
Portland State University Portland State University 

PDXScholar PDXScholar 

University Honors Theses University Honors College 

Spring 6-16-2023 

The Power of (Virtual) Convergence: The Unrealized The Power of (Virtual) Convergence: The Unrealized 

Potential of Pair Programming and Remote Work Potential of Pair Programming and Remote Work 

Mikayla Maki 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses 

 Part of the Computer Sciences Commons, and the Organizational Behavior and Theory Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Maki, Mikayla, "The Power of (Virtual) Convergence: The Unrealized Potential of Pair Programming and 
Remote Work" (2023). University Honors Theses. Paper 1367. 
https://doi.org/10.15760/honors.1396 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/639?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/1367
https://doi.org/10.15760/honors.1396
mailto:pdxscholar@pdx.edu


The Power of (virtual) Convergence:
The Unrealized Potential of Pair Programming and Remote Work

By Mikayla Maki



1

For the last 6 months I’ve been working remotely on my PSU CS capstone. This should

be a straightforward project: we’re using a popular framework, we’re building a straightforward

application with plenty of prior art, we added a documentation generator in the first few weeks,

and have even mandated that all PRs are reviewed. And yet this team has struggled to

communicate and synthesize our work into a complete product. It wasn’t until the second-to-last

week that we actually integrated the most important component! Meanwhile, I’ve spent the past

year working remotely at a startup, Zed, with colleagues around the globe. This is software

development in hard mode: we’re building a high performance, distributed system in our own

closed source UI framework, with our own GPU render, custom data structures, and a custom

network protocol and server. Yet somehow, the Zed team is able to iterate quickly, releasing new

features every single week [1]. Why are these experiences so different?

To understand how Zed achieved this, we need to start at the basics of the work we do.

Software development is the practice of turning ideas into a precise description of how a

computer should act. This has long frustrated traditional management techniques because the

process of turning specifications into running code can only be understood in retrospect. If we

knew precisely what needed to be done, the problem would, by definition, have already been

completed. Fred Brook’s classic essay on the challenges of software development, No Silver

Bullet, [2] describes the problem in terms of four essential difficulties:

● Complexity: Software involves dealing with vast interconnected systems that can have

magnitudes more states than the other things we build.

● Arbitrary: Software has to interface with a complicated human and natural world that

emerged with its own considerations. This requires programmers to understand not just

how software works, but also the world beyond it.



2

● Changeable: Software is expected to change to reflect the world. Because it’s so easy to

recall or modify software, it can keep up with a changing world and users, and so it must.

● Invisible: Software is difficult to visually display because it has no natural relation to

physical space. While you can attempt to portray it in 2 or 3 dimensional space, such

rendering will always be a simplification. Keeping track of just what’s going on in a

software system is difficult because there is no natural map of the process at work.

Due to these essential difficulties, writing code is therefore a relatively small part of the work of

programming. A much larger part is simply understanding the systems involved and how they

interface with each other (be they social, environmental, technical) so that abstractions can be

made that model or interlock with them. To make this problem even harder, programming is not

done alone.

The process of building a shared understanding between people is described by Media

Synchronicity Theory (MST) [3]. MST analyzes all communication in terms of two goals:

conveyance of new information and convergence on an understanding of information.

Asynchronous communication tends to be well suited for conveyance processes, where

substantial time and care must be taken to create a new understanding of a situation, while

synchronous communication is better for convergence processes, which require rapid, high-level

interaction. As an example, pull requests (PRs) are a conveyance mechanism for enhancements

to a project. They take a long time to put together, you only make a PR once you’re ready, and it

takes a lot of effort to review a colleague's PR. Video calls are a high convergence activity. Both

participants are constantly communicating short messages with their voice, tone, and facial

expressions, allowing participants to build up a mutual understanding of each other and the

problem at hand. MST has already been used to analyze distributed software development and its



3

results have been shown to match how teams actually use communication tools [4]. So let’s

apply an MST based analysis to these two software teams.

Zed and the capstone team have a similar organizational structure. Both are small teams,

eight and seven developers respectively, both use the same version control system (Git), both

have a chat room, Slack and Discord, both have a culture of opening PRs, pushing commits, and

leaving a few sentences of explanation as to what’s been done and why, and both have an hour

long meeting on Monday to talk about where people are at and what we’re doing. But at the

capstone, this was as far as communication could go. Everyone's availability was so disjoint that

conversations on a specific feature or problem could go on for days or weeks before a solution

would be found. Our ability to converge on a shared understanding was impeded by a total lack

of tools for synchronizing our understanding beyond the Monday meetings. Sometimes we

would go hours overtime at the Monday meeting, hashing out the last week’s problems. This also

resulted in wasted work, as approaches to problems like communicating with the database or

implementing an account login page would be developed several times independently, without

coordination between people. These challenges made it hard for the capstone to make as much

progress as we wanted to.

