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1 Abstract

One of the most impressive qualities of the brain is its neuro-plasticity. The neocor-

tex has roughly the same structure throughout its whole surface, yet it is involved

in a variety of different tasks from vision to motor control, and regions which once

performed one task can learn to perform another [?]. Machine learning algorithms

which aim to be plausible models of the neocortex should also display this plasticity.

One such candidate is the stacked denoising autoencoder (SDA). SDA’s have shown

promising results in the field of machine perception where they have been used to

learn abstract features from unlabeled data. [?, ?, ?] In this thesis I develop a flexible

distributed implementation of an SDA and train it on images and audio spectrograms

to experimentally determine properties comparable to neuro-plasticity, Specifically, I

compare the visual-auditory generalization between a multi-level denoising autoen-

coder trained with greedy, layer-wise pre-training (GLWPT), to one trained without.

I test a hypothesis that multi-modal networks will perform better than uni-modal

networks due to the greater generality of features that may be learned. Further-

more, I also test the hypothesis that the magnitude of improvement gained from this

multi-modal training is greater when GLWPT is applied than when it is not. My

findings indicate that these hypotheses were not confirmed, but that GLWPT still

helps multi-modal networks adapt to their second sensory modality.
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2 Introduction and Background

2.1 Introduction

It is an ongoing effort in machine learning to match the powerful learning capacity

of the human brain. Deep belief networks (DBNs) are a recently successful neurally

inspired class of machine learning algorithms. In this thesis I set out to investigate

the plasticity, or adaptability, of stacked denoising autoencoders, a type of deep belief

network. See section 2.6 and figure 2 for an explanation of SDA’s. Plasticity gives us

an idea of how brain-like the SDA algorithm is. If we seek to make brain-like learning

algorithms, using the ”intelligence” of those algorithms as a measure of success is

both too vague, and too distant to be useful. If we instead look for esoteric behaviors

and qualities that we know to be brain-like, such as plasticity, it reveals more readily

applicable clues about where to invest our efforts in further research[?]. Following

from this motive I measure the plasticity of SDA’s by switching models between data

from two different sensory modalities, images and audio, and observing the effect on

reconstruction accuracy. I test two distinct hypotheses:

1. SDA models trained on one sensory modality and then switched to a second

sensory modality half-way through training will have a higher reconstruction

accuracy on test data from the second sensory modality than randomly initial-

ized networks trained for an equal total number of epochs on the second sensory

modality exclusively.

2. When hypothesis 1 is tested using SDA’s trained with greedy layer-wise pre-

training vs. SDA’s without, the magnitude of the difference in reconstruction

accuracy described in hypothesis 1 will be greater for SDA’s trained with greedy
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layer-wise pre-training.

The hypotheses are tested by training stacked denoising autoencoders on an image

dataset and an audio dataset with identical dimensionalities. Three variables are ma-

nipulated: single or multi-modal training data, layer-wise or interleaved layer training

order, and audio or images as the test data. There are 8 experiments in total, each

one run with 20 different random seeds. In conclusion I found that GLWPT helped

the SDAs learn abstract features, but this did not help its cross-modal generalization.

I address the unexpected differences between models tested on audio vs. images, and

discuss potential causes and fixes. I include visualizations of the features learned and

graphs of the reconstruction error over time for each layer in several pairs of mod-

els. These figures illustrate interesting unexpected observations about the training

process which could be the focus of future work.

2.2 Neural Plausibility of Machine Learning Algorithms

The latest strides in the field of machine learning are coming from deep networks

[?, ?, ?, ?, ?, ?]. This class of learning algorithm is inspired by the structure of

the mammalian neocortex, specifically the visual areas in the occipital lobe which

have been studied more extensively than any other part. This is in contrast to non-

neurally inspired algorithms such as support vector machines (SVM) that are more

widely used and were notably better at classification than neural networks[?, ?, ?].

Now that we are seeing biologically inspired algorithms leading the way, biological

plausibility becomes a useful heuristic for the further development of algorithms with

higher performance measures, and discoveries about the emergent properties of these

algorithms may feed back into neuroscience to inform further study of the brain. One

metric which defines the brain and differentiates it from other intelligent systems is
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its plasticity. Areas which once specialized in a certain function can change and learn

a new function if for some reason they cannot continue with their first function or if

the second function is just much more demanding of computational resources. [?]

2.3 Hierarchical representation in the brain

Deep networks are like the neocortex in many ways, but the most important of these

ways is the hierarchical structure from which they get their name. In the visual

cortex, neuroscientists have found using single-neuron recording that there are cells

which respond most strongly to specific visual stimuli. The nature of the stimuli which

excite the neurons changes along many dimensions throughout the visual cortex. One

of the more salient dimensions of variation is that of abstraction[?]. The organization

of the visual cortex is illustrated in figure 1. The cells in V1 are the first cells

in the cortex to receive signals from the retina via the lateral genticulate nucleus,

a part of the thalamus. Cells here respond most actively to a particular edge at

a particular angle within a small area of vision called their receptive field. As one

moves up V2, V3, V4, and V5 the cells respond to more and more abstract visual

stimuli until one sees cells that do things like activating whenever a dog is in the

visual field, when objects appear to be moving in a specific way, and even abstract

visual conditions such as ”currently looking at object in hand” regardless of what

or where it is. While it is possible that each of those abstract stimuli has a large

set of neurons dedicated to recognizing it out of a ”raw” sensory stream, it is far

more plausible that they recognize it out of a small and information-rich stream of

intermediate representations. This leads to the idea that a hierarchical structure is

crucial to the functionality of the neocortex.
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Figure 1: An illustration of the areas within the visual cortex. The layers in a deep
networks mimic the stages of processing in the visual cortex. From On The Origin
Of The Human Mind by Andrey Vyshedskiy [?]

