




4.1 ARC-RSM Algorithm Overview

have analytical tasks performed on them)

4. selection of preferred experimental designs

Figure 4.1 is a visual representation of the choice selection process that will be

described in this section:
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 (Start) take in input variables 

(preference function list, knowledge state index) 

determine analytical task list 

determine design list 

return F-ResErr 

(resource error) 

return F-Good 

(Success) 

return F-LogErr 

(logic error) 

remove analytical tasks of least pref-

erence from analytical task list 

assign most 

preferred design 

in design list 

as current design 

remove most preferred 

design from design list 

determine 

feedback from 

successors of current 

planned move 

if no more experimentation 

needs to be done 

if more experimentation 

needs to be done 

if the analytical task 

list is empty 

if the analytical 

task list is 

nonempty 

if design list 

is empty 

if analytical 

task list is still 

nonempty 

if design list 

is nonempty 
if feedback is 

satisfactory 

if feedback is not 

satisfactory 

if analytical 

task list is 

now empty 

if design list is 

still nonempty 

if design list 

is empty 

Figure 4.1: Visual representation of the algorithm for the construction of a
planned move.
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4.2 Basic ARC-RSM Analytical Task Terms

The following definition describes analytical tasks as they will be interpreted dur-

ing the construction of a research strategy.

Definition 4.1. An analytical task τ is a function which represents a particular

statistical process (for example, screening a predictor), directed towards an analytical

target x (for example, a predictor being screened). A potential argument for an

analytical task is represented as an ordered pair (x, aτ |i), where x is the analytical

target, and aτ |i is the additional information needed to specify the analytical task at

i ∈ I(levels of significance, etc.), and returns the set of potential facts representing

the possible conclusions of that process (for example: {the predictor passes screening,

the predictor fails screening}). Let T be the set of all analytical tasks, X be the set of

all analytical targets, Aτ be the set of possible arguments for a given analytical task

τ ∈ T , and AT =
⋃
τ∈T Aτ .

This next set of domains are needed to clarify where analytical tasks can be used,

and to specify the analytical tasks according to sponsor-designer requirements.

Definition 4.2. For a given τ ∈ T , the preference function targetListpτ takes in a

knowledge state index i ∈ I, and returns the list of analytical targets that τ is to be

used on at i. targetListpτ (i) is the target list of τ at i given p.

Definition 4.3. For a given τ ∈ T , define Iτ ⊆ I as the set of knowledge state indexes

where τ is applicable (contains analytical targets for τ , etc.). Iτ is the knowledge

criteron of τ . For K ⊆ T , IK :=
⋂
τ∈K Iτ is the knowledge criteron of K.

42



4.2 Basic ARC-RSM Analytical Task Terms

The analytical task specification function is the preference function which

specifies and prioritizes each instance of an analytical task in a task list.

Definition 4.4. For a given τ ∈ T , the preference function pref pτ within a sponsor-

designer preference function list p ∈ P that is used to determine user arguments and

priorities for an analytical task τ ∈ T is called the analytical task specification

function of p for τ . Specifically, for any i ∈ I,

pref pτ (i) := {τ px|i = (τ, (x, a), k) : x ∈ targetListpτ (i), a ∈ Aτ , k ∈ [0, 1]}

For t = (τ, (x, a), k) ∈ pref pτ (i) define ttask := τ , targ := (x, a), and

tpriority := k.

This next notation represents the range of a specified analytical task.

Definition 4.5. For S ⊆ pref pτ (i), define

−→
S := {τ(x, a) : (τ, (x, a), k) ∈ S for some k ∈ [0, 1]}
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4.3 Basic ARC-RSM Experimental Design Struc-

tures

Since changing an experimental design can change the amount of resources it

requires, each experimental design will be considered fully specified.

Definition 4.6. Let D be the set of all unperformed experimental designs to be con-

sidered. Each element in D represents a specific experimental design setup.

Since experimental designs will be chosen with respect to a previously constructed

task list and real resource constraints, these next definitions represent the domains

within which an individual experimental design can be chosen.

Definition 4.7. For a given d ∈ D, define Id ⊆ I as the set of knowledge state

indexes where d can be performed affordably. Id is the affordability criteron of d.

Definition 4.8. For a given K ⊆ T and U ⊆ X, define DK|U ⊆ D as the set of

experimental designs that can incorporate U , and that K can be performed upon. DK|U

is the application criteron of K given U , and DK := {d : d ∈ DK|U for some U ⊆

X} is the application criteron of K.

Definition 4.9. For a given K ⊆ T and d ∈ DK, define Id|K := Id ∩ IK. Id|K is the

strategic criteron of d given K.

Since exactly one experimental design will be used for each task list, the preference

ordering of experimental designs will be strict.
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4.3 Basic ARC-RSM Experimental Design Structures

Definition 4.10. For a given K ⊆ T and d ∈ DK, the preference function pref pd|K :

Id|K → [0, 1] within a sponsor-designer preference function list p ∈ P that is used to

determine the user preference for the experimental design d (0 is no interest, 1 is high-

est interest) is called the experimental design preference ordering function

of p for d given K. It should be noted that for any i ∈ I and distinct d1, d2 ∈ DK,

that pref pd1|K(i) 6= pref pd2|K(i) if either pref pd1|K(i) or pref pd2|K(i) are nonzero, in order

to maintain strict preferences between experimental designs.

Definition 4.11. For p ∈ P , define

Dp := {d : d ∈ D, pref pd|K(i) > 0 for some K ⊆ T and i ∈ I}

Dp is the preferred design set given p.

It should be noted that, as a rule of thumb, the priority/preference of any given

task/design should be zero, unless explicitly defined by the client and designer. Even if

there is no strict difference in client/designer preference between two or more designs,

the experimental design preference ordering function must be specified as if there is,

even if it is by constructing research strategies for all preference ordering permutations

for choices of equal client/designer preference.

Resource cost is a vital part of this research. Consequently, a formal language is

needed to represent the counting arguments required to keep track of resource cost

as resource allocation is planned out.

Definition 4.12. For i ∈ I and d ∈ D, define cost(d) as the resource cost of using
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d. Let iH − cost(d) represent the change of resources from iH after d is performed,

and let iH /cost(d) equal the maximum number of times that cost(d) could be removed

from iH . For d1, d2 ∈ D, cost(d1) ≤ cost(d2) means that d2 has at least the same

change in resources as d1. For d ∈ D and i ∈ I, cost(d) ≤ iH means that d is

affordable at i.

4.4 Ordering of Analytical Tasks

This section describes how the lists of analytical tasks are collected, reduced,

specified, sorted and accessed.

The first list is for what analytical tasks are available at a given knowledge state

index.

Definition 4.13. For i ∈ I, define

Ti := {τ : τ ∈ T, i ∈ Iτ}

Ti is called the available analytical task list in terms of i.

The next list is for the analytical tasks that are available at a given knowledge state

index and are of interest according to a given sponsor-designer preference function

list.
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Definition 4.14. For i ∈ I and p ∈ P , define

T(i,p) := {t : t ∈ pref pτ (i), τ ∈ T, i ∈ Iτ , tpriority > 0}

T(i,p) is called the specified analytical task list in terms of (i, p).

This next list is to determine what analytical tasks are to be removed from a given

analytical task list, according to a given sponsor-designer preference function list, if

feedback indicates they cannot all be performed.

Definition 4.15. For i ∈ I, p ∈ P , and S ⊆ T(i,p), define

lpt(i, p) := {t : t ∈ S, tpriority ≤ τpriority for all τ ∈ S}

lpt(i, S, p) is called the lowest priority analytical task list by p in S at i.

4.5 Ordering of Experimental Designs

This section describes how the lists of experimental designs are collected, reduced,

specified, sorted and accessed.

The first list is for what experimental designs are available at a given knowledge

state index for a given analytical task list.

Definition 4.16. For i ∈ I and K ⊆ T , define

D(i,K) := {d : d ∈ D, i ∈ Id|K}
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D(i,K) is called the available design list in terms of (i,K). Di := D(i,Ti) is called

the available design list in terms of i.

The next list contains the experimental designs that are available at a given knowl-

edge state index for a given analytical task list, and are of interest according to a

given sponsor-designer preference function list.

Definition 4.17. For i ∈ I, K ⊆ T , and p ∈ P define

D(i,K,p) := {d : d ∈ D(i,K), pref pd|K(i) > 0}

D(i,K,p) is called the specified design list in terms of (i,K, p). D(i,p) := D(i,T(i,p),p)

is called the specified design list in terms of (i, p).

Since only one experimental design can be chosen, the next function determines

how to choose the most preferred experimental design from a list of experimental

designs

Definition 4.18. For i ∈ I, K ⊆ T , nonempty L ⊆ D and p ∈ P , define

mpd(i,K, L, p) := m

where m ∈ L and pref pm|K(i) ≥ pref pd|K(i) for all d ∈ L, and mpd(i,K, ∅, p) := ∅.

mpd(i,K, L, p) is called the most preferred design by p in L at i for K.
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4.6 Basic Requirements for ARC-RSM Structures

This section includes special requirements that must be met in order to satisfy

later theorems.

First, for each goal and sponsor-designer preference function list, there must be

some set of conditions that will satisfy the goal according to the sponsor-designer

preference function list.

Definition 4.19. Let p ∈ P . If, for any G ∈ G , there exists an i ∈ I such that

iG = G and pref pprojSat(i) = True, then p is satisfiable with respect to (I, T,D).

If each p ∈ P is satisfiable with respect to (I, T,D), then P is satisfiable with

respect to (I, T,D).

Next, conclusions must be distinct from each other to prevent logical contradic-

tions.

Definition 4.20. For a given i ∈ I, define (iF )∗ ⊆
⋃
F∈F F as the set of facts

containing iF and the facts that contradict any of the facts in iF (for example, if x1

could be blue or red, and iF contained the fact that x1 was blue, then (iF )∗ would

contain the fact that x1 was blue, and the fact that x1 is red). (iF )∗ is called the

logical span of iF in F .

Definition 4.21. For a given τ ∈ T , if τ(x, aτ |i) ∩ (iF )∗ = ∅ for any i ∈ Iτ and

(x, aτ |i) ∈ dom τ , then τ is a valid analytical task.

If each τ ∈ T is a valid analytical task, and (F1)∗ ∩ (F2)∗ = ∅ for F1 ∈ ran τ1 and
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F2 ∈ ran τ2 where τ1, τ2 ∈ T such that τ1 6= τ2, then T is a valid analytical task

set.

Next, there must be boundary conditions to ensure both the creation of a research

strategy and the implementation of that research strategy are completed in finite time.

Definition 4.22. If a p ∈ P meets the following requirements:

1. For i ∈ I, |T(i,p)| <∞ (finite number of tasks chosen at each stage)

2. For i ∈ I, |ran τp| < ∞ for each τp ∈ T(i,p). (Each task has a finite number of

possible conclusions)

3. For i ∈ I, |D(i,K,p)| < ∞ for each K ⊆ T . (finite number of experimental

designs considered for each set of analytical tasks)

4. For any d1 ∈ Dp, there exists a d2 ∈ Dp such that 0 < cost(d2) ≤ cost(d1), and

there does not exist a d3 ∈ Dp such that cost(d3) < cost(d2). (minimum cost

boundaries for experimentation)

then p is bounded with respect to (I, T,D).

If each p ∈ P is bounded with respect to (I, T,D), then P is bounded with respect

to (I, T,D).

For ARC-RSM, it is required that T be a valid analytical task set, and P be

satisfiable and bounded with respect to (I, T,D). Therefore, these conditions will be

assumed in the following sections.
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4.7 Research Strategy Design Processes

This next section describes the main processes and states that make up the choice

selection process.

The first definition is a very important one: the selection and organization of

analytical tasks and experimental designs for a given knowledge state index, according

to a given sponsor-designer preference function list.

Definition 4.23. Let i ∈ I and p ∈ P . Let Υ
(i,p)
0 = T(i,p). Given Υ

(i,p)
k 6= ∅ and

D
(i,Υ

(i,p)
k ,p)

6= ∅, let nk = |D
(i,Υ

(i,p)
k ,p)

| and Φ
(i,p)
k = {d(i,p)

(j,k)}
nk
j=1 = D

(i,Υ
(i,p)
k ,p)

, where

d
(i,p)
(1,k) = mpd(i,D

(i,Υ
(i,p)
k ,p)

, p), d
(i,p)
(2,k) = mpd(i,D

(i,Υ
(i,p)
k \{d(i,p)

(1,k)
},p), p), . . . , and Υ

(i,p)
k+1 =

Υ
(i,p)
k \ lpt(i,Υ(i,p)

k , p). Else, then let nk = 1, and Φ
(i,p)
k = ∅. This sequence Λ(i,p) =

{{(Υ(i,p)
k , d

(i,p)
(j,k))}

nk
j=1}sk=0 is called the reducing algorithm of p at i.