To understand why Zed doesn’t struggle with these same problems, we first have to

understand Pair Programming. Pair programming is a long standing agile development practice

where two developers sit down together, at the same workstation, and write code together.

There’s usually a split between a ‘driver’, the person writing the code, and the ‘navigator’, the

one reviewing that code and thinking of the big picture. These two roles swap continuously

throughout the pair programming session, so that the knowledge relevant to each role can be

distributed between the two participants. This results in significantly less defects and a number



4

of intangible benefits, such as improving the pair’s problem solving abilities and code quality

[5]. But pair programming practices haven’t been able to translate into a remote work

environment.

D. Smite, et al. [6] surveyed pair programmers who went remote during the pandemic in

Norway and found that they were unable to maintain their normal practices over the first year of

the pandemic. Existing pair programming tools, like Tuple, VSCode’s LiveShare, and IntelliJ’s

“Code with me” were frustrating and limited, so most developers were restricted to video calls.

However, screen sharing and video calls can’t support pair programming’s continual swapping of

driver and navigator. This is exhausting for everyone involved, and so most developers surveyed

ended up writing code separately, with periodic video-call based check-ins. While this kind of

synchronization would have certainly helped the capstone team, even in industry the technical

challenges of remote pair programming haven’t been solved. According to the The 2022 Stack

Overflow Developer Survey, the most popular synchronous development tools people use are

chat and video apps like Zoom, Microsoft Teams, and Slack [7], none of the pair programming

tools are even on the list

Zed is solving the remote pair programming problem by building a new code editor, from

the ground up. It uses cutting edge research into Conflict Free Replicated Data Types [8] to

create a smooth, back-and-forth pairing experience that no other implementation has. With this

strong foundation, Zed is able to have a remote pair programming culture. Whenever I have a

problem with a component, I can message the person who built it and within minutes have them

appear in my editor so they can walk me through how each piece fits together. This technology

and the broader company culture of pair programming is so successful at enabling convergence

that, within 3 months of joining the company, I went from never having touched a local



5

application to building a terminal emulator into Zed. But the benefits of frictionless, real-time

collaboration go beyond just higher productivity; they also help develop the relationships that

make up an organization.

Organizations are made up of large networks of people with both formal and informal

interactions, collaborating to produce the organization's output. In the classic 1973 paper The

Strength of Weak Ties, Mark S. Granovetter provides a framework for understanding how the

character of these relationships affects a network’s information flows. The strength of a tie is

made up of “the amount of time, the emotional intensity, the intimacy, (...) and [reciprocity]” [9]

characteristic to the tie. The strength of these ties corresponds to the similarity between the

people involved as it’s difficult to have strong ties with conflicting perspectives without

“psychological strain” [9]. This coherency allows strongly connected people to work together

easily due a shared understanding of each other, at the cost of homogeneity in viewpoints.

Weak ties act as a way to break out of this dynamic because they don’t demand the same

degree of cohesion between their members. They allow information to transfer between

heterogeneous groups, improving knowledge transfer for everyone involved. This theory applies

to the informal communication graph of an organization as much as any other group of people.

As an example, senior developers sitting next to junior developers and graphic designers at lunch

is essential for building up an organization-wide awareness of relevant information. But the onset

of mass remote work in 2020 has disrupted the formation of strong and weak ties.

In a recent study, Emanuel Et. Al. observed how junior developers struggled with this

shift at an unnamed Fortune 500 company. New developers, particularly women, were unable to

get the feedback they needed, leading to up to a 5x larger quit rate [10]. In the language of

relational ties, these junior developers were unable to develop their initial weak ties with senior



6

developers into the kinds of strong ties that enable them to participate autonomously in the

organization’s work.

This problem is corroborated by similar studies on MIT faculty [11] and on Microsoft

employees [12] conducted during COVID. In both organizations there was a decline in

communication with weak ties during the pandemic. People increasingly collaborated with

pre-existing strong ties, largely disconnecting from their weak ties. Particularly concerning in the

Microsoft study was that they found that there was a decline in the number of new weak ties

formed – as the study put it the organization saw an “ossification” as a result of the move to

remote work.

To understand why this change occurred, we can look at a more fine-grained study which

surveyed 20 Taiwanese remote workers during the pandemic [13]. This study found that it was

difficult for these remote workers to gauge each other’s engagement level with the asynchronous

tools they used to interact with their weak ties. With a lack of solid information, these workers

tended to “develop polarized perceptions” of their coworkers and so were also less inclined to

collaborate with weak ties. This particularly hurt new hires who had no pre-existing strong ties

and lacked an understanding of how the implicit structure of the company worked. The result

was that new hires to the company were left isolated, just as observed in the larger studies above.

