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Abstract 

 

A local utility company processes a variety of jobs each day including meter reading, service 

shut-offs, emergency response, and customer service work. For the Company, a specific 

workflow begins with automated meter-reading (AMR) and ends with collections/service 

shut-offs (CSOs) for accounts with excessively late payments (AMR-CSO workflow). There 

are considerable and systemic sources of variability in both the workload and resource 

demands of the AMR-CSO workflow including order arrival, order release schedules, order 

batch-sizing and maintenance scheduling.  

This project draws on theory from the job-shop problem to explore possible means to 

mitigate this variability. We hypothesized that controlling various forms of input variability 

would lead to reduced downstream workload variability. Using discrete event simulation we 

tested a variety of measures to reduce input variability in the workflow. Consistent with 

other literature we find that various workload control tactics have limited impact on output 

measures and system performance.  

However, we found that system is much more sensitive to resource capacity variability. One 

input control tactic we call Targeted Release allowed us to reduce Company capacity 

variability which suggested significantly improved outcomes. These initial results are 

promising for both the Company and for future investigation of tactics to mitigate resource 

capacity variability.  
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1 INTRODUCTION 

1.1 Background 

A local utility company, hereafter the Company, processes a variety of jobs each day 

including meter reading, service shut-offs, emergency response, and customer service work. 

Due to a high degree of unpredictability of emerging work as well as location of scheduled 

work, and varying time-constraints for different job-types, the Company utilizes a highly 

adaptive scheduling policy. For example, highly-skilled service technicians, A-level 

technicians, are assigned a slate of customer service jobs at the beginning of a shift. But as 

emergency jobs arrive at the Company, these service techs will be pulled from customer 

service jobs to resolve the emergency; because service shut-offs require a lower level of 

technical skill they are primarily assigned to lower-skilled technicians, B-level techs. Because 

service shut-offs must be completed before 5pm and customer service work must be 

completed before midnight, a large number of shut-off orders on a day might overwhelm 

the capacity of the B-level techs and mean that A-level techs will be pulled from service 

work to complete them.  

In each of these examples, and other events not described, service work may be pushed to 

later hours of the day, resulting in overtime premiums and poor customer service. While the 

Company makes every attempt to avoid these negative consequences, the option to delay 

customer service time has been a convenient release valve to alleviate job bottlenecks. 

However, the Company is approaching a change to their customer service model which will 

make delaying customer service appointments even more costly. 

The Company will implement much smaller customer service appointment windows. Failing 

to complete jobs by their scheduled service window will result in financial penalty for the 
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Company. This means the Company will no longer be able to utilize flexible scheduling to 

shift capacity in order to meet its variable workload demands. One strategy to cope with 

workload variability is to increase total capacity. However, excess capacity will result in 

idleness when demands are low. The costs associated with idleness are inevitably passed on 

to customers in the form of higher rates. This thesis will explore methods of reducing 

workload variability with the goal of minimizing resource drain from other workflows.  

1.2 Problem Description 

1.2.1 Workflow 

For the Company, a specific workflow begins with automated meter-reading (AMR) and 

ends with collections/service shut-offs (CSOs) for accounts with excessively late payments. 

This will be called the AMR-CSO workflow. We can think of each operation performed in 

the AMR-CSO workflow as a machine, and each job as an input to that machine. A job, or 

more accurately a batch of jobs begins as a set of meters to be read on a given day. The 

batch is released to the first machine in the flow – AMR drivers.   

There are roughly 700,000 meters in the Company’s system. These meters are grouped into 

137 AMR routes. These 137 individual routes are clustered into 21 clusters – groups of 

routes read over a 21 consecutive-workday period. In order that the amount a customer is 

billed from month to month be kept consistent, NW Natural tries to keep a 30 day billing 

period. That is, every attempt is made to read each meter 30 days from its last reading. In 

practice, however, there is a typical range of 28 - 33 days for meter reading. Further, by 

Public Utility Commission regulation customers may only be billed once per month. 



 

 
 

3 

After the meters are read, the jobs become a batch of bills to be processed by the ‘billing 

machine.’ Some bills will not be paid on time. These jobs will then be processed by the ‘late 

notice machine,’ and so on. The final output in this workflow is a CSO order for bills that 

remain unpaid.  

1.2.2 AMR – Batch Sizes  

Jobs (meters to be read) are not input one at a time, but rather are batched so that a set will 

be processed together. A significant source of input variability is the meter batch sizes. We 

will refer to batches of meters as clusters. As was outlined earlier every cluster will ultimately 

produce a batch of CSO orders. Not all clusters are created equal. Clusters have varying 

number meters in them and some clusters are likely to produce more CSO orders than other 

routes.  

There are typically 7routes per cluster. This means that 7 routes will be read per day. The 

routes were grouped into their specific clusters so as to minimize travel time between 

clusters. Less emphasis was placed on daily input levels (number of meters per cluster) and 

output levels (probability of generating CSO orders). Some clusters have total meters 

numbering in the low 20,000s while others have in the low 40,000s. Some clusters may 

produce significantly more CSOs than others which will lead to highly variable resource 

demands from day to day during the final stage of the workflow.  

Figure 1 shows the percentage of each cluster’s contribution to the total number of meters in 

the system and the total number of CSO orders in the system. We can see that there is 

tremendous variability between clusters.  
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1.2.3 AMR – Order Release 

Orders (clusters) are input to the system when they are read by AMR drivers. The clusters 

are read once roughly every 30 days, roughly sequentially by cluster number. On or around 

the beginning of a month, Cluster 1 will be due to be read and the drivers will read those 

specific meters. The next day the Cluster 2 meters will be available and so forth. The meters 

are read 5 days a week. Clearly 21 is not evenly divisible by five. So there is no consistency as 

to which day of the week a cluster will be read. Cluster 1 could be read on a Monday one 

month and a Wednesday the next month.   

One goal of the schedule is full AMR driver utilization. AMR routes are read every workday, 

Monday through Friday. At the beginning of a shift, an AMR driver is assigned that day’s 

route. If she finishes the route before the shift is finished, she may begin work on the next 
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Figure 1 – Each Cluster’s contribution to total meters and total CSO orders 
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day’s route. For this reason, consecutive clusters tend to be contiguous; tomorrow’s routes 

are next to today’s routes in order to minimize travel time between them and enable working 

ahead.  

Releasing some jobs (clusters) early allows the AMRs to be done slightly ahead. Combined 

with the fact that there are typically 29 days, rather than 30, scheduled between meter 

readings to allow AMRs to be done slightly behind, AMRs can be managed without coming 

up against a hard deadline and thus incurring overtime costs.  

There are a variety of ways this order release strategy can create downstream variability. First, 

the early practice of releasing orders early runs the risk of routes getting too far ahead of 

schedule. This can mean that billing periods can be too short, leading to amount variability 

for the customer, as well as the danger that they could be billed twice in one month. To 

avoid this, AMR routes must be delayed, leading to low resource utilization, and wasted 

money for the Company, as well as customers. 

Second, the fact that the day of the week a particular cluster is read shifts from month to 

month limits visibility about where the Company will need to position its resources. 

Resources might be in a convenient position to work Cluster 5 on a Wednesday, following 

working Cluster 4 on a Tuesday. But there might be a big difference in travel demands to 

work Cluster 5 coming off a weekend. This is a potentially fascinating issue, but it is outside 

the bounds of this project.  

The third and most critical way the order release process creates variability downstream also 

arises due to the inconsistency of which day of the week a cluster is read on. This is 
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specifically related to the scheduled wait-times within the system which will be discussed in 

the following section.  

1.2.4 Scheduled Wait-times 

The scheduled wait-times between operations are another source of stochasticity. If a meter 

is read on day 1, then the series of operations in the workflow is outlined below along with 

the day in the cycle it takes place: 

 1 – AMR  
 2 – Bill Issued 
 17 – Bill Due 
 24 – One Week Late Notice 
 40 – Shut-Off Date Notice 
 44 – Route Desk 
 45 – In the Field for Shut-Off 
 55 – Shut-off Due Day 
 

For our purposes the most important day in the workflow cycle is 45, the day jobs are 

released to the final machine in the flow – the ‘CSO machine.’ The scheduled timing of these 

releases ensures that jobs will be scheduled to be released to this machine on Fridays. This is 

critical to note, because the ‘CSO machine’ may not be run on Fridays through Sundays. 

Therefore jobs released on Fridays can be thought of as sitting in the queue at the machine, 

simply waiting until Monday when the machine can be run again. This means that a 

disproportionate number of orders are in the queue Monday on mornings.  

To make this clear Table 1 shows events in the workflow as well as the day in the work cycle 

it is to be performed. For instance, if a meter is read on a Monday, the bill for that account 

will be sent on Tuesday and, should it become a CSO order, it will be released to the CSO 
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machine on a Wednesday. As we can see, meters read on both Wednesday and Thursday will 

be released to the CSO machine on Monday.  

We must also take into consideration the input preference described in section 1.2.3. 

Because the company cannot perform the CSO operation on Fridays, they have more 

resources to perform other work. A common practice is to utilize these additional resources 

to perform the AMR job relative to other days of the week. This means that we should 

expect more meters to be released to the CSO machine on Tuesdays than on Wednesdays or 

Thursdays. 

  Event (Day in Cycle) 

  Read Day (1) Bill Sent (2) Bill Due (17) Released to CSO (45) 

Day of 
Week 

Monday Tuesday Wednesday Wednesday 

Tuesday Wednesday Thursday Thursday 

Wednesday Thursday Friday Monday 

Thursday Friday Monday Monday 

Friday Monday Tuesday Tuesday 

Table 1 – AMR-CSO Event schedule by day-of-week 

The data confirm that these processes have the expected consequences. Monday had by far 

most CSO orders released with 15400, followed by Tuesday with 12000, Wednesday with 

9600 and Thursday with 8500 (Figure 2).  

We can see now how these scheduled wait-times, the order release decisions and the 

variability in batch-sizes can align to create substantial downstream workload variability. To 

illustrate, we can refer to Figure 1. Clusters 17 and 18 are not only significant contributors to 

the total meters read, but they are also both heavy contributors to CSO orders. Consider the 

impact of these clusters being read on a consecutive Wednesday and Thursday. This would 
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likely mean an explosive CSO queue on the eventual Monday these orders would hit the 

shut-off machine. 

 

An additional problem is that for the jobs released on Wednesday and Thursday the delivery 

date for these jobs falls on a non-work day. Specifically, jobs released on a Wednesday are 

due on a Saturday, and jobs released on a Thursday are due on a Sunday. This forces 

managers to move these jobs up in order to ensure completion before the due date. Late 

delivery for these jobs is not considered an option. 

These problems reduce the workable lead-time for the last machine in the flow, as the final 

due date is set from the time of the AMR and does not change. As you can see, there is a 

supposed scheduled lead-time for these jobs of 11 days. But the workable number of days 

for jobs is actually much less than that. The table below shows the typical effective lead 

times for jobs by the day of their release to the machine. The actual lead times could be even 

less in the case of weeks which have holidays on Mondays, etc. The average effective lead-

Figure 2 – Number of CSO order released by day of week 
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time for any batch of shut-off jobs is 6.2 days. This means that nearly half of the scheduled 

lead-time for these jobs is rendered non-existent by non-workdays. 

Scheduled Release Day Number of Workdays 

Monday  8 

Tuesday 7 

Wednesday 6 

Thursday 5 

Friday 5 

Table 2 – Workdays to complete CSO orders 

1.2.5 Job Dispatching 

Completion of work may not be a problem in principle. There is no reason that all jobs 

cannot be accomplished with managed oversight. The problem is that this process does 

demand managed oversight. Ideally, jobs would be released to a machine without any queue 

and only the number of jobs that could be processed in the processing time interval would 

be released to the machine. This would allow the jobs to be processed and exit the machine 

with negligible queuing time and leave the machine ready to receive additional jobs at the 

beginning of the next release period.  

As currently organized however, there is necessarily a queue waiting for many jobs, and in 

practice there is a queue waiting for all jobs. Any queue of jobs waiting to be processed by a 

machine means that management must dispatch the jobs to the machines for processing. 

Numerous dispatch rules have been developed for use in machine-shop floor management. 

The Company follows at least two distinct and well researched dispatching rules for 

dispatching jobs to the CSO machine. On any day, some batch of jobs has ‘matured.’ That 

is, a batch of jobs is within three days of its due date and has become a high-priority. There 
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is a specific class of technician, B-level techs. The main priority of this class of tech is to 

perform the shut-off operation. The high-priority shut-off orders will be assigned first and 

they will be assigned first to the B-level techs. If there are a very high number of high-

priority shutoffs, the number that exceeds the capacity of B-level techs will be assigned to A-

level techs. This dispatching rule could either be thought of as First Come First Served 

(FCFS), or as Shortest Due Date (SDD). As all jobs have the same cycle- and (effectively) 

processing-times, the due dates are entirely determined by the input date. Therefore, for this 

problem the two dispatching rules are equivalent. 

