
Portland State University Portland State University 

PDXScholar PDXScholar 

University Honors Theses University Honors College 

Spring 6-9-2023 

EPL Card Reader Capstone: The Strengths of Partner EPL Card Reader Capstone: The Strengths of Partner 

Programming from a Team Leader's Perspective Programming from a Team Leader's Perspective 

Zach Yost 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses 

 Part of the Databases and Information Systems Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Yost, Zach, "EPL Card Reader Capstone: The Strengths of Partner Programming from a Team Leader's 
Perspective" (2023). University Honors Theses. Paper 1381. 
https://doi.org/10.15760/honors.1412 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/honorstheses
https://pdxscholar.library.pdx.edu/honors
https://pdxscholar.library.pdx.edu/honorstheses?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=pdxscholar.library.pdx.edu%2Fhonorstheses%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/honorstheses/1381
https://doi.org/10.15760/honors.1412
mailto:pdxscholar@pdx.edu


1

EPL Card Reader Capstone: The Strengths of Partner Programming from a Team
Leader's Perspective

by

Zachary Yost

An undergraduate honors thesis submitted in partial fulfillment of the

requirements for the degree of

Bachelor of Science

in

University Honors

and

Computer Science

Thesis Adviser

Bruce Irvin

Portland State University

2023



2

Abstract

This essay looks to reflect back upon the successes and failures of the EPL Card

Reader capstone project, sponsored by Edward Ivory, head of Portland State

University’s Electronics Prototyping Lab. The EPL Card Reader’s goal is to provide a

means of tracking and updating student activity and training on the various machines in

the lab. Using a local computer port to host this web app a lab administrator or manager

is able to scan a student’s access badge to review which machines they have been

trained on as well as update that training status. The app also has a running file that

logs when a user scans into the lab, providing valuable data for Mr. Ivory in the form of

user metrics. All of this was achieved using the Flask framework which is a python

library suite which enables database integration. I am able to look back at this work from

the unique perspective of the project’s Team Lead whose tasks consist of keeping in

contact with the sponsor, the capstone adviser Bruce Irvin, keeping my team up to date

with the project as a whole as well as with one another on their individual work. A key

lesson I took from this project was the department’s undervaluing, if not outright fear, of

the concept of partner programming as a powerful learning tool.

Keywords: Framework, project management, database integration, capstone,

pair programming, review



3

One of the most interesting proponents of this project is that it consists of mostly

inexperienced members, including myself, the team lead. Most of the leads had little to

no experience in project management, a fact that Bruce Irvin, capstone instructor, was

quick to point out. Rather than looking for experience, Dr. Irvin emphasized a particular

shared trait: “conscientiousness.” Armed with little more than the drive to do our

research into the gritty details and complete tasks we marched on towards our first

bi-weekly meetings into what it was to be a team lead.

A fear I had going into these initial meetings was my own lack of knowledge in

particular sectors of the programming world. I had somehow made it through my degree

without taking a proper full stack web development course. I was most comfortable with

C++, the language at the heart of PSU’s upper division, competent in JavaScript and

little else. One of our first meetings would embrace this heartily. We were told in no

uncertain terms that some of us would work on projects that were unlike anything we

had ever touched. Entire teams may end up with projects that few, if any members at

all, would have the skillset to work on. We as team leads would have no experience in

what it was to run a full team of developers and were fledgeling developers ourselves.

Yet in the face of all this abject terror, there was some comfort to be found in its

acknowledgement. To have forewarning into inevitable failures; to embrace them and

learn. Now all we had to do was select our crew of ragtag developers to bring on this

journey with us.

Developer interviews consisted of groups of three interviewees and three

interviewers in-person, with Zoom as a last resort for those that needed it. Our capstone



4

group was so large that we had to split interviews in half and record one group’s

interviews for the other’s to watch later. We would end up missing about half of one

side’s interviews with this system. I found myself looking for two things above all others:

experience and competence. A handful of student developers were already working in

industry and this I earmarked as top contenders. Next I’d list the most confident

individuals that emphasized communication with their team, prioritizing students I

recognized from previous classes with positive work ethic track records. When all was

said and done, I was thrilled to have a team made up of individuals that were all in my

top 10 candidates. Next came getting to know each other and researching which of the

sponsored projects we’d prefer to work on as a team.

