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Abstract 

This study presents findings from survey and interview data investigating 

replication of green building measures by Commercial Building Partnership (CBP) 

partners that worked directly with the Pacific Northwest National Laboratory (PNNL). 

PNNL partnered directly with 12 organizations on new and retrofit construction projects, 

which represented approximately 28 percent of the entire U.S. Department of Energy 

(DOE) CBP program. Through a feedback survey mechanism, along with personal 

interviews, quantitative and qualitative data were gathered relating to replication efforts 

by each organization. These data were analyzed to provide insight into two primary 

research areas: 1) CBP partners’ replication efforts of green building approaches used in 

the CBP project to the rest of the organization’s building portfolio, and, 2) the market 

potential for technology diffusion into the total U.S. commercial building stock, as a 

direct result of the CBP program. The first area of this research focused specifically on 

replication efforts underway or planned by each CBP program participant. The second 

area of this research develops a diffusion of innovations model to analyze potential broad 

market impacts of the CBP program on the commercial building industry in the United 

States. 

Findings from this study provided insight into motivations and objectives CBP 

partners had for program participation. Factors that impact replication include motivation, 

organizational structure and objectives firms have for implementation of energy efficient 
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technologies. Comparing these factors between different CBP partners revealed patterns 

in motivation for constructing energy efficient buildings, along with better insight into 

market trends for green building practices. The optimized approach to the CBP program 

allows partners to develop green building parameters that fit the specific uses of their 

building, resulting in greater motivation for replication. In addition, the diffusion model 

developed for this analysis indicates that this method of market prediction may be used to 

adequately capture cumulative construction metrics for a whole-building analysis as 

opposed to individual energy efficiency measures used in green building.  
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Chapter 1. Introduction 

In 2010, the U.S. consumed 97 quadrillion BTUs of energy, spending 

approximately $1.2 billion, or roughly 8.3% of total GDP for the country (EIA, 2012). In 

2011, U.S. energy consumption resulted in approximately 5.5 million metric tons of 

carbon dioxide emitted into the atmosphere (EIA, 2012). U.S. energy consumption equals 

approximately 19% of global consumption; a close second only to China which consumes 

20% of global totals (DOE, 2012a). While energy production and consumption is 

essential for U.S. economic interests, the negative environmental externalities pose 

threats to the environment, national security and stress on the overall economy. 

Of the overall energy footprint in the U.S., approximately 40% of total primary 

energy is consumed by the buildings sector, almost half of which is attributed to 

commercial buildings (DOE, 2012a). Furthermore, building codes, which mandate 

benchmark safety and building procedures, did not include energy savings considerations 

before 1979. According to the most recent Commercial Building Energy Consumption 

Survey (CBECS), there were approximately 4.9 million commercial buildings in the U.S. 

in 2003, 2.8 million of which were built prior to 1979, when the first energy codes were 

enacted (EIA, 2008). Building energy codes help address energy losses through 
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prescriptive requirements for envelope, mechanical and electrical system efficiencies, 

thus promoting efficient systems and lowering the overall footprint of the building. 

The United States has ambitious goals for increasing efficiency of the nation’s 

building stock and lowering the energy footprint of both residential and commercial 

buildings. The U.S. Department of Energy (DOE) has commercial building reduction 

goals of 20% by 2020, supported by programs through Energy Efficiency and Renewable 

Energy’s (EERE) Building Technologies Office (BTO). By 2030, all federal buildings 

are required to meet a 30% reduction in energy intensity based on 2003 levels (EISA, 

2007; DOE, 2011a). To promote energy efficiency in the buildings sector, EERE utilizes 

a multi-pronged effort that includes research to develop new energy efficient building 

technologies, regulatory efforts to enforce greater efficiency for new buildings and 

equipment, and deployment programs that seek to promote adoption of energy efficient 

technologies in new and existing buildings. The Commercial Building Partnerships 

(CBP), one example of a DOE program, is a public/private cost-share program addressing 

new and existing commercial buildings with the aim of dramatic energy reductions in 

new construction and existing buildings (DOE, 2011b). Replication of building measures 

utilized in the CBP program could have significant market transformation potential for 

the commercial building sector in the U.S in terms of energy savings and promotion of 

green building initiatives. 

This research focuses on better understanding the CBP program impacts including 

investigating how program participants are applying technologies used in their one 
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building project (replication efforts) into other buildings. Analysis of these replication 

efforts can provide information about energy savings efforts of individual partners along 

with potential market impacts if outcomes of the program are propagated into the entire 

commercial building sector.  

The Commercial Building Partnerships Program 

The CBP program is a limited duration DOE initiative, initially funded in 2008 

(CBP I), with a second funding opportunity presented in 2010 (CBP II) through the 

American Recovery and Reinvestment Act (ARRA). Selection process for these projects 

was competitive, with strict energy savings requirements mandated by DOE. Once 

selected, each partner committed to savings goals that were at least 50% greater than 

ANSI/ASHRAE/IESNA Standard 90.1-2004 or 2007 for new construction projects, and 

retrofit projects were designed to consume at least 30% less energy than either Standard 

90.1-2004 or baseline building consumption (DOE, 2011b).  

The CBP program includes partnerships of commercial companies, with engineers 

and scientists from national laboratories and other energy efficiency experts designing, 

implementing and monitoring energy efficient measures for building construction and/or 

retrofits (usually one or two building projects per partner). National lab partners include 

the Lawrence Berkeley National Laboratory (LBNL), National Renewable Energy 

Laboratory (NREL), Argonne National Laboratory (ANL) and the Pacific Northwest 

National Laboratory (PNNL). Energy efficiency measures (EEMs) include a broad array 
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of technologies and applications to the building envelope, mechanical systems, electrical 

systems and approaches to operations and maintenance (O&M). The national laboratories 

provided modeling and design assistance to each partner. A package of EEMs was 

developed for each project based on business criteria provided by each partner, along 

with measurement and verification (M&V) methods in order to design protocols for 

development. 

To date, CBP has partnered with 42 entities on 54 specific new construction and 

retrofit projects, addressing 8.3 million square feet of commercial building space (DOE 

2011b). Total square footage of commercial building floor area held in these portfolios 

equals about 4 billion square feet, approximately 6% of the total commercial building 

stock in the U.S. (DOE, 2011b; EIA, 2008). While the CBP program only addresses one 

or two buildings within an organization’s entire building portfolio, replication of CBP 

program measures to all buildings could result in significant energy and cost savings. 

Figure1 below provides a list of all companies chosen by DOE to participate in the CBP 

program. Green building initiatives strive to promote a “win-win” concept to building 

owners and operators by promoting diffusion of technologies that save energy 

expenditures, enhance occupant comfort and reduce environmental impacts. 
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Figure 1. Commercial Building Partners and Projects 
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This study presents findings from survey and interview data investigating 

replication efforts of each CBP partner that worked directly with the Pacific Northwest 

National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and 

retrofit construction projects, which represented approximately 28 percent of the entire 

CBP program. Through a feedback survey mechanism, along with personal interviews, 

quantitative and qualitative data were gathered relating to replication efforts by each 

organization. These data were analyzed to provide insight into two primary research 

areas: 1) CBP partners’ replication efforts of technologies and approaches used in the 

CBP project to the rest of the organization’s building portfolio (including replication 

verification), and, 2) the market potential for technology diffusion into the total U.S. 

commercial building stock, as a direct result of the CBP program.   
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Chapter 2. Green Building 

As energy intensities and natural resource consumption continues to grow in the 

built environment, principles of green building have become more widely adopted 

throughout the world. In the United States, buildings account for approximately 41% of 

total primary energy consumption, resulting in 2,268 million metric tons of carbon 

dioxide emissions (DOE, 2012c). Of total carbon emissions in the United States, the 

buildings sector is responsible for 40% of total emissions, consuming approximately 44% 

more primary energy than the transportation sector (DOE 2012c). Reducing building 

sector energy consumption is a pillar of the nation’s overall plans to decrease greenhouse 

gas emissions. 

Green building is the process of integrating a variety of technologies into a 

building project aimed at increasing the efficiency, health and safety of the project, along 

with reducing the overall environmental footprint of the building. No concrete definition 

of green building exists, but measures often include site considerations such as location 

and orientation, envelope treatments, mechanical system enhancements, materials 

selection, water consumption, construction methods and economic considerations 

(Retzlaff, 2009). Green building measures that increase energy efficiency have been cited 

by many as an efficient way to decrease energy consumption by targeting “low hanging 

fruit” before other, more expensive measures such as onsite renewable energy generation 
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systems (Harmelink et al., 2008; ürge-Vorsatz et al., 2007; Sachs et al., 2004; Reinhardt, 

2000). This premise, along with federal and state incentives, has helped advance the 

green building industry over the past couple of decades.  

Energy efficiency measures implemented in green building practices include 

envelope treatments such as insulation, air sealing, installation of advanced windows and 

roofing materials. Mechanical system improvements include Heating, Ventilation, & Air 

Conditioning (HVAC) system size optimization and programmable thermostats or other 

whole-building intelligent software. Electrical systems include lighting retrofits and 

installation of energy-saving lighting technologies such as compact florescent or light 

emitting diode (LED) lighting. In addition, architectural design applications such as 

building orientation, site evaluation, daylighting and other structural considerations can 

help increase the efficiency of buildings (Wilson, 1998; Melton, 2012, Kebert, 1999). 

The goal of optimizing these building systems is to promote the most efficient operation 

of the structure, reducing the environmental footprint as much as possible.  

In addition to envelope, mechanical, electrical and structural components, 

renewable energy systems are increasingly being used to offset the overall footprint and 

energy consumption of buildings. Solar photovoltaic, various thermal systems, small 

wind and other renewable energy technologies help buildings decrease their overall 

footprint, with some achieving zero net energy. Zero net energy buildings combine 

efficiency gains with onsite production of renewable energy with the goal of producing as 

much annual energy as they consume (Marszal et al., 2011; Torcellini et al., 2006). Many 
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developers and energy efficiency programs have eventual goals of achieving zero net 

energy within the built environment. 

Not only do green building approaches apply to specific buildings, but increasing 

attention to sustainable community and urban development incorporates green building 

perspectives to the overall infrastructure of the built environment. Planners, city officials, 

developers and academics are investigating the role that green building technology 

advancement plays in developing sustainable communities (Getter and Rowe, 2006; 

Ding, 2008). Advancement of green building initiatives helps lay stronger foundations for 

future sustainable city and urban development.  

Regulatory Perspectives on Energy Efficiency in Buildings 

The primary regulatory mechanism for energy efficiency in buildings is promoted 

by building energy codes, which now exist in almost every state for the construction of 

new buildings (DSIRE, 2012). Building energy codes are adopted on a state or local level 

based on the International Energy Conservation Code (IECC) for residential buildings, 

and the American Society of Heating, Refrigerating and Air Conditioning Engineers 

(ASHRAE) Standard 90.1 for Commercial Buildings (ICC, 2012; ASHRAE, 2010). 

Building energy codes provide a benchmark for systems within a building that includes 

both prescriptive and performance options for compliance. Codes vary by state, city and 

county in some cases, and are based both on the efficiencies outlined by ASHRAE 90.1 
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and the International Energy Code Council (IECC) 2003 to 2012 editions. Figure 2 

provides a synopsis of the state of energy codes across the nation as of October, 2013. 

 

Figure 2. Current Commercial Building Energy Code Adoption Status (DOE, 2013) 

While codes are effective measures for promoting energy standards, they do have 

barriers for implementation. Not only are they not adopted in every state (see Figure 2), 

but there are issues with code official training, lax updating schedules, poor industry 

communication and demonstration of cost effectiveness (Levine et al., 2012). Such 

barriers further hinder the advancement of green buildings and technologies across the 

nation.  
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In addition to building energy codes, the U.S. Department of Energy (DOE) has 

commercial building reduction goals of 20% by 2020, supported by programs through 

Energy Efficiency and Renewable Energy’s (EERE) Building Technologies Office 

(BTO). By 2030, all federal buildings are required to meet a 30% reduction in energy 

intensity based on 2003 levels, per EISA 2007 (DOE, 2011a). To promote energy 

efficiency in the buildings sector, EERE utilizes a multi-pronged effort that includes 

research to develop new energy efficient building technologies, regulatory efforts to 

enforce greater efficiency for new buildings and equipment, and deployment programs 

that seek to promote adoption of energy efficient technologies in new and existing 

buildings. The CBP program, part of this outreach approach to the private sector, 

optimizes new buildings to achieve 50% greater energy savings over ASHRAE Standard 

90.1 (2004 version) and retrofits 30% savings over ASHRAE Standard 90.1 or current 

consumption levels determined through building energy modeling software (DOE, 

2011b). 