Since there are between five and seven workdays between release and due date, when jobs 

are released to the final machine they are not considered an immediate priority. Once all 

high-priority orders are dispatched, lower-priority orders are assigned as slack permits. They 

are dispatched to field technicians not on by FCFS or SDD, but by a proximity rule – if a 

tech is projected to be near the order, it will be dispatched to them. This is done as a 

standard part of a B-level tech’s workloading. However, these low-priority orders will only 

be assigned to A-level techs if they have a light workload on that day. As this is field work, 

travel time to the job is considered. Therefore, travel time can be thought of as a portion of 

the total processing time. Jobs are assigned if the travel time is below a certain threshold. 

The dispatching rule in this case can be thought of as Shortest Processing Time (SPT).   

1.2.6 Maintenance 

The Company must regularly pull field technicians out of the field for a variety of meetings. 

As the heading of this section suggests, these meetings can be thought of as routine 

maintenance of shop ‘machines.’ These meetings must be scheduled during standard work 

hours. While some effort is made to schedule these meetings according to season, daily 
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workloads are considered exogenous variables. Since there is little control or projectability of 

daily workloads, meeting schedules are made largely independent of daily workloads. This 

means that frequently large numbers of workers are pulled off the field and are unavailable 

to process jobs, on days with high job demands.  

Compounding the problem, these meeting schedules are not well communicated to the job-

dispatching department. While efforts have been made to increase communication between 

the meeting-scheduling and job-dispatching departments, these meetings continue to catch 

dispatchers by surprise, leading to emergency rescheduling. A frequent result is that jobs 

must be scheduled for later in the day and technicians must be kept later than their 

scheduled shift. This is a significant cause of over-time hours for the company.  

1.2.7 Project Goals 

As we can see from the preceding account, there are considerable and systemic sources of 

variability in both the workload and resource demands of the AMR-CSO workflow. This 

variability regularly impacts other workflows in the Company system. Ideally the AMR-CSO 

workflow would be entirely independent, never demanding higher value resources from 

other workflows.  

We hypothesize that the variability of inputs, specifically the batch-sizes, order release 

mechanism, and intra-system wait-times schedule, are the conspicuous cause of much of the 

downstream workload variability. This project will explore possible means to mitigate this 

variability by proposing an integrated approach to workload control through the use of a 

novel billing cycle model which will: 

1. Correlate job release dates with work days;  
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2. Incorporate novel order review/release rule; 

3. Provide a framework to balance workloads; 

4. Create predictable periods of low workload in order to schedule maintenance. 

Using discrete event simulation, this project will assess the contribution of each facet of the 

workflow to the variability measure. The ultimate goal of this project is to determine the 

extent to which variability can be limited and workloads and resource demands can be more 

tightly grouped around the mean. We believe that there is in principle some allocation of 

meters to routes, grouped into some set of clusters, which when processed over an efficient 

workflow schedule will lead to a near-optimal and highly consistent resource demand level.  
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2 LITERATURE REVIEW 

The billing/shut-off cycle workflow can be thought of as a machine or job shop. Specifically, 

as this work is repetitive month after month, this workflow can be thought of as a cyclic 

schedule job shop problem. An ideal cyclic schedule will systematize uniform output of end-

items. If end-items can be produced at a uniform rate, all contributing materials and 

processes can be made uniform [1]. However, the schedule employed by the Company is not 

designed to generate uniform outputs.  

2.1 Operation Scheduling. 

The basis of the job shop problem is the question of how to schedule order processing 

operations on the various machines in a shop. There are numerous variations on this 

problem including the single machine problem [2][3][4][5][6][7][8][9], the multiple machine 

problem, identical machine problem, and a variety of others. The central question of this 

class of problems is how to order the jobs that need to be processed in such a way that 

minimizes some performance measure such as total makespan, work in progress, or average 

job tardiness.     

If different sections of a job can be scheduled on different machines, then the scheduling 

process is two step: determine what length of job will be scheduled on which machine, then 

determine the order in which each machine will process its various assignments. Each step 

has been shown to be equivalent to a traveling salesman problem. Yalaoui and Chu propose 

first a branch and bound algorithm [10] then simplify it as a heuristic [11] solution to the job 

scheduling step while Tahar et al. [12] offer a linear programming solution. The method is 

fast and achieves balanced workloads across the parallel stations. But these solutions do 
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nothing to address the variability described in Section 1. In fact, these solutions proposed are 

largely consistent with the approach currently employed by the Company.  

2.2 Cyclic Scheduling 

The sub-topic of cyclic scheduling is small compared to many other sub-topics, but still well 

researched and diverse. Broadly speaking, research can be divided into investigations of 

single product and multiple product lines. As this project investigates a line producing a 

single product, we restrict the review to those papers. 

Graves et al. appear to be among the first to develop the cyclic schedule concept. They 

investigated a circuit manufacturing plant which scheduled jobs according to input/output 

needs and local sequencing rules at each machine [13]. They found that these procedures 

lead to a large work-in-process inventory. Holding set-up and transfer times negligible, they 

formulate the problem first as a combinatorial optimization problem which they deem 

unsolvable. They then develop a heuristic scheduling algorithm by which they set a desired 

output rate then determine the schedule of tasks and production rate to achieve the desired 

output. This method was successful in both reducing throughput time, as well as stabilizing 

workforce assignments.  

Hall provides a qualitative assessment of the benefits of cyclic scheduling [1]. Aldakhilallah 

and Ramesh develop two scheduling heuristics for cyclic, re-entrant job shop environments 

which produce a single product [14].  They use a mixed-integer program to determine cyclic 

schedules for a repetitive production re-entrant job shop with a predetermined sequence of 

operations with known processing, set-up and material handling times as well as a 

specialization of that environment in which setup for a job can begin on a machine before 

completion of the previous operation. They attempt to minimize flow-time (work-in-
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process) for a given cycle-time (throughput). While their algorithms are shown to be both 

efficient and effective, they are so by re-ordering the sequence of operations. 

Kouvelis and Karabati explore cyclic scheduling of unpaced, synchronous production lines 

[15]. They develop an implicit enumeration algorithm which approaches optimality and can 

solve realistic sized problems. Wójcik investigates repetitive manufacturing systems of 

multiple processes utilizing a shared processing resource. [16]. He uses a constraint 

propagation program to narrow the possible solution set of conflict-free schedule, which 

ensure that the shared resource is not requested by more than one process during a single 

processing interval.  

2.3 Workload Control (WLC) 

The problem of workload variability is well known. As Irastorza and Deane wrote over 40 

years ago, workload variability results in costs from idle machinery and labor, overtime 

wages, or the costs of utilizing resources for out of the ordinary operations [17]. While there 

is wide recognition of input variability, research tends to deal with coping with variability, 

rather than affecting it directly. Eilon et al. state that, “if the arrival of jobs, their processing 

requirements and facilities are given, the only control parameter at the disposal of the 

dispatcher is…the order in which the job should be processed [6]. Melnyk et al. observe that 

“[f]actors such as arrival rates, shop loads and processing times…are treated as set by forces 

outside the control of shop personnel [19].  

Shimoyashiro et al. treat the problem of load balancing through input scheduling [20]. They 

treat a shop as a vector of processing capacities and a job as a vector of processing needs, 

and develop an algorithm for matching similar vectors. 
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Bechte [21]  provides a broad overview of various aspects of load-oriented manufacture 

control including order entry, order release, and operation sequencing (dispatching). His 

discussion is oriented toward non-cyclic systems with variable inputs which are loaded 

during weekly planning periods. He develops a job release protocol which releases jobs until 

a load limit is reached at a single work station. This system also relies heavily on dispatching 

rules and the entire system requires significant human management. 

Land and Gaalman [22] review a number of WLC and find each suffering from an 

assumption of stationarity and stability of both jobs and capacities. However, in order to 

achieve such stationarity, the WLC reviewed would likely require lower-overall throughput to 

ensure queues maintain expected norms.  

There are many proposed methods to cope with input uncertainty. A major area of 

investigation in the job shop literature is Order Review/Release (ORR) strategies. 

In an early investigation of ORR, Baker [23] develops a load-oriented rule for a very simple 

single machine job shop. Baker finds little benefit of ORR and concludes that proper 

dispatching is much more critical to shop success. Curiously however, Baker suggests 

situations in which input control may be useful, such as reducing confusion on an 

overloaded shop floor or when there are frequent changes to a master schedule, yet he does 

not test either of these scenarios in his simulation. 

Melnyk et al. [24] suspect the reason ORR methods have had little impact in practice on 

decreasing lead-times is that models treat the planning system as a stochastic process outside 

the control of the system being investigated. In a simulation experiment they find that load 

smoothing prior to ORR has a high impact on tardiness and flow-time variance measures, 
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while ORR had a greater impact on work-in-process measures. Also, the combination of 

workload smoothing and controlled release diminishes the importance of complicated 

dispatching rules.  

A later study by Melnyk et al. [19] studies the interaction effects of variance control, ORR 

and dispatching rules. They find that ORR can have positive impact on shop floor 

functioning, but only in the presence of variance control both at the planning stage (load-

leveling) and at the shop floor.  Consistent with previous research, they find that without any 

system control, the Shortest Processing Time (SPT) dispatching rule outperforms all other 

dispatching rules. However improving job processing time variance made SPT the worst 

performer among all dispatching rules.  

Philipoom and Fry [25] note that the majority of studies on ORR take for granted that all 

orders will be accepted by the job shop, independent of shop conditions. They investigate 

the effect of rejecting orders if accepting them will push the shop above a maximum work 

threshold. By varying the threshold for rejecting work, Philipoom and Fry show that for 

three different order release mechanisms some increase in rejecting orders has beneficial 

effects on mean flow time and various tardiness measures. Importantly, they show that a 

work path release mechanism is never worse and frequently better than a shop load release 

mechanism.  

Ragatz and Mabert consider the case in which due date assignment and operating decision 

rules are interdependent. They note that if due-date feedback influences job flow times may 

make setting each very difficult if due dates do not stabilize quickly. Without quick 

convergence, it may be necessary to have a short-circuiting rule [26].  
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Davis et al. [27] develop a variety of workload imbalance measures which go beyond the 

common convention of input stochasticity. They show that high levels of worker flexibility 

are an effective strategy to cope with imbalanced workloads. 

Bott and Ritzman [28] found that even with ample capacity slack, workload variability can 

hamper on-time delivery and severely impact total inventory. Further their results suggest 

that the second most critical factor affecting workload variability, after product complexity, 

is demand variability. 

One area of the WLC literature investigates pull or feed-forward systems [29][30]. The goal 

of these approaches is to avoid machine starvation and their by decrease lead times by 

pulling orders forward to machines which fall below an established queue threshold. This 

course is not an option for the Company in question as the release times to each machine in 

the AMR-CSO workflow are regulated by public authority.   

2.3.1 Order Release Mechanism (ORM) 

An ORM is the timing convention by which orders are released to the shop floor. There are 

a variety of ORMs considered in the literature including Deterministic Input, where orders 

are released at constant intervals; Closed Loop Input, where the number of orders in the 

shop is held constant; CONWIP, a form of Closed Loop Input where the WIP is kept 

constant; and Starvation Avoidance which focusses on the bottleneck machine[31]. These 

techniques also fit into Wisner’s categories of Finite Loading policies, where orders are 

released when certain shop floor conditions are met, or Infinite Loading policies, where 

orders are released at a predetermined release date, regardless of shop conditions [32] 
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But by regulation, the Company must use a form of Infinite Loading or Deterministic Input 

ORM. It must release a batch of orders roughly every 30 days. 

2.3.2 Machine Unavailability 

There is a surprising lack of research concerning the variability of machine capacity. In a 

study of the CONWIP ORM, Hopp and Spearman write that a majority of the variability 

present in a job shop system is due to shop floor conditions such as random machine 

failures, periodic adjustments and inattention from the operator [33]. In an investigation of 

various environmental factors on the performance various ORR techniques, Cigolini et al. 

found that the availability of machines can have a great impact on performance [34]. 

This has been a brief review of some of the concepts we will explore below. We feel this 

project builds on much of this work. In particular we expect to add to prior work on 

workload control by measuring the impact of various types of input variability. We also feel 

our case study fills a gap by providing a platform to test the effects of adjusting multiple 

forms of input variability simulataniously. 
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3 Methods 

In many ways the AMR-CSO problem is similar to the identical parallel machine scheduling 

solution described by Tahar et al. and Yalaoui and Chu. The machines (technicians) are 

identical in so far as they are capable of performing the same operation in parallel. The jobs 

are in fact batches which are split between the various machines. Setup costs are a major 

consideration for scheduling machines (technicians). The Tahar et al. solution is a close 

model for the current scheduling approach to AMR-CSO. With some modification, we will 

rely on their notation to describe the current scheduling process.  