Note that for an unbounded p ∈ P , its reducing algorithm may not be finite.

However, since this research is only interested in bounded p ∈ P , this next proof will

show that the reducing algorithm constructed from such a p is finite.

Theorem 4.24. For i ∈ I, and p ∈ P , if the following are satisfied:

• T is a valid analytical task set.

• p is bounded with respect to (I, T,D).

then for i ∈ I, Λ(i,p) contains a finite number of choices.
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Proof. Let i ∈ I, and let Λ(i,p) = {{(Υ(i,p)
k , d

(i,p)
(j,k))}

nk
j=1}sk=0 be the reducing algorithm

of p at i. Then since p is bounded with respect to (I, T,D), then |T (i, p)| < ∞ by

definition of bounded. Then since s ≤ |T (i, p)|, then s is finite.

Since p is bounded with respect to (I, T,D), then nk =
∣∣∣Φ(i,p)

k

∣∣∣ =
∣∣∣D

(i,Υ
(i,p)
k ,p)

∣∣∣ is

finite for 0 ≤ k ≤ s by definition of bounded. Therefore, there are
∑s

k=0 nk < ∞

possible choices to consider.

Since i ∈ I is arbitrary, then for any i ∈ I, Λ(i,p) contains a finite number of

choices.

The next definition describes how to calculate the successors to a given knowledge

state index after a given task list and experimental design have been chosen for

consideration.

Definition 4.25. For i = (iF , iG , iH ) ∈ I, p ∈ P , S ⊆ T(i,p), and d ∈ D(i,S,p), define

δ(i, p, S, d) := {j : j ∈ I, jF = iF ∪ y for y ∈ Yp,S,d, jG = iG , jH = iH − cost(d)}

where Yp,S,d = {
⋃
F∈
−→
S
{fF} : fF ∈ F for each F ∈

−→
S }, and iH −cost(d) is the change

of resources from iH after d is performed. δ is called the transition function, and

δ(i, p, S, d) is the successor list of (i, p, S, d). Define ∆(i,p) := {δ(i, p, S, d) : (S, d) ∈

Λ(i,p)} as the successor potential of i using p.

A knowledge state index can either be a terminating index under p, where

experimentation would stop, or an intermediate index under p. There are several

types of terminating indexes, which this next set of definitions will describe.
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Definition 4.26. Let i ∈ I and p ∈ P , and let Λ(i,p) = {{(Υ(i,p)
k , d

(i,p)
(j,k))}

nk
j=1}sk=0 be the

reducing algorithm of p at i. If pref pprojSat(i) = True, then p is successful at i, which

is called an F-Good terminating index under p. If i is not an F-Good terminating

index under p, and Υ
(i,p)
0 = ∅, then p is unsuccessful at i for logic reasons, which is

called an F-LogErr terminating index under p. If i is neither an F-Good nor

F-LogErr terminating index under p, and Φ
(i,p)
k = ∅ for all k ∈ {0, 1, . . . , s}, then p is

unsuccessful at i for resource reasons, which is called is an F-ResErr terminating

index under p. If i is an F-Good terminating index, F-LogErr terminating index, or

F-ResErr terminating index, then i is a terminating index under p.

The type of an intermediate index is determined by the feedback from its succes-

sors, and the feedback from its successors is determined partially from the types of

those successors. This next set of definitions describes this recursive process.

The process begins with the function that evaluates the successor list of the in-

termediate index.

Definition 4.27. The feedback evaluation function κ : I×P → R̄ evaluates the

successor lists of intermediate indices.

κ determines the type of the intermediate index.

Definition 4.28. Let i ∈ I be an intermediate index under p. If κ(i, p) ≥ pref pthresh(i),

then i is an F-Good intermediate index under p. If κ(i, p) = −∞, then i is an

F-LogErr intermediate index under p. If i is not an F-Good or F-LogErr in-

termediate index under p, then i is an F-ResErr intermediate index under p.
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Since intermediate indexes are evaluated with the terminating indexes that are

contained in the same successor list, common names for their types must be defined.

Definition 4.29. If a knowledge state index is either an F-Good intermediate index

or F-Good terminating index under p, then it is F-Good under p. If a knowledge state

index is either an F-LogErr intermediate index or F-LogErr terminating index under

p, then it is F-LogErr under p. If a knowledge state index is either an F-ResErr

intermediate index or F-ResErr terminating index under p, then it is F-ResErr

under p.

Once the common names are defined, a function can be constructed to evaluate

each index in the successor list.

Definition 4.30. ise : I × P → R is the state evaluation function. For i ∈ I

and p ∈ P , define

ise(i, p) :=


1 if i is F-Good under p

−∞ if i is F-LogErr under p

0 if i is F-ResErr under p

ise(i, p) can also be set to halt and flag the research construction process if an

F-LogErr knowledge state index is encountered, in order to make sure such errors are

manually addressed by the sponsor and designer.
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After each knowledge state index in the successor list is evaluated, their collective

feedback value can be determined.

Definition 4.31. For i ∈ I, p ∈ P , where i is an intermediate index under p, and

L ∈ ∆(i,p), define

slfe(i, p, L) :=


∑

h∈L ise(h,p)pref pweight(h)∑
h∈L pref pweight(h)

∑
h∈L pref pweight(h) 6= 0

1
∑

h∈L pref pweight(h) = 0

slfe is called is the successor list feedback evaluation function.

The feedback evaluation function then determines the greatest possible collective

feedback value for the intermediate index.

Definition 4.32. For i ∈ I and p ∈ P , where i is an intermediate index under p,

define

κ(i, p) := max
({

slfe(i, p, L) : L ∈ ∆(i,p)

})

This next function returns the preferred choice for an intermediate index, which

is a choice that fits the criteria of the reducing algorithm, and is the first choice in

the algorithm that is not eliminated by feedback.

Definition 4.33. Let i ∈ I and p ∈ P , such that i is an intermediate index under p,
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and let Λ(i,p) = {{(Υ(i,p)
k , d

(i,p)
(j,k))}

nk
j=1}sk=0 be the reducing algorithm of p at i. Define

pc(i, p) := (Υ
(i,p)
k , d

(i,p)
(j,k))

where slfe(i, p, δ(i, p,Υ
(i,p)
k , d

(i,p)
(j,k))) ≥ min(pref pthresh(i), κ(i, p)), and there does not ex-

ist a (Υ
(i,p)
s , d

(i,p)
(r,s)) such that slfe(i, p, δ(i, p,Υ

(i,p)
r , d

(i,p)
(r,s))) ≥ min(pref pthresh(i), κ(i, p))

and either r < k or r = k, s ≤ j. pc(i, p) is called the preferred choice of p at i.

This next function, using the previously described methods, returns the planned

move for a given knowledge state index, according to a given sponsor-designer pref-

erence function list.

Definition 4.34. Let p ∈ P . For i ∈ I define

θ(i, p) :=



pc(i, p) if i is an intermediate index under p

(FinishGood,Finish) if i is an F-Good terminating index under p

(FinishResErr,Finish) if i is an F-ResErr terminating index under p

(FinishLogErr,Finish) if i is an F-LogErr terminating index under p

where Finish is a placeholder when no design is needed, FinishGood is a command

to finish experimentation as a success, FinishResErr is a command to finish experi-

mentation as a partial success, and FinishLogErr is an error command stating that

p could not find relevant analytical tasks to address i. Define θp := {θ(i, p)}i∈I . θp is

called the research strategy of p. Define ΘP := {θp}p∈P . ΘP is called the research
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strategy set for P .

For i ∈ I, if θ(i, p) is F-Good, then p is successful (goal attaining, within budget,

logically defendable, reproducable) at meeting the project requirements starting at

i.

4.8 ARC-RSM Partial Orders

This section discusses and demonstrates partial orders that can be used to partially

order I in terms of P . Those partial orders will then be used to show useful properties

of this methodology.

Definition 4.35. For p ∈ P and i ∈ I, c = (c1, c2) ∈ Λ(i,p) is a potential choice

for i by p if c2 ∈ D(i,c1,p).

Definition 4.36. For p ∈ P , ωp ⊆ I × I is a relation called a research strategic

arrangement of I such that for ij, ik ∈ I, if (ij, ik) ∈ ωp, there exists a potential

choice c = (c1, c2) ∈ Λ(i,p) such that (ij, im) ∈ ωp if and only if im ∈ δ(ij, p, c1, c2).

For ij, ik ∈ I, (ij, ik) ∈ ωp can be written as ij ω
p ik. Let Ωp be the set of all research

strategic arrangements for a given p ∈ P , and let ΩP be the set of all research strategic

arrangements for each p ∈ P .

Definition 4.37. Given a sequence {uj}mj=1 ⊆ I, if there exists a p ∈ P and ωp ⊆ I×I

such that uj ω
p uj+1 for j ∈ {1, · · · ,m− 1}, then {uj}mj=1 ⊆ I is a considered path

from u1 to um through ωp. For a, b ∈ I and p ∈ P , b is considerable from a through

ωp if there exists a considered path from a to b through ωp.
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This section will later show that considered paths are, in fact, paths.

Definition 4.38. For a, b ∈ I and ωp ∈ ΩP , a 4ωp b if and only if b is considerable

from a through ωp.

Lemma 4.39. Let T be a valid analytical task set. For distinct a, b ∈ I and p ∈ P ,

if a 4ωp b, then aF ⊂ bF .

Proof. Since a 4ωp b, then there exists a considered path {uj}mj=1 ⊆ I from u1 = a

to um = b through ωp. Therefore, since T is a valid analytical task set, then (uj)F ⊂

(uj+1)F for each j ∈ {1, 2, . . .m − 1}. Therefore, aF = (u1)F ⊂ (um)F = bF , so

aF ⊂ bF .

Theorem 4.40. Let T be a valid analytical task set. Then 4ωp is a partial order.

Proof. For a ∈ I, a is always considerable from a using the trivial sequence {a}, so

4ωp is reflexive.

Assume that a, b ∈ I such that a 4ωp b, and a 6= b. Therefore, b is considerable

from a through ωp. Therefore, since p ∈ P , then by Lemma 4.39, aF ⊂ bF . Therefore,

bF 6⊂ aF , so by Lemma 4.39, b 64ωp a. Therefore, since a, b ∈ I are arbitrary, 4ωp is

antisymmetric.

Assume that a, b, c ∈ I such that a 4ωp b and b 4ωp c. Since a 4ωp b and b 4ωp c,

then b is considerable from a through ωp and c is considerable from b through ωp.

Therefore, there exist sequences {uj}mj=1, {vk}nk=1 ⊆ I such that u1 = a, um = v1 =

b, vn = c, {uj}mj=1 is a considered path from a to b through ωp, and {vk}nk=1 is a
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considered path from b to c through ωp. If {uj}mj=1 and {vk}nk=1 intersect at an index

d ∈ I, then b 4ωp d and d 4ωp b, so since 4ωp is antisymmetric, d = b. Therefore,

{uj}mj=1 and {vk}nk=1 can be connected into a new sequence {wl}m+n−1
l=1 , which is a

considered path from a to c through ωp. Therefore, c is considerable from a through

ωp, so a 4ωp c.

Therefore, 4ωp is transitive.

Since 4ωp is reflexive, antisymmetric, and transitive, it is a partial order.

Definition 4.41. For a, b ∈ I, a 4Ωp b if and only if there exists a ωp ∈ Ωp such that

a 4ωp b.

Theorem 4.42. Let T be a valid analytical task set. Then 4Ωp is a partial order.

Proof. For a ∈ I, a is always considerable from a using the trivial sequence {a}, so

4Ωp is reflexive.

Assume that a, b ∈ I such that a 4Ωp b, and a 6= b. Therefore, there must exist

a p ∈ P such that b is considerable from a through ωp. Therefore, since p ∈ P , by

Lemma 4.39, aF ⊂ bF . Therefore, bF 6⊂ aF ., so by Lemma 4.39, b 64Ωp a. Therefore,

since a, b ∈ I are arbitrary, 4Ωp is antisymmetric.