The CBP program is one example of a voluntary program for green building. 

Outside of building codes, voluntary programs are another effective driver for energy 

efficient buildings, by providing a prescriptive and/or performance approach to energy 

efficiency and promoting environmentally conscious building science. Voluntary 

building energy and environmental labeling programs can achieve great energy 

reductions (often far more than prescriptive codes) and further promote green 

development. It has been noted that the most effective way to promote green 
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infrastructure is to combine regulatory mechanisms such as codes with voluntary labeling 

programs and financial incentives (Levine et al., 2012). The following section discusses 

some of these approaches. 

Green Building Programs 

Another driver for energy efficiency in buildings includes voluntary labeling 

mechanisms designed to distinguish efficient buildings from non-efficient ones. Such 

programs include the U.S. Green Building Council’s Leadership in Energy & 

Environmental Design (LEED) program, which certifies buildings in one of four 

competitive levels: certified, silver, gold and platinum (USGBC, 2012). The Better 

Buildings Initiative, initially funded by Recovery Act dollars, was expanded by President 

Obama in 2011 to increase commercial and industrial buildings efficiency 20% by 2020 

(DOE, 2012b). These programs, along with many others, are designed to transform the 

energy efficiency market, spurring increased private investment in energy efficiency 

technologies and aiding market development; the CBP program can be seen as another 

example of such programs. Participation in voluntary programs, such as LEED or 

ENERGY STAR provides whole-building packages that optimize energy efficiency from 

a building science perspective (DOE 2012a). 

While the federal government has established programs for energy efficiency, 

there are many other models that have been developed by utilities, non-governmental 

organizations and local governments. Because of this, efficiency programs tend to be 
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fragmented (Blumstein et al., 2005). One result is that replication and direct influences on 

market transformation is not well understood.  

Leadership in Energy and Environmental Design (LEED) 

One of the most widely adopted green building programs in the U.S. is the 

USGBC’s LEED program. Currently, there are nine different rating systems that award 

different points for various green attributes within the building project. Levels of LEED 

certification include LEED Certified (40-49 points), LEED Silver (50-59 points), LEED 

Gold (60-69 points) and LEED Platinum (> 80 points) (USGBC, 2013). Unlike some of 

the state and federal programs, participants pay for certification. 

LEED scoring systems cover broad categories of green building attributes 

including sustainable sites, water efficiency, energy and atmosphere, materials and 

resources, indoor environmental quality, innovation in design and regional priority 

(USGBC, 2013). Although successful, LEED has been criticized in recent years with 

many questioning the measured and verified energy savings within the scoring 

mechanism of the program. Some analyses have determined that LEED certified 

buildings do not have guaranteed superior energy performance compared to non-LEED 

certified buildings (Levine et al., 2012). Regardless, with over 55,000 buildings certified 

across the country, LEED does represent the greatest set of voluntarily certified green 

buildings in the U.S. As such, this study leveraged LEED data for calibration of the 

13 

 



diffusion model used to address the second part of the research question (see Chapter 5, 

Methodology). 

ENERGY STAR Buildings 

The ENERGY STAR Buildings Labeling program began in 1999 and is a 

voluntary building design and labeling system for commercial buildings. The program 

provides two scoring mechanisms, the first being to design a prototype building to 

perform better than the median performance of buildings in the nation. The second 

scoring mechanism is a 1-100 ENERGY STAR score, requiring a score of 75 in order to 

meet certification standards. The score is based on the building’s estimated energy use 

relative to similar buildings nationwide. On average, these buildings consume 35% less 

energy than other similar buildings across the country (EPA, 2013). Other similar 

buildings are not measured based on energy code, but instead use site consumption 

metrics as a means for comparison. This approach to consumption metrics is an effort to 

control for varying codes and standards throughout the U.S.   

Unlike LEED, the ENERGY STAR program includes a measurement and 

verification period for one year after the building is constructed, that monitors 

performance once the building is occupied. The tool, called the Portfolio Manager is 

designed to help ensure that building goals are met, and energy performance is 

maintained over a period of time. To date, ENERGY STAR has partnered with over 

5,000 organizations that represent 35% of the Fortune 500 companies, including major 
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league sports teams, small businesses, colleges/universities, and cities/towns working on 

sustainable urban infrastructure or large development projects (EPA, 2013). 

Net Zero Energy Building Certification 

The Net Zero Energy Building Certification program is part of the International 

Living Future Institute, based on the Living Building Challenge. In order to qualify for 

certification, a building must meet actual performance standards, as opposed to modeled 

or anticipated energy performance (International Living Future Institute, 2012). In 

addition, the building must be constructed to incorporate renewable energy systems along 

with waste processing systems, making it more aggressive than LEED or ENERGY 

STAR. The program also has an equity and design component as well as requirements on 

how the building interacts with the surrounding habitat (International Living Future 

Institute, 2012). The Net Zero Energy Building Certification program strives to integrate 

architectural design, art, landscape and green building. 

The program is new and only began certifying residential and commercial 

buildings in 2010, with 11 buildings being certified as of September, 2013. Although 

there are only a few number of total certifications, the program is more rigorous than 

other green building programs, providing a platform for advancement of net zero building 

approaches.  
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Chapter 3. Literature Review 

Literature review for this research focused on three primary areas. The first area 

explores classic diffusion of innovations theory, which provides the theoretical 

background for analyzing potential market impacts of the CBP program. The second area 

focuses on corporate social responsibility, organizational theory, and environmental 

management, which provides foundations for organizations’ motivations for 

implementing sustainability protocols and energy efficient technologies. The third body 

of literature explored focuses more specifically on the economics of energy efficiency 

and related policy, including the energy paradox which provides a behavioral perspective 

to efficiency gains. Focus on economics provides additional background motivations for 

organizations’ participation in green building programs and was cited by survey and 

interview respondents as the primary motivation for participating in the CBP program.  

Diffusion of Innovations Theory 

The discussion of diffusion theory explores two primary areas. First, the historical 

significance of diffusion of innovations theory is discussed, including modeling 

techniques used by various industries. Second, literature pertaining specifically to energy 

efficient technologies and green building is presented, utilizing the diffusion of 

innovations theoretical framework. 
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Historical Perspectives of the Diffusion on Innovations Theory 

 New innovations have been introduced into society for as long as humans have 

developed communities. At its core, innovation diffusion occurs due to social 

interactions, but has more traditionally been measured by other economic indicators such 

as capital accumulation (Fagerbert, 2003). One of the first social scientists to study 

innovation diffusion was Joseph Schumpter, who in the 1930’s analyzed the role of 

innovation in economic and social change (Schumpter, 1949). Schumpter first defined 

innovation as “new combinations” of existing resources that became a driver for 

economic development, and that these activities were spurred by entrepreneurs 

(Fagerbert, 2003). While Shumpter’s focus was more on the innovation process, his 

insight provided foundations for analyzing market penetration of new products. Later 

work by many scholars and academics further explored innovations, defining product and 

process innovations separately, which is not discussed here since it is out of scope for this 

research.  

The diffusion of innovations theory also has a spatial component, especially in the 

context of urban studies. Different areas, with varying resource availability will innovate 

and adopt new technologies based on regional perspectives. City-system development is 

dependent on the organizational structure and resource availability of an area, which 

requires diffusion studies to take into account the spatial structure of these organizations 

(Pred, 1974; Pred, 1975). This organizational structure spurs urban growth and regional 

economic development in measurable ways. The first way urban advancement is diffused 
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is through contagious spread of “clustered growth” which is a result of concentrated 

advancement from a central area (Hudson, 1969). This idea originated from Torsten 

Hägerstrand, who also noted that diffusion occurs concentrically, with through a central 

location, known as the “initial frontier” (Hägerstrand, 1965). 

From an analytical perspective, diffusion of innovations theory (pertaining to 

technology transfer) was developed in the 1960’s by Everett Rogers as a means to 

describe the process of technical change and advancement of innovation within a culture 

over time (Rogers, 1995). Rogers has been cited as providing the technical outline for 

most energy efficiency diffusion analysis (Shove, 1998). Mathematically, the primary 

model used to measure diffusion in markets, per Roger’s theory, was developed by Frank 

Bass in 1969. This model was used in this research and is discussed in detail in the 

Methodology chapter of this thesis. 

Technology diffusion happens over five primary “adopter” categories, resulting in 

an S curve when analyzed over time, as presented in figure 3 below. New ideas 

developed by innovators are introduced into the market with very little penetration and 

are first accepted by early adopters. The next adopter categories are the early and late 

majorities, and eventually the laggards (Rogers, 1995). The result is a description of the 

process, based largely on communication channels, in which new products become 

adopted by a population or society. 
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Figure 3. Adopter Categories and Market Penetration of the Diffusion of Innovations Theory 
(Rogers, 1995) 

  

The period of time between when the innovation is developed and eventually 

saturated into the market can vary greatly. This can be due to lags in commercialization, 

lack of adequate materials, or general lack of a well-defined product/idea (Fagerbert, 

2003; Kline and Rosenberg, 1986; Rogers, 1995). Analysts tasked with exploring 

technology diffusion develop coefficients or other assumptions to control for these 

varying factors that impact the diffusion process within different markets or technology 

sectors.  

 Finally, another approach to diffusion theory is to model technology adoption and 

substitution of products. The traditional approach for this type of analysis is coined the 

Fisher-Pry model, developed in the 1970’s (Fisher and Pry, 1971). The model has been 

used to explore the number, order of magnitude and pace of new technology adoption in 
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society (Norton and Bass, 1987). The model assumes a 50% substitution rate for 

technology adoption, and note “many technological advances can be considered as 

competitive substitutions of one method of satisfying a need for another” (Fisher and Pry, 

1971). The 50% technology substitution assumption is built into the equation, making it 

more difficult to adapt to a broad range of market analyses.  

Diffusion of Innovations Theory and Energy Efficiency 

The energy efficiency technology and green building industries have seen 

tremendous innovation and growth in recent decades. Market analysis of technology 

innovations and effectiveness of technology transfer has been studied utilizing the 

diffusion of innovations theory and modeling. On an international scale, one recent study 

found that distance plays a large role in dissemination of energy efficient knowledge; 

countries far from innovators are less likely to obtain knowledge related to energy 

efficiency (Verdolini and Galeotti 2010). In addition, higher rates of diffusion of energy 

efficiency technologies have been associated with greater technological learning and 

information availability (Weiss et al., 2010; Claudy et al., 2011). 

The literature relating to diffusion modeling being used specifically for green 

building applications is more sparse. There are studies, but most focus on specific 

technologies, not the entire energy efficient building as the product diffused. This 

research aims to add to the literature, providing an analytical method for energy 

efficiency diffusion on a whole-building scale. Yudelson (2005) used a diffusion model 
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to predict market penetration of USGBC LEED buildings. In his analysis, he utilized a 

Fisher-Pry model for technology substitution in order to predict the future diffusion of 

LEED buildings in the commercial sector (Yudelson, 2005). Thus one weakness of using 

the diffusion of innovations for this study could be that there are not many proven 

analytical methods to reference and use in building the CBP model. However, the 

strengths of the model, including diffusion models’ potential accuracy in predicting 

market penetration of energy efficiency may be a useful tool for analyzing green building 

programs.  

Different versions of the Bass model have been used to predict energy efficiency 

technology diffusion in the building sector by several authors. The work of Elliott et al. 