 R set of meters, 

 r  index of meters (r = 1, ..., R), 

J set of routes, where a route is vector of meters <r*, …, rπ> for all r ϵ R,  

such that all meters appear in one and only one route, 

 j route index (j = 1, … , J), 

 J a unique map of R to J, 

K set of route clusters, where a cluster is a vector of routes <j*, …, jπ> for  

all j ϵ J, such that all routes appear in one and only one cluster, 

 k cluster index (k = 1, … , K), 

 K a unique map of J to K,  

 O total operations, 

 o index of operations (o = 1, … , O), 

 P set of technicians to staff operation stations,  

 p index of technicians (p = 1, …, P), 

 θko processing time of operation o on cluster k, 

 Cko completion time of operation o on cluster k, 

 Sko start time of operation o on cluster k, 

 Wi scheduled wait-time following operation Oi, (w = 1, 2, …, O-1) 

  



 

 
 

21 

A major difference between the two problems is that Tahar et al. and Yalaoui and Chu 

assume that each job requires only a single, identical operation, which is performed by all 

available machines. Jobs in AMR-CSO require multiple operations for completion and, more 

importantly, at any given start-time there is more than one operation performed in the 

workflow. These operations pull from the same set of technician resources, however, so they 

are modeled as a single consideration. However, this difference can still be treated as a 

routing problem based on setup costs of machines on operations as will be seen.  

If each k ϵ K is a job, the final goal is to determine Qk, p, some length of k, (for instance, a 

specific AMR route, or set of CSOs) to be allocated to technician p. This is a two-step 

process. At any Sko there is at least one job k scheduled to receive the operation o, o = 

1,…O, represented by the set Ok. The first step in scheduling is determining which 

technicians will be assigned to each operation. For Tahar et al. this problem is determining 

the sequence of jobs to process based on setup costs between specific jobs, which they solve 

using Little’s traveling salesman algorithm.  

Our problem involves the setup costs for a technician at for a specific operation, σp,o. Using 

a matrix of setup times, the same algorithm could produce Op, a schedule of all technicians 

to one and only one operation at Sko. Once Op has been created, the second step is 

determining Qk, p. Both steps are represented simultaneously in the objective function below.  

For Tahar et al., the goal under this formulation is to minimize the maximum makespan for 

all jobs by first allocating sections of jobs to all machines and then optimizing the job order 

on each machine based on sequence-dependent setup times. The Company’s goals for AMR-

CSO scheduling are slightly different. The goal here is to minimize the total penalty for tardy 
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or early completion of jobs. As described by Panwalker  et al.[3] if each k ϵ Ok has due time 

Dko then the tardiness and earliness of k are  

Tko = max(0, Cko – Dko)  and  Eko = max(0, Dko – Cko) 

respectively. If A is a schedule of Qk, p on Op, and the total penalty for earliness and tardiness 

for A is given by 

 f(A) = (              

The problem is thus minimax f(A) by utilizing Qk, p and Op as decision variables for  

 ∑ ∑                   
 

subject to 

 ∑ ∑ (       )      
 
   

 
    

          ,                           

          ,                           

 

There are many features of AMR-CSO that allow it to be modeled as a cyclic schedule. The 

process is repetitive – the AMR-CSO workflow processes jobs that are largely similar month 

after month. Individual jobs even re-enter the workflow for reprocessing every month. The 

sequence of operations is standard across all jobs. Under the Tahar et al. paradigm, which is 

the basic process utilized currently, the AMR-CSO is trivially cyclic.  
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The actual K is considered set and roughly every 30 days, K starts over with cluster K1 at 

operation O1. If a schedule A were cyclic in a meaningful sense, then it would repeat every Z 

time steps such that: 

              
          

              
                          

However, no such Z exists. Due to the causes of variability outlined above, daily schedules 

are unlikely to repeat at all, and even if they happen to do so, there is no reason to expect 

that the following day’s schedule would be a repeat of the previous cycle’s schedule. O5 may 

require 10 technicians one day and require only 3 the next. In a truly cyclic schedule the 

number of resources necessary at any operation would be largely consistent from day to day.  

The cycle time is effectively infinite. The consequence of this fact is that schedules must be 

highly managed on at least a daily basis and in reality managed throughout the day. Our goal 

is to determine the extent to which variability can be eliminated and the scheduling 

procedure be rendered cyclic. If a cyclic schedule can be created for the AMR-CSO 

workflow, it could reduce both production and management costs. 

One major source of variability is the input variability – the difference in meters per cluster 

and likelihood of downstream work generation. The generation of a truly cyclic schedule 

would require inputs that were balanced or nearly balanced. This would be accomplished by 

redrawing the routes and re-clustering them so that each route has a similar number of 

meters and each cluster is likely to lead to a similar number of CSO orders.  

The task of converting the current K → K
*
, some K which balances workloads across the 

workflow, is beyond the scope of this project. To even begin to do so one would need to 
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know how such an input schedule would interact with the operation schedule – the 

scheduled wait-times between operations.  

Instead we will investigate possible means of reducing workload variability in order to 

achieve a specific and realistic Z. To do this we will first determine the extent to which the 

operation schedule contributes to workload variability using discrete event simulation in a 

multi-step process. First a simulation will be built to recreate the behavior of the actual 

system. The simulation will pass clusters through a series of decision points and processing 

modules. The size (number of meters) and probability of passing through various decision 

points will be informed by real Company data from a representative year. 

Model specifications will be given in the next section, but generally if the operation schedule 

is defined as the set of wait-times W, between operations such that (w = 1, 2, …, O-1), the 

figure below illustrates a workflow of operations and wait buffers as well as the basic pattern 

of the simulation: 

 

 

The simulation will be validated against other sample years from company data. Once we are 

confident the simulation reliably reflects the real system we will investigate a variety of tactics 

to reduce input variability and determine their impact on downstream workloads. Our first 

conjecture is that the variability in batch-sizes creates variability in CSO machine queue 

length and order processing times. As currently scheduled there are at least two sources of 

lot-related variability. Neither the routes nor clusters of routes were created with balancing in 

mind. Some clusters have in the low 20,000s of meters while others are as large as the low 

Out Order O1 W O2 Oo-1 Wo-1 Oo 

Figure 3 – Workflow operation sequence 
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40,000s. Secondly, some clusters are consistently more likely to produce downstream 

workloads in the form of CSOs. The regrettable truth is that customers in more affluent 

clusters have a higher ability to pay their bill than customers in less affluent areas.  

We will assume the existence of some K
*
 which balances both the input and downstream 

workloads. We will examine the impact these rerouted clusters have on downstream 

workload variability.  

Our second conjecture is that the order release mechanism creates variability by inputting 

orders without respect for downstream timing. We will attempt to adjust the release 

mechanism so that downstream workload patterns are predictably level. 

The third conjecture is that wait-times between events create workload variability by 

releasing orders on non-workdays and thereby inefficiently stacking jobs and creating long 

queues and processing times. We will reschedule the wait-times so that they target releases 

with workdays. 

In these three experiments, our goal is not workload reduction, but workload balancing. We 

do not expect or seek reduction in average or total processing times or utilization metrics. 

We will measure impact of experiments by the average length of CSO processing queue, 

maximum length of CSO processing queue, and the average time an order spends waiting in 

the CSO processing queue. We expect to see minimum and maximum values closer to the 

mean. We will be particularly concerned if there is a reduction in the number of additional 

high-value labor hours necessary. If there is little variability in resource demand, then 

theoretically the Company could set actual resource level at this demand and therefore 
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minimize the need for the AMR-CSO workflow to consume higher value resources from 

other workflows. 
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4 SIMULATION 

4.1 Design 

In order to investigate these questions a Discrete Event Simulation (DES) was created using 

Rockwell Arena 11.00.00 - CPR 7 and run on an HP Compaq nc6400. In consultation with 

the Company, 2011 was determined to be a representative year and all data used to inform 

the simulation was obtained from Company records from this year. This section will provide 

a detailed explanation of the base simulation so that deviations from it can be described 

briefly in the chapter 5 Experiments.  

4.1.1 Entity Creation 

The specific entities for this simulation are meters. The individual meters will move through 

the simulation and seize the work of various resources such as AMR drivers and technicians 

to perform the CSO. The first decision to be made is how to load new entities into the 

system. In Arena, entities are created with a CREATE module which specifies the Entity 

Type (meters), the Time Between Arrivals and the Entities per Arrival.  

Our first step is to determine how many meters should be created with each arrival. We 

know that meters arrive to the system every workday. One possible approach is to look at 

the actual number of entities read per day and load that number into the queue each day. In 

2011 the Company read a total of 8360296 meters over 252 work days. When the number of 

meters read per day is plotted as a histogram of 20 bins (Figure 4), the distribution is highly 

normal with a mean of 33200 and a standard deviation 8330.   
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Figure 4 – 2011 Meters read per day 

However, if we look at the number of AMR drivers per day we find that this distribution, 

too, is highly normal (Figure 5) with a mean of 7.21 and a standard deviation of 1.2. This 

approach seems to put the cart before the horse. It seems highly likely that the normality of 

the distribution of meters read is due to the normal distribution of meter readers.  

 

 

A superior approach is to look at the number of meters actually queued by the system each 

day. The meters are grouped into 21 specific clusters, (K1, K2,…K21) and queued cyclically by 

cluster number. Each workday the next cluster in the sequence is queued and meters in the 
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Figure 5 – 2011 AMR Drivers per day 
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cluster are made available to be read by AMR drivers. The simplest way to model this system 

is to have a single CREATE module create the average number of meters per each cluster.  

If we count the number of meters in each cluster each month, we find, unsurprisingly, that it 

is highly similar to the distribution of meters read with a mean of 33200 and STD of 8030. 

However, part of our thesis is that the system is prevented from reaching a steady state by 

differences in input variability. Creating cluster inputs around a single mean assumes that 

there is not difference in the actual means of the clusters. The simplicity of this approach is 

attractive, but in order to be certain that it adequately captures the behavior we are interested 

in we will check the differences between the clusters.  

An entire year of data gives 12 observations for each cluster. As was outlined above, clusters 

vary by size, but within each cluster there is variability from month to month due to 

seasonality and service turn-ons and shut-offs. We assume the rough normality of each 

individual cluster and use a single factor ANOVA test to determine if the means of the 

clusters are significantly different. 21 groups gives 20 between-group degrees of freedom, 

and 231 within-group degrees of freedom, yielding an F Critical-value of 1.62 at a .05 level of 

significance. The F-test on the data gives and F-value of 23.1, so we can reject the null 

hypothesis and conclude that the means of at least some clusters are significantly different 

from others.  

For our purposes it is unnecessary to determine which clusters are significantly different. 

Separating only those clusters from the rest and modeling the others collectively would add a 

layer of complexity over simply modeling each cluster individually. Each cluster is 
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represented by a unique create module specifying a unique distribution for Entities per 

Arrival. Distributions were derived from Company data using the Arena Input Analyzer.  

The final step in generating inputs is to determine the time between each arrival. As we have 

outlined, roughly every workday the meters belonging to the succeeding cluster are made 

available to be read by AMR drivers. Therefore, one CREATE module per day should have 

an arrival event. With 21 clusters, there will typically be 29 days between arrival events for 

each cluster, including weekend days. For details of this scheduling system from a theoretical 

perspective please refer to section 1.3.6.  

From a purely modeling perspective, scheduling strictly 29 days between arrival events would 

mean that arrivals would happen on Saturdays and Sundays. Since no AMR can happen on 

those days the entities arriving would wait in the processing queues for unrealistically long 

times which would skew output data. A strict 29 day inter-arrival time would also lead to too 

many arrival events over the course of a year. To avoid these problems each CREATE 

module is given an inter-arrival time as a triangular distribution in units of days with 29 days 

being both the minimum value and the mode value, and the maximum value being 31 days. 

To avoid partial days, the values are rounded to the nearest integer as ANINT(TRIA(29, 29, 

31)). For an example of the details of a CREATE module see Table 3.  

Name Cluster4 

Entity Type Cluster4Meters 

Entities per Arrival 1.93e+004 + EXPO(5.74e+003) 

Time Between Arrivals ANINT(TRIA(29, 29, 31)) 

First Creation 3.29 

Time Units Days 
Table 3 – Cluster 4 Create Module Specifications 
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4.1.2 Signaling Track 

In order to understand various aspects of the Processing portion of the simulation, it will be 

necessary to first describe an independent track within the simulation which may be referred 

to as the ‘Signaling Track.’ The Signaling Track creates a single entity, the Signaling Entity, 

every day at 8.01 hours. The entity proceeds immediately to a SIGNAL module which sends 

a signal of value ‘1’ to the entire simulation. Next the entity moves to a DELAY module and 

is delayed for 10 hours. This means that the entity is released at simulation-time 6pm every 

day. It then moves to an ASSIGN module, which assigns the number of bills to be 

processed that day. More will be described about this module later. The final active module 

in the track is another SIGNAL module which sends a signal of value 2 to the entire 

simulation. The entity is then disposed and exits the simulation permanently.  

4.1.3 Meter Processing 

We can now discuss the major portion of the simulation – the meter processing. After an 

arrival event the batch of meters proceeds to a PROCESS module. This module simulates 

the job of AMR drivers reading the meters. Each meter will seize one driver for a specified 

processing-time. After the processing is finished, the driver is released back to the available 

resource pool and the entity exits the PROCESS module and proceeds to the next module. 

The maximum number of entities that can be processed at any time is equal to the total 

number of drivers in the resource pool. 

The available data provide only the means to determine the average read rate per read day. 

Because these rates describe how long a resource is occupied by an entity, they are given as 

seconds/meter. The best fit processing time distribution for the data is 3 + 

LOGNORMAL(2.72, 1.28) seconds, where 2.72 is the LogMean and 1.28 is the LogSTD. 
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The meters entering the AMR Processing module must be processed by an available 

resource, in this case an AMR Driver. Arena provides two methods for making resources 

available, they could either be of a fixed capacity or on a schedule. Since the AMR Drivers 

do not work at all times, we use the scheduling method. The Drivers are scheduled Monday 

through Friday for a 7.5 hour shift. All that is left is to do is tell Arena how many Drivers are 

available during these shifts.  

From the data we determine the likely number of Drivers working a generic shift is given by 

the distribution ANINT(NORM(7.21, 1.2)). However, we are told the Company prefers to 

schedule more drivers on Fridays because CSO orders may not be processed on Fridays and 

therefore more resources are available as AMR Drivers. We compare the number of Drivers 

by day of the week via single-factor ANOVA and verify that there is significant difference in 

the mean number of drivers by day of the week. While the mean for Fridays seems to be the 

most significantly different from the rest, as with the meter inputs, the simplest solution is to 

specify a unique distribution for each day of the week. The final schedule is given in Table 4.  

Day of the Week Technicians Working 

Monday NORM(6.29, 2.09) 

Tuesday NORM(7.04, 1.06) 

Wednesday NORM (7.33, 1.16) 

Thursday NORM (6.8, 1.01) 

Friday WEIB(8.83, 4.82)-0.5 

Saturday 0 

Sunday 0 
Table 4 – AMR Driver Schedule 

For Monday – Thursday, the number of technicians working is described by a normal 

distribution where the first number in the ordered pair is the average number of technicians 

working on that day of the week and the second number is the standard deviation. While the 

number of technicians working on Mondays – Thursdays is fairly similar, the number of 
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techs who worked Fridays during 2011 is described by a very different curve and a much 

higher mean number of technicians. When 9am on, say, a Monday arrives during a 

simulation run, a random number is generated according to the curve described by 

NORM(6.29. 2.09). That is the number of technicians available to do work on that 

simulation day. In each case, the number generated is rounded to an integer so to avoid 

having partial resources, which cannot be used and would skew utilization metrics. The shift 

for these workers is 9am – 4:30pm. This job is not done on Saturday or Sunday, so no 

technicians are scheduled. 

4.1.4 Billing 

In the real system, at the end of a shift the data for the meters that have been read are 

uploaded to a central billing system. That night the bills are processed, those for customers 

receiving paper bills are printed and put in envelopes and mailed the following day. 

However, in an attempt to control downstream workload, the Company instituted a 

governor on the number of bills that are processed in a single day. The governor is generally 

around 38,000, but there is some variability.  

In the simulation, once a meter is finished being processed in the AMR Processing module, 

it proceeds to a HOLD module called ‘Hold for Billing.’ The meters are held here until the 

HOLD module receives ‘Signal 2’ from the Signal Track at 6pm. At this time the module 

releases the minimum of either the total number of meters in the Hold for Billing Queue, or 

the number of meters allowed by the governor described by the distribution 

TRIA(2.7e+004, 3.78e+004, 5.29e+004). The work of the bill processors is outside the 

bounds of this project and we simply assume that it is completed. Therefore we allow all the 
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meters released to proceed to a DECIDE matrix before proceeding to the Mail Bills 

PROCESSING module.  

Since what this project is concerned with is how the variability at the input stream affects 

variability of the CSO orders, for the sake of computational efficiency we remove any meters 

which will not become CSO orders from the simulation. Again, the simplest method for 

doing this is to determine what percentage of all meters read will become CSO orders and 

apply this chance to all meters. But one of our hypotheses is that differences in rates by 

cluster will affect the downstream workload variability. Therefore for the base simulation 

each cluster will be given its own average rate of meters becoming CSO orders.  

To accomplish this we took the simple average, 
                          

                           
, for the entire 

simulation year. Each meter passes through a DECIDE module to sort it by cluster, then it 

proceeds to a second DECIDE module which gives that cluster’s likelihood of becoming a 

CSO order. For example, in 2011 .46% of all meters in Cluster 4 resulted in a CSO order, 

while .76% of all meters in Cluster 17 resulted in a CSO order. The DECIDE module flips a 

weighted-coin that comes up true .46% of the time (in the case of Cluster 4). When a false 

case occurs (clearly the majority of the time), the meter immediately exits the system 

permanently via the DISPOSE module.  When a true case occurs, the meter moves on to be 

processed as a bill which will ultimately become a CSO order. 

Like the work of the bill processors, the work of mailing the bills is not a concern of this 

project. However we do employ a Mailer resource in the Mail Bills PROCESSCING module 

because it provides a convenient timing mechanism. The Mailer resource works the same 

time periods as the AMR Driver, Monday-Friday 9am-4:30pm. However, to ensure that no 
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meters are left in this module at the end of the shift, we make 1000 mailers available and 

make the processing time a constant .5 seconds per meter. When the meters reach the Mail 

Bills module at 6pm there are no resources working. This means that they must wait in the 

module queue until the following workday at 9am to be processed. Mailers do not work on 

Saturdays, so any meters read on Friday will wait in the queue until Monday.  

4.1.5 Wait-Times 

The next series of modules are timing and data modules. The timing modules ensure that 

events which require no work, such as bills reaching their due date or late notices being sent, 

occur on the schedule set by the Company. The data modules record certain data used for 

analysis such as the day a late notice was sent or how much time a CSO order spent in the 

processing queue.  

4.1.6 Credit/Shut-off Processing 

The final critical module in the simulation is the CSO PROCESSING module. There are 

two components to the total processing times for CSO orders – the travel time and the job 

processing time. The Company data includes En Route Time – the time of day the 

technician begins travel to the job, Order Start Time – the time of day the technician arrives 

at the meter and begins being processing the order, and Order End Time – the time of day 

the processing is completed. The period from En Route Time to Order End Time was used 

as the total processing time. In certain cases the En Route Time was later than the Order 

Start Time. These orders were excluded from the sample, totaling roughly 1,000 exclusions 

from a total of nearly 46,000. The remaining 45,000 entries were converted to total minutes. 

The mean processing time was 23.3 minutes and the likely processing time for an order is 

given by -.001 + LOGN(22.6, 21.1) minutes, with a square error of <.006.  
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There are two different resources for the CSO Processing module – B-level technicians and 

A-level technicians. Each of these different resources is a member of the same set, but the 

number of each resource available at any given time is given by two different schedules. 

Each of the resources is scheduled Monday through Thursday, by regulation the CSO order 

may not occur on Fridays, for a 7.5 hour shift beginning at 9am.  

Determining the number of resources to schedule for a day was not a matter of simply 

counting the number of resources who were listed as working per day. The CSO was the 

primary job responsibility of the B-level techs, but not so for the A-level techs. The A-level 

techs are regularly assigned the CSO orders as fill work if they do not have many customer 

service orders to complete, or are assigned a CSO order because they are conveniently 

located to one. Therefore as many as 30 technicians may appear to work on a single day, but 

their total work level is well below this FTE. Similarly the B-level techs may only be assigned 

a half day’s worth of CSO orders and spend the rest of their time occupied with tasks such 

as corrosion mitigation or they may spend half of their day in a meeting. To determine how 

many of each technician to schedule per day the minutes spent working on each job were 

totaled for each day. These total minutes were then converted into 7-hour shift equivalents 

to yield the number of FTE for that day.  

Analysis of the B-level technician daily FTEs revealed their distribution to be normal with a 

slight right skew, a mean daily FTE of 6.53 and a STD of 1.97 (Figure 6). This distribution 

fit to the data has a square error of .016. The daily FTEs of the A-level technicians is much 

more variable. It is best fit by a triangular distribution with minimum value (.001), mode .597 

and maximum value 18 (Figure 7).  
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Like the number of AMR drivers being dependent on the day of the week, we suspected the 

daily FTEs of the technicians might not be entirely independent. It seemed possible that 

staffing levels could be affected by at least two variables – day of the week, and/or number 

of orders in the queue.  

Like the AMR Drivers, the number of technicians scheduled by day of the week were 

compared using a single-factor ANOVA test. Using a P-value level of significance of .05, we 

cannot reject the null hypothesis in the case of either the A-level technician and the B-level 
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technician. There is not a significant difference in the means of FTE scheduled by day of the 

week. The A-level ANOVA test returns an F-value of 1.92 compared to the F-critical value 

2.65, and a P-value of .13. The B-level ANOVA test returns an F-value of 1.13 compared to 

the same F-critical value, and a P-value of .34.  

Next we determined the extent to which the number of CSO orders in the queue was 

correlated with the FTE scheduled for that day. The B-level staffing level is very weakly 

correlated to order level with a correlation coefficient of .32. The A-level staffing level has a 

stronger correlation with order level, but still not very strong with a correlation coefficient 

of .71. However, we are interested in how much of the variability in staffing of the A-level 

technicians can be explained by the queue size. Regression analysis on the two variables 

returns an R squared value <.51. If we inspect the line fit plot (Figure 8) we see that staffing 

levels are correlate well with low queue levels, but that queue level becomes increasingly 

unpredictive as it increases. 

 
Figure 8 – Scheduled A-Level Techs per Order in Queue  
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We decide that tying simulation staffing levels to either day of week or queue length will not 

significantly improve the fidelity of the simulation to the real system. We use only the 

random distribution ANINT(NORM(6.53, 1.97)) for the B-level technician daily staffing  

level, and ANINT(TRIA(-.001, .597, 18)) for the A-level technicians daily staffing level. Both 

types of technicians are given the same working hours. As an example, the B-level technician 

schedule is given in Table 5. Shifts for this work are 9am – 4:30pm.  

Day of the Week Technicians Working 

Monday (6.53, 1.97) 

Tuesday (6.53, 1.97) 

Wednesday (6.53, 1.97) 

Thursday (6.53, 1.97) 

Friday 0 

Saturday 0 

Sunday 0 
Table 5 – B-Level Tech Schedule 

4.2 Validation 

We are able to use a variety of measures to validate our simulation and determine if it 

behaves similarly to the real system in ways that are critically important. We will compare 

values for: number of meters input to the system, number of CSO orders processed, 

maximum CSO machine queue length, average CSO machine queue length and average time 

spent by an order in the CSO machine queue. Because discrete event simulation has built-in 

variability, in order to get an accurate assessment of how the simulation is likely to behave 

we must look at averages of output values taken over multiple replications of the simulation. 

We run 30 replications of the simulation, each replication runs for 425 days with a 60-day 

warm-up period.  

Our first question is how closely the simulation comes to capturing the inputs of the system. 

Does it successfully generate an accurate number of meters per cluster? The 95% confidence 
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intervals for the averages and range of returned values of total number of meters generated 

by each cluster are averaged over the 30 replications and displayed in Figure 9 below.  The 

average error for all individual clusters is 2.6%. The total average number of meters 

generated by the simulation is 8.18E+06 while the true value is 8.35E+06, an error of 2%.   

The most important metrics for our purposes concern the CSO machine queue. The first 

metric we will consider is the number of CSO orders processed per cluster for a simulation 

year. The data for the 30 replications are displayed in Figure 10. The simulation averages are 

again quite close to the true values. The average individual cluster error is 3.5%. The error of 

the simulated total CSO orders has an error of only 2.8% of the actual total.
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Figure 9 – Simulation Meters by Cluster, Data shown: simulated average, 95% confidence interval and 
range. True cluster monthly average shown in red. 
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The final three metrics we will examine are CSO machine queue related. First we will look at 

how well the simulation estimates the average length of the CSO machine queue. The output 

metric for the simulation is extremely precise. It tallies the queue length data for every 

moment of the simulation run. Unfortunately the actual data for this number are imprecise. 

We had to estimate the value based on only two pieces of information – the number of 

orders released to the machine on a day, and the number of orders processed by the machine 

on a day. We make the simplifying assumption that all orders released to the machine are 

released at the beginning of the shift. Therefore, the queue reaches its maximum level at the 

beginning of the shift and its lowest level at the end of the shift, after all orders for that day 

have been processed. The formula for the maximum number of orders in the queue on day 

T is (  ∑        
 
   ), where k is the number of orders in the queue prior to the first 
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Figure 10 – CSO  Orders by Cluster, Data similar to Figure 9 
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processing day y=0, Ry is the number of orders released on day y and Py is the number of 

orders processed on day y.  

Another simplifying assumption we make is a uniform rate of processing throughout a single 

shift. This allows us to assume the midpoint value between the maximum and minimum 

queue length for a day as the average of the total eight hour shift. Next we weight the 

minimum value of the queue for all idle time between working shifts. Many of these idle 

periods are overnight until the next day’s shift, but many are over the weekend. Once all 

queue length values are properly weighted by hours, we sum them and divide by 8640 hours, 

the total number of hours we have data for. The result is an estimated average CSO machine 

queue length of 172 orders.  

We measure the Average CSO Machine queue length during each replication over 30 

replications of the simulation. The average of these averages is 146 orders with a half-width 

of 16 orders. The maximum average queue length observed for a single replication was 295 

orders. Our simulated average is 15% different from our estimated actual average. The 

estimated actual average is 5% greater than the upper bound of the 95% confidence interval 

(130, 162) however, the estimated actual average is well within the simulated range 91.5-295. 

While a 5%-15% error is hardly ideal, it is also not tremendously far off the mark. We feel 

comfortable concluding that our simulated average is at least on the same scale as the 

estimated actual average queue length that it provides a meaningful analogue to the true 

system.  
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Next we investigate the maximum queue length achieved during simulation. The data do not 

contain the true maximum number of orders waiting to be processed. Our estimation of the 

maximum queue length actually attained, as outlined above, is 1187. Figure 12 shows the CI 

and range for these outputs. The average maximum queue length achieved for all 30 

replications 967. The confidence interval (897, 1037) does not quite capture the actual 

estimated maximum value 1187. From the upper bound of the confidence interval to the 

simulated mean, this is an error of 13%-19%. 

 

 

The final comparison metric we use is the time an order spent in the CSO machine queue. 

Like the queue length, we recorded the average time each order spent in the queue for each 

replication and computed a 95% confidence interval for those replications (Figure 13). The 

average time spent in the queue over all replications is 1.21 days. Because we include travel 

time as part of the simulation process time, the actual time spent in-queue was estimated as 

an order’s release date to the En Route time. The estimated average for actual time spent in 

Figure 11 – Average CSO Machine Queue Length Values given in number of orders. True average 
shown in red. 

Figure 12 – Average Maximum CSO Machine Queue Length Values given in number of orders. True 
maximum shown in red. 
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queue is 1.34 days. In this case, the actual estimated average is exactly the upper bound value 

of the confidence interval (1.08, 1.34). 

 

The simulation processes CSO orders more efficiently than the real system. Since the overall 

inputs and outputs are very similar we can assume that this efficiency is gained on a per-day 

basis. The average queue length is shorter because the queue will frequently drop to 0 in the 

simulation. In reality, the queue only dropped to 0 on the last day of the year. There are 

likely real-world activities occupying the time of technicians that are unaccounted for in the 

simulation. We could likely achieve more accurate processing metrics by decreasing the 

number of resources available or slightly increasing the order processing time. However the 

goal is not perfect fidelity to the true system. We feel the performance of the simulation is 

close enough to the real system to provide meaningful comparison with alternative 

experimental scenarios. 

Figure 13 – Average Days in CSO Machine Queue Values given in days. True average shown in red. 
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5 EXPERIMENTAL RESULTS 

5.1 Order Batch Size 

Our first step is to investigate what effect the differences in cluster means have on 

downstream workloads. Each cluster is a batch of jobs. As has been said, our goal is not to 

reduce workloads, but to level them. Therefore we begin our experiments by redistributing 

the meters across K such that K1≈K2≈…K21. To do this we give each cluster the same 

probability distribution to describe the number of meters created at each arrival event. Our 

starting point is the distribution describing the number of meters created for all workdays, 

independent of cluster. This distribution is normal, with a mean of 3.32E+004 and a 

standard deviation of 8000.  

In addition to redistributing the meters within the clusters, we assume that, should such a 

realignment actually occur, the routes themselves would be grouped into clusters such that 

they are likely to yield equivalent numbers of CSO orders. Therefore we also adjust the 

probability of each cluster generating a CSO order to be the system average of .54%. This 

simulation is named STD8000. 

Now we test the effect of reducing only the standard deviation of the number of meters 

generated at each arrival event. We hold the mean as well as the likelihood of becoming a 

CSO order at the aforementioned levels. We investigate scenarios with both a 4000 meter 

standard deviation and a 2000 meter standard deviation. The average standard deviation of 

monthly meter inputs for all clusters is 4630 meters and only one cluster has a monthly 

standard deviation below 3000. It is very unlikely then that the system as a whole could be 

designed such that each cluster could have a monthly standard deviation as low as 2000 
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meters. However, we simulate at this level in order to project the potential savings an 

additional 50% reduction in input variability might have.   

Results for the various experiments are presented in Figures 14-16 to show how each 

simulation performs against each other by our chosen comparison metrics. The results are 

quite surprising. As we would expect, realigning the clusters to have the same average 

number of meters and standard deviation shows improved performance at the STD8000 

level. The average Days in CSO Queue, Average Queue Length and Maximum Queue 

Length each drop by 9%, 6% and 8% respectively. However, as we can see in Figure 14, we 

cannot say that these changes are even statistically significant because the confidence 

intervals for each highly overlap. Further, any gains that may exist at the STD8000 level 

begin to erode as the standard deviation is reduced. At the STD2000 level the results are 

indistinguishable from the Base simulation. For complete results see Table 13 in Appendix 

A. 
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Figure 14 – Average Time in CSO Machine Queue 
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5.2 Order Review/Release 

Having investigated the potential effects of reducing input variability through batch sizes, we 

turn to the possibility of reducing queue length variability through order release mechanisms. 

In the current system, an asymmetry between AMR workdays (five per week) and CSO 

workdays (four per week) forces order which are set to be released on Friday to be held until 
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Figure 15 – Average CSO Machine Queue Length 

 

 

Figure 16 – Average Maximum CSO Machine Queue Length Attained  
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Monday. This essentially doubles the queue length for Mondays relative to other workdays. 

We will examine two possibilities for mitigating this problem. 

The first tactic is a simple order review/release mechanism. All meters must be read every 28 

– 34 days. We can think of all the meters which are in the 28 – 34 day window since their last 

read as sitting in an order pool waiting to be released to the processing shop. The release 

mechanism is reading the meter.  As we saw in Table 1, if a meter is read on a Wednesday or 

Thursday, then it will enter the CSO machine queue on Monday.  

One way to level inputs to the CSO machine would be to release fewer orders to the system 

on the days which result in a CSO order release. That is, read fewer meters on Wednesdays 

and Thursdays. To do this we simply schedule fewer AMR drivers on these two days. We 

will cut the number of FTE roughly in half. Therefore half the number of meters will be 

read on these days. However, each day of the week an additional cluster of meters becomes 

available to be processed. If fewer of the meters are entering the system on Wednesday and 

Thursday, there will be many more waiting in the available job pool. So that this pool does 

not become backlogged, the work will have to be caught up on other days. If we remove on 

average 7 total drivers across the two days, we must make up for the lost work by shifting 

those drivers to other days. We also simplify the distributions so the values are integers and 

make the standard deviations slightly closer to the mean. After some experimentation we 

find that to even get the average number of releases per day in the same neighborhood, we 

must make the distributions quite disparate. The final distributions used are presented in 

Table 6. 
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Even at these distributions, the number of CSO orders released per day are likely different 

on average. The number of orders released Mondays and Tuesdays remains, on average, 

higher than on Wednesdays and Thursdays. Table 7 displays results for orders released by 

release day. The averages presented are yearly averages for each day, taken over 30 

replications of the Base simulation input and resource levels. 

Day of the Week Technicians Working 

Monday (11, 1) 

Tuesday (11, 1) 

Wednesday (3, 1) 

Thursday (3, 1) 

Friday (11, 1) 

Saturday 0 

Sunday 0 

 

Release Day Average STD Half-Width Minimum Maximum 

Monday 12600 561 209 11300 13600 

Tuesday 12800 383 143 11500 13400 

Wednesday 10900 298 111 10200 11400 

Thursday 10400 397 148 9300 11200 
Table 7 – CSO Orders Released by Day of Week 

The number of orders released on Mondays and Tuesdays for a year are each approximately 

2000 orders greater than both Wednesdays and Thursdays. Over a 52 week period, this is 

approximately 40 more orders per day, per week on these two days than the other two 

workdays. These outputs remain consistent when the meter create modules are given the 

same means at both the 8000 and the 4000 STD level.  

While the number of orders released by workday are not perfectly uniform, these results are 

much more similar to each other than the real system. We do not pursue the possibility of 

making them more uniform because even at these levels, the outputs of interest do not 

Table 6 – AMR Driver Schedule for ORR The number of 
technicians working is described by a normal distribution. The first 
number in the pair is the mean and the second is the standard 
deviation. 
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indicate an improvement. In fact, many of the measurements of interest may have worsened. 

Comparison results for what we call the ORR experiments are presented in Figures 17-19. 

Utilizations of both technician types remained consistent across all simulations. With the 

exception of the STD4000 case, all metrics regarding CSO queue moved insignificantly 

upward. The only metrics to show signs of potential improvement are the measures of 

variability in the Maximum Queue length likely to be attained in the STD4000 case. The 

standard deviation decreased by 10% and the half-width decreased by 20%. While this 

suggests the actual value will be closer to the mean, the results indicate that the maximum 

queue length likely to be attained may potentially increase. These experiments suggest that 

load balancing through order release is likely to offset the gains of reducing batch-size 

variability. For complete results see Table 14 in Appendix A. 
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Figure 17 – Average Time in CSO Machine Queue, shows confidence intervals for 
the Base simulation, the Base simulation with the ORR modification and the STD8000 
simulation with the ORR modification 
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5.3 Targeted Release through Wait-times 

The second tactic we will investigate is changing the wait-time between operations in order 

to target order release with operation workdays. This is a holistic approach combining 
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Figure 18 – Average CSO Machine Queue Length shows confidence intervals for the 
Base simulation, the Base simulation with the ORR modification and the STD8000 
simulation with the ORR modification 

 

 

Figure 19 – Average Maximum CSO Queue shows confidence intervals for the Base 
simulation, the Base simulation with the ORR modification and the STD8000 simulation 

with the ORR modification 
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elements of both batch-sizing and ORR investigated above which we will refer to as 

Targeted-Release (TR).  

As currently timed, a CSO order is scheduled to enter the CSO processing machine on its 

45th day in the cycle. This timing works well for reads completed on a Monday or Tuesday. 

Each of their operations occur at the time they are scheduled to; the bill is sent on the 

second day in system, the late notice on the 24th and the order arrives at the CSO machine 

on the 45th.  

However, because of weekends and the asymmetry between AMR days and CSO days 

meters read on Wednesday and Thursday do not reach the CSO machine until their 49th and 

48th day in the system, respectively. Meters read on Thursday receive a full lead time to fulfill 

the CSO order. However, CSO orders have a due date 21 days from the day that the late 

notice is sent. Meters read on Wednesdays have arrive at and are completely processed by 

the Late Notice machine on a Friday. This due date does not change regardless of the fact 

that they must wait three days to be processed by the CSO machine. Therefore, the lead time 

for CSO orders originated on a Wednesday is effectively reduced by three days.  

Dealing with this problem is a simple matter of scheduling operations at seven-day intervals. 

Rather than a bill being due on the 17th day in the cycle, the bill will be due on the 22nd day in 

the cycle. That is, if a meter is read on a Monday, the bill for that meter will be due three 

Mondays later. All major operations could be realigned on seven day intervals except the 

CSO operation. Following the pattern described above, if the CSO operation was scheduled 

for the 43rd or 50th day in the cycle, meters read on Fridays which become CSO orders will 
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be released to the CSO machine on a Friday. These orders will still have to be held until 

Monday and they will still have a shorter lead time.  

Therefore we will schedule the CSO operation for either the 42nd or 49th day in the cycle for 

all meters read Tuesday – Friday and on the 43rd or 50th day in the schedule for meters read 

on Mondays. As the real life system under investigation has a customer service component 

to its considerations, we will use the longer of the two options. The final operations schedule 

is presented in Table 8. 

While this schedule assures that operations will occur at nearly the same intervals across the 

calendar, it does not address the problem of stacking the release of two clusters worth of 

CSO orders on the same day. Under this scenario two clusters will still reach the CSO 

machine on Monday while one will reach it all other days. The asymmetry in number of 

workdays between the first and final machines will always produce this problem.  

Operation Day in System 

AMR 1 

Bill 2 

Bill Due 22 

Late Notice 29 

Tue-Fri AMRs to  CSO Queue 49 

Mon AMRs to CSO Queue 50 

Due Day 59 
Table 8 – Workday Targeted Operation Schedule 

This leads us to try again to balance the number of orders reaching the CSO machine across 

all workdays. As we have seen, restricting the number of meters read does not improve 

system performance. However, we have seen that realigning clusters by the number of 

meters per cluster and the likelihood that those meters will become CSO orders can improve 

system performance. Therefore one tactic might be, instead of making all clusters more 



 

 
 

54 

similar as we did in our first set of experiments, to make some clusters less likely to lead to 

CSO orders than others. This might have the effect that when two of these reduced-CSO-

rate clusters land on Mondays, they will have a total number of CSO orders arriving that is 

roughly equivalent to the number arriving on all other workdays.  

However, under the current model of 21 clusters being loaded consecutively over all 

workdays, there is no guarantee that these reduced-CSO-rate clusters will be released to the 

system on a Monday or a Tuesday, the days which will lead to a Monday CSO machine 

release. The TR scenario will investigate, then, a method of scheduling clusters to be released 

to the system on specific days of the week, rather than releasing strictly by cluster number 

sequence. In addition to its cluster number, each cluster will be assigned a release day of the 

week. For instance Cluster 1 might be assigned to Mondays and Cluster 2 would be assigned 

to Tuesdays. Further, Cluster 6 would be a Monday cluster and Cluster 7 would be a 

Tuesday cluster. If Monday clusters and Tuesday clusters typically resulted in 50% fewer 

CSO orders than the clusters assigned to other days of the week, then we should expect to 

see a balanced number of CSO orders released per day. 

Following the cluster assignment procedure outlined above, Cluster 1 assigned to Monday, 

etc., we quickly see a problem. With 21 clusters, Cluster 21 would have to either be 

scheduled on the same day as Cluster 1 or there would have to be five weeks between 

Monday cluster releases while there would be four weeks between all other cluster releases. 

Neither of these options improves our solution, either some clusters remain doubled, or they 

are perpetually out of sync. To cope with this problem we assume a reorganization from 21 

clusters to 20 clusters. We further assume it is possible to construe this organization such 

that eight of these clusters will produce 50% the number of CSO orders than the other 12 
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clusters. We admit that it may in fact be impossible, or at least very difficult, to create such a 

cluster organization. Whether it is possible is outside the purview of this project. Our 

question is whether such an order release mechanism could lead to a more predictable 

workload.  

The system of 20 clusters cycling over the course of 20 workdays could actually work like 

clockwork. Following this arrangement though would lead a customer to have 13 meter 

reads, and therefore receive 13 bills, over the course of a calendar year. While a calendar of 

13 months of four weeks apiece might be entirely sensible, reality and regulation being what 

they are we must again modify the TR proposal. We will schedule clusters not only to 

specific days of the week, but to specific days of the week of the month. Cluster 1 would be 

scheduled for the first Monday of each month. Cluster 6 would be scheduled for the second 

Monday of each month. This will ensure that each meter is read once and only once per 

month as state regulation mandates.  

There will typically be 28 days between a cluster’s releases into the system. But since months 

have an annoying fickleness regarding which day of the week they begin on, this proposal 

will also guarantee that there will occasionally be 35 days between reads for individual 

clusters. On a month that begins on a Tuesday, for instance, the first cluster to be released to 

the system will be Cluster 2, not Cluster 1. In fact, Cluster 1 will be the sixth order released 

to the system that month. Over the course of a year this will mean that there will be an 

average of 30 days between meter readings. But from month to month there will be strictly 

either 28 or 35 days between meter reads. While it may seem like this is an increase in the 

amount of variability, it is actually a decrease. The current system operation leads to a period 

of 28-33 days between reads. This requires three bits of information to describe. The TR 
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proposal requires only one bit to describe the time between meter reads. So while the range 

has increased slightly, the variability has actually decreased. 

To simulate the TR scenario, we had to eliminate one cluster and redistribute its meters to 

the remaining 20. Without much more detailed analysis than is possible in this project, it was 

not possible to do this in such a way that would reflect the real organization of the current 

clusters. We entirely abandoned all real cluster information and instead created 20 clusters 

with a monthly mean of 35000 meters and a standard deviation of 8000 meters. The best 

direct comparison is to the BaseSTD8000 simulation which had monthly means of 34000 

meters for the 21 clusters.  

In order to schedule the arrivals according to the day-of-the-week schedule we outlined 

above, it was necessary to schedule the meter arrivals via Arena’s Arrival Schedule option. 

This is very similar to the method used to schedule the resources, the user specifies the 

number of arrivals and the duration of those arrivals. It is a very fine point but it is 

important to stress that the user does not specify the number of entities in the Arrival 

Schedule. The user schedules the average number of arrival events which take place over 

some duration. Arena then uses that user specified average as the mean of a random 

distribution which it schedules over a time duration. This leads to some variability in arrival 

events even if the number specified by the user is constant. For instance, if the number of 

arrival events is an average of one per hour, there will be some hours in which no events 

occur and some hours when three or more events occur due to the random distribution 

Arena uses. However, given the large number of entities in our simulation as well as our own 

specified variability, the variability due to Arena is minimal in comparison.  
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A detailed schedule for Cluster 1 is presented in Table 18 in appendix A. The rule for this 

cluster is that its meters are read on the first Monday of every month. There is one entity for 

each arrival. In order to give the simulation a reasonable warm-up period, the schedule 

begins November 1, 2010. For the first seven hours of the simulation, there are 0 entity 

arrivals. In the eighth hour there is an arrival event. For the next 839 hours there are no 

arrival events. The 839 is the number of hours in a five week period, and 671 is the number 

of hours in a four week period. These numbers tell us the interval between the specified day 

of the week of a cluster. For clarity, the scheduled read dates for the meters in Cluster 1 are 

shown in Table 9. 

Cluster 1 Scheduled Read Dates 

November 4, 2010 

December 6, 2010 

January 3, 2011 

February 7, 2011 

March 7, 2011 

April 4, 2011 

May 2, 2011 

June 6, 2011 

July 4, 2011 

August 1, 2011 

September 5, 2011 

October 3, 2011 

November 7, 2011 

December 5, 2011 
Table 9 – Cluster 1 Read Dates 

One of the goals of the TR scenario is a consistency of inputs. We modify the AMR driver 

schedule so that, unlike the true system, each day will have the same mean number of AMR 

drivers. We do not eliminate all variability however since the number working would 

continue to be subject to illness, vacation and maintenance meetings. We assign all days the 
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distribution derived from Company data describing the average number of AMR drivers 

independent of day-of-week, ANINT(NORM(7.21, 1.2).   

Under the TR scenario, we assume that clusters scheduled for Mondays and Tuesdays are 

50% less likely to lead to CSO orders. The probability for these clusters is .35% while the 

probability for all other clusters is set to .7%. The final change we make for the TR 

simulation is to remove the billing governor. Should the governor be reached, it would 

prevent some meters from moving on and shift some CSO orders off of their target release 

date. Again, while this may not be entirely realistic, our goal is investigation of the potential 

effectiveness of Targeted Release.  

We run simulations with the base configuration described above, TRBase, as well as a 

simulation with meter per cluster variability reduced to std 4000, TRSTD4000. Figures 20-22 

display results of these as well as results of the Base STD8000 and STD4000 simulations. We 

can see that if anything the TR scenario slightly worsens system performance across all 

measures, though not significantly. All measures were up slightly under the TR scenario 

from their base counterparts. But only the increase in the Days in CSO queue is significant. 

The confidence intervals shifted from STD8000 (.64,.77) and STD4000 (.59, .7) to TRBase 

(.83, 1.08) and TRSTD4000 (.82, .95) respectively.  

As constructed, the TR scenario does little to improve system performance and, if anything, 

may degrade it. Again we can see that a reduction in input variability has no effect on the 

downstream workloads as the outcomes for TRBase and TRSTD4000 are equivalent. 

However, TR offers at least one additional advantage over previously discussed schemes. 

Because the inputs are now tied to a specific subset of days in the month, and there are 
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regularly gaps in input days due to the irregularity of number of days in a month, and the 

timing of downstream release of orders to the CSO machine is tied directly to the input day, 

TR creates numerous days of predictably lower workloads. 
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Figure 20 – TR Scenario Comparisons Time in CSO Machine Queue 

 

Figure 21 – TR Comparisons Average CSO Machine Queue Length 
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The advantage of reduced workload days presents itself in a few different ways. First, since 

the AMR machine is run only on the first 20 weekdays of any month, any additional days of 

a week within the same month would not require any AMR resources. For example, 

September 30, 2013 is the 21st weekday of that month. Under TR for the Company, there 

would be no AMR work on this day. Another way to think of this is that it is the fifth 

Monday of that month. Any fifth day of the week of any month would not have any AMR 

work scheduled.  

Second, whenever these gaps in input occur, there will be no CSO orders released 49 days 

later (50 days in the case of a Monday). Therefore these days would also have a reduced 

workload, and therefore a reduced demand for CSO work resources. If the Company was 

able to get into a routine of accomplishing CSO orders on the day they were released to the 

machine (a routine it does not find itself in currently) then the demand for resources on 

these days would fall to zero.  
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Figure 22 – TR Comparisons Maximum CSO Machine Queue Length 
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Finally, the company currently schedules more AMR resources on Fridays than other days of 

the week in order to get ahead on the AMR orders. Since a goal of TR is input consistency, 

and the number of resources scheduled for a Friday is on average no different than other 

days, TR frees some resource hours on Fridays that could be allocated in other ways.  

These three aspects of the TR arrangement mean that the Company gets back many resource 

hours in reduced demand. This time could be used to catch up on other work-types, or as 

‘Maintenance time.’ As was stated in Chapter 1, the Company is required to hold numerous 

training and informational meetings throughout the year. While an attempt is made to 

schedule these meetings on low-volume workload days, it is difficult to do so. Inevitably 

resources must be pulled out of the field on days in which work will be pushed to later in the 

day. The TR arrangement provides known and entirely predictable periods of reduced 

workload. These days could easily be utilized for meetings.  

In 2011 there were 20 fifth weekdays. This means 20 days when there would be no AMR 

demand, and roughly the same number of days with no, or reduced CSO demand. If we 

count these days by the average FTE they demand, that comes to ~1760 work hours. In 

2012 there were 954 total required meeting hours for all B-level technicians. This means that 

there would be twice as many freed hours per year than would be necessary for meeting 

hours. The Company could therefore allocate many hours to holiday time by increasing the 

number of day-off slots available on these days. This would focus holiday time to days which 

are guaranteed to have a lower impact on work accomplished.  

Over the course of a year, these 1760 hours are an average of 34 additional work hours per 

week, or around 5 FTE. Since the total number of employees is a static quantity, the 
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additional hours cannot affect the average number of employees available on workdays. But 

what these hours would do is reduce the amount of variability in resource availability. Due to 

the difficulty of projecting how such additional hours would impact variability, we choose to 

reduce the STD of resource availability by half. This may sound somewhat drastic, but it is 

not without basis. The current schedules for both AMR drivers and B-level technicians is 

roughly normal with mean 7 FTE and a STD of 2 FTE. Therefore in only 2.15% of days will 

the FTE be between 1 – 3 and even in these cases the number of FTE is likely to be closer 

to 3 than lower. This is a difference of just over 4 FTE from the mean of 7. This difference 

is covered by the 5 additional FTE the company gets back from TR. Over 260 workdays the 

Company is likely to have fewer than 3 FTE on only 6 days.  These six days seem very likely 

to be covered by the 35 additional available work-hours per week. We can therefore assume 

that three (3) FTE is essentially a minimum that is extremely unlikely to be exceeded. A 

normal distribution with mean 7 and STD 1 basically accomplishes this scenario. Therefore, 

we set the FTE schedules for AMR and B-Level technicians to follow the curve 

ANINT(NORM(7, 1)) for those days they are scheduled to work.  