Assume that a, b, c ∈ I such that a 4Ωp b and b 4Ωp c. Since a 4Ωp b and b 4Ωp c,

then there exist ωp1, ω
p
2 ∈ Ωp, such that b is considerable from a through ωp1 and c is

considerable from b through ωp2. Therefore, there exist sequences {uj}mj=1, {vk}nk=1 ⊆ I

such that u1 = a, um = v1 = b, vn = c, {uj}mj=1 is a considered path from a through

ωp1, and {vk}nk=1 is a considered path from b through q. If {uj}mj=1 and {vk}nk=1
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4.8 ARC-RSM Partial Orders

intersect at an index d ∈ I, then b 4Ωp d and d 4Ωp b, so since 4Ωp is antisymmetric,

d = b. Therefore, there exists a ωp3 ∈ Ωp such that {(uj, uj+1)}m−1
j=1 , {(vk, vk+1)}n−1

k=1 ⊆

ωp3. Therefore, c is considerable from a through ωp3, so a 4Ωp c. Therefore, 4Ωp is

transitive.

Since 4Ωp is reflexive, antisymmetric, and transitive, it is a partial order.

This next theorem establishes that the logical structure a sponsor-designer pref-

erence function list generates is a tree (there is at most one path between any two

points). It also shows that considered paths are, in fact, paths.

Lemma 4.43. For a, b ∈ I, p ∈ P , and ωp ∈ Ωp, if a 4ωp b, then a 4Ωp b.

Proof. Since a 4ωp b and ωp ∈ Ωp, then a 4Ωp b by definition of 4Ωp .

Theorem 4.44. Let T be a valid analytical task set. For distinct a, b, c ∈ I and

p ∈ P , if a 4ωp b, a 4ωp c, b 64ωp c, and c 64ωp b, then there does not exist a d ∈ I

such that b 4Ωp d and c 4Ωp d.

Proof. Since a 4ωp b and a 4ωp c, where a, b, c are distinct, then there exist distinct

sequences {uj}mj=1, {vk}nk=1 ⊆ I such that u1 = v1 = a, um = b, vn = c, {uj}mj=1 is

a considered path from a to b through ωp, and {vk}nk=1 is a considered path from a

to c through ωp. If um = b ∈ {vk}nk=1, then b 4ωp c, which contradicts an initial

assumption that b 64ωp c. Therefore, there exists a k ∈ {1, 2, · · · ,m} such that

uk 6= vk. Also, since u1 = v1 = a, then there exists a k ∈ {1, 2, · · · ,m} such that

uk = vk. Therefore, choose k ∈ {1, 2, · · · ,m} such that uk 6= vk.
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Assume there exists a d ∈ I such that uk 4Ωp d and vk 4Ωp d. Since uk 6= vk,

and u1 = v1 = a, then k > 1. If uk−1 = vk−1, then uk, vk are both successors of

uk−1, so uk, vk have the same amount of resources, and are the results of the same

analytical tasks. Therefore, since uk 6= vk, then they must differ in the results of the

tests. Therefore, if uk 4Ωp d and vk 4Ωp d, then by Lemma 4.39, (uk)F ⊂ dF and

(vk)F ⊂ dF , so (uk)F ∪ (vk)F ⊂ dF , so dF must have contain two facts from the

same output of a τ ∈ T , which contradicts the initial assumption that T is a valid

analytical task set. Therefore, uk−1 = vk−1 must be false, so uk−1 6= vk−1.

Therefore, if ut 6= vt for t ∈ {2, · · · ,m}, and ut 4Ωp d and vt 4Ωp d, then

ut−1 6= vt−1. Also, if ut 4Ωp d for t ∈ {2, · · · ,m}, then us 4Ωp d for s ∈ {1, · · · , t−1},

by Theorem 4.42 and Lemma 4.43. Similarly, if vt 4Ωp d for t ∈ {2, · · · , n}, then

vs 4Ωp d for s ∈ {1, · · · , t− 1}, by Theorem 4.42 and Lemma 4.43.

Therefore, for k ∈ {2, · · · ,m} such that uk 6= vk, and t ∈ k, · · · ,m, if uk 4Ωp d

and vt 4Ωp d, then u2 4Ωp d and v2 4Ωp d, so u1 6= v1, which contradicts u1 = v1 = a.

Therefore, since um = b and vn = c, there does not exist a d ∈ I such that b 4Ωp d

and c 4Ωp d.

The next proofs show that the reducing algorithm can be evaluated in finite time.

Lemma 4.45. Let T be a valid analytical task set. Then for each i ∈ I, there exists

a finite length l such that any considered paths to i through any ωp ∈ Ωp are bounded

by l.

Proof. Let i ∈ I.
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Let l = |iF |, which is finite by definition of F . Therefore, since T is a valid

analytical task set, then by Lemma 4.39, any considered path to i can have length at

most l <∞.

Since i ∈ I is arbitrary, then for each i ∈ I, there exists a finite length l such that

any considered paths to i through any ωp ∈ Ωp are bounded by l.

Lemma 4.46. Let p ∈ P be bounded. Then for each i ∈ I, there exists a finite length

l such that any considered paths from i through any ωp ∈ Ωp are bounded by l.

Proof. Let i ∈ I.

By definition of H , the number of types of resource are finite. Therefore, since p is

bounded, there exists a finite subset Dmin ⊆ Dp such that cost(d) > 0 for all d ∈ Dmin,

and there does not exist a d1 ∈ Dp such that cost(d1) < cost(d2) for some d2 ∈ Dmin.

Therefore, there exists a dmin ∈ Dmin such that iH /cost(dmin) ≥ iH /cost(d0) for all

d0 ∈ Dmin, and therefore iH /cost(dmin) ≥ iH /cost(d0) for all d0 ∈ D. Therefore, any

considered path from i can be at most length iH /cost(dmin).

Let l = iH /cost(dmin). Since dmin ∈ Dmin, then cost(dmin) > 0. And by definition

of H , iH has a finite amount of resources. Therefore, any considered path from i

can be at most length l <∞.

Since i ∈ I is arbitrary, then for each i ∈ I, there exists a finite length l such that

any considered paths from i through any ωp ∈ Ωp are bounded by l.

Lemma 4.47. For i ∈ I, and p ∈ P , if the following are satisfied:

• T is a valid analytical task set.
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• p is bounded with respect to (I, T,D).

then for i ∈ I, there are a finite number of maximal considered paths from i

through Ωp.

Proof. Let i ∈ I. Define Ji = {j : j ∈ I, i ωp j for some ωp ∈ Ωp}. By Theorem 4.24,

Λ(i,p) contains a finite number(N) of choices. Since p is bounded, then for each

c := (c1, c2) ∈ Λ(i,p), δ(i, p, c1, c2) is finite. Therefore, |Ji| ≤ |N | ·max{|δ(i, p, c1, c2)| :

(c1, c2) ∈ Λ(i,p)} <∞, so |Ji| <∞. Therefore, since i ∈ I is arbitrary, then for j ∈ Ji,

|Jj| <∞, and |Jj′| <∞ for j′ ∈ Jj, and so on. Therefore, for each 0 < k <∞, there

exists a finite Mk = max{|δ(j, p, c1, c2)| : j ∈ I, (c1, c2) ∈ Λ(j,p), dist4Ωp
(i, j) = k − 1},

where dist4Ωp
(i, j) is the minimum length of a path from i to j using 4Ωp .

By Lemma 4.46, there exists a finite length l such that all considered paths from

i through Ωp have length at most l. Therefore, there are at most
∏l

k=1 |Mk| < ∞

considered paths from i through Ωp.

Because there are a finite number of considerable paths from i, each of finite

length, exploration of all paths from i can be accomplished in finite time.

63



5

Sponsor-Designer specification of

ARC-RSM

5.1 Preliminary Sponsor-Designer Discussions

Design of Experiments, and therefore ARC-RSM, is based on statistical methods

and being able to get needed specification information from the sponsor about what

statistical methods are appropriate for the current project. In order to make design

choices, a designer must first have answers to the following questions:

• What is the goal?

• What information would satisfy this goal?
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5.1 Preliminary Sponsor-Designer Discussions

This information gives at least a basic pseudocode about how to program the

project satisfaction function pref pprojSat.

The set of analytical tasks, T , needs to contain tasks that can produce information

that would satisfy the goal. Because of this, more questions must be answered:

• What relevant information is initially available?

• What available analytical tasks would be able to produce the needed informa-

tion?

• What additional information do the required analytical tasks need?

• What available analytical tasks would be able to produce the information needed

for those analytical tasks?

This particular conversation helps determine a conceptual breakdown of the overall

goal into stages that will be useful in making individual decisions. When breaking

down a goal conceptually, the key idea is to decompose the problem into pieces that

can each be completed in one step.

Once there is an idea about what analytical tasks are needed, the set of exper-

imental designs, D, needs to have affordable experimental designs that can support

those tasks. Therefore, more questions must be answered:

• What resources (including time) are available?

• What are the available testing conditions?
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5.2 Sponsor-Designer Task and Design Selections

• What experimental designs of interest, if any, are able to support the kinds of

needed analytical tasks, and can fit the testing conditions (at all)?

This conversation is important for not only determining what can be done, but

for helping get an idea for how complex the project might really be, especially with

respect to what can be done within an available budget. The project goal might be

simplified, and/or the resources might be increased.

At this point, there will be a conceptual understanding of what needs to be done,

and what can be done. This understanding will get more and more precise as further

specifications are made.

5.2 Sponsor-Designer Task and Design Selections

When specifying analytical tasks, the following questions must be answered:

• What level of information will be considered necessary for completing the project?

• What system variables are of greatest interest?

• What system interactions are of greatest interest, and to what degree?

• What information can be sacrificed in order to afford completing experimenta-

tion?

• How can non-critical analytical tasks be prioritized?
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5.3 Sponsor-Designer Feedback Specifications

These questions will determine the analytical task specification functions, al-

though they can be changed later if they are judged to be inadequate during research

strategy construction.

When choosing experimental designs, the following questions must be answered:

• What is considered more important: cost, or quality?

• How will that decision be influenced by the content of knowledge state indexes?

• How will those previous two decisions be influenced by differing amounts of

available resources?

These questions will determine the experimental design preference ordering

function , although like the analytical task specification functions, it can be changed

later if it is judged to be inadequate during research strategy construction.

5.3 Sponsor-Designer Feedback Specifications

When compromise occurs in ARC-RSM, it means that the ideal solution is not

available. In order to get an initial idea about how compromise should occur, these

questions must be answered:

• In general, what level of compromise is considered acceptable?

• Where would compromise be more acceptable?
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5.3 Sponsor-Designer Feedback Specifications

The index priority weight function is used to determine the importance of a given

successor. When determining the index priority weight function, the following ques-

tions must be answered:

• What possible knowledge state indexes represent scenarios of greatest interest?

• Under what circumstances should a unsuccessful successor be ”settled for” by

its parent?

The feedback compromise threshold function is used to provide the standard used

to determine if the feedback is good enough, or whether the planned move needs to

make compromises. When determining the feedback compromise threshold function,

the following questions must be answered:

• Should the index priority weight function be incorporated in deciding the quality

of feedback needed to accept a planned move?

• If so, how?

• Should knowledge state index information be incorporated in deciding the qual-

ity of feedback needed to accept a planned move from that knowledge state

index?

• If so, how?

The index priority weight function and feedback compromise threshold function

are there to incorporate where the sponsor is willing to compromise for the sake of
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being able to affordably gain the most valuable information from this project. These

functions, along with the other preference functions, can be adjusted if they are judged

to be inadequate during research strategy construction.
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6

Applications and Demonstrations

6.1 Summary of Simulation Code and Testing Meth-

ods

This section describes the testing of the decision-making process of ARC-RSM,

as determined by the preference functions. To do this, an example is derived from

Karnik, Gaitonde, and Davim (45):

Example 6.1. A manufacturing company is having a quality issue with the parts they

are manufacturing having exit burrs.
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6.1 Summary of Simulation Code and Testing Methods

Figure 6.1: Exit burrs observed during drilling.

A company representative (the sponsor) has contacted a statistician familiar with

experimental design (the designer) to help plan research to determine how burrs are

influenced by characteristics of the manufacturing process.

ARC-RSM is itself algorithmic, so the code used to enact it is a literal inter-

pretation of the mathematical structures, with additional code for specification of

the preference functions, user input, and graphical output. The code does not only

perform ARC-RSM, but takes in user input, and presents the results in a visually

interesting and informative manner that is compatible with LaTeX.