My experience at the capstone matched this trend. I’ve only developed a rapport with my

team lead, Zach. I don’t have nearly the same relationship with my other teammates and it makes

it difficult to interact with each other's PRs beyond just approving them. However, I had no

difficulty forming strong ties while working at Zed. Because of Zed’s reliance on pair

programming, I was able to build up strong relationships with the senior engineers who in turn

offered advice and mentorship. These relationships are why I could ship major features, at all, let



7

alone within just a few months of joining. Most other new hires at Zed have had a similar

experience. As long as the new developer is able to ask questions and put themselves out there

for pairing, they can get a lot of support. This social element of pair programming is also

corroborated by the study from Smite Et. Al. of the norwegian programmers:

“We [pair programmed] both with regard to quality, but not the least with regard to

people's need for seeing each other and to get a feel of working together [...] it adds

something positive in terms of more contact with the other team members" [6]

Pair Programming is highly effective at enabling strong tie formation and retaining junior

developers, offsetting the costs that remote work levies on weak ties.

Strong ties require intimacy and mutual confidence in how each participant will perceive

and respond to the world. Building up this understanding is fundamentally a convergence

problem, and so requires fast, synchronous, reciprocal interaction to form. But in analyzing the

software used to enable remote work I find that existing tools often frustrate convergence, and

the few synchronous tools available are incapable of providing the rich back-and-forth necessary

for reciprocal techniques like pair programming. However my experience at Zed shows that this

is, at least in part, a technical problem. Frequent, remote pair programming using our own

software created the opportunities for organic convergence that helps foster the strong and weak

ties that are necessary for a functional organization. Maybe remote work doesn’t have to be quite

so expensive

Citations

[1] “Zed Stable Releases,” Zed, https://zed.dev/releases/stable (accessed May 26, 2023).



8

[2] Brooks, “No silver bullet essence and accidents of software engineering,” Computer, vol. 20,

no. 4, pp. 10–19, 1987. doi:10.1109/mc.1987.1663532

[3] A. R. Dennis, R. M. Fuller, and J. S. Valacich, “Media, tasks, and Communication Processes:

A theory of media synchronicity,” MIS Quarterly, vol. 32, no. 3, p. 575, 2008.

doi:10.2307/25148857

[4] T. Nii, A. Piri, C. Lassenius, and M. Paasivaara, “Reflecting the choice and usage of

communication tools in GSD projects with media synchronicity theory,” 2010 5th IEEE

International Conference on Global Software Engineering, 2010. doi:10.1109/icgse.2010.11

[5] A. Cockburn and L. Williams, “The costs and benefits of pair programming: Extreme

Programming examined,” ACM Digital Library,

https://dl.acm.org/doi/abs/10.5555/377517.377531 (accessed May 26, 2023).

[6] D. Smite, M. Mikalsen, N. B. Moe, V. Stray, and E. Klotins, “From collaboration to solitude

and back: Remote Pair programming during COVID-19,” arXiv.org,

https://arxiv.org/abs/2105.05454v1 (accessed May 26, 2023).

[7] “Stack overflow developer survey 2022,” Stack Overflow,

https://survey.stackoverflow.co/2022/ (accessed May 26, 2023).

[8] N. Sobo, “How CRDTs make multiplayer text editing part of Zed’s DNA - zed blog,” Zed,

https://zed.dev/blog/crdts (accessed May 26, 2023).

[9] M. S. Granovetter, “The strength of weak ties,” Social Networks, pp. 347–367, 1977.

doi:10.1016/b978-0-12-442450-0.50025-0



9

[10] N. Emanuel, E. Harrington, and A. Pallais, The Power of Proximity: Office Interactions

Affect Online Feedback and Quits, Especially for Women and Young Workers. [Online].

Available:

https://scholar.harvard.edu/pallais/publications/power-proximity-office-interactions-affect-online

-feedback-and-quits-especially

[11] L. Yang et al., “The effects of remote work on collaboration among information workers,”

Nature Human Behaviour, vol. 6, no. 1, pp. 43–54, 2021. doi:10.1038/s41562-021-01196-4

[12] D. Carmody et al., “The effect of co-location on Human Communication Networks,” Nature

Computational Science, vol. 2, no. 8, pp. 494–503, 2022. doi:10.1038/s43588-022-00296-z

[13] C.-L. Yang, N. Yamashita, H. Kuzuoka, H.-C. Wang, and E. Foong, “Distance matters to

weak ties,” Proceedings of the ACM on Human-Computer Interaction, vol. 6, no. GROUP, pp.

1–26, 2022. doi:10.1145/3492863


	The Power of (Virtual) Convergence: The Unrealized Potential of Pair Programming and Remote Work
	Let us know how access to this document benefits you.
	Recommended Citation

	The Power of (virtual) Convergence:

