
compare = (Results == OOS_CorrectTargets); 
precision(k) = (sum(compare)/length(compare)*100); 
CurrentPrecision = precision(end) 
  
end 
  
% # of features and precision 
[(1:k)' precision'] 
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Technicalfeatures.m 
 
% uses technical features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
%Prompt User for kernel type 
prompt = 'Please enter kernel type (linear/rbf/polynomial/quadratic): 
'; 
kernel = input(prompt,'s'); 
  
A = xlsread('PredictorData2011.xls');   
  
stk.d = A(:,1); 
stk.c = A(:,2); 
stk.h = TA_MAX(stk.c,12); 
stk.l = TA_MIN(stk.c,12); 
  
% Calculate Technicals 
I1 = TA_RSI(stk.c, 14); 
[bBandsHigh, bBandsMid, bBandsLow] = TA_BBANDS(stk.c,9,2,2); 
I2 = (stk.c - bBandsHigh)./bBandsHigh;   
I3 = (stk.c - bBandsLow)./bBandsLow; 
[stochK, stochD] = TA_STOCHF(stk.h,stk.l,stk.c, 14, 3); 
I4 = stochK; 
I5 = stochD; 
I6 = [nan; diff(stochK)]; 
I7 = [nan; diff(stochD)];   
I8 = [nan; diff(stk.c)./stk.c(1:end-1)]; 
I9 = (stk.c - stk.l)./(stk.h-stk.l); 
PMAs = TA_SMA(stk.c,10); 
PMAl = TA_SMA(stk.c,21); 
I10 = [nan; diff(PMAs)./PMAs(1:end-1)]; 
I11 = [nan; diff(PMAl)./PMAl(1:end-1)]; 
I12 = [nan; (PMAs(2:end)-PMAl(1:end-1))./PMAl(1:end-1)]; 
I13 = (stk.c - PMAl)./PMAl; 
I14 = (stk.c - TA_MIN(stk.c,5))./TA_MIN(stk.c,5); 
I15 = (stk.c - TA_MAX(stk.c,5))./TA_MAX(stk.c,5); 
MA = (((TA_SMA(A(:,2),2) - TA_SMA(A(:,2),12)) ./ TA_SMA(A(:,2),12))); % 
16 
MOM = [nan(12,1); (A(13:end,2) - A(1:end-12, 2)) ./ A(1:end-12, 2)];  % 
17 
  
features=[I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15,MA,MOM]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1);   nan]; 
  
% Choose the testing period 
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IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
  
% IS_Start = find(stk.d >= 193806, 1); 
% OOS_Start = find(stk.d >= 200010, 1); 
% OOS_End = find(stk.d >= 200209, 1); 
  
% IS_Start = find(stk.d >= 193806, 1); 
% OOS_Start = find(stk.d >= 200710, 1); 
% OOS_End = find(stk.d >= 200903, 1); 
  
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
svmStruct = svmtrain(IS_Set, IS_CorrectTargets,'autoscale',true,...  
                     'kernel_function',kernel,'method','LS'); 
                    
YY = svmclassify(svmStruct,IS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
  
[r, ~] = size(IS_Set); 
XX = [IS_Set; OOS_Set]; 
YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
for n=1:length(OOS_Set) 
  
    % choose the desired normalization method 
    XXN = zscore(XX(1:r+n, :)); 
%    XXN = normc(XX(1:r+n, :)); 
%    XXN = normalize(XX(1:r+n, :)); 
  
    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ... 
               
'kernel_function',kernel,'autoscale',false,'method','LS');       
  
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
end 
  
compare = (Results == OOS_CorrectTargets); 
precision = (sum(compare)/length(compare)*100); 
conMat = confusionmat(OOS_CorrectTargets,Results); % the confusion 
matrix 
  
%Display Results 
fprintf('Out-of-Sample Accuracy: %6.2f %%\n', precision); 
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Technical_Gridsearch.m 
 
% uses technical features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
% %Prompt User for kernel type 
% prompt = 'Please enter kernel type: '; 
% kernel = input(prompt,'s'); 
  
%Prompt User for Ticker Symbol 
% prompt = 'Please enter number of features you want to reduce to: '; 
% no_features = input(prompt); 
  
A = xlsread('PredictorData2011.xls');   
  
stk.d = A(:,1); 
stk.c = A(:,2); 
stk.h = TA_MAX(stk.c,12); 
stk.l = TA_MIN(stk.c,12); 
  
% Calculate Technicals 
I1 = TA_RSI(stk.c, 14); 
[bBandsHigh, bBandsMid, bBandsLow] = TA_BBANDS(stk.c,9,2,2); 
I2 = (stk.c - bBandsHigh)./bBandsHigh;   
I3 = (stk.c - bBandsLow)./bBandsLow; 
[stochK, stochD] = TA_STOCHF(stk.h,stk.l,stk.c, 14, 3); 
I4 = stochK; 
I5 = stochD; 
I6 = [nan; diff(stochK)]; 
I7 = [nan; diff(stochD)];   
I8 = [nan; diff(stk.c)./stk.c(1:end-1)]; 
I9 = (stk.c - stk.l)./(stk.h-stk.l); 
PMAs = TA_SMA(stk.c,10); 
PMAl = TA_SMA(stk.c,21); 
I10 = [nan; diff(PMAs)./PMAs(1:end-1)]; 
I11 = [nan; diff(PMAl)./PMAl(1:end-1)]; 
I12 = [nan; (PMAs(2:end)-PMAl(1:end-1))./PMAl(1:end-1)]; 
I13 = (stk.c - PMAl)./PMAl; 
I14 = (stk.c - TA_MIN(stk.c,5))./TA_MIN(stk.c,5); 
I15 = (stk.c - TA_MAX(stk.c,5))./TA_MAX(stk.c,5); 
MA = (((TA_SMA(A(:,2),2) - TA_SMA(A(:,2),12)) ./ TA_SMA(A(:,2),12))); % 
16 
MOM = [nan(12,1); (A(13:end,2) - A(1:end-12, 2)) ./ A(1:end-12, 2)];  % 
17 
  
features=[I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15,MA,MOM]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
stk.d = A(:,1); 
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stk.c = A(:,2); 
           
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1); nan]; 
  
IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
%%%%%%%%%%%%%%%%%%%%%% 
  
X = (0.1:0.01:1.2); 
Y = (0.1:0.01:1.2); 
  
[p,q] = meshgrid(X,Y); 
pairs = [p(:) q(:)]; 
  
tic 
for j= 1:length(X) 
  
j 
CurrentSigma = X(j) 
CurrentC = Y(j) 
  
svmStruct = svmtrain(IS_Set, IS_CorrectTargets,'autoscale',true,... 
                     
'kernel_function','rbf','method','LS','RBF_Sigma',X(j),'boxconstraint',
Y(j)); 
                    
YY = svmclassify(svmStruct,IS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
  
[r, ~] = size(IS_Set); 
XX = [IS_Set; OOS_Set]; 
YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
  
  
for n=1:length(OOS_Set) 
  
    XXN  = zscore(XX(1:r+n, :));  % choose the desired normalization 
method 
  
    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ...   
               
'kernel_function','rbf','autoscale',false,'method','LS',... 
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               'RBF_Sigma',X(j),'boxconstraint',Y(j));       
                           
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
    
end 
  
    compare = (Results == OOS_CorrectTargets); 
    precision (j) = (sum(compare)/length(compare)*100); 
    CurrentPrecision = precision(end) 
  
    Pred(j,:) = Results; 
  
  
end 
toc 
  
MaxPrecision = max(precision) 
  
% Find the best pair 
Best = find(precision >= max(precision)); 
Sigma = X(Best) 
C = Y(Best) 
  
figure(1) 
% hold on 
plot(X,precision) 
ylabel('Accuracy'); 
% hold off 
  
  
%Display Results 
fprintf('Out-of-Sample Accuracy: %6.2f %%\n', precision); 
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TechnicalSequentialFeatureSelection.m 
 
% uses technical features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
%Prompt User for kernel type 
prompt = 'Please enter kernel type (linear/rbf/polynomial/quadratic): 
'; 
kernel = input(prompt,'s'); 
  
A = xlsread('PredictorData2011.xls');   
  
stk.d = A(:,1); 
stk.c = A(:,2); 
stk.h = TA_MAX(stk.c,12); 
stk.l = TA_MIN(stk.c,12); 
  
% Calculate Technicals 
I1 = TA_RSI(stk.c, 14); 
[bBandsHigh, bBandsMid, bBandsLow] = TA_BBANDS(stk.c,9,2,2); 
I2 = (stk.c - bBandsHigh)./bBandsHigh;   
I3 = (stk.c - bBandsLow)./bBandsLow; 
[stochK, stochD] = TA_STOCHF(stk.h,stk.l,stk.c, 14, 3); 
I4 = stochK; 
I5 = stochD; 
I6 = [nan; diff(stochK)]; 
I7 = [nan; diff(stochD)];   
I8 = [nan; diff(stk.c)./stk.c(1:end-1)]; 
I9 = (stk.c - stk.l)./(stk.h-stk.l); 
PMAs = TA_SMA(stk.c,10); 
PMAl = TA_SMA(stk.c,21); 
I10 = [nan; diff(PMAs)./PMAs(1:end-1)]; 
I11 = [nan; diff(PMAl)./PMAl(1:end-1)]; 
I12 = [nan; (PMAs(2:end)-PMAl(1:end-1))./PMAl(1:end-1)]; 
I13 = (stk.c - PMAl)./PMAl; 
I14 = (stk.c - TA_MIN(stk.c,5))./TA_MIN(stk.c,5); 
I15 = (stk.c - TA_MAX(stk.c,5))./TA_MAX(stk.c,5); 
MA = (((TA_SMA(A(:,2),2)-TA_SMA(A(:,2),12))./ TA_SMA(A(:,2),12))); % 16 
MOM = [nan(12,1);(A(13:end,2) - A(1:end-12, 2))./ A(1:end-12, 2)]; % 17 
 
features=[I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15,MA,MOM]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1);   nan]; 
  
IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
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% IS_Start = find(stk.d >= 193806, 1); 
% OOS_Start = find(stk.d >= 200010, 1); 
% OOS_End = find(stk.d >= 200209, 1); 
  
% IS_Start = find(stk.d >= 193806, 1); 
% OOS_Start = find(stk.d >= 200710, 1); 
% OOS_End = find(stk.d >= 200903, 1); 
  
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
for k = 1:size(features,2) 
  
%%%%%%%%%%%%%%%%%%%%%% 
% uncomment this section and set NFeatures to limit to top features 
  
maxdev = 0.001; 
opt = statset('display','iter','TolFun',maxdev,'TolTypeFun','abs'); 
               
inmodel = sequentialfs(@cfun,IS_Set,IS_CorrectTargets,... 
                       'cv','none',...                    
                       'options',opt,... 
                       'NFeatures', k,... 
                       'direction','forward');  
  
sfsIS_Set = IS_Set(:,inmodel); 
sfsOOS_Set = OOS_Set(:,inmodel); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
svmStruct = svmtrain(sfsIS_Set, IS_CorrectTargets,'autoscale',false,... 
                     'kernel_function',kernel,'method','LS'); 
                    
YY = svmclassify(svmStruct,sfsIS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
  
[r, ~] = size(sfsIS_Set); 
XX = [sfsIS_Set; sfsOOS_Set]; 
YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
for n=1:length(OOS_Set) 
  
    % choose the desired normalization method 
    XXN = zscore(XX(1:r+n, :)); 
%    XXN = normc(XX(1:r+n, :)); 
%    XXN = normalize(XX(1:r+n, :)); 
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%      XXN = XX(1:r+n, :); 
  
    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ... 
               