Since the algorithm is tree-based (see Theorem 4.44), it is implemented through

recursion. Each node develops its own respective subtree based on its own reducing

algorithm. If a knowledge state index’s successors meets the feedback conditions,

the successors’ respective subtrees are then attached to the current node, and the

current knowledge state index would now have its own respective tree. In the case

where a knowledge state index is a terminating index, the tree is just the knowledge

state index’s node by itself. Once this process is completed, this tree represents
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the constructed research strategy. The code is distinguished into several categories:

interface scripts, main functions, preference functions, conversion functions, logical

functions, sorting functions, display functions, and miscellaneous functions, in total

constituting 4425 lines of code.

Interface scripts are scripts like the main menu, and anything that would take

in user data and regulate execution of the functions. The main functions are func-

tions like the preferred choice function, and any function of ARC-RSM that would

not change based upon the project. Preference functions are those functions that

are specified during the sponsor-designer interactions. Conversion functions convert

one data type into another. Logical functions are simply those functions that return

Boolean values that are not main or preferred functions, such as a function to de-

termine if a task list has nonlinear terms. Sorting functions sort the data, such as

arranging the outputs of analytical tasks to insert into successors, and/or creating

reference points to better access the outputs of Matlab’s statistical functions. Display

functions display information in a way that users can understand. The miscellaneous

functions are those functions that do not fit into any of the previous categories.

There are five different, interconnected phases showing the applicability, testabil-

ity, and adaptability of the methodology:

1. The first phase reflects the initial sponsor’s viewpoint of how experimentation

should proceed, to see if a research strategy can be formed.

2. The second phase extends the first phase by trying to find a minimal strategy
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meeting the initial preferences.

3. The third phase is a refinement of the preferences to find a better working

research strategy.

4. The fourth phase demonstrates what happens when a project’s satisfaction re-

quirements are too strict.

5. The fifth phase tests how well a research strategy can react to unexpected loss

of resource.

Each of the first four phases uses four different functions (simple polynomials, for

ease of comparison) as test cases, with different levels of interaction, significance, and

polynomial order:

1. The first function is a complete quadratic function including CuttingSpeed,

FeedRate, and PointAngle. All quadratic and linear terms should make it into

the response function estimation.

2. The second function is a linear function including CuttingSpeed, FeedRate,

and PointAngle. All linear terms, and no quadratic terms, should make it into

the response function estimation.

3. The third function is a complete quadratic function including CuttingSpeed,

FeedRate, but not PointAngle. All quadratic and linear terms including

CuttingSpeed and FeedRate, but not PointAngle, should make it into the

response function estimation.
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6.2 Phase 1 - Initial Phase

4. The fourth function does not include CuttingSpeed, FeedRate, nor PointAngle.

No terms including CuttingSpeed, FeedRate, or PointAngle should make it

into the response function estimation. Ideally, they should all be screened out.

The last phase uses the first function, while changing the amount of resources

during experimentation in order to observe how the algorithm is able to adapt to

those changes.

6.2 Phase 1 - Initial Phase

6.2.1 Preliminary Sponsor-Designer Discussions

The designer goes over the following questions with the sponsor:

Question: What is the goal?

The sponsor wants to be able to predict the size of exit burrs created during

manufacturing.

Question: What information would satisfy this goal?

The sponsor wants to know how exit burrs are affected by the manufacturing

process.

Question: What relevant information is initially available?
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6.2 Phase 1 - Initial Phase

The sponsor says that cutting speed, feed rate, and the point angle are the signif-

icant influences of interest.

Question: What available analytical tasks would be able to produce the needed infor-

mation?

The designer concludes that since the sponsor wants to be able to predict burr size,

a response function is needed for that element in terms of the significant influences

of interest. Therefore, regression is needed.

Question: What additional information do the required analytical tasks need?

The sponsor has provided cutting speed, feed rate, and the point angle as the

significant influences of interest. Therefore, the designer decides that the variables

for those elements (CuttingSpeed, FeedRate, and PointAngle respectively) should

be screened before or during the modeling process.

Question: What available analytical tasks would be able to produce the information

needed for those analytical tasks?

According to the designer, there should be significance tests included in the mod-

eling process. These may be done before and/or during the regression.

Question: What resources (including time) are available?

The sponsor says that time is not a constraint, but there are the following limita-
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tions:

• Each run costs 1 unit of MaterialSample

• There are 90 units of MaterialSample

Question: What are the available testing conditions?

The sponsor provides the following information:

• CuttingSpeed (CS) can be between 20 – 50 m/min

• FeedRate (FR) can be between 10 – 20 mm/rev

• PointAngle (PA) can be between 0 – 45 degrees

Question: What experimental designs of interest, if any, are able to support the kinds

of needed analytical tasks, and can fit the testing conditions (at all)?

Since the design must perform regression within a closed and finite space, the

experimental designer is interested in the 2k factorial design with either 2 or 3 repli-

cations.

6.2.2 Sponsor-Designer Task and Design Selections

Question: What level of information will be considered necessary for completing the

project?

76



6.2 Phase 1 - Initial Phase

The sponsor wants an approximation of the response function for BurrSize, and

has no preference towards its form.

Question: What system variables are of greatest interest?

The sponsor is interested in CuttingSpeed the most, then FeedRate, and then

PointAngle.

Question: What system interactions are of greatest interest, and to what degree?

The sponsor does not have any preferences in terms of interactions.

Question: What information can be sacrificed in order to afford completing experi-

mentation?

The sponsor is interested in CuttingSpeed the most, then FeedRate, and then

PointAngle. Therefore, testing for PointAngle significance has the lowest priority,

then FeedRate, with testing for CuttingSpeed being considered essential.

Question: How can non-critical analytical tasks be prioritized?

The sponsor wants an approximation of the response function for BurrSize, and

has no preference towards its form. Therefore, the sponsor and designer agree on the

following prioritization, from highest priority to lowest:

• analyze effect of CuttingSpeed on BurrSize
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• analyze effect of FeedRate on BurrSize

• analyze effect of PointAngle on BurrSize

Question: What is considered more important: cost, or quality?

The sponsor wants the best affordable quality available at each stage.

Question: How will that decision be influenced by the content of knowledge state

indexes?

The sponsor does not want the decision regarding cost vs. quality to be affected

by the current state of knowledge unless it is shown to be not affordable.

Question: How will those previous two decisions be influenced by differing amounts

of available resources?

The sponsor decides that regardless of the amount of available resources, higher

quality experimental designs should be preferred over cheaper ones.

6.2.3 Sponsor-Designer Feedback Specifications

Question: In general, what level of compromise is considered acceptable?

The sponsor wants a response function appromimation of BurrSize in terms of

at least CuttingSpeed, and will compromise anywhere else.

Question: Where would compromise be more acceptable?
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The sponsor wants an attempt to model a response function for BurrSize in terms

of at least CuttingSpeed, and will not compromise on that, but will compromise for

anything else.

Question: What possible knowledge state indexes represent scenarios of greatest in-

terest?

The sponsor does not care what kind of response function is returned, wants to

keep an eye out for scenarios where no response function can be generated.

Question: Under what circumstances should a unsuccessful successor be ”settled for”

by its parent?

The sponsor wants some sort of response function for BurrSize, so wants complete

success from feedback; at least to begin with.

Question: Should the index priority weight function be incorporated in deciding the

quality of feedback needed to accept a planned move? If so, how?

The sponsor and designer agree to use equal weighting for each outcome, with

complete success from feedback as the feedback criteria.

Question: Should knowledge state index information be incorporated in deciding the

quality of feedback needed to accept a planned move from that knowledge state index?

If so, how?
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The sponsor and designer agree on complete success from feedback as the feedback

criteria for each knowledge state index.

6.2.4 Specifications Expressed Formally by Designer for Phase

1

Number of samples: 90

Project Satisfaction Condition:

All predictors screened out, or response function constructed

Task Specification Function:

If potential predictors have not gone through screening (in order of preference, greatest

to least):

screen(BurrSize(CS, FR, PA))

screen(BurrSize(CS, FR))

screen(BurrSize(CS))

If potential predictors have gone through screening (in order of preference, greatest to

least):

quadraticmodel(BurrSize(screened predictors)),

linearmodel(BurrSize(screened predictors)),
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linearmodel(BurrSize(screened predictors - screened predictor of least priority))

...

linearmodel(BurrSize(highest priority screened variable)),

Experimental Design Preference Ordering Function:

For screening (in order of preference, greatest to least):

Full Factorial Design, 3 replications

Full Factorial Design, 2 replications

For linear modeling (in order of preference, greatest to least):

Full Factorial Design, 3 replications

Full Factorial Design, 2 replications

For quadratic modeling:

Central Composite Design

maximum number of center points = (number of screened predictors+2)*2

minimum number of center points = number of screened predictors+4

maximum number of factorial points = 3

minimum number of factorial points = 2

maximum number of axial points = 3

minimum number of axial points = 2
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6.2 Phase 1 - Initial Phase

start with maximum values, reduce number of center points first, then number of

axial points, then number of factorial points
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6.2.5 Constructed Research Strategy - Initial Phase

Figure 6.2 is a visual representation of the F-Good research strategy, determined

from Section 6.2.4:

blue F-Good

red F-ResErr

magenta F-LogErr

Figure 6.2: Tree graph of research strategy for initial phase.

83



6.2 Phase 1 - Initial Phase

These are the intermediate knowledge state indexes of the strategy constructed in

Phase 1:

i0

State and Type F-Good intermediate index

Samples Available 90

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.1: Descriptions of the knowledge state index i0 during Phase 1
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i0x2

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Task List quadraticmodel(BurrSize(CS))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.2: Descriptions of the knowledge state index i0x2 during Phase 1
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i0x3

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR

Task List quadraticmodel(BurrSize(FR))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.3: Descriptions of the knowledge state index i0x3 during Phase 1
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i0x4

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Task List quadraticmodel(BurrSize(CS, FR))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.4: Descriptions of the knowledge state index i0x4 during Phase 1
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i0x5

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: PA

Task List quadraticmodel(BurrSize(PA))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.5: Descriptions of the knowledge state index i0x5 during Phase 1
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i0x6

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, PA

Task List quadraticmodel(BurrSize(CS, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.6: Descriptions of the knowledge state index i0x6 during Phase 1
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i0x7

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR, PA

Task List quadraticmodel(BurrSize(FR, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.7: Descriptions of the knowledge state index i0x7 during Phase 1
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i0x8

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 3 axial reps, 3 factorial

reps, 10 center points

Design Cost 52

Table 6.8: Descriptions of the knowledge state index i0x8 during Phase 1
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6.2 Phase 1 - Initial Phase

6.2.6 Model Approximation Testing - Initial Phase

Phase 1 - Test 1

Function to Approximate: BurrSize= 0.71CS + 0.31FR+ 0.46PA - 0.01CS∗

CS - 0.01FR ∗ FR - 0.01PA ∗ PA + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.9:

i0

State and Type F-Good intermediate index

Samples Available 90

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.9: Descriptions of the knowledge state index during Move 1 of
Phase 1 - Test 1

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed, FeedRate, and PointAngle. As the result of the exper-

imental events at the previous knowledge state index, the current knowledge state

index is now i0x8, which is described in Table 6.10:
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6.2 Phase 1 - Initial Phase

i0x8

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 3 axial reps, 3 factorial

reps, 10 center points

Design Cost 52

Table 6.10: Descriptions of the knowledge state index during Move 2 of
Phase 1 - Test 1

After performing the planned move of i0x8, the model is estimated to be BurrSize

= 0.016 + 0.71CS + 0.31FR + 0.46PA - 0.01CS∗CS - 9.9e-3FR∗FR - 0.01PA∗PA.