Some preliminary runs of the TR simulation at these resource levels showed much improved 

productivity and very low utilization rates for both the B- and A-level technicians. One 

major goal of this project is to decrease the need to divert A-level technicians to the AMR-

CSO workflow. Faced with the preliminary simulation results we attempted to reduce the 

number of A-level technicians available to the workflow. The original distribution describing 

the available resources is ANINT(TRIA(-.001, .597, 18)). The average number of A-level 

techs according to this distribution is ~6, but the range 0-18. For simplicity sake we assume 

normality with a mean of 5 A-level techs and a STD of 1. Therefore we have lowered the 
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average number of resources by one and severely reduced the maximum likely number of 

resources. This distribution also all but guarantees there will be at least 2 A-level techs 

working CSO orders every workday. For final resource schedules for TRAdjustedResources 

(TRAdRes) see Tables 19 and 20 Appendix A. 

Outputs for TRAdRes are shown along with TRBase for comparison in Figures 24-26 and 

the disparities are rather surprising. Again, the only differences between the TRBase and 

TRAdRes are that the resource levels for AMR and B-level technicians are less variable and 

the resource level for A-level technicians are less variable and reduced. Yet these changes 

result in dramatic decreases in Days in CSO Queue, Average CSO Queue Length and 

Maximum Queue Length.  Average Days in Queue drops more than 35% from 1.44 days 

to .93 days with non-overlapping CI (1.26, 1.62) and (.82, 1.04) respectively. Average Queue 

Length also drops over 35% from 183 CSO orders in TRBase to just 118 during TRAdRes 

runs. Confidence intervals for these measures are also non-overlapping at (160, 206) and 

(103, 133). Maximum Queue Length falls 34% from 948 in TRBase to 627 in TRAdRes, with 

confidence intervals (871, 1025) and (576, 678).  

 
Figure 23– Average Days in CSO Machine Queue 

 

– Average Days in CSO Machine Queue 
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In addition to the reduction in absolute values of each of these measurements is a significant 

reduction in variability by half-width, STD and total range of measurements. For example 

the maximum queue length attained in 30 replications of TRBase is 1,400 and the range of 

all measurements is 833. The maximum queue length attained in 30 replications of TRAdRes 

is 997 and the range of all measurements is just 543. The STD and Half-width for Average 

Days in Queue, Average Queue Length and Maximum Queue all drop by between 34% - 

39% as well.  

The area we actually see increases in are resource utilizations. The B-level resources have an 

average utilization of 1 during TRAdRes, up from .97 in TRBase. We can say this change is 

technically significant with confidence intervals (.99, 1.01) and (.96, .98) respectively. The 

increase in average utilization is larger for the A-level resources going from an average .93 in 

Figure 24 – Average CSO Machine Queue Length 

 

Figure 25 – Maximum CSO Machine Queue Length 
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TRBase to 1 in TRAdRes. Confidence intervals (.92, .94) and (.99, 1.01) are significantly 

different.  

Two points about these utilization measures are important. First, utilization measures at 

these levels may seem unrealistic. Any manager who expected an employee to be working 

100% of the time would find themselves perpetually frustrated by both employee 

performance and extraordinarily high turn-over rates. But we must remember that the 

simulation only accounts for seven hours of an eight and a half hour shift. Breaks and other 

downtime are excluded from our model. Further, the time required to complete operations 

was derived from data about actual work time. It is no surprise then that utilization rates 

would come very close to 100%.  

Second, though the differences between the two simulations are minor, the fact that they 

increased is very telling. We interpret this as meaning that the resource availability levels used 

in the TRAdRes simulation better align with the work presented to them. The inputs to both 

simulations were the same. Performance measurements were worse and resource utilizations 

were lower in TRBase because the resource availability regularly dropped below work 

demand due to variability, and at other times was well above work demand.  

Most encouraging is that the performance improvement in TRAdRes was achieved while 

committing significantly fewer A-level technicians to the work than in other simulation tests. 

This suggests that TR reduces the impact of the AMR-CSO workflow on other Company 

workflows. However, the current A-level technician commitment to AMR-CSO is based on 

a mix of convenience and conspicuous need. There will frequently be days in which no A-

level resources are committed to the workflow, and other days when as many as 18 FTE are 



 

 
 

66 

committed to the workflow. In the TRAdRes scenario, the maximum and average number of 

resources are both significantly lower, but we assume that at least some level of A-level 

technician commitment every day.  

This begs the question, is this arrangement possible in the real world currently? Could the 

Company change its resource staffing policy to something similar to what we suggest in 

TRAdRes and see improvement? To investigate this possibility we change both technician 

schedules in the Base simulation to the schedules that were used in TRAdRes. All other 

schedules and inputs are maintained at original settings. In reality the drastic variability in 

resource levels was caused by a variety of factors including mandatory meetings, holidays, 

health-related call outs, and workloads. We can think of this scenario as a Company initiative 

to hire enough resources to guarantee resources at the proposed simulation levels without 

making any changes to reduce these sources of variability. The results of this simulation, 

BaseAdRes, are displayed in Figures 26-28 below.  

 
Figure 26 – Time in CSO Machine Queue 
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As we can see the Adjusted Resource schedule improves the performance of the system. 

While the confidence intervals for each of the queue measurements do overlap the averages 

are considerably different. Average Days in Queue, Queue Length and Maximum Queue 

length dropped by 16%, 12% and 23% respectively. Also, the ranges for these values fell 

considerably because, while all the minimum values were lower, the maximum value returned 

in any of the 30 replications was significantly lower. The maximum values returned for each 

of the queue measurements fell by 35%, 33% and 32% respectively. We also see 

improvement in the resource utilization measurements. Again, it seems that stabilizing the 

workforce ensures that work demands are better matched to available resources. We can 

Figure 27 – Average CSO Machine Queue Length 

 

Figure 28 – Maximum CSO Machine Queue Length 
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conclude from this experiment that resource variability is a significant contributor to overall 

workload variability.  

It would appear then that the Company could significantly improve performance by 

stabilizing its resource levels. But it must be remembered that the current volatility of 

resource levels is due to a variety of factors that are beyond the company’s control. At the 

current overall resource capacity, the technicians must be shift to various workflows of the 

company in order to meet a variety of constraints. In order to achieve the stability to achieve 

the stability of the Adjusted Resource levels, the Company would be forced to add capacity. 

It is beyond the scope of this project to estimate the total number of hires necessary to 

accomplish this, but any addition of capacity should be avoided. Additional capacity, even if 

well utilized, will inevitably produce higher rates for customers. Where alternatives exist to 

additional capacity which can achieve similar results exist those options should be preferred.  

Table 10 shows the output data of the best performing alternatives available to the company 

without adding capacity. Our work suggests that there appear to be gains simply by 

reorganizing the clusters so that they had roughly the same number of meters in them. Even 

at the STD level of 8000 meters every critical metric improves. The gains associated with this 

change though are not dramatic. The 8000 meter standard deviation seems actually unlikely. 

In reality, the average standard deviation for individual clusters is 4600, which is caused by 

seasonality, client/service migration, and economic factors. Therefore it is likely that the 

clusters after reorganization would actually have a lower standard deviations than 8000. 

However, our work does not suggest that reducing the standard deviation bears additional 

benefits and actually suggests that it could degrade system performance.  



 

 
 

69 

The best alternative for the Company is the Targeted Release scheme because of the 

opportunities it provides to stabilize resource variability as well as input variability. Our work 

suggests that has the potential to significantly reduce workload variability, increase 

throughput all while consuming fewer high value technicians, making them available to focus 

on higher value orders. 

 
Simulation Measurement 

Days In 
CSO 

Queue 

Average 
Queue 
Length 

Maximum 
Queue 
Length 

B-
Utilization 

A-
Utilization 

Base             

  Average    1.21 146 967 0.91 0.88 

  STD 0.33 41.8 187 0.03 0.03 

  Half-Width       0.13 15.6 69.7 0.01 0.01 

  Minimum     0.79 91.5 755 0.86 0.84 

  Maximum   2.43 295 1580 0.97 0.93 

              

STD8000             

  Average    1.10 137 889 0.94 0.90 

  STD 0.46 58.6 208 0.03 0.04 

  Half-Width       0.17 21.9 77.7 0.01 0.01 

  Minimum     0.51 63.6 606 0.89 0.83 

  Maximum   2.26 287 1490 1 0.98 

       

TRAdRes             

  Average    0.93 118 627 1 1 

  STD 0.3 39.7 135 0.02 0.02 

  Half-Width       0.11 14.8 50.6 0.01 0.01 

  Minimum     0.55 67.7 454 0.97 0.97 

  Maximum   1.79 226 997 1.03 1.03 
Table 10 – Outputs for top performing experiments relative to Base 

  



 

 
 

70 

6 DISCUSSION 

This work has explored means of reducing workload variability with an emphasis on control 

of input variability. Batch sizing and Order Review/Release have a long history in the Job 

Shop literature and are widely applicable. We also developed a tactic we call Targeted Release 

to target specific inputs with specific release dates. What we found is that the system is much 

more sensitive to variability in resource capacity than it is to input variability. The largest 

gains were seen under the TR scenario in which resource variability was reduced. The 

advantage came from predictable periods of low workload created from the TR schedule. 

This work supports the findings of Mehta and Uszoy [35] that insertion of idle time into a 

schedule can absorb random breakdown of machines without disrupting the production 

schedule.  

We feel Targeted Release also has broader applicability, but it is critical to recognize that it is 

applicable to systems with endogenous control of their own inputs. The TR method for 

targeting release times to the machines within a job shop is possible because the Company 

has direct control over the timing of the inputs. In the vast majority of job shop research, 

orders arriving at the shop are modeled as a random variable with certain predictable 

parameters. The key to TR is that the orders are actually generated by the Company 

internally by the needs of their billing department. This is not a characteristic unique to the 

company under investigation or to utility companies in general. Some other areas of 

applicability would be paycheck printing, hospital surgery scheduling, and public 

transportation maintenance scheduling just to name a few. 
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We feel that a Targeted Release scenario has many powerful benefits in its ability to both 

streamline workload but most especially to create advantageous gaps in work. In the case 

investigated here, it created an environment which would allow a much more stable 

workforce than the standard operating system in place. Under these adjusted resource levels, 

TR dramatically outperformed all other options and achieved the goals of minimizing the 

impact of AMR-CSO on other Company work-flows.  

The choice of using simulation to investigate potential changes to the AMR-CSO workflow 

proved extremely beneficial. Simulation allowed the flexibility to test a variety of 

assumptions about the impacts of input variability on the workflow in a short amount of 

time and across a variety of measures. More importantly, the use of simulation enabled the 

investigation of a hypothesis we had not previously considered critical to the overall 

investigation. Simulation provided an element of surprise. Had we pursued a closed form for 

say, the optimum allocation of meters to clusters, or the optimal ordering of clusters in order 

to reduce resource demand, we would not have had the opportunity to realize the impact of 

workload idle-time insertion.  

However, our methodology is not without limitations. While particular detail was given to 

inputs, other aspects of the real system were generalized in the simulation. Only one type of 

work is modeled. The Company processes a wide variety of jobs. Technicians, particularly A-

level technicians constantly alternate between job types. It is possible that this erodes 

competency. All technicians are treated as equally capable. In reality there is certainly 

disparity between individual abilities.  
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There are no emergency orders in the simulation. While the data used includes the 

consequences of emergency events, it averages those events across an entire year. An 

emergency event can cause tremendous delay in work as well as the reallocation of jobs 

among technicians and rerouting which would increase travel times. In the real world, all 

these events would happen at one time, affecting numerous technicians and jobs. They are 

dependent on each other. In the simulation, portions of these effects happen regularly and 

independently of each other.  

Similar to the lack of emergency orders, there are no traffic events that may affect a large 

number of orders and technicians. Further, travel times are treated as independent, doled out 

as random variables. But they are likely to be dependent on a variety of factors such as 

weather, traffic, day of the week, total order level, seasonality.  

Perhaps the biggest limitation of this work is that the overall design of the simulation is 

geared toward investigating inputs, whereas the most important finding relates to resources. 

While we feel the results are reasonable and suggestive of powerful potential system 

improvements, they should be seen as suggestive. To be able to draw concrete conclusions 

with respect to how inserted idle time might impact resource capacity variability, the 

simulation would have to be modified in a variety of ways. We would need to incorporate 

some specific impacts on resources and work including: 

 Spatial component to work. Some technicians drive their trucks home at night, while 

others pick up and drop off their trucks as central hubs. Some sequences of work, 

like driving AMR routes on the coast, require technicians to spend nights in hotels 

overnight. Certain B-level technicians will always drive specific AMR routes. A-level 
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technicians tend to be assigned to the same service routes on a daily basis. CSO 

orders tend to be assigned to technicians specifically because they are grouped near 

each other. While some of these aspects may not be critical to an accurate 

representation of resource impact, many should be explicitly modeled.  