I assigned each member to research two projects and to leave notes for peer

review in a github repository, a tool used to manage various versions of a software

project to get people comfortable with using git in a team environment. We had a rating

system to share how you felt about a specific project and listed them in order from high

to low. It was during this research project that the department’s structure had left a bit of

a gap: web research. It would be foolish to say that most, if not all computer science

(CS) students hadn’t used the internet for something, whether it be as benign as

verifying a specific program syntax or as nefarious as seeking answers to a homework

problem. That being said, I am walking out of the department with some deeply

ingrained fear of the web as it pertains to solving programming problems with the belief

that answers provided online from the likes of Stack Exchange are unresearched,

flawed, not to be trusted. But then how does one find answers to questions like “how do

we build a program from scratch to manage a database of students, with local web



5

hosting integration, that also supports infrared card reader technology through a USB

port?” Specific questions like this are hard to find answers to and certainly no class I’ve

ever taken has provided tools for finding the answers. Initial web searches yielded

plenty of potential frameworks to get started, but many were missing some key piece of

the puzzle, such as USB integration or a way to communicate with the USB port. On a

whim I dared that most dreaded of technology: ChatGPT. It was able to immediately

suggest Flask, a Python framework (mind, a language I’ve no experience with) that

supported direct database and object integration, the tools and support libraries to

supplement it such as SQLAlchemy, and even a specified port library in pyserial to deal

with the card reader technology. This exciting new technology which was explicitly

forbidden in the past was able to provide me with answers in seconds that I was

struggling to find in hours of research. While there are obvious scholarly ramifications of

ChatGPT being unleashed upon the academic world, current industries are taking

advantage of these tools and features. Jobs we’re likely to be applying for are fully

supporting its integration. Why, then, are we not taught how to properly use such

technology in a righteous and scholarly way? This is a thought I’d have at the back of

my mind for the 6 months of capstone work to come.

After receiving our assignment of the EPL Card Reader project we were quick to

get to work. After some debate of trying a new up-and-coming language, Rust, we

eventually settled on the Flask Python framework to work in a language more people

were familiar with, as well as being a more supported and simplified language with the

knowledge that electronics students would likely be taking over maintenance in the

future. After meeting with Mr. Ivory, we learned that the original hardware we were



6

expecting was now unavailable, and a simple alternative was being created in its place.

Our team moved forward by designing the application to work with data input rather

than with functional card reading until we’d receive the functioning hardware. We took

the first several weeks to practice with this framework, each member learning a specific

portion of the tool such as webpage integration, the serial reading library or the

database initialization.

It didn’t take long for cracks to start to appear with this more laid back

“professional” environment simulation. Some members were working full time in industry

as well as attending school full time; one lived outside the state, another worked

overnight shifts, one worked mid shifts and would be hard pressed to make every

meeting and another still was three or more hour’s drive away from campus, making it

difficult to get the card reading hardware we’d need to experiment with later. Simply put:

this was still a class which would come second to people’s personal work and family

lives. It was my job to make sure everyone was still making a fair contribution to the

project while also ensuring they were getting as much out of the capstone as possible. It

was around this time that Mikayla, a fellow honor’s student and teammate, mentioned

pair or partner programming, wherein one person programs while the other watches,

something easily done over the web with tools like Discord or Zoom. Unfortunately with

such a scattering of time slot availability as a team we weren’t able to coordinate this

idea until the latter weeks of the second semester.