Figure 2: A Stacked denoising autoencoder. Each level of the SDA consists of an
autoencoder with three distinct layers of it’s own, the input later (denoted with an
X), the hidden layer or code (denoted with a Y) and the output layer or reconstruction
(denoted with a Z).
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2.4 The reusability of hierarchical representations.

A hierarchical, or tree-like, structure of knowledge representation allows one to con-

struct compact representations of a massive and complex distribution of stimuli.

When building a hierarchy to represent a distribution of stimuli in a layer-wise pro-

cedure, first one learns a finite collection of simple patterns corresponding to local,

high-frequency (short-term), salient features in sensory signals. Then, one recursively

applies that process to the features learned in the first level to construct another set

of more abstract features, which are slightly more location, rotation, and scale in-

variant. In the case of vision, the levels of a hierarchy of representation might be

as follows. Images can all be represented as pixel arrays, And pixel arrays can be

represented as a collection of overlapping gradients, edges, and spots chosen from a

finite set, and colored with a small finite set of colors. (This is the principle behind

JPEG compression and appears to be the principal organization of the visual striate

cortex.[?]) These patches are commonly compared to Gabor filters, depicted in fig-

ure 3[?, ?], and are the most commonly learned set of features in machine vision. As

one moves up the chain of abstraction in vision, nearly all combinations of edges and

spots seen in natural images can be represented as a hierarchy of things, stuck to the

surfaces of bigger things in roughly specified locations, illuminated from a given angle

[?]. Assuming you have a library of hundreds of thousands of things, and the texture

of spots, edges, and colors that typically make up their surface, and the ability to

calculate shadows, one can decode, or render, this representation into the one below

it.

The difficult part of the problem is learning the vocabularies of symbols that make

up each layer and the weights on the connections that allow translation between

layers. Traditional multi-layer neural networks assume pre-set finite number of layers
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Figure 3: Spot detectors learned by a single denoising autoencoder. These are a
common and efficient first level feature set for natural images. A feature is actually
a set of weights, but an image can be generated to represent it, corresponding to the
inputs that would produce a full signal on the given feature, and zero signal on all
others. The extent to which these features resemble theoretical Gabor filters is an
indicator of how well the model has generalized. This image was generated by me
using the same code used in my main experiment. The model was trained on the
MNIST digit recognition dataset using a denoising autoencoder.
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and nodes at each layer, and then attempt to learn the feed-forward weights which

connect layers all at once using back-propagation and Stochastic Gradient Descent

(SGD). There are no weights which operate on the information feeding backwards

except in some recurrent neural networks. Training a multi-layer neural network

with only back-propagation and stochastic gradient descent only works well when the

network is small and the fitness landscape is relatively smooth. On large networks

(hundreds of nodes at each layers and more than 3 layers) the search will get stuck

in effective local minima[?, ?].

2.5 Deep belief networks

Deep networks can have the same structure as traditional neural networks (set number

of layers, set number of nodes at each layer, full feed-forward connections, and sigmoid

activation function) but they are trained one layer at a time in order to initialize the

optimization procedure for higher layers in a good basin of attraction. The basic

problem of optimizing a network’s weights according to a cost function is to find a

low minimum in a reasonable amount of time. When a set of weight begins in a good

basin of attraction, SGD will be able to quickly find a good minimum. Some deep

belief networks employ a technique known as dropout to enforce sparse hierarchical

representations[?, ?]. Dropout consists of setting a fraction of the values in each

input vector to zero. This makes it more difficult to quickly find a minimum, but

the resulting features will be more general, and when an input vector is represented

as a combination of those features, it will be a more sparse representation. This

presents a smoother fitness landscape to the layer above, making dropout one of the

key enabling features of deep belief networks.

Classical multilayer neural networks must search the entire weight space with no bias
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or heuristic. For large enough weight spaces, or noisy enough data, even the best

optimization procedure will become trapped in a local minima. Greedy layer-wise

pre-training and dropout both help to provide some structure and bias to the search

process to reduce the dimensionality of the space, smooth out its features and discover

better minima. Deep networks have been shown to be able to learn the abstract

feature sets that traditional multi-layer neural networks were originally expected to

be able to learn[?]. Classical networks can theoretically learn any function, but in

practice, they can only learn smooth functions well in a reasonable amount of time.