(2004) used a modified version for specific building technologies including condensing 

furnaces, compact fluorescent lights, and low-emissivity windows. The authors 

determined coefficients (p and q) and market potential for each individual building 

technology or energy measure separately. Andrews and Krogmann (2009) compared 

1992 and 2003 CBECS data to explore key technology diffusion trajectories and energy 

intensities over time. In more recent work, Kok et al. (2011) analyzed green building 

diffusion in U.S. property markets, estimating that 30% of commercial office space in 

large metropolitan areas is ENERGY STAR certified, and 11% LEED certified. This 

research expands on the diffusion modeling literature by providing a method for 

analyzing diffusion potential of energy efficient commercial buildings on the whole-

building scale.    
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A related perspective to technology diffusion is energy efficiency market 

transformation. Market transformation occurs in the later phases of innovation, once a 

particular idea has significantly penetrated the market. Research has shown that for the 

commercial building energy efficiency industry, process change should occur in three 

levels: 1) making energy efficiency relevant, 2) encouraging demand and 

institutionalizing energy efficiency in the market place, and 3) standardization within the 

development/design process (Lutzenhiser et al., 2001). These principles speak to the 

importance of program development and administration.  

Institutional Theory, Corporate Social Responsibility and Business Environmental 
Management 
 

There is a wide body of literature existing that explores traditional institutional 

and organizational theory. Most relevant to this research is neoinstitutuional theory which 

includes neoclassical economic notions such as optimization, marginality and equilibrium 

(Scott, 2008). Institutional theory research investigates both internal and external 

influences on firms that motivate them to adopt values, policies and procedures to 

minimalize risk. Such pressures have been identified as coercive, normative and mimetic 

pressure (DiMaggio and Powell, 1991; Scott, 2008). Much focus has been paid to 

understanding firm motivations to adopt environmental management practices. In 

general, organizational structure and management institutional pressures contribute 

greatly to the environmental management program instituted by a firm. Non-market 

pressures (customers, stakeholders etc.) tend to be business drivers and support enhanced 
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voluntary environmental management to elevate the company. Such measures are 

supported by marketing departments. In contrast, market pressures are handled through 

the legal department of a firm and are seen as risk mitigation for future regulations 

(Delmas and Toeffel, 2008; Alberini and Segerson, 2002).   

Whether an organization decides to purchase or introduce energy efficiency 

measures, originally installed during their participation process of the CBP program 

depends on economics of the project (as discussed in the findings chapter), and 

organizational structure or behavior. A growing literature is focusing on the behavioral 

sciences to investigate non-monetary motivations for increased energy efficiency (Allcot 

and Mullainathan, 2010). This section explores organizational motivations for replication 

by CBP partners, outside of cost savings. In an effort to measure CBP partner motivations 

to replicate energy efficiency measures into other buildings, a portion of the survey and 

interview was dedicated to non-monetary motivations.    

Corporate social responsibility (CSR) initiatives are becoming mainstream in 

most markets today. Environmental corporate social responsibility is a loosely defined 

term pertaining to the role of self-regulation within private corporations regarding 

environmental protection (Portney, 2005; Lyon and Maxwell, 2008). From a market 

perspective, CSR is promoted by both demand and supply side forces. On the demand 

side, the largest factors are the level of competition of firms, investor influences and labor 

retention through CSR practices. On the supply side, efficiency can be enhanced by 

reducing waste and streamlining the production process; often this can present a cost 
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effective approach to abating the “low hanging fruit,” so to speak (Lyon and Maxwell, 

2008; Reinhardt, 2000). Market forces also are at play in the international arena; firms 

with production facilities in countries with lax or nonexistent laws, transfer their CSR 

practices to their facilities overseas, thus promoting a higher level of environmental 

protections in countries that otherwise have little or none (Portney, 2005). 

There are many political forces that support CSR programs. Voluntary pollution 

prevention programs are supported by industries primarily due to their cost effectiveness. 

The CBP program is an example of a voluntary program aimed at reducing the building 

environmental footprint. In many cases, the cost of voluntarily lowering toxic chemical 

use (for example) is significantly less than the costs associated with complying with a 

federal regulation mandating abatement. In other words, it often makes economic sense to 

voluntarily institute environmental measures as opposed to waiting for regulations to be 

enacted. Blackman (2010) supports this notion by identifying a firm’s cost-maximizing 

potential by balancing the expected marginal penalty with the marginal abatement costs.  

Regulations to control pollution will shift either curve (supply or demand), causing the 

equilibrium to shift down, thus reducing profits. Voluntary practices to reduce emissions 

can help keep profits maximized, typically because the private sector can lose profits in 

order to comply with new standards (Porter and Van der Linde, 1995). While economic 

in nature, these are some of the underlying principles of CSR and business environmental 

management.  
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Another motivating factor besides cost and energy reduction, impacting the 

willingness of companies to engage in increased energy efficiency or other sustainable 

building programs is overall organization culture. Organizations that encourage CSR 

programs or are environmentally minded tend to be more willing to invest in technologies 

or applications that improve building or operational efficiency (Kahanna et al., 2007). 

Likewise, companies with socially conscious CEOs or upper management are also more 

likely to have voluntary environmental programs (Delmas and Toffel, 2008; Ervin et al., 

undated; Martin et al., 2012). In terms of CBP partners, all participants interviewed for 

this study indicated that CSR, company culture, and sustainability initiatives played a part 

in the organization’s willingness to participate in the CBP program and invest the upfront 

capital necessary for efficiency upgrades in new or existing building. One respondent 

identified that the CBP program was an opportunity to increase education, awareness and 

competency for sustainable operations. However, all respondents indicated that cost 

savings was their primary motivation.  

Economics of Energy Efficiency 

 The previous section discusses corporate social responsibility and the economics 

of motivating businesses to participate in business environmental management programs 

as an underlying motivator for companies. While also exploring economic considerations, 

this section focuses specifically on the economics of energy efficiency, namely in the 

built environment.  
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In addition to realizing increased efficiency, installation of energy efficient 

technologies has been determined by many to provide economic gains. Overall building 

design can help achieve energy and cost savings. For example, design solutions for 

existing commercial buildings based on climate zone in which the building is located has 

been estimated to have a cost savings potential of 10—20% (Belzer, 2009). Other studies 

point to economic gains from lower operation costs of HVAC systems due to increased 

envelope efficiencies (Kneifel, 2010; Howarth, 2010). Analysis of the CBP program will 

provide further insight into the possible savings associated with energy efficiency 

installments. 

The terms “triple bottom line” and “win-win-win” are used to describe firms who 

are trying to maximize profits, reduce costs and protect the environment. In an effort to 

achieve this, many companies aim for product differentiation and profit maximizing 

potential (Reinhardt, 2000; Blackman, 2010; Lyon and Maxwell, 2008). They are also 

motivated as a way to abate future costs associated with complying with regulations. 

Voluntary pollution prevention programs are supported by industries primarily due to 

their cost effectiveness.   

Interestingly, Lyon and Maxwell (2008) note that there is little measureable 

societal benefit from such programs. This could be a foreseen conclusion, since it aligns 

with some of the open-access theories of environmental economics. If CSR methods do 

not optimize environmental protections, then they must act as a profit maximization tool 

for corporations. While CSR should be promoted, it will not alone act to optimize the net 
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benefits to society of environmental protection. This is because of the open-access issue 

associated with many public goods. Firms do not have incentive to stop consuming at the 

point that rents are maximized; instead they will consume (or degrade the environment) 

until their total cost curve crosses their total benefit curve. This naturally results in 

overconsumption since the profit maximizing point is well beyond the rent maximizing 

point of consumption.  

The literature supporting both efficiency and economic gains varies greatly. Some 

economists argue that although analysis of potential savings is positive, behavior patterns 

have yet to support development of efficiency markets (Gillingham et al., 2009). Others 

assert that cost-saving strategies such as efficient lighting systems or ENERGY STAR 

electronics increase when firms participate in public programs, but only because the firm 

did not have the information prior to participating in the program (Howarth et al., 2000). 

In other words, companies are always as efficient as possible and once they know that 

installation of efficient lighting systems will reduce operation costs, the will not hesitate 

to install these measures. This represents full market penetration, in terms of adoption 

trends of the diffusion of innovations theory.   

The Energy Paradox 

Many argue that market penetration of energy efficient technologies is much 

lower than the potential savings of those technologies, a term dubbed the “energy gap” or 

“energy paradox” (Jaffe and Stavins, 1994; Alcott and Mullainathan, 2010; Klemich, 
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2013). The goal of this research is to add to the literature and support methods for better 

understanding energy efficiency program replication over time, through analysis of a 

well-established public-private energy efficiency program. One aspect of energy 

efficiency programs that is greatly criticized is the fact that buildings are designed from 

model outputs that do not account for human behavior, representing investment barriers 

(DeCanio, 1993; Deuble and de Dear, 2012). This issue is recognized by many green 

building programs and efforts to remedy this issue by promoting longer-term 

measurement and verification periods are being taken.  

Market barriers for energy efficiency have been a focus of the current 

administration and continue to be focused on by scholars (Charles, 2009; Hoffman and 

Henn, 2008). Diffusion of advanced technologies tends to be gradual (Jaffe and Stavins, 

1994). Some technologies analyzed in the CBP program are new technologies that have 

not been on the market long, so it is likely those technologies in stand-alone analysis will 

penetrate the market rather slowly. However some technologies, especially those with 

short payback such as LED lighting are being replicated by all partners and will likely 

diffuse into the market more quickly than preceding technologies, such as CFL lamps. 
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Chapter 4. Theoretical Framework 

Diffusion theory provides the background for the theoretical framework of this 

research. Traditional innovation or technology diffusion theory was developed in the 

1960’s by Everett Rogers as a means to describe the process of technical change and 

advancement of innovation within a culture over time (Rogers, 1995). Technology 

diffusion happens over five primary “adopter” categories, resulting in an S curve when 

analyzed over time. New ideas developed by innovators are introduced into the market by 

early adopters, then through the early and late majorities, and eventually the laggards 

(Rogers, 1995). The result is a description of the process, based largely on 

communication channels, in which new products become adopted by a population or 

society.  

This research uses diffusion theory to explore potential outcomes of building 

programs and partnerships on energy intensities in the commercial building industry. 

While Rogers’ diffusion of innovations theory has been widely used in market research 

for technology adoption, application of this theory to commercial building energy 

efficiency is relatively new in terms of a whole-building approach to energy savings. 

Figure 4 is a representation of Rogers technology adoption curve, representing each 

phase of market transformation.  
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Figure 4. Traditional Diffusion Curve (Patenaude, 2011) 

The proposed theoretical framework for this study builds off of Bass and Rogers 

diffusion of innovations S-curve, applying the diffusion theory to the CBP program, and 

beyond. CBP participants, although motivated by cost savings, represent early adopters 

within the curve, expanding to partner portfolios, and the entire stock of commercial 

building square footage in the United States. As the suite of measures included in the 

CBP program is replicated, the potential for market transformation through technology 

diffusion is realized.  

Figure 5 below represents the proposed framework and model for this study based 

on the diffusion of innovations theory.  Instead of the S-curve illustrated in Figure 4 

above, this framework displays market diffusion from the innovators represented in the 

smallest circle, out to full market penetration, represented by the largest circle. The 
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gradual evolution of the energy efficiency market within the commercial sector begins 

with the innovators and ends with laggards. The CBP program is identified as an 

innovator because it promotes an optimized approach to designing a suite of energy 

efficient approaches that optimize energy performance of the building. This is different 

from other programs that require a checkbox-style approach to green building. 

 

Figure 5. Theoretical Framework 

Each level of adopters represented within the circles of the conceptual framework 

is a result of a primary outcome of their market experience. For the CBP partner specific 

projects, a package of energy efficiency measures (EEM’s) were optimized based on 
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building use, cost and energy savings then implemented into the building project. The 

second circle, “CBP Partner Portfolios”, represents the replication efforts of each partner 

based on their optimized EEM package. The third circle, “Early/Late Majority,” represent 

broader market adoption and validation of EEM packages. Finally, “Commercial 

Building Industry,” is characterized by what Rogers refers to as “laggards,” the final 

saturation level realized after industry best practices have been identified and 

documented. In the case of commercial building energy efficiency, market saturation or 

transformation would occur when price and energy savings packages are maximized.     