As the result of the experimental events at the previous knowledge state index, the

current knowledge state index is now i0x8x336, which is described in Table 6.11:
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6.2 Phase 1 - Initial Phase

i0x8x336

State and Type F-Good terminating index

Samples Available 14

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors:

CS, FR, PA,CS ∗ CS, FR ∗ FR, PA ∗ PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.11: Descriptions of the knowledge state index during Move 3 of
Phase 1 - Test 1

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.12.
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6.2 Phase 1 - Initial Phase

Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = 0.016 +

0.71CS + 0.31FR + 0.46PA - 0.01CS ∗CS

- 9.9e-3FR ∗ FR - 0.01PA ∗ PA

Data Source Function

BurrSize = 0.71CS + 0.31FR + 0.46PA -

0.01CS ∗ CS - 0.01FR ∗ FR - 0.01PA ∗ PA

+ ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 76

Number Of Samples Left 14

Table 6.12: Final Results of Phase 1 - Test 1

Phase 1 - Test 2

Function to Approximate: BurrSize = 0.71CS - 0.31FR + 0.46PA + ε, ε

∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.13:
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6.2 Phase 1 - Initial Phase

i0

State and Type F-Good intermediate index

Samples Available 90

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.13: Descriptions of the knowledge state index during Move 1 of
Phase 1 - Test 2

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed, FeedRate, and PointAngle. As the result of the exper-

imental events at the previous knowledge state index, the current knowledge state

index is now i0x8, which is described in Table 6.14:
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6.2 Phase 1 - Initial Phase

i0x8

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 3 axial reps, 3 factorial

reps, 10 center points

Design Cost 52

Table 6.14: Descriptions of the knowledge state index during Move 2 of
Phase 1 - Test 2

After performing the planned move of i0x8, the model is estimated to be BurrSize

= 0.11 + 0.71CS - 0.32FR + 0.46PA + 1.8e-5PA ∗ PA. As the result of the ex-

perimental events at the previous knowledge state index, the current knowledge state

index is now i0x8x264, which is described in Table 6.15:
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6.2 Phase 1 - Initial Phase

i0x8x264

State and Type F-Good terminating index

Samples Available 14

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors: CS, FR, PA, PA ∗ PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.15: Descriptions of the knowledge state index during Move 3 of
Phase 1 - Test 2

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.16.
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6.2 Phase 1 - Initial Phase

Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = 0.11 +

0.71CS - 0.32FR + 0.46PA +

1.8e-5PA ∗ PA

Data Source Function
BurrSize = 0.71CS - 0.31FR + 0.46PA +

ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 76

Number Of Samples Left 14

Table 6.16: Final Results of Phase 1 - Test 2

Phase 1 - Test 3

Function to Approximate: BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR -

0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.17:
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6.2 Phase 1 - Initial Phase

i0

State and Type F-Good intermediate index

Samples Available 90

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.17: Descriptions of the knowledge state index during Move 1 of
Phase 1 - Test 3

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed and FeedRate. As the result of the experimental events at

the previous knowledge state index, the current knowledge state index is now i0x4,

which is described in Table 6.18:
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6.2 Phase 1 - Initial Phase

i0x4

State and Type F-Good intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Task List quadraticmodel(BurrSize(CS, FR))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.18: Descriptions of the knowledge state index during Move 2 of
Phase 1 - Test 3

After performing the planned move of i0x4, the model is estimated to be BurrSize

= 0.034 - 0.01CS ∗ CS + 0.05CS ∗ FR - 9.8e-3FR ∗ FR. As the result of the

experimental events at the previous knowledge state index, the current knowledge

state index is now i0x4x29, which is described in Table 6.19:
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6.2 Phase 1 - Initial Phase

i0x4x29

State and Type F-Good terminating index

Samples Available 34

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Modeled Predictors:

CS ∗ CS,CS ∗ FR,FR ∗ FR

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.19: Descriptions of the knowledge state index during Move 3 of
Phase 1 - Test 3

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.20.
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6.2 Phase 1 - Initial Phase

Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = 0.034 -

0.01CS ∗ CS + 0.05CS ∗ FR -

9.8e-3FR ∗ FR

Data Source Function
BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR

- 0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 56

Number Of Samples Left 34

Table 6.20: Final Results of Phase 1 - Test 3

Phase 1 - Test 4

Function to Approximate: BurrSize = ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.21:
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6.2 Phase 1 - Initial Phase

i0

State and Type F-Good intermediate index

Samples Available 90

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.21: Descriptions of the knowledge state index during Move 1 of
Phase 1 - Test 4

After performing the planned move of i0, no variables passed the screening process.

As the result of the experimental events at the previous knowledge state index, the

current knowledge state index is now i0x1, which is described in Table 6.22:
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6.2 Phase 1 - Initial Phase

i0x1

State and Type F-Good terminating index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Vars: None

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.22: Descriptions of the knowledge state index during Move 2 of
Phase 1 - Test 4

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.23.
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6.2 Phase 1 - Initial Phase

Results

Terminating Index State F-Good

Experimental Results Screened predictors of BurrSize: None

Data Source Function BurrSize = ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 24

Number Of Samples Left 66

Table 6.23: Final Results of Phase 1 - Test 4

Phase 1 Summary:

The research strategy is F-Good, and the sponsor is satisfied with the quality of

the model approximations.
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6.3 Phase 2 - Minimal Strategy Phase

6.3 Phase 2 - Minimal Strategy Phase

6.3.1 Preliminary Sponsor-Designer Discussions

The sponsor wants to know what is the lowest amount of samples that produces

an F-Good research strategy using the same preferences as Example 1, and wants to

know how well that strategy performs.

6.3.2 Specifications Expressed Formally by Designer for Phase

2

Number of samples: minimal number required for F-Good initial knowledge state

index

Project Satisfaction Condition:

All predictors screened out, or response function constructed

Task Specification Function:

If potential predictors have not gone through screening (in order of preference, greatest

to least):

screen(BurrSize(CS, FR, PA))

screen(BurrSize(CS, FR))
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6.3 Phase 2 - Minimal Strategy Phase

screen(BurrSize(CS))

If potential predictors have gone through screening (in order of preference, greatest to

least):

quadraticmodel(BurrSize(screened predictors)),

linearmodel(BurrSize(screened predictors)),

linearmodel(BurrSize(screened predictors - screened predictor of least priority))

...

linearmodel(BurrSize(highest priority screened variable)),

Experimental Design Preference Ordering Function:

For screening (in order of preference, greatest to least):

Full Factorial Design, 3 replications

Full Factorial Design, 2 replications

For linear modeling (in order of preference, greatest to least):

Full Factorial Design, 3 replications

Full Factorial Design, 2 replications

For quadratic modeling:

Central Composite Design
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6.3 Phase 2 - Minimal Strategy Phase

maximum number of center points = (number of screened predictors+2)*2

minimum number of center points = number of screened predictors+4

maximum number of factorial points = 3

minimum number of factorial points = 2

maximum number of axial points = 3

minimum number of axial points = 2

start with maximum values, reduce number of center points first, then number of

axial points, then number of factorial points
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6.3 Phase 2 - Minimal Strategy Phase

6.3.3 Model Approximation Testing - Minimal Strategy Phase

By binary search between 0 and 90, the lowest number of samples required to

construct an F-Good research strategy under the conditions of Section 6.3.2 is deter-

mined to be 8. Figure 6.3 is a visual representation of the F-Good research strategy,

determined from Section 6.3.2:

blue F-Good

red F-ResErr

magenta F-LogErr

Figure 6.3: Tree graph of research strategy for minimal strategy phase.
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6.3 Phase 2 - Minimal Strategy Phase

These are the intermediate knowledge state indexes of the strategy constructed in

Phase 2:

i0

State and Type F-Good intermediate index

Samples Available 8

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS))

Experimental Design 1 variable 2-level full factorial, 2 reps

Design Cost 4

Table 6.24: Descriptions of the knowledge state index i0 during Phase 2
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6.3 Phase 2 - Minimal Strategy Phase

i0x2

State and Type F-Good intermediate index

Samples Available 4

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Task List linearmodel(BurrSize(CS))

Experimental Design 1 variable 2-level full factorial, 2 reps

Design Cost 4

Table 6.25: Descriptions of the knowledge state index i0x2 during Phase 2
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6.3 Phase 2 - Minimal Strategy Phase

6.3.4 Model Approximation Testing - Minimal Strategy Phase

Phase 2 - Test 1

Function to Approximate: BurrSize= 0.71CS + 0.31FR+ 0.46PA - 0.01CS∗

CS - 0.01FR ∗ FR - 0.01PA ∗ PA + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.26:

i0

State and Type F-Good intermediate index

Samples Available 8

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS))

Experimental Design 1 variable 2-level full factorial, 2 reps

Design Cost 4

Table 6.26: Descriptions of the knowledge state index during Move 1 of
Phase 2 - Test 1

After performing the planned move of i0, the predictor that passed the screening

process is CuttingSpeed. As the result of the experimental events at the previous

knowledge state index, the current knowledge state index is now i0x2, which is de-

scribed in Table 6.27:
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6.3 Phase 2 - Minimal Strategy Phase

i0x2

State and Type F-Good intermediate index

Samples Available 4

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Task List linearmodel(BurrSize(CS))

Experimental Design 1 variable 2-level full factorial, 2 reps

Design Cost 4

Table 6.27: Descriptions of the knowledge state index during Move 2 of
Phase 2 - Test 1

After performing the planned move of i0x2, the model is estimated to be BurrSize

= 18.0 + 0.01CS. As the result of the experimental events at the previous knowledge

state index, the current knowledge state index is now i0x2x2, which is described in

Table 6.28:
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6.3 Phase 2 - Minimal Strategy Phase

i0x2x2

State and Type F-Good terminating index

Samples Available 0

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Modeled Predictors: CS

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.28: Descriptions of the knowledge state index during Move 3 of
Phase 2 - Test 1

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.29.
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6.3 Phase 2 - Minimal Strategy Phase

Results

Terminating Index State F-Good

Experimental Results
Estimated Function: BurrSize = 18.0 +

0.01CS

Data Source Function

BurrSize = 0.71CS + 0.31FR + 0.46PA -

0.01CS ∗ CS - 0.01FR ∗ FR - 0.01PA ∗ PA

+ ε, ε ∼ N(0,0.01)

Original Number of Samples 8

Total Sample Cost 8

Number Of Samples Left 0

Table 6.29: Final Results of Phase 2 - Test 1

Phase 2 - Test 2

Function to Approximate: BurrSize = 0.71CS - 0.31FR + 0.46PA + ε, ε

∼ N(0,0.01)

The predictor that passed the screening process is CuttingSpeed. The model is

estimated to be BurrSize = 5.7 + 0.71CS. The terminating knowledge state index

is described in Table 6.30:
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6.3 Phase 2 - Minimal Strategy Phase

i0x2x2

State and Type F-Good terminating index

Samples Available 0

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Modeled Predictors: CS

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.30: Descriptions of the knowledge state index during Move 1 of
Phase 2 - Test 2

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.31.
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6.3 Phase 2 - Minimal Strategy Phase

Results

Terminating Index State F-Good

Experimental Results
Estimated Function: BurrSize = 5.7 +

0.71CS

Data Source Function
BurrSize = 0.71CS - 0.31FR + 0.46PA +

ε, ε ∼ N(0,0.01)

Original Number of Samples 8

Total Sample Cost 8

Number Of Samples Left 0

Table 6.31: Final Results of Phase 2 - Test 2

Phase 2 - Test 3

Function to Approximate: BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR -

0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

The predictor that passed the screening process is CuttingSpeed. The model is

estimated to be BurrSize = 7.8 + 0.05CS. The terminating knowledge state index

is described in Table 6.32:
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6.3 Phase 2 - Minimal Strategy Phase

i0x2x2

State and Type F-Good terminating index

Samples Available 0

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Modeled Predictors: CS

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.32: Descriptions of the knowledge state index during Move 1 of
Phase 2 - Test 3

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.33.
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6.3 Phase 2 - Minimal Strategy Phase

Results

Terminating Index State F-Good

Experimental Results
Estimated Function: BurrSize = 7.8 +

0.05CS

Data Source Function
BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR

- 0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

Original Number of Samples 8

Total Sample Cost 8

Number Of Samples Left 0

Table 6.33: Final Results of Phase 2 - Test 3

Phase 2 - Test 4

Function to Approximate: BurrSize = ε, ε ∼ N(0,0.01)

No predictors passed the screening process. The terminating knowledge state

index is described in Table 6.34:
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6.3 Phase 2 - Minimal Strategy Phase

i0x1

State and Type F-Good terminating index

Samples Available 4

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Vars: None

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.34: Descriptions of the knowledge state index during Move 1 of
Phase 2 - Test 4

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.35.
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6.3 Phase 2 - Minimal Strategy Phase

Results

Terminating Index State F-Good

Experimental Results Screened predictors of BurrSize: None

Data Source Function BurrSize = ε, ε ∼ N(0,0.01)

Original Number of Samples 8

Total Sample Cost 4

Number Of Samples Left 4

Table 6.35: Final Results of Phase 2 - Test 4

Phase 2 Summary:

While the constructed research strategy is F-Good and is considerably cheaper

than the last research strategy, it is not nearly as able to perform model approxi-

mation. The sponsor does not like this particular research strategy, and wants to

see if a minimal research strategy can be constructed that still performs the desired

analytical tasks.
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

6.4 Phase 3 - No Task Compromise Minimal Strat-

egy Phase

6.4.1 Preliminary Sponsor-Designer Discussions

The sponsor didn’t like the results of Example 2, and wants to know what is the

lowest amount of samples that produces an F-Good research strategy using the same

preferences as the previous example, except that for eliminating compromise for the

task list, and wants to know how well that strategy performs.