There are several types of deep belief networks, but they share the property of hav-

ing layers. They consist of a number of modules, which can be increased in depth

indefinitely. Denoising autoencoders and Boltzmann machines are commonly used

modules[?]. The module serves the purpose of performing generalization, and option-

ally compression. Each module will re-code its input to a new representation, and

this representation serves as the input for the next layer. For each type of module,

there are many variants that differ in the method used to learn the parameters, such

as marginalized autoencoders, which are optimized for speed [?]. In order to use

a module within a deep network, the module must meet certain criteria. It must

perform some limited form of generalization, and must operate on the same format

of data it produces, such that it can be stacked recursively. To date, most mod-

ules are feed-forward only, only lower layers influence higher layers, but several very

interesting generative deep recurrent neural networks have also been studied[?].

2.6 Stacked denoising autoencoders

The aim of the autoencoder is to learn the code y, a distributed representation that

captures the coordinates along the main factors of variation in the data, x (similar
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to how principal component analysis (PCA) captures the main factors of variation

in the data). An autoencoder takes an input x ∈ [0, 1]d and first maps it (with an

encoder) to a hidden representation y ∈ [0, 1]d
′
through a deterministic mapping with

weights W, e.g.:

y = s(Wx + b)

where s is a non-linearity such as the sigmoid. Typically, the width of y is less than

that of x but this is not required. The latent representation y, or code is then mapped

back (with a decoder) into a reconstruction z of same shape as x through a similar

transformation, e.g.:

z = s(W′y + b′)

where ′ does not indicate transpose, and z should be seen as a prediction of x, given

the code y. The parameters of this model (namely W, b, b′ and W′) are optimized

such that the average reconstruction error is minimized. When using the traditional

squared error measurement, the reconstruction error is defined as :

L(x, z) = ||x− z||2

Because y is viewed as a lossy compression of x, it cannot be a good compression

(with small loss) for all x. A lossy compression (as opposed to lossless) cannot be used

to perfectly reconstruct the original data. Learning drives y to be a good compression

in particular for training examples, but not for arbitrary inputs. That is the sense in

which an autoencoder generalizes: it gives low reconstruction error to test examples

from the same distribution as the training examples, but generally high reconstruction
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error to input vectors chosen from the uniform distribution. An autoencoder is iden-

tical to a classical three-layer neural network, with the primary difference being that

it attempts to learn the identity function. The vector presented on the input is the

same same vector expected on the output. Since the number of nodes in the hidden

layer is typically less than that of the input, the network’s weights are prevented from

simply converging on identity matrices. Essentially, the information storage capacity

of the hidden layers is less than that of the input, therefore some compression must

occur. There are other, more effective ways of enforcing this compression, but the

simplest way is to use fewer hidden nodes than input nodes.

The normal training procedure for an autoencoder is to use stochastic gradient decent

(SGD) to minimize the mean squared error in the reconstruction by searching the

space of weights on the encoder and decoder’s connections. Sometimes the weights

are said to be shared, which means the encoder and decoder use the same weights.

The purpose of this is to reduce the size of the search space by 1/2 without having a

severe impact on performance. In the case of shared weights, It is reasonable to say

there is not an encoder and a decoder, but simply a nonlinear transformation which

is optimized to work well in both directions.

Under some conditions, an autoencoder is isomorphic to PCA. If the activation func-

tion is linear (as opposed to sigmoid or tanh) and the mean squared reconstruction

error is value minimized, then the network learns to project the input in the span of

the first n principal components of the data, where n is the width of the hidden code

y. If the activation function is non-linear, the autoencoder behaves differently from

PCA, with the ability to capture multi-modal aspects of the input distribution. The

departure from PCA becomes even more important when we consider stacking multi-

ple encoders (and their corresponding decoders) when building a deep belief network
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[?]. The autoencoder alone is not sufficient to be the basis of a deep architecture

because it has a tendency towards over-fitting, so initial experimentation with deep

networks used restricted Boltzmann machines (RBM) as a basic module instead[?].

The denoising autoencoder (dA) is an extension of a classical autoencoder introduced

specifically as a building block for deep networks[?]. It attempts to reconstruct a

corrupted version of the input, but the reconstruction, z is still compared against the

uncorrupted input, x. This is known as dropout because random components of the

input vector are ”dropped”. The stochastic corruption process consists in randomly

setting some of the numbers in the input vector (as many as half of them) to zero.

Hence the denoising autoencoder is trying to predict the corrupted values from the

uncorrupted values, for randomly selected subsets of the full input vector. This

modification allows the DA to generalize well and produces compounding benefits

when the dA’s are stacked into a deep network[?]. Geoffrey Hinton suggests that

the stochastic timing of the action potentials observed in biological neurons is a

similar feature evolved to moderate the potential for over-fitting, and allows neurons

or neuron groups to generalize well over the range of activation patterns of their

receptive fields[?].

I have introduced the autoencoder, and the denoising autoencoder. Next I’ll explain

the stacked de-noising autoencoder and its benefits over a single denoising autoen-

coder. A stacked denoising autoencoder is composed of multiple denoising autoen-

coders where each DA takes the hidden code from the layer below. See figure 2 for a

diagram of an SDA. When a new layer is added only after the current highest layer

has converged, the network is said to be trained with greedy layer-wise pre-training

or GLWPT. When all the layers are present from the start, the training is referred

to as interleaved. The algorithm is said to be greedy because it optimizes a short-
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term goal (the reconstruction error of a single layer) in order to ultimately reach a

long-term goal (good reconstruction error by the entire network) To train an SDA,

first, a single denoising autoencoder is trained on the data in the usual way by opti-

mizing the weights to minimize the reconstruction error. Its hidden layer converges

on a sparse distributed representation of the training set. This essentially replaces

the step where a researcher would have to design a collection of good features. Then,

a second denoising autoencoder is trained to reconstruct corrupted versions of the

activation of the hidden layer of the first DA for the collection of training examples.

(the first level does not learn during this time). In an unsupervised learning task

where the features, or hidden code of each layer are the desired product, the process

is stopped at this point. If the network is to be used for classification or some other

supervised learning task, the network is said to be pre-trained at this point and a

final step is performed called fine-tuning. During fine-tuning the encoders from the

lowest to highest layer are ordered into a network, and an addition new set of weights

is created to map the highest level hidden code to an output vector often representing

class labels from a supervised training dataset. This whole stack of layers is treated

like a classical multi-layer neural network and trained using back-propagation and

SGD. The experiments in this thesis do not call for fine-tuning because no labeled

data is used.

2.7 Relevant work

Brandon Rohrer at Sandia National Laboratories developed a model which learned

abstract features from images and audio known as BECCA [?]. It is inspired by the

properties of the visual cortex, and attempts to re-create the visual cortex’s generality

and flexibility. Rohrer postulates that abstract feature discovery may be responsible
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for the generality and flexibility of the neocortex, but that we don’t yet know for

certain.

Re-routing sensory inputs to a new cortical location results in similar fea-
ture creation phenomena, hinting that the cortex may be performing a
similar function throughout its extent. If that is the case, the function it
performs may be nothing more than feature creation. However, there is
still far too little data available to certify or disprove such a statement.

Honglak Lee et al. applied convolutional deep belief networks to audio classification

with notable success [?]. They extracted features from spectrograms of short audio

snippets of speech from the TIMIT phoneme dataset, and from music [?]. They were

able to perform classification of the artist and the genre of songs, as well as classify

phonemes from speech snippets, using the same set of learned features.

Undoubtedly, the most successful applications of deep networks are in the field of

machine vision. One example that stands out is the classification of objects from the

enormous ImageNet dataset using convolutional deep belief nets by Alex Krizhevsky,

Ilya Sutskever, and Geoffrey E. Hinton[?, ?]. Although they did not perform any

unsupervised pre-training, they achieved record breaking classification performance.

They also describe the challenges posed by distributing their computation across

multiple graphical processing units (GPUs).

Dumitru Erhan et al. have investigated why unsupervised pre-training helps stacked

denoising autoencoders, and have found that unsupervised pre-training initializes a

deep architecture in a basin of attraction of gradient descent corresponding to better

generalization performance [?]. They hypothesize that due to the non-convexity of the

training criterion, early examples have a disproportionate influence on the outcome

of the training procedure. Even so, it is still somewhat unclear why that should be

the case.
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While there has been much research into the strengths and applications of deep belief

networks and stacked denoising autoencoders specifically, there does not appear to

have been any experiment to investigate the effect of unsupervised pre-training on

cross-modal generalization performance of DBNs or SDAs.
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3 Experiment design and implementation

3.1 Experiment Design

As described above, I test two distinct hypotheses in this thesis Firstly, that SDA

models trained on one sensory modality and then switched to a second sensory modal-

ity half-way through training will have a higher reconstruction accuracy on test data

from the second sensory modality than randomly initialized networks trained for an

equal total number of epochs on the second sensory modality exclusively. I found it

reasonable to expect that generalizing to the test data would be easiest for networks

which have discovered the most general features, and that multi-modal data would

promote this. In order to test this, I initialize a pair of SDAs with three DA levels

each. I train the experimental model for 249 epochs on audio, then on images for

249 epochs. I then measure its reconstruction accuracy on the image test set. For

the control model, I initialize the same network and train it only on images for 498

epochs. I then measure its reconstruction accuracy on the image test set. The re-

construction accuracy on the test set is then compared between these two models. It

is expected to be higher for the multi-modal (experimental) model because the more

varied initial data will force it to generalize better than the control. This experiment

is then repeated with the modalities reversed, and models’ reconstruction accuracy

on the audio test set is compared. This is 4 models trained in total.

For the second hypothesis, I run the four experiments just described using greedy

layer-wise pre-training and without. The magnitude of the difference in reconstruction

accuracy described in hypothesis 1 is expected to be greater for SDA’s trained with

greedy layer-wise pre-training. I refer to the control for hypothesis 2 as the interleaved

models because the layers are trained in the following order: {123123...} Each time
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one layer is trained, it is called an epoch. During any given epoch, only one layer’s

weights are optimized. Every datum in the training set is used once during each

epoch. In the experimental models, also called the layer-wise models, the layers are

trained in the following order: {111...222...333...}. The number of epochs for each

layer (166), and in total (498), is the same between the control and experimental

models. For layer-wise models which are trained on both sensory modalities, all three

layers are trained for each modality, totaling six groups of 83 epochs, three for one

modality, then three for the other.

To summarize the experiment design, there are two types of training procedure needed

to test hypothesis 2 (layer-wise and interleaved), there are two data source groups to

test hypothesis 1 (single modality, and multiple modality), and there must be two

experiments to control for the advantage given by training order (sound or images

last). This gives 8 total models trained, as tabulated below.

Summary of Experiments

1. Interleaved model on images only

2. Interleaved model on audio, then images

3. Layer-wise on images only

4. Layer-wise model on audio, then images

5. Interleaved model on audio only

6. Interleaved model on images, then audio

7. Layer-wise on on audio only

8. Layer-wise model on images, then audio
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My expectation for hypothesis 1 is each multi-modal model will show lower recon-

struction error than its single-modal counterpart. A multi-modal model trained on

images first, then on audio is comparable to a model trained on audio only, because

they are both tested using the audio test set. Each model is run multiple times with

different random seeds and the samples from each of these 4 pairs of experiments are

compared to evaluate hypothesis 1. The null hypothesis for each pair is that the two

sampling distributions will be the same.

Hypothesis 2 is evaluated by calculating the difference between the sampling dis-

tributions of the 4 pairs mentioned above. This give 4 distributions of differences.

These differences represent the effect of multi-modal training. Differences from mod-

els trained with layer-wise pre-training are compared to differences from interleaved

models. This leaves two pairs of differences to compare, because of the final vari-

able, modality order. The null hypothesis for each of these comparisons is that the

difference distribution will be the same. In other words, the null hypothesis is that

layer-wise pre-training does not change the magnitude of the effect of multi-modal

initialization.

3.2 Network Architecture

In all the models trained, I used an architecture of three denoising autoencoders

with input widths: [1024, 256, 64]. The dimensionality of the hidden code of the

highest layer is 16. The dropout rate used was 0.3 across all experiments and all

layers, meaning 30 percent of values in the input vector to any layers are set to zero.

Dumitru Erhan et al. [?] found that the benefits of greedy layer-wise pre-training

do not manifest until three or more layers are used, and that more than five layers

does not give measurable added benefit to test accuracy and variance on the MNIST
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dataset, which is of similar size to the data I used. Their network architecture for

the three-layer SDA was [1200,800,400]. They tested a variety of hyper-parameters

as well, such as corruption rates ranging from 0.0 to 0.4, learning rates from 0.01 to

0.0005, and the use of tied weights. I used a learning rate of 0.001 across all layers,

and did not use tied weights.

3.3 Learning and testing methods

Training an SDA is performed by training the component DA’s in the prescribed

order, depending on whether it is layer-wise or interleaved. Training a DA is very

similar to training a classical neural network. A cost function is defined in terms

of a given training example, and a pair of weight matrices, the encoder and the de-

coder. The training example is first corrupted according to the dropout rate, then

it is multiplied by the encoder weight matrix, and passed through a sigmoid acti-

vation function to obtain the hidden code. The hidden code is then multiplied by

the decoder matrix, and again through a sigmoid activation function to obtain the

reconstruction. The squared difference between the reconstruction and the original

uncorrupted input vector is the cost. Once a cost function is defined, any standard

optimization procedure can be used to optimize the weights to minimize it. When

the derivative of that function can be estimated or defined, a more powerful class of

optimization algorithms is available. In the case of neural networks, the derivative is

available, so Stochastic Gradient Descent (SGD) can be used to optimize the weights.

Reconstruction error is the metric used for optimization of each layer, and the metric

used for testing the network as a whole. The reconstruction error of an individual layer

is the difference in the reconstruction z of a single DA, and the original uncorrupted

input to that DA. Note that sometimes the input is from one of the datasets and
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sometimes it is the hidden code of a lower level, but the source of data is transparent

to the DA, and irrelevant to its function. The reconstruction error of an entire SDA is

a bit more complex. Once all the layers are trained, the encoder and decoder weights

and the dropout steps are assembled into a combined process. To reconstruct a single

test datum. It first undergoes dropout and encoding using the weights of the first

DA. Then dropout and encoding using the second DA, and so on up to the highest

level. Once the highest level hidden code is obtained, is is decoded using the decoder

weights of the highest level DA, and then the next-highest level, and so on until

a vector is obtained at the lowest level with the same dimensionality of the original

input vector. The difference of this reconstruction and the original uncorrupted input

vector is then taken to obtain the reconstruction error of the combined network.

3.4 Implementation

The experiments reported in this thesis, and the data pre-processing programs were

all written in Python 2.7. The code is open source and available on Github[?]. I based

my implementation of the SDA algorithm on code and documentation written by the

Theano Development Team. Theano is a Python library that allows the development

of GPU accelerated linear algebra operations. It works with the commonly used

scientific and numerical computing package Numpy. The SGD optimization for these

experiments comes from Scikit Learn, a machine learning package for Python. The

visualizations and graphs in this paper, as well as those not pictured that were used for

diagnosis in development were produced with MatPlotLib, an excellent Python library

for mathematical visualization. Together these libraries make a powerful toolkit for

deep learning research, and enable researchers to take advantage of state of the art

GPU’s, without which most of these problems would be intractable.
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Each model’s weight matrices are randomly initialized using a seeded random number

generator so that the entire set of 8 experiments can be repeated to obtain confi-

dence intervals on the resulting reconstruction errors. Running on a GTX 570 (1.4

GFLOPS) I can accumulate about 6 samples per day from each of the 8 experiments.

This could probably be improved and optimized, but not knowing what the best

hyper-parameters were for testing my hypotheses, I wanted to play it safe and use a

large network with a large amount of training data.

3.5 Data Preparation

The image dataset comes from the MFLICKR-1M collection of 1 million images from

Flickr, all licensed under Creative Commons by their original authors. Flickr credits

the authors on the MFLICKR description page [?]. For this experiment, 32 by 32

pixel normalized greyscale patches were desired. In preliminary experiments I deter-

mined that this is about the largest patch size I can use and still finish the experiment

in a few hours, which is a reasonable turnaround time to work with. The patches are

normalized because it helps neural-network based algorithms converge faster. At the

standard 4 megapixel resolution of the example images, 32 by 32 pixel patches are

smooth and relatively featureless, so 100 by 100 pixel patches were randomly sampled

from the images in dataset and resized using bilinear interpolation to 32 by 32 pixels,

and then desaturated. For the best results with neural networks, the brightness is

represented as a floating point value between 0 and 1. No locality is preserved. The

patch is flattened into a vector of width 1024. Every pixel is equally distant to every

other from the perspective of the neural network. The network is expected to learn

the correlations that exist between neighboring pixels. The data are then normalized

with ICA whitening (a kind of local contrast enhancement that has nothing to do

20



with actually making the image whiter). This pre-processing step typically improves

the convergence time and quality of learned features with neural networks. Whitening

is essentially normalizing the data along the dimensions of greatest variation, as in-

dicated by independent component analysis (ICA) The whitening procedure requires

having the whole dataset up front, and therefore precludes use in on-line learning en-

vironments, however it is probably possible to adapt the algorithm to on-line learning

with only some loss of accuracy.

Both the image and audio datasets are divided into training, test, and cross validation

sets. 80% of each set is used to create the training set, 16% is used to create the test

set, and 4% is used to create the cross-validation set. There are 100,000 vectors in

each dataset before splitting. Each has a dimensionality of 1024 and is represented

with 32-bit floating point precision. The training, test, and validation sets are each

randomized by sorting over the Murmur3 hash of their indices with a large fixed

offset which can be used as a random seed. This is one source of stochasticity in the

experiment, the other being the randomly initialized weights for the network.

To the best of my knowledge there is no comparably rich, large, and well packaged

audio dataset released under Creative Commons or in the public domain, so for my

experiments I am using a collection of publicly aired talk-show broadcasts from which

short clips are sampled and transformed into spectrograms of comparable dimensions

to the image patches. The patches of spectrogram are 500 milliseconds long, divided

into 32 time bins. They are also divided into frequency bins of 32 peak frequencies

on a logarithmic scale with the lowest frequency peak being 50 hz and the highest

being 10 khz. An equal number of samples were prepared from each sensory modality,

images and sounds, and each datum is of the same dimensionality, and is normalized

in the same way. This way they can all be treated interchangeably, simplifying the
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Figure 4: The data from both sensory modalities is preprocessed to create vectors of
the same dimensionality to use as input to the learning algorithms.

Figure 5: Patches sampled from the Flickr-1M dataset and spectrograms patches from
the talk-show and radio broadcast dataset. These are the values prior to whitening.
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code, and ensuring that any differences in learning between the two datasets are

due to the differences in the content of their data, and not, for example, a different

network topology for data of different dimensions.
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4 Results and Conclusion

4.1 Experimental results

Hypothesis 1 is that networks pre-trained on one sensory modality would perform

better on the other modality than randomly initialized networks trained for an equal

total number of epochs. To determine whether this has been confirmed I compare the

reconstruction error from pairs of experiments where one was single-modal and the

other was multi-modal, and the other variables were constant. There are four pairs:

(1,2), (3,4), (5,6), and (7,8). The reconstruction errors are plotted in figure 6. Cross

modal initialization seems to have helped for models which were tested on audio, but

actually hindered performance on models which were tested on images. For each pair

in the figure, the second box plot (multi-modal models) is expected to lie completely

to the left of its single modal counterpart. The differences in means of the four pairs of

experiments are tabulated in figure ??. The improvement seen on audio is represented

with the green numbers, and the hindrance seen on images is represented with the

red numbers. Since the average of these four differences in mean reconstruction error

is positive, hypothesis 1 is technically confirmed, but it is clear that modality order

plays a much larger role in the results than originally suspected.

The second hypothesis is that the magnitude of improvement gained from cross-modal

initialization is greater when GLWPT is applied than when it is not. I found that it

was only improved for models tested on audio, and the size of the improvement was

small. For models tested on audio (Experiments 5,6,7, and 8), layer-wise pre-training

increased the improvement from cross-modal initialization, and in the case where

cross-modal initialization hindered performance (Experiments 1,2,3 and 4) layer-wise

pre-training lessened the amount it hindered. The two numbers in the rightmost
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Experiment Pair
(Single-modal vs.
Multi-modal)

Difference in mean
reconstruction er-
ror

Difference of Dif-
ferences (effect of
GLWPT)

Interleaved
tested on images

(1,2) -0.36072
(p-value <.0001)

-0.06051
(p-value <.0001)

Layer-wise
tested on images

(3,4) -0.30021
(p-value <.0001)

Interleaved
tested on audio

(5,6) 3.44677
(p-value <.0001)

1.05709
(p-value <.0001)

Layer-wise
tested on audio

(7,8) 2.38968
(p-value <.0001)

Table 1: In this case when the difference in mean reconstruction error is positive, the
multi-modal model performed better (lower reconstruction error). The column on
the far right contains the differences in the difference in mean reconstruction error.
Hypothesis 2 predicts that these will be negative.

cells in figure ?? are the differences of differences that hypothesis 2 predicts will

be negative. The first difference (models tested on images) is the first red number

minus the second red number (interleaved tested on images - layer-wise tested on

images). Likewise, the second difference is the first green number minus the second.

Hypothesis 2 is not confirmed. The average of the two differences of differences is

negative, meaning the average effect of GLWPT on the improvement conferred by

cross-modal initialization was detrimental.

Although neither of my original hypotheses were completely confirmed, the results

still contain interesting findings. The strongest and simplest of these is that GLWPT

helps networks generalize to new data. Each multi-modal layer-wise model has a lower

reconstruction error than its interleaved counterpart with the same modality order.

This finding contributes strength to the idea that the development of GLWPT makes

SDAs more plastic, and therefore takes the algorithm in a more brain-like direction,

but is is a straightforward extension of the confirmed hypothesis that GLWPT helps

on single-modal data, and is therefore weaker than hypothesis 1. The asymmetry
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of the results with regards to modality order also suggest that image data serves as

better training data for both images and audio. It may have statistical properties

that work well with SDAs. I discuss this asymmetry further in section 3.2.

In order to understand what is happening to the multi-modal networks at the point

when the sensory modality is switched, I have graphed the normalized reconstruction

error (reconstruction error divided by the number of nodes in the layer) for each

layer in a pair of models. Figure 7 shows the networks from experiments 1 and 2

(images), and figure 8 shows the networks from experiments 5 and 6 (audio). Layers

are distinguished by colors, and the two networks are distinguished by line type. Note

what happens to each of the solid lines in the second phase of training in each graph,

relative to the dotted line of the same color. The reconstruction error of each layer in

the multi-modal model (solid line) is expected to start higher than the reconstruction

error of the corresponding layer of the single-modal graph, and then slowly drop,

hopefully below the dotted line of the same color, but this is not what happens at

all. In the case of models tested on images (figure 7) layers one through three in the

multi-modal model begin in a normal order, with lower normalized reconstruction

error for the higher layers while it is training on spectrograms, but after the switch to

images, layers 1 and 3 immediately begin at the same reconstruction error that layers

1 and 3 of the pure image network have already converged on, both quite lower. But

strangely, the second layer’s reconstruction error jumps above the 1st, and begins to

increase significantly, Unfortunately I have no plausible explanation for this.

In the spectrogram experiment pair (figure 8) There is a milder and reversed scenario.

The pure-spectrogram network (dotted line) begins to converge with poor reconstruc-

tion error, just as it did in the multi-modal case in experiment 5, only this time it

is left alone. Meanwhile the model being trained on images is converging to a lower

26



Figure 6: Box plots of the reconstruction error for each of the 8 experiments. Lower
reconstruction error means better performance. Interestingly, the single-modal audio
models had relatively poor performance. Layer-wise pre-training helped somewhat,
but multi-modal initialization helped much more.
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Figure 7: This graph compares a single interleaved network trained for 1000 epochs on
images (dotted line) vs an interleaved network trained for 500 epochs on spectrograms,
and then switched to images. Note the discrepancies between lines of the same color
on the right half of the graph. The first and third layers see almost no change, but
the second layer has two notable features. It begins in an unstable position, and
then approaches a higher reconstruction error and stabilizes. This indicates that the
structure of layer 1 is changing underneath it and altering its fitness landscape, even
which layer one’s reconstruction error is stable.
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Figure 8: This graph, similar to the one above, compares a single interleaved net-
work trained for 1000 epochs on spectrograms (dotted line) vs an interleaved network
trained for 500 epochs on images, and then switched to spectrograms. (the modalities
are opposite) The strangest feature of this graph is that the reconstruction error for
layers 2 and 3 on spectrograms is lower for the network trained on images than the
one trained on spectrograms. This indicates that images make good training data,
even if the test data is not images.
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reconstruction error with its characteristic out-of-order layers. After the switch, the

layers re-arrange to the order they are found in the spectrogram network, but with

lower reconstruction error.