 

  

32 

 



 

Chapter 5. Methodology 

This research utilized two approaches to understand specific CBP partner program 

experience, and potential market impacts for full CBP deployment within the commercial 

building industry in the United States. This section discusses the specific research 

question and research design for this effort.  

Research Question 

The broad goal of this investigation is to analyze the CBP program critically in an 

effort to better understand the impacts of public/private partnership energy efficiency, 

including overall energy savings, cost-effectiveness and behavioral changes. More 

specifically, this study aims to analyze direct impacts of the CBP program on the building 

portfolios of participants in an effort to determine the overall influence the program has 

had on the larger building portfolios of CBP partners.  

The focus of this study addresses two primary research questions: 

1. How are CBP partners replicating specific measures, treatments and processes 
throughout their building portfolios? How are these efforts verified? 

2. How are efforts undertaken through the CBP program diffusing into the overall 
commercial building industry? 
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By exploring these questions, this study aims to provide insight into how firms 

replicate the measures of one building project, and their participation in the CBP 

program, into the rest of their building portfolios. Additionally, a better understanding of 

CBP program replication can help correlate the design of public/private partnerships for 

buildings energy efficiency. This includes analysis of the program structure, individual 

results and how those results translate into the remaining building stock held by the 

owner/operator.  

What is Replication? 

For this study, replication refers to the implementation of building science 

measures, such as envelope, HVAC and lighting treatments into other buildings owned 

by a company. Specifically, this refers to transferring EEMs from the CBP building 

project into the rest of the company’s building portfolio. Factors that impact replication 

include motivation, organizational structure and objectives firms have for implementation 

of energy efficient technologies. Comparing these factors between different CBP partners 

may reveal patterns in motivation for constructing energy efficient buildings, along with 

better insight into corporate environmental management. 

Research Design 

In order to study replication of the CBP program, this study surveyed program 

participants regarding their participation in the CBP, including motivations, desired 

outcomes and continuing efforts. The survey was created, distributed in May, 2013, and 
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followed up with personal interviews with each participant. While the CBP program 

represents a significant amount of commercial building space in the United States, the 

total number of participants is relatively small. There are a total of 42 CBP partners, 

whose building portfolios amount to approximately 3.6 billion square feet of commercial 

building space (DOE 2013). The survey instrument was distributed to 11 individual 

partners (12 projects), representing 858 million square feet of commercial building space, 

about 1% of all commercial square footage in the United States, and 28% of all CBP 

participant building portfolios. 

Because this research is focused on impacts of a specific program, the sample 

analyzed was not chosen at random, and pretests were not utilized to enhance the survey 

mechanism. In its entirety, the CBP program is consulted by four national laboratories: 

Lawrence Berkeley National Laboratory (LBNL), National Renewable Energy 

Laboratory (NREL), Argonne National Laboratory (ANL) and the Pacific Northwest 

National Laboratory (PNNL). Data was gathered through the specific partners of the 

PNNL. Due to confidentiality protocols, specific partner names are not used in this 

analysis, however, a full list of CBP partners is available from the U.S. Department of 

Energy (DOE, 2013). 

Selection of each CBP participant was a competitive process through DOE (DOE, 

2013). Once selected, each participant was partnered with one of the three national labs to 

act as building consultants. This partnership resulted in a design-build process to carry 

out the construction or retrofit project based on modeling results, company objectives and 
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program requirements. The consulting teams from each lab were comprised of people 

with similar backgrounds and education including engineers, building scientists, energy 

analysts and program managers. As such, this study makes the assumption that NREL, 

LBNL, ANL and PNNL’s approach to optimizing EEM packages for their CBP partners 

are alike. That is to say that the same project conducted by any of the three labs would 

result in nearly identical approaches to energy and cost savings.   

Protocol development for this study was aimed to ensure that data gathered from 

each participant was collected using a systematic approach and set of questions, 

providing both quantitative (survey) and qualitative (interview) data. There were two 

formats of questions: 

1. A feedback survey mechanism, distributed through Survey Monkey, with scaled, 
yes/no, multiple choice, multi-select, and open-ended questions. The feedback 
survey was completed by CBP partners in May, 2013. 

2. A personal telephone interview with follow-up questions, open-ended in nature, 
designed to give further insight into replication efforts. Follow-up interviews with 
CBP partners were completed in June, 2013. 

 

The Survey Instrument 

The feedback survey was sent via Survey Monkey, a website that provides 

surveying services with various features for developing surveys, collecting, and analyzing 

responses. The Survey Monkey site allows the user to develop and monitor surveys and 

responses, conduct basis analysis and download, track and manage respondent answers. 

Prior to completing the survey, respondents were sent a letter explaining the intension of 
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the survey, the format and process and procedures for completion. Respondents were 

asked to access and complete the survey within two weeks of receiving the Survey 

Monkey link, which was sent to their email. The complete introductory letter can be 

accessed in Appendix A. The feedback survey was sent to participants on May 10, 2013. 

Appendix B contains the full survey in the format sent to respondents. Each respondent 

was given two weeks to complete and resubmit the survey.  During this time, respondents 

were sent reminder emails twice to encourage survey participation.  

The feedback survey contained three primary categories with a total of 37 

questions on a variety of subjects relating to their organization’s participation in the CBP 

program. The first section focused on CBP partner structure, motivations and objectives 

for implementing CBP measures, along with organizational demographic information. 

The second section was focused on specific replication strategies and outcomes of 

replicating CBP measures. The final section was intended to provide information about 

outcomes of replication, documentation processes and long term monitoring of CBP 

measures.  

The questions in the feedback survey were presented in various formats. The first 

format provided fixed-alternative questions with one answer, such as “yes-no” questions. 

The second question format was a 3-point scale where multiple options could be selected 

by participants. The third format was a ranking system, allowing the user to rank the 

importance of various types of green building motivations.  
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Follow-Up Interviews 

Once the survey instruments were completed, follow-up interviews were 

scheduled and conducted to gain further qualitative insight into CBP partner participation 

and experiences. The interviews were scheduled on the week of May 24, 2013, and 

conducted throughout the month of June. The interviewee and survey respondent from 

each organization was the same person, and interviews were focused on expanding 

survey responses. Each interview was conducted over the telephone, and lasted anywhere 

between 20—45 minutes, depending on the preference of the interviewee.  

The format of the interview, specific interview structure and questions can be 

found in Appendix C. Although the interviews were structured, many respondents 

discussed specific interests, opinions and feedback that was unstructured in nature.  

Data Analysis 

Data analysis for this study is broken out into two primary efforts. The first 

focuses on the primary data gathered through the survey and interview mechanisms. 

These data provided insight into specific experiences of each CBP partner. Additionally, 

a diffusion model was developed utilizing data from each CBP partner. The model was 

calibrated using commercial green building data that were obtained through the United 

States Green Building Council (USGBC). Thus, the second portion of this effort resulted 

in two analyses. 
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Data for both efforts was analyzed using The R Project for Statistical Computing 

(R), an open source software program providing a language environment for data 

analysis, calculations and graphic development (The R Project for Statistical Computing, 

2013). R was developed in 1997, and is currently managed by the R Foundation, a non-

profit entity which maintains R statistical computing software. R is open-source, and 

available to the public at no cost. R was chosen for this analysis because I am familiar 

with using this platform for analysis, and believe it creates superior visual graphs 

compared to Microsoft Excel or SPSS. Additionally, a colleague of mine assisted with 

the script writing for developing the diffusion model, also utilizing R.  

CBP Partner Data Analysis  

After the survey and interviews were complete in June, 2013, the data were 

gathered and uploaded into a spreadsheet. Because the survey data were sparse, they did 

not warrant advanced statistical analysis. Instead, these data were used to provide 

descriptive statistics of respondent answers and insights, along with qualitative interview 

answers providing further insight into motivations, experience and replication efforts. 

 The survey response was a total of 9 CBP partners, representing 11 projects, from 

a total of 10 possible respondents, and 12 projects, overseen directly by PNNL. While the 

total response number is low, it represents 28% of the entire CBP program, and over 1.4 

million square feet of commercial building space. Total square footage of these 11 

partners building portfolios is close to 1.9 billion square feet of U.S. commercial building 
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space. Figure 6 below presents CBP partner profiles by industry, for the group analyzed 

in this study. There was an even split between education, finance & financial services, 

government, and retail & consumer durables (22%). The commercial real estate industry 

was also represented at 11%. 

 

Figure 6. CBP Partner Participation by Industry as Reported by Survey Respondents 

As shown in Figure 7 below, the majority (56%) of projects were new 

construction. Retrofit construction totaled 11%, and three partners (33%) worked on a 

new and retrofit project simultaneously. Several of the CBP partners had multiple 

buildings in the program that included one new construction and one existing building 

project. 

40 

 



 

Figure 7. Percentage of CBP Projects by Building Type 

The majority of CBP partners that participated in this study have already finished 

construction and are occupying their new building or retrofit construction project (67%). 

Figure 8 below presents the design phase of all partners surveyed and interviewed for this 

study, as of June 2013. 
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Figure 8. Current Phase of Construction for Each CBP Partner 

Diffusion Model Development and Analysis 

 Another primary objective of this study aimed to gain a better understanding of 

replication efforts underway by partners, taking EEMs from their specific projects into 

the rest of their building portfolios. Analysis of these efforts provides foundations for 

broader market analysis of the potential of the CBP program on total commercial 

building sector energy consumption and cost savings. Broader market impacts were 
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calculated using data collected from interviews, survey answers and metadata of each 

CBP partner building portfolios. This analysis used the diffusion of innovations theory to 

explore possible market impacts of the CBP program throughout the commercial building 

sector in the United States.  

 Different versions of a diffusion model have been used to predict energy 

efficiency technology diffusion in the building sector by several authors, as discussed in 

detail in the Literature Review chapter of this thesis. For technologies relating to green 

building, two primary models have been used by researchers; the Bass Model and the 

Fisher-Pry Model. Mathematically, the first widely adopted quantitative model describing 

the new product or technology diffusion process was developed by Frank Bass in 1969. 

In the Bass diffusion model, the formulation is based upon a differential equation 

representing the number or market share of innovation adopters over a period of time, 

incorporating both internal and external influences (Bass, 2004). Internal influences are 

impacts of media, government and other broad adoption efforts, and external influences 

involve social interaction (Bass, 2004). Both are represented as coefficients (q and p) and 

are key factors in the modeling technique. 

The work of Fisher and Pry (Fisher and Pry, 1971) is similar to the work of Bass, 

but differs in the initial conditions used to solve the equation. The Fisher-Pry model for 

technology diffusion has an assumption of 50% market penetration (or substitution), a 

rate which is built into the model. The Bass diffusion model avoids this issue and is 

considered more appropriate for this study. Yudelson (Yudelson, 2007) used the Fisher-
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Pry model to estimate the market penetration of green buildings as the technology 

diffused rather than individual energy efficient technologies such as lighting or HVAC 

systems, which is also the aim of this analysis. So, a process for developing a diffusion 

model that avoids the 50% market penetration assumption but also analyzes the entire 

building as the technology diffused had to be created. In order to measure the CBP 

program on a whole building scale, development of a Bass Model with appropriate values 

for q and p were imperative. 

 Diffusion models are widely used in many industries as a means of forecasting 

market penetration of new technologies. The general form of the Bass model is given in 

Equation 1, where: 

 N(t) is the cumulative number of adoptions at time (t)  

 M is the market potential, a constant  

 p is the coefficient of innovation  

 q is the coefficient of imitation or internal influence (Bass, 1969). 

