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Abstract 
 

Increased blood plasma concentrations of the aminothiol homocysteine (Hcy) are 

associated with a variety of disease states including those which cause impaired renal 

function, many forms of cardiovascular disease, and neurodegenerative diseases such as 

Alzheimer's.  Therefore, Hcy has the potential to be a significant diagnostic biomarker.  

Routine monitoring of Hcy plasma concentration is encumbered by the time and 

resources required to quantify Hcy using currently accepted instrumental analysis 

methods.  As part of the continuing effort to develop a quick, reliable, inexpensive, and 

user-friendly test to quantify Hcy at the point of care, we have designed a series of novel 

colorimetric and fluorescent chemical probes based on bridged viologen structures.  The 

absorbance at 540 nm for the para-bridged bis-nitrile viologen probe (pCN) was found to 

be proportional to the concentration of Hcy analyte, with LOD = 2.17 µM and LOQ = 

6.10 µM where unhealthy Hcy plasma concentrations are > 15 µM.  The mechanism of 

reactivity between pCN and Hcy encompasses a dynamic set of reactions which involve 

pimerization of radical probe species and thioether adduct formation of pCN with Hcy.  

Preliminary results with fluorometric analogs of the bridged viologen probes are also 

presented. 
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Chapter 1:  Introduction 
1.1  Overview  
  
 The biological analyte homocysteine (Hcy) is an important biomarker and 

independent predictor for a variety of disease states.  The first section of this document 

discusses the role of Hcy in the body and the difficulties associated with designing a 

chemical probe to easily quantify Hcy in plasma at the point-of-care. This is followed by 

a review of established detection techniques as well as novel methodology found in 

recent literature.  Sections 2.3 and 2.4 conclude the background material with a 

discussion of our research group’s previous approach to Hcy detection using viologen 

based chemical probes and the theory that led us to investigate the probes used in this 

study.  Results from our investigation are divided amongst three chapters, the bulk of 

which address performance characteristics of colorimetric bridged bis-nitrile viologen 

probes (Chapter 3) and examine mechanistic aspects of their unique reactivity (Chapter 

4).  Chapter 5 briefly summarizes preliminary work with fluorometric bridged bis-

coumarin viologen probes.  A chapter dedicated to concluding remarks precedes sections 

detailing experimental methods, notes for future work, and supporting data.      

  
1.2 Relevance of the biological analyte homocysteine 

 
Biological aminothiols maintain intracellular and extracellular redox homeostasis.  

Aminothiols such as the amino acid cysteine (Cys) and tripeptide glutathione (GSH) are 

considered beneficial and essential to physiological function because they protect cells 

from oxidative stress, preventing damage caused by reactive oxygen species (ROS) such 

as free radicals and peroxides.  GSH can be thought of as a reserve form of Cys since its 
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thiol group comes from a Cys residue.  Cys and GSH not only act as antioxidants, they 

participate in many metabolic processes as well.1  The thiol group of Cys acts as a 

nucleophile in enzymatic reactions and plays an important structural role in protein 

folding by forming covalent disulfide bridges between Cys residues.2   

In recent years there has been increased interest in a related aminothiol, 

homocysteine (Hcy), as a biological analyte and a potential risk factor for a variety of 

disease states.3  It is a homologue of Cys and an intermediate in the biosynthesis of Cys 

from methionine.4  Hcy and Cys differ only by a single methylene group (Figure 1); 

however, Hcy is rarely incorporated in proteins by translation, only occasionally 

replacing methionine residues.5 

 
Figure 1.  Structures of biological aminothiols homocysteine (Hcy), cysteine (Cys), and 
glutathione (GSH). 
 

Normal plasma concentrations of Hcy in healthy adults can range from 5 – 15 

µM.  An elevated level of Hcy in plasma (>15 µM) is a condition known as 

hyperhomocysteinemia and is considered detrimental to physiology.6-10  

Hyperhomocysteinemia can be caused by environmental factors, disease, poor nutrition, 

or genetic disorders.  For example, certain endocrine diseases such as hypothyroidism or 

diabetes mellitus can cause elevated levels of Hcy by modulating Hcy metabolism.11-13  
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Kidney disease can lead to poor renal clearance of Hcy from circulation.14  Chronic 

consumption of alcohol has also been observed to increase levels of Hcy.15-16 

Homocytinuria is a genetic disorder which leads to the abnormal accumulation of 

Hcy in blood and urine.  Homocytinuria type I is a recessively inherited autosomal defect 

in the transulfuration pathway which catabolizes excess Hcy into Cys.4  Types II and III 

are recessively inherited defects in the remethylation pathway which convert the thiol 

group of Hcy into a thioether to form methionine (Figure 2).  Methylenetetrahydrofolate 

reductase (MTHFR) synthesizes 5-methyltetrahydrofolate, the major carbon donor for 

remethylation.  Reduced function polymorphisms in MTHFR occur in about 10% of the 

world’s population.17-19 

 
Figure 2.  Homocysteine metabolism.20-21  
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Excess Hcy disrupts the structure and function of proteins by degrading cysteine 

disulfide bridges (S-homocysteinylation) and forming an amide bond with the ε-amine of 

lysine residues (homocystamides).22-24  This affects extracellular matrix components such 

as collagen, elastin, and proteoglycans causing damage to endothelial tissue.25-27  Hcy is 

also implicated in the peroxidation of low density lipids.28  Both, damaged endothelia 

tissue and oxidized low density lipids, activate platelets and increase platelet aggregation 

which leads to thrombogenicity.29   

Since Hcy is toxic to endothelial tissue and can induce clotting, Hcy could be a 

causal risk factor for cardiovascular disease.  Many clinical studies have demonstrated 

significantly increased concentrations of Hcy at each stage of ischemic heart disease, 

from the onset of atherosclerosis to eventual myocardial infarction or stroke.30-34  

Monitoring Hcy levels in blood plasma can help predict and possibly prevent these health 

issues.35    

Hcy has also been proposed as a novel early warning biomarker for 

neurodegenerative diseases.36  Accumulation of Hcy in circulation corresponds to an 

increased concentration of Hcy in the interstitial fluid of the central nervous system.  This 

is associated with decreased plasticity in hippocampal neuronal cells,37 reduced cerebral 

white matter volume, larger ventricles, and ultimately lower cognitive functioning.38  

Abnormally high levels of Hcy have been found in patients who suffer from various 

forms of dementia such as schizophrenia and Alzheimer’s disease.39-41  Furthermore, 

hyperhomocysteinemia is known to cause neural tube defects in embryos and other 

complications during pregnancy.42   
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 Although high plasma concentrations of Hcy have been firmly established to 

independently predict cardiovascular disease and modes of Hcy toxicity have been 

demonstrated in several ex vivo studies, a controversy has developed over the causal 

relationship of between Hcy and disease.  Researchers Smulders and Blom reviewed the 

literature and concluded the reluctance to formally implicate Hcy as a true ‘risk factor’ 

was primarily based on results from two types of clinical experiments: intervention 

studies and Mendelian genetic studies.43  Intervention studies that treated patients who 

initially presented with high levels of Hcy did not result in a lower instance of 

cardiovascular disease.  Problems with Hcy metabolism due to reduced function 

phenotypes or environmental factors such as poor diet can be corrected by treatment with 

vitamin B supplements.  Since the buildup and degradation of atherosclerotic plaques are 

extremely slow processes, the duration of intervention studies may have been too short to 

observe a statistical improvement.  Excessive vitamin B intake might have been 

counterproductive, causing inflammation and spreading of existing atherosclerotic 

lesions.  Mendelian randomized genetic studies of MTHFR polymorphisms have reported 

conflicting results.  Population variance in Hcy concentration does not arise exclusively 

from a single polymorphism.  Without controlling the influence of confounding factors 

and other risk factors the results of these genetic studies are inconclusive.  Regardless of 

culpability, measurements of plasma Hcy concentration remain valid for the prediction 

and diagnosis of many diseases. 
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Chapter 2:  Prior art 
 
2.1  Traditional methods for Hcy quantification 
 

As an important biological analyte, the direct detection of Hcy in plasma is hindered 

by the presence of structurally related matrix components such as Cys and GSH.  The 

interference can be significant since normal plasma concentrations of reduced free Cys 

and GHS are approximately 200 - 300 µM and 3 - 7 µM respectively, compared to a 

normal Hcy plasma concentration of 5 – 15 µM.8-9, 44-46  Additionally, Hcy is largely 

invisible to most spectroscopic detectors because it is not a strong chromophore in either 

the UV or visible regions.47  Therefore, quantification techniques typically employ 

chromatographic separations followed by electrochemical detection, derivatization for 

spectrophotometric detection, or mass spectrometry.48-49 

While these techniques generally produce excellent sensitivity and selectivity, they 

are not without disadvantages:  Peak overlap from coelution of cysteinyl-glycine, 

normally present at 35.0 ± 5.8 µM in plasma,44-45 and insufficient column regeneration 

contribute to poor specificity with many chromatographic protocols.50  The electrodes 

used in postcolumn electrochemical detection tend to leach redox mediators, deteriorating 

the measurement cell over time and leading to poor reproducibility.48  Post- or precolumn 

derivatization introduces additional sample processing steps and additional reagents such 

as the chromophore and internal standard.  Furthermore, the instrumentation used for 

these techniques is prohibitively expensive for point of care testing and requires skilled 

personnel to operate.  Sample processing is often labor intensive and time consuming.  

Such low throughput protocols are unsuitable for routine diagnostic applications.51 
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Enzymatic and immunoassays are also available for Hcy determination.  Although 

these assays are less labor intensive, they utilize fragile biomolecules which tend to be 

expensive and problematic to store.49  High concentrations of hemoglobin from 

hemolysis, bilirubin from icterus, or triglycerides from lipemia are known interferences.52  

Inter- and intralaboratory variation has also been reported with these assays.51-55  Ideally, 

inaccuracy from systematic error inherent in a particular assay should be < 10% and 

imprecision for replicate measurements of the sample should be < 5%.51  However, a 

2008 study comparing six different commercially available biomolecule based assays 

confirmed inaccuracies which ranged from -29.3% to 7.2% and imprecisions from 1.7 to 

9.4%.  Five of the six assays determined Hcy concentrations in standardized samples that 

were outside of the NIST-certified range.52 

 
2.2  Selective Hcy detection without chromatography or biomolecule reagents 

There are many chemical probes available for the direct detection of total thiols in 

biological fluids.  Since thiol groups are nucleophilic, the mechanism often involves 

substitution or addition to a chromophore.  Some probes have been reported to react 

selectively with Cys in the presence of other aminothiols.  Cys selectivity is primarily 

attributed to its smaller size for accessing hindered reactive sites, the lower pKa of its 

thiol group (pKa SH: Hcy22 = 10.0, Cys22, 56 = 8.33, GSH56-57 = 9.12), or its ability to 

form kinetically favored five membered heterocycles.58-63  However, very few probes 

have been shown to detect Hcy selectively in the presence of Cys because their chemical 

structures are so similar.  
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Chen et al. reported an iridium based phosphorescent probe which responded 

selectively for Hcy when compared with analytes Cys, GSH, and other amino acids 

(Figure 3).64  While both, Hcy and Cys, formed adducts with the probe, the proposed 

mechanism for selectivity implicated a photoinduced electron-transfer process which 

caused emission quenching for the Cys adduct.  However, the reaction was performed 

with a high ratio of organic solvent (9:1 v/v DMSO:HEPES buffer) which is generally 

not useful for biological samples.  The minor response observed for Cys and use of 200 

equivalents of Hcy to probe would also have a significant impact on accuracy and 

sensitivity when realistic biological concentrations of the analytes are measured.   

 
Figure 3.  Iridium (III) based chemical probe. 
 

Recently, resonance light scattering (RLS) from metal nanoparticles has been 

employed to determine Hcy in biological fluids (Figure 4).  Xiao et al. reported the 

kinetics of Cys induced aggregation of fluorosurfactant-capped gold nanoparticles to be 

rapid at pH 12 while nearly identical for Hcy and Cys at pH 6.5.65  Thus, by changing the 

pH and measuring RLS, Hcy and Cys could be quantified.  The technique was 

demonstrated in urine with good recoveries.  However, the ionic strength of the samples 

can have a dramatic effect on selectivity and gold tends to be an expensive reagent.  Sun 

et al. reported an enhanced RLS signal from Hcy induced assembly of polyaziridine 

silver nanoclusters.66  Ultrafiltration was necessary to eliminate RLS interferences from 



9 
 

serum samples.  Optimal reaction conditions also required heating to 70 ᵒC and the 

unstable silver nanoclusters cannot be stored longer than two weeks.  

 
Figure 4.  (A) Aggregation of fluorosurfactant-capped gold nanoparticles.67  (B) 
Assembly of polyaziridine silver nanoclusters.66 
 

Yu et al. designed a nanoparticle probe using mesoporous silica with polyethylene 

glycol (PEG) covalently bound to the outer surface.68  The silica pores were loaded with 

an anthracene nitroolefin fluorophore (6).  Nirtoolefins undergo Michael addition with 

thiols unselecively, however the PEG acted as a selective barrier which prevented other 

aminothiols from entering the nanoparticle to react with the fluorophore (Figure 5).  The 

probe was demonstrated to be Hcy selective by comparing the fluorescence increase of 

Hcy, Cys, and GSH at 50 µM each.  Some fluorescence increase was observed with Cys 

and GSH.  Since biological concentrations of Cys are ~20 time higher than Hcy, the 

response due to Cys would become significant.  Furthermore, the complexity of the probe 

introduces multiple variables such as particle size and fluorophore loading which would 

need to be controlled in order to achieve good reproducibility. 

 

A B 
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Figure 5.  Mesoporous silica nanoparticle (MSN) loaded with fluorophore 6 and coated 
with PEG.68 
 

Gholami-Orimi et al. have reported the voltammetric determination of Hcy in 

directly in urine and serum using carbon nanotube paste electrodes with chlorpromazine 

as a mediator (Figure 6).69  However, the endogenous Hcy concentrations in the 

biological fluids were below the detection limit.  The serum samples required 50 µM of 

additional Hcy to be added before it could be detected.  The method relied on square 

wave voltammetry, which detects the oxidation or reduction of a species.  Though the 

authors studied interferences from some common sugars and amino acids, they did not 

address possible interference from Cys, GSH, or foreign reducing agents commonly used 

to free Hcy bound by disulfide linkage.          

 
Figure 6.  Chlorpromazine mediator for voltammetric detection of Hcy with carbon 
nanotube paste electrodes. 
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2.3  Selective detection of Hcy by the α-amino carbon-centered radical  
 

Thiol groups are easily oxidized to form thiyl radicals.  In biological systems, 

thiyl radicals are generated a variety of ways (Figure 7):70  Thiyls are most commonly 

formed by radical propagation such as in the hydrogen atom transfer (HAT) from the 

thiol group of GSH to the C4′-centered sugar radical of damaged DNA during the “repair 

reaction.”  Thiyls can also be formed during oxidative stress by ROS such as H2O2, by 

homolytic cleavage of disulfides to produce two thiyl species, or though enzymatic 

oxidation of thiols by some peroxidases.  In turn, the thiyl radicals of aminothiols like 

Hcy, Cys, and GSH can undergo intramolecular HAT reactions to generate an α-amino 

carbon-centered radical.71 

 
Figure 7.  Some common routs to thiyl radical formation:  (1) pH dependent formation of 
thiolate and subsequent oxidation to thiyl.  (2) Oxidation to symmetric or mixed 
disulfides followed by (3) Homolytic cleavage of disulfide.  (4) Reaction with generic 
radical species, •X, or other ROS.  (5) Formation of disulfide radical anion. 

  
The rate of interconversion from the thiyl radical to the α-amino carbon-centered 

radical by intramolecular HAT is influenced by the geometry of the transition state.  Hcy 

forms a kinetically favored 5-membered ring transition state while Cys and GSH form 4 

and 9 membered rings in their respective transition states (Figure 8).  The carbon radical 
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is captodatively stabilized by the geminal amine and carboxylate. 71  With a weakly 

acidic pKa of ~8-10, thiols and their conjugate thiolate anions are relatively stable 

species.  Therefore, the electron deficient thiyl radical is an oxidizing species with 

standard potential E°red = 1.35 ± 0.04 V.72   However, the α-amino carbon-centered 

radical is known to be a reducing species (E°red ≈ -0.55 ± 0.10 V)73 due to iminium ion 

stabilization of the carbocation resulting from the loss of an additional electron from the 

carbon-centered radical.74   

 
Figure 8.  Formation of α-amino carbon centered radical from thiyl radical by 
intramolecular HAT.  Five membered ring transition state of Hcy (1a) is favored as 
compared to the four membered ring of Cys (2a) or nine membered ring of GSH (3a). 
    

In addition to transition state geometry, intramolecular HAT for aminothiols is 

also influenced by pH.  At high pH the amine group is predominately neutral and can 

donate electron density to the α-carbon.  This causes the α-C-H bond to be substantially 

weaker than expected for a tertiary carbon and several kJ/mol lower than the S-H bond.75  

Since the equilibrium of amine to ammonium cation is pH dependent, the activation 

energy barrier for HAT and subsequent concentration of α-amino carbon centered 

radicals is also pH dependent.  Thus the effective reduction potential of the aminothiols 

varies with pH.73 

In 1994, Zhao et al. utilized the moderate electron acceptor methyl viologen 

(MV2+) (E°red = -0.448 V) as a probe to study the carbon-centered radicals of Hcy, Cys, 
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and GSH.71  Originally colorless, MV2+ (9) turns blue from increased absorptions at 398 

and 605 nm produced by the reduced radical cation species, MV•+ (9a) (Figure 9).  The 

authors observed reduction of MV2+ to colored MV•+ by each of the aminothiols without 

apparent selectivity for Hcy.  Under the experimental conditions, pH 10.5, thiolate and 

thiyl species are abundant and readily form reducing disulfide radical anions (E°red ≈ -1.7 

V) irrespective of aminothiol identity (Figure 7, Equ. 5).73  At this pH, facile 

intramolecular HAT and the presence of disulfide radical anions account for the non-

selective reduction of MV2+.  

 
Figure 9.  Mechanism for MV2+ probe:  Oxidative thiyl radical of homocysteine (1a) 
undergoes HAT to form the reducing α-amino carbon-centered radical (1b).  MV2+ (9) is 
then reduced by 1b to produce blue MV•+ (9a) and the α-amino carbocation (1c) which is 
stabilized by iminium formation (1d).    
 

In 2004, the Strongin research group pioneered the direct detection of Hcy in 

plasma using chemical probes by showing a selective color change can be achieved with 

the MV2+ probe at neutral pH under refluxing conditions (Figure 10).76  Selectivity relied 

on the diminished presence of disulfide radical anions and attenuated ability for Cys and 

GSH to undergo intramolecular HAT at lower pH.  A follow-up study was done in which 

a series of bis-substituted viologen probes were refluxed in the presence of Hcy or Cys.73  

As expected, color formation was observed to be pH dependent, corresponding to the 
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reduction potential of the probe.  In general, probes with a less negative reduction 

potential were able to be reduced by the aminothiols at lower pH.  Additionally, Hcy was 

able to reduce the probes at a lower pH than Cys due to the kinetically favored formation 

of the α-amino carbon-centered radical (Figure 11).   

 
Figure 10.  (A) Selective color change, MV2+  MV•+.  Human plasma spiked with 4.0 
mM of each aminothiol, 8.0 mM MV2+, buffered to pH 7.5 with 0.5 mM Tris, and 
refluxed for 5 min.  Inset shows samples before heating.61  (B) Proportional probe 
response to endogenous Hcy concentrations in human serum calibration standards in the 
presence of disulfide reducing agent, tris(2-carboxyethyl)phosphine (TCEP).62 
  
 

 
Figure 11.  Minimum pH at which Hcy or Cys (17 mM) produced colorimetric response 
with various symmetric viologen probes (4.0 mM).73   
 
 
  

 3.79 µM    6.13 µM 13.4 µM 38.7 µM 

A 

B 
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2.4  Novel viologen based probes 
  

While the selective detection of Hcy directly in human plasma was an impressive 

achievement by our research group, the use of heat to promote the reaction was not ideal 

for simple, high-throughput testing or an at-home testing kit.  During our investigation of 

symmetric viologen probes, the probes with less negative reduction potentials were 

observed to have a persistence of color when removed from the heat, a more intense color 

change, and a faster onset of color when the pH of the solution was increased beyond the 

colorimetric endpoint.73  Therefore, it was thought that tuning the redox properties of the 

viologen probe would allow for the selective detection of Hcy without the need for 

reflux.    

At high concentrations, the radical cation species of viologens have been shown 

to associate by cofacial π-stacking to form intermolecular pimers.77  These pimers are 

stabilized by spin paring of the free radicals to a diamagnetic state.78  In addition to 

radical stabilization, cofacial proximity of a radical cation species to a fully oxidized 

dictation species causes the dictation to be more easily reduced.79  By tethering two 

viologen molecules together with a xylene linker, the proximity of the viologens subunits 

can be adjusted via ortho, meta, or para isomers of the linker.  The termini of the bridged 

viologens could then be further functionalized, providing a tuned reduction potential 

amenable to room temperature reduction and the formation of stable radical species. 

The use of a bridged viologen probe was also seen as an opportunity to explore 

possible supramolecular sensing mechanisms. Since the rotatable bonds of the bridge 

allows for a range of open and closed conformations, there is likely to be conformational 
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rearrangement upon reduction.79  Binding of an analyte may also cause a conformational 

change whereby selectivity for a particular analyte would be delimited according to the 

size of the closed conformation cavity.  These conformational changes could be 

monitored by functionalizing the termini of the probe with fluorophores, since short 

range interactions of the fluorophore moieties would result in enhanced florescence or 

quenching.       

Initial screening of bis- benzyl, allyl, propargyl, acetal, carboxylate, and nitrile 

analogs of the bridged viologen probe revealed the nitrile analog to be the most 

promising candidate for the selective room temperature detection of Hcy near 

physiological pH.80  The work herein details the characterization of ortho, meta, and para 

isomers of the bis-nitrile bridged viologen probe, addresses issues with optimization of 

this probe for use with biological samples, and proposes a mechanism for the observed 

reactivity.  Additionally, coumarin was chosen as a convenient fluorophore for 

preliminary studies of supramolecular interactions (Figure 12).   
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Figure 12.  Structures of bridged viologen based probes. 
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Chapter 3:  Results and discussion 
 
3.1  Detection of Hcy with the para-bridged bis-CN viologen probe 
 

Selective detection of Hcy at room temperature was achieved using para-bridged 

bis-CN viologen (pCN, 12).  At pH 8, the probe developed a red color in solution with 

Hcy while solutions containing Cys or GSH remained a similar color to the blank.  In 

Figure 13, the concentrations used for the Cys and GSH controls reflect their normal 

biological concentration in human plasma, while 15 µM of Hcy was used to represent 

mild homocysteinemia. 

 
Figure 13.  Colorimetric selectivity for Hcy in 80.0 mM phosphate buffer pH 8.0 with 
2.00 mM pCN probe.  (A) Photo after 20 min at room temperature.  From left: blank, 
15.0 μM Hcy, 250 μM Cys, 6.00 μM GSH, all thiols combined.  (B) Measured λabs = 540 
nm increased over time.  
 

There were two absorbance peaks observed in the visible region, λabs = 413 and 

540 nm (for behavior at 413 nm see Section 3.3).  Both of the peaks increased with time; 

however, the peak at 540 nm increased at a faster rate in the presence of Hcy (Figure 13-

B).  After several hours, the absorbance increase due to Hcy plateaus and converges with 

the level of absorbance produced by Cys or GSH, making solutions of the aminothiols 

indistinguishable.  Interestingly, probe response at 540 nm in the presence of Cys was 

slightly lower than the response of the blank; though the rate of increase was similar.  

A 

B 
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The presence of Cys may be responsible for the attenuated response observed for Hcy 

when all of the aminothiols are combined. 

  Plasma proteins were also found to interfere with the probe response, causing the 

probe to become intensely colored.  Deproteinization was necessary to distinguish 

samples spiked with Hcy from blank samples.  After deproteinization the probe behaved 

similarly to the non-plasma buffer controls (Figure 14).  There was, however, a slight 

decrease in overall absorbance.  This was attributed primarily to the high salt content of 

plasma (see Section 3.3).     

 
Figure 14.  Selective color change in presence of 25% v/v deproteinized bovine plasma. 
Photo after 20 min at room temperature in 80.0 mM phosphate buffer pH 8.0 with 2.00 
mM pCN probe.  Aminothiols were spiked according to: blank, 15.0 μM Hcy, 250 μM 
Cys, 6.00 μM GSH, all thiols combined. 
 

Calibration curves for Hcy were constructed with Hcy spiked to deproteinized 

plasma.  Accounting for the plasma dilution, the curve in Figure 15-A was spiked with 

normal biological concentrations of Cys and GSH.  This curve appeared linear, though 

the deviation of the replicates was not ideal.  Since the blank was only measured once, 

the limit of detection (LOD) was calculated by regression statistics according to the 

formula LOD = 3 x [standard error of y values] / [slope].  The limit of quantification 

(LOQ) was calculated according to LOQ = 10 x [standard error of y values] / [slope].  For 
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the diluted sample solutions: LOD = 3.40 µM and LOQ = 11.3 µM.  These values 

correspond to LOD = 13.6 µM  and LOQ = 45.3 µM in the plasma after accounting for 

the dilution.  When higher concentrations of deproteinized plasma were used, the 

absorbance measurements were not significantly different.  However, a modest dilution is 

anticipated from sample processing steps needed to remove erythrocytes and proteins if 

this probe is to be used for a point-of-care test kit (see Chapter 8). 

The calibration curve in Figure 15-B was constructed using a slightly higher pH 

buffer, pH 8.3 instead of pH 8.0.  At higher pH, the sensitivity of the probe increases; 

however, the increase in reactivity also leads to an increase in response to reductants 

other than Hcy.  Although the response from Cys and GSH at pH 8.3 is negligible, the 

data for this calibration curve was collected without spiking Cys or GSH in an effort to 

identify the variable most responsible for replicate deviations.  The precision of the 

replicates improved though the data points appear to be slightly non-linear (concave 

down).  Since replicates of the blank were performed, LOD and LOQ were calculated by 

3 x [standard deviation of the blank] and 10 x [standard deviation of the blank].  It should 

be noted that the blank had the largest deviation in the data set, thus the limits may be 

artificially inflated by a potential outlier.  For the diluted sample solutions: LOD = 2.17 

µM and LOQ = 6.10 µM.  These values correspond to LOD = 8.67 µM  and LOQ = 24.4 

µM in the plasma after accounting for the dilution.  Even though the slope of the curve 

was increased by increasing the pH, the sensitivity was not improved enough for the 

LOQ to fall within the range of the curve (for an alternative curve based on initial rates 

see Appendix A, Figure 47).  
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Figure 15.  Calibration curves for pCN probe.  All samples contained 25% v/v 
deproteinized bovine plasma, 2.00 mM pCN probe, and 80.0 mM phosphate buffer.  
Absorbances measured at 540 nm after 30 min.  (for λabs and time point selection see 
Appendix A, Figure 45 and Figure 46)  (A) pH 8.0 with 62.5 μM Cys and 1.50 μM GSH 
spiked to each sample.  LOD = 3.40 µM and LOQ = 11.3 µM.  (B) pH 8.3 without Cys 
and GSH.  LOD = 2.17 µM and LOQ = 6.10 µM.  
 
 
3.2  Ortho and meta isomers of the bridged bis-nitrile viologen 
 
 The ortho-bridged bis-nitrile viologen (oCN) and meta-bridged bis-nitrile 

viologen (mCN) were also found to respond selectively to Hcy under certain conditions 

(Figure 16).  The local maximum λabs for oCN was determined to be 550 nm, while mCN 

and pCN had maximums at 540 nm.  The 10 nm redshift and broader peak gives the 

reduced oCN probe a purple appearance that is unique among the positional isomers.  

The purple color was attributed to skewed intramolecular pimerization of the viologen 

moieties.  Pimerization or ‘π-dimerization’ is the cofacial stacking and interaction of π-

systems.  When two viologen radical cations pimerize (P2), the spins of the SOMO 

electrons pair to form a diamagnetic closed shell without actually forming a bond.  This 

localizes the stabilizes the radicals, resulting in a larger ground state to excited state 

energy gap (ΔE) and λabs blueshift compared to the monomeric radical.  The magnitude of 

ΔE is partially dependent the extent of π-orbital overlap allowed with bridged or 

sterically hindered pimer subunits.  Increasing the distance between viologen moieties or 

A B 
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skewing orbital alignment by reducing the degrees of freedom gives a λabs redshift 

relative to the ideal P2 geometry.  When the π-stacking occurs between an unreduced 

dication and a radical cation viologen (P2
•+), the electrostatic interaction causes 

delocalization of the free electron and a redshift results.77, 81-83 

 

 
Figure 16.  All panels show 200 µM of each aminothiol at pH 7.0  (A) 4.00 mM oCN, 
80.0 mM phosphate buffer, 200 mM NaCl.  (B) 8.00 mM mCN, 80.0 mM HEPES buffer.  
(C) oCN absorbance spectrum at conditions from panel A measured at 22 min.  (D) mCN 
absorbance spectrum at conditions from panel B measured at 30 min. 
 
 Ortho xylene bridged viologens form mostly intramolecular pimers whereas meta 

and para isomers tend to form intermolecular pimers.77  Additionally, pimerization 

occurs preferentially with oCN because the tethered viologen moieties are already 

positioned in close proximity, minimizing translational and rotational components of the 

activation energy barrier.  The acceptor/donor interaction of the oCN pimer is a charge 

A B 

C D 
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transfer complex which stabilizes the radical cation.  Therefore, the pimer is formed more 

easily than an unassociated radical cation.82  This means the first reduction potential of 

tetracationic oCN is less negative than the mCN and pCN isomers.  For a given pH, oCN 

was observed to be more reactive than mCN and pCN.  Figure 16-CD shows similar 

absorbance intensities for oCN and mCN; however, the spectrum for oCN corresponds to 

an earlier time point and half the probe concentration.  Although oCN possessed 

increased reactivity and both isomers appeared to have an intense, selective response to 

Hcy, the optimization of these probes did not reveal reaction conditions at which a useful 

LOD could be obtained. 

 
3.3  Effects of reaction parameters 
  

There was a decrease in reactivity of the bridged bis-nitrile viologen probes as 

ionic strength was increased by the addition of NaCl (Figure 17-A).  Similarly, Kertesz et 

al. observed a decrease in Cys thiyl radical when ionic strength was increased.84  The 

authors rationalized this observation by invoking counter ion clusters which surround 

charged molecules in solution, thereby retarding their interaction and ability to generate 

radicals.  This diffusion limiting explanation is only partially satisfying for the bridged 

viologens since the response of the probe in solution without aminothiols (designated as 

‘blank’) also decreased.  Other considerations may include increased radical quenching 

and geminal recombination with the increased dielectric nature of the solution and an 

increase in the dissociation constant of viologen pimers by counter ion stabilization of the 

monomers.85  Interestingly, the probe response due to GSH was more affected by ionic 

strength than the other aminothiols.  It appeared that controlling the ionic strength would 



24 
 

be useful to block interference from GSH and promote selectivity towards Hcy; however, 

the response due to GSH at biological concentrations (3 - 7 µM in plasma) was minimal 

with the pCN probe under optimal conditions. 

 

 
Figure 17.  Effect of ionic strength and buffer identity.  (A) 4.00 mM oCN, 200 µM of 
each aminothiol, 80.0 mM phosphate buffer pH 7.0, λabs = 550 nm, after 30 min.  (B) 8.00 
mM mCN, 200 µM of each aminothiol, 80.0 mM buffer pH 7.0, λabs = 540 nm, after 30 
min.  
 

The bridged bis-nitrile viologen probes also behaved differently in different 

buffers.  Three types of buffers were examined: anionic phosphate, zwitterionic HEPES, 

and cationic Tris.  For mCN, it was found that HEPES buffer provided the best selectivity 

towards Hcy (Figure 17-B), while oCN and pCN produced better results in phosphate 

buffer.  For all three isomers, a dampening of probe response was observed with 

increasing concentration of phosphate buffer, presumably due to the accompanied 

increase in ionic strength.  Higher concentrations of Tris buffer had the opposite effect, 

causing an increase in the probe response.  However, consistently poor selectivity for 

Hcy was observed when Tris was used.    

Surfactants were also investigated as a way to remove protein interference by 

denaturing them or by sequestering the probe from interferences.  The observations 

attributed to the formal charge of the buffers, did not hold with surfactants.  The anionic 

A B 
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surfactant, SDS, caused the probe to turn purple and precipitate from solution.  Neutral 

surfactant, Tween 80, caused an increase in probe response and loss of selectivity.  

Cationic surfactant, CTAB, did not appear to affect the probe up to the highest 

concentration tested, 10 mM.  The addition of CTAB to plasma samples did not block 

interferences. 

One possible explanation for the variability observed with these additives is the 

extent to which they solvate the probe along its reaction coordinates.  As a tetra-cationic 

species, the unreduced probe is soluble in an aqueous medium.  Upon reduction, the 

charge decreases and the probe becomes increasingly less soluble.  Fully reduced, neutral 

bridged viologens precipitate completely from aqueous solutions.77  A reduction in 

solubility due to the loss of charge is enthalpically and entropically disfavored, causing 

an increase in the energy of the activation complex.86  By increasing the organic character 

of the medium, the activation complex is stabilized and reduction of the probe occurs 

more readily.  This difference in solvation energy of the activation complex has been 

attributed to the increasingly less negative reduction potential observed for MV2+ when 

the dielectric constant of the solvent was decreased by adding ethanol.87  

The effect of adding water miscible organic solvents was investigated using 

acetone, methanol, ethanol, isopropanol (IPA), dimethyl sulfoxide, dimethylformamide, 

tetrahydrofuran, dioxane, and acetonitrile.  As expected, the probe response increased 

proportionally to the ratio of organic solvent used, with only subtle differences in 

intensity and selectivity.  In strictly aqueous solutions buffered at pH ≤ 6.0, none of the 

bridged bis-nitrile viologen probes produced notable increases of absorbance in the 
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visible region.  However, with the addition of organic solvent, the probes would respond 

below pH 6.  At low pH and with added organic solvent, Cys became a prominent 

interference.  There was no discernible difference between protic and non-protic solvents; 

though probe reactivity was observed to increased according to the trend methanol > 

ethanol > IPA.         

 
Figure 18.  Samples with organic solvent.  (A) Selective color change for Hcy after 20 
min in 80.0 mM phosphate buffer pH 8.0 with 25% v/v deproteinized plasma, 15% v/v 
IPA, 0.500 mM pCN probe.  From left: blank, 15.0 μM Hcy, 250 μM Cys, 6.00 μM GSH, 
all thiols combined.  (B) λabs = 540 nm in 80.0 mM phosphate buffer pH 8.0 with 15% 
IPA and 0.500 mM pCN probe. 

 
 When high concentrations of organic solvent were used the samples would 

become completely opaque with color, obscuring any potential selectivity.  Visual 

selectivity for Hcy in 15% IPA became discernible again when the pCN probe 

concentration was decreased by a factor of four (Figure 18-A).  Although the colors of 

the vials appear similar to those in Figure 14, there were some distinct differences in the 

absorbance spectra.  The sample designated by ‘all’ contained a mixture of Hcy, Cys, and 

GSH at concentrations respective of those used for the individual analyte samples.  

According to measurements of the diagnostic peak at 30 min, the species responsible for 

absorbtion of yellow-green light at λabs = 540 nm and the appearance of red colored 

solutions was present at the same concentration in the sample with 6 µM GSH as 

A 
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compared to the sample that contained ‘all’ the aminothiols together (Figure 18-B).  This 

discrepancy between the observed color and measured absorbance has to do with a 

decrease in the rate of absorbance increase at 413 nm relative to 540 nm (Figure 19).  An 

equilibrium shift away from species responsible for the peak at 413 nm was attributed, in 

part, to increased pKa values associated with the use of less polar solvents (Ka of probes 

discussed in Section 4.2).88  The peak at 413 nm was absorbing violet light and 

contributed to the appearance of yellow colored solutions.  The GSH samples in IPA 

appeared visibly yellow after 30 min because the peak at 413 nm dominated, while this 

peak was less prominent for the ‘all’ sample.  Increased interference at λabs = 540 nm 

from Cys and GSH in the presence of organic solvent was also observed (Figure 20).  

This is most likely due to the decreased probe to analyte ratio and increased radical 

disproportionation of the analytes prior to interaction with the probe.     
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Figure 19.  Effect of adding organic solvent.  (A) Spectrum of 2.00 mM pCN in 80.0 mM 
phosphate buffer pH 8.0 with 15.0 µM Hcy.  Time frame: 0 - 30 min with a scan every 2 
min.  (B) λabs = 413 nm corresponding conditions from panel A.  (C) Spectrum of 0.500 
mM pCN in 80.0 mM phosphate buffer pH 8.0 with 15.0 µM Hcy and 15% v/v IPA.  
Time frame: 0 - 30 min with a scan every 2 min.  (D) λabs = 413 nm corresponding to 
conditions from panel C.   
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Figure 20.  Effect of Cys and GSH concentrations, with and without organic solvent.  All 
panels: λabs = 540 nm at 30 min in 80.0 mM phosphate buffer pH 8.0 with 15 µM Hcy 
constant where indicated.  (A) 2.00 mM pCN probe with Cys concentration varied.  (B) 
2.00 mM pCN probe with GSH concentration varied.  (C) 0.500 mM pCN probe in 15% 
IPA with Cys concentration varied.  (D) 0.500 mM pCN probe in 15% IPA with GSH 
concentration varied.       
 
 
  

A B 
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Chapter 4:  Mechanism of the bridged bis-nitrile viologens 
 
4.1  Non-bridged control experiment 
 
 To assess the way bridging the viologens effected reactivity, a non-bridged 

asymmetric viologen was synthesized with methylene nitrile and benzyl substituents 

(Figure 21).  The non-bridged, benzyl-nitrile-viologen (BNV, 16), showed similar 

reactivity as pCN in regards to producing absorbance peaks at 413 nm and 540 nm.  BNV 

also produced the familiar red color in the presence of Hcy under the same conditions as 

pCN, though twice the concentration of BNV was necessary to produce comparable color 

intensity.   

 
Figure 21.  Structure of bridged pCN compared with non-bridged BNV. 
 
 

 
Figure 22.  Comparison of pCN and BNV reactivity over 12 hrs.  Measurements made 
every 15 min.  Samples in 80.0 mM phosphate buffer pH 8.0 with 15% v/v IPA.  Probe 
concentrations: 1.00 mM pCN or 2.00 mM BNV.  15.0 µM Hcy and bk = blank where 
indicated.  (A) λabs = 413 nm.  (B) λabs = 540 nm.   

A B 



31 
 

 
 When absorbances were measured over 12 hours, BNV revealed a slightly 

different reaction profile than pCN (Figure 22).  The rate of absorbance increase at 413 

nm was slower for BNV compared to a stoichiometric equivalent of pCN.  BNV also had 

a slower rate of absorbance increase at 540 nm when no Hcy was present while samples 

with Hcy had nearly identical absorbance rates at 540 nm.  Interestingly, both probes 

show a decline in absorbance at 540 nm after reaching a maximum.  At 413 nm, the 

absorbance reaches a maximum, but does not decline.  Samples left on the lab bench 

longer than 36 hrs appeared uniformly yellow/brown from the diminished absorbance at 

540 nm and persistence of the absorbance at 413 nm. 

 Another difference between pCN and BNV was the measured pKa values.  When 

a solution of BNV was titrated with dilute NaOH, a buffering region was observed which 

corresponded to a pKa of 8.38.  When pCN was titrated there were two regions where the 

pH remained constant with the addition of base, pKa1 = 6.83 and pKa2 = 7.92 (see 

Appendix A, Figure 49 and Figure 50).  Increasing cofacial interaction between viologen 

moieties by holding them in close proximity to each other with a xylene bridge is known 

to enhance pimerization.89  Tethering increases the local positive charge density and 

facilitates charge distribution through pimerization.  Therefore, the electron withdrawing 

property of the pyridine rings was increased for the bridged probe, substantially 

weakening the methylene C-H bond relative to the non-bridged probe.   
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4.2  Acidic protons of the bridged probes 
 
 The pH dependent reactivity and selectivity of non-bridged N-methylene 

functionalized viologens was originally attributed to the reduction potential of the probe 

and pH dependent formation of reductive analyte radical species.73  However, the 

reactivity of these types of probes may be due, in part, to labile hydrogens vicinal to 

electron withdrawing groups.  Figure 23 shows gradual deuterium exchange of hydrogens 

at peak ‘b’ when samples of the pCN probe were left in D2O.  This indicated the presence 

of acidic hydrogens on the probe and a potential site of reactivity.  Radicals may be 

generated by oxidation, reduction, or homolytic cleavage.  If the probe undergoes a 

typical acid/base proton transfer, then a conjugated non-radical species would result.  

This species may be responsible for the absorbance at 413 nm which makes the solution 

appear yellow.  If the labile hydrogen is removed by intermolecular HAT, a radical 

species is produced which absorbs 540 nm and causes the solutions to appear red (Figure 

24).83      
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Figure 23.  1HNMR of pCN showing deuterium exchange in D2O.  (A) Methylene 
hydrogens immediately after preparing NMR sample.  (B) Methylene hydrogens after 1 
hr.  (C) Structure of pCN showing peak assignments.    
 

 
Figure 24.  Modes of cleavage for labile hydrogen.  Here ‘•X’ is any radical species.  
 

In the case of MV2+ (9), solutions were heated to reflux in order to transfer and 

sustain a radical on the viologen probe.  Oxygen is known to compete with MV2+ in 

a 

b   a b   a 

b 
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radical reactions and quench MV•+, so it was thought that reflux was required to drive 

dissolved oxygen from solution.90-91  For the bridged bis-nitrile viologen radical species, 

such as 12a, there is increased stabilization of the radical by delocalization in the 

extended conjugation of the π-system.  This resonance stabilization contributes to 

reactivity at room temperature and persistence of the radical species.  Furthermore, when 

the sample solutions were enriched with oxygen, pCN reacted at a faster rate with Hcy.  

Conversely, when argon was aspirated through the solutions to purge oxygen, pCN 

reacted at a slower rate with Hcy (see Appendix A, Figure 51).  This indicated oxygen 

was acting as a reactant or a radical mediator rather than an inhibitor, suggesting a more 

complex mechanism than direct reduction of the probe by the α-amino carbon centered 

radical.   

 To assess the involvement of the α-amino carbon centered radical, other thiol 

reducing agents were tested as controls (Figure 25).  2-Mercaptoethanol (BME, 17) and 

3-Mercaptopropionic acid (MPA, 18) were chosen because their pKa values for the thiol 

group are similar to Hcy (pKa SH: Hcy22 = 10.0, BME92 = 9.7, MPA92 = 10.3) and they 

are not able to produce a captodatively stabilized carbon centered radical.  The strong 

probe response produced by Hcy in comparison to BME and MPA implicated the α-

amino carbon centered radical of Hcy as an augmenting factor.  However, the response 

observed with BME and MPA in comparison to the blank suggested radical species 

generated by the thiol group, such as thiyl radicals and radical disulfide anions, were 

propagated to produce the red colored radical species of the probe.        
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Figure 25.  Non-amino thiol controls.  Structures from left: Hcy pKa = 10.0; 2-
Mercaptoethanol  (BME) pKa = 9.7;  3-Mercaptopropionic acid  (MPA) pKa = 10.3.  
Photo: 2.00 mM pCN probe in 80.0 mM phosphate buffer pH 8.0 with 50.0 µM of the 
indicated thiol after 20 min. 
 
 
4.3  Electron paramagnetic resonance spectroscopy 
 

Electron paramagnetic resonance (EPR) spectroscopy was used to confirm radical 

propagation from Hcy to the pCN probe.  The magnetic moment of a free electron is 

called the spin g-factor (g).  If paramagnetic electrons are present, the value of g 

calculated from EPR spectral measurements should be near the accepted magnetic 

moment of a free electron (ge).  The current value is ge = 2.0023193043617 ± 1.52 ppt.93  

The EPR spectra for the reaction of pCN with Hcy was measured and an unpaired 

electron was found as expected, with g = 2.002301 (Figure 26-B).  A single isotropic 

signal was measured, denoting symmetry in the electron wave function.94  The signal had 

a broad peak to peak linewidth (Δβ) of ~ 10 G. 

 More interestingly, pCN without Hcy produced the same EPR signal, but with 

greater amplitude.  The amplitude is proportional to the concentration of resonating 

paramagnetic species in the sample.94  Therefore, the pCN probe was able to generate 

radicals in the absence of a reducing agent such as Hcy.  Furthermore, the concentration 

of radical species represented by the EPR spectra was apparently diminished by the 

presence of Hcy.  Sun and Yang observed a similar broad, single isotropic signal and 

attributed it to the localization of electrons in P2 type pimerization while assigning 
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spectra with hyperfine coupling to P2
•+ and monomeric radical species.82  However, P2 

type pimerization is largely undetectable with standard EPR spectroscopy methods 

because the spins of the two interacting electrons pair to become diamagnetic.81, 83  Single 

isotropic signals with large Δβ and unresolved hyperfine interactions can result from 

signal averaging of multiple paramagnetic species interacting with multiple nuclei.94  The 

diminished signal amplitude of pCN radicals in the presence of Hcy actually 

corresponded to an increase in radical species and subsequent formation of EPR silent P2 

type pimers.  Radicals were not observed at pH 6.0, providing further evidence that 

cleavage of the probes’ labile hydrogens may play a role in the reaction mechanism 

(Figure 26-C).                       

 
Figure 26.  EPR signals.  120 scans (~20 min) using x-band frequency ν = 9.754434 GHz 
and Hall Field β0 = 3480.651 G, in 100 mM phosphate buffer.  (A) 20.0 mM pCN at pH 
8.0, g = 2.002312, Δβ = ~10 G.  (B) 20.0 mM pCN with 20 mM Hcy at pH 8.0, g = 
2.002301, Δβ = ~10 G.  (C) 20.0 mM pCN at pH 6.0.  (D) 20.0 mM Hcy at pH 8.0.    
 

A B 

C D 
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4.4  1HNMR of reaction products 
 
 1HNMR of the reaction between pCN and Hcy revealed shifting of the viologen 

hydrogens upfield (Figure 27).  This was consistent with reduction of the viologen 

subunits since the addition of electron density would lead to greater shielding and a 

diamagnetic shift.  Convergence of the interior hydrogens ‘b’ and ‘c’ indicated 

delocalization of the π-system across the originally isolated pyridine rings.  Hydrogens at 

positions ‘a’ and ‘d’ did not fully converge due to asymmetry of the substituents.    

 

 
Figure 27.  1HNMR of viologen hydrogens shifting.  80:20 D2O:H2O with 100 mM 
phosphate buffer pH 8.0 and DSS standard.  Blue line: pCN probe only.  Red line: 
reaction of 20.0 mM pCN with 20.0 mM Hcy after 4 hr.   
 

a      b     c     d 

a c b d 

pCN 
pCN + Hcy 
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Figure 28.  1HNMR of potential Hcy oxidation products.  80:20 D2O:H2O with 100 mM 
phosphate buffer pH 8.0 and DSS standard.  From bottom:  (lane 1) homocysteic acid,  
(lane 2) homocysteinesulfinic acid,  (lane 3) homocystine,  (lane 4) Hcy control,  (lane 5) 
reaction of 20.0 mM pCN with 20.0 mM Hcy after 4 hr.   
   
 1HNMR spectra of the available Hcy oxidation products were compared with the 

Hcy peaks of the reaction mixture (Figure 28).  Homocystine (28), homocysteinesulfinic 

acid (25), and homocysteic acid (26) were ruled out as potential reaction products since 

they did not produce the same shifts.  Homocysteine thiolactone (29) (not shown) was 

also rule out by comparison of the 1HNMR peaks.  A notable feature in the 1HNMR 

spectrum of the pCN and Hcy reaction mixture is the presence of the α-amino carbon 

hydrogen at 4.3 ppm.  The peak for the α-amino carbon hydrogen in the reaction mixture 

integrated for a full hydrogen relative to the β and γ positions which integrated for two 

hydrogens each.  If the probe was being reduced by the α-amino carbon centered radical 

a 

b c c b a 

DSS 

28 

25 

26 
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of Hcy, the resulting α-amino carbocation of Hcy (1c) would be stabilized by resonance 

to form the Hcy iminium species (1d) and a hydrogen would not be present at the α 

position.  Since this is not the case, it seems unlikely that pCN was reduced by electron 

transfer directly from the α-amino carbon centered radical.   

Instead, Hcy may facilitate radical propagation in general by interconversion of 

the of thiyl radical (1a) with the α-amino carbon centered radical (1b).  Sterics and 

resonance stabilization deter geminate recombination and radical disproportionation, 

leading to an increase in the residence time of the carbon centered radical.  The uniquely 

facile intramolecular HAT of Hcy provides a convenient rout to “store” and “regenerate” 

the thiyl radical (Figure 29).  This allows greater diffusion and accumulation of radical 

species in solutions that contain Hcy.  

 
Figure 29.  Interconversion of Hcy analyte species to reactive thiyl radical (1a) and 
thiolate anion (1e).   
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4.5  Mechanism of the bridged bis-nitrile viologen probes 
 
 Electron deficient viologen dication moieties will readily accept an electron by 

reduction.  The mechanism of Hcy detection based strictly on reduction of the probe is 

represented by the probe species sequence 12 → 12c → 12d where 12c is the diagnostic 

species with λabs = 540 nm (Figure 30).  If 12c is a required intermediate en route to the 

fully oxidized yellow species, 12d; then the prevalence of 12d should also correspond to 

the reduction potential of analytes.  However, the faster rate of increase at λabs = 413 nm 

observed with blank solutions of probe compared to solutions with aminothiol present 

contradicted this mechanism (Figure 19-B).   

 The viologen dication moieties will also accept electrons from neighboring atoms 

provided they can be delocalized from the donor.  Heterolytic cleavage of the methylene 

C-H bond by anions in solution produces an iminium intermediate that conjugates the 

viologen with the nitrile substituent.  The new sp2 center, positioned between two 

electron withdrawing groups, is electrophilic and susceptible to nucleophilic addition.  A 

variety of transient anions in solution can interact with the probe as a base (:B-) or as a 

nucleophile (:Nu-).  Since the pKa of the Hcy thiol group is just 2 pH units greater than 

the buffered reaction solution (Hcy S-H pKa = 10.0), the Hcy thiolate anion (1e) is an 

ideal candidate to drive the equilibrium of these reactions towards products.  However, 

anion interactions with the probe following the sequence 12 → 12b → 12f do not 

produce a radical species with λabs = 540 nm.  Products 12b and 12f are expected to 

appear yellow from absorptions near 400 nm due to the π-system conjugation.  Under 

certain reaction conditions, peak overlap in this region of the spectrum could be discerned 
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and an additional absorbtion peak was found with max λabs = 370 nm (see Appendix A, 

Figure 48). 

 Homolytic cleavage of the probe C-H bond has the potential to result in the red 

radical probe species (12 → 12a) or disproportion the probe radical to the yellow species   

(12c → 12b).  Similar to reactivity with anions, a variety of transient ROS in solution can 

propagate a radical to the probe by HAT.  However, the propensity for thiols to form 

relatively stable thiyl radicals makes the thiyl radical a convenient agent for HAT from 

the probe.  Thiol pKa values for Hcy, Cys, and GSH (pKa = 10.0, 8.33, and 9.12 

respectively)22, 56-57 give the order of thiolate anion/thiol ratio for theses analytes in 

solutions buffered at pH 8.0 as Cys > GSH > Hcy by the Henderson–Hasselbalch 

equation.  This relationship, interpreted as order of thiolate anion stability, insinuates a 

slower rate of thiyl radical formation for Cys because the sulfur atom of Cys is more 

effective at withdrawing electrons than GSH or Hcy.95  The comparatively higher rate of 

thiyl radical (1a) formation for Hcy follows the same argument.  Facile intramolecular 

HAT for Hcy provides additional pseudo-stability for Hcy radical species by partitioning 

the residence time of the analyte radical between the thiyl radical (1a) and resonance 

stabilized α-amino carbon radical (1b).  The relative stability of 1b increases analyte 

radical half-life and the ability to regenerate the 1a radical from ancillary ‘storage’ results 

in a greater concentration of reactive thiyl species for Hcy.  

 Besides disproportionation of the probe, contributions to the decline of λabs = 540 

nm observed over extended periods of time can come from the addition of a radical 

species, such as the Hcy thiyl radical (1a), which results in radical termination (12a → 
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12g).  Conversely, adduct formation by radical addition can result in an increase of λabs = 

540 nm by reactions of the form (12b → 12e).  Various combinations of radical addition, 

nucleophilic addition, redox interactions, and proton transfers are feasible which would 

account for the observed absorbance changes as the reaction progresses.  A singular 

reaction pathway is unlikely as speciation would be governed by equilibria and highly 

dependent on the reaction conditions.  The relationship between mixed competitive-

consecutive and parallel reactions depicted in the flow diagram of Figure 31 summarizes 

the dynamic evolution of probe products; however, only one arm of the bridged probe is 

represented.  As one side of the molecule reacts, the chemistry of the local environment 

changes and effects reactivity on the opposing side.  
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Figure 30.  Reactive site of N-substituted-N’-(cyanomethyl)viologen probes.  
 

The reaction mechanisms in Figure 30 are represented with forward reaction 

arrows and insinuate bimolecular transitions states.  However, equilibrium and the 

possibility of unimolecular transitions states such as those of E1 and Sn1 type reactions 

are also implied.  Since the pKa of the probe is lower than the pH of the buffered reaction, 

some uncoordinated proton dissociation would be expected.  See Appendix A, Figure 52 

for data indicating the rate of increase at λabs = 413 nm is approximately first order with 

respect to pCN.  This reinforces the likelihood of a unimolecular transition state en route 

to the product(s) responsible for λabs = 413 nm. 
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Figure 31.  Dynamic evolution of probe-analyte adducts.  Colored boxes assign the 
predicted contribution of that compound to the perceived solution color and measured 
λabs.  Red box: λabs ≈ 540 nm.  Yellow box: λabs ≈ 400 nm. 
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4.5  Mass spectra of reaction products 
 
 1HNMR data discussed in Section 4.4 indicated the reaction between pCN and 

Hcy had gone to completion after 4 hours, resulting in a conspicuous major product for 

the pCN probe and a lone product for the fully converted Hcy analyte.  It was thought 

that the large downfield shift of the hydrogen α to the amine of Hcy could have been 

caused by oxidation of the amine to an electron withdrawing nitrosamine (18) or nitro 

group (22).  However, ions of these Hcy products as well as the other potential oxidation 

products shown in Figure 32 were not found in the mass specta of the reaction mixture.   

Mass spectra of the reaction were obtained by two different ionization methods, 

electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI).  

Refer to Section 8.3 for method details.  Peaks in the spectra that were close to potential 

products are listed in Table 1.  A peak found in the ESI spectrum at 196.08 Da was close 

to the [M-H+2Na]+ ions of oxidation products 21, 22, or 23 which were calculated to be 

196.01 Da.  However, better mass accuracy is obtained from probe fragment ions 38, 39, 

and 40 with m/z = 196.08, 196.09, and 196.09 Da respectively (Figure 33).  There were 

also several peaks with masses close to various ions of oxidation product 27: [M+H+K]2+ 

138.02 Da calculated, 138.08 Da by ESI; [M+2K]2+ 156.50 Da calculated, 157.06 Da by 

ESI; [M+Na]+ 259.07 Da calculated, 259.10 Da by ESI, 259.14 Da by MALDI.  

However, these peaks also had better mass accuracy with probe fragments 32, 33, 34, 44, 

and 45 with m/z = 138.06, 157.06, 157.08, 259.11, and 259.12 Da respectively.  

Compound 29 had an ion mass similar to a peak found in the spectra: [M+2Na]2+ 172.51 

Da calculated, 172.07 or 172.93 Da by MALDI.  Probe fragments 36 and 37 with 
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calculated m/z = 172.06 and 173.07 Da would more accurately account for these peaks.  

Peaks found which were similar to those expected for ions of oxidation products 26 and 

28 were also listed in Table 1, though neither was considered to represent the Hcy 

reaction product based on previous elimination by 1HNMR comparisons (Figure 28). 

 

 
Figure 32.  Structures of Hcy oxidation products. 
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Table 1. Various salts and ionization states of Hcy oxidation products with potential mass 
spec signal.  Calculated m/z for ionic species indicated by parenthesis.  NF = not found;  
E = peak found in MS obtained by electrospray ionization;  D = peak found in MS 
obtained by Matrix-assisted laser desorption/ionization.  Rows that are shaded correspond 
to compounds which have been ruled out as reaction products based 1HNMR.  

# Mass [M+H]+ [M+K]+ [M-H+2K]+ [M+Na]+ [M-H+2Na]+ [M-H+K+Na]+ 

1 135.04 
NF 

(174.00) 
173.98 E NF NF NF NF 

19 117.03 NF      
20 149.01 NF NF NF NF NF NF 
21 151.03 

NF NF NF NF 
(196.01) 
196.08 E  NF 

22 151.03 
NF NF NF NF 

(196.01) 
196.08 E  NF 

23 151.03 
NF NF NF NF 

(196.01) 
196.08 E  NF 

24 165.01 NF NF NF NF NF NF 
25 167.03 NF NF NF NF NF NF 
26 183.02 

NF NF 
(259.95) 
260.15 D NF NF NF 

27 236.08 

NF NF NF 

(259.07) 
259.14 D 
259.10 E NF NF 

28 268.06 
NF NF NF 

(291.04) 
291.15 E NF NF 

29 300.05 NF NF NF NF NF NF 
 

# [M+2H]2+ [M+H+K]2+ [M+2K]2+ [M+H+Na]2+ [M+2Na]2+ [M+K+Na]2+ 

27 

NF 
(138.02) 
138.08 E 

(156.50) 
157.06 E NF NF NF 

28 

NF NF 
(172.49) 
172.93 D NF 

(156.52) 
157.06 E NF 

29 

NF NF NF NF 

(172.51) 
172.07 D 
172.93 D NF 

 
The only ion peak in Table 1 that did not have a corresponding probe fragment 

with better mass accuracy belonged to non-oxidized Hcy (1) [M+K]+ 174.00 Da 

calculated, 173.98 Da by ESI.  This signal had low relative abundance and could have 

been produced by fragmentation during analysis.  Most importantly, the ions responsible 

for the base peaks of both spectra (314.09 Da by ESI and 314.12 by MALDI) was 

determined to arise from the parent ion 49 and related isoelectric tautomers such as ion 



48 
 

48, each with m/z = 314.12 Da.  A comprehensive list of ions identified in the mass 

spectra can be found in Appendix A, Table 3 with associated structures in Figure 53 and 

Figure 54.  These ions confirm the identity of the Hcy reaction product shown in Lane 5 

of Figure 28 as a thioether adduct with the pCN probe.  The 1HNMR peak shifts for the 

Hcy adduct, particularly the downfield shift observed with the α-amino proton, was 

attributed primarily to the extreme chemical environment localized to the probe with 

some inductive contributions through the thioether linkage.  Ions with distinct m/z 

corresponding to Hcy adducts bonded by a secondary amine, ether, ester, or at the 

carbonyl carbon were not found in the mass spectra.      
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Figure 33.  Structures of selected ions identified in the mass spectra of the pCN and Hcy 
reaction mixture (for additional structures see Appendix A, Figure 53, Figure 54, and 
Table 3). 
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Chapter 5:  Preliminary survey of bridged bis-coumarin viologens 
 
 Analogs of the bridged viologen probe were synthesized by replacing the 

methylene-nitrile substituent with 3-acetylcoumarin (Figure 34).  Coumarin is a common 

chromophore scaffold used in fluorescent brighteners and laser dyes due to its tunable 

absorbance and fluorescence properties.96  Molecular modeling showed ordered stacking 

of the two fluorescent acetylcoumarin moieties for the para-bridged bis-coumarin 

viologen (pAC, 15) in its lowest energy conformation.  The stacked fluorophore were 

predicted to quench each other in this conformation due to the small separation, ~3.3 Å.  

Analyte interactions with the probes would increase the distance between the 

fluorophores and lead to changes in the fluorescence spectrum.  These conformational 

changes could be induced by supramolecular interactions, such as the binding of GSH 

within the cavity of pAC, or by reactions with the probe, such as the straightening and 

rotation of pyridine rings upon reduction of the viologens.    

 

Figure 34.  Structures of the bridged bis-coumarin viologen probes.  Positional isomers: 
oAC (13) = ortho, mAC (14) = meta, and pAC (15) = para.   
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 Fluorescence excitation (λex) and emission (λem) wavelengths for coumarins 

similar in structure to the acetylcoumarin substituent used here have been reported near 

λex/λem = 320/440 nm.97  Each of the bridged bis-coumarin viologen probes were found to 

fluoresce at λex/λem = 345/460  nm in the absence of aminothiol analyte.  This blueshifted 

λex/λem was assigned to the acetylcoumarin substituents and monitored for spectral 

changes with the addition of aminothiol analytes.  Preliminary trials using mAC or pAC 

in phosphate buffer with analytes Hcy, Cys, and GSH did not result in a selective change 

in intensity at λem = 460 nm for any particular analyte.   

 
Figure 35.  Fluorescence of the acetylcoumarin was quenched with isomer oAC.  EEM 
spectra of 50.0 µM probe after 1 hr in 80.0 mM phosphate buffer at pH 6.0 without 
analyte.  λem intensity did not change significantly over time.  Max λex/λem = 345/460 nm.  
(A) oAC.  (B) mAC.  (C) pAC.  (D) 2D view of mAC topology. 
 

For the oAC probe fluorescence at λex/λem = 345/460 nm was significantly 

quenched, regardless of the presence of aminothiols (Figure 35).  A survey of λex revealed 
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fluorescence at λex/λem = 405/500 nm that was found to have pH dependent selectivity for 

Cys (Figure 36).  Probes mAC and pAC did not fluoresce at these wavelengths under the 

same conditions.  However, a selective fluorescence response in the presence of Hcy was 

found for mAC at λex/λem = 485/510 nm.  With mAC, the rate of increase at λem = 510 nm 

in the presence of Hcy did not abate during the first hour of data collection, requiring 

more than 12 hrs to level-off (Figure 37). 

 
Figure 36.  λex/λem = 405/500 nm. 50.0 µM oAC in 80.0 mM phosphate buffer with 200 
µM of the indicated thiol.  (A) λem = 500 nm at pH 8.0 over 35 min.  (B) pH dependent 
response to analytes at 35 min time point.  Figure 56 in Appendix A provides an example 
of the topography for this peak.  
 

 
Figure 37.  λex/λem = 485/510 nm.  50.0 µM mAC in 80.0 mM phosphate buffer pH 6.0 
with 200 µM of the indicated thiol.  (A) λem = 510 nm over 12 hrs.  (B) Surface plot of 
Hcy at 12 hr point.  See Appendix A, Figure for surface plots of the blank, Cys, and 
GSH. 
 
 Curiously, similar UV/Vis absorbance spectra were observed for all three 

positional isomers of the probe. In phosphate buffer at pH 8.0 the absorbances were 

A B 

A B 

λem [nm] 
λex 



53 
 

essentially stable over the course of an hour; only negligible deviations were measured.  

The strongest absorbance was increasing over time with a max λabs =  260 nm.  There was 

an isobestic point at 300 nm which enunciated a shoulder vanishing from side the main 

peak.  Isobestic points at 405 and 452 nm marked the inflections of a small increase at 

λabs =  420 nm and another decrease at λabs =  540 nm.  Figure 38 illustrates the minor 

changes in absorbance observed for oAC (with and without Cys analyte) under the same 

reaction conditions that produced a fluorescence response for Cys  at λex/λem = 405/500 

nm nearly 50 times greater than the probe without analyte.  Contrary to what would be 

expected, λex = 405 nm for oAC is at a low absorbance isobestic point in the UV/Vis 

spectra.  Although, absorbance in this area was observed to increase rapidly with the 

bridged nitrile analogs (Figure 19). 



54 
 

 
Figure 38.  Absorbance spectrum of 50.0 µM oAC in 80.0 mM phosphate buffer pH 6.0 
over 1 hr with a scan every 2 min.  Expanded views retain the same label:  (A) without 
analyte.  (B) with 200 µM Cys. 
 
 Another interesting aspect of the absorbance spectra of the bridged bis-coumarin 

viologens was the decrease at λabs = 540 nm that corresponded to λabs of the diagnostic 

peak for the bridged bis-nitrile viologen probes.  Furthermore, the bridged bis-nitrile 

viologen probes were found to fluoresce at λex/λem = 480/510 nm.  This fluorescence 

corresponded to λex/λem of the mAC probe, implicating the viologen moieties as the 
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fluorophore in mAC and providing a possible explanation for the selective response 

observed with Hcy (Figure 57).   

Coumarin chromophores are known to act as radical initiators and 

photosensitizers.96, 98-100  Since λem ≈ 510 nm for the bridged bis-nitrile viologens, mAC, 

and oAC; the fluorescence of oAC might be explained by photosensitization of the 

viologen by acetylcoumarin.  A charge transfer mechanism of fluorescence from the 

acetylcoumarin chromophores to the viologen of oAC before emission of a photon is 

supported by the quenching of acetylcoumarin fluorescence at λem = 460 nm, just 20 nm 

away from λex observed for the viologens.  Close spatial arrangement of the oAC probe 

arms might allow this energy gap to be overcome.   
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Chapter 6:  Conclusions 
  

Fluorometric and colorimetric responses of the bridged viologen probes to 

aminothiol analytes are dependent on reaction conditions such as pH, buffer identity, 

ratio of solvent, ionic strength of the solution, and reaction time.  Compared to the other 

aminiothiols, Cys and GSH, facile interconversion of Hcy between its thiyl radical and α-

amino carbon centered radical species allows greater accumulation of analyte radical 

species and subsequent propagation to the probe.  The resulting radical cations of the 

bridged bis-nitrile probes are stabilized by pimerization with λabs ≈ 540 nm attributed to 

P2 type pimers.  Biological concentrations of Hcy can be detected selectively in 

deproteinized plasma buffered with phosphate to pH 8.0 by measuring the increase in λabs 

= 540 nm of the pCN probe (LOD = 2.17 µM and LOQ = 6.10 µM).  The mechanism of 

reactivity between pCN and Hcy also involves cleavage of the probe’s labile C-H bond 

vicinal to the nitrile group, followed by either radical or nucleophilic addition of Hcy to 

form the thioether adduct.  

Differences in colorimetric response of for positional isomers of the xylene bridge 

were subtle with the bridged bis-nitrile viologen probes.  The short ortho linkage of oCN 

led to a slight increase in reactivity and broadening of the diagnostic λabs accompanied by 

a 10 nm redshift.  Preliminary fluorometric results with the bridged bis-coumarin analogs 

revealed different λex/λem profiles for each positional isomer and pH dependent responses 

to analytes.  Selective increases in λem were observed for Hcy using mCN at pH 6.0 with 

λex/λem = 485/510 nm and for Cys using oCN at pH 8.0 with λex/λem = 405/500 nm.  These 

responses did not correspond to the expected λex/λem for acetylcoumarin, suggesting 
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involvement of the viologen moieties in the fluorescence mechanism.  Thorough studies 

of the bridged bis-coumarin viologen probes concerning optimization of the reaction 

conditions, elucidation of the mechanism, and assessment of tolerance to interferences 

will provide crucial information for the next generation of fluorophore-viologen probes.       
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Chapter 7:  Experimental Methods 
 
7.1  Reaction schemes 
 

The synthetic strategy for target compounds oCN (10), mCN (11), pCN (12), 

mAC (14), and pAC (15) was adapted from the method used by Geuder et al. to 

synthesize bridged viologen compounds (Figure 39 and Figure 40).77  This method was 

low yielding in the final alkylation step.  Attempts to optimize reactant ratios and reflux 

time gave similar results.  The final alkylation failed repeatedly for the target compound 

oAC (13).  An unidentified product was consistently isolated from the reaction mixture in 

high purity and yield.  The total 1HNMR integration did not agree with the target 

compound but did indicate a possible coumarin dimer.96  Presumably, sterics would not 

allow the attachment of a second large acetylcoumarin moiety to a viologen bridge 

constrained in the ortho position.  By reversing the order of the reaction scheme, the 

synthesis of oAC was achieved more efficiently and with a higher yield than the other 

isomers (Figure 41).  BNV (16) was synthesized expediently and with high yield using 

microwave irradiation by adapting the method used by Lamberto et al. to synthesize 

asymmetrically substituted viologens (Figure 42).101  A mixture of Br- and PF6
- salts 

precipitated from the reaction solvent.  The first crop of BNV filtered from the solvent 

was water soluble.  After reducing the solvent volume under vacuum, a second crop of 

BNV was obtained that had the same 1HNMR spectra and reactivity as the first batch, yet 

was only slightly soluble in water.  It was thought that the first crop had a higher ratio of 

PF6
- counterions which made it less soluble in the reaction solvent and more soluble in 

water.        
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Figure 39.  Reaction scheme for bridged viologen bis-nitrile compounds.  Using 
isomerically pure starting material give an isomerically pure product.  Overall yields: 
18% oCN (10), 21% mCN (11), and 36% pCN (12).   
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Figure 40.  Reaction scheme for meta- and para- bridged viologen bis-coumarin.  This 
scheme failed repeatedly with for the ortho isomer, target compound oAC.  Overall 
yields: 30% mAC (14) and 32% pAC (15). 
 

 
Figure 41.  Reaction scheme for oAC (13).  59% overall yield. 
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Figure 42.  Reaction scheme for BNV (16).  59% overall yield. 
 
 
7.2  Protocols 
 
The procedure for screening in buffer was performed as follows: 

Reduced Hcy, Cys, and GSH with purities ≥98.0% were purchased from Sigma-

Aldrich.  Stock solutions of the probe, homocysteine, cysteine, glutathione were prepared 

fresh using ultra-pure water (UPW).  Buffer solutions were prepared with UPW and were 

kept no longer than a month.  Mixing of the solutions was carried out in 4 mL sample 

vials.  The volumes of each stock solution needed to achieve the appropriate 

concentrations in 1.00 mL of total volume were calculated.  The volume of UPW 

necessary to fill the remainder of the total sample volume was also calculated.  Then the 

initial order of addition of to an empty sample vial was: UPW, stock buffer, and stock 

aminothiol solution respectively.  Without delay, the vial was immediately vortexed for 

~3 sec to mix the buffer and aminothiol; the probe solution was added to initiate the 

reaction; and the vial vortexed a second time for ~5 sec to ensure a homogeneous 
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solution.  The solution was either immediately pipetted into a cuvette for 

spectrophotometry or left in the vial to observe color changes visually.           

 Samples which contained deproteinized plasma were prepared by the same 

procedure for screening in buffer vide supra, except the 4 mL sample vial initially 

contained lyophilized deproteinized plasma.  To obtain deproteinized plasma, lyophilized 

bovine plasma purchased from Sigma-Aldrich was reconstituted with UPW to 1/3 of the 

reconstitution volume.  Two equivalents of acetonitrile (2/3 of the reconstitution volume) 

were added and the solution was vortexed for 10 min.  The solution was allowed to stand 

for an additional 10 min before centrifuging at 4000 rpm for 30 min to pellet the proteins.  

The decanted supernatant was aliquoted into sample vials and re-lyophilized.  The vials 

were then sealed and stored in a refrigerator. 

 
7.3  Instrumentation 
 

Absorbance measurements were performed using a Cary 50 UV/Vis 

Spectrophotometer with Scan Software Version: 3.00(303).  The automated speed was set 

to normal.  Fluorescence measurements were performed with Cary Eclipse Fluorometer 

using Scan Software Version: 1.1(132).  Typical settings were Ex. slit: 5 nm, Em. slit: 5 

nm, scan rate: 857.14 nm/min, data interval: 2.5000 nm, averaging time: 0.1750 sec, 

PMT voltage: high (900W), Ex. increment: 5 nm, filters: 0.1 and 0.5 OD.  EPR spectra 

were obtained using a Bruker e-scan instrument with WinEPR Acquisition Software 

version 4.40 rev. 05. 1994-2007 Bruker BioSpin GmbH; X band frequency: 9.754229 

GHz; Hall Field β0 = 3480.651247 G; attenuation: 2 dB; and power: 31.55 mW.  

Microwave reactions were irradiated while stirring in air cooled sealed vials stirring using 
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a Biotage Initiator with absorption level set to normal.  ESI-FTMS +p for the 

identification of synthetic products was done in 50% MeOH on a ThermoElectron LTQ-

Orbitrap Discovery high resolution mass spectrometer with Accela HPLC.  Reaction 

products of 20.0 mM pCN with 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 were 

analyzed by ESI-TOF-MS and MALDI-TOF-MS, both in positive ion mode.  The ESI 

method was performed by diluting the sample in MeOH with 0.1% formic acid before 

injecting into a Waters Micromass Q-TOF micro instrument.  The MALDI method R+ of 

reaction solution was performed using an α-Cyano-4-hydroxycinnamic acid matrix on an 

ABI 4800 MALDI TOF-TOF analyzer. 

 
7.4  Synthetic Methods 
 

1,4-bis(N-methylene-4,4’-bipyridinium)benzene (67a):  4,4’-Bipyridine 61 (3.33 g, 

21.3 mmol) was brought to refux in 25 mL of MeCN.  1,4-bis(bromomethyl)benzene 

64 (1.00 g, 3.79 mmol) dissolved in 70 mL of MeCN was added dropwise over 1 hr.  

Reflux was maintained for an additional 5 hr, after which the precipitate was hot 

filtered and the filter cake washed with MeCN.  The yellow solid was dried under 

vacuum overnight to give 2.08 g (3.61 mmol, 95% yield) of compound 67a as the 

bromide salt.  1H NMR (400 MHz, D2O) δ 9.09 (4 H, d), 8.81 (4 H, d), 8.47 (4 H, d), 

7.95 (4 H, d), 7.67 (4 H, s), 5.98 (4 H, s). 13C NMR (101 MHz, D2O) δ 157.16, 

152.76, 147.71, 145.17, 137.16, 132.84, 129.03, 125.24, 66.39. 

Anionic exchange of bromide salt (67a) to hexafluorophosphate salt (67b):  

Compound 67a (2.00 g, 3.47 mmol) was dissolved in 20 mL of water with stirring. 

Some isomers required gentle heating < 60 ᵒC.  Stirring was continued as 15 mL of a 
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1.00 M aqueous NH4PF6 was dipped in.  The precipitated solid was filtered, washed 

with water, and air dried.  The yield of 67b was quantitative (2.45 g, 3.47 mmol).          

Para-bridged bis-CN viologen (pCN) (12):  Bromoacetonitrile (2.00 mL, 28.71 mmol) 

was brought to reflux in 20 mL of MeCN.  Compound 67b (2.00 g, 2.83 mmol) 

dissolved in 100 mL of MeCN was added dropwise in over 1 hr.  Reflux was 

maintained for an additional 12 hr.  The precipitate was filtered and washed 

thoroughly with MeCN.  The corresponding meta and ortho isomers were found to be 

increasingly hydroscopic and had a tendency to become gooey if air was pulled 

through the filter cake too long.  The resulting yellow solid was dried under vacuum 

overnight to give 1.01 g of compound 12 as the mixed salt (1.07 mmol, 38% reaction 

yield, 36% overall yeild), which was stored under argon, in an amber vial, and in a 

desiccator at -80 ᵒC.  1H NMR (400 MHz, D2O) δ 9.34 (4 H, d), 9.23 (4 H, d), 8.71 (4 

H, d), 8.63 (4 H, d), 7.67 (4 H, s), 6.07 (4 H, s), 6.03 (4 H, s). 13C NMR (101 MHz, 

D2O) δ 154.76, 152.73, 148.91, 148.50, 136.78, 133.13, 130.38, 130.18, 115.42, 

66.96, 50.82.  FTMS +p ESI: m/z, calculated: 247.1104, found:  247.1102 [M–2H]2+; 

calculated: 263.1235, found: 263.1232 [M+MeO]2+. 

1,3-bis(N-methylene-4,4’-bipyridinium)benzene (66a):  4,4’-Bipyridine 61 (1.68 g, 

10.76 mmol) was brought to reflux in 20 mL of MeCN.  1,3-

bis(bromomethyl)benzene 63 (1.00 g, 3.79 mmol) dissolved in 20 mL of MeCN was 

added dropwise in over 1 hr.  Reflux was maintained for an additional 5 hr, after 

which the precipitate was hot filtered and the filter cake washed with MeCN.  The 

yellow solid was dried under vacuum overnight to give 2.10 g (3.64 mmol, 96% 
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yield) of compound 66a as the bromide salt.  1H NMR (400 MHz, D2O) δ 9.00 (4 H, 

d), 8.73 (4 H, d), 8.40 (4 H, d), 7.85 (4 H, d), 7.64 (3 H, s), 7.31 (1 H, s), 5.94 (4 H, 

s). 13C NMR (101 MHz, D2O) δ 152.77, 147.88, 144.90, 137.15, 133.50, 132.94, 

130.95, 128.86, 125.11, 66.41. 

Meta-bridged bis-CN viologen (mCN) (11):  Anionic exchange of bromide salt (66a) to 

hexafluorophosphate salt (66b) and subsequent transformation to the mixed salt of 

compound 11 was done by the same procedure given for compound 67. Overall yield 

for the reaction scheme of compound 11 was 21%.  1H NMR (400 MHz, D2O) δ 9.35 

(4 H, d), 9.24 (4 H, d), 8.72 (4 H, d), 8.64 (4 H, d), 7.78 (1 H, s), 7.68 (3 H, s), 6.08 (4 

H, s), 6.04 (4 H, s). 13C NMR (101 MHz, D2O) δ 154.77, 152.69, 148.87, 148.46, 

136.26, 133.71, 133.67, 132.92, 130.40, 130.21, 115.41, 66.99.  FTMS +p ESI: m/z, 

calculated: 262.1157, found: 262.1157 [M-2H+MeO]2+. 

1,2-bis(N-methylene-4,4’-bipyridinium)benzene (65a):  4,4’-Bipyridine 61 (1.50 g, 

9.58 mmol) was brought to refux in 10 mL of MeCN.  1,2-bis(bromomethyl)benzene 

62 (1.00 g, 3.79 mmol) dissolved in 10 mL of MeCN was added dropwise in over 1 

hr.  Reflux was maintained for an additional 3 hr, after which the precipitate was hot 

filtered and the filter cake washed with MeCN.  The yellow solid was dried under 

vacuum overnight to give 2.17 g (3.77 mmol, 99% yield) of compound 65a as the 

bromide salt.  1H NMR (400 MHz, D2O) δ 8.79 (4 H, d), 8.57 (4 H, d), 8.24 (4 H, d), 

7.85-7.82 (2 H, m), 7.80-7.77 (2 H, m), 7.66 (4 H, d), 6.13 (4 H, s). 13C NMR (101 

MHz, D2O) δ 156.81, 152.75, 147.26, 143.76, 136.93, 134.95, 133.44, 128.70, 

124.78, 64.21. 
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Ortho-bridged bis-CN viologen (oCN) (10):  Anionic exchange of bromide salt (65a) to 

hexafluorophosphate salt (65b) and subsequent transformation to the mixed salt of 

compound 10 was done by the same procedure given for compound 67. Overall yield 

for the reaction scheme of compound 10 was 18%.  1H NMR (400 MHz, D2O) δ 9.36 

(4 H, d), 9.20 (4 H, d), 8.74 (4 H, d), 8.69 (4 H, d), 7.68-7.66 (2 H, m), 7.41-7.39 (2 

H, m), 6.23 (4 H, s), 6.08 (4 H, s). 13C NMR (101 MHz, D2O) δ 154.67, 153.13, 

148.94, 148.71, 134.14, 133.61, 133.39, 130.45, 130.39, 130.32, 115.41, 64.02.  

FTMS +p ESI: m/z, calculated: 262.1157, found:  262.1158 [M-2H+MeO]2+. 

Para-bridged bis-coumarin viologen (pAC) (15):  3-(bromoacetyl)coumarin 68 (2.00 g, 

7.49 mmol) was brought to reflux in 20 mL of MeCN.  Compound 67b (0.500 g, 

0.708 mmol) dissolved in 100 mL of MeCN was added dropwise in over 1 hr.  Reflux 

was maintained for an additional 12 hr.  The precipitate was filtered warm and 

washed thoroughly with MeCN.  The resulting green solid was dried under vacuum 

overnight to give 0.301 g of the target compound as the mixed salt (0.242 mmol, 34% 

reaction yield, 32% overall yield).  1H NMR (400 MHz, DMSO) δ 9.65 (4 H, d), 9.27 

(4 H, d), 9.02 (2 H, s), 8.91 (4 H, d), 8.89 (4 H, d), 8.13 (2 H, d), 7.89 (2 H, t), 7.79(4 

H, d), 7.62 (2 H, d), 7.53 (2 H, t), 6.45 (4 H, s), 6.06 (4 H, s). 13C NMR (101 MHz, 

DMSO) δ 187.75, 158.66, 154.85, 149.79, 149.27, 149.18, 147.12, 145.93, 135.99, 

135.36, 131.58, 129.80, 127.27, 126.36, 125.56, 121.08, 117.93, 116.47, 68.94, 62.62.   

Meta-bridged bis-coumarin viologen (mAC) (14):   Attachment of the acetylcoumarin 

68 moiety to the meta isomer of the viologen bridge 66b was accomplished by the 

same procedure given for compound 15.  The target compound was isolated as a 
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yellow solid which was stored at rt for an extended period of time without any 

apparent degradation in its optical properties.  Overall yield: 30%.  1H NMR (400 

MHz, DMSO) δ 9.67 (4 H, d), 9.28 (4 H, d), 9.02 (2 H, s), 8.95 (4 H, d), 8.92 (4 H, 

d), 8.13 (2 H, d), 8.05 (1 H, s), 7.89 (2 H, t), 7.70 (2 H, d), 7.60 (3 H, m), 7.53 (2 H, 

t), 6.46 (4 H, s), 6.08 (4 H, s).  13C NMR (101 MHz, DMSO) δ 187.77, 158.67, 

154.85, 149.81, 149.28, 149.16, 147.13, 145.95, 136.00, 135.06, 131.58, 130.13, 

129.81, 129.66, 127.26, 126.40, 125.57, 121.08, 117.93, 116.48, 68.96, 62.74.   

1-(2-oxo-2-(2-oxo-2H-chromen-3-yl)ethyl)-[4,4'-bipyridin]-1-ium (69a):  4,4’-

Bipyridine 61 (0.750 g, 4.80 mmol) and 3-(bromoacetyl)coumarin 68 (0.500 g, 1.87 

mmol) were dissolved in 40 mL of acetone and stirred at rt for 3 hrs.  The precipitate 

was filtered and washed with acetone (0.658 g, 1.55 mmol, 83% yield).  1H NMR 

(400 MHz, DMSO) δ 9.11 (2 H, d), 9.02 (1 H, s), 8.91 (2 H, d), 8.76 (2H, d), 8.12 (1 

H, d), 8.09 (2 H, d), 7.89 (1 H, t), 7.61 (1 H, d), 7.52 (1 H, t), 6.36 (2 H, s). 

Ortho-bridged bis-coumarin viologen (oAC) (13):   Anionic exchange of bromide salt 

(69a) to hexafluorophosphate salt (69b) and subsequent transformation to the mixed 

salt of compound 13 was performed with quantitative yield by the same procedure 

given for compound 67.  After thorough drying, 0.500g (1.02 mmol) of the 

hexafluorophosphate salt (69b) was brought to reflux in 20 mL of MeCN.  A solution 

of 1,2-bis(bromomethyl)benzene (0.135 g, 0.512 mmol) in 20 mL of MeCN was 

added over 1 hr and reflux was maintained for an additional 3 hrs.  The precipitate 

was filtered and washed with MeCN to provide 0.451 g (0.364 mmol, 71% reaction 

yield, 59% overall yield) of the target compound (13) as a green solid.  1H NMR (400 
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MHz, DMSO) δ 9.57 (4 H, d), 9.29 (4 H, d), 9.04 ( 2 H, s), 8.95 (4 H, d), 8.93 (4 H, 

d), 8.13 (2 H, d), 7.89 (2 H, t), 7.60 (2 H d), 7.57 (2 H, m), 7.53 (2 H, t), 7.35 (2 H, 

m), 6.47 (4 H, m), 6.42 (4 H, m).  13C NMR (101 MHz, DMSO) δ 187.78, 158.65, 

154.84, 149.86, 149.37, 149.17, 147.17, 146.27, 136.01, 132.73, 131.57, 130.19, 

129.69, 127.23, 126.39, 125.56, 121.04, 117.92, 116.46, 68.99, 60.29.   

1-benzyl-[4,4'-bipyridin]-1-ium (71a):  Benzyl bromide 70 (0.500 g, 2.92 mmol) and 

4,4’-bipyridine 61 (0.913 g, 5.85 mmol) were dissolved in 10.0 mL of DCM and 

irradiated in a Biotage Initiator on normal power for 60 min at 60 ᵒC.  The pale 

yellow bromide salt precipitate (0.862 g, 2.64 mmol, 90% yield) was filtered and 

washed with acetone.  1H NMR (600 MHz, DMSO) δ 9.42(2 H, d), 8.87 (2 H, d), 

8.67 (2 H, d), 8.04 (2 H, d), 7.62 (2 H, d), 7.48 (3 H, m), 5.94 (2 H, s). 

Anionic exchange of bromide salt (71a) to hexafluorophosphate salt (71b):  

Compound 71a (0.862 g, 2.64 mmol) was dissolved in 10 mL of water.  The solution 

was stirred as 10 mL of a 0.500 M aqueous NH4PF6 was dipped in over 10 min.  The 

solution was allowed to stir for an additional 10 min before the precipitated white 

hexafluorophosphate salt was filtered, washed with water, and air dried.  The yield of 

71b was quantitative (1.03 g, 2.64 mmol). 

Benzyl-nitrile viologen (BNV) (16):  Compound 71b (0.500 g, 1.27 mmol) and 

bromoacetonitrile (0.266 mL, 3.82 mmol) were dissolved in 4.00 mL of DCM and 

irradiated in a sealed vial using a Biotage Initiator on normal power for 30 min at 100 

ᵒC.  The off white mixed salt precipitate (0.433 g, 8.45 mmol, 66% reaction yield, 

59% overall yeild) was filtered, washed carefully with acetone, and dried by drawing 
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air through the filter cake.  The product appeared to be slightly soluble in acetone.  1H 

NMR (600 MHz, DMSO) δ 9.55 (4 H, d), 8.85 (4 H, d), 7.65 (2 H, d), 7.49 (3 H, m), 

6.12 (2 H, s), 6.00 (2 H, s). 13C NMR (151 MHz, DMSO) δ 150.50, 148.86, 146.45, 

145.77, 134.06, 129.54, 129.28, 128.89, 127.31, 127.09, 114.13, 63.55, 47.80.  FTMS 

+p ESI: m/z, calculated: 286.1339, found:  286.1338 [M–H]+; calculated: 318.1601, 

found: 318.1600 [M+MeOH]+.  
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Chapter 8:  Notes for continued investigations of these probes  
 
 The ultimate goal for Hcy detection is to design a chemical probe that can be used 

in an at-home testing kit by people with no background in science.  To this end the probe 

should be inexpensive, non-toxic, stable upon storage at room temperature, amenable to 

as few processing steps as possible, react within a reasonable timeframe without the use 

of excessive heat, sensitive enough to allow for sample dilution, selective for Hcy in the 

presence of other thiols and other interferences, and able to maintain an accurate 

quantification of Hcy with variations in matrix compositions.   

Currently the known interferences for bridged bis-nitrile viologen probes are 

plasma proteins, variations in Cys and GSH concentration, and reducing agents.  Larger 

plasma proteins cause a curiously intense color change with these probes.  Presumably, 

the proteins initiate or propagate a radical to the probe.  However, high pH and high 

concentrations of solvent can produce an equally intense response.  To address the 

interference by plasma proteins, the mechanism of protein interference should be 

identified.  Assays done with high concentrations of the plasma protein, albumin, did not 

cause significant interference, so a particular protein may be responsible for the probe 

response.  Identifying the protein could be useful for devising a strategy for removing it 

or rendering it inert.   

If the dielectric constant of plasma is much lower than the buffer controls, this 

may account for the increased reactivity of the probe.  Dramatically increasing the ionic 

strength of plasma samples could correct this issue or might lead to a method for 

removing the proteins via precipitation from ‘salting out.  Decreasing the pH would also 
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reign in the probe reactivity.  Although the few trials that were performed at lower pH in 

whole plasma were not successful, the buffer concentration may not have been high 

enough to overcome the natural buffering capacity of biological fluids.  Some initial 

experiments with these probes showed a ‘no response’ selectively for GSH, responding 

even less response than blank solutions.  This was eventually identified as a pH effect 

from exceeding the buffer capacity.  Buffers which are compatible with the probe at high 

concentrations should be identified and tested with plasma samples at a concentration that 

will confidently buffer the solution at the intended pH.  Another strategy would be to 

dampen the reactivity tuning the redox potential of the probe further by choosing 

substituents for the viologen, mindful of the mechanism described here, though any 

structure that decreases the reactivity of the probe is accompanied by the risk of 

decreased sensitivity as well.        

 The majority of Hcy is bound to plasma proteins by disulfide linkages.  Normally, 

free Hcy in plasma is only 1-2% of the total Hcy present.102  To quantify Hcy, the disulfide 

bonds must be cleaved with a reducing agent prior to protein removal.  If reaction 

conditions are found which prevent interference from protein, then the probe must be 

compatible with the reducing agent if all the components are to be combined in the directly 

in the sample solution.  So far the reducing agents TCEP, BME, MPA, dithiothreitol, and 

tris(2-carboxyethyl)phosphine reducing agents were found to interfere with the probe 

response.  It is likely that removal of the reducing agent will be necessary prior to probe 

addition.  TCEP immobilized on cross-linked beaded agarose (bead size 45 - 165 μm) was 
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found to be conveniently removed from plasma samples with mini-prep filter vials (filter 

pores 0.20 and 0.45 µm).   

These filter vials would simultaneously remove precipitated proteins from plasma 

samples.  Currently, the sensitivity of the probe does not allow excessive sample dilution 

with precipitating agents.  Additionally, some precipitating techniques, such as the 

addition of excessive organic solvent, affect the probe response.  Isoelectric point 

precipitation with an acid might work provided the pH could be readjusted for the probe.  

Polyethylene glycol (PEG) was found to be compatible with the probe (Figure 43), so 

PEG protein precipitation was attempted.  However, the proteins were only partially 

precipitated at 10% w/v PEG concentration in the sample.  Although the protein 

interference had diminished substantially after filtering, the remaining interference still 

obscured detection of Hcy at biological concentrations. 

 
Figure 43.  Polyethylene glycol (PEG) and dialysis as potential methods to remove 
protein interference.  Common conditions: 2.00 mM pCN in 80.0 mM phosphate buffer  
pH 8.0 after 20 min.  (A) 15 µM Hcy where indicated, both vials contain 10% w/v PEG  
(B) Dialysate: 15 µM Hcy expected from 30 µM Hcy equilibriated with an equal volume 
dialysate across a 3.5 kDa cuttoff membrane for 90 min. 

 
Dialysis membranes may separate immobilized TCEP and precipitated proteins 

from samples more effectively than filter vials.  Preliminary experiments showed 3.2 kDa 

cutoff dialysis membranes were permeable to Hcy (Figure 43) and retained proteins 

precipitated by PEG better than micro filtration.  There is analyte dilution associated 

diffusion across a membrane into the dialysate and the time allowed for equilibration of 

A B 
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the dialysate is important.  Incubation less than 30 min did not allow Hcy to fully 

equilibrate and the entire volume of dialysate was osmoticly drawn across the membrane 

with times > 4 hr.  The appeal of using membrane diffusion for a disposable device to be 

used at the point-of-care is the potential to simultaneously remove erythrocytes and 

process blood directly from a finger prick.  Hcy leaches from erythrocytes over time, 

which may be advantageous if the increase in Hcy concentration is predictable and/or 

proportional to exogenous Hcy concentrations in the plasma 

Once a suitable probe and reaction conditions are identified, probe stability 

studies should be performed.  The bridged bis-nitrile viologen probes were found to be 

hydroscopic, accumulating mass from moisture in the air and degrading over time.  Even 

when stored under argon in a desiccator at -80 ᵒC, one month of periodic but repeated 

opening of stock vials and freeze thaw cycles rendered the bridged bis-nitrile probe 

response unreliable.   The coumarin analogs did not suffer this issue with stability and 

were able to be stored on a dark shelf, at room temperature, for months with no detectable 

changes in the 1HNMR spectrum or noticeable differences in reactivity.  However, it 

should be noted that the mAC coumarin analog did suddenly and completely lose its 

ability to fluoresce at certain wavelengths.  A static gun was used to calm the 

uncooperative material when it was transferred from a stock container.  Bombarding the 

compound with electrons from the static gun may have caused the abrupt change in 

optical properties. 