When training any unsupervised learning algorithm, it is difficult to know whether

the network has succeeded in learning the representations one expects. Measuring

reconstruction error on test data gives an indication of how lossless the compression

performed by the network is, but the goal is not perfectly lossless compression, it

is generalizability and the discovery of interesting salient features that are useful to

higher levels and similar networks. This is why it is crucial to visualize the features in

the network. By working backwards from the weights, one can reconstruct an image

that would maximally activate each node in a layer (figure 9). After performing this

analysis on my networks, it seems that in all cases, about half of the nodes remain

unused because they show no spatial correlation. The number of unused nodes is

greater for audio than for images, and this may account for the significant differences

between the results.

4.2 Conclusion and future work

The results were unexpected because they did not fully confirm either hypothesis.

The largest differences were between models tested on audio vs. models tested on

images. The most interesting finding to me was that models trained on images, then

audio performed far better when tested on audio than the models trained on only

audio, but that this does not apply to models trained on audio first, then images, and

tested on images. One interpretation of this finding is that a data driven pre-training

step is the most helpful way to improve generalization, but that the data used for pre-

training does not necessarily need to be from the same distribution as the data that
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Figure 9: These grids of feature detectors are created by working backwards from
the weights in the first-level denoising autoencoder to obtain the image which would
maximally activate each node. If we compare visual representations of the first level
features of the pure image network and the pure spectrogram network, we see that
there are two main differences. In the image network, more of the features converge
on smooth edge and spot detectors, whereas in the spectrogram network, fewer of
the features are utilized. Any feature resembling uniform noise is basically not being
used. The other difference is that the spectrograms appear stretched, because their
vertical axis is frequency and the horizontal axis is time, the scale of features on these
axes could be adjusted to be more like the images if desired.
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the network is intended for. There may be a data-set that serves as a good pre-training

set for a variety of problems. Demitru Erhan et al. have performed an experiment

to rule out the possibility that the pre-training advantage could be explained simply

by a better conditioning of the initial weights [?]. They drew weights from the same

range and marginal distribution as weights that were captured from a network already

trained on data from the same dataset. They found that this offered an advantage

over no layer-wise pre-training, but not as much as layer-wise pre-training using the

actual dataset. They sampled weights from histograms of weights from a trained

network but some of the useful data captured by the pre-training may have been lost

in this process. I believe there may still be a possibility that a properly initialized

network could have the same advantage of data-driven pre-training, and this would

be an interesting topic of future work.

In Figure 5, sample patches are arranged from both datasets. One can see that

that there are several consistent differences. The image dataset contains a large

number of high-contrast edges in a variety of angles and sizes. After whitening,

the spectrograms will also become high-contrast, but they contain less high-contrast

edges to begin with, and they are all flowing in the same direction and are relatively

smooth. In figure 9 you can see visualizations of the features learned by the 1st layer

of the image-only layer-wise denoising autoencoder and the audio-only layer-wise

denoising autoencoder. Features in the audio network look more like data examples,

while features in the image network are more general spot and edge detectors. In

addition, there are more used features in the image network, while as many as 60%

of the features in the audio network remain unused. Why did the image dataset

produce a better prior distribution? What statistical properties should we look for in

good pre-training data? High information content would be my guess. If it doesn’t

compress well, it’s probably going to be good for pre-training. Again, this would make
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an interesting topic for future work. The interesting layer-order anomaly shown in

figure 8 also hints at a difference in the image dataset that may turn out to be

characteristic of datasets which are good for pre-training. The second layer has a

higher reconstruction error in that model, whereas in other models, the normalized

reconstruction errors are in layer order.

In the introduction, I discussed the motivation for studying plasticity because it gives

us an idea of how brain-like the SDA algorithm is. If intelligence is too difficult

to measure or to difficult to achieve, then maybe esoteric behaviors and qualities

of the brain will be more helpful indicators. It would be very interesting to look

for this sensory imbalance in animal or human studies of neuroplasiiicity. Does the

primary visual cortex adapt more quickly or effectively to auditory stimulation than

the auditory cortex can adapt to visual stimulation? There have been studies of both

instances of neuro-plasticity [?, ?], but no direct comparisons as far as I know.

In conclusion, these experiments may re-open the question of whether properly ini-

tialized data-agnostic weights can offer the same benefit of data-driven pre-training.

Pre-training adds robustness to a deep architecture, but it may not be the most effec-

tive or fastest way to add robustness. A hierarchical structure alone is not sufficient

to allow plasticity and adaptability, nor is it even a matter of training method, but a

matter of the weights. SDA’s are not a magic bullet for discovering abstract features,

but they are one of the best algorithms available at the current time. A more careful

tuning of hyper-parameters, and a broader exploration of pre-training data sources

would lead to further discoveries on the path to matching the power and adaptability

of the neocortex.
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