6.4.2 Specifications Expressed Formally by Designer for Phase

3

Number of samples: minimal number required for F-Good initial knowledge state

index

Project Satisfaction Condition:

All predictors screened out, or response function constructed

Task Specification Function:

If potential predictors have not gone through screening:

screen(BurrSize(CS, FR, PA))
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

If potential predictors have gone through screening (in order of preference, greatest to

least):

quadraticmodel(BurrSize(screened predictors))

Experimental Design Preference Ordering Function:

For screening (in order of preference, greatest to least):

Full Factorial Design, 3 replications

Full Factorial Design, 2 replications

For quadratic modeling:

Central Composite Design

maximum number of center points = (number of screened predictors+2)*2

minimum number of center points = number of screened predictors+4

maximum number of factorial points = 3

minimum number of factorial points = 2

maximum number of axial points = 3

minimum number of axial points = 2

start with maximum values, reduce number of center points first, then number of

axial points, then number of factorial points
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

6.4.3 Constructed Research Strategy - No Task Compromise

Minimal Strategy Phase

By binary search between 0 and 90, the lowest number of samples required to

construct an F-Good research strategy under the conditions of Section 6.4.2 is deter-

mined to be 51. Figure 6.4 is a visual representation of the F-Good research strategy,

determined from Section 6.4.2:
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

blue F-Good

red F-ResErr

magenta F-LogErr

Figure 6.4: Tree graph of research strategy for no task compromise minimal
strategy phase.
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

These are the intermediate knowledge state indexes of the strategy constructed in

Phase 3:

i0

State and Type F-Good intermediate index

Samples Available 51

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 2 reps

Design Cost 16

Table 6.36: Descriptions of the knowledge state index i0 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x2

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Task List quadraticmodel(BurrSize(CS))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.37: Descriptions of the knowledge state index i0x2 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x3

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR

Task List quadraticmodel(BurrSize(FR))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.38: Descriptions of the knowledge state index i0x3 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x4

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Task List quadraticmodel(BurrSize(CS, FR))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.39: Descriptions of the knowledge state index i0x4 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x5

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: PA

Task List quadraticmodel(BurrSize(PA))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.40: Descriptions of the knowledge state index i0x5 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x6

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, PA

Task List quadraticmodel(BurrSize(CS, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.41: Descriptions of the knowledge state index i0x6 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x7

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR, PA

Task List quadraticmodel(BurrSize(FR, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.42: Descriptions of the knowledge state index i0x7 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x8

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 2 axial reps, 2 factorial

reps, 7 center points

Design Cost 35

Table 6.43: Descriptions of the knowledge state index i0x8 during Phase 3
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

6.4.4 Model Approximation Testing - No Task Compromise

Minimal Strategy Phase

Phase 3 - Test 1

Function to Approximate: BurrSize= 0.71CS + 0.31FR+ 0.46PA - 0.01CS∗

CS - 0.01FR ∗ FR - 0.01PA ∗ PA + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.44:

i0

State and Type F-Good intermediate index

Samples Available 51

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 2 reps

Design Cost 16

Table 6.44: Descriptions of the knowledge state index during Move 1 of
Phase 3 - Test 1

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed, FeedRate, and PointAngle. As the result of the exper-

imental events at the previous knowledge state index, the current knowledge state

index is now i0x8, which is described in Table 6.45:
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x8

State and Type F-Good intermediate index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 2 axial reps, 2 factorial

reps, 7 center points

Design Cost 35

Table 6.45: Descriptions of the knowledge state index during Move 2 of
Phase 3 - Test 1

After performing the planned move of i0x8, the model is estimated to be BurrSize

= -0.011 + 0.71CS + 0.31FR + 0.46PA - 0.01CS∗CS - 0.01FR∗FR - 0.01PA∗PA.

As the result of the experimental events at the previous knowledge state index, the

current knowledge state index is now i0x8x336, which is described in Table 6.46:
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

i0x8x336

State and Type F-Good terminating index

Samples Available 0

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors:

CS, FR, PA,CS ∗ CS, FR ∗ FR, PA ∗ PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.46: Descriptions of the knowledge state index during Move 3 of
Phase 3 - Test 1

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.47.
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = - 0.011 +

0.71CS + 0.31FR + 0.46PA - 0.01CS ∗CS

- 0.01FR ∗ FR - 0.01PA ∗ PA

Data Source Function

BurrSize = 0.71CS + 0.31FR + 0.46PA -

0.01CS ∗ CS - 0.01FR ∗ FR - 0.01PA ∗ PA

+ ε, ε ∼ N(0,0.01)

Original Number of Samples 51

Total Sample Cost 51

Number Of Samples Left 0

Table 6.47: Final Results of Phase 3 - Test 1

Phase 3 - Test 2

Function to Approximate: BurrSize = 0.71CS - 0.31FR + 0.46PA + ε, ε

∼ N(0,0.01)

The predictors that passed the screening process are CuttingSpeed, FeedRate,

and PointAngle. The model is estimated to be BurrSize = 0.061 + 0.71CS - 0.31FR

+ 0.46PA. The terminating knowledge state index is described in Table 6.48:
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i0x8x8

State and Type F-Good terminating index

Samples Available 0

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors: CS, FR, PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.48: Descriptions of the knowledge state index during Move 1 of
Phase 3 - Test 2

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.49.
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Results

Terminating Index State F-Good

Experimental Results
Estimated Function: BurrSize = 0.061 +

0.71CS - 0.31FR + 0.46PA

Data Source Function
BurrSize = 0.71CS - 0.31FR + 0.46PA +

ε, ε ∼ N(0,0.01)

Original Number of Samples 51

Total Sample Cost 51

Number Of Samples Left 0

Table 6.49: Final Results of Phase 3 - Test 2

Phase 3 - Test 3

Function to Approximate: BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR -

0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

The predictors that passed the screening process are CuttingSpeed and FeedRate.

The model is estimated to be BurrSize = -0.023 - 0.01CS ∗ CS + 0.05CS ∗ FR -

0.01FR ∗ FR. The terminating knowledge state index is described in Table 6.50:
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i0x4x29

State and Type F-Good terminating index

Samples Available 3

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Modeled Predictors:

CS ∗ CS,CS ∗ FR,FR ∗ FR

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.50: Descriptions of the knowledge state index during Move 1 of
Phase 3 - Test 3

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.51.
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Results

Terminating Index State F-Good

Experimental Results
Estimated Function: BurrSize = - 0.023 -

0.01CS ∗CS + 0.05CS ∗FR - 0.01FR ∗FR

Data Source Function
BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR

- 0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

Original Number of Samples 51

Total Sample Cost 48

Number Of Samples Left 3

Table 6.51: Final Results of Phase 3 - Test 3

Phase 3 - Test 4

Function to Approximate: BurrSize = ε, ε ∼ N(0,0.01)

No predictors passed the screening process. The terminating knowledge state

index is described in Table 6.52:
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i0x1

State and Type F-Good terminating index

Samples Available 35

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Vars: None

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.52: Descriptions of the knowledge state index during Move 1 of
Phase 3 - Test 4

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.53.
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6.4 Phase 3 - No Task Compromise Minimal Strategy Phase

Results

Terminating Index State F-Good

Experimental Results Screened predictors of BurrSize: None

Data Source Function BurrSize = ε, ε ∼ N(0,0.01)

Original Number of Samples 51

Total Sample Cost 16

Number Of Samples Left 35

Table 6.53: Final Results of Phase 3 - Test 4

Phase 3 Summary:

This research strategy is F-Good, and is much cheaper than the original research

strategy, while still being able to incorporate the predictors of interest.
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6.5 Phase 4 - Logic Error Phase

6.5 Phase 4 - Logic Error Phase

6.5.1 Preliminary Sponsor-Designer Discussions

The sponsor likes the results of Example 2, but wants to change the project

satisfaction condition to require having a response function constructed containing

all variables initially considered, and wants to see what happens. The designer is

allowed 90 samples.

6.5.2 Specifications Expressed Formally by Designer for Phase

4

Number of samples: 90

Project Satisfaction Condition:

Response function constructed containing all predictors initially considered

Task Specification Function:

If potential predictors have not gone through screening:

screen(BurrSize(CS, FR, PA))

If potential predictors have gone through screening (in order of preference, greatest to
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6.5 Phase 4 - Logic Error Phase

least):

quadraticmodel(BurrSize(screened predictors))

Experimental Design Preference Ordering Function:

For screening (in order of preference, greatest to least):

Full Factorial Design, 3 replications

Full Factorial Design, 2 replications

For quadratic modeling:

Central Composite Design

maximum number of center points = (number of screened predictors+2)*2

minimum number of center points = number of screened predictors+4

maximum number of factorial points = 3

minimum number of factorial points = 2

maximum number of axial points = 3

minimum number of axial points = 2

start with maximum values, reduce number of center points first, then number of

axial points, then number of factorial points
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6.5 Phase 4 - Logic Error Phase

6.5.3 Constructed Research Strategy - Logic Error Phase

Figure 6.5 is a visual representation of the F-LogErr research strategy, determined

from Section 6.5.2:

blue F-Good

red F-ResErr

magenta F-LogErr

Figure 6.5: Tree graph of research strategy for logic error phase.
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6.5 Phase 4 - Logic Error Phase

These are the intermediate knowledge state indexes of the strategy constructed in

Phase 4:

i0

State and Type F-LogErr intermediate index

Samples Available 90

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.54: Descriptions of the knowledge state index i0 during Phase 4
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6.5 Phase 4 - Logic Error Phase

i0x2

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Task List quadraticmodel(BurrSize(CS))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.55: Descriptions of the knowledge state index i0x2 during Phase 4
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i0x3

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR

Task List quadraticmodel(BurrSize(FR))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.56: Descriptions of the knowledge state index i0x3 during Phase 4
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i0x4

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Task List quadraticmodel(BurrSize(CS, FR))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.57: Descriptions of the knowledge state index i0x4 during Phase 4
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i0x5

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: PA

Task List quadraticmodel(BurrSize(PA))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.58: Descriptions of the knowledge state index i0x5 during Phase 4
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i0x6

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, PA

Task List quadraticmodel(BurrSize(CS, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.59: Descriptions of the knowledge state index i0x6 during Phase 4

153



6.5 Phase 4 - Logic Error Phase

i0x7

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR, PA

Task List quadraticmodel(BurrSize(FR, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.60: Descriptions of the knowledge state index i0x7 during Phase 4
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i0x8

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 3 axial reps, 3 factorial

reps, 10 center points

Design Cost 52

Table 6.61: Descriptions of the knowledge state index i0x8 during Phase 4
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6.5 Phase 4 - Logic Error Phase

6.5.4 Model Approximation Testing - Logic Error Phase

Phase 4 - Test 1

Function to Approximate: BurrSize= 0.71CS + 0.31FR+ 0.46PA - 0.01CS∗

CS - 0.01FR ∗ FR - 0.01PA ∗ PA + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.62:

i0

State and Type F-LogErr intermediate index

Samples Available 90

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.62: Descriptions of the knowledge state index during Move 1 of
Phase 4 - Test 1

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed, FeedRate, and PointAngle. As the result of the exper-

imental events at the previous knowledge state index, the current knowledge state

index is now i0x8, which is described in Table 6.63:
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i0x8

State and Type F-LogErr intermediate index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 3 axial reps, 3 factorial

reps, 10 center points

Design Cost 52

Table 6.63: Descriptions of the knowledge state index during Move 2 of
Phase 4 - Test 1

After performing the planned move of i0x8, the model is estimated to be BurrSize

= 0.079 + 0.71CS + 0.3FR + 0.46PA - 0.01CS ∗CS - 9.9e-3FR∗FR - 0.01PA∗PA.