 The bridged bis-coumarin viologen probe studies are currently in their infancy.  

The Cys selective response observed with oAC was reproducible, consistent, and 
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developed quickly in buffer.  Perhaps the most informative experiment to be done would 

assess potential interferences in biological fluids by reproducing Cys selectivity using 

oAC with plasma added to the sample matrix.  While the original hypothesis concerning 

quenching of the stacked fluorophores remains a valid avenue for investigation, a charge 

transfer mechanism of fluorescence appears to be more promising in regards to selective 

analyte response.  The emission increases that took 12 hr to develop could be indicative 

of probe degradation or covalent dimerization of the coumarins.96  Mild heating should be 

examined as a method of speeding up the kinetics of responses that develop slowly.  

Although reaction conditions that lead to a selective response for Hcy have not been 

exhausted for the coumarin analogs, the next generation of fluorophore bridged viologens 

designs should encompass fluorophores likely to participate in charge transfer.  

Photosensitization of the viologen probe would not be limited to bridged structures.        
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Appendix A:  Supporting information 

 

 
Figure 44. Color development of the pCN probe over 1 hr.  80.0 mM phosphate buffer at 
pH 8.0, From left in each panel: blank, 15.0 μM Hcy, 250 μM Cys, 6.00 μM GSH, all 
thiols combined. 
 
 

  
Figure 45.  Linearity and time point analysis for pCN calibration curve in Figure 15-A.   
 

A B 

C D 



85 
 

 
Figure 46.  Linearity and time point analysis for pCN calibration curve in Figure 15-B. 
 

The time point and λabs of the most linear and sensitive data set for construction of 

the calibration curves was determined by plotting the square correlation coefficient (R2) 

(Figure 45-A, Figure 46-B) and the slope (Figure 45-C, Figure 46-C) of regression lines 

for the entire range of λabs measured.  The local maximum for R2 and slope in the region 

of the diagnostic peak was found to be 540 nm.  This λabs plotted over time provided the 

optimum time point, 30 min (Figure 45-BD, Figure 46-BD).  Incidentally, the maximum 

of the diagnostic peak is also 540 nm.   

A B 
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Figure 47.  Calibration curve for Hcy using the initial rates of increase.  λabs 

 = 540 nm  
(A) Each sample contained 25% v/v deproteinized bovine plasma, 2.00 mM pCN probe, 
80.0 mM phosphate buffer, 62.5 μM Cys, and 1.50 μM GSH.  Slopes of the first 5 min of 
each run were used for the y-values.  LOD = 2.40 µM and LOQ = 8.00 µM.  (B) 
Replicates for 3.00 μM Hcy data point.  (C) Replicates for 9.00 μM Hcy data point. 
 

A major source of imprecision for the replicates was variability introduced by 

plasma deproteinizion.  The aliquots of deproteinized plasma did not appear to be 

perfectly homogenous, as was evident by the baseline shifting of the spectra from light 

scattering off suspended particles (Figure 47-BC).  Although baseline shifting was 

significant, the initial rates of pCN reacting with Hcy were consistent.  Therefore, 

measuring the initial rates for quantification eliminates the interference due to scattering.  

A 

B C 
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This approach also dramatically reduces the time needed to measure each sample.  By the 

initial rates method, analytical limits were improved from Figure 15-A.  The diluted 

sample solutions were found to have LOD = 2.40 µM and LOQ = 8.00 µM.  These values 

correspond to LOD = 9.60 µM and LOQ = 32.0 µM in the plasma after accounting for 

the dilution. 

 
Figure 48.  Effect of increasing organic solvent concentration.  Data sets corresponding to 
each graph were collected using 0.500 mM pCN probe in 80.0 mM phosphate buffer at 
pH 8.0 with absorbances at 30 min shown.  (A) Increasing the ratio of DMSO in the 
reaction medium of non-analyte blanks revealed another peak which would appear 
yellow with λabs = 370 nm.  (B) λabs at 413 and 540 nm measured for blank solutions and 
solutions which contained the combined aminothiols: 15.0 µM Hcy, 250 µM Cys, and 
6.00 µM GSH. 
 

A B 
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Figure 49. Determination of pCN pKa values by titration with NaOH.  Plateaus at pH 
6.83 and 7.92 indicated two buffer regions corresponding to pKa1 and pKa2 respectively.    
 
 

 

 
Figure 50.  Determination of BNV pKa by titration with NaOH.  (A) Upon the first 
aliquot of titrant, the pH spiked and began to drift towards a lower pH, requiring > 1.5 
hours to reach equilibrium.  Subsequent additions of titrant required moderately less time 
to equilibrate.  (B) The buffer region indicated a pKa of 8.38.    

A B 
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Figure 51.  Dissolved oxygen increased the initial rate of absorbance at 540 nm.  
Reaction conditions: 2.00 mM pCN probe in 80.0 mM phosphate buffer pH 8.0 with 15.0 
µM of Hcy in vials labeled ‘Hcy,’ ‘H+Ar,’ and ‘H+O2.’   
 

Figure 51 shows the pCN probe response in relation to dissolved oxygen 

concentration.  Vials labeled ‘blank’ and ‘Hcy’ were not gassed before the addition of 

probe.  Argon or oxygen was bubbled through the bulk buffer solutions in the vials 

labeled ‘H+Ar’ or ‘H+O2’ respectively for 3 min before the addition of probe.  Gassing 

with inert argon decreases the relative concentration of dissolved oxygen by 

displacement.  Likewise, gassing with oxygen enriches the oxygen content of solutions.  

At time points 5 and 10 min, λabs = 540 nm was the most intense for the vial 

corresponding to the highest oxygen concentration.  The ‘H+Ar’ vial, corresponding to 

the lowest oxygen content, had an attenuated response at 540 nm compared to the non-

gassed ‘Hcy’ vial.     
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Figure 52.  Slopes of λabs = 413 nm used to estimate rates of formation for non-radical 
pCN probe product.  Measurements performed in 80.0 mM phosphate buffer pH 8.0 with 
15% v/v IPA. 
 

Although the evolution of reaction products is a dynamic process with 

competitive consecutive and parallel reactions, the essentially 1st order rate of increase at 

λabs = 413 nm with respect to pCN suggests a unimolecular transition state where the 

labile hydrogen of the probe dissociates before pCN interacts with Hcy (Table 2).     

Table 2.  Reaction orders for non-radical pCN probe product with respect to pCN probe 
and Hcy analyte.  Rates obtained from Figure 52. 

pCN probe 

conc. [M] 

Hcy analyte 

conc. [M] 

λabs = 413 nm 

rate [min-1] 

order of 

pCN 

order of 

Hcy 

0.500 0.00 0.00554 1.20 

 

1.00 0.00 0.0127 
0.500 0.015 0.00616 0.74 
1.00 0.015 0.0103 

0.500 0.030 0.00663 0.76 
1.00 0.030 0.0112 

 

0.500 0.015 0.00616 

 

0.11 
0.500 0.030 0.00663 
1.00 0.015 0.0103 0.12 
1.00 0.030 0.0112 
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Figure 53.  Structures of ions 30 – 50 identified in the mass spectra of the pCN and Hcy 
reaction mixture. 
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Figure 54. Structures of ions 51 – 60 identified in the mass spectra of the pCN and Hcy 
reaction mixture.  
 
Table 3. Masses of ions identified in the mass spectra of the pCN and Hcy reaction 
mixture.  NF = not found.  Full specta can be found in Appendix C.     

Ion # Calculated m/z Found m/z MALDI Found m/z ESI 
30 105.88, 106.05 105.80, 106.09 NF 
31 114.04 NF 14.03 
32 138.06 NF 138.08 
33 157.06 NF 157.06 
34 157.08 NF 157.06 
35 158.32 158.34 NF 
36 172.06 172.07 NF 
37 173.07 172.93, 173.20 NF 
38 196.08 NF 196.08 
39 196.09 NF 196.08 
40 196.09 NF 196.08 
41 208.10, 208.60 208.63 208.10, 208.57 
42 208.10, 208.60 208.63 208.10, 208.57 
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43 208.41 NF 208.57 
44 259.11 259.14 259.12 
45 259.12 259.14 259.10 
46 268.09 268.11 268.09 
47 268.09 268.11 268.09 
48 314.12 314.12 314.09 
49 314.12 314.12 314.09 
50 337.15 337.17 NF 
51 389.18 389.19 NF 
52 417.15 417.19 417.16 
53 417.21 417.19 417.16 
54 495.23 NF 495.13 
55 497.24 NF 497.13 
56 718.29 718.31 NF 
57 793.36 793.35 NF 
58 314.12 314.12 314.09 
59 337.11 337.17 NF 
60 337.11 337.17 NF 

 
 

 
Figure 55.  Fluorescence selectivity for Hcy with 50.0 µM mAC in 80.0 mM phosphate 
buffer pH 6.0 with 200 µM of the indicated thiol.  λex/λem = 485/510 nm.  After 12 hr. 
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Figure 56.  Comparison of oCN blank and 200 µM of Cys in 80.0 mM phosphate buffer 
at pH 6.0 after 1 hr. Max λex/λem = 405/500 nm.  oCN response was selective for Cys at 
pH 8.0 (not shown).      
 
  

 
Figure 57.  Rate of change in viologen λem mirrored λabs in 80.0 mM phosphate buffer at 
pH 8.0 without analyte.  (A) Fluorescence of 50.0 µM pCN, top: λex  = 480 nm with a 
scan every hour for 12 hrs, bottom: λex/λem = 480/510 nm.  (B) Absorbance of 1.00 mM 
pCN with 15% v/v IPA, top: spectrum scanned every 15 min for 12 hrs, bottom: plot of 
λabs = 540 nm.  
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Appendix B:  NMR Spectra 
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oBN #6-17 RT: 0.12-0.24 AV: 12 NL: 1.49E5
T: FTMS + p ESI Full ms [50.00-1005.98]
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Appendix C:  Mass Spectra 
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mBN #15-17 RT: 0.21-0.24 AV: 3 NL: 2.44E5
T: FTMS + p ESI Full ms [50.00-1005.98]
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pBN #6 RT: 0.12 AV: 1 NL: 1.57E4
T: FTMS + p ESI Full ms [50.00-1000.00]
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pBN #6 RT: 0.12 AV: 1 NL: 1.31E5
T: FTMS + p ESI Full ms [50.00-1005.98]
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BNV #10-11 RT: 0.17-0.18 AV: 2 NL: 1.30E5
T: FTMS + p ESI Full ms [50.00-1005.98]
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BNV #9-10 RT: 0.15-0.17 AV: 2 NL: 1.12E5
T: FTMS + p ESI Full ms [50.00-1005.98]
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diluted 1000x in MeOH +0.1%HCOOH 15:01:07  13-Feb-2013

m/z
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

%

0

100

DAVIN_RMS020613DR_STRONGIN_02-13-2013_ESI-POS01 87 (1.736) Cm (81:108) TOF MS ES+ 
1.33e4314.09

259.12

208.57

157.06

417.16

365.11
497.13

Full mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 
collected by positive mode ESI-TOF-MS in MeOH with 0.1% formic acid. 
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diluted 1000x in MeOH +0.1%HCOOH 15:01:07  13-Feb-2013

m/z
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DAVIN_RMS020613DR_STRONGIN_02-13-2013_ESI-POS01 87 (1.736) Cm (81:108) TOF MS ES+ 
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365.11
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536.10 653.16
711.26

777.38

300-1000 Da range mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 
collected by positive mode ESI-TOF-MS in MeOH with 0.1% formic acid. 
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diluted 1000x in MeOH +0.1%HCOOH 15:01:07  13-Feb-2013

m/z
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1.33e4314.09

259.12

208.57

114.03
157.06129.98 173.98 196.08

234.09 268.09
291.15

365.11
343.13

100-400 Da range mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 
collected by positive mode ESI-TOF-MS in MeOH with 0.1% formic acid. 
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diluted 1000x in MeOH +0.1%HCOOH 15:01:07  13-Feb-2013
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480-580 Da range mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 
collected by positive mode ESI-TOF-MS in MeOH with 0.1% formic acid. 
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Full mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 collected by MALDI-
TOF-MS in positive ion mode with α-Cyano-4-hydroxycinnamic acid as the matrix. 
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100-350 Da mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 collected by MALDI-
TOF-MS in positive ion mode with α-Cyano-4-hydroxycinnamic acid as the matrix. 
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350-600 Da mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 collected by MALDI-
TOF-MS in positive ion mode with α-Cyano-4-hydroxycinnamic acid as the matrix. 
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600-1000 Da mass spectrum 
 
Reaction between 20.0 mM pCN and 20.0 mM Hcy in 100 mM phosphate buffer pH 8.0 collected by MALDI-
TOF-MS in positive ion mode with α-Cyano-4-hydroxycinnamic acid as the matrix. 
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