'kernel_function',kernel,'autoscale',false,'method','LS');       
  
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
end 
  
compare = (Results == OOS_CorrectTargets); 
precision(k) = (sum(compare)/length(compare)*100); 
CurrentPrecision = precision(end) 
  
end 
  
% # Features and precision 
[(1:k)' precision'] 
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TechnicalRankfeatures.m 
 
% uses technical features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
% %Prompt User for kernel type 
% prompt = 'Please enter kernel type: '; 
% kernel = input(prompt,'s'); 
  
%Prompt User for Ticker Symbol 
% prompt = 'Please enter number of features you want to reduce to: '; 
% no_features = input(prompt); 
  
A = xlsread('PredictorData2011.xls');   
  
stk.d = A(:,1); 
stk.c = A(:,2); 
stk.h = TA_MAX(stk.c,12); 
stk.l = TA_MIN(stk.c,12); 
  
% Calculate Technicals 
I1 = TA_RSI(stk.c, 14); 
[bBandsHigh, bBandsMid, bBandsLow] = TA_BBANDS(stk.c,9,2,2); 
I2 = (stk.c - bBandsHigh)./bBandsHigh;   
I3 = (stk.c - bBandsLow)./bBandsLow; 
[stochK, stochD] = TA_STOCHF(stk.h,stk.l,stk.c, 14, 3); 
I4 = stochK; 
I5 = stochD; 
I6 = [nan; diff(stochK)]; 
I7 = [nan; diff(stochD)];   
I8 = [nan; diff(stk.c)./stk.c(1:end-1)]; 
I9 = (stk.c - stk.l)./(stk.h-stk.l); 
PMAs = TA_SMA(stk.c,10); 
PMAl = TA_SMA(stk.c,21); 
I10 = [nan; diff(PMAs)./PMAs(1:end-1)]; 
I11 = [nan; diff(PMAl)./PMAl(1:end-1)]; 
I12 = [nan; (PMAs(2:end)-PMAl(1:end-1))./PMAl(1:end-1)]; 
I13 = (stk.c - PMAl)./PMAl; 
I14 = (stk.c - TA_MIN(stk.c,5))./TA_MIN(stk.c,5); 
I15 = (stk.c - TA_MAX(stk.c,5))./TA_MAX(stk.c,5); 
MA = (((TA_SMA(A(:,2),2)-TA_SMA(A(:,2),12))./TA_SMA(A(:,2),12))); % 16 
MOM = [nan(12,1);(A(13:end,2)- A(1:end-12, 2))./ A(1:end-12, 2)]; % 17 
  
features=[I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15,MA,MOM]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
stk.d = A(:,1); 
stk.c = A(:,2); 
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CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1); nan]; 
  
IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 197501, 1); 
OOS_End = find(stk.d >= 201012, 1); 
  
IS_Set = features(IS_Start:OOS_Start-1,:); 
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
  
OOS_Set = features(OOS_Start:OOS_End,:); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
%%%%%%%%%%%%%%%%%%%%%% 
% uncomment this section and set k to limit to top features 
  
for k = 1:size(features,2) 
  
[inmodel, Z] = rankfeatures(IS_Set', IS_CorrectTargets, 
'NumberOfIndices', k); 
  
sfsIS_Set = IS_Set(:,inmodel); 
sfsOOS_Set = OOS_Set(:,inmodel); 
% % feats{inmodel} 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Normalization Method 
%      IS_Set = zscore(IS_Set); 
%    IS_Set = normc(IS_Set); 
%    IS_Set = normalize(IS_Set); 
  
svmStruct = svmtrain(sfsIS_Set, IS_CorrectTargets,'autoscale',true,... 
                     'kernel_function','rbf','method','LS'); 
                    
YY = svmclassify(svmStruct,sfsIS_Set); 
errRate = sum(YY ~= IS_CorrectTargets)/length(IS_CorrectTargets); 
fprintf('inmodel SVM Accuracy: %6.2f %%\n', 100-errRate*100); 
  
  
[r, ~] = size(IS_Set); 
XX = [sfsIS_Set; sfsOOS_Set]; 
YY = [IS_CorrectTargets; OOS_CorrectTargets]; 
  
for n=1:length(OOS_Set) 
  
    XXN  = zscore(XX(1:r+n, :));  % choose the desired normalization 
method 
%    XXN = normc(XX(1:r+n, :)); 
%    XXN = normalize(XX(1:r+n, :)); 
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    svmStruct = svmtrain(XXN(1:end-1, :), YY(1:r+n-1), ...   
               
'kernel_function','rbf','autoscale',false,'method','LS');       
                           
    Results(n, 1) = svmclassify(svmStruct, XXN(end,:));  
end 
  
compare = (Results == OOS_CorrectTargets); 
precision(k) = (sum(compare)/length(compare)*100); 
 
end 
  
% # of features and precision 
[(1:k)' precision'] 
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UporDownOnly.m 
 
% uses technical features 
clear 
close all 
addpath '..\misc' 
addpath '..\ta-lib-0.0.3_ml2007a-mex_w64' 
  
A = xlsread('PredictorData2011.xls');   
  
stk.d = A(:,1); 
stk.c = A(:,2); 
  
CorrectTargets = [stk.c(2:end) >= stk.c(1:end-1);   nan]; 
  
% IS_Start = find(stk.d >= 193806, 1); 
% OOS_Start = find(stk.d >= 197501, 1); 
% OOS_End = find(stk.d >= 201012, 1); 
  
% IS_Start = find(stk.d >= 193806, 1); 
% OOS_Start = find(stk.d >= 200010, 1); 
% OOS_End = find(stk.d >= 200209, 1); 
  
IS_Start = find(stk.d >= 193806, 1); 
OOS_Start = find(stk.d >= 200710, 1); 
OOS_End = find(stk.d >= 200903, 1); 
  
IS_CorrectTargets = CorrectTargets(IS_Start:OOS_Start-1); 
OOS_CorrectTargets = CorrectTargets(OOS_Start:OOS_End); 
  
% Up only during OOS 
UpResults = ones(length(OOS_CorrectTargets),1); 
Upcompare = (UpResults == OOS_CorrectTargets); 
Upprecision = (sum(Upcompare)/length(Upcompare)*100); 
  
% Down only during OOS 
DownResults = zeros(length(OOS_CorrectTargets),1); 
Downcompare = (DownResults == OOS_CorrectTargets); 
Downprecision = (sum(Downcompare)/length(Downcompare)*100); 
  
% A naive prediction where if it was up (down) last month then the  
% next prediction is up (down). 
  
for n=2:length(OOS_CorrectTargets) 
    if OOS_CorrectTargets(n-1) == 1; 
    FollowResults(n, 1) = 1; 
    elseif OOS_CorrectTargets(n-1) == 0; 
    FollowResults(n, 1) = 0; 
    end 
end 
  
Followcompare = (FollowResults == OOS_CorrectTargets); 
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Followprecision = (sum(Followcompare)/length(Followcompare)*100); 
  
% The reverse of (iii) where if it was up (down) last month then the  
% next prediction is down (up). 
  
for n=2:length(OOS_CorrectTargets) 
    if OOS_CorrectTargets(n-1) == 1; 
    ReverseResults(n, 1) = 0; 
    elseif OOS_CorrectTargets(n-1) == 0; 
    ReverseResults(n, 1) = 1; 
    end 
end 
  
Reversecompare = (ReverseResults == OOS_CorrectTargets); 
Reverseprecision = (sum(Reversecompare)/length(Reversecompare)*100); 
  
%Display Results 
fprintf('Out-of-Sample Up Only Accuracy: %6.2f %%\n', Upprecision); 
fprintf('Out-of-Sample Down Only Accuracy: %6.2f %%\n', Downprecision); 
fprintf('Out-of-Sample Following Accuracy: %6.2f %%\n', 
Followprecision); 
fprintf('Out-of-Sample Reverse Accuracy: %6.2f %%\n', 
Reverseprecision); 
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cfun.m 
 
function errRate = cfun(X,Y)  
  
% Change to the appropriate kernel 
 
svmStruct = svmtrain(X, Y, 'kernel_function', 'linear'); 
YY = svmclassify(svmStruct,X); 
  
errRate = sum(YY ~= Y)/length(Y);  % mis-classification rate 
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Normalize.m 
 
function data = normalize(d) 
% the data is normalized so that max is 1, and min is 0 
data = (d -repmat(min(d,[],1),size(d,1),1))*spdiags(1./(max(d,[],1)-
min(d,[],1))',0,size(d,2),size(d,2)); 
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