 Capacity dependence. The resource pools for AMR drivers and B-level techs to 

perform CSO orders are simulated as independent. In reality these are the same pool.  

  Explicitly define impact of meetings. The main finding relating to the impact of 

meetings on resource capacity was founded on reasonable but unverified 

assumptions. We first assume that removing technicians from the field for meetings 

contributes to variability in resource capacity. We then assume that the ability to 

schedule meetings during the workload gaps would have certain impacts on the 

amount of variability. Instead, the draw down in resources should be explicitly 

modeled. We could then shift this drawdown to the workload gap days, and assess 

the actual impact it could have.   

We feel that the application of job shop methods has been illuminating to the subject of 

utility order processing. The framing allowed us insight into categorize aspects of the 

Company’s procedures we might otherwise not have such as various order review/release 

concepts for allowing orders into the system, characterizing the dispatch rules used by the 

company when assigning orders and workloads to technicians, the benefits of workload 

variance reduction vs. variance management. We feel there are deeper possibilities to bring 

job shop methods to bear for utility companies in general, such as investigating the benefits 

of various dispatching rules under differing environmental scenarios such as break downs 

and emergency orders. 
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There is a body of literature on the insertion of idle times into a job shop schedule. Much of 

it deals with inserted idle time in order to achieve more efficient ordering of jobs so as to 

decrease tardiness penalties [36]. This type of scheduling, however, is not similar to our 

methods. There is also research concerning the insertion of idle time to absorb the impact of 

machine breakdowns such as Mehta and Uzsoy [35], O’donovan et al. [8], Akturk and 

Gorgulu [37] and Mason et al. [38]. Yet these works assume both that there is no control 

over order acceptance and that minimizing completion time of orders is the chief priority.  

Our assumptions and goals in this work were slightly different. We assumed some control 

over order entry. Also, our goal was not to speed all orders through the system. Rather, our 

goal was to level workloads across the system and ensure consistent resource utilization. We 

feel our work could and should lead to further investigation of use of buffers to create 

workload idle times. If buffers are triggered at regular intervals rather than based on machine 

condition, visibility of order flow through a shop will be greatly increased, and idle times 

could be known well in advance. These factors could greatly increase the ability of accurate 

due date setting at the input level. While the overall time an order spends in the system may 

increase, total tardiness could be significantly improved. 

There are many avenues for future research specific to this project as well.  A superior 

estimation of the potential reduction in resource variability is needed, along with cost benefit 

and economic impact assessment. Should the Company be interested in pursuing an 

organizational change, a re-routing project to better fit the clusters to the needs specified 

here would be a fascinating challenge.  
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APPENDIX A – SIMULATION DATA TABLES 

 Simulation – 30 Replications (Values in Thousands) Actual 

Cluster # Average Total Half-width Minimum Maximum Total 

1 375 9.5 324 440 379 

2 406 6 370 447 425 

3 439 4.2 417 482 449 

4 303 7.5 269 351 300 

5 315 4.2 286 340 315 

6 314 3 299 330 315 

7 298 3.2 275 313 293 

8 368 4.2 339 388 351 

9 436 5.8 396 455 434 

10 415 7 373 445 420 

11 283 5.2 253 316 286 

12 416 6 388 448 420 

13 397 7 356 429 404 

14 478 10.5 421 536 489 

15 464 9 419 499 484 

16 473 7.4 437 511 489 

17 392 6.6 360 437 428 

18 522 10.2 482 582 550 

19 453 10.3 398 497 470 

20 389 7 350 424 402 

21 243 6.2 212 288 251 
Table 11 – Total Meters Input by the Base Simulation 
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 Simulation - 30 Replications  Actual 

Cluster # Average Total Half-width Minimum Maximum Total 

1 1580 44.3 1390 1780 1646 

2 2050 44.5 1820 2290 2215 

3 2220 41.7 2000 2390 2389 

4 1330 34.3 1170 1570 1388 

5 1210 25.7 1090 1320 1270 

6 2010 37.1 1840 2220 2133 

7 2000 37.4 1790 2230 2080 

8 1360 32.3 1190 1520 1369 

9 2280 49.2 2040 2580 2435 

10 2110 26.3 1980 2260 2283 

11 2110 39.4 1840 2380 2241 

12 1590 24.4 1500 1730 1609 

13 2060 27 1950 2230 2021 

14 2920 49.9 2620 3200 2899 

15 2700 44.2 2540 3010 2732 

16 3080 31.7 2910 3240 3009 

17 3190 43.6 2880 3500 3265 

18 3190 39.4 3020 3410 3197 

19 2240 40.7 2020 2530 2250 

20 2100 35.9 1860 2250 2112 

21 1110 30.1 965 1320 1174 
Table 12 – CSO Orders by Cluster for Base Simulation 
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Simulation Measurement 

Days In 
CSO 

Queue 

Average 
Queue 
Length 

Maximum 
Queue 
Length 

B-
Utilization 

A-
Utilization 

Base             

  Average    1.21 146 967 0.91 0.88 

  STD 0.33 41.8 187 0.03 0.03 

  Half-Width       0.13 15.6 69.7 0.01 0.01 

  Minimum     0.79 91.5 755 0.86 0.84 

  Maximum   2.43 295 1580 0.97 0.93 

         

STD8000        

  Average    1.10 137 889 0.94 0.90 

  STD 0.46 58.6 208 0.03 0.04 

  Half-Width       0.17 21.9 77.7 0.01 0.01 

  Minimum     0.51 63.6 606 0.89 0.83 

  Maximum   2.26 287 1490 1 0.98 

         

STD4000        

  Average    1.13 141 947 0.94 0.90 

  STD 0.41 52.8 198 0.02 0.03 

  Half-Width       0.15 19.7 73.9 0.01 0.01 

  Minimum     0.66 82.2 596 0.90 0.86 

  Maximum   2.23 282 1510 0.98 0.96 

              

STD2000             

  Average    1.21 150 928 0.95 0.92 

  STD 0.5 62 253 0.02 0.02 

  Half-Width       0.19 23 94 0.01 0.01 

  Minimum     0.7 86 606 0.92 0.86 

  Maximum   2.84 351 1700 0.99 0.96 
Table 13 – Batch Size Variability Experiments Results 
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Simulation Measurement 

Days In 
CSO 

Queue 

Average 
Queue 
Length 

Maximum 
Queue 
Length 

B-
Utilization 

A-
Utilization 

BaseORR             

  
Average 

1.67 212 1030 0.97 0.93 

 1.21 146 967 0.91 0.88 

  
STD 

0.68 88 242 0.03 0.03 

 0.33 41.8 187 0.03 0.03 

  
Half-Width 

0.26 32.8 90.3 0.01 0.01 

 0.13 15.6 69.7 0.01 0.01 

  
Minimum 

0.72 92.2 663 0.93 0.88 

 0.79 91.5 755 0.86 0.84 

  
Maximum 

3.43 439 1490 1.04 1.03 

 2.43 295 1580 0.97 0.93 

              

8000ORR             

  Average 1.22 152 861 0.96 0.92 

  1.10 137 889 0.94 0.90 

  STD 0.37 46.5 166 0.02 0.03 

  0.46 58.6 208 0.03 0.04 

  Half-Width 0.14 17.4 62 0.01 0.01 

  0.17 21.9 77.7 0.01 0.01 

  Minimum 0.7 87 580 0.92 0.86 

  0.51 63.6 606 0.89 0.83 

  Maximum 2.43 310 1240 1 0.97 

  2.26 287 1490 1 0.98 

             

4000ORR            

  
Average 

1.17 146 853 0.96 0.92 

 1.13 141 947 0.94 0.90 

  
STD 

0.4 50.8 194 0.02 0.03 

 0.41 52.8 198 0.02 0.03 

  
Half-Width 

0.15 19 72 0.01 0.01 

 0.15 19.7 73.9 0.01 0.01 

  
Minimum 

0.66 80.6 582 0.92 0.87 

 0.66 82.2 596 0.90 0.86 

  
Maximum 

2.41 307 1410 1 0.97 

 2.23 282 1510 0.98 0.96 
 

 

 

 

Table 14 – Output Comparison Original/ORR The values in bold are measurements for the ORR 

experiments. For comparison the values from the Base analogue are included immediately below the ORR 

values in standard text. 
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Simulation Measurement 

Days In 
CSO 

Queue 

Average 
Queue 
Length 

Maximum 
Queue 
Length 

B-
Utilization 

A-
Utilization 

STD8000             

  Average    1.10 137 889 0.94 0.90 

  STD 0.46 58.6 208 0.03 0.04 

  Half-Width       0.17 21.9 77.7 0.01 0.01 

  Minimum     0.51 63.6 606 0.89 0.83 

  Maximum   2.26 287 1490 1 0.98 

         

STD4000        

  Average    1.13 141 947 0.94 0.90 

  STD 0.41 52.8 198 0.02 0.03 

  Half-Width       0.15 19.7 73.9 0.01 0.01 

  Minimum     0.66 82.2 596 0.90 0.86 

  Maximum   2.23 282 1510 0.98 0.96 

       

TRBase             

  Average 1.44 183 948 0.97 0.93 

  STD 0.47 61.5 207 0.02 0.03 

  Half-Width 0.18 23 77 .01 .01 

  Minimum 0.81 102 567 0.93 0.88 

  Maximum 2.76 357 1400 1.02 1 

              

TRSTD4000             

  Average 1.43 183 976 0.97 0.93 

  STD 0.48 63 269 0.02 0.03 

  Half-Width 0.18 23.6 100 0.01 0.01 

  Minimum 0.78 97 646 0.92 0.86 

  Maximum 2.87 376 2030 1 1 
Table 15 – Comparison results for Targeted Release Simulations 
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Simulation Measurement 

Days In 
CSO 

Queue 

Average 
Queue 
Length 

Maximum 
Queue 
Length 

B-
Utilization 

A-
Utilization 

TRBase             

  Average 1.44 183 948 0.97 0.93 

  STD 0.47 61.5 207 0.02 0.03 

  Half-Width 0.18 23 77 0.01 0.01 

  Minimum 0.81 102 567 0.93 0.88 

  Maximum 2.76 357 1400 1.02 1 

              

TRAdRes             

  Average    0.93 118 627 1 1 

  STD 0.3 39.7 135 0.02 0.02 

  Half-Width       0.11 14.8 50.6 0.01 0.01 

  Minimum     0.55 67.7 454 0.97 0.97 

  Maximum   1.79 226 997 1.03 1.03 
Table 16 – Targeted Release Base vs. Targeted Release Adjusted Resources 

 

Simulation Measurement 

Days In 
CSO 

Queue 

Average 
Queue 
Length 

Maximum 
Queue 
Length 

B-
Utilization 

A-
Utilization 

Base             

  Average    1.21 146 967 0.91 0.88 

  STD 0.33 41.8 187 0.03 0.03 

  Half-Width       0.13 15.6 69.7 0.01 0.01 

  Minimum     0.79 91.5 755 0.86 0.84 

  Maximum   2.43 295 1580 0.97 0.93 

              

BaseAdRes             

  Average    1.02 128 746 0.99 0.99 

  STD 0.23 30 100 0.01 0.01 

  Half-Width       0.09 11.2 37.2 0.005 0.005 

  Minimum     0.65 79.3 586 0.96 0.96 

  Maximum   1.57 199 1070 1.02 1.02 
Table 17 – Base vs. Base Adjusted Resources 
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Arrivals Duration (hrs) 

0 7 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 839 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 839 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 839 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 839 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 839 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 671 

ANINT(NORM(3.5e+004, 8.0e+003)) 1 

0 832 
Table 18 – Cluster 1 Arrival Schedule 

Day of the Week Technicians Working 

Monday (7, 1) 

Tuesday (7, 1) 

Wednesday (7, 1) 

Thursday (7, 1) 

Friday 0 

Saturday 0 

Sunday 0 

 

 

 

Table 19 – B-Level Tech Schedule TRAdRes Scenario The 
number of technicians working is described by a normal 
distribution. The first number in the pair is the mean and the 
second is the standard deviation. 

 



 

 
 

85 

Day of the Week Technicians Working 

Monday (5, 1) 

Tuesday (5, 1) 

Wednesday (5, 1) 

Thursday (5, 1) 

Friday 0 

Saturday 0 

Sunday 0 

 

 

Table 20 – A-Level Tech Schedule TRAdRes Scenario The 
number of technicians working is described by a normal 
distribution. The first number in the pair is the mean and the 
second is the standard deviation. 
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