As members of the team became more comfortable with their respective

assignments we began integrating our work together. We’d start with small simple

examples such as creating a simple “student” concept in the database to demonstrate



7

we could enter information into the webpage and have it display out to the app as

expected. Our workflow would be checking in every Monday to demo our respective

progress and how our functionality worked. As we had the rare opportunity to create an

application from scratch, communication with the sponsor was crucial. More

straightforward clarifications such as differentiating an admin, manager and a student

seemed obvious, but some things were taken for granted. For example, it hadn’t

occurred to me to ask what operating system we’d be launching from; as it turns out, the

Flask framework will send multiple requests to the USB port at once. This didn’t matter

to Linux, which will simply go through each process one at a time. Mac and Windows,

however, don’t like multiple access requests to the same port and would crash or freeze

the app. This led me to getting in contact with our Computer Action Team (CAT) to ask

about installing a virtual machine on the EPL’s kiosk to run the app, and clarify if the

sponsor was okay with this route. A lesson in the importance of getting early stage

demos into the hands of the sponsor, as Dr. Irvin would emphasize. If it wasn’t for a

demo with the sponsor and their Mac, this may have been a painful last minute report to

write.

As we approached the end of the semester (we’re still actively working on this

project as I type this) we were able to have several instances of peer programming, as

Mikayla was able to demonstrate her industry skills as she’d work through features and

debugging or altering code while I or another would watch and help catch logic bugs or

typos. After only several minutes I was blown away by the obvious benefits of this

paired programming approach. Not only does it help the person writing the code keep

track of things in their head to make sure it matches what’s coming from their fingers,



8

but it provides the ability for the watcher to ask questions about a functionality or

method of a function and confirm their own understanding of what’s happening on their

screen. When swapping places the viewer is able to solidify that understanding as they

work through the code and have their teammate coach them through this function or

that. This was a stark contrast to everything I’ve been told the previous two, three years:

“don’t share code.” While I understand needing to learn the concepts yourself, are we

not adults in higher education to be trusted? Some of my most impactful learning

moments came from working through code with a classmate through the years,

resulting in both them and me profusely commenting in our code “worked together with

[...]” as though failing to do so would end in disciplinary action for plagiarism. If there

was one thing I could redo for this capstone to the benefit of the team and the resulting

product, it would be enforcing a partner programming approach to some degree. I can

not overstate the value of this methodology enough, and can only hope the upper

division program can embrace it in one way or another.

In these final weeks we’re tying everything together, going back through our

project board to make sure we haven’t overlooked any core feature requests. I was

surprised to learn that not everybody was testing their functionality in the same way,

another process I had taken for granted. Some people were testing their functionalities

in small self-contained modules, rather than running the app itself and testing within the

app. This far in we had people that had never actually run the application, though their

work was still able to be integrated and executed as expected. This situation, I believe,

would have been made more clear sooner if I was able to implement pair programming!

But I digress. We have our sponsor testing these final iterations for any last minute



9

changes, tweaks or missed functionalities and will be demoing the application with Dr.

Irvin in the coming weeks before our final project presentation and product delivery to

the sponsor. I believe keeping an open line of communication with the sponsor was

crucial and can not stress enough my agreement that getting your product in the hands

of a sponsor as soon as possible should be a top priority. The more realistic emulation

of a work environment only confirmed my suspicions that being able to work

side-by-side with someone else is an invaluable addition to the programming

experience. If the goal is to prepare us for industry, why not offer us more realistic

experiences? The capstone project itself is an excellent addition to my education and I’d

love to see more group programming in the upper division.



10

References

Liechti, Chris (2020) pySerial (Version 2.7) [Python Library]

https://github.com/pyserial/pyserial/

Lord, David (2023) Flask-SQLAlchemy (Version 3.0.3) [SQLAlchemy Extension)

https://github.com/pallets-eco/flask-sqlalchemy/

Ronacher, Armin (2023) Flask (Version 2.3.2) [Web Framework]

https://github.com/pallets/flask

https://github.com/pyserial/pyserial/

	EPL Card Reader Capstone: The Strengths of Partner Programming from a Team Leader's Perspective
	Let us know how access to this document benefits you.
	Recommended Citation

	EPL Card Reader Capstone: The Strengths of Partner Programming