 

𝑑𝑁(𝑡)
𝑑𝑡

= �𝑝 +
𝑞
𝑀
⋅ 𝑁(𝑡)� ⋅ �𝑀 − 𝑁(𝑡)� 

The Bass model may be solved explicitly for the fraction of the market penetrated, 

F(t), by assuming the initial number of adopters at t=0 is 0. This results in a formula that 

may be used to estimate the cumulative adoptions as a function of q (coefficient of 
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imitation) and p (coefficient of innovation). These coefficients describe the curve of the 

output, speaking to the rate of diffusion within a market. 

𝐹(𝑡) =
1 − 𝑒𝑥𝑝(−(𝑝 + 𝑞)𝑡)

1 + �𝑞𝑝� 𝑒𝑥𝑝(−(𝑝 + 𝑞)𝑡)
 

The diffusion model in this study has been used to estimate the long-term impact 

of the CBP efforts (within partner portfolios and the broader market) by modeling 

replication of the CBP program approach over time. The most challenging part of 

developing the model was identifying the correct values of q and p. The general approach 

consisted of calibrating the Bass model for a specific application, in this case commercial 

buildings on a whole-building scale, not individual EEMs within it. Because the only 

other study analyzing green building on a whole-building scale utilized the Fisher-Pry 

model, a method for calibrating it to the Bass model was necessary. To calibrate the Bass 

model, a larger whole-building data set was needed so the USGC certification database 

was considered. 

For application to CBP buildings, this study adopted the diffusion process based 

on the model developed by Bass (Bass, 1969) but treats the entire energy-efficient 

building as the technology to be diffused rather than a specific EEM. One of the most 

important factors in Bass model development is the correct identification of the primary 

coefficients, q (coefficient of imitation) and p (coefficient of innovation). To determine 

the appropriate coefficients for this model, the market penetration of green buildings was 
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examined using the methodology of Yudelson. Specifically, the empirical modeling was 

based on the market data available for LEED certification. 

The current study is not focused on the validity of the USGBC system, and 

considered it only as an energy efficiency program that operates at the whole-building 

level in a manner comparable to the CBP program. The USGBC dataset has a much 

larger number of data points than CBP; roughly 15,500 certified buildings are included in 

the dataset at the time of this study (USGBC, 2013). 

The data set was downloaded from the USGBC website and the Yudelson 

estimate was compared to actual LEED certifications as shown in Figure 9  below. The 

red data represents actual USGBC data (USGBC, 2013), and the blue line is the Yudelson 

estimated (modeled) diffusion profile presented in his 2005 analysis. No modeling work 

was done to these data, only comparison between actual buildings constructed, and 

Yudelson’s predictions using the Fisher Pry diffusion model developed for that study.  
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Figure 9. Raw USGBC Data and the Yudelson Model Predictions 

The Yudelson diffusion model over-predicted the number of LEED certifications 

in the first years of the model, and then improved through 2007 as shown in Table 2 and 

Figure 10 (and discussed in the Findings chapter). However, the general shape of the 

diffusion curve closely matches the historical data for subsequent years. One limitation of 

the Yudelson technique as discussed above was the formulation of the diffusion equation, 
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which required an initial condition estimate of the 50% penetration rate. The Bass 

diffusion model avoids this issue and is considered more appropriate for this study. 

The raw data downloaded from USGBC were fit to the Bass model using a range 

of p (coefficient of innovation) and q (coefficient of imitation) parameters with a range of 

p between 0.000001 and 0.5 based on the results of Elliott et al. (Elliott et al., 2004). 

Similarly the value of q varied between 0.005 and 1. These values acted as a low and 

high range and were laid on top of the USGBC dataset. Once the ranges of the parameters 

were on the USGBC data, the fit of the p and q parameters was evaluated using the 

traditional definition of R2. The results of the R2 analysis gave the optimal value for both 

p and q, which were then used to analyze the CBP program. In the following equation, yi 

is the observed raw data, 𝑦� is the mean of the raw data, and fi is the value predicted by the 

Bass model for each time point. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)2𝑖
∑ (𝑦𝑖 − 𝑦�)2𝑖

 

Table 1  provides a summary of the modeling inputs and outputs. The final p and 

q coefficients are based on maximizing the R2 coefficient. Using a straightforward grid 

search methodology, a 100x100 matrix of p and q parameters was generated and the 

predicted number of adoptions was calculated using the Bass model for each pair of 

parameters. The R2 coefficient was evaluated for each parameter pair in the matrix and 

the final pair of parameters was selected on the basis of the best model fit to the raw data. 
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The maximum market potential (number of buildings) was estimated based on the 

average commercial buildings size during the time frame of data considered and the 

estimated total amount of floor space. The market potential is based only on new 

commercial construction because only a small portion of the USGBC building database is 

comprised of building renovations (only 5,887 of 41,505 buildings in the USGBC data 

base are tagged as “Existing Buildings”). The maximum market potential in this case is 

represented by the total number of buildings in the U.S. (m), which matches fairly well 

with the number estimated by Yudelson (2005). 

Table 1. Bass Model Parameters Determined from the Raw Data 

Bass Model Parameter Value Determined 
(Bass Traditional) 

Source 

p - coefficient of 
innovation 

8.42e-5 Data fitting 

q - coefficient of imitation 0.359 Data fitting 

m - maximum market 
potential (number of 
buildings) 

1,068,493 Total new commercial buildings constructed 
between 2000-2013, estimated from 14,700 
ft2/building and 15.6x109 ft2 (EIA, 2008; 
DOE, 2012b) 

R2 - coefficient of 
determination 

0.987 Calculated to compare fit of Bass model with 
USGBC data 

 

The final Bass model parameters predict the correct trend for certification in the 

later years, but show a tendency to over-predict diffusion in the first few years of the 

LEED program. Figure 10 shows the Bass model and raw data on the same scale. While 

over-predicting the behavior in the first eight years is an issue for the Bass model, it is the 
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slope of the model in the last years that is considered to be the most important result.  

When using the model to make predictions of market diffusion, the principal variable of 

interest is the cumulative number of adoptions (total number of buildings). This value is 

well represented by the Bass model, with the number of predicted energy-efficient 

buildings only slightly lower than the actual number in 2012 (as shown in the last row of 

Table 2).  

Table 2. Comparison of the USGBC Database with Two Diffusion Models. Data Shown are the 
Cumulative Number of Buildings (Actual) and Predicted for Each Model. 

Year USGBC Raw 
Data (Actual) 

Yudelson 
Prediction 

Bass Model 
Prediction 
(Present Work) 

2005 358 377 853 

2007 1,145 1,104 2,007 

2010 6,674 - 6,350 

2012 13,224 - 13,221 

 

The conclusion from this estimation of the Bass model is that it appears to 

satisfactorily represent the historical cumulative construction metrics for whole-building 

energy efficiency programs. The Bass model parameters developed also can provide 

perspectives related to the long-term, future market diffusion of energy efficiency 

programs. 
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Figure 10. Raw USGBC Data and the Bass Model Fit for This Study 
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Chapter 6. Findings and Discussion 

This section is broken out into two primary sections based on the two types of 

analyses used. The first section discusses CBP partner replication trends based on survey 

and interview data, and the second section describes the outputs of the diffusion model 

analyzing the broader impacts of the CBP program. 

Survey Data and Interview Analysis 

The survey and interview outcomes were integrated and are presented in the 

sections below. The first section discusses the basic characteristics of the sample studied 

for this effort; the second section discusses program participation details; the third section 

presents specific replication trends; and the fourth section provides information about 

quality assurance, replication protocol development and objectives.  

It is important to note that most CBP partners participated in other commercial 

green building programs before, during or after the CBP program. Of all survey 

respondents, 89% indicated participation in the green building initiatives indicated in 

Figure 11. All CBP partners (100%) who participated in other green building programs 

were involved in the U.S. Green Building Council’s Leadership in Energy and 

Environmental Design (LEED) program. In addition to LEED, 62.5% participated in the 

ENERGY STAR program, 25% in the Better Buildings program and 50% in regional 
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utility programs for commercial buildings. Three respondents indicated that achieving 

LEED certification is part of their building protocol. Only three organizations received 

incentives to increase the energy efficiency of their building project, all of them from 

utility programs. 

Follow-up interviews conducted for this effort revealed that some of the particular 

EEMs applied to new and retrofit construction through the CBP program were also 

utilized by other programs, such as LEED. Because many partners had already been 

involved in other green building programs utilizing these EEMs, they did not consider 

transferring these technologies into other buildings as “replication.” This fact leads to the 

lower replication response rate of 43% discussed in the results section. Three respondents 

indicated they received utility subsidies for portions of their projects.  
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Figure 11. CBP Partner Program Participation Before, During or After their CBP Building 
Project, by Percentage of Survey Participation 

 

CBP Program Participation Details 

This section discusses questionnaire and interview data relating to construction 

details, energy and cost savings, and investments in green building strategies.  

The partners were asked to forecast energy savings over the next 5 to 10 years for 

their building project. As shown in Figure 12, most partners expect to see whole building 

energy savings in the range of 31% to 50% compared to existing prototypes for 

construction (new and existing buildings). A few partners did not respond to the question 
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as shown the left-most bar in the figure. A few partners expect to see energy savings 

higher than 50%.1 

 

Figure 12. CBP Partner Forecast Energy Savings for the CBP Building in the Next 5-10 Years as 
Reported in the Survey 

 

The partners were also asked to predict cost savings of energy expenditures for 

the CBP building as shown below in Figure 13. To better understand the way the partner 

expects the CBP methods to propagate through the full building portfolio, the partners 

were also asked to estimate the cost savings expected for the full portfolio. As shown in 

1 For this analysis, energy savings is defined as site energy use. 
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Figure 14, the majority of respondents indicated 5% to10% cost savings in the full 

building portfolio. While these savings are relatively modest compared to energy savings, 

multiple partners indicated that energy expenditures represent one of the largest 

percentages of total operational costs, and that 5% to10% savings represents significant 

kWh and dollar amounts.  

 

Figure 13. CBP Partner Forecast Cost Savings for the CBP Building in the Next 5-10 Years as 
Reported in the Survey 
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Figure 14. CBP Partner Forecast Energy Savings for the Partner Portfolio in the Next 5-10 Years 
as Reported in the Survey 

 

Partners were asked how they monitored their project during the process of 

construction. Eight respondents indicated their building projects were commissioned, and 

monitoring of their project included commissioning agents. As the majority of 

organizations that participated in the CBP program are large corporations, most 

respondents indicated the monitoring process was conducted by an in-house team of 

engineers and project managers who conducted site visits during all steps of the 

construction process.  
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When CBP partners were asked about how they prioritize investments in energy 

efficiency, respondents all indicated that investments in energy efficiency provided 

substantial operational cost savings. One respondent indicated that a simple payback of 7 

years or less was the primary determinant when analyzing EEMs. Four respondents 

disclosed that energy efficiency investments are highly prioritized by the organization 

due to voluntary sustainability mandates that include energy reliability.  

CBP Partner Replication Trends 

Both the questionnaire and interview process yielded data regarding specific 

replication efforts of a variety of EEMs and reasons for replicating these technologies 

into other buildings within their portfolios. Most participants indicated their specific CBP 

efforts will act as a testbed for upcoming new construction or retrofit projects. Multiple 

interviewees pointed out that their building projects provided valuable lessons that could 

be applied to other future construction projects, allowing the organizations an opportunity 

to optimize energy efficiency benefits specific to their energy consumption patterns and 

needs. This differs from other green building programs, which require a checklist-type 

system of prescriptive or benchmark requirements.   

The questionnaire respondents were split when specifically asked if they would 

install measures from the CBP project into the rest of the partner building portfolio. 43% 

indicated they would and 57% indicated they were unsure. None of the respondents 

indicated they would not replicate measures throughout the portfolio. The split in this 
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response may indicate that many of the questionnaire respondents (57%) are unsure of 

replication through the entire portfolio, but they may be replicating specific measures 

through part of the portfolio. Follow-up interviews with partners revealed that some 

EEMs, such as high efficiency HVAC systems and high roof/ceiling insulation, are 

measures the organization was using prior to participation in the CBP program. Partners 

indicated that they did not consider implementation of such measures as “replication.” 

When asked whether replication efforts were a direct result of participation in the CBP 

program, three respondents indicated yes. A number of partners have identified measures 

that will be replicated across many buildings or their entire portfolios. Discussion of 

specific EEM replication efforts are discussed in the next section of this report. 

The partners were also asked in how many other buildings in which CBP 

measures had already implemented. Even a few years into the project significant 

replication is occurring and some respondents indicated replication as high as 6 or 10 

buildings. However, most of the partners have not yet replicated the CBP methods 

beyond the one or two buildings as shown in Figure 15. Still, the majority of partners are 

replicating measures as a direct result of their participation in the CBP program; 63% said 

they did not have replication protocols before participating but now do.  
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Figure 15. CBP Partner Reported Number of Buildings with Replication at the Time of the 
Survey 

 

In addition to general program replication, partners were asked to identify specific 

EEMs (listed in Table 3) applied to their building project(s), which included a variety of 

HVAC, lighting, envelope, renewables, design and water systems. The technologies in 

Table 3 are consistent with the State of California’s Real Estate Services Division Energy 

Efficiency and Sustainable Building Measures Checklists (State of California, 2002).  

Table 3 below presents a list of these technologies and the rate of replication for 

each one by CBP partners: 
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Table 3. Technologies Replicated from the CBP Program 

Energy Efficient Measures (EEMs) 
Respondent 
Replication 
(%) 

Lighting - low wattage exit signs 100% 
Point Use Controls - occupancy sensors 100% 
Energy Management System - programming, commissioning and optimization 100% 
Lighting - light colored interior finishes 86% 
Water - ultra low flush toilets 86% 
Water - low-flow faucets & showerheads 86% 
ENERGY STAR equipment (computers, TVs, video, etc.) 86% 
ENERGY STAR appliances (refrigerators, washing machines, etc.) 86% 
HVAC - high efficiency motors 71% 
HVAC - high efficiency chillers 71% 
Lighting - LED 71% 
Point Use Controls - carbon dioxide monitors 71% 
Energy Management System - real-time energy metering 71% 
Envelope - high-R roof/ceiling insulation 71% 
HVAC - high efficiency boilers/furnaces 57% 
HVAC - heat recovery 57% 
HVAC- carbon monoxide controls 57% 
Lighting - low power density 57% 
Lighting - exterior lighting (parking lots, etc.) 57% 
Point Use Controls - programmable thermostats 57% 
Envelope - cool roof system 57% 
Water - insulated pipes between supply and faucets 57% 
HVAC - high efficiency cooling towers 43% 
HVAC - variable-flow chillers 43% 
HVAC - demand control variable exhaust 43% 
Lighting - indirect lighting options 43% 
Daylighting - shading systems 43% 
Envelope - high-R windows 43% 
Envelope - high-R wall insulation 43% 
Energy Sources/Renewables - photovoltaic 43% 
Water - exterior management (bioswales, etc.) 43% 
Lighting - minimum CFL efficacy 50 lumens/watt 29% 
Daylighting - skylights/solar tubes 29% 
Envelope - high-R floor/foundation insulation 29% 
HVAC - GSHP and/or geothermal heat pumps 14% 
Load Shifting/Shedding - cycling, remote metering and controls 14% 
Load Shifting/Shedding - on-demand water heaters 14% 
Energy Sources/Renewables - solar thermal 14% 
HVAC - boiler nitrous oxide emissions control 0% 
HVAC - avoid direct evaporative cooling 0% 
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HVAC - evaporative pre-cooled condensers on rooftop units 0% 
Lighting - minimum linear fluorescent efficacy 76 lumens/watt 0% 
Point Use Controls - 365 digital clocks 0% 
Energy Sources/Renewables - cogeneration plant 0% 
Energy Sources/Renewables - onsite wind system 0% 

 

Of all the specific technologies represented in Table 3 above, three have a 100% 

replication rate: 

• Lighting - low wattage exit signs 
• Point Use Controls - occupancy sensors 
• Energy Management System - programming, commissioning and optimization 

 

Similar to Table 3, Figure 16 below identifies EEMs by primary category, and is 

broken out to show the penetration rates by building sector. Figure 16 illustrates that the 

HVAC and lighting measures were the most popular measures for replication for all 

building sectors, even though some partners did not consider HVAC EEMs to be 

replicable because they were already doing it. Follow-up interviews revealed that many 

partners found LED technologies to be very promising for future energy and cost 

reductions. One partner in particular noted that the approach to LED installation led to 

savings they had not anticipated before participation in the CBP program.  
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Figure 16. CBP Partner Reported EEMs by Type and Building Sector 

In addition to the table above, one partner indicated that they are installing 

variable frequency drives (VFD) on rooftop HVAC units in 130 stores. Two respondents 

indicated that VFDs represented the greatest energy savings when installed on chillers 

and HVAC fan motors, compared to other EEMs. One respondent indicated that VFDs 

represented the greatest cost savings compared to other EEMs installed during the 

program. Of questionnaire respondents, the educational sector had the broadest adoption 

of EEM categories.  
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In the interviews conducted after the questionnaires were completed, the 

following takeaways were identified by CBP partners regarding specific measures or 

implementation strategies they will now replicate based on their experience with the CBP 

program: 

• Two partners indicated that they now have a detailed plan for M&V programs that 
will be rolled out to all building engineers within the organization. 

• One partner indicated significant savings potential from reducing plug loads, an 
area that was not focused on before participation in the CBP program. 

• One partner indicated that the entire package of CBP EEMs will be replicated in 
all buildings owned by the organization. 

• Three partners indicated that LEED standards are mandated in all new 
construction. Specific elements from the experience gained from the CBP 
program will be added to their existing energy efficiency protocols. 

• Three partners indicated that enhanced weather modeling and EEM package 
optimization were primary takeaways from program participation. 

• Six partners confirmed that LED lighting technology and design will now be used 
in their entire building portfolios thanks to participation in the CBP program. 

• One partner learned they were oversizing HVAC equipment and intends to use 
right-sized equipment in all new construction and replacements in their portfolio. 

 

The primary motivation for CBP program participation, indicated in both 

questionnaire and interview results, was cost reduction. In addition to realizing increased 

efficiency, installation of energy efficient technologies has been determined by many 

researchers to provide economic benefits. Overall building design can help achieve 

energy and cost savings. For example, design solutions to existing commercial buildings 
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based on the climate zone in which the building is located has been estimated to have a 

cost savings potential of 10% to 20% (Belzer, 2009), relatively consistent with the 11% 

to 30% reported by CBP partners. Other studies point to economic gains from lower 

operational costs of HVAC systems due to increased envelope efficiencies (Kneifel, 

2010; Howarth, 2010). 

Replication efforts by CBP partners depend greatly on potential cost savings and 

project economics. When asked about economic analysis metrics, half of the respondents 

indicated that return on investment (ROI) was their primary economic criterion. Figure 

17 illustrates the primary types of economic analyses used to evaluate the investment 

potential for replicating CBP measures. These measures include simple payback, savings 

to investment ratio (SIR), return on investment (ROI), life-cycle cost analysis (LCC) and 

building life-cycle cost analysis (BLCC). BLCC methods allow analysis of capital 

investments specific to buildings. Most respondents use a form of spreadsheet or 

commercial software to calculate EEM investment opportunities. Two respondents 

indicated they do not utilize any financial analysis software, while the rest of the 

respondents maintained they utilized in-house financial tools or packaged software suites 

to evaluate the economics of EEMs.     
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Figure 17. Economic Metrics used by CBP Partners to Measure EEM Cost Effectiveness 

Follow-up interviews conducted for this effort indicated the following takeaways 

from the CBP program regarding cost reduction: 

• All participants except one were strongly motivated by cost reduction potential; 

• Five CBP partners indicated that energy costs are amongst the largest cost 
categories in expense budgets; 

• Three participants indicated that energy modeling and monitoring techniques will 
be utilized henceforth to better understand the energy profile of specific buildings 
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within the organization’s portfolio. They believe that this enhanced knowledge 
will help them reduce energy related costs. 

 

Motivation and Evidence of Replication 

Survey and interview respondents were asked whether they have organization-

wide sustainability protocols for green building, energy efficiency and environmental 

stewardship. All of the respondents indicated their organization had policies and 

procedures regarding sustainability. Additionally, 75% of questionnaire respondents 

indicated that they have company policies regarding implementation of EEMs (Figure 

18). When asked whether these protocols impacted their participation in the CBP 

program, 75% of respondents indicated yes, while 25% indicated no. 
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Figure 18. Percentage of Organizations with Policies/Procedures for EEM Implementation 

 

This study also aimed to gain a better understanding of any benefits beyond the 

energy and cost savings CBP partners realized through program participation. 

Respondents were asked to rank ten different non-monetary and social benefits associated 

with increased building efficiency. Figure 19 presents the cumulative results from all 

respondents; the x-axis represents the number rank per respondent and the y-axis 

represents the benefit. Decreased maintenance was ranked highly by more than 50% of 

the questionnaire respondents. This is consistent with the reduced cost of exterior lighting 

that many partners reported when switching to LED systems. Increased employee 
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productivity and comfort were also ranked highly by the partners. Positive media and 

marketing opportunities were also a factor for some partners, but typically ranked lower. 

 

Figure 19. Survey Responses to CBP Benefits beyond Energy and Cost Savings. Respondents 
Ranked the Benefits and Percentage of Responses are Shaded. 
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One way to determine replication impacts over the long term is to gain insight 

into protocol development, monitoring and verification (M&V) activities, and operations 

plans and documentation of CBP partners. Better understanding of these organizational 

structures can help provide validation and demonstration that replication is occurring, and 

that it is successful and impactful when compared to the overall energy footprint of an 

entire organization.  

Building commissioning is a term used to describe a comprehensive project 

management process for new and retrofit (retro-commissioning) construction that 

provides an in-depth quality assurance process from the design through the occupancy 

phase of the building project (ASHRAE, 2011). Successful building commissioning can 

reduce energy costs and enhance systems operation of building projects. In an effort to 

better understand long-term replication objectives, CBP partners were asked whether 

their building projects were commissioned (or retro-commissioned). As noted previously, 

88% responded yes. When asked whether all buildings are commissioned, 75% replied 

yes, 12.5% no, and 12.5% “I don’t know.” 

Respondents were also asked whether they have a documentation process for 

building design and energy efficiency. Of the seven participants that responded to the 

question, four indicated they did, and three indicated their organization did not. One of 

the organizations that answered no to that question is a franchised property management 

company, which is not involved in all their franchise’s building projects.  
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When asked about protocols for M&V, all but one respondent indicated they had 

some form of M&V process, which included metering. However, three respondents 

reported they did not have a process for monitoring before the CBP program. Two 

respondents did not answer the question. Respondents that answered “yes” indicated 

either in-house, third party or no M&V. All CBP projects are monitored by the DOE 

design team for a specified period of time; this question was designed to gain insight into 

how the organization plans for long-term building monitoring.   

When asked about prototype plans, four partners indicated they develop and 

maintain building construction prototypes. Three respondents keep the prototype plans 

in-house, and one is maintained by a third party engineering firm, hired by the 

organization to maintain their energy profile. In a follow-up interview, one partner 

reported that their CBP project details have been passed up to high-level management, 

who has adopted the building project as a prototype for future building construction.  The 

same organization indicated that the CBP program gave them an opportunity to enhance 

and optimize measures they already employed in their building practice and fine-tune 

their process for energy efficiency. 

Finally, when asked about actual energy savings versus modeled or expected 

savings, the majority of CBP partners reported that it was too soon to tell, as their 

building projects have not had enough time to yield robust data. Three respondents 

reported that they were realizing predicted energy savings, and one partner reported their 

savings was very close to that predicted. One partner reported there had been a default 
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setting in the control sequence of the HVAC system, causing the system to continuously 

operate. However, the issue has been corrected and they are now expecting modeled and 

actual savings to align. Also in the follow-up interviews, one partner indicated that the 

solar photovoltaic system, installed as part of their new construction EEM package, sent 

enough electricity to the grid in May 2013 to make the building net energy positive, in 

terms of electricity consumption.   

Diffusion Model Analysis and Output 

Two Bass models (“CBP Construction” and “Market Bass Model”) were 

developed which resulted in a large difference between modeled outputs. On a personal 

note, I find it appropriate to mention that a colleague of mine, Heather Dillon, helped me 

with the scripts for the final model. The CBP Construction model (conservative) was 

developed using data from CBP partners only, with the output representing the maximum 

number of buildings impacted normalized by total number of buildings in CBP partner 

portfolios. The Market Bass model (optimistic) was developed by extrapolating the 

dataset out to the broader market, and represents market diffusion potential for the full 

partner portfolios based on the observed diffusion of other green building programs. This 

section presents outputs from the analysis. 

The previous section outlines the development of a Bass diffusion model 

calibrated using the most comprehensive existing database of a building-scale energy 

efficiency program, USGBC LEED data. Because USGBC LEED data provided the best, 
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dataset obtainable to help define q and p, the Bass model developed for this study was 

laid on top of the LEED data to see how well the model fit. After fitting the model, q and 

p was adjusted using the R2 function to determine the best values for those variables. See 

the Methodology Chapter for detailed discussion of the Bass Model calibration. The 

calibrated Bass model was then utilized to provide a mechanism to determine the best-

case impacts of the CBP program. In order to do this, a Bass model was developed based 

on building-level implementation of EEMs.  

Table 4 presents the parameters for determining model inputs. Since the focus of 

this analysis is on the market potential for CBP program replication, the normalizer (m), 

represented by number of buildings, should focus on market potential based on maximum 

number of buildings within the entire CBP portfolio. This was calculated as the quotient 

of total existing CBP partner portfolio square footage and average commercial building 

size in the U.S., giving an estimate of 250,709 buildings to represent the market 

maximum. Because the research team only had access to data on the existing portfolios of 

CBP partners, the final analysis is conservative, because it would be appropriate to 

assume the partners would continue to construct new buildings. However, no method to 

quantify this was obvious so a construction rate increase was omitted from this study. 

Two distinct Bass diffusion models were then used to bind the eventual diffusion 

of the CBP program. The “Market Bass” model is simply a projection of the Bass model 

using the q and p parameters determined from the larger USGBC data set. This model is 

deemed to represent the way one other building-scale energy efficiency programs have 
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diffused in the commercial buildings sector. A second Bass model, termed the “CBP 

Bass” model is a version of the model analyzing the CBP partners only, where q and p 

parameters were determined from the actual CBP construction data while maximizing the 

R2 coefficient. The parameters used in the CBP Bass model are shown in Table 4. 

Table 4. Bass Model Parameters Determined from the CBP Data 

Bass Model Parameter Value Determined 
(Bass Traditional) 

Source 

p - coefficient of 
innovation 

1.344828e-5 Data fitting 

q - coefficient of imitation 0.2448 Data fitting 

m - maximum market 
potential (number of 
buildings) 

250,709 Total new commercial buildings constructed by 
CBP partners, estimated from total CBP partner 
portfolios (ft2) and 14,700 ft2/building (EIA, 2008) 

R2 - coefficient of 
determination 

0.951 Calculated to compare fit of Bass model with 
USGBC data 

 

Figure 20 and Table 5 present diffusion potential of the CBP program by number 

of buildings, predicted using the CBP Bass model. The projection range is from 2008 to 

2020 and the diffusion rate is the percentage of total buildings in CBP partner portfolios 

based on the Bass model output. The raw CBP construction data was calculated as the 

cumulative CBP buildings based on data gathered and monitored by ANL, LBNL, NREL 

and PNNL. Each lab compiled and tracked partner data which included project specific 

information, overall partner portfolio square footage, building type, location, project 

completion date (actual or anticipated), and a synopsis of EEMs.  
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Figure 20. CBP Diffusion Prediction Using the Bass Model, R2=0.95 

Figure 21 shows the CBP Bass and CBP Construction diffusion model predictions 

through the year 2030. The Market Bass model (optimistic scenario) represents a best 

case scenario for CBP diffusion based on the way the commercial building sector has 

adopted another larger, but somewhat similar, whole-building energy efficiency program. 
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The CBP Bass model represents a conservative (worst case scenario) based only on the 

CBP enhanced buildings constructed to date.   

Table 5 shows the comparison of the two Bass models with the CBP construction 

data. The CBP Bass model does an excellent job predicting the construction in 2015 

(“actual” data include projections of completed buildings from LBNL, NREL and 

PNNL), high by only a few buildings. The conservative model indicates that nearly 3,000 

buildings will be enhanced by the CBP program by 2030. The more optimistic diffusion 

model indicates that CBP enhancements could penetrate as many as 97,000 buildings by 

the same year. The discrepancy between the optimistic and worse case is due to the large 

difference in input data based on the normalizer (m) which represents the market 

maximum number of buildings the program can diffuse into.  

It is important to note that the actual number of projects presented in Table 5 and 

Figure 21 below include only partner buildings directly involved in CBP, not replication 

efforts already underway by partners. This implies that the Market Bass model 

(optimistic scenario) may be closer to the actual number of buildings impacted by CBP.  
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Table 5. Comparison of CBP Construction to Date with Bass Prediction. Data Shown are the 
Cumulative Number of Buildings (Actual) and Predicted for Each Model. 

Year CBP Construction 
(Number of Buildings 
Actual) 

Market Bass Model –
Optimistic Scenario 
(Number of Buildings 
Predicted) 

CBP Bass Model – Worst 
Case Scenario (Number of 
Buildings Predicted) 

2012 20 188 23 

2015 59 (scheduled completion) 665 63 

2030 - 97,101 2,957 
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Figure 21. CBP Market Penetration Prediction Using the Bass Model 

Energy Savings Calculations 

In addition to modeling total number of buildings that can potentially be impacted 

through replication efforts of CBP partners, this research is also interested in broader 

energy savings potential. As such, potential energy savings was calculated two ways, 

measured by modeled decreases in energy use intensity of a building. 
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By 2030, the diffusion model forecasts that a range of 2,957 to 97,101 buildings 

will be impacted by the CBP program through partner replication efforts, representing 

over 22% of all buildings in partner portfolios. This translates to between 43.5 million to 

1.4 billion square feet of commercial building floor space throughout the United States. 

Previous analysis efforts of CBP projects modeled energy use intensity (EUI) reductions 

of 53 kBtu/ft2 for new construction projects overseen by PNNL (Baechler et al., 2012). In 

an effort to extrapolate broader energy savings data, I compared this decrease in modeled 

CBP EUIs with median EUI data for commercial buildings using the CBECS dataset. 

Based on this analysis, the energy savings potential is between 2.3 and 77 trillion Btus 

annually. 

As a final part of this study, I ran a second savings calculation based on ENERGY 

STAR’s portfolio manager data trends instead of CBECS. ENERGY STAR data may be 

a better source for EUI numbers since it is current. CBECS data has not been updated 

since 2003, so one can assume these data may be incorrect. Energy use benchmarking is 

available for office, retail, K-12 school and hotel buildings, which includes median EUIs 

for each building type (ENERGY STAR, 2012). I averaged the median EUI data for all 

four commercial building types to use in this analysis. Note that not all building types 

represented by CBP partners fall under these four categories, but it does represent the 

majority of partners. The median EUIs for office, retail and hotel buildings were 

averaged and calculated with EUI reductions of 53 kBtu/ft2 (from Baechler et al., 2012). 
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The resulting energy savings numbers were very similar to the comparison with CBECS, 

ranging between 2.3 and 75 trillion Btus annually. 
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Chapter 7. Limitations 

 One of the primary limitations of this research is the small overall sample size of 

CBP partners. In total, 10 respondents participated in the survey and interview data-

gathering efforts, out of a possible 11. Although small, these projects do represent 

approximately 28% of the entire CBP program and approximately 1% of all commercial 

building square footage in the U.S. The small sample size limited the amount of 

quantitative analysis that could be done for survey and interview data, to investigate 

partner replication. While still robust, the qualitative approach to the replication section 

does not allow this research to speak broadly for all CBP partners, partner portfolios or 

outwards to the broader commercial building market. The partners that participated in 

CBP applied to the program and were chosen by DOE based on unknown criteria; these 

partners may already be energy-conscious organizations compared to competitors in their 

industry. 

 Another limitation was the fact that replication data was gathered from PNNL 

CBP partners only, and not projects overseen by other national laboratories. This required 

assumptions to be made regarding the approach take for energy savings and cost analysis. 

The assumption that all labs would have the same recommendations regarding design of 

energy efficiency and cost savings measures was made. That is to say, that it was 

assumed that all labs would have assessed, modeled and implemented the same 
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technologies for each partner. Furthermore, that all labs would estimate the same energy 

and cost savings. While approaches to building science are relatively synonymous, 

different researchers, engineers and scientists have expertise that may sway their 

preference over one technology compared to another. The same issue presents itself when 

estimating cost perspectives for different technologies.  

 Additionally, there are potential limitations relating to spatial components of the 

green building industry in the United States. Each CBP partner that participated in this 

study indicated that cost savings were a primary objective, and motivation for 

participating in this study. From a spatial perspective, the motivation to participate in 

green building programs, or to replicate CBP measures may vary depending on a variety 

of factors relating to location. These factors include variance in electricity prices, 

affecting the overall cost burden of energy expenditures in the first place; firms located in 

areas with low electricity prices may not be motivated by cost savings to replicate green 

building measures. Similarly, spatial influences such as codes, standards, green building 

programs and social norms may impact firms’ decisions whether to replicate CBP 

measures. Firms located in progressive areas with many green certified buildings, or 

denser urban areas may be more likely to have higher replication rates. The diffusion 

model used in this study did not measure these spatial influences.  

 The final limitation of this research applies to the approach taken for diffusion 

modeling. The greatest limitation here lies in the fact that USGBC data may not 

accurately measure the coefficients for use with CBP data. There is no doubt that 
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USGBC data is the best possible option that exists, but, those data represent a program 

that is different from CBP. In the first case, only new construction data was input in the 

model, while the CBP program includes both new construction and existing buildings. 

This was due to the fact that the overwhelming majority of USGBC data was for new 

buildings, and the measurements for existing buildings was unknown when analyzing 

their data. Second, the LEED program is not exactly the same as the CBP program; both 

represent a whole-building approach to green building, but the CBP program does not 

require a checklist-type approach to achieving certification. However, when the model 

was developed, the outputs for USGBC diffusion prediction were very close to the actual 

data, which justified using the dataset for this analysis. 
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Chapter 8. Conclusions 

As opposed to separating conclusions based on survey/interview results and 

diffusion modeling sections, this section deviates from the Findings and Discussion 

Chapter by combining conclusions per the literature reviewed for this study. Thus, the 

three primary sections for conclusions are: diffusion theory findings; organizational 

theory, corporate social responsibility and business environmental management findings; 

and energy economics findings. This approach was used in an effort to directly link the 

findings of this study back to the literature and previous study in this area.  

Diffusion Theory Conclusions 

 One of the primary findings relating to the diffusion model developed for this 

analysis was an unexpected conclusion. The conclusion is that the model developed by 

Bass is an effective approach to analyzing diffusion of green buildings on a whole-

building level, as opposed to individual energy efficiency measures.   

When literature relating green buildings to the diffusion of technologies theory 

was being reviewed, one of the primary studies found was Yudelson’s 2005 work 

analyzing the market diffusion of USGBC’s LEED program (Yudelson, 2005). For his 

analysis on the diffusion of USGBC LEED buildings, Yudelson used the Fisher-Pry 

model for technology substitution which incorporated a 50% substitution rate into the 
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equation. While his analysis was focused on diffusion on the whole-building level, 

similar to the objective of this analysis, I found it inappropriate to assume a 50% 

penetration rate. So, the work of Bass (1969) was used for development of the diffusion 

model, omitting the 50% substitution rate.  