As the result of the experimental events at the previous knowledge state index, the

current knowledge state index is now i0x8x336, which is described in Table 6.64:
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6.5 Phase 4 - Logic Error Phase

i0x8x336

State and Type F-Good terminating index

Samples Available 14

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors:

CS, FR, PA,CS ∗ CS, FR ∗ FR, PA ∗ PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.64: Descriptions of the knowledge state index during Move 3 of
Phase 4 - Test 1

A response function has been successfully modeled, and the model contains all of

the predictors of interest, so experimentation can stop, and the final results can be

shown. The type of termination, the main experimental results, and the overall cost

are displayed in Figure 6.65.
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Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = 0.079 +

0.71CS + 0.3FR + 0.46PA - 0.01CS ∗ CS

- 9.9e-3FR ∗ FR - 0.01PA ∗ PA

Data Source Function

BurrSize = 0.71CS + 0.31FR + 0.46PA -

0.01CS ∗ CS - 0.01FR ∗ FR - 0.01PA ∗ PA

+ ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 76

Number Of Samples Left 14

Table 6.65: Final Results of Phase 4 - Test 1

Phase 4 - Test 2

Function to Approximate: BurrSize = 0.71CS - 0.31FR + 0.46PA + ε, ε

∼ N(0,0.01)

The predictors that passed the screening process are CuttingSpeed, FeedRate,

and PointAngle. The model is estimated to be BurrSize = 0.011 + 0.71CS - 0.31FR

+ 0.46PA + 1.4e-4CS ∗ FR. The terminating knowledge state index is described in

Table 6.66:
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6.5 Phase 4 - Logic Error Phase

i0x8x24

State and Type F-Good terminating index

Samples Available 14

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors: CS, FR, PA,CS ∗ FR

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.66: Descriptions of the knowledge state index during Move 1 of
Phase 4 - Test 2

A response function has been successfully modeled, and the model contains all of

the predictors of interest, so experimentation can stop, and the final results can be

shown. The type of termination, the main experimental results, and the overall cost

are displayed in Figure 6.67.
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Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = 0.011 +

0.71CS - 0.31FR + 0.46PA +

1.4e-4CS ∗ FR

Data Source Function
BurrSize = 0.71CS - 0.31FR + 0.46PA +

ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 76

Number Of Samples Left 14

Table 6.67: Final Results of Phase 4 - Test 2

Phase 4 - Test 3

Function to Approximate: BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR -

0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

The predictors that passed the screening process are CuttingSpeed and FeedRate.

The model is estimated to be BurrSize = -0.038 - 0.01CS ∗ CS + 0.05CS ∗ FR -

0.01FR ∗ FR. The terminating knowledge state index is described in Table 6.68:
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i0x4x29

State and Type F-LogErr terminating index

Samples Available 34

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Modeled Predictors:

CS ∗ CS,CS ∗ FR,FR ∗ FR

Task List FinishLogErr

Experimental Design Finish

Design Cost 0

Table 6.68: Descriptions of the knowledge state index during Move 1 of
Phase 4 - Test 3

A response function for BurrSize has been modeled, but it does not contain all the

predictors of interest, which does not meet the project satisfaction condition. Con-

sequently, the project satisfaction function determines that experimentation should

continue. However, the available analytical tasks are specified to create a model with

predictors that pass the screening and modeling significance tests. Since this been

successfully achieved, the specified analytical task list is empty. This means that

there are no more tasks to perform, and yet experimentation is supposed to continue.

Due to this logical contradiction, experimentation will stop, and the results obtained
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6.5 Phase 4 - Logic Error Phase

so far will be given. The type of termination, the main experimental results, and the

overall cost are displayed in Figure 6.69.

Results

Terminating Index State F-LogErr

Experimental Results
Estimated Function: BurrSize = - 0.038 -

0.01CS ∗CS + 0.05CS ∗FR - 0.01FR ∗FR

Data Source Function
BurrSize = - 0.01CS ∗ CS + 0.05CS ∗ FR

- 0.01FR ∗ FR + ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 56

Number Of Samples Left 34

Table 6.69: Final Results of Phase 4 - Test 3

Phase 4 - Test 4

Function to Approximate: BurrSize = ε, ε ∼ N(0,0.01)

No predictors passed the screening process. The terminating knowledge state

index is described in Table 6.70:
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i0x1

State and Type F-LogErr terminating index

Samples Available 66

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Vars: None

Task List FinishLogErr

Experimental Design Finish

Design Cost 0

Table 6.70: Descriptions of the knowledge state index during Move 1 of
Phase 4 - Test 4

All predictors for BurrSize have been screened out, which does not meet the

project satisfaction condition. Consequently, the project satisfaction function deter-

mines that experimentation should continue. However, the available analytical tasks

are specified to create a model with predictors that pass the screening and modeling

significance tests. Since this been successfully achieved, the specified analytical task

list is empty. This means that there are no more tasks to perform, and yet experi-

mentation is supposed to continue. Due to this logical contradiction, which cannot

be resolved experimentally, experimentation will stop, and the results obtained so far

will be given. The type of termination, the main experimental results, and the overall

cost are displayed in Figure 6.71.
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Results

Terminating Index State F-LogErr

Experimental Results Screened predictors of BurrSize: None

Data Source Function BurrSize = ε, ε ∼ N(0,0.01)

Original Number of Samples 90

Total Sample Cost 24

Number Of Samples Left 66

Table 6.71: Final Results of Phase 4 - Test 4

Phase 4 Summary:

The problem with the new project satisfaction condition is that it only includes

knowledge state indexes which represents the case where all variables pass screening

and fit the model. The problem with this is that any hypothesis must be falsifiable,

and any screening or modeling analytical task can produce a possible fact that will

make the new project satisfaction condition unsatisfiable. Therefore, this is not a

good project satisfaction condition.
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6.6 Phase 5 - Catastrophe Phase

6.6 Phase 5 - Catastrophe Phase

6.6.1 Preliminary Sponsor-Designer Discussions

The sponsor really didn’t like the results of Example 4, but wants to know what

happens if samples are accidently lost between performing the first and second exper-

imental designs. The sponsor wants the designer to have 71 samples, and plan for 71

samples, but wants to see what happens if samples disappear between the first and

second experimental designs, and wants the designer to compensate for the loss.

6.6.2 Specifications Expressed Formally by Designer for Phase

5

Number of samples: 71

Project Satisfaction Condition:

All potential predictors screened out, or response function constructed

Task Specification Function:

If potential predictors have not gone through screening:

screen(BurrSize(CS, FR, PA))
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6.6 Phase 5 - Catastrophe Phase

If potential predictors have gone through screening (in order of preference, greatest to

least):

quadraticmodel(BurrSize(screened predictors))

Experimental Design Preference Ordering Function:

For screening (in order of preference, greatest to least):

Full Factorial Design, 3 replications

Full Factorial Design, 2 replications

For quadratic modeling:

Central Composite Design

maximum number of center points = (number of screened predictors+2)*2

minimum number of center points = number of screened predictors+4

maximum number of factorial points = 3

minimum number of factorial points = 2

maximum number of axial points = 3

minimum number of axial points = 2

start with maximum values, reduce number of center points first, then number of

axial points, then number of factorial points
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6.6.3 Constructed Research Strategy - Catastrophe Phase

Figure 6.6 is a visual representation of the F-Good research strategy, determined

from Section 6.6.2 (pre-catastrophe):

blue F-Good

red F-ResErr

magenta F-LogErr

Figure 6.6: Tree graph of research strategy (pre-catastrophe) for catastrophe
phase.
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These are the intermediate knowledge state indexes of the research strategy con-

structed in Phase 5(pre-catastrophe):

i0

State and Type F-Good intermediate index

Samples Available 71

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.72: Descriptions of the knowledge state index i0 during Phase 5(pre-
catastrophe)
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i0x2

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS

Task List quadraticmodel(BurrSize(CS))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.73: Descriptions of the knowledge state index i0x2 during
Phase 5(pre-catastrophe)

170



6.6 Phase 5 - Catastrophe Phase

i0x3

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR

Task List quadraticmodel(BurrSize(FR))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.74: Descriptions of the knowledge state index i0x3 during
Phase 5(pre-catastrophe)
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i0x4

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR

Task List quadraticmodel(BurrSize(CS, FR))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.75: Descriptions of the knowledge state index i0x4 during
Phase 5(pre-catastrophe)
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i0x5

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: PA

Task List quadraticmodel(BurrSize(PA))

Experimental Design
1 variable CCD, 3 axial reps, 3 factorial

reps, 6 center points

Design Cost 18

Table 6.76: Descriptions of the knowledge state index i0x5 during
Phase 5(pre-catastrophe)
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i0x6

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, PA

Task List quadraticmodel(BurrSize(CS, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.77: Descriptions of the knowledge state index i0x6 during
Phase 5(pre-catastrophe)
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i0x7

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: FR, PA

Task List quadraticmodel(BurrSize(FR, PA))

Experimental Design
2 variable CCD, 3 axial reps, 3 factorial

reps, 8 center points

Design Cost 32

Table 6.78: Descriptions of the knowledge state index i0x7 during
Phase 5(pre-catastrophe)
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i0x8

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 2 axial reps, 3 factorial

reps, 10 center points

Design Cost 46

Table 6.79: Descriptions of the knowledge state index i0x8 during
Phase 5(pre-catastrophe)
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6.6.4 Model Approximation Testing - Catastrophe Phase

Phase 5 - Test 1

Catastrophic loss of samples at second stage: 5

Function to Approximate: BurrSize= 0.71CS + 0.31FR+ 0.46PA - 0.01CS∗

CS - 0.01FR ∗ FR - 0.01PA ∗ PA + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.80:

i0

State and Type F-Good intermediate index

Samples Available 71

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.80: Descriptions of the knowledge state index during Move 1 of
Phase 5 - Test 1

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed, FeedRate, and PointAngle. As the result of the exper-

imental events at the previous knowledge state index, the current knowledge state

index is now i0x8, which is described in Table 6.81:
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i0x8

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 2 axial reps, 3 factorial

reps, 10 center points

Design Cost 46

Table 6.81: Descriptions of the knowledge state index during Move 3 of
Phase 5 - Test 1

After performing the planned move of i0x8, the model is estimated to be BurrSize

= -6.6e-3 + 0.71CS + 0.32FR + 0.46PA - 0.01CS∗CS - 0.01FR∗FR - 0.01PA∗PA.

As the result of the experimental events at the previous knowledge state index, the

current knowledge state index is now i0x8x336, which is described in Table 6.82:
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6.6 Phase 5 - Catastrophe Phase

i0x8x336

State and Type F-Good terminating index

Samples Available 1

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors:

CS, FR, PA,CS ∗ CS, FR ∗ FR, PA ∗ PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.82: Descriptions of the knowledge state index during Move 5 of
Phase 5 - Test 1

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.83.
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6.6 Phase 5 - Catastrophe Phase

Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = - 6.6e-3 +

0.71CS + 0.32FR + 0.46PA - 0.01CS ∗CS

- 0.01FR ∗ FR - 0.01PA ∗ PA

Data Source Function

BurrSize = 0.71CS + 0.31FR + 0.46PA -

0.01CS ∗ CS - 0.01FR ∗ FR - 0.01PA ∗ PA

+ ε, ε ∼ N(0,0.01)

Original Number of Samples 71

Total Sample Cost 70

Number Of Samples Left 1

Table 6.83: Final Results of Phase 5 - Test 1
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6.6 Phase 5 - Catastrophe Phase

Phase 5 - Test 2

Catastrophic loss of samples at second stage: 10

Function to Approximate: BurrSize= 0.71CS + 0.31FR+ 0.46PA - 0.01CS∗

CS - 0.01FR ∗ FR - 0.01PA ∗ PA + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.84:

i0

State and Type F-Good intermediate index

Samples Available 71

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.84: Descriptions of the knowledge state index during Move 1 of
Phase 5 - Test 1

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed, FeedRate, and PointAngle. As the result of the exper-

imental events at the previous knowledge state index, the current knowledge state

index is now i0x8, which is described in Table 6.85:
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6.6 Phase 5 - Catastrophe Phase

i0x8

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 2 axial reps, 3 factorial

reps, 10 center points

Design Cost 46

Table 6.85: Descriptions of the knowledge state index during Move 3 of
Phase 5 - Test 1

After performing the planned move of i0x8, the model is estimated to be BurrSize

= -0.039 + 0.71CS + 0.31FR + 0.46PA - 0.01CS∗CS - 2.2e-5CS∗PA - 0.01FR∗FR

- 0.01PA ∗ PA. As the result of the experimental events at the previous knowledge

state index, the current knowledge state index is now i0x8x368, which is described in

Table 6.86:
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6.6 Phase 5 - Catastrophe Phase

i0x8x368

State and Type F-Good terminating index

Samples Available 1

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors: CS, FR, PA,CS ∗

CS,CS ∗ PA, FR ∗ FR, PA ∗ PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.86: Descriptions of the knowledge state index during Move 5 of
Phase 5 - Test 1

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.87.
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6.6 Phase 5 - Catastrophe Phase

Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = - 0.039 +

0.71CS + 0.31FR + 0.46PA - 0.01CS ∗CS

- 2.2e-5CS ∗ PA - 0.01FR ∗ FR -

0.01PA ∗ PA

Data Source Function

BurrSize = 0.71CS + 0.31FR + 0.46PA -

0.01CS ∗ CS - 0.01FR ∗ FR - 0.01PA ∗ PA

+ ε, ε ∼ N(0,0.01)

Original Number of Samples 71

Total Sample Cost 70

Number Of Samples Left 1

Table 6.87: Final Results of Phase 5 - Test 1
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6.6 Phase 5 - Catastrophe Phase

Phase 5 - Test 3

Catastrophic loss of samples at second stage: 15

Function to Approximate: BurrSize= 0.71CS + 0.31FR+ 0.46PA - 0.01CS∗

CS - 0.01FR ∗ FR - 0.01PA ∗ PA + ε, ε ∼ N(0,0.01)

The initial knowledge state index is i0, which is described in Table 6.88:

i0

State and Type F-Good intermediate index

Samples Available 71

Obtained Facts
Potentially Significant Predictors:

CS, FR, PA

Task List screen(BurrSize(CS, FR, PA))

Experimental Design 3 variable 2-level full factorial, 3 reps

Design Cost 24

Table 6.88: Descriptions of the knowledge state index during Move 1 of
Phase 5 - Test 1

After performing the planned move of i0, the predictors that passed the screening

process are CuttingSpeed, FeedRate, and PointAngle. As the result of the exper-

imental events at the previous knowledge state index, the current knowledge state

index is now i0x8, which is described in Table 6.89:
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6.6 Phase 5 - Catastrophe Phase

i0x8

State and Type F-Good intermediate index

Samples Available 47

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Task List quadraticmodel(BurrSize(CS, FR, PA))

Experimental Design
3 variable CCD, 2 axial reps, 3 factorial

reps, 10 center points

Design Cost 46

Table 6.89: Descriptions of the knowledge state index during Move 3 of
Phase 5 - Test 1

After performing the planned move of i0x8, the model is estimated to be BurrSize

= 9.5e-3 + 0.71CS + 0.31FR + 0.46PA - 0.01CS ∗CS - 0.01FR∗FR - 0.01PA∗PA.

As the result of the experimental events at the previous knowledge state index, the

current knowledge state index is now i0x8x336, which is described in Table 6.90:
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6.6 Phase 5 - Catastrophe Phase

i0x8x336

State and Type F-Good terminating index

Samples Available 1

Obtained Facts

Potentially Significant Predictors:

CS, FR, PA

Screened Predictors: CS, FR, PA

Modeled Predictors:

CS, FR, PA,CS ∗ CS, FR ∗ FR, PA ∗ PA

Task List FinishGood

Experimental Design Finish

Design Cost 0

Table 6.90: Descriptions of the knowledge state index during Move 5 of
Phase 5 - Test 1

A response function has been successfully modeled, so experimentation can stop,

and the final results can be shown. The type of termination, the main experimental

results, and the overall cost are displayed in Figure 6.91.
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6.6 Phase 5 - Catastrophe Phase

Results

Terminating Index State F-Good

Experimental Results

Estimated Function: BurrSize = 9.5e-3 +

0.71CS + 0.31FR + 0.46PA - 0.01CS ∗CS

- 0.01FR ∗ FR - 0.01PA ∗ PA

Data Source Function

BurrSize = 0.71CS + 0.31FR + 0.46PA -

0.01CS ∗ CS - 0.01FR ∗ FR - 0.01PA ∗ PA

+ ε, ε ∼ N(0,0.01)

Original Number of Samples 71

Total Sample Cost 70

Number Of Samples Left 1

Table 6.91: Final Results of Phase 5 - Test 1

Phase 5 Summary:

The sponsor is able to observe that even though the minimal strategy cost is

51, as shown in Section 6.4. However, the 71-sample strategy is constructed with

the expectation that 71 samples are available, and the planned move for the initial

knowledge state index costs more samples as a result. Therefore, a loss of 15 samples

at the second stage prevents completion of the project in the case where all variables

pass the screening process. The sponsor is willing to accept this, and so accepts the

71-sample research strategy.
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7

Summary

7.1 Results

The key purpose of this research has been to develop a statistical decision-making

methodology that can help the researcher to make experimental design choices so

as not to waste resources. ARC-RSM is a mathematically sound way to produce

deterministically generated, reproducible, testable, defendable, adaptive, resource-

constrained multi-stage experimental schedules without having to spend physical re-

source, as outlined below:

Deterministically generated:

Each research strategy is specified by predetermined conditions and preferences,

and each step of the process is deterministic (see Chapters 3-4).

Reproducible:
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7.1 Results

Every possible planned move of a research strategy uses an existing form of ex-

perimental design that is strictly definable in mathematical representations, and is

reproducible in the real world (see Section 2.1). In addition, the planned moves of

a research strategy are deterministically generated. Therefore, different people using

ARC-RSM with the same specifications will end up reproducing the same research

strategy.

Testable:

Since a research strategy uses experimental designs which are applicable in the

real world, it is testable in a real-world environment. In addition, since it is mathe-

matically sound and finitely bounded (see Section 3.3 and Sections 4.6-4.8), it can be

tested in a simulated environment.

Defendable:

Each step in generating and using a research strategy is explicitly stated and

finitely bounded (see Chapters 3-4), and each choice is restricted to analytical tasks

and experimental designs of established literature.

Adaptive:

The compromise conditions allow planned moves to adjust to feedback during

generation (see Section 4.7), and the localized logic at each knowledge index allows

adjustment of the research strategy in response to unexpected occurrences (see Sec-

tion 6.6.4).

Resource-constrained:

It is a direct requirement of the methodology that the resource constraints be
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7.2 Current Limitations

explicitly defined during the specification of the initial knowledge index (see Sec-

tion 3.3).

7.2 Current Limitations

In order to incorporate realistic and pre-existing research limitations, and to ensure

terminability, bounding conditions were defined (see Definition 4.22):

• There could only be a finite number of analytical tasks considered at one time,

and the list of tasks could only be reduced. If new tasks could be added, then

there could potentially be an infinite loop of tasks being added and removed,

and terminability could not be assured. Similarly, only a finite number of ex-

perimental designs could be considered for each design list, and that list can

only go down.

• While an analytical task could return a potentially infinite number of numerical

values, that range of values had to be broken into a finite number of partitions,

based on what would be considered significant. For example, the range of

a significance test would be partitioned into ’pass’ and ’fail’. Otherwise, a

planned move could have an infinite number of results, making an exhaustive

search impossible (in finite time), so terminability could not be assured.

• There has to be a global lower bound for how much an experimental design could

cost, or else experimentation could potentially continue forever, since there

191



7.3 Future Research

could be a sequence experimental design costing half of the resource available

to it, so the resource never actually runs out.

In addition, there are also two limiting issues with this methodology:

1. There does not seem to be a general way to incorporate the data of an inter-

rupted experimental design into another experimental design. Therefore, this

methodology is limited to starting over with the facts gained by that point and

the new amount of resources.

2. This methodology currently uses brute force searches to determine the preferred

choice from a reducing algorithm. While it is exhaustive, it can also be poten-

tially expensive computationally.

7.3 Future Research

There are three main interests for future research:

1. It would likely be beneficial to use mathematical simplification methods, such as

homomorphisms and quotient groups, to convert and reduce complex analytical

tasks to more basic structures that would be easier to analyze. For example,

y = a + b2 might be considered equivalent to y = a2 + b. Even if there are

fine distinctions that are important to the sponsor, a simplified form might

be useful in eliminating undesirable planned moves from a reducing algorithm

before those distinctions are established.
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7.3 Future Research

2. In order to improve the efficiency of task-design selection, it would be of interest

to study and compare the performances of different heuristic interpretations and

alterations of preference functions. This would allow researchers to develop more

efficient but equivalent methods to represent the task-design selection desired

by the sponsor-designer team. For example, there can be a rule that no more

than a third of the total resources can be spent on screening. This would help

designers determine additional criteria for the methodology, beyond what has

already been defined, that could improve how quickly a research strategy can be

constructed. Furthermore, evolutionary methods like genetic algorithms can be

used to further this process, with mathematical methods like topology providing

criteria for the evolution of new heuristics.

3. While this methodology has been developed for response surface methodology,

it is not inherently limited to it. Therefore, it would be of interest to study

how to extend ARC-RSM beyond traditional RSM to other types of statistical

analysis, incorporating new tools such as artificial neural networks, fuzzy logic,

reconstructability analysis, etc.
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Appendix A

Additional Background

A.1 Design of Experiments

Definition A.1. A response is a main element of interest within a system that a

researcher is trying to control, but cannot manipulate directly. When trying to affect a

given response, an element of interest which can be directly controlled and is suspected

of having a direct effect on the response is called a predictor. An experimental run

is an observance of the response variable as the values of the predictor variables are

changed or replicated. An element which may affect the response, but is not of interest

to the experimenter, is called a nuisance factor. An experimental design is a

schedule of experimental runs arranged in order to isolate specific effects and reduce

the effects of nuisance factors.

Definition A.2. Blocking is a type of experimental design technique in which ex-
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A.1 Design of Experiments

perimental runs are arranged in order to reduce specific nuisance factors.

Definition A.3. Screening is a process which can be performed using experimental

design, which is intended to determine which predictors have a significant effect on

the response.

Definition A.4. Modeling is a process which can be performed using experimental

design, which is intended to determine the relationship the predictors have on the

response, including the effects that the interrelationships of the predictors have on

the response. This relationship includes a response function, which is a function

which outputs a prediction of the response based upon the predictor values.

Definition A.5. Optimization is a process which can be performed using exper-

imental design, and which requires an existing response function, uses the current

response function with new experimental data to derive an estimate for the predictor

values most likely to result in an optimal value for the response.

Definition A.6. A central composite design is a kind of experimental design

typically used for fitting a second-order model. An example of a 2-factor central

composite design is shown in Figure A.1.
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x2 

x1 a b 

c 

d 

(high,high) (low,high) 

(low,low) (high,low) 

center 

axial 

axial 

axial 

axial 

Figure A.1: Example of a central composite design with two predictors.

The point at the center of the design is referred to as a center point, the points

of the square are referred to as corner points (the name can vary), and the points

at the end of the cross are axial points.

Definition A.7. A factorial design is a kind of experimental design with a variety

of uses (screening is one of the most common), and can be embedded in more com-

plicated experimental designs. A factorial design has k predictors, and each predictor

has n levels. In a full factorial design, also called a nk factorial design, each

possible combination of predictor levels is tested the same number of times as the

others. An example of a 22 factorial design is shown in Figure A.2.
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x2 

x1 a b 
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(high,high) (low,high) 

(low,low) (high,low) 

Figure A.2: Example of a 22 factorial design.

However, full factorial experimental designs can be expensive, and we might only be

able to afford a fractional factorial design, also called a nk−j factorial design,

in which only a fraction (nk−j) of the experimental runs are performed.

A.2 Set Theory

Definition A.8. A predicate is a description of properties and/or interrelationships

of one or more elements (For example, ”x is red”). This can be expressed as a

function; for example, ”isRed(x)” to mean ”x is red.”

Definition A.9. A set is a collection of objects in which order has no significance.

The specification of a set S is the condition that an object must satisfy in order to
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A.2 Set Theory

be a member of S. A set is defined by its specification as such:

set name = {x : predicate describing the specification of set that x must satisfy}

Definition A.10. An index set is a set whose elements are used to represent loca-

tions.

Definition A.11. A set R is a relation if it is a set of ordered pairs. If R is a

relation, xRy means the same thing as (x, y) ∈ R. The domain and range of a

relation R(abbreviated dom R and ran R respectively) are defined as

dom R = {x : for some y, xRy}

ran R = {y : for some x, xRy}

Definition A.12. Let R be a relation. If xRx for every x ∈ dom R∪ ran R, then R

is reflexive. If xRy implies yRx, then R is symmetric. If xRy and yRx implies

x = y, then R is antisymmetric. If If xRy and yRz implies xRz, then R is

transitive.

Definition A.13. Let R be a relation. If R is reflexive, antisymmetric, and transitive,

then it is a partial order. A set with a partial order is called a partially ordered

set.
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A.2 Set Theory

Definition A.14. If R is reflexive, symmetric, and transitive, then it is an equiva-

lence relation. If xRy for an equivalence relation R, then x and y are equivalent

under R. A partition C of a set X is a disjoint collection of nonempty subsets of X

whose union is X.
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