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Abstract 

Mitochondria are the major effectors of cardioprotection by procedures that open 

the mitochondrial ATP-sensitive potassium channel (mitoKATP), including 

ischemic and pharmacological preconditioning. MitoKATP opening leads to 

increased reactive oxygen species (ROS), which then activate a mitoKATP-

associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent 

open state (Costa, ADT and Garlid, KD. Am J Physiol 295, H874-82, 2008). 

Superoxide (O2
• –), hydrogen peroxide (H2O2), and hydroxyl radical (HO•) have 

each been proposed as the signaling ROS but the identity of the ROS 

responsible for this feedback effect is not known. Superoxide was excluded in 

earlier work on the basis that it does not activate PKCε and does not induce 

mitoKATP opening (20). To further examine the identity of the signaling ROS, 

respiring rat heart mitochondria were preincubated with ATP and diazoxide to 

induce the phosphorylation-dependent open state, together with agents that may 

interrupt feedback activation of mitoKATP by ROS scavenging or by blocking ROS 

transformations. Swelling assays of the preincubated mitochondria revealed that 

dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, trolox, and 

bromoenol lactone (BEL) each blocked the ROS-dependent open state but 

catalase did not interfere with this step. The lack of a catalase effect and the 

inhibitory effects of agents acting downstream of HO• excludes H2O2 as the 

endogenous signaling ROS and focuses attention on HO•. In support of the 

hypothesis that HO• is required, we also found that HO•-scavenging by DMF 
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blocked cardioprotection by both ischemic preconditioning and diazoxide in the 

Langendorff perfused rat heart. HO• itself cannot act as a signaling molecule, 

because its lifetime is too short and it reacts immediately with nearest neighbor 

phospholipids and proteins. Therefore, these findings point to a product of 

phospholipid peroxidation, such as hydroperoxy-fatty acids. Indeed, this 

hypothesis was supported by the finding that hydroperoxylinoleic acid (LAOOH) 

opens the ATP-inhibited mitoKATP in isolated mitochondria. This effect was 

blocked by the specific PKCε inhibitor peptide εV1-2, showing that LAOOH 

activates the mitoKATP-associated PKCε. During ischemia, catabolism of 

mitochondrial phospholipids is accelerated, causing accumulation of 

plasmalogens and free fatty acids (FA) in the heart by the action of calcium-

independent phospholipases A2 (iPLA2). We first assessed the role of FAs and 

hydroxy FAs on mitoKATP opening and cardioprotection. Swelling assays of 

isolated rat heart mitochondria showed that naturally formed free FAs inhibit 

mitoKATP opening and that they are more potent inhibitors of the pharmacological 

open state of mitoKATP than the phosphorylation-dependent open state. That is, 

sustained mitoKATP opening induced by the phosphorylation-dependent feedback 

loop is more resistant to FA inhibition than direct mitoKATP opening by a 

potassium channel opener. Moreover, rat hearts perfused with micromolar 

concentrations of FA were resistant to cardioprotection by diazoxide or ischemic 

preconditioning. Racemic bromoenol lactone (BEL), a selective inhibitor of iPLA2, 

confers protection to otherwise untreated Langendorff perfused hearts by 
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preventing ischemic FA release. To bring this story full circle, BEL blocks 

protection afforded by preconditioning and postconditioning by preventing the 

iPLA2-mediated release of FAOOH generated in the conditioned heart. HO• 

resulting from mitoKATP opening oxidizes polyunsaturated fatty acid components 

of the membrane phospholipids, resulting in a peroxidized side chain. FAOOH 

must be released in order to act on the mitochondrial PKCε, and this is achieved 

by the action of iPLA2. iPLA2 is essential for most modes of cardioprotection 

because it catalyzes the release of FAOOH. This fully supports the hypothesis 

that the second messenger of cardioprotective ROS-mediated signaling is 

hydroperoxy fatty acid (FAOOH), a downstream oxidation product of HO•. 
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Chapter 1: Literature Review 

“From the Chemiosmotic Theory to Signaling in the Heart” 

Mitochondria 

Mitochondria produce ATP by oxidative phosphorylation, which uses the 

chemical energy of substrate oxidation. The mechanism by which substrate 

oxidation is coupled to phosphorylation remained elusive for many years. The 

prevailing assumption held that there must be a high-energy chemical 

intermediate that couples these processes, but no such intermediate could be 

found. In 1961, Peter Mitchell proposed a novel hypothesis to explain the 

coupling phenomenon, completely independent of experimental evidence (98). 

Within a decade, his model was widely accepted, and in 1978 he was awarded 

the Nobel Prize for this massive accomplishment. 

Fig. 1.1: The first three postulates of Mitchell’s chemiosmotic theory.1) The vectorially-
oriented F1,F0-ATPase pumps hydrogen ions (H+) out of the matrix to produce ATP from ADP 
with the addition of phosphate (Pi). 2) The electron transport system (ETS) harnesses the 
chemical energy of substrate oxidation and drives protons out of the matrix. 3) The 
mitochondrial inner membrane is relatively impermeable to protons. Taken together, these 
three properties establish a kind of protonic battery that generates an electricochemical 
gradient across the membrane in the form of membrane potential (∆Ψ). 
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Chemiosmotic Theory 

Mitchell’s hypothesis is comprised of four basic postulates, three of which 

define the systems of the battery required for ATP synthesis and a fourth which 

describes how mitochondria must deal with the physiological stresses imposed 

by the chemiosmotic mechanisms. 

 Mitchell’s first three postulates regarding ATP synthesis are as follows, 

and are depicted in Fig. 1.1 : (Postulate 1) The F1,F0-ATPase is a vectorially 

oriented enzyme that pumps hydrogen ions out of the mitochondrial matrix, using 

the energy of ATP hydrolysis. (Postulate 2) The electron transport system (ETS) 

is a series of vectorially oriented enzymes that harness the chemical energy of 

substrate oxidation and, through a series of oxidation-reduction reactions, drives 

protons out of the matrix. This action creates an electrochemical gradient for 

protons, which Mitchell called the protonmotive force. Because the F1,F0-ATPase 

is reversible, the protons pumped outward by the ETS can flow inward through 

the enzyme, coupling the synthesis of ATP to the inward translocation of protons. 

Thus, the protonmotive force is the missing connection that couples oxidation to 

phosphorylation.  

In order for this system to synthesize ATP (Postulate 3), the membrane 

containing the F1,F0-ATPase and the ETS enzymes must be relatively 

impermeable to ions, and especially to protons. The protonic battery would be 

short-circuited and no ATP would be synthesized if protons were permitted to 

leak across the membrane. The vectorial nature of the ETS and F1,F0-ATPase 

and a relatively impermeable inner membrane were completely novel concepts at 



3 
 
the time but they form the basis of our understanding of oxidative-

phosphorylation today (97). 

The protonic battery described by the first three postulates generates a 

very high membrane potential (∆Ψ) due to the constant extrusion of protons by 

the ETS. This will drive uptake of K+ ions into the mitochondrial matrix so as to 

balance the charge between the IMS and the matrix. The influx of K+ ions draws 

water into the matrix due to osmotic demands, causing its volume to increase at 

such a rate that the mitochondrion would rupture within minutes (48). Moreover, 

the tricarboxylic acid cycle requires uptake of substrate anions against their 

electrochemical gradient. To address these inherent physiological requirements, 

Mitchell proposed (Postulate 4) the existence of cation/H+ antiporters and anion 

exchangers that operate electroneutrally, thereby allowing essential metabolites 

to enter and excess cations to exit in order to maintain volume homeostasis (38, 

97). 

 

Ion diffusion across the mitochondrial inner membrane 

Ions, such as K+ and H+, diffuse across the mitochondrial inner membrane 

at rates largely determined by the electrical gradient. The phospholipid bilayer 

presents a large energy barrier that ions must cross to gain access to the other 

side of the membrane and the permeability coefficient of the membrane is a 

function of this energy barrier. Experiments are consistent with the location of the 

energy barrier peak at the center of the inner membrane such that only ions with 
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a high enough energy get access to the other side (44). This is the rate-limiting 

step of ion diffusion across the membrane (44). The probability of crossing this 

energy barrier is given by the Boltzmann distribution function, ���
∆���
�	 
, where 

∆�� � �� � ���� is the Gibbs energy of the ion at the peak of the energy barrier 

(µp) relative to its value in the energy well at the surface of the membrane (µaq). 

The flux expression � � ��������� � �������� is derived from this probability 

function to quantify the diffusion of cations across the inner membrane. Here, � is 

the reduced voltage (� ∆! ⁄ #$�, divided by 2 to account for the fact that the 

barrier is at the center of the membrane, ��� and ��� are bulk aqueous 

concentrations at the outer and inner surfaces of the inner membrane, 

respectively, � is the surface partition coefficient, and P is the permeability 

constant. The second term in this equation accounts for backflux of cations out of 

the matrix. But the high membrane potential renders backflux negligible and the 

second term can be dropped, leaving a simpler function, � � ���������� (44).  

Note that at high membrane potentials such as those seen in 

mitochondria, ion-diffusion is minimally affected by concentration gradients 

across the membrane. Note as well that all diffusing cations face the same rate 

limiting step of crossing the energy barrier. These predictions were confirmed by 

the Garlid lab with the demonstration that TEA+ and H+ diffusion across the 

mitochondrial inner membrane are quantitatively identical, differing only in their 

permeability coefficient. Therefore, H+ ions are transported in the same way as 
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cations in general and there is apparently no unique mechanism for their 

diffusion across the inner mitochondrial membrane (44). 

 

Potassium cycle (K +-cycle) 

The K+-cycle depicted in Fig. 1.2  describes the flux of potassium across 

the inner membrane and the associated processes of electron transport (ETS) 

and anion flux via the Pi-/H+ symporter. Although the inner membrane is relatively 

impermeable to ions, inward leak of K+ does occur at significant rates. Net uptake 

of K+ at the expense of proton ejection by the ETS will drive net uptake of Pi and 

other ions. This salt uptake, in turn, will drive net uptake of water, with matrix 

swelling. Therefore, this inward K+ leak, if left unchecked, will result in excessive 

matrix swelling and eventual lysis of the mitochondrion (37, 48).  

The inward flux of K+ driven by the extrusion of H+ ions during electron 

transport alkalinizes the matrix, and the resulting pH gradient causes Pi 
– and H+ 

Fig. 1.2: The mitochondrial potassium cycle. The K+-cycle is comprised of the electron 
transport system (ETS), which sets up the electrochemical gradient in the form of the 
protonmotive force. The Pi

-/H+ symporter (Pi
-/H+) provides the matrix with necessary anions 

and the K+/H+ antiporter ejects K+ to avoid excessive matrix swelling due to potassium leak (K+ 
leak). The mitochondrial ATP-sensitive K+ channel (mitoKATP) is responsible for preventing 
matrix contracture during high work states by importing K+ into the matrix. 
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to enter through the Pi 

–/H+ symporter. Additionally, as ion concentrations change 

with the rush of K+ into the matrix, water is osmotically obligated to accompany 

the K+ salt, causing matrix swelling. This sets up the physiological necessity of 

the ion exchange systems described by Mitchell’s fourth postulate. Thus, the 

K+/H+ antiporter must eject excess K+ in exchange for a proton to maintain 

electroneutrality (48). Moreover, it must eject only the excess K+, because matrix 

K+ is the primary osmolyte of the matrix. 

Mitchell and Moyle initially uncovered evidence for Na+/H+ and K+/H+ 

antiport by measuring swelling in sodium acetate (NaOAc) and potassium 

acetate (KOAc) media (48). However, while Na+/H+ exchange was robust, K+/H+ 

exchange was barely detectable and not sufficient to compensate for K+ leak. 

Direct evidence for K+/H+ antiport was provided by Garlid (42), who showed that 

swelling induces electroneutral potassium efflux (42). Mitochondria retain matrix 

K+ in isotonic sucrose, which is too large to cross the inner membrane. In the 

hypotonic sucrose media, water enters the matrix in an attempt to dilute solute 

concentrations and achieve an osmotic balance, causing matrix swelling. The 

mitochondria respond by rapidly ejecting K+ from the matrix in a passive and 

electroneutral manner (42, 48). 

Several possible mechanisms exist for the regulation of this antiporter. 

The Mg2+ Carrier Brake Hypothesis states that the mitochondrial K+/H+ antiporter 

is always partially inhibited by Mg2+ on the matrix side of the enzyme and that it 

uses small changes in free Mg2+ concentrations to regulate matrix volume (39). 

Matrix Mg2+ content is relatively stable but ion concentrations decrease by 



7 
 
dilution when the matrix swells and 

Mg2+ activity is further decreased by 

the formation of complexes with 

incoming anions such as citrate and 

phosphate. This lowers the 

inhibition on the K+/H+ antiporter, 

allowing ejection of K+ and a return 

to normal volume. This mechanism 

provides high sensitivity to changes 

in matrix volume and prevents futile 

cycling of K+ by tuning the K+/H+ 

antiporter to match K+ uniport. 

K+/H+ antiport is also 

inhibited by protons on the matrix side; H+ concentration decreases below 

inhibitory concentration as the matrix swells and is alkalinized by the K+ for H+ 

exchange during electron transport (39). Under experimental conditions with no 

Mg2+ present, matrix volume still regulates K+/H+ exchange by an unknown 

mechanism. This may be due to other inhibitory ions or conformational changes 

experienced by the enzyme as the membrane is stretched (39, 48).  

 

Mitochondrial ATP-sensitive potassium channel (mitoK ATP) 

A K+ uniporter was reconstituted from mitochondria by Mironova et al. (96) 

and Diwan et al. (26) but its regulation and amino acid sequences were not 

Fig. 1.3: Flux (J/Jo) vs. membrane potential 
(∆Ψ).The exponential relationship between ∆Ψ 
and J/Jo means that a very small change in 
∆Ψ results in a very large change in flux. 
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determined. This raised a new problem – mitochondria were already having to 

deal with K+ leak, why would they need a K+ channel? 

It was proposed that a K+ channel is needed for volume homeostasis in 

high work states (48). ATP production and oxygen consumption in the heart can 

increase up to 8-fold of their normal levels in a high work state (40). Higher rates 

of ATP synthesis arise from greater H+ ejection and the greater H+ current will 

cause electrical potential (∆Ψ) to drop based on the internal resistance of the 

electron transport system. The relationship between flux and ∆Ψ is exponential, 

as seen in Fig. 1.3 . A small change in membrane potential results in a very large 

change in flux (48, 107). Therefore, under high work states and reduced ∆Ψ, K+ 

flux is greatly diminished and the mitochondrial matrix will contract, that is, the 

matrix volume will decrease. The K+/H+ antiporter senses the reduced volume by 

the mechanisms discussed in the previous section and slows K+ ejection to 

establish a lower steady state matrix volume.  

While this prevents matrix collapse, the matrix is still contracted, and this 

compromises the efficiency of energy transfer in heart due to the larger 

intermembrane space. This limits nucleotide transport through voltage-dependent 

anion channels (VDAC) across the outer membrane (28), and VDAC has been 

shown to control outer membrane permeability to ADP and ATP (122). VDAC 

exists in a low-conductance state in the heart that is not highly permeable to 

nucleotides. Creatine and creatine phosphate mediate energy transfers between 

mitochondria and cytosol through mitochondrial creatine kinase (123). Creatine 
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kinase spans the intermembrane space in an octameric arrangement, bridging 

the gap between the outer membrane VDAC and inner membrane adenine 

nucleotide translocator (ANT), as shown in Fig. 1.4 (127, 147). Creatine kinase 

has been shown to bind to VDAC (126) and Garlid et al. hypothesized that it is 

this interaction that confers the low-conductance state to VDAC, preventing the 

outer membrane from being overly permeable to nucleotides (46). This binding 

requires a narrow intermembrane space to allow for a tight interaction between 

the octamer and VDAC. However, high work states lead to matrix contraction due 

to the decrease in ∆Ψ and creatine kinase would dissociate from VDAC, leading 

to higher ATP and ADP conductance at the outer membrane (46). The 

exponential relationship between flux and membrane potential sets up a situation 

in which effective energy transfer is compromised by matrix contraction at 

precisely the moment that it is needed most.  

The exponential relationship between K+ flux and its driving force, ∆Ψ, 

demonstrates the need for another volume regulation channel that imports K+ 

into the matrix to prevent contraction when ∆Ψ is decreased under high work 

states. The mitochondrial ATP-sensitive potassium channel (mitoKATP) adds a 

conductance pathway that is parallel to K+ leak to restore matrix volume (48). It 

might be expected that ∆Ψ would decrease with this additional pathway for K+ 

transport, reducing K+ flux even further and exacerbating the problem of matrix 

contraction. However, mitoKATP opening has been shown to reduce ∆Ψ by only 

about 1 mV, which is relatively insignificant in the normal physiological state; 
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mitochondria typically experience membrane potentials around 140 -180 mV (37, 

40). 

MitoKATP was reconstituted by the Garlid lab, showing that the inner 

membrane contains an ATP-dependent K+ channel (62, 66, 116). KATP channels 

are comprised of a complex of two different proteins, including an inwardly-

rectifying potassium channel (Kir) subunit and the sulfonylurea receptor (SUR) 

(69). Four of the Kir proteins are thought to form the KATP channel pore and the 

SUR is responsible for regulation of the channel and its sensitivity to ATP and 

pharmacologic agents (1, 60). In 2012, Brian Foster et al. showed that the ROMK 

channel, another ATP-dependent potassium channel (Kir1.1), is a molecular 

Fig. 1.4: MitoKATP regulation of VDAC permeability to nucleotides during ischemia and during 
high rates of ATP production. ∆Ψ is supported by ATP hydrolysis during ischemia and by 
electron transport during the high work-state. Both of these stresses will cause a decrease in 
∆Ψ, resulting in reduced uptake of K+ salts and water, contraction of the matrix, and 
expansion of the IMS. This structural change can be prevented by a compensatory increase in 
K+ conductance mediated by opening mitoKATP. If mitoKATP is blocked or does not open, the 
IMS expansion results in increased outer membrane permeability to ATP and ADP. During 
ischemia, this means that all of cellular ATP is available for hydrolysis by mitochondria, with 
consequent degradative loss of adenine nucleotides, and, ultimately, unavailability of ADP for 
rephosphorylation upon reperfusion. During the high work state, increased VDAC permeability 
to ADP and ATP constitutes a diversionary leak in the system away from the more efficient 
metabolic channeling through mitochondrial creatine kinase (‘‘CK’’). Consequently, if mitoKATP 
is blocked, mitochondria cannot supply ATP at the high rates required, and the heart cannot 
respond to inotropic stress. From Garlid et al., 2003 (46). 
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subcomponent of the mitoKATP channel (34).  

MitoKATP activity can be measured by light scattering, taking advantage of 

volume changes resulting from ion and water flux across the inner membrane (9, 

43). The amount of light scattered by suspended mitochondria is a function of 

matrix volume (136), where an increase in volume accompanies a decrease in 

the light scattering signal intensity (9). Mitochondria were first reported to take up 

water with decreasing osmolality of their surrounding solution by Claude in 1946. 

They have since been shown to act as good osmometers, following the equation 

%& � %' ( )�
*  

where %& is matrix water content (mg of H2O/mg of protein), %' is osmotically 

inactive water, )� is water solute content (nosmol/mg), and * is the osmolality of 

the containing medium (nosmol/mg of H2O) (41). Direct measurement of matrix 

volume is an impractical method for solving this equation for rates of solute 

transport. Light scattering provides a reliable method by which to address this 

issue. 

 

Ischemia and cardioprotection 

Cardiovascular diseases are the leading causes of morbidity and mortality 

in man and ischemic heart disease is the leading cause of death in developed 

countries. Ischemia is the loss of blood flow to an organ, and extended periods of 

ischemia result in a large amount of cell death in the affected area, known as 

infarction, due to the lack of necessary nutrients (29). However, the damage 
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does not present itself during the ischemic phase but rather upon reperfusion. 

The influx of fresh blood to the heart following a heart attack brings with it a large 

concentration of oxygen that quickly forms damaging reactive oxygen species. 

These proceed to overload antioxidant systems and cause irreparable damage to 

cardiac tissue. Preventive measures or medications that could render the heart 

resistant to ischemia or reperfusion injury following myocardial infarction would 

be an ideal mechanism for reducing the morbidity from heart disease. Our main 

method for reducing damage is to reperfuse the heart as quickly as possible, but 

more work must be done to salvage the myocardium during the acute phase of 

ischemia. 

 

Cardioprotection by ischemic preconditioning and postconditioning 

In1986, Murry et al. demonstrated that the heart could be conditioned with 

a brief period of ischemia prior to a longer period of ischemia, thus rendering the 

myocardium less susceptible to ischemic injury (102). A typical perfused heart 

can present up to 80% infarction of the myocardium after being subjected to an 

experimentally-induced heart attack or “index ischemia”. “Ischemic 

preconditioning” (IPC) drastically reduced the infarct size to just 25% compared 

to untreated hearts and has since been studied extensively to determine the 

mechanism behind this intrinsic form of cardioprotection (29). Ischemic 

postconditioning (155) operates in a similar manner, restricting the flow of blood 

to the heart upon reperfusion through short bursts of reperfusion and ischemia 

prior to a full reperfusion.  
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Cardioprotection by potassium channel openers: Cardioprotection can be 

achieved through preconditioning with potassium channel openers (KCOs) such 

as cromakalim, which mimic the protective effects of IPC. This was first observed 

in 1987 by Gross et al., using the KCO nicorandil, although it had not yet been 

classified as such (56). This class of drugs was first intentionally explored for 

their ability to confer protection by Grover et al. (61) and many more were 

demonstrated to have these effects in all animal models. KATP channel blockers 

such as glibenclamide and 5-hydroxydecanoate (5-HD) abolish the protection 

afforded by cromakalim. That KCOs mimic the cardioprotective effect of IPC 

implicates KATP channels as the mechanism of action of IPC. Accordingly, Gross 

et al. demonstrated that KCO inhibitors block the protective effects of IPC. These 

results imply that KATP channels are necessary for IPC and, presumably, for 

cardioprotection in general. 

KCO protection by mitoKATP: The protective effects of KCOs were 

universally attributed to sarcolemmal KATP channel (sarcKATP) opening and a 

resultant “cardioplegic” effect (49). SarcKATP channel opening was thought to 

mimic IPC by causing a reduction in action potential duration (APD) that would 

reduce Ca2+ influx into the cytosol and result in cardioplegia, a temporary 

reduction or cessation of cardiac activity. However, KCOs do not effect the 

contractility of the heart muscle or result in any form of negative isotropy seen in 

the cardiodepression associated with a cardioplegic effect (57). It was soon 

demonstrated that the cardioprotective effect of KCOs is not correlated to APD 
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shortening (58, 59, 151). Furthermore, vasodilation using KCOs is minimal, 

suggesting that this effect is not important for cardioprotection. 

The lack of cardiodepression, APD shortening and vasodilation suggests 

that the target of KCOs is distinct from sarcolemmal KATP (49). There are KATP 

channels expressed in the mitochondrial membrane, mitoKATP, which regulate 

mitochondrial volume and energetics (70) and are opened by KCOs in their 

cardioprotective concentration range (52). Garlid proposed that mitoKATP and not 

sarcKATP is responsible for cardioprotection (37). 

The role of mitoKATP channels in cardioprotection was confirmed by Garlid 

et al. with a series of experiments using diazoxide and cromakalim (49). 

Cromakalim is an effective cardioprotective agent that opens both sarcolemmal 

KATP (sarcKATP) and mitochondrial KATP (mitoKATP) with equal sensitivities. 

Diazoxide, on the other hand, opened bovine cardiac mitoKATP at a concentration 

2000 times lower than in sarcKATP, making it a very useful tool for separating the 

effects of sarcKATP and mitoKATP (50). To that end, the same degree of 

cardioprotection using cromakalim was attained with diazoxide at concentrations 

well below its k½ for sarcKATP opening, strongly suggesting mediation by mitoKATP 

(49). Furthermore, diazoxide is a potent KATP opener and effective 

cardioprotectant, but it has a weak APD shortening effect and it is a less potent 

vasodilator than cromakalim. These results support the conclusion that 

vasodilation and APD shortening are not correlated with the cardioprotective 

effects of KCOs or IPC (49). 
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Further evidence for mitochondrial involvement in cardioprotection was 

obtained using the KATP channel inhibitor 5-HD. While 5-HD is an effective 

inhibitor of mitoKATP opening by cromakalim, it does not inhibit sarcKATP opening 

(94), providing another useful tool with which to distinguish the two KATP 

channels. Protection by cromakalim and diazoxide were inhibited by 5-HD with 

no effect on their APD shortening activity (94). Taken together, these results 

demonstrate that it is not sarcolemmal but mitochondrial KATP channels that 

mediate cardioprotection by KCOs (49). Ischemic preconditioning is also blocked 

by KCO inhibitors, including 5-HD, indicating that the endogenous signaling 

mechanism of IPC is mediated by mitoKATP as well (46, 49, 50, 52). The 

discovery that mitoKATP is the target for potassium channel openers was a 

breakthrough that brought the focus of cardioprotection and its signaling 

mechanisms to the level of the mitochondrion.  

 

Cardioprotective signaling and G i protein-coupled receptors (GPCR) 

All forms of cardioprotection operate via mitochondrial KATP, including the 

intrinsic signaling mechanisms behind ischemic preconditioning. This process 

involves receptor-mediated signal formation at the cell membrane, leading to an 

intracellular signaling cascade that opens mitoKATP. Ischemic preconditioning 

utilizes adenosine (90), bradykinin (146), and opioid (128) signaling acting in 

concert to confer protection to the ischemic heart. IPC can be mimicked 

pharmacologically by perfusing the heart with any one of these trigger 

substances and inhibition of any one of the adenosine, bradykinin, or opioid 
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receptors blocks the protective effects of IPC (29). However, adding subsequent 

cycles of IPC can restore the protective effects, leading Goto et al. to propose 

that the three pathways operate in an additive manner to achieve a hypothetical 

protective threshold (55). If one receptor is inhibited and the heart is given further 

cycles of IPC, the two active receptors are able to reach this threshold and 

protect the heart from the injury that results from a longer period ischemia. 

Each of these trigger substances acts through Gi protein-coupled 

receptors (GPCR) and, according to the multiple trigger theory, all three must 

converge on a single target enzyme (29). Downey et al. determined that protein 

kinase C (PKC) inhibitors reversed the protection afforded by all of these 

substances and proposed that the common target may be PKC (29). Activation of 

nearly any GPCR in the heart with agonists such as catecholamines, angiotensin 

II, or endothelin can mimic IPC. However, inhibiting any one of these other 

GPCRs does not block IPC as with adenosine, bradykinin, and opioid inhibitors 

(29). These three Gi-protein coupled receptors are the major players in signaling 

for ischemic preconditioning. Adenosine interacts directly with PKC through 

phospholipases while bradykinin and opiods trigger more complex pathways, 

ending up at the same target (29).  

Costa et al. determined that protein kinase G (PKG) is the terminal kinase 

in the GPCR signaling cascade triggered by IPC as well as the pharmacological 

agents that mimic protection (17). PKG and cyclic GMP (cGMP) added together 

to isolated mitochondria opens the mitoKATP channel with the same effect as a 

KCO such as diazoxide or cromakalim. 
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MitoKATP has been invoked by Pain et al. to be involved in the “trigger 

phase” of the IPC signaling pathway (111). Receptor stimulation leads to 

mitoKATP opening, resulting in the formation of mitochondrial reactive oxygen 

species (ROS) which activate PKC. This leads to a form of protective “memory” 

that remains for about an hour after the preconditioning is complete or after the 

trigger substance has been washed out (20, 144). ROS are typically viewed as a 

damaging substance and, in many cases, they are. However, ROS also serve a 

valuable role in signaling as second messengers of many systems; they are 

required, for example, for cardioprotective signaling. The protection from 

diazoxide and ischemic preconditioning is abolished when a ROS scavenger is 

included (6, 32, 139). Exposure to ROS also mimics the protective effects of IPC 

in a PKC-dependent manner (6, 139).  

The mechanisms behind cardioprotective signaling and the increase in 

reactive oxygen species were still not well understood, but identifying mitoKATP as 

the target for signaling provided a focus for continued research. 

 

MitoK ATP and ROS 

All forms of cardioprotection operate through mitoKATP. Opening mitoKATP 

causes an influx of K+ and osmotically-obligated water, leading to mitochondrial 

matrix swelling and an increase in matrix pH, as shown in Fig. 1.5 . MitoKATP 

opening also leads to an increase in the level of ROS. Andrukhiv et al. 

demonstrated that mitoKATP opening by the KCOs diazoxide and cromakalim 

increased ROS production by 40-50%. This effect can be blocked by the 
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mitoKATP channel blocker 5-HD (2). This increase in ROS was also shown to 

inhibit the mitochondrial permeability transition (MPT), thus preventing cell death 

(18). The high levels of calcium, phosphate and damaging ROS that persist after 

prolonged ischemia cause MPT to open, resulting in pathogenic necrotic cell 

death (22, 25, 79). ROS arising from mitoKATP opening activate a PKCε pool on 

the inner side of the inner membrane that is closely associated with MPT and 

prevents it from opening, thus preventing cell death. 

While it was evident that mitochondrial ROS were necessary for 

Fig. 1.5: Intramitochondrial signaling and ROS generation. The unidentified receptor R1 on the 
mitochondrial outer membrane (MOM) is phosphorylated by an intracellular GPCR signal. R1 
then activates a pool of PKCε on the outer face of the inner membrane (MIM), which opens 
mitoKATP by phosphorylation. Potassium channel openers (KCOs) such as diazoxide or 
cromakalim activate mitoKATP directly. MitoKATP opening causes an influx in K+ (↑K+) leading to 
swelling (↑∆V) and alkalinization (↑pH) of the mitochondrial matrix. The increase in pH slightly 
inhibits the ETC at complex I and leads to superoxide formation, which is rapidly transformed 
into a signaling reactive oxygen species (ROS) in the matrix. This ROS activates a second pool 
of PKCε on the inner face of the MIM (PKCε2), blocking the mitochondrial permeability 
transition (MPT) and preventing cell death. 
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cardioprotective signaling and that they arise due to mitoKATP opening, the direct 

cause and location of the ROS production was unknown. Membrane potential 

(∆Ψ) decreases upon influx of K+, but this effect is known to decrease ROS 

production and can be excluded. Swelling causes about 20% increase in matrix 

water; Andrukhiv et al. demonstrated that this has no effect on ROS production 

by lowering the osmolality of the assay medium to induce a 50% increase in 

mitochondrial matrix volume. Suspending mitochondria in a more acidic or 

alkaline medium, however, had significant effects, with a decrease in pH lowering 

ROS production and an increase in pH raising it. The researchers proposed that 

mitochondria produce ROS due to the alkalinization of the matrix upon potassium 

influx through mitoKATP. They further separated the effects of extramitochondrial 

and matrix pH, demonstrating that matrix alkalinization from K+ influx is directly 

responsible for the increased ROS production (2).  

Valinomycin, the K+-specific ionophore, also increases ROS production by 

the same amount as the KCOs when it is administered at a concentration that 

matches the K+-flux of the open mitoKATP channel. This effect is not blocked by 5-

HD, however, because valinomycin operates independently of mitoKATP. At low 

concentrations, valinomycin exhibits a dose dependent increase in ROS 

production until that concentration that matches mitoKATP K+-flux. At any higher 

concentration ROS production is quickly diminished. This demonstrates that 

mitoKATP opening has been finely tuned for the exact amount of K+-flux 
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necessary to induce maximal ROS production. It can be inferred that mitoKATP 

opening is designed to produce ROS for secondary messaging (2). 

ROS is generated in the form of superoxide (O2
•-) when a single electron 

is transferred directly from a redox center in the electron transport system to 

molecular oxygen (141). “Superoxide of mitochondrial origin arise from three 

major sites (mechanisms): 1) the o-site of complex III, 2) redox centers in 

complex I that have been reduced by reverse electron transport from the Q-pool, 

and 3) redox centers in complex I that have been reduced by NADH” (Andrukhiv 

et al., 2006). Inhibitors of redox centers in the electron transport system can be 

used to identify the location of ROS formation. Myxothiazol inhibits the coenzyme 

Q-cytochrome c 

reductase complex and 

blocks ROS arising from 

complex III. It also 

stimulates ROS arising 

at complex I due to the 

downstream block on 

complex III and was 

indeed shown to cause a 

significant increase in 

ROS production, 

eliminating contribution 

Fig. 1.6.Effect of matrix pH on ROS production from complex 
I. Electrons are passed to ubiquinone (Q) from complex I 
(NADH: ubiquinone oxidoreductase) of the electron transport 
chain. Although the site of superoxide production has been 
controversial, recent data suggest that the single electrons 
are delivered to oxygen from the FMNH2 or FMN 
semiquinone (13). It can be seen in the diagram that the 
reduction of ubiquinone requires two matrix protons. Electron 
flow will therefore be retarded at these points as matrix pH 
increases, causing increased reduction at the flavin site and 
consequent increase in steady-state superoxide production. 
IMS, intermembrane space. 
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by mechanism 1 (2). Rotenone inhibits complex I, but it did not have any 

significant effect, suggesting that mechanism 2 is not a major contributor. ROS 

production by valinomycin was amplified by the addition of myxothiazol, 

suggesting that the ROS formed due to the increased K+ influx is produced 

upstream of complex III. The positive effects of valinomycin and myxothiazol and 

the lack of effect of rotenone on ROS production point to mechanism 3 and 

superoxide production at complex I. The transfer of electrons to molecular 

oxygen to form superoxide is shown in Fig. 1.6 . 

 

Mitochondrial ROS as second messengers 

Superoxide is quickly transformed by superoxide dismutase into hydrogen 

peroxide (H2O2), which, is further transformed by enzymatic action or redox 

catalyzed reactions to other downstream ROS. The oxidation products of 

mitochondrial ROS act as second messengers in cardioprotective signaling and a 

host of other signaling processes. Mitochondrial ROS have a further role in 

triggering gene transcription at the nucleusand protein synthesis at the 

endoplasmic reticulum (46). 

While these signaling ROS clearly play a crucial role in signaling 

throughout the cell and in numerous processes, the particular species operating 

in cardioprotective signaling has yet to be identified. The aim of this project is to 

accomplish this goal and determine the ROS acting as a second messenger in 

cardioprotective signaling. 
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2-A: Abstract 

Mitochondria are the major effectors of cardioprotection by procedures that open 

the mitochondrial ATP-sensitive potassium channel (mitoKATP), including 

ischemic and pharmacological preconditioning. MitoKATP opening leads to 

increased reactive oxygen species (ROS), which then activate a mitoKATP-

associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent 

open state (Costa, ADT and Garlid, KD. Am J Physiol 295, H874-82, 2008). The 

ROS responsible for this effect is not known. The present study focuses on 

superoxide (O2
• –), hydrogen peroxide (H2O2), and hydroxyl radical (HO•), each of 

which has been proposed as the signaling ROS. Feedback activation of mitoKATP 

provides an ideal setting for studying endogenous ROS signaling. Respiring rat 

heart mitochondria were preincubated with ATP and diazoxide, together with an 

agent being tested for interference with this process, either by scavenging ROS 

or by blocking ROS transformations. The mitochondria were then assayed to 

determine whether or not the persistent phosphorylated open state was 

achieved. Dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, 

Trolox, and bromoenol lactone (BEL) each interfered with formation of the ROS-

dependent open state. Catalase, the H2O2 scavenger, did not interfere with this 

step. We also found that DMF blocked cardioprotection by both ischemic 

preconditioning and diazoxide. The lack of a catalase effect and the inhibitory 

effects of agents acting downstream of HO• excludes H2O2 as the endogenous 

signaling ROS. Taken together, the results support the conclusion that the ROS 
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message is carried by a downstream product of HO• and that it is probably a 

product of phospholipid oxidation. 

 

Keywords:  mitochondria; cardioprotection; hydroxyl radical; K-ATP channels; 

mitochondrial permeability transition; cardiac ischemia; ROS signaling 
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Fig. 2.1. Mitochondrial electron transport 
chain-derived ROS and formation of alkyl 
peroxylalkoxyl radicals.(I) Superoxide (O2

• –) is 
formed by single electron transfer to molecular 
oxygen (O2) from a reduced group (R•) in the 
respiratory chain and converted to hydrogen 
peroxide (H2O2) by superoxide dismutase 
(SOD). Hydroxyl radical (HO•) is formed from 
H2O2 in the presence of a transition metal ion 
such as iron (Fe2+/3+) (the Fenton reaction). (II) 
Subsequent reactions include the formation of 
alkyl peroxyl radicals (ROO•) and alkyl 
hydroperoxides (ROOH). HO• acts on an alkyl 
side chain (RH) to form a reduced group (R•) 
that leads to the formation of ROO•, and these 
react with RH to produce ROOH. (III) Alkoxyl 
radicals (RO•) are formed in the decomposition 
of hydroperoxides (ROOH) by transition metal 
ions (Fe2+).  

2-B: Introduction 

Reactive oxygen species (ROS) are second messengers of 

preconditioning (50) and have long been known to be required for 

cardioprotective signaling (6, 15, 40, 103, 135, 153). The mechanism of 

increased ROS is reasonably well understood: signaling from the plasma 

membrane leads to opening of the mitochondrial ATP-sensitive K+ channel 

(mitoKATP) (45), and the increased K+ influx into the matrix causes an increase in 

ROS, which derive during normoxia from Complex I of the respiratory chain (2).  

The ROS transformations that 

take place in mitochondria are 

summarized in Figs. 2.1 and 2.2. 

The primary ROS produced by the 

mitochondrial respiratory chain is 

superoxide (O2
• –), which is formed by 

single-electron reduction of oxygen. 

The majority of O2
• – undergoes 

dismutation to hydrogen peroxide 

(H2O2) both spontaneously and 

through the action of superoxide 

dismutases located in the matrix and 

the intermembrane space (12, 75, 

101). Much of the H2O2 generated is 
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reduced by the glutathione and thioredoxin reductase antioxidant systems, which 

prevent the emission of excess H2O2 to the cytosol (132). H2O2 is also 

decomposed by catalase, which is present in the matrix of heart mitochondria 

(121). Some of the H2O2 leads to formation of hydroxyl radical (HO•) through the 

Fenton reaction of H2O2 with transition metal ions (83). The highly reactive HO• 

oxidizes proteins and lipids in diffusion limited reactions (78).  

The consequences of ROS signaling for mitochondrial physiology are that 

two mitochondrial protein kinase C epsilons (PKCε) are activated by oxidation of 

their thiol groups (82). Activation of PKCε1, which is associated with mitoKATP at 

the mitochondrial inner membrane, leads to opening of mitoKATP (20, 71). 

Activation of PKCε2 leads to inhibition of the mitochondrial permeability transition 

(MPT) (18). Progress is being made 

in these areas and in the molecular 

identification of mitoKATP (34). 

However, the ROS responsible for 

activating these PKCεs in vitro or in 

vivo is still not known. Because the 

signaling ROS not only originates in 

mitochondria but also acts on 

mitochondria, it should be possible to 

narrow the search for the signaling 

ROS by studies on isolated rat heart 

Fig. 2.2.Lipid peroxidation and release of 
hydroperoxy fatty acids.(I and II)alkoxyl (RO•), 
hydroxyl (RHO), and alkyl peroxyl radicals 
(LOO•) can initiate the non-enzymatic chain 
reaction leading to lipid peroxidation (LOOH). 
(III) The lipid hydroperoxides (LOOH) can be 
released by the action of mitochondrial 
phospholipases, such as Ca2+-independent 
phospholipases PLA2 (iPLA2), which have 
been found to modulate the function of 
mitochondria (see Cedars et al (13) for a 
review). The action by iPLA2 results in a 
hydroperoxy fatty acid (FAOOH). 
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mitochondria. The objective of these studies was to identify the point in the 

reaction sequence of ROS transformations at which the ROS signal is formed 

and, ultimately, to determine the identity of the ROS signal itself.  

We previously described feedback activation of mitoKATP, in which 

mitoKATP opening by a KATP channel opener leads to endogenous ROS formation 

and a persistent open state of mitoKATP. The phenomenon was shown to involve 

PKCε1 and an inner membrane phosphorylation event (20). This persistent open 

state of mitoKATP is thought to be responsible for “memory,” which is seen with all 

preconditioning (20).  

We employed a preincubation protocol to probe the feedback activation 

system for the identity of the signaling ROS. Diazoxide was used to induce 

mitoKATP opening, which leads to endogenous ROS formation and activation of 

PKCε1. This process establishes the prolonged phosphorylation-dependent open 

state of mitoKATP (20). We then re-isolated the mitochondria and probed them for 

this state by measuring the resulting steady-state mitochondrial matrix volume 

using the light scattering technique (9, 17, 21, 47). Agents or conditions that 

interfered with any step in the generation of the signaling ROS would prevent 

formation of the phosphorylation dependent open state. Two additional assays 

were carried out to eliminate agents that interfered either with mitoKATP-

dependent K+ uptake or with ROS-activation of PKCε1. Together, these 

procedures allowed identification of agents that specifically interfered with 

formation of the ROS signal.  
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The agents that were found to block formation of the ROS signal were 

dimethylsulfoxide (DMSO) and dimethylformamide (DMF), scavengers of HO• 

and RO• (5, 99), trolox, a chain-breaking antioxidant and peroxyl radical 

scavenger (95), deferoxamine, an iron chelator (83, 131), and bromoenol lactone 

(BEL), which is an inhibitor of Ca2+-independent phospholipase A2 (iPLA2) (13). 

Based on the site of action of these agents, we conclude that the ROS signal 

arises downstream of HO• formation. Because H2O2 is produced upstream of 

HO•, these results exclude H2O2 as the signaling ROS. This conclusion is 

supported by the finding that catalase did not interfere with formation of the 

phosphorylation-dependent open state of mitoKATP.  

We performed experiments on MPT, in which diazoxide was used to 

induce inhibition of MPT via ROS activation of PKCε2 (18). This effect was 

blocked by DMSO, also implicating a ROS signal downstream from HO•. Finally, 

we found that the HO• scavenger DMF blocked cardioprotection by ischemic 

preconditioning and diazoxide. Taken together, each of these results supports 

the conclusion that the ROS message is carried by a downstream product of 

hydroxyl radical (HO•). The actions of BEL suggest a product of phospholipid 

oxidation. 
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2-C: Research Design and Methods 

Langendorff perfused hearts 

Hearts from male Sprague-Dawley rats (200-240g) were perfused as 

previously described (28, 51, 115, 120) with Krebs Henseleit buffer containing (in 

mM) 118 NaCl, 5.9 KCl, 1.75 CaCl2, 1.2 MgSO4, 0.5 EDTA, 25 NaHCO3, 16.7 

glucose at 37⁰C and pH 7.4 and gassed with 95% O2 - 5% CO2. Treatment 

protocols are described in Fig. 2.3 . Hearts were stabilized for 25 min with Krebs 

Henseleit buffer prior to treatment with buffer containing drugs or agents then 

subjected to 25 minutes global 

ischemia followed by 2 hours of 

reperfusion and measurement of 

infarct size. Ischemic 

preconditioning (IPC) was 

established by two cycles of 5 min 

global ischemia followed by 5 min 

reperfusion prior to the index 

ischemia. Ischemic 

postconditioning was performed 

with 6 cycles of 10 s ischemia plus 

10 sec reperfusion (140). Hearts 

were not paced and mechanical 

performance was evaluated as the 

Fig. 2.3. Isolated heart protocols. Hearts were 
perfused with buffer, as described in “Methods.” 
After 45 min of stabilization, hearts were 
subjected to 25 minutes global ischemia (“GI”), 
followed by 2 hours of reperfusion (“R”) and, 
finally, processing for infarct size estimation. The 
protocol for ischemic reperfusion without 
additional treatment is labeled “IR.” Ischemic 
preconditioning (“IPC”) was established by 5 min 
global ischemia followed by 10 min reperfusion 
prior to the index ischemia. Diazoxide (“Dzx”) 
(50 µM) was perfused for 5 min, followed by 10 
min reperfusion with buffer prior to the index 
ischemia. Dimethylformamide (“DMF”) (1% v/v) 
was administered 5 min before the first IPC 
ischemia and before diazoxide; it was continued 
for 5 min after these treatments and this was 
followed by 5 min reperfusion with buffer prior to 
the index ischemia. 
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product of heart rate and left ventricular developed pressure (LVDP) and 

reported as a percentage of rate pressure product at stabilization, t=0 (RPP % at 

t=0). Infarct size (IS) was determined by the method of Ytrehus et al. (152) 

whereby the treated hearts were stained with triphenyltetrazolium chloride (TTC) 

after reperfusion, fixed in formaldehyde and sliced into thin sections. Infarct size 

is reported as a percentage of the total cross-sectional area of the heart slices at 

risk. Experimental protocols complied with the Guiding Principles in the Use and 

Care of Animals published by the National Institutes of Health and were 

approved by IACUC at Portland State University. 

 
Mitochondrial isolation 

Male Sprague-Dawley rats (200 - 240 g) were anesthetized with CO2, 

immediately decapitated, and the hearts were removed for mitochondrial isolation 

exactly as described previously (21). Hearts were washed and finely minced in 

ice-cold isolation buffer containing 250 mM sucrose, 10 mM HEPES at pH 7.2 

and 0.5 mM K+-EGTA. The suspension was diluted 3-fold with isolation buffer 

supplemented with 1% fatty acid-free BSA. The time between decapitation and 

completion of homogenization was kept as brief as possible and was completed 

within 2 min; mitoKATP activity shows a sharp dependence on the length of this 

period. The suspension was homogenized with a motorized Teflon pestle and 

centrifuged for 3 min at 1,500 g. The supernatant was centrifuged for 5 min at 

9,000 g, and the resulting pellets were resuspended in isolation buffer lacking 

BSA and centrifuged for 3 min at 2,300 g. This supernatant was centrifuged for 5 
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min at 9,000 g. The final mitochondrial pellet was resuspended with isolation 

buffer to 35–40 mg protein/ml and kept on ice. Where indicated, rat liver 

mitochondria were isolated using a similar protocol, as previously described (9). 

Mitochondrial protein concentration was estimated using the Biuret reaction (54). 

 
Measurements of mitoKATP activity 

 MitoKATP opening causes mitochondrial swelling due to respiration-driven 

uptake of K+ salts and water. These volume changes were followed by light 

scattering, as previously described (9, 17, 21, 47). Light scattering changes of 

0.1 mg/ml mitochondrial suspensions were followed at 520 nm and 30⁰C. 

Mitochondria were suspended in a buffered salt assay medium containing K+ 

salts of Cl- (120 mM), HEPES (10 mM), EGTA (0.1 mM), succinate (10 mM), 

MgCl2 (0.5 mM), phosphate (5 mM), ATP (200 µM), rotenone (2.5 µM), and 

oligomycin (1 µg/ml) at pH 7.2. Osmolality ranged between 275 to 280 mOsm. 

Data summarized in bar graphs as “MitoKATP activity (%),” were calculated from 

100 - .���/� � .���.$��
.���0� � .���.$�� 

where .���/� is the observed inverse absorbance at 120 s under the given 

experimental condition, and .���.$�� and .���0� are values independently 

measured in the presence and absence of ATP, respectively. 

 
Preincubation protocol 

 A preincubation protocol was used to trigger activation of PKCε by 

endogenous ROS. As illustrated in Fig. 2.4 , mitochondria were incubated in the 
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light scattering assay medium 

(described above) for 3 minutes at 

30oC with 30 µM diazoxide (Dzx). The 

preincubation medium was 

supplemented with various agents to 

explore the mechanisms of 

endogenous ROS signaling. Each 

sample was equally divided and 

preincubated in the presence or 

absence of diazoxide. The treated 

mitochondria were then isolated from 

the incubation medium and 

resuspended in a small volume (15 

µl) of ice cold sucrose buffer containing 250 mM sucrose and 10 mM HEPES at 

pH 7.2. MitoKATP activity of the treated mitochondria was then assayed using light 

scattering. When preincubated without diazoxide, the mitochondria behaved 

normally in the subsequent assay. That is, mitoKATP activity was inhibited by 

ATP, and inhibition was released by diazoxide. When preincubated with 

diazoxide, mitoKATP activity in the subsequent assay was not inhibited by ATP, 

and diazoxide had no effect. Thus, these conditions cause mitoKATP to remain 

open due to its phosphorylation by PKCε (20). Any agent that blocks any step in 

the process will block feedback activation of mitoKATP.  

Fig. 2.4. Preincubation protocol. Isolated rat 
heart mitochondria suspended in 250 mM 
sucrose and 10 mM HEPES at 30 mg/mL 
(“Stock Mito”) was incubated at 30⁰C for 3 
minutes in assay medium containing 200 µM 
ATP and 30 µM diazoxide (Dzx), in a total 
volume of 0.5 mL. The treated mitochondria 
were reisolated and resuspended, and 
mitoKATP activity was measured using the light 
scattering assay, with a final protein 
concentration of 0.1 mg/mL. Half of the treated 
mitochondria were assayed with ATP and the 
other half with ATP and Dzx. The incubation 
was supplemented with various agents 
including 5-HD (300 µM), εV1-2 (0.5 µM), 
catalase (250 U/mL), DMSO (1% v/v), DMF 
(1% v/v), Trolox (100 µM), deferoxamine (1 
mM), MPG (1 mM), or BEL (10 µM). 
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Measurements of mitochondrial permeability transition 

Mitochondrial permeability transition (MPT) activity was monitored by light 

scattering in medium containing 200 µM ATP and lacking EGTA. MPT opening 

was synchronized by sequential additions of CaCl2 (100 µM free Ca2+), 

ruthenium red (0.1 µM, to block further Ca2+ uptake), and carbonyl cyanide m-

chlorophenyl hydrazine (CCCP) (250 nM), at 20, 40 and 60 sec, respectively 

(18). These experiments used mitochondria from livers taken from the animals 

supplying the heart. 

 
Statistical analysis 

Data are presented as mean ±standard deviation (SD) of the mean. One-

way ANOVA followed by Tukey’s post hoc test or Student’s t-test of the means 

were used as required to analyze the data using Microcal Origin software 

(Northampton, MA, USA). A value of p < 0.05 was considered statistically 

significant. 

 
Chemicals 

Peroxynitrite was acquired from Cayman Chemical. All other chemicals 

were obtained from Sigma Chemical Co. (St. Louis, MO, USA). N-2-

mercaptopropionylglycine (MPG) was always freshly prepared and adjusted to 

neutral pH by Tris base. Diazoxide and εV1-2 were prepared in DMSO and 

bromoenol lactone (BEL) was always freshly prepared in DMSO. Uric acid, 
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trolox, deferoxamine, catalase, 5-hydroxydecanoate (5-HD) and ruthenium red 

were prepared in distilled water.  
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2-D: Results 

Endogenous ROS signaling and PKCε1-dependent feedback activation of 

mitoKATP. Feedback activation of mitoKATP can be divided into three steps, 

described in Fig. 2.5 . In Step 1, K+ 

channel openers such as diazoxide 

open mitoKATP (50), and the 

resulting K+ influx and matrix 

alkalinization leads to increased 

generation of superoxide (2). Step 

2encompasses the ROS 

transformations that result in 

formation of the signaling ROS, i.e., 

the ROS that activates PKCε1. In 

Step 3, the activated PKCε1 

establishes the phosphorylation 

dependent open state of mitoKATP 

(20). The rationale for this division 

is that we can study the effects of 

agents on the overall cycle and, 

independently, on steps 1 and 3. In 

this way, we can identify agents 

that interfere specifically with 

Fig. 2.5. ROS-dependent feedback activation of 
mitoKATP. Step 1of the process encompasses 
the sequence from mitochondrial ATP-sensitive 
K+ channel (“mitoKATP”) opening to superoxide 
(O2

• –) formation. MitoKATP is opened by KATP 
channel openers such as diazoxide (“Dzx”) (50). 
The consequent uptake of K+ and anions leads 
to increased matrix volume (“↑Vol”), which is the 
basis of the light scattering assay for mitoKATP 
activity (21). The cytosolic concentration 
difference between [K+] and [phosphate] means 
that more K+ than phosphate will be taken up, 
leading to matrix alkalinization (“↑pH”) (21). 
Matrix alkalinization, in turn, inhibits Complex I, 
leading to increased production of superoxide 
(“↑O2

• –”) (2). Step 2encompasses the many 
ROS transformations that take place and lead to 
the signaling ROS, which activates protein 
kinase C-epsilon 1 (PKCε1). In Step 3 , the 
activated PKCε1 phosphorylates a protein, 
possibly mitoKATP itself, which leads to the 
phosphorylated open state of mitoKATP(20). In 
parallel (not represented here), the ROS signal 
activates PKCε2, leading to inhibition of MPT 
opening (18). 
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formation of the signaling ROS (Step 2). 

Fig. 2.6 contains results of control experiments using the preincubation 

protocol described in “Methods.” When mitochondria were preincubated with 

diazoxide and ATP, they exhibited maximum volume change in the normal assay 

medium containing ATP and no further effect was seen with the addition of 

diazoxide (first two bars of Fig. 2.6 ). 

This result is characteristic of 

conditions that allow mitoKATP to 

achieve the phosphorylation-

dependent open state. When Step 1 

was blocked by omission of 

diazoxide (second pair of bars) or 

inclusion of 5-hydroxydecanoate (5-

HD) (third pair of bars) in the 

preincubation, mitoKATP behaved as 

if there were no preincubation; that 

is, mitoKATP activity was inhibited by 

ATP and opened by diazoxide. 

When Step 3 was blocked by 

inclusion of the specific PKCε 

inhibitor εV1-2 in the preincubation 

(last pair of bars), feedback 

Fig. 2.6. Feedback activation of mitoKATP is 
blocked by 5-hydroxydecanoate (5-HD) and   
εV1-2.Shown are the effects of various agents on 
mitoKATP activity after preincubation with ATP 
(200 µM) plus diazoxide (Dzx) (30 µM). 
Mitochondria were preincubated with the agents 
indicated at the top of the figure, then assayed in 
K+ medium with ATP or ATP + Dzx as indicated 
below (described in “Methods”). With no further 
additions to the preincubation (“----”), mitoKATP 
remains in the phosphorylated open state with 
full activity, and diazoxide (“ATP+Dzx”) has no 
further effect in the subsequent light scattering 
assay. When mitoKATP opening during 
preincubation was prevented by omission of 
diazoxide (“No Dzx”) or inclusion of the mitoKATP 
blocker 5-HD (300 µM) (“+5-HD”), the 
phosphorylation-dependent open state was 
blocked. When feedback activation of PKCε1 
was prevented by inclusion of εV1-2 (0.5 µM) 
(“+εV1-2”), the open state was also blocked. Data 
are means ±SD of at least 3 independent 
experiments. *.p.<.0.05. 
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activation was also prevented and 

mitoKATP responded normally to ATP 

and diazoxide. 

Fig. 2.7 contains results of 

preincubation experiments in which 

we evaluated agents that may block 

ROS signaling (Step 2) in the 

feedback loop shown in Fig. 2.5 . 

Dimethylsulfoxide (DMSO), and 

dimethylformamide (DMF), and N-2-

mercaptoprionylglycine (MPG) have 

all been described as reactants with 

HO•, RO• (alkoxyl radicals), and 

ROO• (alkylperoxyl radicals) (5, 99), 

each of which may play a role in 

endogenous ROS signaling. Trolox, a 

vitamin E analogue, acts as a chain-

breaking antioxidant and peroxyl 

radical scavenger (95). Fig. 2.7A 

demonstrates that each of these 

agents prevented formation of the 

phosphorylation-dependent open 

Fig. 2.7. Effects of agents that may block 
formation of the signaling ROS on feedback 
activation of mitoKATP. Shown in (A) are the 
effects of various ROS and radical scavenging 
agents and antioxidants on mitoKATP activity 
after preincubation with ATP plus diazoxide 
(Dzx) in the presence of dimethylsulfoxide 
(DMSO) (1 %v/v), dimethylformamide (DMF) 
(1 %v/v), N-2-mercaptopropionylglycine (MPG) 
(1 mM), and Trolox (100 µM). Each of these 
agents blocked formation of the 
phosphorylation-dependent open state of 
mitoKATP. In (B), deferoxamine (Dfo) (1 mM) 
and bromoenol lactone (BEL) (10 µM) also 
blocked this state, but uric acid (100 µM) 
(“+UA”) (peroxynitrite scavenger) and catalase 
(250 U/mL) (H2O2 scavenger) did not interfere 
with feedback activation of mitoKATP. 
Mitochondria were preincubated with the 
agents indicated in the figure, then assayed in 
K+ medium, as described in “Methods.” Data 
are means of mitoKATP activity ± SD of at least 
3 independent experiments. * p < 0.05.  
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state, suggesting that HO• is involved in the generation of the signaling ROS. 

Deferoxamine is a chelator of iron (83, 131) and acts as a preventive 

antioxidant by reducing the rate of iron-dependent hydroxyl and peroxyl radical 

chain initiation. BEL (racemic bromoenol lactone) is an inhibitor of Ca2+-

independent phospholipase (iPLA2) (13) and it prevents the release of oxidized 

phospholipids such as hydroperoxy fatty acids (FAOOH) from the bilayer, a 

possible downstream oxidation product in the reaction sequence. Fig. 2.7B 

shows that both deferoxamine and BEL blocked feedback activation of mitoKATP, 

further suggesting that hydroxyl radicals and their downstream oxidation products 

are involved in the generation of the signaling ROS. When uric acid (UA), a 

peroxynitrite scavenger (137), was included in the preincubation, the 

phosphorylation-dependent open state was preserved, indicating that 

peroxynitriteis not involved with any of the steps and, therefore, is not the 

signaling ROS. Catalase is an enzyme that catalyzes the decomposition of H2O2 

and is present in the matrix of heart mitochondria (121). However, catalase was 

also unable to block the process of achieving the phosphorylated open-state, 

suggesting that H2O2 is not the signaling ROS. 

The mechanisms of action of these agents suggests that they are acting 

on Step 2, the formation of the ROS signal; however it is necessary to 

demonstrate that they are not acting elsewhere in the loop, i.e. on Step 1 or Step 

3. Accordingly, we tested each of the agents for their effect on mitoKATP activity in 

the straight light scattering assay with no preincubation and found that none of 

them interfered with diazoxide opening of mitoKATP (data not shown). Note that 
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this assay also detects respiratory inhibition or uncoupling, which inhibit K+ 

uptake by reducing the driving force. 

To evaluate their effect on Step 3 (induction of the phosphorylated open 

state by PKCε1), we examined whether the agents were able to block mitoKATP 

opening induced by H2O2, which works by activating PKCε1 (20). Fig. 2.8 

contains representative light scattering traces using mitochondria without 

preincubation. Here, we find that Trolox had no effect. MPG did block H2O2-

induced mitoKATP opening, which means that we cannot distinguish whether 

MPG acts on Step 2 or Step 3 from these experiments. The results of the Step 3 

assays are summarized in Fig. 2.9  and show that deferoxamine, DMSO, DMF, 

Fig. 2.8. Differential effects of MPG and 
Trolox on H2O2-dependent mitoKATP opening. 
Shown are representative light scattering 
traces (1/A vs. time) of rat heart mitochondria 
respiring on succinate in K+ medium. 
Mitochondria were suspended at 0.1 mg/ml 
and assayed as described in “Methods.” ATP 
(200 µM) was present in all experiments. 
Where indicated, Trolox, MPG, 5-HD or no 
additions (“ATP”) were present in the assay 
medium prior to the addition of mitochondria. 
Mitochondrial swelling was initiated by the 
addition of hydrogen peroxide (H2O2) (2 µM) 
or diazoxide 2 seconds after the addition of 
mitochondria to trigger PKCε1-dependent 
mitoKATP opening. 

Fig. 2.9. Effects of agents on activation of 
PKCε1 by H2O2.The agents that were utilized 
in the preincubation experiments of Fig. 2.6  
were examined for their effects on H2O2-
induced PKCε-dependent mitoKATP opening 
in the straight light scattering assay 
described in “Methods.” MPG was the only 
agent that interfered with this step in the 
process. Deferoxamine, DMSO, DMF, 
Trolox, and BEL had no effect on H2O2 
activation. Data are means ±SD of at least 3 
independent experiments. 
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Trolox, and BEL did not inhibit H2O2-

induced mitoKATP opening (Step 3). 

Because they also did not interfere 

with diazoxide opening of mitoKATP 

(Step 1), we infer that these agents 

are acting to prevent formation of the 

endogenous ROS signal that 

activates PKCε1 (Step 2). 

These findings may be 

summarized as follows. 1) 

Deferoxamine, DMSO, DMF, Trolox, 

and BEL each prevent formation of 

the endogenous ROS signal. These 

results imply that the ROS signal 

arises downstream from HO• radical. 

2) H2O2 is produced upstream of HO• 

radical, and catalase, the H2O2 

scavenger, had no effect on the 

formation of the phosphorylation-dependent open state. Therefore, H2O2 can be 

excluded as the signaling ROS. 3) The action of MPG is independent of ROS 

scavenging. Like all thiols, MPG can scavenge HO•, but HO• is not involved in the 

pathway responsible for the results in Fig. 2.8 . Moreover, MPG has little or no 

H2O2 scavenging ability (10, 91). We propose that this action of MPG is due to its 

Fig. 2.10. Dimethylformamide (DMF) blocks 
protection of the perfused heart by diazoxide 
and IPC.(A) Shown are measurements of rate-
pressure product (“RPP (% at t=0)”) with time 
from perfusion of the ex vivo heart. Diazoxide 
(50 µM) (“Dzx”) and ischemic preconditioning 
(“IPC”) improved functional recovery, and this 
effect was blocked by dimethylformamide 
(“Dzx + DMF” and “IPC + DMF”), a free radical 
scavenger. DMF alone had no effect. (B)Infarct 
size as a percent of area at risk (“IS % Area at 
Risk”) is plotted for the various treatments. 
Treatment with diazoxide (Dzx) and IPC 
reduced infarct size, and this effect was 
blocked by DMF. Data are means ±SD of at 
least 3 independent experiments. * p < 0.05.  
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strong thiol reductant properties, holding PKCε in a reduced state and thereby 

preventing its activation.  

 
DMF blocks cardioprotection by ischemic preconditioning and diazoxide. The 

implication of the previous mitoKATP experiments is that intercepting the HO•-

dependent reactions will block all modes of ROS-dependent cardioprotection. To 

examine this question, we perfused the heart with 1% DMF, the HO•-scavenger, 

following the protocols described in Fig. 2.3 . As demonstrated in Fig. 2.10 , DMF 

inhibited the improvement in post-ischemic functional recovery (Fig. 2.10A ) and 

blocked the infarct-size reduction (Fig. 2.10B ) normally observed with ischemic 

preconditioning (IPC) and 

diazoxide (Dzx). DMF alone had 

no effect on infarct size in these 

conditions (Fig. 2.10B ). Again, 

the effect of DMF on 

cardioprotective signaling 

implicates a downstream 

oxidation product of HO• as the 

signaling ROS. 

 

Endogenous ROS signaling and 

mitoKATP-dependent MPT 

inhibition. MPT synchronization, 

Fig. 2.11. Effects of free radical reactants on 
mitoKATP-dependent MPT inhibition. Shown are light 
scattering traces (1/A) of rat liver mitochondria 
respiring on succinate in K+ medium, and assayed as 
described in “Methods.” Free calcium (100 µM) 
(“Ca2+”), ruthenium red (0.1 µM) (“RR”), and carbonyl 
cyanide m-chlorophenylhydrazone (0.25 µM) 
(“CCCP”) were added sequentially at 20 sec 
intervals, as shown. MPT inhibition by diazoxide (30 
µM) was blocked by 5-HD (300 µM) (mitoKATP 
blocker), MPG (1 mM) (thiolreductant), and DMSO 
(1%, 14 M) (HO•/RO• reactant). The data presented 
are representative of three independent experiments 
with p < 0.05. 
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described in “Methods,” was employed to determine the role of HO•, RO• and/or 

ROO• in diazoxide induced MPT inhibition, which depends on ROS activation of a 

second mitochondrial PKCε, PKCε2 (18). Results of a representative experiment 

are contained in Fig. 2.11 . CsA completely blocked MPT activity, and diazoxide 

(“Dzx”) inhibited MPT opening by about 60%, which is the customary extent 

observed in these experiments (20). This inhibition was reversed by 5-HD (“5-

HD”). MPG, DMSO, and DMF (not shown) also reversed MPT inhibition by 

diazoxide. These results also imply that the signaling ROS that activates PKCε2 

must be a downstream oxidation product of HO•.  
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2-E: Discussion 

 The major findings of the present study are 1) that the signaling reactive 

oxygen species (ROS) responsible for activating mitochondrial PKCεs is a 

downstream oxidation product of hydroxyl radical, not superoxide or H2O2, and 2) 

that the main action of submillimolar MPG on mitochondria and perfused heart is 

inactivation of PKCε by thiol reduction rather than ROS scavenging. 

MitoKATP governs the ROS signaling that is essential for cardioprotection 

(40). MitoKATP opening has been found to increase levels of ROS in perfused 

heart (113), cardiomyocytes (109) and in the mitochondrial matrix (2). The 

ionophore valinomycin, at a concentration yielding the same K+ flux as diazoxide, 

caused the same ROS increase as diazoxide, so mitoKATP-dependent increase in 

ROS is due specifically to K+ influx into the matrix (2). The primary mitochondrial 

targets of ROS signaling are PKCε1, which activates mitoKATP, and PKCε2, 

which inhibits MPT (reviewed in (45)). Mitochondrial PKCε1 and mitoKATP co-

purify and co-reconstitute to form a functioning signaling module in 

proteoliposomes (71). Thus, mitoKATP in either mitochondria or proteoliposomes 

can be opened by all PKCε activators, including phorbol esters, the specific 

peptide activator, ΨεRACK, and a variety of thiol oxidizing agents.  

Our objective is to identify the mitoKATP-dependent endogenous ROS that 

activates PKCε1 to leave mitoKATP in a phosphorylated open state. Superoxide is 

the first ROS that increases due to increased K+ uptake into the matrix (see Fig. 

2.1) and has been proposed to be the ROS signal (119). Xanthine/xanthine 

oxidase (X/XO) induced mitoKATP opening in isolated mitochondria; however, 
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superoxide rapidly dismutates to H2O2 in aqueous solution, and Costa et al. (20) 

showed that X/XO did not open mitoKATP in the presence of catalase. Therefore, 

the observed effect of X/XO was mediated by H2O2, and superoxide can be 

excluded as a PKCε activator or mitoKATP opener. Queliconi, et al. (119) repeated 

the X/XO experiment and obtained the same results; however they failed to 

control for H2O2 production and erroneously concluded that superoxide opens 

mitoKATP. PKCε is activated by nitric oxide (NO) (7) and H2O2 (82), which oxidize 

the thiols in the zinc finger of PKCε, leading to its activation. Consistent with this 

biochemistry, H2O2 and NO cause mitoKATP opening (20, 71) that is blocked by 

the PKCε peptide inhibitor εV1-2. The absence of an effect of H2O2 and NO in the 

presence of εV1-2 demonstrates that these agents have no direct effect on 

mitoKATP. Again, Quelconi, et al. (119) repeated these experiments and obtained 

the same result; however they failed to control for PKCε involvement and 

erroneously concluded that H2O2and NO open mitoKATP directly.  

Liu, et al. (91) concluded that hydroxyl radical (HO•) is responsible for 

ROS signaling in the heart, but this conclusion was based on experiments 

showing that MPG blocks ROS signaling and the assumption that this block was 

due to HO• scavenging. This assumption may be incorrect. The data In Fig. 2.8  

show that MPG blocks H2O2-induced mitoKATP opening. HO• is not involved in this 

process, and MPG has little or no H2O2 scavenging ability (10, 91). Moreover, 

eliminating HO• requires very high concentrations of scavenger due to the 

transitory nature of HO•, and it is unlikely that sub-millimolar concentrations of 

MPG would be effective. Thus, most scavengers “will never be present at levels 
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remotely approaching those of endogenous molecules that react at diffusion-

controlled rates with HO•” (63). Therefore, we infer that MPG prevents signaling, 

not by scavenging ROS, but rather by virtue of its powerful thiol reduction 

properties, keeping PKCε in a reduced, inactive state. Conclusions drawn from 

experiments in which MPG blocks ROS signaling, including those of Liu, et al. 

(91), should be re-evaluated in view of this new finding related to the mechanism 

of action of MPG. 

To investigate the location giving rise to the endogenous ROS signal, we 

employed the preincubation protocol described in “Methods” and “Results”. This 

protocol leads to feedback activation of mitoKATP, which depends on endogenous 

ROS signaling to PKCε1 (20). The results presented in Figs. 2.4 through 2.7 

provide important clues to the identity of the ROS messenger. They are best 

understood in the context of Figs. 2.1  and 2.2. The antioxidants deferoxamine 

and Trolox each prevented mitoKATP opening. Deferoxamine is an iron chelator, 

and Trolox, a water soluble derivative of vitamin E, is a peroxyl radical scavenger 

and lipid peroxidation chain-breaking antioxidant. These data indicate that the 

redox-sensitive opening of mitoKATP is dependent on both iron and peroxyl 

radicals and are consistent with transition metal-catalyzed ROO• - dependent 

signaling. These steps occur downstream of HO• production and strongly suggest 

that HO• is the precursor of the signaling molecule. This is supported by the 

finding that inclusion of DMSO or DMF, which react with HO•, RO•, and/or ROO• 

(5), in the preincubation prevented mitoKATP opening.  
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Many workers have proposed that H2O2 is the messenger of ROS-

dependent mitoKATP opening (2, 145). H2O2 would appear to be a good 

candidate, not least because it is effective in activating mitochondrial PKCε (17, 

20, 71, 154) and in protecting ischemic heart (150, 153) and hypoxic 

cardiomyocytes(31). However, a major finding of the present study is that H2O2 

can be excluded as the signaling ROS in mitochondria and that the signaling 

ROS originates downstream of hydroxyl radical. The evidence is 1) the ROS 

signal arises downstream from HO• radical, whereas H2O2 is produced upstream 

of HO• radical (Fig. 2.1 ); 2) catalase, the H2O2 scavenger, had no effect on the 

formation of the phosphorylation-dependent open state, whereas DMF and 

DMSO, which have neither H2O2 scavenging nor thiolreductant properties, do 

block PKCε-dependent mitoKATP activation. Circumstantial evidence also argues 

against H2O2 as the signaling ROS: H2O2 is produced in the matrix, whereas 

PKCε1 faces the intermembrane space. The matrix of heart mitochondria 

contains glutathione, thioredoxin reductase and catalase (121), which may 

prevent sufficient H2O2from reaching its target (132). 

The conclusion that the ROS message is formed downstream from HO• is 

further supported by the effects of DMSO and DMF on endogenous ROS-

dependent MPT inhibition (Fig. 2.10 ). Finally, the finding that DMF prevents 

cardioprotection by both ischemic preconditioning (IPC) and diazoxide (Fig. 2.11 ) 

supports extension of the conclusion to the ex vivo and in vivo heart. That HO• is 

necessary for cardioprotective signaling should not be taken to mean that HO• 
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itself is the signaling ROS. HO• is too reactive for signaling, with a half-life that is 

diffusion-limited at about one nanosecond (63). HO• will react with its nearest 

neighbors almost immediately after it is formed, allowing for the formation of 

downstream oxidation products that are most likely responsible for signaling.  

Finally, the finding that BEL interrupted the ROS signal (Fig. 2.7 ) 

implicates hydroperoxy fatty acids (FAOOH) as the ROS signal. A full 

investigation of the effects of fatty acids and hydroperoxy fatty acids on mitoKATP 

and on ischemia-reperfusion injury will be presented in a subsequent 

communication.  

Limitations. 1) The conclusions are based largely on in vitro experiments 

carried out on isolated mitochondria. The rationale for this approach is that the 

signaling ROS not only originates in mitochondria but also acts on mitochondria. 

We have no reason to believe that the ROS transformation reaction sequence is 

any different in vivo. 2) We stress that the conclusions relate specifically to ROS 

signaling secondary to mitoKATP opening. The reverse sequence - mitoKATP 

opening caused by ROS - may also be physiologically important. For example, it 

is possible that the increased ROS that occurs during ischemia opens mitoKATP, 

and this ROS may arise from a different location, such as Complex III. The 

identity of the ROS signal in this setting has not yet been addressed. 3) BEL has 

been shown to inhibit activation of store-activated Ca2+ channels; however this is 

mediated by inhibition of iPLA2 and is therefore a pharmacological effect (130). It 

has recently been shown that BEL inhibits voltage gated Ca2+ and transient 

receptor potential canonical channels independently of iPLA2 (14). We consider 
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it unlikely that these effects play a role in the effect of BEL on isolated 

mitochondria. 

Conclusions and potential conceptual/pragmatic values of these 

findings. We conclude that the signaling ROS responsible for activating 

mitochondrial PKCεs is a downstream oxidation product of hydroxyl radical and 

that superoxide and H2O2 are not the signaling ROS. We further conclude that 

the main action of submillimolar MPG on mitochondria and perfused heart is not 

ROS scavenging, but rather thiol reduction, causing inactivation of PKCε and 

other ROS-dependent kinases. MitoKATP-dependent ROS signaling is a central 

process in cardioprotection and cellular signaling generally. Determining the 

identity of the mitochondrial signaling ROS is important for future research in 

these areas. 
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3-A: Abstract 

During ischemia, catabolism of mitochondrial phospholipids is accelerated, 

causing accumulation of plasmalogens and free fatty acids (FA) in the heart. 

Calcium-independent phospholipases A2 (iPLA2) are the major phospholipases 

in myocardium and the role of iPLA2 as well as the effects of various fatty acids 

and fatty acid analogues during ischemia are not completely understood. 

Because mitochondrial ATP-sensitive K+ channel (mitoKATP) is known to be 

involved in cardioprotection, here we tested whether FAs affect mitoKATP opening 

and cardioprotection. We also studied whether there is a protective role of iPLA2-

mediated FA release and tested our hypothesis that hydroperoxy fatty acids 

(FAOOH) are the second messengers of cardioprotective reactive oxygen 

species (ROS)-mediated signaling. Following the changes in mitoKATP-dependent 

changes in mitochondrial matrix volume, our results indicate that natural fatty 

acids and their hydroxy derivatives inhibit the pharmacologically open state of 

mitoKATP. Our results also show that fatty acids inhibit the phosphorylation-

dependent open state of mitoKATP with lower affinity than the pharmacologically 

open state. We found that hydroperoxylinoleic acid opens the ATP-inhibited 

mitoKATP and that its effect is blocked by the specific PKCε inhibitor peptide εV1-2. 

These data support our hypothesis of direct activation of PKCε by FAOOH. Using 

Langendorff perfused hearts, our studies indicate that iPLA2 is essential for most 

modes of cardioprotection. We show that a selective inhibitor of iPLA2, racemic 

bromoenol lactone (BEL), is cardioprotective when added before the ischemia 

and reperfusion. These results are consistent with BEL protecting against 
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ischemic reperfusion injury by preventing ischemic release of free fatty acids. 

However, our result also show that BEL blocks protection by preconditioning and 

postconditioning when added with the treatment. We interpret these results as 

the ability of BEL to prevent the iPLA2-dependent release of FAOOH, which are 

necessary for protection. 

 

 

Keywords: mitochondria; cardioprotection; hydroperoxy fatty acids; K-ATP 

channels; cardiac ischemia; ROS signaling 
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3-B: Introduction 

Mitochondria are effectors of both ischemia-reperfusion injury (IRI) and 

cardioprotection. Ischemia causes profound and immediate mitochondrial 

derangements, including cessation of ATP synthesis, inhibition of respiration, and 

a drop in membrane potential (∆Ψ). This is accompanied during ischemia by 

increases in Ca2+ and phosphate, and during reperfusion, by large increases in 

reactive oxygen species (ROS) (30, 141). Together, these factors promote 

opening of the mitochondrial permeability transition (MPT), a high-conductance 

pore in the inner mitochondrial membrane, which is the main cause of necrotic 

cell death in IRI (22, 24, 25, 65, 148).  

In addition to their role as mediators of cell death in IRI, mitochondria are 

major effectors of self-defense mechanisms, including ischemic pre- and post-

conditioning (3, 4, 53, 65). These and other conditioning protocols have been 

shown to require opening of the mitochondrial ATP-sensitive K+ channel 

(mitoKATP). Considerable progress has been made in understanding the 

mechanisms by which mitoKATP opening increases ROS production (2) and the 

mechanisms by which ROS open mitoKATP (20) and inhibits MPT (18). ROS 

activate key protein kinases (19), making them the second messengers of 

preconditioning (23). We described data in myocytes supporting the hypothesis 

that mitoKATP opening was responsible for the increased ROS of cardioprotection 

(40), and this was confirmed by several laboratories (32, 40, 84, 108, 110, 111, 

138). 
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During ischemia, catabolism of mitochondrial phospholipids is accelerated, 

causing accumulation of plasmalogens and fatty acids (FA) in the heart (89, 142, 

143). Mitochondrial cardiolipin suffers the most profound change, its level 

decreasing by 30-50% (112). Several reports have highlighted the negative role 

that fatty acids may play in cardioprotection. For example, Ford, et al. (33) found 

that cromakalim did not protect working rat hearts that were perfused with fatty 

acids. Ischemia itself causes fatty acid accumulation in the heart, caused by net 

degradation of membrane phospholipids by phospholipases (142, 143). Prasad, 

et al. (118) and Harris, et al. (64) found that inhibition of phospholipase was 

cardioprotective. In important work, Sargent, et al (124) and Williams and 

Gottlieb (149) found that perfusion of rabbit hearts with bromoenol lactone (BEL) 

prior to ischemia reduced the infarct size almost to that of controls not subjected 

to ischemia. Protection by BEL was reversed by the simultaneous perfusion of 5-

hydroxydecanoic acid (5-HD), implicating participation of mitoKATP (125). 

Importantly, BEL is a specific inhibitor of calcium-independent phospholipase A2 

(iPLA2), and iPLA2γ is the major phospholipase A2 in myocardium (13, 73).  

 Almost all of the attention on iPLA2 has focused on its deleterious effects 

(149), due to its releasing free fatty acids into the heart during ischemia. Thus, 

the iPLA2 inhibitor bromoenol lactone (BEL), administered before global 

ischemia, is cardioprotective in rat (124) and rabbit (149), causing marked 

reduction of infarct size. Protection by BEL was reversed by the simultaneous 

perfusion of 5-HD, implicating participation of mitoKATP. FA have long been 

known to promote MPT opening (129, 133), and BEL was also found to inhibit 



55 
 
Ca2+-dependent MPT opening, due to inhibition of iPLA2-mediated arachidonic 

acid release (80). 

There are several studies, however, that point to the protective effect of 

fatty acids, namely the protective effects of the products of lipoxygenase 

metabolism. Lipoxygenase inhibitors were shown to block the protective effect of 

preconditioning and elevated levels of 12-hydroxyeicosatetraenoic acid, a stable 

product of the lipoxygenase pathway of arachidonic acid metabolism, were 

detected following the preconditioning 

protocol (100). There is a correlation 

between functional recovery after 

ischemia and stimulation of the 

lipoxygenase pathway before the 

sustained period of ischemia (16) and 

experiments using leukocyte-type 12-

lipoxygenase (12-LOX) deficient mice 

demonstrated the importance of 12-

LOX in preconditioning (35). 

Given the complex effects of 

various fatty acids during ischemia, 

we investigated the interactions of 

selected fatty acids with mitoKATP. We 

tested whether fatty acids other than 

Fig 3.1. Lipid peroxidation and release of 
hydroperoxy fatty acids. (I and II) alkoxyl 
(RO•) and alkyl peroxyl radicals (LOO•) and 
alkyl hydroxyl molecules (RHO) can initiate 
the non-enzymatic chain reaction with fatty 
acid side chains (LH), leading to lipid 
hydroperoxides (LOOH). (III) LOOH can be 
released by the action of mitochondrial 
phospholipases, such as Ca2+-independent 
phospholipases PLA2 (iPLA2), which have 
been found to modulate the function of 
mitochondria (see Cedars et al (13) for a 
review). The action on LOOH by iPLA2 
results in a hydroperoxy fatty acid (FAOOH). 
Alternatively, FAOOH are formed from 
polyunsaturated fatty acids (PUFA) by the 
action of lipoxygenases (LOX). 
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5-HD affect mitoKATP opening and cardioprotection. We have further studied the 

possible protective role of iPLA2-mediated FA release and tested our hypothesis 

that hydroperoxy fatty acids (FAOOH) are the second messenger of ROS 

signaling. Using the light scattering technique, our results indicate that natural 

fatty acids and their hydroxy derivatives behave similarly to 5-HD and inhibit the 

pharmacologically open state of mitoKATP. Our results also show that fatty acids 

inhibit the phosphorylated open state of mitoKATP with lower affinity than the 

pharmacologically open state. We found that hydroperoxylinoleic acid, LAOOH, 

opens the ATP-inhibited mitoKATP and that its effect is blocked by the specific 

PKCε inhibitor peptide εV1-2. These data support our hypothesis of direct 

activation of PKCε by FAOOH. Our studies using Langendorff perfused heart 

indicate that iPLA2 is essential for most modes of cardioprotection. We show that 

BEL inhibits both ischemic preconditioning (IPC) and postconditioning (PC) when 

added with the treatment. These results are consistent with BEL protecting 

against ischemic reperfusion injury by preventing ischemic release of free fatty 

acids. However, our results also show that BEL blocks protection by IPC and 

postconditioning. We interpret these results as the ability of BEL to prevent the 

iPLA2-dependent release of FAOOH, which are necessary for protection. 
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3-C: Research Design and Methods 

Langendorff perfused hearts 

Hearts from male Sprague-Dawley rats (200-240g) were perfused for 50-

55 min as previously described (51, 115, 120) with Krebs Henseleit buffer 

containing (in mM) 118 NaCl, 5.9 KCl, 1.75 CaCl2, 1.2 mM MgSO4, 0.5 EDTA, 25 

NaHCO3, 16.7 glucose at pH 7.4 and gassed with 95% O2 - 5% CO2. Hearts 

were stabilized for 25 min with Krebs Henseleit buffer, then with buffer containing 

drugs or agents, and then subjected to 25 minutes global ischemia followed by 2 

hours of reperfusion and measurement of infarct size. Ischemic preconditioning 

(IPC) was established by two cycles of 5 min global ischemia followed by 5 min 

reperfusion prior to the index ischemia. Ischemic postconditioning was performed 

with 6 cycles of 10 s ischemia plus 10 s reperfusion (140). Cross-sectional slices 

were stained with TTC after each treatment, scanned, and analyzed to report 

infarct size as the percentage of damaged tissue relative to the area at risk (IS % 

Area at Risk). Treatments deemed protective were found to exhibit a reduced 

infarct size to an extent similar to that reported elsewhere (85, 114, 140). 

Experimental protocols were treated in accordance with the Guiding Principles in 

the Use and Care of Animals published by the National Institutes of Health. 

 
Mitochondrial isolation 

Male Sprague-Dawley rats (200 - 240 g) were anesthetized with CO2 and 

immediately decapitated. The hearts were removed and washed in ice-cold 

Buffer A (250 mM sucrose, 10 mM HEPES pH 7.2, and 2 mM K-EGTA). The 
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tissue was finely minced in the presence of 1 mg/ml protease (type XXIV Sigma), 

and the suspension was diluted 3-fold with Buffer A supplemented with 1 mg/ml 

fatty acid-free BSA. We observed that mitoKATP activity depends critically on the 

time between sacrifice and completion of homogenization. This period was kept 

as brief as possible and was completed within 2 min. The suspension was 

homogenized with a motorized Teflon pestle and centrifuged for 3 min at 1500 g. 

The supernatant was centrifuged for 5 min at 9000 g, and the resulting pellets 

were resuspended in Buffer A lacking BSA and centrifuged for 3 min at 2300 g. 

This supernatant was centrifuged for 5 min at 9000 g. The final mitochondrial 

pellet was resuspended at 35 - 40 mg protein/ml and kept on ice. Mitochondrial 

protein concentration was estimated using the Biuret reaction (54). This 

procedure is in accordance with the Guiding Principles in the Care and Use of 

Animals and was approved by IACUC at Portland State University. 

 
Bromoenol lactone treatment of mitochondria 

Where indicated, the mitochondrial pellet was treated with racemic 

bromoenol lactone (BEL) to inhibit mitochondrial phospholipase iPLA2 and avoid 

unappreciated accumulation of free fatty acids during the course of a given 

experiment. The pellet was resuspended in 1 ml of Buffer A lacking BSA in the 

presence of 5 µM BEL. The suspension was diluted to 30 ml with Buffer A 

supplemented with 0.5% fatty-acid free BSA to remove residual fatty acids and 

centrifuged 9000 g for 5 minutes. The resulting pellet was resuspended and the 

protein concentration was determined as stated above. 
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Preincubation protocol of isolated mitochondria 

Where indicated, isolated mitochondria were treated by an additional 

preincubation procedure aimed to investigate mitochondria under the conditions 

of endogenous signaling ROS (20). The mitochondria were incubated in assay 

medium for 3 minutes at 30oC with 200 µM ATP and 30 µM diazoxide (Dzx). The 

mitochondria were then isolated from the incubation medium and resuspended in 

fresh assay medium. MitoKATP activity was observed using the light scattering 

assay, as described below, with ATP in the presence or absence of diazoxide. 

 
Measurements of mitochondrial ATP-sensitive K+ channel 

Changes in mitochondrial matrix volume, which accompany net salt 

transport into mitochondria, were followed using a quantitative light scattering 

technique (9, 43). Mitochondria were suspended in a buffered salt assay medium 

containing K+ salts of Cl- (120 mM), HEPES (10 mM), EGTA (0.1 mM), succinate 

(10 mM) and phosphate (Pi) (5 mM), pH 7.2. The osmolality of these media 

ranged between 275 to 280 mOsm. All media also contained 0.5 mM MgCl2, 2.5 

µM rotenone and 1 µg/ml oligomycin. 

Light scattering changes of 0.1 mg/ml mitochondrial suspensions were 

followed at 520 nm and 30oC. The data collection was initiated by addition of the 

mitochondrial suspension. Data summarized in bar graphs as “MitoKATP activity 

(%) @ t=0s” are given by 

100 - 01�/� � 1�.$��2
01�0� � 1�.$��2 
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where 1�/� is the observed volume at 120 s under the given experimental 

condition and 1�.$�� and 1�0� are observed values in the presence and 

absence of ATP, respectively. 

 
Statistical analysis 

Data are presented as mean ± standard deviation (SD) of the mean. 

Where appropriate, one-way ANOVA or repeated measures t-test were used to 

analyze the data using Microcal Origin software (Northampton, MA, USA). A 

value of p < 0.05 was considered statistically significant. 

 
Chemicals 

All fatty acids, fatty acid derived compounds and bromoenol lactone were 

from Cayman Chemical. All other chemicals used in the study were from Sigma 

Chemical Co. (St. Louis, MO, USA). 
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3-D: Results 

5-hydroxydecanoic acid (5-HD) is a relatively simple fatty acid which is 

considered a specific inhibitor of the mitochondrial ATP-sensitive potassium 

channels (mitoKATP) (125). However, its chemical structure suggests that its 

action should not differ greatly from that of other fatty acids. We undertook to 

investigate this, because the actions of fatty acids and their hydroxy and 

hydroperoxy derivatives on mitoKATP have not been previously investigated. Fig. 

3.2 shows light scattering traces from heart mitochondria respiring in K+ medium. 

The control traces in the absence of ATP and in the presence of ATP indicate the 

open and the inhibited states of mitoKATP. Addition of 2 µM linoleic acid (LA) had 

no effect on the control traces in the 

absence or presence of ATP 

respectively (data not shown), but 

had an effect on the open trace in the 

presence of ATP and the 

Pharmacological opener diazoxide, 

similar to the known properties of 5-

HD. Because 5-HD, the known 

inhibitor of mitoKATP, is a fatty acid 

containing a hydroxy group, we tested 

whether the hydroxy derivative of 

linoleic acid exhibits similar effects. 

Fig. 3.2. 13-(S)-HODE inhibits mitoKATP. 
Light scattering traces from heart 
mitochondria respiring in K+ medium. The 
control trace in the in the presence of 0.2 
mM ATP indicates the inhibited (closed) 
state of mitoKATP and the addition of 30 µM 
diazoxide (ATP + Dzx) establishes the open 
state. Addition of 1 µM 13-(S)-HODE had no 
effect on the control traces in the absence or 
presence of ATP respectively (not shown), 
but blocked the diazoxide-induced open 
state in the presence of ATP (ATP + Dzx + 
HODE). These are representative traces of 
at least 3 independent experiments. 
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The data in Fig. 3.2  show that the hydroxy derivative of linoleic acid, 13-

hydroxyoctadecanoic acid (13-(S)-HODE, 0.5 µM), inhibits mitoKATP in the 

presence of ATP and diazoxide. Similar sets of data were obtained with other 

fatty acids, including lauric acid, 12-hydroxylauric acid, and oleic acid (data not 

shown). The data indicate that natural fatty acids and their hydroxy derivatives 

behave similar to 5-HD and inhibit the pharmacologically open state of mitoKATP. 

Linoleic acid inhibited the pharmacologically-opened state of mitoKATP in 

the presence of ATP and diazoxide with a half-maximal inhibition of 0.46 +/- 0.06 

µM (n = 3). To avoid unappreciated changes in the mitochondrial matrix volume 

due to adenine nucleotide translocase (ANT) - dependent, fatty acid-mediated 

decrease in membrane potential, similar sets of data were obtained in the 

presence of carboxyatractyloside (CAT), an inhibitor of the ANT. In the presence 

of CAT, the half-maximal inhibition was 0.6 +/- 0.05 µM linoleic acid (n = 3), 

indicating that the ANT-dependent processes did not significantly contribute to the 

changes in mitochondrial matrix volume under the given experimental conditions. 

Hydroxy fatty acids are the detectable stable byproducts of fatty acid 

peroxidation that are formed by the enzymatic action of lipid glutathione 

peroxidases (68). Therefore, the stimulating effect of hydroperoxy fatty acids 

(FAOOH) on mitoKATP would be hindered by the inhibitory effect of inherently 

formed hydroxy fatty acids, if the affinity of mitoKATP to inhibitory fatty acids 

remains unaltered. On that account we speculated that the phosphorylated open 

state of mitoKATP must be less prone to the inhibition by fatty acids and hydroxy 

fatty acids. To explore this hypothesis, we tested the effect of 13-(S)-HODE on 
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the mitoKATP in the presence of the 

pharmacological opener diazoxide or 

in the presence of general PKC 

activator phorbol 12-myristate 13-

acetate (PMA). As seen in Fig. 3.3 , 

13-(S)-HODE inhibits the 

pharmacological open state of 

mitoKATP induced by diazoxide and 

Fig. 3.3  demonstrates that it inhibits 

diazoxide with ~25-fold greater affinity 

than the PMA. 

We have also preincubated the 

mitochondria using our previously described preincubation protocol (20), except 

the pharmacological opener diazoxide was replaced by the general PKC 

activator phorbol myristate acetate (PMA). After preincubating mitochondria with 

PMA, 13-(S)-HODE inhibits mitoKATP with significantly lower affinity than 

observed for its inhibition of the pharmacologically open state. Similar data were 

obtained when using LA and arachidonic acid as the inhibitory FA (data not 

shown). These experiments indicate that fatty acids inhibit the phosphorylated 

open state of mitoKATP with significantly lower affinity than the pharmacologically 

opened state. 

Fig. 3.3. Diazoxide exhibits a ~25 fold 
greater sensitivity to 13-(S)-HODE than 
PMA. The dose response curves 
demonstrate that pharmacological mitoKATP 
opening is much more sensitive to inhibition 
by fatty acids than physiological, PKCε-
dependent opening. HODE exhibited a K1/2 of 
against the general PKC activator phorbol 
12-myristate-13-acetate (PMA) while it 
exhibited a K1/2 of with the K+-channel opener 
diazoxide. Data are representative of at least 
5 independent experiments. 
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 Figs. 3.5A  and 3.5B show the 

effects of 13-(S)-HODE in 

Langendorff-perfused hearts. Fig. 3.4  

depicts the Langendorff perfusion 

protocols used. Both ischemic 

preconditioning (IPC) and diazoxide 

(50 µM), the pharmacological 

mitoKATP opener, significantly reduce 

myocardial infarct sizes and improve 

functional recovery compared with 

untreated ischemic hearts. The 

protective effects of both were 

abolished by concurrent treatment 

 
 
 
Fig. 3.4. Isolated heart protocol – HODE 
studies. Isolated perfused rat hearts were 
stabilized (S) for 25 minutes and treated as 
described in “Methods”, following these 
protocols. After treatment, each heart is 
subjected to 25 minutes of global ischemia 
(GI) and 120 minutes of reperfusion (R). In 
the first two protocols, the 5 minute treatment 
with 50 µM diazoxide (Dzx) or ischemic 
preconditioning (IPC) is immediately followed 
by a 5 minute treatment with HODE and a 5 
minute washout. The following two protocols 
have a bracketed administration of HODE 
such that it is perfused for 5 minutes before, 
during, and for 5 minutes after the IPC or 
Dzx treatments, then washed out for 5 
minutes before the general ischemia. 

Fig. 3.5. 13-(S)-HODE blocks IPC and Dzx protection in isolated perfused rat heart. The graph 
in (A) shows that HODE blocks the improvement in functional recovery afforded by both 
diazoxide (Dzx) and IPC. These are representative traces of at least 3 independent 
experiments. The chart in (B) shows that the infarct size reduction from diazoxide and IPC is 
also blocked by HODE. This data contains results from at least 3 independent experiments 
and data are means ±SD; * p < 0.05. 

A B 
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with 2 µM 13-(S)-HODE. 

Our previous results have established HO• as a key component of the 

cardioprotective signaling (36). HO• is 

very unlikely to play a direct role in 

signaling, however, because its half-

life is short and it reacts with 

everything it meets. Therefore, we 

have hypothesized that a downstream 

product that may arise from an 

increase in HO• is responsible for the 

signaling (36). Hydroperoxy fatty acids 

(FAOOH) are transient, non-radical 

and reactive species (27) that are 

known to activate protein kinases 

(134). They have the distinct 

advantage of being able to flip-flop 

across the inner membrane bilayer to 

reach PKCε on either side of the membrane (72). In the following sets of 

experiments, we aimed to determine whether FAOOH are competent ROS 

messengers. 

Fig. 3.6 contains light scattering traces from heart mitochondria respiring 

in K+ medium showing that 1 µM hydroperoxy linoleic acid (13-

Fig. 3.6. Hydroperoxy fatty acid-dependent 
opening of mitoKATP is mediated via PKCε. 
Light scattering traces (1/A) of rat heart 
mitochondria respiring on succinate in K+ 
medium. With the exception of the trace Ano 
ATP@, ATP was present in all traces. 
FAOOH opens mitoKATP in a PKCε-
dependent manner, as demonstrated by its 
inhibition by εV1-2. Mitochondria were 
suspended at 0.1 mg/ml and assayed as 
described in AMethods@. LAOOH (1 µM) was 
added 2 seconds after the addition of 
mitochondria. ATP (0.2 mM) and εV1-2 (1 µM) 
were present in the assay medium prior to 
the addition of mitochondria. These results 
are representative of at least 3 independent 
experiments. 
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hydroperoxyoctadecanoic acid, or LAOOH), a product of cardiolipin peroxidation 

and cleavage, had no effect on mitoKATP under the conditions used to 

demonstrate that fatty acids inhibit the channel. That is, in the presence of ATP 

and the pharmacological opener diazoxide, LAOOH was ineffective. To the 

contrary, LAOOH was able to open the ATP-inhibited mitoKATP. The data also 

show that LAOOH acts via PKCε, because its effect was blocked by the specific 

inhibitor peptide εV1-2. The data support our hypothesis of direct activation of 

PKCε by hydroperoxy fatty acids in general. 

That hydroperoxy fatty acids open mitoKATP suggests that they also 

protect the heart. Indeed, Fig. 3.7 demonstrates that the high infarct size 

observed with an ischemia-reperfusion (IR) is abolished by diazoxide (Dzx) and 

ischemic preconditioning (IPC) and 

that LAOOH causes a nearly identical 

reduction in infarct size; each of these 

treatments also showed significant 

improvement in the functional recovery 

of the hearts (data not shown).  

We are not certain which of the 

many products of phospholipid 

oxidative modifications and breakdown 

are responsible for the signaling in 

vivo. For example, 4-hydroxynonenal 

Fig. 3.7. FAOOH confer protection to the 
same degree as IPC and diazoxide. FAOOH 
perfused at 2 µM were cardioprotective in the 
isolated perfused rat heart, to the same 
degree as ischemic preconditioning (IPC) 
and diazoxide (Dzx). Each treatment resulted 
in an improvement in functional recovery (not 
shown) and a significant reduction in infarct 
size. Data are means ±SD of at least 3 
independent experiments and significant with 
p < 0.05. 
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(HNE), a non-enzymatically produced breakdown product of lipid peroxidation, 

also opens mitoKATP via PKCε, but it does so at about 10-fold lower potency than 

FAOOH (data not shown). In addition, nitration of unsaturated fatty acids yields 

electrophilic nitroalkene derivatives (FANO2) known to function as pluripotent 

endogenous signaling molecules (67) and nitroalkenes were shown to be formed 

in mitochondria during IPC (105). 

Therefore, we have also tested the 

effect of nitro oleic acid (OANO2) on 

mitoKATP. 1 µM nitro oleic acid 

exhibited properties similar to the 

tested linoleic acid hydroperoxide. 

Namely, the OANO2 had no effect on 

the pharmacologically opened 

mitoKATP, indicating that FANO2 do 

not inhibit mitoKATP. However, 

OANO2 was able to reverse the 

inhibitory effect of ATP to the level of 

control open trace and this opening 

effect was inhibited by 5-HD, indicating that the effect OANO2 was mediated by 

mitoKATP. The main difference between the opening effects of LAOOH and 

OANO2 is supported by the data showing that the effect of OANO2 is not 

Fig. 3.8. Dual role of iPLA2 action in 
mitochondria and cardioprotection. (I) When a 
fatty acid side chain (L) interacts with the Ca2+-
independent phospholipase A2 (iPLA2), free 
fatty acids (FA) are formed, which inhibit 
mitoKATP and cause damage to the untreated 
heart. In this case, bromoenol lactone (BEL), 
the iPLA2 inhibitor, acts as a protective agent 
because it blocks the formation of FA and 
allows mitoKATP opening to occur. (II) When 
iPLA2 interacts with a lipid hydroperoxide, 
hydroperoxy fatty acids (FAOOH) are formed, 
which open mitoKATP and confer protection. In 
this case, BEL blocks both diazoxide and IPC 
protection because the formation of the 
proposed signaling ROS is blocked. 
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sensitive to the specific inhibitor peptide εV1-2, indicating that the effect of OANO2 

acts independently of PKCε. 

To determine the effect of fatty acids on mitoKATP under the conditions of 

endogenous ROS production by mitochondria, we utilized a previously 

established preincubation protocol. This triggers a feedback activation 

mechanism that keeps mitoKATP in its open state by increasing ROS production at 

Complex I of the respiratory chain (2) in a PKCε-dependent manner (20). The 

endogenous open state of mitoKATP was prevented by both LA and 13-(S)-HODE, 

which were tested at a concentration sufficient to fully inhibit the 

pharmacologically open mitoKATP. In addition, the phosphorylated open state was 

blocked by racemic bromoenol lactone (BEL), the inhibitor of phospholipases 

iPLA2 (8). The inhibition of the ROS-induced open state by BEL implies the 

participation of the mitochondrial phospholipases iPLA2 in the regulation of 

mitoKATP. These experiments indicate that a compound responsible for the ROS-

induced activation of PKCε is dependent upon the enzymatic function of iPLA2. 

FAOOH arise from peroxidation of polyunsaturated fatty acids (PUFA) 

derived from membrane phospholipids or alternatively from the enzymatic action 

of lipoxygenases (LOX). As shown in Fig. 3.8 , both mechanisms require iPLA2. 

In the following sets of experiments, we tested the hypothesis that iPLA2 activity 

is essential for intramitochondrial signaling and for cardioprotection. In order to  
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approach the hypotheses, the ability of the iPLA2 inhibitor bromoenol lactone 

(BEL) to block cardioprotection was tested in the perfused heart. Fig. 3.9  shows 

that BEL protects the heart and reduces infarct size when added alone, 

consistent with previously published findings (149). These results are consistent 

with BEL protecting against ischemic reperfusion injury by preventing ischemic 

release of free fatty acids, which are known to accumulate during myocardial 

ischemia (81, 142). However, BEL blocks protection by both ischemic 

preconditioning (IPC) and postconditioning (PC) when added with either 

treatment. We interpret these results as the ability of BEL to prevent the iPLA2-

dependent release of FAOOH, which are necessary for protection.

A 

Fig. 3.9. Inhibition of Ca2+-independent phospholipase A2 (iPLA2) demonstrates that FAOOH 
are necessary for signaling. (A) BEL is shown here to block IPC (“IPC+BEL”) and ischemic 
postconditioning (“Post+BEL”) improvements in functional recovery but also to confer 
protection when administered alone (“BEL”). Data representative of at least 3 independent 
experiments. (B) Infarct size was significantly reduced with the administration of IPC and 
postconditioning and this was matched by treatment with BEL alone. However, BEL inhibited 
the protective effects of both IPC and postconditioning. Data are means ±SD, representative 
of at least 3 independent experiments. Not shown is BEL’s ability to block diazoxide as well. 

B A 
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3-E: Discussion 

 Fatty acids are the preferred metabolic substrates of the heart, but when 

elevated they are harmful to the heart. Mitochondria play a key role in both 

ischemia-reperfusion injury (IRI) and cardioprotection and the opening of 

mitoKATP was shown to be obligatory in all tested protocols of cardioprotection. 5-

HD is a simple hydroxy fatty acid which is frequently used in many studies as the 

specific inhibitor of mitoKATP (125). Here we studied whether other fatty acids 

have a similar ability to inhibit the pharmacologically opened mitoKATP. We 

focused on linoleic acid and its metabolites in this study because these are the 

detected products of mitochondrial cardiolipin cleavage, which, during ischemia, 

suffers the most profound change (112). Linoleic acid inhibited the 

pharmacological open state of mitoKATP in the presence of ATP and diazoxide. 

The half-maximal inhibition observed under the given experimental condition 

yielded a mean value of 0.46 µM. This value is based on total fatty acid added to 

the assay and will vary with experimental conditions, primarily with the 

concentration of phospholipids in the assay. The corresponding value in free fatty 

acid concentration can be calculated based on the known extinction coefficient 

for linoleic acid and the calculation based on our experimental conditions yields 

an approximate value of 250 nM. Our data in Fig. 3.2  further show that not only 

linoleic acid, but the hydroxy derivative 13-hydroxydecadenoic acid (13-(S)-

HODE), a stable product of linoleic acid peroxidation, also inhibits mitoKATP. 

These data indicate that natural fatty acids and their hydroxy derivatives behave 

similar to 5-HD and inhibit the pharmacologically open state of mitoKATP. 
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 FA become elevated in two distinct ways: in association with obesity 

and/or metabolic syndrome, and in association with ischemia itself, due to 

activation of phospholipases. Pirro, et al (117) showed that elevated plasma FA 

concentrations are associated with an increased risk of ischemic heart disease, 

and Lopaschuk et al (92) noted that the risk for cardiovascular disease such as 

myocardial infarction and heart failure is drastically increased with obesity. 

Obesity has also been shown to be harmful experimentally. IPC failed to protect 

leptin-deficient ob/ob mice (11), and both IPC and diazoxide failed to protect 

Zucker obese rats (77). These studies, however, do not address the question as 

to whether FA have acute effects on cardioprotection, because compensatory 

adaptations may have occurred in man or genetically altered mice. In an 

important study, Ford, et al (33) found that the working rat heart was no longer 

protected from ischemia-reperfusion injury by cromakalim when the perfusate 

included 1.2 mM palmitate (as well as glucose and insulin). Our data shown in 

Fig. 3.5  support the view that elevated FA directly and acutely interfere with 

cardioprotection. Fatty acids, including linoleic acid and its hydroxy derivative, 

13-(S)-HODE, acutely block protection by IPC and diazoxide. 

 Our previous results have established hydroxyl radicals (HO•) as a key 

component of cardioprotective signaling (36). Hydroxyl radicals readily oxidize 

the side chains of polyunsaturated phospholipids, rendering them more 

susceptible to cleavage by phospholipases and resulting in formation of 

hydroperoxy fatty acids, FAOOH (Reaction II, Fig. 3.8 ). FAOOH are transient, 

non-radical and highly reactive species (72) and are known to activate protein 
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kinases (134). We also showed some years ago that FAOOH can readily flip-flop 

across the inner membrane bilayer (72) and thus reach its receptor on the other 

side of the membrane. 

 Fig. 3.6  contains results showing that hydroperoxy linoleic acid (LAOOH) 

is a potent mitoKATP opener. Fig. 3.6  also shows that LAOOH acts via PKCε, 

because its effect is blocked by the specific peptide εV1-2. LAOOH is the 

expected product of non-enzymatic peroxidation due to the action of hydroxyl 

radical on the side chains of polyunsaturated phospholipids, which are 

represented in mitochondria mainly by cardiolipin (88). Alternatively, LAOOH is a 

product of enzymatic peroxidation of linoleic acid cleaved from cardiolipin due to 

the action of lipoxygenases (Reaction III, Fig. 3.8 ). The role of lipoxygenase 

metabolites in ischemic preconditioning was studied previously with the focus on 

leukocyte type 12-lipoxygenase (12-LOX) metabolites of arachidonic acid (16, 

100). The data suggested that 12-LOX metabolism plays an important role in 

cardioprotection. The results, however, did not address the role of mitochondria 

and also could not distinguish between the actions of hydroperoxy fatty acids and 

the subsequently produced hydroxy fatty acids, as only the corresponding 

elevated levels of hydroxy fatty acid analogue of arachidonic acid were measured 

as the stable metabolite indicating the actions of activated 12-LOX. Nevertheless, 

12-LOX deficient mice show impaired ischemic preconditioning-induced 

cardioprotection (35). In our view, these results indicate the intriguing possibility 

that 12-LOX is co-localized to mitochondria, a hypothesis which awaits further 
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investigation. In support of the view that FAOOH are cardioprotective, we show in 

Fig. 3.7 that exogenous LAOOH confers cardioprotection in isolated perfused rat 

heart comparable to the protection achieved by diazoxide. 

 Ischemic preconditioning is also known to yield elevated levels of nitric 

oxide with consequent formation of nitroalkenes, such as nitro fatty acids (105). 

We have therefore also investigated whether nitro oleic acid (OANO2) acts in a 

manner similar to LAOOH and activates mitoKATP via PKCε - dependent pathway. 

OANO2 induces 5-HD-sensitive opening of ATP-inhibited mitoKATP but it is not 

sensitive to the specific PKCε inhibitor εV1-2, indicating that the action of OANO2 

is PKCε-independent. This finding agrees with recent observations that mitoKATP 

was activated by nitrolinoleate (LANO2) (119) and also with the finding that the 

cardioprotective effects of LANO2 were not attributable to protective kinase 

signaling (105). 

 If hydroperoxy fatty acids (FAOOH) are the ROS species essential for 

intramitochondrial signaling, then it follows that phospholipase iPLA2 is essential 

for cardioprotection. iPLA2 was shown to be localized to mitochondria (13, 

93)and also to be activated by elevated exogenous ROS in isolated mitochondria 

(74). The enzymatic actions of iPLA2 lead to release of either the FAOOH from 

the oxidized phospholipid side chains, or to release of FA that are oxidized to 

FAOOH by the enzymatic action of lipoxygenase, enabling FAOOH to diffuse to 

their PKCε targets. Our following new findings summarized in Fig. 3.9  support 

this hypothesis: 1) bromoenol lactone (BEL) blocks PKCε-dependent mitoKATP 
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opening; and 2) BEL blocks protection by IPC and ischemic postconditioning. 

Note that BEL protects the unconditioned heart as shown previously by Williams 

and Gottlieb (149). This occurs because BEL blocks ischemic release of FAs that 

inhibit mitoKATP. This dual role of iPLA2 has not previously been described and is 

due to the fact that iPLA2 acts on both un-oxidized and oxidized phospholipids. 

We show that FA and FAOH inhibit mitoKATP (Figs. 3.2 and3.3) and block 

protection (Fig. 3.5 ). FAOOH released from oxidized lipids or formed by the 

enzymatic action of lipoxygenases are potent activators of the mitochondrial 

PKCεs that regulate mitoKATP (Fig. 3.6 through 3.8). The phosphorylated open 

state of mitoKATP is less sensitive to the inhibitory effect of FA, as demonstrated 

by the preincubation experiments involving LA and 13-(S)-HODE. The BEL 

experiments shown in Fig. 3.9  establish that products of lipid peroxidation and 

cleavage provide the ROS signal and that FAOOH or one of its products is the 

ROS signal. It leads to the further hypothesis that mitochondrial iPLA2 is an 

essential component of cardioprotection. 
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Chapter 4: Conclusions 

The primary aim of this project is to identify the reactive oxygen species 

(ROS) that acts as the second messenger in cardioprotective signaling by 

ischemic and pharmacological preconditioning. The results of this study lead to 

two conclusions: 1) neither hydrogen peroxide (H2O2) nor hydroxyl radical (HO•) 

is responsible for feedback activation of mitoKATP and 2) the signaling ROS is a 

downstream oxidation product of HO•, namely a hydroperoxy fatty acid (FAOOH) 

released by the calcium-independent phospholipase A2 (iPLA2). These results 

further the understanding of signaling in cardioprotection and dispel widely-held 

misunderstandings about the nature and identity of ROS signaling molecules. 

Furthermore, signaling ROS are crucial to processes across cell types and this 

research provides a location of ROS signal formation, a model for their 

transformation and a likely downstream candidate to seek in other systems. 

H2O2 and HO• are products of oxidation-reduction reactions beginning with 

superoxide (O2
•-) generated at complex I of the electron transport chain. Brookes 

et al. claimed that O2
•- is the signaling ROS but failed to take into account the 

production of H2O2 (119). By adding catalase to their media as a control, Costa et 

al. demonstrated that O2
•- does not directly activate mitoKATP but that H2O2is 

responsible for the mitoKATP effect in Brookes’ system (20). Schumacker et al. 

proposed that H2O2 is the signaling ROS and this was widely accepted without 

question (86, 145). However, the matrix of heart mitochondria contains large 

amounts of catalase and other antioxidants (121), which would likely consume 

the small amounts of H2O2 produced (132), indicating that H2O2 may not be a 
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viable signaling ROS in cardioprotection. Indeed, the data presented here 

demonstrate that H2O2 is not the signaling ROS, namely due to the lack of an 

effect by catalase on the feedback-activated state of mitoKATP and the collection 

of scavengers and chain-breaking antioxidants indicating a signal downstream of 

HO• (36).  

Downey et al. proposed HO• as the signaling ROS (6), but it is far too 

short lived to serve as a transportable signaling species (87). Furthermore, this 

conclusion was based on experiments utilizing MPG, a purported HO•-scavenger 

with strong thiol-reductant properties that confound experiments on mitoKATP due 

to its effect on PKCε. The HO•-scavenging capabilities of MPG cannot be tested 

here because mitoKATP will be inhibited whether or not HO• is present with MPG 

keeping PKCε in its reduced state. Accordingly, our data indicate that the 

signaling ROS is a downstream oxidation product of HO• that acts as the second 

messenger in cardioprotective signaling and we have identified this ROS as a 

hydroperoxy fatty acid.  

We have demonstrated here that FAOOH are responsible for feedback 

activation of mitoKATP and MPT inhibition and that they are necessary in 

cardioprotection by ischemic and pharmacological preconditioning. Fatty acid 

side chains are peroxidized by the ROS generated from mitoKATP opening and 

FAOOH are released by the action of iPLA2 on these peroxidized side chains. 

FAOOH are then able to flip-flop across membranes (76) and could serve as a 

transportable form of ROS for a variety of signaling processes. Further studies 
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exploring the life-time and transportability of FAOOH as well as their role in other 

signaling processes are needed to complete this project and gain a greater 

understanding of ROS signaling from the mitochondrion.  

While this study shows that FAOOH are a protective ROS, their non-

peroxidized counterparts, fatty acids (FA), have been demonstrated to present 

dangers in a number of ways. FA become elevated in association with obesity 

and during ischemia itself by the action of phospholipases that release FA from 

phospholipid side chains. Elevated plasma FA is associated with a greater risk of 

ischemic heart disease (117) and the risk for cardiovascular disease such as 

myocardial infarction and heart failure is drastically increased with obesity (92). 

There are many avenues to pursue for therapeutic and preventative treatments 

of these conditions, but an in-depth understanding of the signaling processes 

involved is certainly necessary. 

MitoKATP-dependent ROS formation has been shown to trigger gene 

transcription (46)and is also necessary in endogenous cardioprotective signaling 

via bradykinin, opioid and adenosine Gi protein-coupled receptor (GPCR) 

pathways (29). GPCR signaling has recently been found to operate via a 

‘signalosome’, a unique signaling model that transports the receptor-agonist 

complex formed at the cell membrane along with the entire signaling cascade in 

a caveolar raft (120). These signalosomes likely travel along microtubules as 

opposed to relying on diffusion, and inhibitors of microtubules have been shown 

to block preconditioning (106). ROS is required for activation of the adenosine 
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signalosome and it is also necessary for the feedback activation that establishes 

cardioprotective ‘memory’ witnessed in preconditioning (20, 144). 

ROS signaling has been invoked by research labs across nearly all fields. 

Notably, Muscari et al. recently published a paper involving hypoxic pretreatment 

of adult stem cells for the purpose of developing more effective regenerative 

medicines by accomplishing greater survival rates for grafted stem cells (104). 

While multipotent stem cells could be of great use for in-vivo tissue repair, they 

suffer from a poor post-engraftment survival rate that makes the clinical 

treatment unviable. Ischemic preconditioning (IPC) certainly has the potential to 

serve as an important treatment in improving stem-cell survival and signaling 

ROS play a vital role in this process. As stated in the review, “mitochondrial ROS 

are consistently involved in the causative mechanisms of IPC” (104) and 

identifying the species behind these mechanisms is necessary for a full 

understanding of protective signaling.  

The pragmatic value or application of this research rests in the future 

development of therapeutic and preventative treatment against heart disease and 

the damage resulting from heart attacks. While an immediate benefit from these 

studies are unavailable, uncovering the pathways and crucial players in signaling 

pathways of cardioprotection is vital to our future understanding of and ability to 

treat these diseases. Furthermore, the signaling processes at play in 

cardioprotection are by no means unique to the heart; mitoKATP and ROS 

signaling play integral roles in signaling throughout all cell types. 
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With so much of the population at risk of heart disease, heart attacks, 

diabetes, obesity and a variety of mitochondrial diseases, it is of utmost 

importance that we explore these questions and undertake the efforts in basic 

research necessary to lay the foundation for treatment and prevention. 
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