As the Bass model was developed, coefficients were determined by exploring 

other literature relating to individual energy efficiency measures applied in green 

buildings (See: Elliott et al., 2004; Kok and  Quigley, 2011; Andrews and Krogmann, 

2009). These coefficients (q and p) were normalized by total number of buildings in the 

CBP program (m), and results were compared to Yudelson’s original 2005 diffusion 

estimate. The results (see Table 6), of the raw data compared to Yudelson’s estimate by 

2007 was only off by 41 buildings, and while the model tends to over-predict diffusion in 

the early years, the shape of the curve is correct, indicating correct diffusion predictions 

over a period of time. This conclusion is further supported by the diffusion modeling 

done for this study; the conservative model is high by only four buildings.  

Table 6. Comparison of CBP Construction to Date with Diffusion Modeling Prediction. Data 
Shown are the Cumulative Number of Buildings (Actual) and Predicted for Each Model. 

Year CBP Construction 
(Number of Buildings 
Actual) 

Market Bass Model –
Optimistic Scenario 
(Number of Buildings 
Predicted) 

CBP Bass Model – Worst 
Case Scenario (Number of 
Buildings Predicted) 

2012 20 188 23 

2015 59 (scheduled completion) 665 63 

2030 - 97,101 2,957 
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The conclusion from the estimation of the Bass model is that it appears to 

satisfactorily represent the historical cumulative construction metrics for whole-building 

energy efficiency programs. The Bass model parameters developed also can provide 

perspectives related to the long-term, future market diffusion of energy efficiency 

programs. This conclusion was an unexpected result of this study.  

 Another conclusion based on diffusion analysis relates specifically to the number 

of buildings potentially impacted by this program and market potential for energy 

efficiency in buildings. Maximum diffusion potential for the CBP program was modeled 

at over 97,000 buildings by 2030, saving between 75—77 trillion Btus of site energy 

consumption annually. Market transformation occurs in the later phases of innovation, 

once a particular idea has significantly penetrated the market (Lutzenhiser et al., 2001). 

As CBP partners propagate energy savings into their portfolios, market transformation of 

green building on a whole-building scale becomes more measureable. While green 

building programs have made significant market impacts over the past decade, the CBP 

program offers an optimized approach to green building as opposed to a checklist-type 

approach to efficiency. This approach may promote market transformation in a broader 

sense; this study can be one step in analyzing this approach.  

Organizational Theory, Corporate Social Responsibility and Environmental 
Management Conclusions  
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The conclusions in this section are primary results of survey and interview data 

relating to replication efforts by CBP partners. All participants surveyed and interviewed 

for this study indicated that CSR, company culture, and sustainability initiatives played a 

part in the organization’s willingness to participate in the CBP program and invest the 

upfront capital necessary for efficiency upgrades in new or existing buildings. This points 

to literature supporting these initiatives as discussed in the literature review. Specifically, 

participation in voluntary environmental management programs must be bi-directional 

since voluntary programs impact the competitiveness within an industry (Alberini and 

Segerson, 2002). This means that the non-monetary motivations for partner participation 

must have some sort of measurable benefits. CBP partners indicated lower maintenance, 

increased employee productivity and increased comfort as the top three motivations 

beyond direct cost savings. The literature points out that are environmentally minded tend 

to be more willing to invest in technologies or applications that improve building or 

operational efficiency (Kahanna et al., 2007, Lyon and Maxwell, 2008). This study 

generally supports previous literature. 

One partner interview focused specifically on company culture as being a primary 

motivator for participation in the CBP program. The interview respondent noted their 

organization had been promoting green building initiatives since 2004 as one of their 

approaches to CSR initiatives. This respondent said that the strong company culture 

towards sustainability related directly to the CEO who promoted sustainable business 

development. The literature review found studies that noted companies with socially 
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conscious CEOs or upper management are also more likely to have voluntary 

environmental programs (Delmas and Toffel, 2008; Ervin et al., undated; Martin et al. 

2012). Findings from this study tend to support these conclusions. However, lower 

maintenance and increased employee productivity, while non-monetary in terms of 

energy costs, still represent overall cost savings for the organization. Cost savings, 

discuss next, far outweighed any non-monetary benefits or motivations. 

When asked about economic analysis metrics, half of the respondents indicated 

that return on investment (ROI) was their primary economic criterion. While cost savings 

were a primary motivator for most organizations, the presence of a sustainability program 

may motivate these organizations to look closer at energy savings opportunities to close 

the gap between base and optimal building performance. In addition to ROI assessments, 

over 35% of respondents indicate a life-cycle cost analysis is conducted by the firm 

speaking to this issue. Since life-cycle cost analyses focus on environmental attributes of 

potential investments, organizations may be using these methods as a way to better look 

at energy efficiency investments compared to traditional ones. Such analysis would 

promote green building measures that may otherwise be seen as unfavorable through a 

traditional ROI assessment.  

Energy Economics Conclusions 

 Unlike the previous two conclusion sections, the findings relating to energy 

economics relate to both survey and interview data, along with diffusion modeling 
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outputs. The number one conclusion reached relating to energy economics, primarily 

from survey and interview results is that operating cost reductions were the primary 

motivation for all organizations that participated in the CBP program. Additionally, five 

CBP partners indicated that energy costs are amongst the largest cost categories in 

expense budgets. The terms “triple bottom line” and “win-win-win” are used to describe 

firms who are trying to maximize profits, reduce costs and protect the environment. In an 

effort to achieve this, many companies aim for product differentiation and profit 

maximizing potential (Reinhardt, 2000; Blackman, 2010; Lyon and Maxwell, 2008). 

Participation in the CBP program allowed partners to optimize packages allowing them to 

save energy and costs for their building project based directly on their location and usage 

profile, supporting the literature regarding cost reduction and CSR motivations.  

 In addition, specific technologies were chosen by CBP partners for their cost 

reduction potentials. LED lighting, energy management systems, and occupancy sensors 

all had 100% replication rate. In addition, one partner indicated that they are installing 

variable frequency drives (VFD) on rooftop HVAC units in 130 stores. Two respondents 

indicated that VFDs represented the greatest energy savings when installed on chillers 

and HVAC fan motors, compared to other EEMs. Studies have explored cost savings 

related to specific technologies and climate modeling (Kneifel, 2010; Howarth, 2010; 

Belzer, 2009). Technology-specific replication data from the survey and follow-up 

interviews seem to be in conjunction with this.  
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 One way to determine replication impacts over the long term is to gain 

insight into protocol development, monitoring and verification (M&V) activities, and 

operations plans and documentation of CBP partners. Better understanding of these 

organizational structures can help provide validation and demonstration that replication is 

occurring, and that it is successful and impactful when compared to the overall energy 

footprint of an entire organization. In one sense, this can be seen as risk management 

efforts for the organizations participating in the CBP program. Because each organization 

had the opportunity to “test” technologies, and develop a testbed for benchmark energy 

operations, these may be used in the future as a way to prove certain technologies meet 

cost savings requirements of the firm, motivating them to implement the measures into 

other buildings. Similarly, M&V procedures further allow organizations to monitor the 

performance of these technologies over the long term. Maintaining optimal performance 

of these technologies can promote more company investment in energy saving 

technologies. 

Although organizations were highly motivated by cost savings potential, 

incentives seemed to play a small role in decision making related to replication. Only 

three organizations received incentives to increase the energy efficiency of their building 

project, all of them from utility programs.  

Diffusion model outputs, while focused specifically on number of buildings 

potentially impacted by the CBP program, did also have a cost component. Cost savings 

associated with the CBP program is associated with the extrapolation of broader energy 
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savings data from model outputs. Previous analysis efforts of CBP projects modeled 

energy use intensity (EUI) reductions of 53 kBtu/ft2 for new construction projects 

overseen by PNNL (Baechler et al., 2012). The upper bound of energy savings potential 

was calculated between 75 and 77 trillion Btus annually of site energy consumption. 

While further calculations pertaining to specific cost savings potential for these amounts 

were not conducted, it is fair to assume the savings associated with such large amounts is 

significant. 

Finally, this research may be able to help lay foundations for further study relating 

structural approaches to building energy efficiency and behavior. Unlike other green 

building programs, the CBP program includes a monitoring and verification period for 

one year. While the program is still too young to accurately measure whether energy 

savings modeled is the same as actual, it is now an objective of the management. Weber 

found that energy efficiency decisions in office buildings tend to be about investments, 

with specialists inside the firm being the primary decision maker (Weber, 1999). Because 

the CBP program partnered with firms engineering or construction projects, and because 

the program has a measurement and verification component, it may be likely that these 

buildings operate closer to modeled performance.   
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April 15, 2013 

 

Hello CBP Partner, 

 

Thank you for participating in our efforts to assess replication efforts by CBP program 
participants. This outline provides information about the two mechanisms PNNL will be 
utilizing to gather feedback about replication efforts of your company. PNNL will focus 
on two primary questions for this study: 
 

1. How are CBP partners replicating specific measures, treatments and processes? 
2. How does the public know that these measures are being replicated? 

  
In an effort to streamline this process and respect the limited time of each partner, PNNL 
has developed a two-step approach to receiving replication information from each 
partner. First, PNNL will be distributing an online feedback mechanism (through Survey 
Monkey) for each partner to complete. PNNL requests each partner complete the 
questionnaire and returns back to PNNL within 2 weeks. 
 
We will also schedule a 15 minute follow-up phone conversation to ask a few additional 
questions and to gather further information about the questionnaire. You will be speaking 
with Chrissi Antonopoulos, Energy Analyst with PNNL. The follow-up meeting will take 
no longer than 15 minutes, unless otherwise preferred by each partner. 
 
The questionnaire and phone interview contain questions that inform PNNL about your 
organization’s approach to implementing energy efficiency measures and how your 
company is replicating these measures throughout your entire building portfolios. The 
primary focus will be on measures implemented during the CBP program process. 
 
We are excited to hear about your experience with the CBP program and are looking 
forward to our discussion. All data gathered will be used for analysis only and no 
company will be specifically identified directly in this research. 
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The schedule for these efforts is broken out below: 
 
 
May 10, 2013: Feedback questionnaire distributed electronically 
 
May 24, 2013: Feedback questionnaire due back to PNNL 
 
Week of May 24, 2013: Follow-up interviews scheduled 
 
Week of June 10, 2013: Follow-up interviews concluded 
 
 
 
Feel free to contact me with any questions.  
 
 
__________________________________________________  
Chrissi Antonopoulos 
Associate Energy Analyst 
Energy and Environment Directorate 
  
Pacific Northwest National Laboratory 
620 SW 5th, Suite 800 
Portland, OR, 97204 
Tel: (503) 417-7543 
Fax: (503) 417-2175 
chrissi.antonopoulos@pnnl.gov  
www.pnnl.gov 
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Appendix C: CBP Partner Follow-Up Interview Questions 
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Section 1: CBP Program Participation Information  

1. Why did your firm participate in the CBP Program? 
2. What were the primary objectives your company had? What were the goals? 
3. How did your firm ensure quality assurance during the project? Do you use the 

same procedures for all construction and renovation projects? 
4. What are your firm’s motivations for investing in energy efficient components? 
5. Do you have any other comments about CBP program participation? 

 

Section 2: Replication Information 

1. Can you break down the specific measures per ft2 from the survey (refer to 
corresponding survey question) by technology type (HVAC, lighting, thermal 
enclosure)? 

2. How does your firm decide whether or not to implement these measures? 
3. Who is responsible for overseeing such investments? Do you have an official 

oversight mechanism in place? 
4. If yes to number 6, are these protocols mandated through company procedures? 
5. What is the organizational view of the role of energy efficient investments? For 

example, it is seen as part of the organizational mission or as a requirement? Is 
this view shared by the board? By executives? By staff? 

6. Do you have any other comments you have about CBP Replication? 
 

Section 3: Implementation/QA/Processes Development 

1. If the company indicated policy/procedure for EE measures, ask them to 
elaborate. 

2. If the company indicated a sustainability protocol, what else is included in that 
protocol outside of energy considerations? 

3. Are energy efficiency technologies, such as those included in the CBP program 
monitored through company documentation like annual reports? Are there general 
performance standards for these measures?  

4. The rest of the interview portion for this section will include follow-up to the 
questions above. 
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